1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/proto_memory.h> 76 #include <net/inet_common.h> 77 #include <linux/ipsec.h> 78 #include <linux/unaligned.h> 79 #include <linux/errqueue.h> 80 #include <trace/events/tcp.h> 81 #include <linux/jump_label_ratelimit.h> 82 #include <net/busy_poll.h> 83 #include <net/mptcp.h> 84 85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 86 87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 93 #define FLAG_ECE 0x40 /* ECE in this ACK */ 94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 105 #define FLAG_TS_PROGRESS 0x40000 /* Positive timestamp delta */ 106 107 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 108 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 109 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 110 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 111 112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 114 115 #define REXMIT_NONE 0 /* no loss recovery to do */ 116 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 117 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 118 119 #if IS_ENABLED(CONFIG_TLS_DEVICE) 120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 121 122 void clean_acked_data_enable(struct tcp_sock *tp, 123 void (*cad)(struct sock *sk, u32 ack_seq)) 124 { 125 tp->tcp_clean_acked = cad; 126 static_branch_deferred_inc(&clean_acked_data_enabled); 127 } 128 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 129 130 void clean_acked_data_disable(struct tcp_sock *tp) 131 { 132 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 133 tp->tcp_clean_acked = NULL; 134 } 135 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 136 137 void clean_acked_data_flush(void) 138 { 139 static_key_deferred_flush(&clean_acked_data_enabled); 140 } 141 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 142 #endif 143 144 #ifdef CONFIG_CGROUP_BPF 145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 146 { 147 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 148 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 150 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 151 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 152 struct bpf_sock_ops_kern sock_ops; 153 154 if (likely(!unknown_opt && !parse_all_opt)) 155 return; 156 157 /* The skb will be handled in the 158 * bpf_skops_established() or 159 * bpf_skops_write_hdr_opt(). 160 */ 161 switch (sk->sk_state) { 162 case TCP_SYN_RECV: 163 case TCP_SYN_SENT: 164 case TCP_LISTEN: 165 return; 166 } 167 168 sock_owned_by_me(sk); 169 170 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 171 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 172 sock_ops.is_fullsock = 1; 173 sock_ops.is_locked_tcp_sock = 1; 174 sock_ops.sk = sk; 175 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 176 177 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 178 } 179 180 static void bpf_skops_established(struct sock *sk, int bpf_op, 181 struct sk_buff *skb) 182 { 183 struct bpf_sock_ops_kern sock_ops; 184 185 sock_owned_by_me(sk); 186 187 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 188 sock_ops.op = bpf_op; 189 sock_ops.is_fullsock = 1; 190 sock_ops.is_locked_tcp_sock = 1; 191 sock_ops.sk = sk; 192 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 193 if (skb) 194 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 195 196 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 197 } 198 #else 199 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 200 { 201 } 202 203 static void bpf_skops_established(struct sock *sk, int bpf_op, 204 struct sk_buff *skb) 205 { 206 } 207 #endif 208 209 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 210 unsigned int len) 211 { 212 struct net_device *dev; 213 214 rcu_read_lock(); 215 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 216 if (!dev || len >= READ_ONCE(dev->mtu)) 217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 218 dev ? dev->name : "Unknown driver"); 219 rcu_read_unlock(); 220 } 221 222 /* Adapt the MSS value used to make delayed ack decision to the 223 * real world. 224 */ 225 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 226 { 227 struct inet_connection_sock *icsk = inet_csk(sk); 228 const unsigned int lss = icsk->icsk_ack.last_seg_size; 229 unsigned int len; 230 231 icsk->icsk_ack.last_seg_size = 0; 232 233 /* skb->len may jitter because of SACKs, even if peer 234 * sends good full-sized frames. 235 */ 236 len = skb_shinfo(skb)->gso_size ? : skb->len; 237 if (len >= icsk->icsk_ack.rcv_mss) { 238 /* Note: divides are still a bit expensive. 239 * For the moment, only adjust scaling_ratio 240 * when we update icsk_ack.rcv_mss. 241 */ 242 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 243 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 244 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 245 246 do_div(val, skb->truesize); 247 tcp_sk(sk)->scaling_ratio = val ? val : 1; 248 249 if (old_ratio != tcp_sk(sk)->scaling_ratio) { 250 struct tcp_sock *tp = tcp_sk(sk); 251 252 val = tcp_win_from_space(sk, sk->sk_rcvbuf); 253 tcp_set_window_clamp(sk, val); 254 255 if (tp->window_clamp < tp->rcvq_space.space) 256 tp->rcvq_space.space = tp->window_clamp; 257 } 258 } 259 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 260 tcp_sk(sk)->advmss); 261 /* Account for possibly-removed options */ 262 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 263 tcp_gro_dev_warn, sk, skb, len); 264 /* If the skb has a len of exactly 1*MSS and has the PSH bit 265 * set then it is likely the end of an application write. So 266 * more data may not be arriving soon, and yet the data sender 267 * may be waiting for an ACK if cwnd-bound or using TX zero 268 * copy. So we set ICSK_ACK_PUSHED here so that 269 * tcp_cleanup_rbuf() will send an ACK immediately if the app 270 * reads all of the data and is not ping-pong. If len > MSS 271 * then this logic does not matter (and does not hurt) because 272 * tcp_cleanup_rbuf() will always ACK immediately if the app 273 * reads data and there is more than an MSS of unACKed data. 274 */ 275 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 276 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 277 } else { 278 /* Otherwise, we make more careful check taking into account, 279 * that SACKs block is variable. 280 * 281 * "len" is invariant segment length, including TCP header. 282 */ 283 len += skb->data - skb_transport_header(skb); 284 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 285 /* If PSH is not set, packet should be 286 * full sized, provided peer TCP is not badly broken. 287 * This observation (if it is correct 8)) allows 288 * to handle super-low mtu links fairly. 289 */ 290 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 291 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 292 /* Subtract also invariant (if peer is RFC compliant), 293 * tcp header plus fixed timestamp option length. 294 * Resulting "len" is MSS free of SACK jitter. 295 */ 296 len -= tcp_sk(sk)->tcp_header_len; 297 icsk->icsk_ack.last_seg_size = len; 298 if (len == lss) { 299 icsk->icsk_ack.rcv_mss = len; 300 return; 301 } 302 } 303 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 304 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 305 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 306 } 307 } 308 309 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 310 { 311 struct inet_connection_sock *icsk = inet_csk(sk); 312 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 313 314 if (quickacks == 0) 315 quickacks = 2; 316 quickacks = min(quickacks, max_quickacks); 317 if (quickacks > icsk->icsk_ack.quick) 318 icsk->icsk_ack.quick = quickacks; 319 } 320 321 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 322 { 323 struct inet_connection_sock *icsk = inet_csk(sk); 324 325 tcp_incr_quickack(sk, max_quickacks); 326 inet_csk_exit_pingpong_mode(sk); 327 icsk->icsk_ack.ato = TCP_ATO_MIN; 328 } 329 330 /* Send ACKs quickly, if "quick" count is not exhausted 331 * and the session is not interactive. 332 */ 333 334 static bool tcp_in_quickack_mode(struct sock *sk) 335 { 336 const struct inet_connection_sock *icsk = inet_csk(sk); 337 338 return icsk->icsk_ack.dst_quick_ack || 339 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 340 } 341 342 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 343 { 344 if (tcp_ecn_mode_rfc3168(tp)) 345 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 346 } 347 348 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 349 { 350 if (tcp_hdr(skb)->cwr) { 351 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 352 353 /* If the sender is telling us it has entered CWR, then its 354 * cwnd may be very low (even just 1 packet), so we should ACK 355 * immediately. 356 */ 357 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 358 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 359 } 360 } 361 362 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 363 { 364 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 365 } 366 367 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 371 if (tcp_ecn_disabled(tp)) 372 return; 373 374 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 375 case INET_ECN_NOT_ECT: 376 /* Funny extension: if ECT is not set on a segment, 377 * and we already seen ECT on a previous segment, 378 * it is probably a retransmit. 379 */ 380 if (tp->ecn_flags & TCP_ECN_SEEN) 381 tcp_enter_quickack_mode(sk, 2); 382 break; 383 case INET_ECN_CE: 384 if (tcp_ca_needs_ecn(sk)) 385 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 386 387 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 388 /* Better not delay acks, sender can have a very low cwnd */ 389 tcp_enter_quickack_mode(sk, 2); 390 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 391 } 392 tp->ecn_flags |= TCP_ECN_SEEN; 393 break; 394 default: 395 if (tcp_ca_needs_ecn(sk)) 396 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 397 tp->ecn_flags |= TCP_ECN_SEEN; 398 break; 399 } 400 } 401 402 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 403 { 404 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || th->cwr)) 405 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED); 406 } 407 408 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 409 { 410 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || !th->cwr)) 411 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED); 412 } 413 414 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 415 { 416 if (th->ece && !th->syn && tcp_ecn_mode_rfc3168(tp)) 417 return true; 418 return false; 419 } 420 421 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count) 422 { 423 tp->delivered_ce += ecn_count; 424 } 425 426 /* Updates the delivered and delivered_ce counts */ 427 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 428 bool ece_ack) 429 { 430 tp->delivered += delivered; 431 if (ece_ack) 432 tcp_count_delivered_ce(tp, delivered); 433 } 434 435 /* Buffer size and advertised window tuning. 436 * 437 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 438 */ 439 440 static void tcp_sndbuf_expand(struct sock *sk) 441 { 442 const struct tcp_sock *tp = tcp_sk(sk); 443 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 444 int sndmem, per_mss; 445 u32 nr_segs; 446 447 /* Worst case is non GSO/TSO : each frame consumes one skb 448 * and skb->head is kmalloced using power of two area of memory 449 */ 450 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 451 MAX_TCP_HEADER + 452 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 453 454 per_mss = roundup_pow_of_two(per_mss) + 455 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 456 457 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 458 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 459 460 /* Fast Recovery (RFC 5681 3.2) : 461 * Cubic needs 1.7 factor, rounded to 2 to include 462 * extra cushion (application might react slowly to EPOLLOUT) 463 */ 464 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 465 sndmem *= nr_segs * per_mss; 466 467 if (sk->sk_sndbuf < sndmem) 468 WRITE_ONCE(sk->sk_sndbuf, 469 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 470 } 471 472 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 473 * 474 * All tcp_full_space() is split to two parts: "network" buffer, allocated 475 * forward and advertised in receiver window (tp->rcv_wnd) and 476 * "application buffer", required to isolate scheduling/application 477 * latencies from network. 478 * window_clamp is maximal advertised window. It can be less than 479 * tcp_full_space(), in this case tcp_full_space() - window_clamp 480 * is reserved for "application" buffer. The less window_clamp is 481 * the smoother our behaviour from viewpoint of network, but the lower 482 * throughput and the higher sensitivity of the connection to losses. 8) 483 * 484 * rcv_ssthresh is more strict window_clamp used at "slow start" 485 * phase to predict further behaviour of this connection. 486 * It is used for two goals: 487 * - to enforce header prediction at sender, even when application 488 * requires some significant "application buffer". It is check #1. 489 * - to prevent pruning of receive queue because of misprediction 490 * of receiver window. Check #2. 491 * 492 * The scheme does not work when sender sends good segments opening 493 * window and then starts to feed us spaghetti. But it should work 494 * in common situations. Otherwise, we have to rely on queue collapsing. 495 */ 496 497 /* Slow part of check#2. */ 498 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 499 unsigned int skbtruesize) 500 { 501 const struct tcp_sock *tp = tcp_sk(sk); 502 /* Optimize this! */ 503 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 504 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 505 506 while (tp->rcv_ssthresh <= window) { 507 if (truesize <= skb->len) 508 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 509 510 truesize >>= 1; 511 window >>= 1; 512 } 513 return 0; 514 } 515 516 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 517 * can play nice with us, as sk_buff and skb->head might be either 518 * freed or shared with up to MAX_SKB_FRAGS segments. 519 * Only give a boost to drivers using page frag(s) to hold the frame(s), 520 * and if no payload was pulled in skb->head before reaching us. 521 */ 522 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 523 { 524 u32 truesize = skb->truesize; 525 526 if (adjust && !skb_headlen(skb)) { 527 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 528 /* paranoid check, some drivers might be buggy */ 529 if (unlikely((int)truesize < (int)skb->len)) 530 truesize = skb->truesize; 531 } 532 return truesize; 533 } 534 535 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 536 bool adjust) 537 { 538 struct tcp_sock *tp = tcp_sk(sk); 539 int room; 540 541 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 542 543 if (room <= 0) 544 return; 545 546 /* Check #1 */ 547 if (!tcp_under_memory_pressure(sk)) { 548 unsigned int truesize = truesize_adjust(adjust, skb); 549 int incr; 550 551 /* Check #2. Increase window, if skb with such overhead 552 * will fit to rcvbuf in future. 553 */ 554 if (tcp_win_from_space(sk, truesize) <= skb->len) 555 incr = 2 * tp->advmss; 556 else 557 incr = __tcp_grow_window(sk, skb, truesize); 558 559 if (incr) { 560 incr = max_t(int, incr, 2 * skb->len); 561 tp->rcv_ssthresh += min(room, incr); 562 inet_csk(sk)->icsk_ack.quick |= 1; 563 } 564 } else { 565 /* Under pressure: 566 * Adjust rcv_ssthresh according to reserved mem 567 */ 568 tcp_adjust_rcv_ssthresh(sk); 569 } 570 } 571 572 /* 3. Try to fixup all. It is made immediately after connection enters 573 * established state. 574 */ 575 static void tcp_init_buffer_space(struct sock *sk) 576 { 577 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 578 struct tcp_sock *tp = tcp_sk(sk); 579 int maxwin; 580 581 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 582 tcp_sndbuf_expand(sk); 583 584 tcp_mstamp_refresh(tp); 585 tp->rcvq_space.time = tp->tcp_mstamp; 586 tp->rcvq_space.seq = tp->copied_seq; 587 588 maxwin = tcp_full_space(sk); 589 590 if (tp->window_clamp >= maxwin) { 591 WRITE_ONCE(tp->window_clamp, maxwin); 592 593 if (tcp_app_win && maxwin > 4 * tp->advmss) 594 WRITE_ONCE(tp->window_clamp, 595 max(maxwin - (maxwin >> tcp_app_win), 596 4 * tp->advmss)); 597 } 598 599 /* Force reservation of one segment. */ 600 if (tcp_app_win && 601 tp->window_clamp > 2 * tp->advmss && 602 tp->window_clamp + tp->advmss > maxwin) 603 WRITE_ONCE(tp->window_clamp, 604 max(2 * tp->advmss, maxwin - tp->advmss)); 605 606 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 607 tp->snd_cwnd_stamp = tcp_jiffies32; 608 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 609 (u32)TCP_INIT_CWND * tp->advmss); 610 } 611 612 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 613 static void tcp_clamp_window(struct sock *sk) 614 { 615 struct tcp_sock *tp = tcp_sk(sk); 616 struct inet_connection_sock *icsk = inet_csk(sk); 617 struct net *net = sock_net(sk); 618 int rmem2; 619 620 icsk->icsk_ack.quick = 0; 621 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 622 623 if (sk->sk_rcvbuf < rmem2 && 624 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 625 !tcp_under_memory_pressure(sk) && 626 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 627 WRITE_ONCE(sk->sk_rcvbuf, 628 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 629 } 630 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 631 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 632 } 633 634 /* Initialize RCV_MSS value. 635 * RCV_MSS is an our guess about MSS used by the peer. 636 * We haven't any direct information about the MSS. 637 * It's better to underestimate the RCV_MSS rather than overestimate. 638 * Overestimations make us ACKing less frequently than needed. 639 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 640 */ 641 void tcp_initialize_rcv_mss(struct sock *sk) 642 { 643 const struct tcp_sock *tp = tcp_sk(sk); 644 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 645 646 hint = min(hint, tp->rcv_wnd / 2); 647 hint = min(hint, TCP_MSS_DEFAULT); 648 hint = max(hint, TCP_MIN_MSS); 649 650 inet_csk(sk)->icsk_ack.rcv_mss = hint; 651 } 652 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss); 653 654 /* Receiver "autotuning" code. 655 * 656 * The algorithm for RTT estimation w/o timestamps is based on 657 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 658 * <https://public.lanl.gov/radiant/pubs.html#DRS> 659 * 660 * More detail on this code can be found at 661 * <http://staff.psc.edu/jheffner/>, 662 * though this reference is out of date. A new paper 663 * is pending. 664 */ 665 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 666 { 667 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us; 668 long m = sample << 3; 669 670 if (old_sample == 0 || m < old_sample) { 671 new_sample = m; 672 } else { 673 /* If we sample in larger samples in the non-timestamp 674 * case, we could grossly overestimate the RTT especially 675 * with chatty applications or bulk transfer apps which 676 * are stalled on filesystem I/O. 677 * 678 * Also, since we are only going for a minimum in the 679 * non-timestamp case, we do not smooth things out 680 * else with timestamps disabled convergence takes too 681 * long. 682 */ 683 if (win_dep) 684 return; 685 /* Do not use this sample if receive queue is not empty. */ 686 if (tp->rcv_nxt != tp->copied_seq) 687 return; 688 new_sample = old_sample - (old_sample >> 3) + sample; 689 } 690 691 tp->rcv_rtt_est.rtt_us = new_sample; 692 } 693 694 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 695 { 696 u32 delta_us; 697 698 if (tp->rcv_rtt_est.time == 0) 699 goto new_measure; 700 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 701 return; 702 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 703 if (!delta_us) 704 delta_us = 1; 705 tcp_rcv_rtt_update(tp, delta_us, 1); 706 707 new_measure: 708 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 709 tp->rcv_rtt_est.time = tp->tcp_mstamp; 710 } 711 712 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta) 713 { 714 u32 delta, delta_us; 715 716 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 717 if (tp->tcp_usec_ts) 718 return delta; 719 720 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 721 if (!delta) 722 delta = min_delta; 723 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 724 return delta_us; 725 } 726 return -1; 727 } 728 729 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 730 const struct sk_buff *skb) 731 { 732 struct tcp_sock *tp = tcp_sk(sk); 733 734 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 735 return; 736 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 737 738 if (TCP_SKB_CB(skb)->end_seq - 739 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 740 s32 delta = tcp_rtt_tsopt_us(tp, 0); 741 742 if (delta > 0) 743 tcp_rcv_rtt_update(tp, delta, 0); 744 } 745 } 746 747 static void tcp_rcvbuf_grow(struct sock *sk) 748 { 749 const struct net *net = sock_net(sk); 750 struct tcp_sock *tp = tcp_sk(sk); 751 int rcvwin, rcvbuf, cap; 752 753 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 754 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 755 return; 756 757 /* slow start: allow the sender to double its rate. */ 758 rcvwin = tp->rcvq_space.space << 1; 759 760 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) 761 rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt; 762 763 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 764 765 rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap); 766 if (rcvbuf > sk->sk_rcvbuf) { 767 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 768 /* Make the window clamp follow along. */ 769 WRITE_ONCE(tp->window_clamp, 770 tcp_win_from_space(sk, rcvbuf)); 771 } 772 } 773 /* 774 * This function should be called every time data is copied to user space. 775 * It calculates the appropriate TCP receive buffer space. 776 */ 777 void tcp_rcv_space_adjust(struct sock *sk) 778 { 779 struct tcp_sock *tp = tcp_sk(sk); 780 int time, inq, copied; 781 782 trace_tcp_rcv_space_adjust(sk); 783 784 tcp_mstamp_refresh(tp); 785 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 786 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 787 return; 788 789 /* Number of bytes copied to user in last RTT */ 790 copied = tp->copied_seq - tp->rcvq_space.seq; 791 /* Number of bytes in receive queue. */ 792 inq = tp->rcv_nxt - tp->copied_seq; 793 copied -= inq; 794 if (copied <= tp->rcvq_space.space) 795 goto new_measure; 796 797 trace_tcp_rcvbuf_grow(sk, time); 798 799 tp->rcvq_space.space = copied; 800 801 tcp_rcvbuf_grow(sk); 802 803 new_measure: 804 tp->rcvq_space.seq = tp->copied_seq; 805 tp->rcvq_space.time = tp->tcp_mstamp; 806 } 807 808 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 809 { 810 #if IS_ENABLED(CONFIG_IPV6) 811 struct inet_connection_sock *icsk = inet_csk(sk); 812 813 if (skb->protocol == htons(ETH_P_IPV6)) 814 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 815 #endif 816 } 817 818 /* There is something which you must keep in mind when you analyze the 819 * behavior of the tp->ato delayed ack timeout interval. When a 820 * connection starts up, we want to ack as quickly as possible. The 821 * problem is that "good" TCP's do slow start at the beginning of data 822 * transmission. The means that until we send the first few ACK's the 823 * sender will sit on his end and only queue most of his data, because 824 * he can only send snd_cwnd unacked packets at any given time. For 825 * each ACK we send, he increments snd_cwnd and transmits more of his 826 * queue. -DaveM 827 */ 828 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 829 { 830 struct tcp_sock *tp = tcp_sk(sk); 831 struct inet_connection_sock *icsk = inet_csk(sk); 832 u32 now; 833 834 inet_csk_schedule_ack(sk); 835 836 tcp_measure_rcv_mss(sk, skb); 837 838 tcp_rcv_rtt_measure(tp); 839 840 now = tcp_jiffies32; 841 842 if (!icsk->icsk_ack.ato) { 843 /* The _first_ data packet received, initialize 844 * delayed ACK engine. 845 */ 846 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 847 icsk->icsk_ack.ato = TCP_ATO_MIN; 848 } else { 849 int m = now - icsk->icsk_ack.lrcvtime; 850 851 if (m <= TCP_ATO_MIN / 2) { 852 /* The fastest case is the first. */ 853 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 854 } else if (m < icsk->icsk_ack.ato) { 855 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 856 if (icsk->icsk_ack.ato > icsk->icsk_rto) 857 icsk->icsk_ack.ato = icsk->icsk_rto; 858 } else if (m > icsk->icsk_rto) { 859 /* Too long gap. Apparently sender failed to 860 * restart window, so that we send ACKs quickly. 861 */ 862 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 863 } 864 } 865 icsk->icsk_ack.lrcvtime = now; 866 tcp_save_lrcv_flowlabel(sk, skb); 867 868 tcp_data_ecn_check(sk, skb); 869 870 if (skb->len >= 128) 871 tcp_grow_window(sk, skb, true); 872 } 873 874 /* Called to compute a smoothed rtt estimate. The data fed to this 875 * routine either comes from timestamps, or from segments that were 876 * known _not_ to have been retransmitted [see Karn/Partridge 877 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 878 * piece by Van Jacobson. 879 * NOTE: the next three routines used to be one big routine. 880 * To save cycles in the RFC 1323 implementation it was better to break 881 * it up into three procedures. -- erics 882 */ 883 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 884 { 885 struct tcp_sock *tp = tcp_sk(sk); 886 long m = mrtt_us; /* RTT */ 887 u32 srtt = tp->srtt_us; 888 889 /* The following amusing code comes from Jacobson's 890 * article in SIGCOMM '88. Note that rtt and mdev 891 * are scaled versions of rtt and mean deviation. 892 * This is designed to be as fast as possible 893 * m stands for "measurement". 894 * 895 * On a 1990 paper the rto value is changed to: 896 * RTO = rtt + 4 * mdev 897 * 898 * Funny. This algorithm seems to be very broken. 899 * These formulae increase RTO, when it should be decreased, increase 900 * too slowly, when it should be increased quickly, decrease too quickly 901 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 902 * does not matter how to _calculate_ it. Seems, it was trap 903 * that VJ failed to avoid. 8) 904 */ 905 if (srtt != 0) { 906 m -= (srtt >> 3); /* m is now error in rtt est */ 907 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 908 if (m < 0) { 909 m = -m; /* m is now abs(error) */ 910 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 911 /* This is similar to one of Eifel findings. 912 * Eifel blocks mdev updates when rtt decreases. 913 * This solution is a bit different: we use finer gain 914 * for mdev in this case (alpha*beta). 915 * Like Eifel it also prevents growth of rto, 916 * but also it limits too fast rto decreases, 917 * happening in pure Eifel. 918 */ 919 if (m > 0) 920 m >>= 3; 921 } else { 922 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 923 } 924 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 925 if (tp->mdev_us > tp->mdev_max_us) { 926 tp->mdev_max_us = tp->mdev_us; 927 if (tp->mdev_max_us > tp->rttvar_us) 928 tp->rttvar_us = tp->mdev_max_us; 929 } 930 if (after(tp->snd_una, tp->rtt_seq)) { 931 if (tp->mdev_max_us < tp->rttvar_us) 932 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 933 tp->rtt_seq = tp->snd_nxt; 934 tp->mdev_max_us = tcp_rto_min_us(sk); 935 936 tcp_bpf_rtt(sk, mrtt_us, srtt); 937 } 938 } else { 939 /* no previous measure. */ 940 srtt = m << 3; /* take the measured time to be rtt */ 941 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 942 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 943 tp->mdev_max_us = tp->rttvar_us; 944 tp->rtt_seq = tp->snd_nxt; 945 946 tcp_bpf_rtt(sk, mrtt_us, srtt); 947 } 948 tp->srtt_us = max(1U, srtt); 949 } 950 951 static void tcp_update_pacing_rate(struct sock *sk) 952 { 953 const struct tcp_sock *tp = tcp_sk(sk); 954 u64 rate; 955 956 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 957 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 958 959 /* current rate is (cwnd * mss) / srtt 960 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 961 * In Congestion Avoidance phase, set it to 120 % the current rate. 962 * 963 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 964 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 965 * end of slow start and should slow down. 966 */ 967 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 968 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 969 else 970 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 971 972 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 973 974 if (likely(tp->srtt_us)) 975 do_div(rate, tp->srtt_us); 976 977 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 978 * without any lock. We want to make sure compiler wont store 979 * intermediate values in this location. 980 */ 981 WRITE_ONCE(sk->sk_pacing_rate, 982 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 983 } 984 985 /* Calculate rto without backoff. This is the second half of Van Jacobson's 986 * routine referred to above. 987 */ 988 static void tcp_set_rto(struct sock *sk) 989 { 990 const struct tcp_sock *tp = tcp_sk(sk); 991 /* Old crap is replaced with new one. 8) 992 * 993 * More seriously: 994 * 1. If rtt variance happened to be less 50msec, it is hallucination. 995 * It cannot be less due to utterly erratic ACK generation made 996 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 997 * to do with delayed acks, because at cwnd>2 true delack timeout 998 * is invisible. Actually, Linux-2.4 also generates erratic 999 * ACKs in some circumstances. 1000 */ 1001 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 1002 1003 /* 2. Fixups made earlier cannot be right. 1004 * If we do not estimate RTO correctly without them, 1005 * all the algo is pure shit and should be replaced 1006 * with correct one. It is exactly, which we pretend to do. 1007 */ 1008 1009 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 1010 * guarantees that rto is higher. 1011 */ 1012 tcp_bound_rto(sk); 1013 } 1014 1015 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1016 { 1017 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1018 1019 if (!cwnd) 1020 cwnd = TCP_INIT_CWND; 1021 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1022 } 1023 1024 struct tcp_sacktag_state { 1025 /* Timestamps for earliest and latest never-retransmitted segment 1026 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1027 * but congestion control should still get an accurate delay signal. 1028 */ 1029 u64 first_sackt; 1030 u64 last_sackt; 1031 u32 reord; 1032 u32 sack_delivered; 1033 int flag; 1034 unsigned int mss_now; 1035 struct rate_sample *rate; 1036 }; 1037 1038 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1039 * and spurious retransmission information if this DSACK is unlikely caused by 1040 * sender's action: 1041 * - DSACKed sequence range is larger than maximum receiver's window. 1042 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1043 */ 1044 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1045 u32 end_seq, struct tcp_sacktag_state *state) 1046 { 1047 u32 seq_len, dup_segs = 1; 1048 1049 if (!before(start_seq, end_seq)) 1050 return 0; 1051 1052 seq_len = end_seq - start_seq; 1053 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1054 if (seq_len > tp->max_window) 1055 return 0; 1056 if (seq_len > tp->mss_cache) 1057 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1058 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1059 state->flag |= FLAG_DSACK_TLP; 1060 1061 tp->dsack_dups += dup_segs; 1062 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1063 if (tp->dsack_dups > tp->total_retrans) 1064 return 0; 1065 1066 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1067 /* We increase the RACK ordering window in rounds where we receive 1068 * DSACKs that may have been due to reordering causing RACK to trigger 1069 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1070 * without having seen reordering, or that match TLP probes (TLP 1071 * is timer-driven, not triggered by RACK). 1072 */ 1073 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1074 tp->rack.dsack_seen = 1; 1075 1076 state->flag |= FLAG_DSACKING_ACK; 1077 /* A spurious retransmission is delivered */ 1078 state->sack_delivered += dup_segs; 1079 1080 return dup_segs; 1081 } 1082 1083 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1084 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1085 * distance is approximated in full-mss packet distance ("reordering"). 1086 */ 1087 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1088 const int ts) 1089 { 1090 struct tcp_sock *tp = tcp_sk(sk); 1091 const u32 mss = tp->mss_cache; 1092 u32 fack, metric; 1093 1094 fack = tcp_highest_sack_seq(tp); 1095 if (!before(low_seq, fack)) 1096 return; 1097 1098 metric = fack - low_seq; 1099 if ((metric > tp->reordering * mss) && mss) { 1100 #if FASTRETRANS_DEBUG > 1 1101 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1102 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1103 tp->reordering, 1104 0, 1105 tp->sacked_out, 1106 tp->undo_marker ? tp->undo_retrans : 0); 1107 #endif 1108 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1109 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1110 } 1111 1112 /* This exciting event is worth to be remembered. 8) */ 1113 tp->reord_seen++; 1114 NET_INC_STATS(sock_net(sk), 1115 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1116 } 1117 1118 /* This must be called before lost_out or retrans_out are updated 1119 * on a new loss, because we want to know if all skbs previously 1120 * known to be lost have already been retransmitted, indicating 1121 * that this newly lost skb is our next skb to retransmit. 1122 */ 1123 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1124 { 1125 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1126 (tp->retransmit_skb_hint && 1127 before(TCP_SKB_CB(skb)->seq, 1128 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1129 tp->retransmit_skb_hint = skb; 1130 } 1131 1132 /* Sum the number of packets on the wire we have marked as lost, and 1133 * notify the congestion control module that the given skb was marked lost. 1134 */ 1135 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1136 { 1137 tp->lost += tcp_skb_pcount(skb); 1138 } 1139 1140 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1141 { 1142 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1143 struct tcp_sock *tp = tcp_sk(sk); 1144 1145 if (sacked & TCPCB_SACKED_ACKED) 1146 return; 1147 1148 tcp_verify_retransmit_hint(tp, skb); 1149 if (sacked & TCPCB_LOST) { 1150 if (sacked & TCPCB_SACKED_RETRANS) { 1151 /* Account for retransmits that are lost again */ 1152 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1153 tp->retrans_out -= tcp_skb_pcount(skb); 1154 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1155 tcp_skb_pcount(skb)); 1156 tcp_notify_skb_loss_event(tp, skb); 1157 } 1158 } else { 1159 tp->lost_out += tcp_skb_pcount(skb); 1160 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1161 tcp_notify_skb_loss_event(tp, skb); 1162 } 1163 } 1164 1165 /* This procedure tags the retransmission queue when SACKs arrive. 1166 * 1167 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1168 * Packets in queue with these bits set are counted in variables 1169 * sacked_out, retrans_out and lost_out, correspondingly. 1170 * 1171 * Valid combinations are: 1172 * Tag InFlight Description 1173 * 0 1 - orig segment is in flight. 1174 * S 0 - nothing flies, orig reached receiver. 1175 * L 0 - nothing flies, orig lost by net. 1176 * R 2 - both orig and retransmit are in flight. 1177 * L|R 1 - orig is lost, retransmit is in flight. 1178 * S|R 1 - orig reached receiver, retrans is still in flight. 1179 * (L|S|R is logically valid, it could occur when L|R is sacked, 1180 * but it is equivalent to plain S and code short-circuits it to S. 1181 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1182 * 1183 * These 6 states form finite state machine, controlled by the following events: 1184 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1185 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1186 * 3. Loss detection event of two flavors: 1187 * A. Scoreboard estimator decided the packet is lost. 1188 * A'. Reno "three dupacks" marks head of queue lost. 1189 * B. SACK arrives sacking SND.NXT at the moment, when the 1190 * segment was retransmitted. 1191 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1192 * 1193 * It is pleasant to note, that state diagram turns out to be commutative, 1194 * so that we are allowed not to be bothered by order of our actions, 1195 * when multiple events arrive simultaneously. (see the function below). 1196 * 1197 * Reordering detection. 1198 * -------------------- 1199 * Reordering metric is maximal distance, which a packet can be displaced 1200 * in packet stream. With SACKs we can estimate it: 1201 * 1202 * 1. SACK fills old hole and the corresponding segment was not 1203 * ever retransmitted -> reordering. Alas, we cannot use it 1204 * when segment was retransmitted. 1205 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1206 * for retransmitted and already SACKed segment -> reordering.. 1207 * Both of these heuristics are not used in Loss state, when we cannot 1208 * account for retransmits accurately. 1209 * 1210 * SACK block validation. 1211 * ---------------------- 1212 * 1213 * SACK block range validation checks that the received SACK block fits to 1214 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1215 * Note that SND.UNA is not included to the range though being valid because 1216 * it means that the receiver is rather inconsistent with itself reporting 1217 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1218 * perfectly valid, however, in light of RFC2018 which explicitly states 1219 * that "SACK block MUST reflect the newest segment. Even if the newest 1220 * segment is going to be discarded ...", not that it looks very clever 1221 * in case of head skb. Due to potentional receiver driven attacks, we 1222 * choose to avoid immediate execution of a walk in write queue due to 1223 * reneging and defer head skb's loss recovery to standard loss recovery 1224 * procedure that will eventually trigger (nothing forbids us doing this). 1225 * 1226 * Implements also blockage to start_seq wrap-around. Problem lies in the 1227 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1228 * there's no guarantee that it will be before snd_nxt (n). The problem 1229 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1230 * wrap (s_w): 1231 * 1232 * <- outs wnd -> <- wrapzone -> 1233 * u e n u_w e_w s n_w 1234 * | | | | | | | 1235 * |<------------+------+----- TCP seqno space --------------+---------->| 1236 * ...-- <2^31 ->| |<--------... 1237 * ...---- >2^31 ------>| |<--------... 1238 * 1239 * Current code wouldn't be vulnerable but it's better still to discard such 1240 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1241 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1242 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1243 * equal to the ideal case (infinite seqno space without wrap caused issues). 1244 * 1245 * With D-SACK the lower bound is extended to cover sequence space below 1246 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1247 * again, D-SACK block must not to go across snd_una (for the same reason as 1248 * for the normal SACK blocks, explained above). But there all simplicity 1249 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1250 * fully below undo_marker they do not affect behavior in anyway and can 1251 * therefore be safely ignored. In rare cases (which are more or less 1252 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1253 * fragmentation and packet reordering past skb's retransmission. To consider 1254 * them correctly, the acceptable range must be extended even more though 1255 * the exact amount is rather hard to quantify. However, tp->max_window can 1256 * be used as an exaggerated estimate. 1257 */ 1258 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1259 u32 start_seq, u32 end_seq) 1260 { 1261 /* Too far in future, or reversed (interpretation is ambiguous) */ 1262 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1263 return false; 1264 1265 /* Nasty start_seq wrap-around check (see comments above) */ 1266 if (!before(start_seq, tp->snd_nxt)) 1267 return false; 1268 1269 /* In outstanding window? ...This is valid exit for D-SACKs too. 1270 * start_seq == snd_una is non-sensical (see comments above) 1271 */ 1272 if (after(start_seq, tp->snd_una)) 1273 return true; 1274 1275 if (!is_dsack || !tp->undo_marker) 1276 return false; 1277 1278 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1279 if (after(end_seq, tp->snd_una)) 1280 return false; 1281 1282 if (!before(start_seq, tp->undo_marker)) 1283 return true; 1284 1285 /* Too old */ 1286 if (!after(end_seq, tp->undo_marker)) 1287 return false; 1288 1289 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1290 * start_seq < undo_marker and end_seq >= undo_marker. 1291 */ 1292 return !before(start_seq, end_seq - tp->max_window); 1293 } 1294 1295 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1296 struct tcp_sack_block_wire *sp, int num_sacks, 1297 u32 prior_snd_una, struct tcp_sacktag_state *state) 1298 { 1299 struct tcp_sock *tp = tcp_sk(sk); 1300 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1301 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1302 u32 dup_segs; 1303 1304 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1306 } else if (num_sacks > 1) { 1307 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1308 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1309 1310 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1311 return false; 1312 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1313 } else { 1314 return false; 1315 } 1316 1317 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1318 if (!dup_segs) { /* Skip dubious DSACK */ 1319 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1320 return false; 1321 } 1322 1323 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1324 1325 /* D-SACK for already forgotten data... Do dumb counting. */ 1326 if (tp->undo_marker && tp->undo_retrans > 0 && 1327 !after(end_seq_0, prior_snd_una) && 1328 after(end_seq_0, tp->undo_marker)) 1329 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1330 1331 return true; 1332 } 1333 1334 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1335 * the incoming SACK may not exactly match but we can find smaller MSS 1336 * aligned portion of it that matches. Therefore we might need to fragment 1337 * which may fail and creates some hassle (caller must handle error case 1338 * returns). 1339 * 1340 * FIXME: this could be merged to shift decision code 1341 */ 1342 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1343 u32 start_seq, u32 end_seq) 1344 { 1345 int err; 1346 bool in_sack; 1347 unsigned int pkt_len; 1348 unsigned int mss; 1349 1350 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1351 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1352 1353 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1354 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1355 mss = tcp_skb_mss(skb); 1356 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1357 1358 if (!in_sack) { 1359 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1360 if (pkt_len < mss) 1361 pkt_len = mss; 1362 } else { 1363 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1364 if (pkt_len < mss) 1365 return -EINVAL; 1366 } 1367 1368 /* Round if necessary so that SACKs cover only full MSSes 1369 * and/or the remaining small portion (if present) 1370 */ 1371 if (pkt_len > mss) { 1372 unsigned int new_len = (pkt_len / mss) * mss; 1373 if (!in_sack && new_len < pkt_len) 1374 new_len += mss; 1375 pkt_len = new_len; 1376 } 1377 1378 if (pkt_len >= skb->len && !in_sack) 1379 return 0; 1380 1381 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1382 pkt_len, mss, GFP_ATOMIC); 1383 if (err < 0) 1384 return err; 1385 } 1386 1387 return in_sack; 1388 } 1389 1390 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1391 static u8 tcp_sacktag_one(struct sock *sk, 1392 struct tcp_sacktag_state *state, u8 sacked, 1393 u32 start_seq, u32 end_seq, 1394 int dup_sack, int pcount, 1395 u64 xmit_time) 1396 { 1397 struct tcp_sock *tp = tcp_sk(sk); 1398 1399 /* Account D-SACK for retransmitted packet. */ 1400 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1401 if (tp->undo_marker && tp->undo_retrans > 0 && 1402 after(end_seq, tp->undo_marker)) 1403 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1404 if ((sacked & TCPCB_SACKED_ACKED) && 1405 before(start_seq, state->reord)) 1406 state->reord = start_seq; 1407 } 1408 1409 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1410 if (!after(end_seq, tp->snd_una)) 1411 return sacked; 1412 1413 if (!(sacked & TCPCB_SACKED_ACKED)) { 1414 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1415 1416 if (sacked & TCPCB_SACKED_RETRANS) { 1417 /* If the segment is not tagged as lost, 1418 * we do not clear RETRANS, believing 1419 * that retransmission is still in flight. 1420 */ 1421 if (sacked & TCPCB_LOST) { 1422 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1423 tp->lost_out -= pcount; 1424 tp->retrans_out -= pcount; 1425 } 1426 } else { 1427 if (!(sacked & TCPCB_RETRANS)) { 1428 /* New sack for not retransmitted frame, 1429 * which was in hole. It is reordering. 1430 */ 1431 if (before(start_seq, 1432 tcp_highest_sack_seq(tp)) && 1433 before(start_seq, state->reord)) 1434 state->reord = start_seq; 1435 1436 if (!after(end_seq, tp->high_seq)) 1437 state->flag |= FLAG_ORIG_SACK_ACKED; 1438 if (state->first_sackt == 0) 1439 state->first_sackt = xmit_time; 1440 state->last_sackt = xmit_time; 1441 } 1442 1443 if (sacked & TCPCB_LOST) { 1444 sacked &= ~TCPCB_LOST; 1445 tp->lost_out -= pcount; 1446 } 1447 } 1448 1449 sacked |= TCPCB_SACKED_ACKED; 1450 state->flag |= FLAG_DATA_SACKED; 1451 tp->sacked_out += pcount; 1452 /* Out-of-order packets delivered */ 1453 state->sack_delivered += pcount; 1454 } 1455 1456 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1457 * frames and clear it. undo_retrans is decreased above, L|R frames 1458 * are accounted above as well. 1459 */ 1460 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1461 sacked &= ~TCPCB_SACKED_RETRANS; 1462 tp->retrans_out -= pcount; 1463 } 1464 1465 return sacked; 1466 } 1467 1468 /* Shift newly-SACKed bytes from this skb to the immediately previous 1469 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1470 */ 1471 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1472 struct sk_buff *skb, 1473 struct tcp_sacktag_state *state, 1474 unsigned int pcount, int shifted, int mss, 1475 bool dup_sack) 1476 { 1477 struct tcp_sock *tp = tcp_sk(sk); 1478 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1479 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1480 1481 BUG_ON(!pcount); 1482 1483 /* Adjust counters and hints for the newly sacked sequence 1484 * range but discard the return value since prev is already 1485 * marked. We must tag the range first because the seq 1486 * advancement below implicitly advances 1487 * tcp_highest_sack_seq() when skb is highest_sack. 1488 */ 1489 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1490 start_seq, end_seq, dup_sack, pcount, 1491 tcp_skb_timestamp_us(skb)); 1492 tcp_rate_skb_delivered(sk, skb, state->rate); 1493 1494 TCP_SKB_CB(prev)->end_seq += shifted; 1495 TCP_SKB_CB(skb)->seq += shifted; 1496 1497 tcp_skb_pcount_add(prev, pcount); 1498 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1499 tcp_skb_pcount_add(skb, -pcount); 1500 1501 /* When we're adding to gso_segs == 1, gso_size will be zero, 1502 * in theory this shouldn't be necessary but as long as DSACK 1503 * code can come after this skb later on it's better to keep 1504 * setting gso_size to something. 1505 */ 1506 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1507 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1508 1509 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1510 if (tcp_skb_pcount(skb) <= 1) 1511 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1512 1513 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1514 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1515 1516 if (skb->len > 0) { 1517 BUG_ON(!tcp_skb_pcount(skb)); 1518 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1519 return false; 1520 } 1521 1522 /* Whole SKB was eaten :-) */ 1523 1524 if (skb == tp->retransmit_skb_hint) 1525 tp->retransmit_skb_hint = prev; 1526 1527 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1528 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1529 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1530 TCP_SKB_CB(prev)->end_seq++; 1531 1532 if (skb == tcp_highest_sack(sk)) 1533 tcp_advance_highest_sack(sk, skb); 1534 1535 tcp_skb_collapse_tstamp(prev, skb); 1536 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1537 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1538 1539 tcp_rtx_queue_unlink_and_free(skb, sk); 1540 1541 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1542 1543 return true; 1544 } 1545 1546 /* I wish gso_size would have a bit more sane initialization than 1547 * something-or-zero which complicates things 1548 */ 1549 static int tcp_skb_seglen(const struct sk_buff *skb) 1550 { 1551 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1552 } 1553 1554 /* Shifting pages past head area doesn't work */ 1555 static int skb_can_shift(const struct sk_buff *skb) 1556 { 1557 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1558 } 1559 1560 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1561 int pcount, int shiftlen) 1562 { 1563 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1564 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1565 * to make sure not storing more than 65535 * 8 bytes per skb, 1566 * even if current MSS is bigger. 1567 */ 1568 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1569 return 0; 1570 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1571 return 0; 1572 return skb_shift(to, from, shiftlen); 1573 } 1574 1575 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1576 * skb. 1577 */ 1578 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1579 struct tcp_sacktag_state *state, 1580 u32 start_seq, u32 end_seq, 1581 bool dup_sack) 1582 { 1583 struct tcp_sock *tp = tcp_sk(sk); 1584 struct sk_buff *prev; 1585 int mss; 1586 int pcount = 0; 1587 int len; 1588 int in_sack; 1589 1590 /* Normally R but no L won't result in plain S */ 1591 if (!dup_sack && 1592 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1593 goto fallback; 1594 if (!skb_can_shift(skb)) 1595 goto fallback; 1596 /* This frame is about to be dropped (was ACKed). */ 1597 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1598 goto fallback; 1599 1600 /* Can only happen with delayed DSACK + discard craziness */ 1601 prev = skb_rb_prev(skb); 1602 if (!prev) 1603 goto fallback; 1604 1605 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1606 goto fallback; 1607 1608 if (!tcp_skb_can_collapse(prev, skb)) 1609 goto fallback; 1610 1611 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1612 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1613 1614 if (in_sack) { 1615 len = skb->len; 1616 pcount = tcp_skb_pcount(skb); 1617 mss = tcp_skb_seglen(skb); 1618 1619 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1620 * drop this restriction as unnecessary 1621 */ 1622 if (mss != tcp_skb_seglen(prev)) 1623 goto fallback; 1624 } else { 1625 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1626 goto noop; 1627 /* CHECKME: This is non-MSS split case only?, this will 1628 * cause skipped skbs due to advancing loop btw, original 1629 * has that feature too 1630 */ 1631 if (tcp_skb_pcount(skb) <= 1) 1632 goto noop; 1633 1634 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1635 if (!in_sack) { 1636 /* TODO: head merge to next could be attempted here 1637 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1638 * though it might not be worth of the additional hassle 1639 * 1640 * ...we can probably just fallback to what was done 1641 * previously. We could try merging non-SACKed ones 1642 * as well but it probably isn't going to buy off 1643 * because later SACKs might again split them, and 1644 * it would make skb timestamp tracking considerably 1645 * harder problem. 1646 */ 1647 goto fallback; 1648 } 1649 1650 len = end_seq - TCP_SKB_CB(skb)->seq; 1651 BUG_ON(len < 0); 1652 BUG_ON(len > skb->len); 1653 1654 /* MSS boundaries should be honoured or else pcount will 1655 * severely break even though it makes things bit trickier. 1656 * Optimize common case to avoid most of the divides 1657 */ 1658 mss = tcp_skb_mss(skb); 1659 1660 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1661 * drop this restriction as unnecessary 1662 */ 1663 if (mss != tcp_skb_seglen(prev)) 1664 goto fallback; 1665 1666 if (len == mss) { 1667 pcount = 1; 1668 } else if (len < mss) { 1669 goto noop; 1670 } else { 1671 pcount = len / mss; 1672 len = pcount * mss; 1673 } 1674 } 1675 1676 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1677 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1678 goto fallback; 1679 1680 if (!tcp_skb_shift(prev, skb, pcount, len)) 1681 goto fallback; 1682 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1683 goto out; 1684 1685 /* Hole filled allows collapsing with the next as well, this is very 1686 * useful when hole on every nth skb pattern happens 1687 */ 1688 skb = skb_rb_next(prev); 1689 if (!skb) 1690 goto out; 1691 1692 if (!skb_can_shift(skb) || 1693 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1694 (mss != tcp_skb_seglen(skb))) 1695 goto out; 1696 1697 if (!tcp_skb_can_collapse(prev, skb)) 1698 goto out; 1699 len = skb->len; 1700 pcount = tcp_skb_pcount(skb); 1701 if (tcp_skb_shift(prev, skb, pcount, len)) 1702 tcp_shifted_skb(sk, prev, skb, state, pcount, 1703 len, mss, 0); 1704 1705 out: 1706 return prev; 1707 1708 noop: 1709 return skb; 1710 1711 fallback: 1712 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1713 return NULL; 1714 } 1715 1716 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1717 struct tcp_sack_block *next_dup, 1718 struct tcp_sacktag_state *state, 1719 u32 start_seq, u32 end_seq, 1720 bool dup_sack_in) 1721 { 1722 struct tcp_sock *tp = tcp_sk(sk); 1723 struct sk_buff *tmp; 1724 1725 skb_rbtree_walk_from(skb) { 1726 int in_sack = 0; 1727 bool dup_sack = dup_sack_in; 1728 1729 /* queue is in-order => we can short-circuit the walk early */ 1730 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1731 break; 1732 1733 if (next_dup && 1734 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1735 in_sack = tcp_match_skb_to_sack(sk, skb, 1736 next_dup->start_seq, 1737 next_dup->end_seq); 1738 if (in_sack > 0) 1739 dup_sack = true; 1740 } 1741 1742 /* skb reference here is a bit tricky to get right, since 1743 * shifting can eat and free both this skb and the next, 1744 * so not even _safe variant of the loop is enough. 1745 */ 1746 if (in_sack <= 0) { 1747 tmp = tcp_shift_skb_data(sk, skb, state, 1748 start_seq, end_seq, dup_sack); 1749 if (tmp) { 1750 if (tmp != skb) { 1751 skb = tmp; 1752 continue; 1753 } 1754 1755 in_sack = 0; 1756 } else { 1757 in_sack = tcp_match_skb_to_sack(sk, skb, 1758 start_seq, 1759 end_seq); 1760 } 1761 } 1762 1763 if (unlikely(in_sack < 0)) 1764 break; 1765 1766 if (in_sack) { 1767 TCP_SKB_CB(skb)->sacked = 1768 tcp_sacktag_one(sk, 1769 state, 1770 TCP_SKB_CB(skb)->sacked, 1771 TCP_SKB_CB(skb)->seq, 1772 TCP_SKB_CB(skb)->end_seq, 1773 dup_sack, 1774 tcp_skb_pcount(skb), 1775 tcp_skb_timestamp_us(skb)); 1776 tcp_rate_skb_delivered(sk, skb, state->rate); 1777 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1778 list_del_init(&skb->tcp_tsorted_anchor); 1779 1780 if (!before(TCP_SKB_CB(skb)->seq, 1781 tcp_highest_sack_seq(tp))) 1782 tcp_advance_highest_sack(sk, skb); 1783 } 1784 } 1785 return skb; 1786 } 1787 1788 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1789 { 1790 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1791 struct sk_buff *skb; 1792 1793 while (*p) { 1794 parent = *p; 1795 skb = rb_to_skb(parent); 1796 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1797 p = &parent->rb_left; 1798 continue; 1799 } 1800 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1801 p = &parent->rb_right; 1802 continue; 1803 } 1804 return skb; 1805 } 1806 return NULL; 1807 } 1808 1809 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1810 u32 skip_to_seq) 1811 { 1812 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1813 return skb; 1814 1815 return tcp_sacktag_bsearch(sk, skip_to_seq); 1816 } 1817 1818 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1819 struct sock *sk, 1820 struct tcp_sack_block *next_dup, 1821 struct tcp_sacktag_state *state, 1822 u32 skip_to_seq) 1823 { 1824 if (!next_dup) 1825 return skb; 1826 1827 if (before(next_dup->start_seq, skip_to_seq)) { 1828 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1829 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1830 next_dup->start_seq, next_dup->end_seq, 1831 1); 1832 } 1833 1834 return skb; 1835 } 1836 1837 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1838 { 1839 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1840 } 1841 1842 static int 1843 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1844 u32 prior_snd_una, struct tcp_sacktag_state *state) 1845 { 1846 struct tcp_sock *tp = tcp_sk(sk); 1847 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1848 TCP_SKB_CB(ack_skb)->sacked); 1849 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1850 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1851 struct tcp_sack_block *cache; 1852 struct sk_buff *skb; 1853 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1854 int used_sacks; 1855 bool found_dup_sack = false; 1856 int i, j; 1857 int first_sack_index; 1858 1859 state->flag = 0; 1860 state->reord = tp->snd_nxt; 1861 1862 if (!tp->sacked_out) 1863 tcp_highest_sack_reset(sk); 1864 1865 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1866 num_sacks, prior_snd_una, state); 1867 1868 /* Eliminate too old ACKs, but take into 1869 * account more or less fresh ones, they can 1870 * contain valid SACK info. 1871 */ 1872 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1873 return 0; 1874 1875 if (!tp->packets_out) 1876 goto out; 1877 1878 used_sacks = 0; 1879 first_sack_index = 0; 1880 for (i = 0; i < num_sacks; i++) { 1881 bool dup_sack = !i && found_dup_sack; 1882 1883 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1884 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1885 1886 if (!tcp_is_sackblock_valid(tp, dup_sack, 1887 sp[used_sacks].start_seq, 1888 sp[used_sacks].end_seq)) { 1889 int mib_idx; 1890 1891 if (dup_sack) { 1892 if (!tp->undo_marker) 1893 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1894 else 1895 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1896 } else { 1897 /* Don't count olds caused by ACK reordering */ 1898 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1899 !after(sp[used_sacks].end_seq, tp->snd_una)) 1900 continue; 1901 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1902 } 1903 1904 NET_INC_STATS(sock_net(sk), mib_idx); 1905 if (i == 0) 1906 first_sack_index = -1; 1907 continue; 1908 } 1909 1910 /* Ignore very old stuff early */ 1911 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1912 if (i == 0) 1913 first_sack_index = -1; 1914 continue; 1915 } 1916 1917 used_sacks++; 1918 } 1919 1920 /* order SACK blocks to allow in order walk of the retrans queue */ 1921 for (i = used_sacks - 1; i > 0; i--) { 1922 for (j = 0; j < i; j++) { 1923 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1924 swap(sp[j], sp[j + 1]); 1925 1926 /* Track where the first SACK block goes to */ 1927 if (j == first_sack_index) 1928 first_sack_index = j + 1; 1929 } 1930 } 1931 } 1932 1933 state->mss_now = tcp_current_mss(sk); 1934 skb = NULL; 1935 i = 0; 1936 1937 if (!tp->sacked_out) { 1938 /* It's already past, so skip checking against it */ 1939 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1940 } else { 1941 cache = tp->recv_sack_cache; 1942 /* Skip empty blocks in at head of the cache */ 1943 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1944 !cache->end_seq) 1945 cache++; 1946 } 1947 1948 while (i < used_sacks) { 1949 u32 start_seq = sp[i].start_seq; 1950 u32 end_seq = sp[i].end_seq; 1951 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1952 struct tcp_sack_block *next_dup = NULL; 1953 1954 if (found_dup_sack && ((i + 1) == first_sack_index)) 1955 next_dup = &sp[i + 1]; 1956 1957 /* Skip too early cached blocks */ 1958 while (tcp_sack_cache_ok(tp, cache) && 1959 !before(start_seq, cache->end_seq)) 1960 cache++; 1961 1962 /* Can skip some work by looking recv_sack_cache? */ 1963 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1964 after(end_seq, cache->start_seq)) { 1965 1966 /* Head todo? */ 1967 if (before(start_seq, cache->start_seq)) { 1968 skb = tcp_sacktag_skip(skb, sk, start_seq); 1969 skb = tcp_sacktag_walk(skb, sk, next_dup, 1970 state, 1971 start_seq, 1972 cache->start_seq, 1973 dup_sack); 1974 } 1975 1976 /* Rest of the block already fully processed? */ 1977 if (!after(end_seq, cache->end_seq)) 1978 goto advance_sp; 1979 1980 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1981 state, 1982 cache->end_seq); 1983 1984 /* ...tail remains todo... */ 1985 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1986 /* ...but better entrypoint exists! */ 1987 skb = tcp_highest_sack(sk); 1988 if (!skb) 1989 break; 1990 cache++; 1991 goto walk; 1992 } 1993 1994 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1995 /* Check overlap against next cached too (past this one already) */ 1996 cache++; 1997 continue; 1998 } 1999 2000 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2001 skb = tcp_highest_sack(sk); 2002 if (!skb) 2003 break; 2004 } 2005 skb = tcp_sacktag_skip(skb, sk, start_seq); 2006 2007 walk: 2008 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2009 start_seq, end_seq, dup_sack); 2010 2011 advance_sp: 2012 i++; 2013 } 2014 2015 /* Clear the head of the cache sack blocks so we can skip it next time */ 2016 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2017 tp->recv_sack_cache[i].start_seq = 0; 2018 tp->recv_sack_cache[i].end_seq = 0; 2019 } 2020 for (j = 0; j < used_sacks; j++) 2021 tp->recv_sack_cache[i++] = sp[j]; 2022 2023 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2024 tcp_check_sack_reordering(sk, state->reord, 0); 2025 2026 tcp_verify_left_out(tp); 2027 out: 2028 2029 #if FASTRETRANS_DEBUG > 0 2030 WARN_ON((int)tp->sacked_out < 0); 2031 WARN_ON((int)tp->lost_out < 0); 2032 WARN_ON((int)tp->retrans_out < 0); 2033 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2034 #endif 2035 return state->flag; 2036 } 2037 2038 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2039 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2040 */ 2041 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2042 { 2043 u32 holes; 2044 2045 holes = max(tp->lost_out, 1U); 2046 holes = min(holes, tp->packets_out); 2047 2048 if ((tp->sacked_out + holes) > tp->packets_out) { 2049 tp->sacked_out = tp->packets_out - holes; 2050 return true; 2051 } 2052 return false; 2053 } 2054 2055 /* If we receive more dupacks than we expected counting segments 2056 * in assumption of absent reordering, interpret this as reordering. 2057 * The only another reason could be bug in receiver TCP. 2058 */ 2059 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2060 { 2061 struct tcp_sock *tp = tcp_sk(sk); 2062 2063 if (!tcp_limit_reno_sacked(tp)) 2064 return; 2065 2066 tp->reordering = min_t(u32, tp->packets_out + addend, 2067 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2068 tp->reord_seen++; 2069 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2070 } 2071 2072 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2073 2074 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2075 { 2076 if (num_dupack) { 2077 struct tcp_sock *tp = tcp_sk(sk); 2078 u32 prior_sacked = tp->sacked_out; 2079 s32 delivered; 2080 2081 tp->sacked_out += num_dupack; 2082 tcp_check_reno_reordering(sk, 0); 2083 delivered = tp->sacked_out - prior_sacked; 2084 if (delivered > 0) 2085 tcp_count_delivered(tp, delivered, ece_ack); 2086 tcp_verify_left_out(tp); 2087 } 2088 } 2089 2090 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2091 2092 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2093 { 2094 struct tcp_sock *tp = tcp_sk(sk); 2095 2096 if (acked > 0) { 2097 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2098 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2099 ece_ack); 2100 if (acked - 1 >= tp->sacked_out) 2101 tp->sacked_out = 0; 2102 else 2103 tp->sacked_out -= acked - 1; 2104 } 2105 tcp_check_reno_reordering(sk, acked); 2106 tcp_verify_left_out(tp); 2107 } 2108 2109 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2110 { 2111 tp->sacked_out = 0; 2112 } 2113 2114 void tcp_clear_retrans(struct tcp_sock *tp) 2115 { 2116 tp->retrans_out = 0; 2117 tp->lost_out = 0; 2118 tp->undo_marker = 0; 2119 tp->undo_retrans = -1; 2120 tp->sacked_out = 0; 2121 tp->rto_stamp = 0; 2122 tp->total_rto = 0; 2123 tp->total_rto_recoveries = 0; 2124 tp->total_rto_time = 0; 2125 } 2126 2127 static inline void tcp_init_undo(struct tcp_sock *tp) 2128 { 2129 tp->undo_marker = tp->snd_una; 2130 2131 /* Retransmission still in flight may cause DSACKs later. */ 2132 /* First, account for regular retransmits in flight: */ 2133 tp->undo_retrans = tp->retrans_out; 2134 /* Next, account for TLP retransmits in flight: */ 2135 if (tp->tlp_high_seq && tp->tlp_retrans) 2136 tp->undo_retrans++; 2137 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2138 if (!tp->undo_retrans) 2139 tp->undo_retrans = -1; 2140 } 2141 2142 /* If we detect SACK reneging, forget all SACK information 2143 * and reset tags completely, otherwise preserve SACKs. If receiver 2144 * dropped its ofo queue, we will know this due to reneging detection. 2145 */ 2146 static void tcp_timeout_mark_lost(struct sock *sk) 2147 { 2148 struct tcp_sock *tp = tcp_sk(sk); 2149 struct sk_buff *skb, *head; 2150 bool is_reneg; /* is receiver reneging on SACKs? */ 2151 2152 head = tcp_rtx_queue_head(sk); 2153 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2154 if (is_reneg) { 2155 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2156 tp->sacked_out = 0; 2157 /* Mark SACK reneging until we recover from this loss event. */ 2158 tp->is_sack_reneg = 1; 2159 } else if (tcp_is_reno(tp)) { 2160 tcp_reset_reno_sack(tp); 2161 } 2162 2163 skb = head; 2164 skb_rbtree_walk_from(skb) { 2165 if (is_reneg) 2166 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2167 else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0) 2168 continue; /* Don't mark recently sent ones lost yet */ 2169 tcp_mark_skb_lost(sk, skb); 2170 } 2171 tcp_verify_left_out(tp); 2172 tcp_clear_all_retrans_hints(tp); 2173 } 2174 2175 /* Enter Loss state. */ 2176 void tcp_enter_loss(struct sock *sk) 2177 { 2178 const struct inet_connection_sock *icsk = inet_csk(sk); 2179 struct tcp_sock *tp = tcp_sk(sk); 2180 struct net *net = sock_net(sk); 2181 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2182 u8 reordering; 2183 2184 tcp_timeout_mark_lost(sk); 2185 2186 /* Reduce ssthresh if it has not yet been made inside this window. */ 2187 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2188 !after(tp->high_seq, tp->snd_una) || 2189 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2190 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2191 tp->prior_cwnd = tcp_snd_cwnd(tp); 2192 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2193 tcp_ca_event(sk, CA_EVENT_LOSS); 2194 tcp_init_undo(tp); 2195 } 2196 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2197 tp->snd_cwnd_cnt = 0; 2198 tp->snd_cwnd_stamp = tcp_jiffies32; 2199 2200 /* Timeout in disordered state after receiving substantial DUPACKs 2201 * suggests that the degree of reordering is over-estimated. 2202 */ 2203 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2204 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2205 tp->sacked_out >= reordering) 2206 tp->reordering = min_t(unsigned int, tp->reordering, 2207 reordering); 2208 2209 tcp_set_ca_state(sk, TCP_CA_Loss); 2210 tp->high_seq = tp->snd_nxt; 2211 tp->tlp_high_seq = 0; 2212 tcp_ecn_queue_cwr(tp); 2213 2214 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2215 * loss recovery is underway except recurring timeout(s) on 2216 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2217 */ 2218 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2219 (new_recovery || icsk->icsk_retransmits) && 2220 !inet_csk(sk)->icsk_mtup.probe_size; 2221 } 2222 2223 /* If ACK arrived pointing to a remembered SACK, it means that our 2224 * remembered SACKs do not reflect real state of receiver i.e. 2225 * receiver _host_ is heavily congested (or buggy). 2226 * 2227 * To avoid big spurious retransmission bursts due to transient SACK 2228 * scoreboard oddities that look like reneging, we give the receiver a 2229 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2230 * restore sanity to the SACK scoreboard. If the apparent reneging 2231 * persists until this RTO then we'll clear the SACK scoreboard. 2232 */ 2233 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2234 { 2235 if (*ack_flag & FLAG_SACK_RENEGING && 2236 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2237 struct tcp_sock *tp = tcp_sk(sk); 2238 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2239 msecs_to_jiffies(10)); 2240 2241 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false); 2242 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2243 return true; 2244 } 2245 return false; 2246 } 2247 2248 /* Linux NewReno/SACK/ECN state machine. 2249 * -------------------------------------- 2250 * 2251 * "Open" Normal state, no dubious events, fast path. 2252 * "Disorder" In all the respects it is "Open", 2253 * but requires a bit more attention. It is entered when 2254 * we see some SACKs or dupacks. It is split of "Open" 2255 * mainly to move some processing from fast path to slow one. 2256 * "CWR" CWND was reduced due to some Congestion Notification event. 2257 * It can be ECN, ICMP source quench, local device congestion. 2258 * "Recovery" CWND was reduced, we are fast-retransmitting. 2259 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2260 * 2261 * tcp_fastretrans_alert() is entered: 2262 * - each incoming ACK, if state is not "Open" 2263 * - when arrived ACK is unusual, namely: 2264 * * SACK 2265 * * Duplicate ACK. 2266 * * ECN ECE. 2267 * 2268 * Counting packets in flight is pretty simple. 2269 * 2270 * in_flight = packets_out - left_out + retrans_out 2271 * 2272 * packets_out is SND.NXT-SND.UNA counted in packets. 2273 * 2274 * retrans_out is number of retransmitted segments. 2275 * 2276 * left_out is number of segments left network, but not ACKed yet. 2277 * 2278 * left_out = sacked_out + lost_out 2279 * 2280 * sacked_out: Packets, which arrived to receiver out of order 2281 * and hence not ACKed. With SACKs this number is simply 2282 * amount of SACKed data. Even without SACKs 2283 * it is easy to give pretty reliable estimate of this number, 2284 * counting duplicate ACKs. 2285 * 2286 * lost_out: Packets lost by network. TCP has no explicit 2287 * "loss notification" feedback from network (for now). 2288 * It means that this number can be only _guessed_. 2289 * Actually, it is the heuristics to predict lossage that 2290 * distinguishes different algorithms. 2291 * 2292 * F.e. after RTO, when all the queue is considered as lost, 2293 * lost_out = packets_out and in_flight = retrans_out. 2294 * 2295 * Essentially, we have now a few algorithms detecting 2296 * lost packets. 2297 * 2298 * If the receiver supports SACK: 2299 * 2300 * RACK (RFC8985): RACK is a newer loss detection algorithm 2301 * (2017-) that checks timing instead of counting DUPACKs. 2302 * Essentially a packet is considered lost if it's not S/ACKed 2303 * after RTT + reordering_window, where both metrics are 2304 * dynamically measured and adjusted. This is implemented in 2305 * tcp_rack_mark_lost. 2306 * 2307 * If the receiver does not support SACK: 2308 * 2309 * NewReno (RFC6582): in Recovery we assume that one segment 2310 * is lost (classic Reno). While we are in Recovery and 2311 * a partial ACK arrives, we assume that one more packet 2312 * is lost (NewReno). This heuristics are the same in NewReno 2313 * and SACK. 2314 * 2315 * The really tricky (and requiring careful tuning) part of the algorithm 2316 * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue(). 2317 * The first determines the moment _when_ we should reduce CWND and, 2318 * hence, slow down forward transmission. In fact, it determines the moment 2319 * when we decide that hole is caused by loss, rather than by a reorder. 2320 * 2321 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2322 * holes, caused by lost packets. 2323 * 2324 * And the most logically complicated part of algorithm is undo 2325 * heuristics. We detect false retransmits due to both too early 2326 * fast retransmit (reordering) and underestimated RTO, analyzing 2327 * timestamps and D-SACKs. When we detect that some segments were 2328 * retransmitted by mistake and CWND reduction was wrong, we undo 2329 * window reduction and abort recovery phase. This logic is hidden 2330 * inside several functions named tcp_try_undo_<something>. 2331 */ 2332 2333 /* This function decides, when we should leave Disordered state 2334 * and enter Recovery phase, reducing congestion window. 2335 * 2336 * Main question: may we further continue forward transmission 2337 * with the same cwnd? 2338 */ 2339 static bool tcp_time_to_recover(const struct tcp_sock *tp) 2340 { 2341 /* Has loss detection marked at least one packet lost? */ 2342 return tp->lost_out != 0; 2343 } 2344 2345 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2346 { 2347 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2348 before(tp->rx_opt.rcv_tsecr, when); 2349 } 2350 2351 /* skb is spurious retransmitted if the returned timestamp echo 2352 * reply is prior to the skb transmission time 2353 */ 2354 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2355 const struct sk_buff *skb) 2356 { 2357 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2358 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2359 } 2360 2361 /* Nothing was retransmitted or returned timestamp is less 2362 * than timestamp of the first retransmission. 2363 */ 2364 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2365 { 2366 const struct sock *sk = (const struct sock *)tp; 2367 2368 /* Received an echoed timestamp before the first retransmission? */ 2369 if (tp->retrans_stamp) 2370 return tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2371 2372 /* We set tp->retrans_stamp upon the first retransmission of a loss 2373 * recovery episode, so normally if tp->retrans_stamp is 0 then no 2374 * retransmission has happened yet (likely due to TSQ, which can cause 2375 * fast retransmits to be delayed). So if snd_una advanced while 2376 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed, 2377 * not lost. But there are exceptions where we retransmit but then 2378 * clear tp->retrans_stamp, so we check for those exceptions. 2379 */ 2380 2381 /* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen() 2382 * clears tp->retrans_stamp when snd_una == high_seq. 2383 */ 2384 if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq)) 2385 return false; 2386 2387 /* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp 2388 * when setting FLAG_SYN_ACKED is set, even if the SYN was 2389 * retransmitted. 2390 */ 2391 if (sk->sk_state == TCP_SYN_SENT) 2392 return false; 2393 2394 return true; /* tp->retrans_stamp is zero; no retransmit yet */ 2395 } 2396 2397 /* Undo procedures. */ 2398 2399 /* We can clear retrans_stamp when there are no retransmissions in the 2400 * window. It would seem that it is trivially available for us in 2401 * tp->retrans_out, however, that kind of assumptions doesn't consider 2402 * what will happen if errors occur when sending retransmission for the 2403 * second time. ...It could the that such segment has only 2404 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2405 * the head skb is enough except for some reneging corner cases that 2406 * are not worth the effort. 2407 * 2408 * Main reason for all this complexity is the fact that connection dying 2409 * time now depends on the validity of the retrans_stamp, in particular, 2410 * that successive retransmissions of a segment must not advance 2411 * retrans_stamp under any conditions. 2412 */ 2413 static bool tcp_any_retrans_done(const struct sock *sk) 2414 { 2415 const struct tcp_sock *tp = tcp_sk(sk); 2416 struct sk_buff *skb; 2417 2418 if (tp->retrans_out) 2419 return true; 2420 2421 skb = tcp_rtx_queue_head(sk); 2422 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2423 return true; 2424 2425 return false; 2426 } 2427 2428 /* If loss recovery is finished and there are no retransmits out in the 2429 * network, then we clear retrans_stamp so that upon the next loss recovery 2430 * retransmits_timed_out() and timestamp-undo are using the correct value. 2431 */ 2432 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2433 { 2434 if (!tcp_any_retrans_done(sk)) 2435 tcp_sk(sk)->retrans_stamp = 0; 2436 } 2437 2438 static void DBGUNDO(struct sock *sk, const char *msg) 2439 { 2440 #if FASTRETRANS_DEBUG > 1 2441 struct tcp_sock *tp = tcp_sk(sk); 2442 struct inet_sock *inet = inet_sk(sk); 2443 2444 if (sk->sk_family == AF_INET) { 2445 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2446 msg, 2447 &inet->inet_daddr, ntohs(inet->inet_dport), 2448 tcp_snd_cwnd(tp), tcp_left_out(tp), 2449 tp->snd_ssthresh, tp->prior_ssthresh, 2450 tp->packets_out); 2451 } 2452 #if IS_ENABLED(CONFIG_IPV6) 2453 else if (sk->sk_family == AF_INET6) { 2454 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2455 msg, 2456 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2457 tcp_snd_cwnd(tp), tcp_left_out(tp), 2458 tp->snd_ssthresh, tp->prior_ssthresh, 2459 tp->packets_out); 2460 } 2461 #endif 2462 #endif 2463 } 2464 2465 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2466 { 2467 struct tcp_sock *tp = tcp_sk(sk); 2468 2469 if (unmark_loss) { 2470 struct sk_buff *skb; 2471 2472 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2473 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2474 } 2475 tp->lost_out = 0; 2476 tcp_clear_all_retrans_hints(tp); 2477 } 2478 2479 if (tp->prior_ssthresh) { 2480 const struct inet_connection_sock *icsk = inet_csk(sk); 2481 2482 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2483 2484 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2485 tp->snd_ssthresh = tp->prior_ssthresh; 2486 tcp_ecn_withdraw_cwr(tp); 2487 } 2488 } 2489 tp->snd_cwnd_stamp = tcp_jiffies32; 2490 tp->undo_marker = 0; 2491 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2492 } 2493 2494 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2495 { 2496 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2497 } 2498 2499 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2500 { 2501 struct tcp_sock *tp = tcp_sk(sk); 2502 2503 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2504 /* Hold old state until something *above* high_seq 2505 * is ACKed. For Reno it is MUST to prevent false 2506 * fast retransmits (RFC2582). SACK TCP is safe. */ 2507 if (!tcp_any_retrans_done(sk)) 2508 tp->retrans_stamp = 0; 2509 return true; 2510 } 2511 return false; 2512 } 2513 2514 /* People celebrate: "We love our President!" */ 2515 static bool tcp_try_undo_recovery(struct sock *sk) 2516 { 2517 struct tcp_sock *tp = tcp_sk(sk); 2518 2519 if (tcp_may_undo(tp)) { 2520 int mib_idx; 2521 2522 /* Happy end! We did not retransmit anything 2523 * or our original transmission succeeded. 2524 */ 2525 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2526 tcp_undo_cwnd_reduction(sk, false); 2527 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2528 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2529 else 2530 mib_idx = LINUX_MIB_TCPFULLUNDO; 2531 2532 NET_INC_STATS(sock_net(sk), mib_idx); 2533 } else if (tp->rack.reo_wnd_persist) { 2534 tp->rack.reo_wnd_persist--; 2535 } 2536 if (tcp_is_non_sack_preventing_reopen(sk)) 2537 return true; 2538 tcp_set_ca_state(sk, TCP_CA_Open); 2539 tp->is_sack_reneg = 0; 2540 return false; 2541 } 2542 2543 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2544 static bool tcp_try_undo_dsack(struct sock *sk) 2545 { 2546 struct tcp_sock *tp = tcp_sk(sk); 2547 2548 if (tp->undo_marker && !tp->undo_retrans) { 2549 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2550 tp->rack.reo_wnd_persist + 1); 2551 DBGUNDO(sk, "D-SACK"); 2552 tcp_undo_cwnd_reduction(sk, false); 2553 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2554 return true; 2555 } 2556 return false; 2557 } 2558 2559 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2560 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2561 { 2562 struct tcp_sock *tp = tcp_sk(sk); 2563 2564 if (frto_undo || tcp_may_undo(tp)) { 2565 tcp_undo_cwnd_reduction(sk, true); 2566 2567 DBGUNDO(sk, "partial loss"); 2568 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2569 if (frto_undo) 2570 NET_INC_STATS(sock_net(sk), 2571 LINUX_MIB_TCPSPURIOUSRTOS); 2572 inet_csk(sk)->icsk_retransmits = 0; 2573 if (tcp_is_non_sack_preventing_reopen(sk)) 2574 return true; 2575 if (frto_undo || tcp_is_sack(tp)) { 2576 tcp_set_ca_state(sk, TCP_CA_Open); 2577 tp->is_sack_reneg = 0; 2578 } 2579 return true; 2580 } 2581 return false; 2582 } 2583 2584 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2585 * It computes the number of packets to send (sndcnt) based on packets newly 2586 * delivered: 2587 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2588 * cwnd reductions across a full RTT. 2589 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2590 * But when SND_UNA is acked without further losses, 2591 * slow starts cwnd up to ssthresh to speed up the recovery. 2592 */ 2593 static void tcp_init_cwnd_reduction(struct sock *sk) 2594 { 2595 struct tcp_sock *tp = tcp_sk(sk); 2596 2597 tp->high_seq = tp->snd_nxt; 2598 tp->tlp_high_seq = 0; 2599 tp->snd_cwnd_cnt = 0; 2600 tp->prior_cwnd = tcp_snd_cwnd(tp); 2601 tp->prr_delivered = 0; 2602 tp->prr_out = 0; 2603 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2604 tcp_ecn_queue_cwr(tp); 2605 } 2606 2607 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2608 { 2609 struct tcp_sock *tp = tcp_sk(sk); 2610 int sndcnt = 0; 2611 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2612 2613 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2614 return; 2615 2616 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag); 2617 2618 tp->prr_delivered += newly_acked_sacked; 2619 if (delta < 0) { 2620 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2621 tp->prior_cwnd - 1; 2622 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2623 } else { 2624 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2625 newly_acked_sacked); 2626 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2627 sndcnt++; 2628 sndcnt = min(delta, sndcnt); 2629 } 2630 /* Force a fast retransmit upon entering fast recovery */ 2631 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2632 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2633 } 2634 2635 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2636 { 2637 struct tcp_sock *tp = tcp_sk(sk); 2638 2639 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2640 return; 2641 2642 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2643 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2644 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2645 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2646 tp->snd_cwnd_stamp = tcp_jiffies32; 2647 } 2648 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2649 } 2650 2651 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2652 void tcp_enter_cwr(struct sock *sk) 2653 { 2654 struct tcp_sock *tp = tcp_sk(sk); 2655 2656 tp->prior_ssthresh = 0; 2657 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2658 tp->undo_marker = 0; 2659 tcp_init_cwnd_reduction(sk); 2660 tcp_set_ca_state(sk, TCP_CA_CWR); 2661 } 2662 } 2663 EXPORT_SYMBOL(tcp_enter_cwr); 2664 2665 static void tcp_try_keep_open(struct sock *sk) 2666 { 2667 struct tcp_sock *tp = tcp_sk(sk); 2668 int state = TCP_CA_Open; 2669 2670 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2671 state = TCP_CA_Disorder; 2672 2673 if (inet_csk(sk)->icsk_ca_state != state) { 2674 tcp_set_ca_state(sk, state); 2675 tp->high_seq = tp->snd_nxt; 2676 } 2677 } 2678 2679 static void tcp_try_to_open(struct sock *sk, int flag) 2680 { 2681 struct tcp_sock *tp = tcp_sk(sk); 2682 2683 tcp_verify_left_out(tp); 2684 2685 if (!tcp_any_retrans_done(sk)) 2686 tp->retrans_stamp = 0; 2687 2688 if (flag & FLAG_ECE) 2689 tcp_enter_cwr(sk); 2690 2691 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2692 tcp_try_keep_open(sk); 2693 } 2694 } 2695 2696 static void tcp_mtup_probe_failed(struct sock *sk) 2697 { 2698 struct inet_connection_sock *icsk = inet_csk(sk); 2699 2700 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2701 icsk->icsk_mtup.probe_size = 0; 2702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2703 } 2704 2705 static void tcp_mtup_probe_success(struct sock *sk) 2706 { 2707 struct tcp_sock *tp = tcp_sk(sk); 2708 struct inet_connection_sock *icsk = inet_csk(sk); 2709 u64 val; 2710 2711 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2712 2713 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2714 do_div(val, icsk->icsk_mtup.probe_size); 2715 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2716 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2717 2718 tp->snd_cwnd_cnt = 0; 2719 tp->snd_cwnd_stamp = tcp_jiffies32; 2720 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2721 2722 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2723 icsk->icsk_mtup.probe_size = 0; 2724 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2725 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2726 } 2727 2728 /* Sometimes we deduce that packets have been dropped due to reasons other than 2729 * congestion, like path MTU reductions or failed client TFO attempts. In these 2730 * cases we call this function to retransmit as many packets as cwnd allows, 2731 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2732 * non-zero value (and may do so in a later calling context due to TSQ), we 2733 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2734 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2735 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2736 * prematurely). 2737 */ 2738 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2739 { 2740 const struct inet_connection_sock *icsk = inet_csk(sk); 2741 struct tcp_sock *tp = tcp_sk(sk); 2742 2743 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2744 tp->high_seq = tp->snd_nxt; 2745 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2746 tp->prior_ssthresh = 0; 2747 tp->undo_marker = 0; 2748 tcp_set_ca_state(sk, TCP_CA_Loss); 2749 } 2750 tcp_xmit_retransmit_queue(sk); 2751 } 2752 2753 /* Do a simple retransmit without using the backoff mechanisms in 2754 * tcp_timer. This is used for path mtu discovery. 2755 * The socket is already locked here. 2756 */ 2757 void tcp_simple_retransmit(struct sock *sk) 2758 { 2759 struct tcp_sock *tp = tcp_sk(sk); 2760 struct sk_buff *skb; 2761 int mss; 2762 2763 /* A fastopen SYN request is stored as two separate packets within 2764 * the retransmit queue, this is done by tcp_send_syn_data(). 2765 * As a result simply checking the MSS of the frames in the queue 2766 * will not work for the SYN packet. 2767 * 2768 * Us being here is an indication of a path MTU issue so we can 2769 * assume that the fastopen SYN was lost and just mark all the 2770 * frames in the retransmit queue as lost. We will use an MSS of 2771 * -1 to mark all frames as lost, otherwise compute the current MSS. 2772 */ 2773 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2774 mss = -1; 2775 else 2776 mss = tcp_current_mss(sk); 2777 2778 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2779 if (tcp_skb_seglen(skb) > mss) 2780 tcp_mark_skb_lost(sk, skb); 2781 } 2782 2783 if (!tp->lost_out) 2784 return; 2785 2786 if (tcp_is_reno(tp)) 2787 tcp_limit_reno_sacked(tp); 2788 2789 tcp_verify_left_out(tp); 2790 2791 /* Don't muck with the congestion window here. 2792 * Reason is that we do not increase amount of _data_ 2793 * in network, but units changed and effective 2794 * cwnd/ssthresh really reduced now. 2795 */ 2796 tcp_non_congestion_loss_retransmit(sk); 2797 } 2798 EXPORT_IPV6_MOD(tcp_simple_retransmit); 2799 2800 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2801 { 2802 struct tcp_sock *tp = tcp_sk(sk); 2803 int mib_idx; 2804 2805 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2806 tcp_retrans_stamp_cleanup(sk); 2807 2808 if (tcp_is_reno(tp)) 2809 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2810 else 2811 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2812 2813 NET_INC_STATS(sock_net(sk), mib_idx); 2814 2815 tp->prior_ssthresh = 0; 2816 tcp_init_undo(tp); 2817 2818 if (!tcp_in_cwnd_reduction(sk)) { 2819 if (!ece_ack) 2820 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2821 tcp_init_cwnd_reduction(sk); 2822 } 2823 tcp_set_ca_state(sk, TCP_CA_Recovery); 2824 } 2825 2826 static void tcp_update_rto_time(struct tcp_sock *tp) 2827 { 2828 if (tp->rto_stamp) { 2829 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2830 tp->rto_stamp = 0; 2831 } 2832 } 2833 2834 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2835 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2836 */ 2837 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2838 int *rexmit) 2839 { 2840 struct tcp_sock *tp = tcp_sk(sk); 2841 bool recovered = !before(tp->snd_una, tp->high_seq); 2842 2843 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2844 tcp_try_undo_loss(sk, false)) 2845 return; 2846 2847 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2848 /* Step 3.b. A timeout is spurious if not all data are 2849 * lost, i.e., never-retransmitted data are (s)acked. 2850 */ 2851 if ((flag & FLAG_ORIG_SACK_ACKED) && 2852 tcp_try_undo_loss(sk, true)) 2853 return; 2854 2855 if (after(tp->snd_nxt, tp->high_seq)) { 2856 if (flag & FLAG_DATA_SACKED || num_dupack) 2857 tp->frto = 0; /* Step 3.a. loss was real */ 2858 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2859 tp->high_seq = tp->snd_nxt; 2860 /* Step 2.b. Try send new data (but deferred until cwnd 2861 * is updated in tcp_ack()). Otherwise fall back to 2862 * the conventional recovery. 2863 */ 2864 if (!tcp_write_queue_empty(sk) && 2865 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2866 *rexmit = REXMIT_NEW; 2867 return; 2868 } 2869 tp->frto = 0; 2870 } 2871 } 2872 2873 if (recovered) { 2874 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2875 tcp_try_undo_recovery(sk); 2876 return; 2877 } 2878 if (tcp_is_reno(tp)) { 2879 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2880 * delivered. Lower inflight to clock out (re)transmissions. 2881 */ 2882 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2883 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2884 else if (flag & FLAG_SND_UNA_ADVANCED) 2885 tcp_reset_reno_sack(tp); 2886 } 2887 *rexmit = REXMIT_LOST; 2888 } 2889 2890 /* Undo during fast recovery after partial ACK. */ 2891 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2892 { 2893 struct tcp_sock *tp = tcp_sk(sk); 2894 2895 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2896 /* Plain luck! Hole if filled with delayed 2897 * packet, rather than with a retransmit. Check reordering. 2898 */ 2899 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2900 2901 /* We are getting evidence that the reordering degree is higher 2902 * than we realized. If there are no retransmits out then we 2903 * can undo. Otherwise we clock out new packets but do not 2904 * mark more packets lost or retransmit more. 2905 */ 2906 if (tp->retrans_out) 2907 return true; 2908 2909 if (!tcp_any_retrans_done(sk)) 2910 tp->retrans_stamp = 0; 2911 2912 DBGUNDO(sk, "partial recovery"); 2913 tcp_undo_cwnd_reduction(sk, true); 2914 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2915 tcp_try_keep_open(sk); 2916 } 2917 return false; 2918 } 2919 2920 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2921 { 2922 struct tcp_sock *tp = tcp_sk(sk); 2923 2924 if (tcp_rtx_queue_empty(sk)) 2925 return; 2926 2927 if (unlikely(tcp_is_reno(tp))) { 2928 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2929 } else { 2930 u32 prior_retrans = tp->retrans_out; 2931 2932 if (tcp_rack_mark_lost(sk)) 2933 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2934 if (prior_retrans > tp->retrans_out) 2935 *ack_flag |= FLAG_LOST_RETRANS; 2936 } 2937 } 2938 2939 /* Process an event, which can update packets-in-flight not trivially. 2940 * Main goal of this function is to calculate new estimate for left_out, 2941 * taking into account both packets sitting in receiver's buffer and 2942 * packets lost by network. 2943 * 2944 * Besides that it updates the congestion state when packet loss or ECN 2945 * is detected. But it does not reduce the cwnd, it is done by the 2946 * congestion control later. 2947 * 2948 * It does _not_ decide what to send, it is made in function 2949 * tcp_xmit_retransmit_queue(). 2950 */ 2951 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2952 int num_dupack, int *ack_flag, int *rexmit) 2953 { 2954 struct inet_connection_sock *icsk = inet_csk(sk); 2955 struct tcp_sock *tp = tcp_sk(sk); 2956 int flag = *ack_flag; 2957 bool ece_ack = flag & FLAG_ECE; 2958 2959 if (!tp->packets_out && tp->sacked_out) 2960 tp->sacked_out = 0; 2961 2962 /* Now state machine starts. 2963 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2964 if (ece_ack) 2965 tp->prior_ssthresh = 0; 2966 2967 /* B. In all the states check for reneging SACKs. */ 2968 if (tcp_check_sack_reneging(sk, ack_flag)) 2969 return; 2970 2971 /* C. Check consistency of the current state. */ 2972 tcp_verify_left_out(tp); 2973 2974 /* D. Check state exit conditions. State can be terminated 2975 * when high_seq is ACKed. */ 2976 if (icsk->icsk_ca_state == TCP_CA_Open) { 2977 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2978 tp->retrans_stamp = 0; 2979 } else if (!before(tp->snd_una, tp->high_seq)) { 2980 switch (icsk->icsk_ca_state) { 2981 case TCP_CA_CWR: 2982 /* CWR is to be held something *above* high_seq 2983 * is ACKed for CWR bit to reach receiver. */ 2984 if (tp->snd_una != tp->high_seq) { 2985 tcp_end_cwnd_reduction(sk); 2986 tcp_set_ca_state(sk, TCP_CA_Open); 2987 } 2988 break; 2989 2990 case TCP_CA_Recovery: 2991 if (tcp_is_reno(tp)) 2992 tcp_reset_reno_sack(tp); 2993 if (tcp_try_undo_recovery(sk)) 2994 return; 2995 tcp_end_cwnd_reduction(sk); 2996 break; 2997 } 2998 } 2999 3000 /* E. Process state. */ 3001 switch (icsk->icsk_ca_state) { 3002 case TCP_CA_Recovery: 3003 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3004 if (tcp_is_reno(tp)) 3005 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3006 } else if (tcp_try_undo_partial(sk, prior_snd_una)) 3007 return; 3008 3009 if (tcp_try_undo_dsack(sk)) 3010 tcp_try_to_open(sk, flag); 3011 3012 tcp_identify_packet_loss(sk, ack_flag); 3013 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3014 if (!tcp_time_to_recover(tp)) 3015 return; 3016 /* Undo reverts the recovery state. If loss is evident, 3017 * starts a new recovery (e.g. reordering then loss); 3018 */ 3019 tcp_enter_recovery(sk, ece_ack); 3020 } 3021 break; 3022 case TCP_CA_Loss: 3023 tcp_process_loss(sk, flag, num_dupack, rexmit); 3024 if (icsk->icsk_ca_state != TCP_CA_Loss) 3025 tcp_update_rto_time(tp); 3026 tcp_identify_packet_loss(sk, ack_flag); 3027 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3028 (*ack_flag & FLAG_LOST_RETRANS))) 3029 return; 3030 /* Change state if cwnd is undone or retransmits are lost */ 3031 fallthrough; 3032 default: 3033 if (tcp_is_reno(tp)) { 3034 if (flag & FLAG_SND_UNA_ADVANCED) 3035 tcp_reset_reno_sack(tp); 3036 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3037 } 3038 3039 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3040 tcp_try_undo_dsack(sk); 3041 3042 tcp_identify_packet_loss(sk, ack_flag); 3043 if (!tcp_time_to_recover(tp)) { 3044 tcp_try_to_open(sk, flag); 3045 return; 3046 } 3047 3048 /* MTU probe failure: don't reduce cwnd */ 3049 if (icsk->icsk_ca_state < TCP_CA_CWR && 3050 icsk->icsk_mtup.probe_size && 3051 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3052 tcp_mtup_probe_failed(sk); 3053 /* Restores the reduction we did in tcp_mtup_probe() */ 3054 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3055 tcp_simple_retransmit(sk); 3056 return; 3057 } 3058 3059 /* Otherwise enter Recovery state */ 3060 tcp_enter_recovery(sk, ece_ack); 3061 } 3062 3063 *rexmit = REXMIT_LOST; 3064 } 3065 3066 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3067 { 3068 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3069 struct tcp_sock *tp = tcp_sk(sk); 3070 3071 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3072 /* If the remote keeps returning delayed ACKs, eventually 3073 * the min filter would pick it up and overestimate the 3074 * prop. delay when it expires. Skip suspected delayed ACKs. 3075 */ 3076 return; 3077 } 3078 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3079 rtt_us ? : jiffies_to_usecs(1)); 3080 } 3081 3082 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3083 long seq_rtt_us, long sack_rtt_us, 3084 long ca_rtt_us, struct rate_sample *rs) 3085 { 3086 const struct tcp_sock *tp = tcp_sk(sk); 3087 3088 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3089 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3090 * Karn's algorithm forbids taking RTT if some retransmitted data 3091 * is acked (RFC6298). 3092 */ 3093 if (seq_rtt_us < 0) 3094 seq_rtt_us = sack_rtt_us; 3095 3096 /* RTTM Rule: A TSecr value received in a segment is used to 3097 * update the averaged RTT measurement only if the segment 3098 * acknowledges some new data, i.e., only if it advances the 3099 * left edge of the send window. 3100 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3101 */ 3102 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3103 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3104 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1); 3105 3106 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3107 if (seq_rtt_us < 0) 3108 return false; 3109 3110 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3111 * always taken together with ACK, SACK, or TS-opts. Any negative 3112 * values will be skipped with the seq_rtt_us < 0 check above. 3113 */ 3114 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3115 tcp_rtt_estimator(sk, seq_rtt_us); 3116 tcp_set_rto(sk); 3117 3118 /* RFC6298: only reset backoff on valid RTT measurement. */ 3119 inet_csk(sk)->icsk_backoff = 0; 3120 return true; 3121 } 3122 3123 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3124 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3125 { 3126 struct rate_sample rs; 3127 long rtt_us = -1L; 3128 3129 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3130 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3131 3132 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3133 } 3134 3135 3136 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3137 { 3138 const struct inet_connection_sock *icsk = inet_csk(sk); 3139 3140 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3141 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3142 } 3143 3144 /* Restart timer after forward progress on connection. 3145 * RFC2988 recommends to restart timer to now+rto. 3146 */ 3147 void tcp_rearm_rto(struct sock *sk) 3148 { 3149 const struct inet_connection_sock *icsk = inet_csk(sk); 3150 struct tcp_sock *tp = tcp_sk(sk); 3151 3152 /* If the retrans timer is currently being used by Fast Open 3153 * for SYN-ACK retrans purpose, stay put. 3154 */ 3155 if (rcu_access_pointer(tp->fastopen_rsk)) 3156 return; 3157 3158 if (!tp->packets_out) { 3159 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3160 } else { 3161 u32 rto = inet_csk(sk)->icsk_rto; 3162 /* Offset the time elapsed after installing regular RTO */ 3163 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3164 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3165 s64 delta_us = tcp_rto_delta_us(sk); 3166 /* delta_us may not be positive if the socket is locked 3167 * when the retrans timer fires and is rescheduled. 3168 */ 3169 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3170 } 3171 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true); 3172 } 3173 } 3174 3175 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3176 static void tcp_set_xmit_timer(struct sock *sk) 3177 { 3178 if (!tcp_schedule_loss_probe(sk, true)) 3179 tcp_rearm_rto(sk); 3180 } 3181 3182 /* If we get here, the whole TSO packet has not been acked. */ 3183 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3184 { 3185 struct tcp_sock *tp = tcp_sk(sk); 3186 u32 packets_acked; 3187 3188 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3189 3190 packets_acked = tcp_skb_pcount(skb); 3191 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3192 return 0; 3193 packets_acked -= tcp_skb_pcount(skb); 3194 3195 if (packets_acked) { 3196 BUG_ON(tcp_skb_pcount(skb) == 0); 3197 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3198 } 3199 3200 return packets_acked; 3201 } 3202 3203 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3204 const struct sk_buff *ack_skb, u32 prior_snd_una) 3205 { 3206 const struct skb_shared_info *shinfo; 3207 3208 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3209 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3210 return; 3211 3212 shinfo = skb_shinfo(skb); 3213 if (!before(shinfo->tskey, prior_snd_una) && 3214 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3215 tcp_skb_tsorted_save(skb) { 3216 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3217 } tcp_skb_tsorted_restore(skb); 3218 } 3219 } 3220 3221 /* Remove acknowledged frames from the retransmission queue. If our packet 3222 * is before the ack sequence we can discard it as it's confirmed to have 3223 * arrived at the other end. 3224 */ 3225 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3226 u32 prior_fack, u32 prior_snd_una, 3227 struct tcp_sacktag_state *sack, bool ece_ack) 3228 { 3229 const struct inet_connection_sock *icsk = inet_csk(sk); 3230 u64 first_ackt, last_ackt; 3231 struct tcp_sock *tp = tcp_sk(sk); 3232 u32 prior_sacked = tp->sacked_out; 3233 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3234 struct sk_buff *skb, *next; 3235 bool fully_acked = true; 3236 long sack_rtt_us = -1L; 3237 long seq_rtt_us = -1L; 3238 long ca_rtt_us = -1L; 3239 u32 pkts_acked = 0; 3240 bool rtt_update; 3241 int flag = 0; 3242 3243 first_ackt = 0; 3244 3245 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3246 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3247 const u32 start_seq = scb->seq; 3248 u8 sacked = scb->sacked; 3249 u32 acked_pcount; 3250 3251 /* Determine how many packets and what bytes were acked, tso and else */ 3252 if (after(scb->end_seq, tp->snd_una)) { 3253 if (tcp_skb_pcount(skb) == 1 || 3254 !after(tp->snd_una, scb->seq)) 3255 break; 3256 3257 acked_pcount = tcp_tso_acked(sk, skb); 3258 if (!acked_pcount) 3259 break; 3260 fully_acked = false; 3261 } else { 3262 acked_pcount = tcp_skb_pcount(skb); 3263 } 3264 3265 if (unlikely(sacked & TCPCB_RETRANS)) { 3266 if (sacked & TCPCB_SACKED_RETRANS) 3267 tp->retrans_out -= acked_pcount; 3268 flag |= FLAG_RETRANS_DATA_ACKED; 3269 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3270 last_ackt = tcp_skb_timestamp_us(skb); 3271 WARN_ON_ONCE(last_ackt == 0); 3272 if (!first_ackt) 3273 first_ackt = last_ackt; 3274 3275 if (before(start_seq, reord)) 3276 reord = start_seq; 3277 if (!after(scb->end_seq, tp->high_seq)) 3278 flag |= FLAG_ORIG_SACK_ACKED; 3279 } 3280 3281 if (sacked & TCPCB_SACKED_ACKED) { 3282 tp->sacked_out -= acked_pcount; 3283 } else if (tcp_is_sack(tp)) { 3284 tcp_count_delivered(tp, acked_pcount, ece_ack); 3285 if (!tcp_skb_spurious_retrans(tp, skb)) 3286 tcp_rack_advance(tp, sacked, scb->end_seq, 3287 tcp_skb_timestamp_us(skb)); 3288 } 3289 if (sacked & TCPCB_LOST) 3290 tp->lost_out -= acked_pcount; 3291 3292 tp->packets_out -= acked_pcount; 3293 pkts_acked += acked_pcount; 3294 tcp_rate_skb_delivered(sk, skb, sack->rate); 3295 3296 /* Initial outgoing SYN's get put onto the write_queue 3297 * just like anything else we transmit. It is not 3298 * true data, and if we misinform our callers that 3299 * this ACK acks real data, we will erroneously exit 3300 * connection startup slow start one packet too 3301 * quickly. This is severely frowned upon behavior. 3302 */ 3303 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3304 flag |= FLAG_DATA_ACKED; 3305 } else { 3306 flag |= FLAG_SYN_ACKED; 3307 tp->retrans_stamp = 0; 3308 } 3309 3310 if (!fully_acked) 3311 break; 3312 3313 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3314 3315 next = skb_rb_next(skb); 3316 if (unlikely(skb == tp->retransmit_skb_hint)) 3317 tp->retransmit_skb_hint = NULL; 3318 tcp_highest_sack_replace(sk, skb, next); 3319 tcp_rtx_queue_unlink_and_free(skb, sk); 3320 } 3321 3322 if (!skb) 3323 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3324 3325 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3326 tp->snd_up = tp->snd_una; 3327 3328 if (skb) { 3329 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3330 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3331 flag |= FLAG_SACK_RENEGING; 3332 } 3333 3334 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3335 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3336 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3337 3338 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3339 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3340 sack->rate->prior_delivered + 1 == tp->delivered && 3341 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3342 /* Conservatively mark a delayed ACK. It's typically 3343 * from a lone runt packet over the round trip to 3344 * a receiver w/o out-of-order or CE events. 3345 */ 3346 flag |= FLAG_ACK_MAYBE_DELAYED; 3347 } 3348 } 3349 if (sack->first_sackt) { 3350 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3351 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3352 } 3353 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3354 ca_rtt_us, sack->rate); 3355 3356 if (flag & FLAG_ACKED) { 3357 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3358 if (unlikely(icsk->icsk_mtup.probe_size && 3359 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3360 tcp_mtup_probe_success(sk); 3361 } 3362 3363 if (tcp_is_reno(tp)) { 3364 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3365 3366 /* If any of the cumulatively ACKed segments was 3367 * retransmitted, non-SACK case cannot confirm that 3368 * progress was due to original transmission due to 3369 * lack of TCPCB_SACKED_ACKED bits even if some of 3370 * the packets may have been never retransmitted. 3371 */ 3372 if (flag & FLAG_RETRANS_DATA_ACKED) 3373 flag &= ~FLAG_ORIG_SACK_ACKED; 3374 } else { 3375 /* Non-retransmitted hole got filled? That's reordering */ 3376 if (before(reord, prior_fack)) 3377 tcp_check_sack_reordering(sk, reord, 0); 3378 } 3379 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3380 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3381 tcp_skb_timestamp_us(skb))) { 3382 /* Do not re-arm RTO if the sack RTT is measured from data sent 3383 * after when the head was last (re)transmitted. Otherwise the 3384 * timeout may continue to extend in loss recovery. 3385 */ 3386 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3387 } 3388 3389 if (icsk->icsk_ca_ops->pkts_acked) { 3390 struct ack_sample sample = { .pkts_acked = pkts_acked, 3391 .rtt_us = sack->rate->rtt_us }; 3392 3393 sample.in_flight = tp->mss_cache * 3394 (tp->delivered - sack->rate->prior_delivered); 3395 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3396 } 3397 3398 #if FASTRETRANS_DEBUG > 0 3399 WARN_ON((int)tp->sacked_out < 0); 3400 WARN_ON((int)tp->lost_out < 0); 3401 WARN_ON((int)tp->retrans_out < 0); 3402 if (!tp->packets_out && tcp_is_sack(tp)) { 3403 icsk = inet_csk(sk); 3404 if (tp->lost_out) { 3405 pr_debug("Leak l=%u %d\n", 3406 tp->lost_out, icsk->icsk_ca_state); 3407 tp->lost_out = 0; 3408 } 3409 if (tp->sacked_out) { 3410 pr_debug("Leak s=%u %d\n", 3411 tp->sacked_out, icsk->icsk_ca_state); 3412 tp->sacked_out = 0; 3413 } 3414 if (tp->retrans_out) { 3415 pr_debug("Leak r=%u %d\n", 3416 tp->retrans_out, icsk->icsk_ca_state); 3417 tp->retrans_out = 0; 3418 } 3419 } 3420 #endif 3421 return flag; 3422 } 3423 3424 static void tcp_ack_probe(struct sock *sk) 3425 { 3426 struct inet_connection_sock *icsk = inet_csk(sk); 3427 struct sk_buff *head = tcp_send_head(sk); 3428 const struct tcp_sock *tp = tcp_sk(sk); 3429 3430 /* Was it a usable window open? */ 3431 if (!head) 3432 return; 3433 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3434 icsk->icsk_backoff = 0; 3435 icsk->icsk_probes_tstamp = 0; 3436 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3437 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3438 * This function is not for random using! 3439 */ 3440 } else { 3441 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk)); 3442 3443 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3444 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true); 3445 } 3446 } 3447 3448 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3449 { 3450 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3451 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3452 } 3453 3454 /* Decide wheather to run the increase function of congestion control. */ 3455 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3456 { 3457 /* If reordering is high then always grow cwnd whenever data is 3458 * delivered regardless of its ordering. Otherwise stay conservative 3459 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3460 * new SACK or ECE mark may first advance cwnd here and later reduce 3461 * cwnd in tcp_fastretrans_alert() based on more states. 3462 */ 3463 if (tcp_sk(sk)->reordering > 3464 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3465 return flag & FLAG_FORWARD_PROGRESS; 3466 3467 return flag & FLAG_DATA_ACKED; 3468 } 3469 3470 /* The "ultimate" congestion control function that aims to replace the rigid 3471 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3472 * It's called toward the end of processing an ACK with precise rate 3473 * information. All transmission or retransmission are delayed afterwards. 3474 */ 3475 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3476 int flag, const struct rate_sample *rs) 3477 { 3478 const struct inet_connection_sock *icsk = inet_csk(sk); 3479 3480 if (icsk->icsk_ca_ops->cong_control) { 3481 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3482 return; 3483 } 3484 3485 if (tcp_in_cwnd_reduction(sk)) { 3486 /* Reduce cwnd if state mandates */ 3487 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3488 } else if (tcp_may_raise_cwnd(sk, flag)) { 3489 /* Advance cwnd if state allows */ 3490 tcp_cong_avoid(sk, ack, acked_sacked); 3491 } 3492 tcp_update_pacing_rate(sk); 3493 } 3494 3495 /* Check that window update is acceptable. 3496 * The function assumes that snd_una<=ack<=snd_next. 3497 */ 3498 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3499 const u32 ack, const u32 ack_seq, 3500 const u32 nwin) 3501 { 3502 return after(ack, tp->snd_una) || 3503 after(ack_seq, tp->snd_wl1) || 3504 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3505 } 3506 3507 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3508 { 3509 #ifdef CONFIG_TCP_AO 3510 struct tcp_ao_info *ao; 3511 3512 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3513 return; 3514 3515 ao = rcu_dereference_protected(tp->ao_info, 3516 lockdep_sock_is_held((struct sock *)tp)); 3517 if (ao && ack < tp->snd_una) { 3518 ao->snd_sne++; 3519 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne); 3520 } 3521 #endif 3522 } 3523 3524 /* If we update tp->snd_una, also update tp->bytes_acked */ 3525 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3526 { 3527 u32 delta = ack - tp->snd_una; 3528 3529 sock_owned_by_me((struct sock *)tp); 3530 tp->bytes_acked += delta; 3531 tcp_snd_sne_update(tp, ack); 3532 tp->snd_una = ack; 3533 } 3534 3535 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3536 { 3537 #ifdef CONFIG_TCP_AO 3538 struct tcp_ao_info *ao; 3539 3540 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3541 return; 3542 3543 ao = rcu_dereference_protected(tp->ao_info, 3544 lockdep_sock_is_held((struct sock *)tp)); 3545 if (ao && seq < tp->rcv_nxt) { 3546 ao->rcv_sne++; 3547 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne); 3548 } 3549 #endif 3550 } 3551 3552 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3553 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3554 { 3555 u32 delta = seq - tp->rcv_nxt; 3556 3557 sock_owned_by_me((struct sock *)tp); 3558 tp->bytes_received += delta; 3559 tcp_rcv_sne_update(tp, seq); 3560 WRITE_ONCE(tp->rcv_nxt, seq); 3561 } 3562 3563 /* Update our send window. 3564 * 3565 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3566 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3567 */ 3568 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3569 u32 ack_seq) 3570 { 3571 struct tcp_sock *tp = tcp_sk(sk); 3572 int flag = 0; 3573 u32 nwin = ntohs(tcp_hdr(skb)->window); 3574 3575 if (likely(!tcp_hdr(skb)->syn)) 3576 nwin <<= tp->rx_opt.snd_wscale; 3577 3578 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3579 flag |= FLAG_WIN_UPDATE; 3580 tcp_update_wl(tp, ack_seq); 3581 3582 if (tp->snd_wnd != nwin) { 3583 tp->snd_wnd = nwin; 3584 3585 /* Note, it is the only place, where 3586 * fast path is recovered for sending TCP. 3587 */ 3588 tp->pred_flags = 0; 3589 tcp_fast_path_check(sk); 3590 3591 if (!tcp_write_queue_empty(sk)) 3592 tcp_slow_start_after_idle_check(sk); 3593 3594 if (nwin > tp->max_window) { 3595 tp->max_window = nwin; 3596 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3597 } 3598 } 3599 } 3600 3601 tcp_snd_una_update(tp, ack); 3602 3603 return flag; 3604 } 3605 3606 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3607 u32 *last_oow_ack_time) 3608 { 3609 /* Paired with the WRITE_ONCE() in this function. */ 3610 u32 val = READ_ONCE(*last_oow_ack_time); 3611 3612 if (val) { 3613 s32 elapsed = (s32)(tcp_jiffies32 - val); 3614 3615 if (0 <= elapsed && 3616 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3617 NET_INC_STATS(net, mib_idx); 3618 return true; /* rate-limited: don't send yet! */ 3619 } 3620 } 3621 3622 /* Paired with the prior READ_ONCE() and with itself, 3623 * as we might be lockless. 3624 */ 3625 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3626 3627 return false; /* not rate-limited: go ahead, send dupack now! */ 3628 } 3629 3630 /* Return true if we're currently rate-limiting out-of-window ACKs and 3631 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3632 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3633 * attacks that send repeated SYNs or ACKs for the same connection. To 3634 * do this, we do not send a duplicate SYNACK or ACK if the remote 3635 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3636 */ 3637 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3638 int mib_idx, u32 *last_oow_ack_time) 3639 { 3640 /* Data packets without SYNs are not likely part of an ACK loop. */ 3641 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3642 !tcp_hdr(skb)->syn) 3643 return false; 3644 3645 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3646 } 3647 3648 /* RFC 5961 7 [ACK Throttling] */ 3649 static void tcp_send_challenge_ack(struct sock *sk) 3650 { 3651 struct tcp_sock *tp = tcp_sk(sk); 3652 struct net *net = sock_net(sk); 3653 u32 count, now, ack_limit; 3654 3655 /* First check our per-socket dupack rate limit. */ 3656 if (__tcp_oow_rate_limited(net, 3657 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3658 &tp->last_oow_ack_time)) 3659 return; 3660 3661 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3662 if (ack_limit == INT_MAX) 3663 goto send_ack; 3664 3665 /* Then check host-wide RFC 5961 rate limit. */ 3666 now = jiffies / HZ; 3667 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3668 u32 half = (ack_limit + 1) >> 1; 3669 3670 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3671 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3672 get_random_u32_inclusive(half, ack_limit + half - 1)); 3673 } 3674 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3675 if (count > 0) { 3676 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3677 send_ack: 3678 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3679 tcp_send_ack(sk); 3680 } 3681 } 3682 3683 static void tcp_store_ts_recent(struct tcp_sock *tp) 3684 { 3685 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3686 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3687 } 3688 3689 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta) 3690 { 3691 tcp_store_ts_recent(tp); 3692 return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0; 3693 } 3694 3695 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3696 { 3697 s32 delta; 3698 3699 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3700 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3701 * extra check below makes sure this can only happen 3702 * for pure ACK frames. -DaveM 3703 * 3704 * Not only, also it occurs for expired timestamps. 3705 */ 3706 3707 if (tcp_paws_check(&tp->rx_opt, 0)) { 3708 delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent; 3709 return __tcp_replace_ts_recent(tp, delta); 3710 } 3711 } 3712 3713 return 0; 3714 } 3715 3716 /* This routine deals with acks during a TLP episode and ends an episode by 3717 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3718 */ 3719 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3720 { 3721 struct tcp_sock *tp = tcp_sk(sk); 3722 3723 if (before(ack, tp->tlp_high_seq)) 3724 return; 3725 3726 if (!tp->tlp_retrans) { 3727 /* TLP of new data has been acknowledged */ 3728 tp->tlp_high_seq = 0; 3729 } else if (flag & FLAG_DSACK_TLP) { 3730 /* This DSACK means original and TLP probe arrived; no loss */ 3731 tp->tlp_high_seq = 0; 3732 } else if (after(ack, tp->tlp_high_seq)) { 3733 /* ACK advances: there was a loss, so reduce cwnd. Reset 3734 * tlp_high_seq in tcp_init_cwnd_reduction() 3735 */ 3736 tcp_init_cwnd_reduction(sk); 3737 tcp_set_ca_state(sk, TCP_CA_CWR); 3738 tcp_end_cwnd_reduction(sk); 3739 tcp_try_keep_open(sk); 3740 NET_INC_STATS(sock_net(sk), 3741 LINUX_MIB_TCPLOSSPROBERECOVERY); 3742 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3743 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3744 /* Pure dupack: original and TLP probe arrived; no loss */ 3745 tp->tlp_high_seq = 0; 3746 } 3747 } 3748 3749 static void tcp_in_ack_event(struct sock *sk, int flag) 3750 { 3751 const struct inet_connection_sock *icsk = inet_csk(sk); 3752 3753 if (icsk->icsk_ca_ops->in_ack_event) { 3754 u32 ack_ev_flags = 0; 3755 3756 if (flag & FLAG_WIN_UPDATE) 3757 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3758 if (flag & FLAG_SLOWPATH) { 3759 ack_ev_flags |= CA_ACK_SLOWPATH; 3760 if (flag & FLAG_ECE) 3761 ack_ev_flags |= CA_ACK_ECE; 3762 } 3763 3764 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags); 3765 } 3766 } 3767 3768 /* Congestion control has updated the cwnd already. So if we're in 3769 * loss recovery then now we do any new sends (for FRTO) or 3770 * retransmits (for CA_Loss or CA_recovery) that make sense. 3771 */ 3772 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3773 { 3774 struct tcp_sock *tp = tcp_sk(sk); 3775 3776 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3777 return; 3778 3779 if (unlikely(rexmit == REXMIT_NEW)) { 3780 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3781 TCP_NAGLE_OFF); 3782 if (after(tp->snd_nxt, tp->high_seq)) 3783 return; 3784 tp->frto = 0; 3785 } 3786 tcp_xmit_retransmit_queue(sk); 3787 } 3788 3789 /* Returns the number of packets newly acked or sacked by the current ACK */ 3790 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3791 { 3792 const struct net *net = sock_net(sk); 3793 struct tcp_sock *tp = tcp_sk(sk); 3794 u32 delivered; 3795 3796 delivered = tp->delivered - prior_delivered; 3797 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3798 if (flag & FLAG_ECE) 3799 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3800 3801 return delivered; 3802 } 3803 3804 /* This routine deals with incoming acks, but not outgoing ones. */ 3805 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3806 { 3807 struct inet_connection_sock *icsk = inet_csk(sk); 3808 struct tcp_sock *tp = tcp_sk(sk); 3809 struct tcp_sacktag_state sack_state; 3810 struct rate_sample rs = { .prior_delivered = 0 }; 3811 u32 prior_snd_una = tp->snd_una; 3812 bool is_sack_reneg = tp->is_sack_reneg; 3813 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3814 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3815 int num_dupack = 0; 3816 int prior_packets = tp->packets_out; 3817 u32 delivered = tp->delivered; 3818 u32 lost = tp->lost; 3819 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3820 u32 prior_fack; 3821 3822 sack_state.first_sackt = 0; 3823 sack_state.rate = &rs; 3824 sack_state.sack_delivered = 0; 3825 3826 /* We very likely will need to access rtx queue. */ 3827 prefetch(sk->tcp_rtx_queue.rb_node); 3828 3829 /* If the ack is older than previous acks 3830 * then we can probably ignore it. 3831 */ 3832 if (before(ack, prior_snd_una)) { 3833 u32 max_window; 3834 3835 /* do not accept ACK for bytes we never sent. */ 3836 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3837 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3838 if (before(ack, prior_snd_una - max_window)) { 3839 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3840 tcp_send_challenge_ack(sk); 3841 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3842 } 3843 goto old_ack; 3844 } 3845 3846 /* If the ack includes data we haven't sent yet, discard 3847 * this segment (RFC793 Section 3.9). 3848 */ 3849 if (after(ack, tp->snd_nxt)) 3850 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3851 3852 if (after(ack, prior_snd_una)) { 3853 flag |= FLAG_SND_UNA_ADVANCED; 3854 icsk->icsk_retransmits = 0; 3855 3856 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3857 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3858 if (tp->tcp_clean_acked) 3859 tp->tcp_clean_acked(sk, ack); 3860 #endif 3861 } 3862 3863 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3864 rs.prior_in_flight = tcp_packets_in_flight(tp); 3865 3866 /* ts_recent update must be made after we are sure that the packet 3867 * is in window. 3868 */ 3869 if (flag & FLAG_UPDATE_TS_RECENT) 3870 flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3871 3872 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3873 FLAG_SND_UNA_ADVANCED) { 3874 /* Window is constant, pure forward advance. 3875 * No more checks are required. 3876 * Note, we use the fact that SND.UNA>=SND.WL2. 3877 */ 3878 tcp_update_wl(tp, ack_seq); 3879 tcp_snd_una_update(tp, ack); 3880 flag |= FLAG_WIN_UPDATE; 3881 3882 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3883 } else { 3884 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3885 flag |= FLAG_DATA; 3886 else 3887 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3888 3889 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3890 3891 if (TCP_SKB_CB(skb)->sacked) 3892 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3893 &sack_state); 3894 3895 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) 3896 flag |= FLAG_ECE; 3897 3898 if (sack_state.sack_delivered) 3899 tcp_count_delivered(tp, sack_state.sack_delivered, 3900 flag & FLAG_ECE); 3901 } 3902 3903 /* This is a deviation from RFC3168 since it states that: 3904 * "When the TCP data sender is ready to set the CWR bit after reducing 3905 * the congestion window, it SHOULD set the CWR bit only on the first 3906 * new data packet that it transmits." 3907 * We accept CWR on pure ACKs to be more robust 3908 * with widely-deployed TCP implementations that do this. 3909 */ 3910 tcp_ecn_accept_cwr(sk, skb); 3911 3912 /* We passed data and got it acked, remove any soft error 3913 * log. Something worked... 3914 */ 3915 WRITE_ONCE(sk->sk_err_soft, 0); 3916 icsk->icsk_probes_out = 0; 3917 tp->rcv_tstamp = tcp_jiffies32; 3918 if (!prior_packets) 3919 goto no_queue; 3920 3921 /* See if we can take anything off of the retransmit queue. */ 3922 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3923 &sack_state, flag & FLAG_ECE); 3924 3925 tcp_rack_update_reo_wnd(sk, &rs); 3926 3927 tcp_in_ack_event(sk, flag); 3928 3929 if (tp->tlp_high_seq) 3930 tcp_process_tlp_ack(sk, ack, flag); 3931 3932 if (tcp_ack_is_dubious(sk, flag)) { 3933 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3934 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3935 num_dupack = 1; 3936 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3937 if (!(flag & FLAG_DATA)) 3938 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3939 } 3940 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3941 &rexmit); 3942 } 3943 3944 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3945 if (flag & FLAG_SET_XMIT_TIMER) 3946 tcp_set_xmit_timer(sk); 3947 3948 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3949 sk_dst_confirm(sk); 3950 3951 delivered = tcp_newly_delivered(sk, delivered, flag); 3952 lost = tp->lost - lost; /* freshly marked lost */ 3953 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3954 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3955 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3956 tcp_xmit_recovery(sk, rexmit); 3957 return 1; 3958 3959 no_queue: 3960 tcp_in_ack_event(sk, flag); 3961 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3962 if (flag & FLAG_DSACKING_ACK) { 3963 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3964 &rexmit); 3965 tcp_newly_delivered(sk, delivered, flag); 3966 } 3967 /* If this ack opens up a zero window, clear backoff. It was 3968 * being used to time the probes, and is probably far higher than 3969 * it needs to be for normal retransmission. 3970 */ 3971 tcp_ack_probe(sk); 3972 3973 if (tp->tlp_high_seq) 3974 tcp_process_tlp_ack(sk, ack, flag); 3975 return 1; 3976 3977 old_ack: 3978 /* If data was SACKed, tag it and see if we should send more data. 3979 * If data was DSACKed, see if we can undo a cwnd reduction. 3980 */ 3981 if (TCP_SKB_CB(skb)->sacked) { 3982 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3983 &sack_state); 3984 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3985 &rexmit); 3986 tcp_newly_delivered(sk, delivered, flag); 3987 tcp_xmit_recovery(sk, rexmit); 3988 } 3989 3990 return 0; 3991 } 3992 3993 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3994 bool syn, struct tcp_fastopen_cookie *foc, 3995 bool exp_opt) 3996 { 3997 /* Valid only in SYN or SYN-ACK with an even length. */ 3998 if (!foc || !syn || len < 0 || (len & 1)) 3999 return; 4000 4001 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4002 len <= TCP_FASTOPEN_COOKIE_MAX) 4003 memcpy(foc->val, cookie, len); 4004 else if (len != 0) 4005 len = -1; 4006 foc->len = len; 4007 foc->exp = exp_opt; 4008 } 4009 4010 static bool smc_parse_options(const struct tcphdr *th, 4011 struct tcp_options_received *opt_rx, 4012 const unsigned char *ptr, 4013 int opsize) 4014 { 4015 #if IS_ENABLED(CONFIG_SMC) 4016 if (static_branch_unlikely(&tcp_have_smc)) { 4017 if (th->syn && !(opsize & 1) && 4018 opsize >= TCPOLEN_EXP_SMC_BASE && 4019 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4020 opt_rx->smc_ok = 1; 4021 return true; 4022 } 4023 } 4024 #endif 4025 return false; 4026 } 4027 4028 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4029 * value on success. 4030 */ 4031 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4032 { 4033 const unsigned char *ptr = (const unsigned char *)(th + 1); 4034 int length = (th->doff * 4) - sizeof(struct tcphdr); 4035 u16 mss = 0; 4036 4037 while (length > 0) { 4038 int opcode = *ptr++; 4039 int opsize; 4040 4041 switch (opcode) { 4042 case TCPOPT_EOL: 4043 return mss; 4044 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4045 length--; 4046 continue; 4047 default: 4048 if (length < 2) 4049 return mss; 4050 opsize = *ptr++; 4051 if (opsize < 2) /* "silly options" */ 4052 return mss; 4053 if (opsize > length) 4054 return mss; /* fail on partial options */ 4055 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4056 u16 in_mss = get_unaligned_be16(ptr); 4057 4058 if (in_mss) { 4059 if (user_mss && user_mss < in_mss) 4060 in_mss = user_mss; 4061 mss = in_mss; 4062 } 4063 } 4064 ptr += opsize - 2; 4065 length -= opsize; 4066 } 4067 } 4068 return mss; 4069 } 4070 4071 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4072 * But, this can also be called on packets in the established flow when 4073 * the fast version below fails. 4074 */ 4075 void tcp_parse_options(const struct net *net, 4076 const struct sk_buff *skb, 4077 struct tcp_options_received *opt_rx, int estab, 4078 struct tcp_fastopen_cookie *foc) 4079 { 4080 const unsigned char *ptr; 4081 const struct tcphdr *th = tcp_hdr(skb); 4082 int length = (th->doff * 4) - sizeof(struct tcphdr); 4083 4084 ptr = (const unsigned char *)(th + 1); 4085 opt_rx->saw_tstamp = 0; 4086 opt_rx->saw_unknown = 0; 4087 4088 while (length > 0) { 4089 int opcode = *ptr++; 4090 int opsize; 4091 4092 switch (opcode) { 4093 case TCPOPT_EOL: 4094 return; 4095 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4096 length--; 4097 continue; 4098 default: 4099 if (length < 2) 4100 return; 4101 opsize = *ptr++; 4102 if (opsize < 2) /* "silly options" */ 4103 return; 4104 if (opsize > length) 4105 return; /* don't parse partial options */ 4106 switch (opcode) { 4107 case TCPOPT_MSS: 4108 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4109 u16 in_mss = get_unaligned_be16(ptr); 4110 if (in_mss) { 4111 if (opt_rx->user_mss && 4112 opt_rx->user_mss < in_mss) 4113 in_mss = opt_rx->user_mss; 4114 opt_rx->mss_clamp = in_mss; 4115 } 4116 } 4117 break; 4118 case TCPOPT_WINDOW: 4119 if (opsize == TCPOLEN_WINDOW && th->syn && 4120 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4121 __u8 snd_wscale = *(__u8 *)ptr; 4122 opt_rx->wscale_ok = 1; 4123 if (snd_wscale > TCP_MAX_WSCALE) { 4124 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4125 __func__, 4126 snd_wscale, 4127 TCP_MAX_WSCALE); 4128 snd_wscale = TCP_MAX_WSCALE; 4129 } 4130 opt_rx->snd_wscale = snd_wscale; 4131 } 4132 break; 4133 case TCPOPT_TIMESTAMP: 4134 if ((opsize == TCPOLEN_TIMESTAMP) && 4135 ((estab && opt_rx->tstamp_ok) || 4136 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4137 opt_rx->saw_tstamp = 1; 4138 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4139 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4140 } 4141 break; 4142 case TCPOPT_SACK_PERM: 4143 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4144 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4145 opt_rx->sack_ok = TCP_SACK_SEEN; 4146 tcp_sack_reset(opt_rx); 4147 } 4148 break; 4149 4150 case TCPOPT_SACK: 4151 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4152 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4153 opt_rx->sack_ok) { 4154 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4155 } 4156 break; 4157 #ifdef CONFIG_TCP_MD5SIG 4158 case TCPOPT_MD5SIG: 4159 /* The MD5 Hash has already been 4160 * checked (see tcp_v{4,6}_rcv()). 4161 */ 4162 break; 4163 #endif 4164 #ifdef CONFIG_TCP_AO 4165 case TCPOPT_AO: 4166 /* TCP AO has already been checked 4167 * (see tcp_inbound_ao_hash()). 4168 */ 4169 break; 4170 #endif 4171 case TCPOPT_FASTOPEN: 4172 tcp_parse_fastopen_option( 4173 opsize - TCPOLEN_FASTOPEN_BASE, 4174 ptr, th->syn, foc, false); 4175 break; 4176 4177 case TCPOPT_EXP: 4178 /* Fast Open option shares code 254 using a 4179 * 16 bits magic number. 4180 */ 4181 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4182 get_unaligned_be16(ptr) == 4183 TCPOPT_FASTOPEN_MAGIC) { 4184 tcp_parse_fastopen_option(opsize - 4185 TCPOLEN_EXP_FASTOPEN_BASE, 4186 ptr + 2, th->syn, foc, true); 4187 break; 4188 } 4189 4190 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4191 break; 4192 4193 opt_rx->saw_unknown = 1; 4194 break; 4195 4196 default: 4197 opt_rx->saw_unknown = 1; 4198 } 4199 ptr += opsize-2; 4200 length -= opsize; 4201 } 4202 } 4203 } 4204 EXPORT_SYMBOL(tcp_parse_options); 4205 4206 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4207 { 4208 const __be32 *ptr = (const __be32 *)(th + 1); 4209 4210 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4211 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4212 tp->rx_opt.saw_tstamp = 1; 4213 ++ptr; 4214 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4215 ++ptr; 4216 if (*ptr) 4217 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4218 else 4219 tp->rx_opt.rcv_tsecr = 0; 4220 return true; 4221 } 4222 return false; 4223 } 4224 4225 /* Fast parse options. This hopes to only see timestamps. 4226 * If it is wrong it falls back on tcp_parse_options(). 4227 */ 4228 static bool tcp_fast_parse_options(const struct net *net, 4229 const struct sk_buff *skb, 4230 const struct tcphdr *th, struct tcp_sock *tp) 4231 { 4232 /* In the spirit of fast parsing, compare doff directly to constant 4233 * values. Because equality is used, short doff can be ignored here. 4234 */ 4235 if (th->doff == (sizeof(*th) / 4)) { 4236 tp->rx_opt.saw_tstamp = 0; 4237 return false; 4238 } else if (tp->rx_opt.tstamp_ok && 4239 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4240 if (tcp_parse_aligned_timestamp(tp, th)) 4241 return true; 4242 } 4243 4244 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4245 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4246 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4247 4248 return true; 4249 } 4250 4251 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4252 /* 4253 * Parse Signature options 4254 */ 4255 int tcp_do_parse_auth_options(const struct tcphdr *th, 4256 const u8 **md5_hash, const u8 **ao_hash) 4257 { 4258 int length = (th->doff << 2) - sizeof(*th); 4259 const u8 *ptr = (const u8 *)(th + 1); 4260 unsigned int minlen = TCPOLEN_MD5SIG; 4261 4262 if (IS_ENABLED(CONFIG_TCP_AO)) 4263 minlen = sizeof(struct tcp_ao_hdr) + 1; 4264 4265 *md5_hash = NULL; 4266 *ao_hash = NULL; 4267 4268 /* If not enough data remaining, we can short cut */ 4269 while (length >= minlen) { 4270 int opcode = *ptr++; 4271 int opsize; 4272 4273 switch (opcode) { 4274 case TCPOPT_EOL: 4275 return 0; 4276 case TCPOPT_NOP: 4277 length--; 4278 continue; 4279 default: 4280 opsize = *ptr++; 4281 if (opsize < 2 || opsize > length) 4282 return -EINVAL; 4283 if (opcode == TCPOPT_MD5SIG) { 4284 if (opsize != TCPOLEN_MD5SIG) 4285 return -EINVAL; 4286 if (unlikely(*md5_hash || *ao_hash)) 4287 return -EEXIST; 4288 *md5_hash = ptr; 4289 } else if (opcode == TCPOPT_AO) { 4290 if (opsize <= sizeof(struct tcp_ao_hdr)) 4291 return -EINVAL; 4292 if (unlikely(*md5_hash || *ao_hash)) 4293 return -EEXIST; 4294 *ao_hash = ptr; 4295 } 4296 } 4297 ptr += opsize - 2; 4298 length -= opsize; 4299 } 4300 return 0; 4301 } 4302 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4303 #endif 4304 4305 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4306 * 4307 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4308 * it can pass through stack. So, the following predicate verifies that 4309 * this segment is not used for anything but congestion avoidance or 4310 * fast retransmit. Moreover, we even are able to eliminate most of such 4311 * second order effects, if we apply some small "replay" window (~RTO) 4312 * to timestamp space. 4313 * 4314 * All these measures still do not guarantee that we reject wrapped ACKs 4315 * on networks with high bandwidth, when sequence space is recycled fastly, 4316 * but it guarantees that such events will be very rare and do not affect 4317 * connection seriously. This doesn't look nice, but alas, PAWS is really 4318 * buggy extension. 4319 * 4320 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4321 * states that events when retransmit arrives after original data are rare. 4322 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4323 * the biggest problem on large power networks even with minor reordering. 4324 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4325 * up to bandwidth of 18Gigabit/sec. 8) ] 4326 */ 4327 4328 /* Estimates max number of increments of remote peer TSval in 4329 * a replay window (based on our current RTO estimation). 4330 */ 4331 static u32 tcp_tsval_replay(const struct sock *sk) 4332 { 4333 /* If we use usec TS resolution, 4334 * then expect the remote peer to use the same resolution. 4335 */ 4336 if (tcp_sk(sk)->tcp_usec_ts) 4337 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4338 4339 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4340 * We know that some OS (including old linux) can use 1200 Hz. 4341 */ 4342 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4343 } 4344 4345 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk, 4346 const struct sk_buff *skb) 4347 { 4348 const struct tcp_sock *tp = tcp_sk(sk); 4349 const struct tcphdr *th = tcp_hdr(skb); 4350 SKB_DR_INIT(reason, TCP_RFC7323_PAWS); 4351 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4352 u32 seq = TCP_SKB_CB(skb)->seq; 4353 4354 /* 1. Is this not a pure ACK ? */ 4355 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq) 4356 return reason; 4357 4358 /* 2. Is its sequence not the expected one ? */ 4359 if (seq != tp->rcv_nxt) 4360 return before(seq, tp->rcv_nxt) ? 4361 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK : 4362 reason; 4363 4364 /* 3. Is this not a duplicate ACK ? */ 4365 if (ack != tp->snd_una) 4366 return reason; 4367 4368 /* 4. Is this updating the window ? */ 4369 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) << 4370 tp->rx_opt.snd_wscale)) 4371 return reason; 4372 4373 /* 5. Is this not in the replay window ? */ 4374 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > 4375 tcp_tsval_replay(sk)) 4376 return reason; 4377 4378 return 0; 4379 } 4380 4381 /* Check segment sequence number for validity. 4382 * 4383 * Segment controls are considered valid, if the segment 4384 * fits to the window after truncation to the window. Acceptability 4385 * of data (and SYN, FIN, of course) is checked separately. 4386 * See tcp_data_queue(), for example. 4387 * 4388 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4389 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4390 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4391 * (borrowed from freebsd) 4392 */ 4393 4394 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4395 u32 seq, u32 end_seq) 4396 { 4397 if (before(end_seq, tp->rcv_wup)) 4398 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4399 4400 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4401 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4402 4403 return SKB_NOT_DROPPED_YET; 4404 } 4405 4406 4407 void tcp_done_with_error(struct sock *sk, int err) 4408 { 4409 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4410 WRITE_ONCE(sk->sk_err, err); 4411 smp_wmb(); 4412 4413 tcp_write_queue_purge(sk); 4414 tcp_done(sk); 4415 4416 if (!sock_flag(sk, SOCK_DEAD)) 4417 sk_error_report(sk); 4418 } 4419 EXPORT_IPV6_MOD(tcp_done_with_error); 4420 4421 /* When we get a reset we do this. */ 4422 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4423 { 4424 int err; 4425 4426 trace_tcp_receive_reset(sk); 4427 4428 /* mptcp can't tell us to ignore reset pkts, 4429 * so just ignore the return value of mptcp_incoming_options(). 4430 */ 4431 if (sk_is_mptcp(sk)) 4432 mptcp_incoming_options(sk, skb); 4433 4434 /* We want the right error as BSD sees it (and indeed as we do). */ 4435 switch (sk->sk_state) { 4436 case TCP_SYN_SENT: 4437 err = ECONNREFUSED; 4438 break; 4439 case TCP_CLOSE_WAIT: 4440 err = EPIPE; 4441 break; 4442 case TCP_CLOSE: 4443 return; 4444 default: 4445 err = ECONNRESET; 4446 } 4447 tcp_done_with_error(sk, err); 4448 } 4449 4450 /* 4451 * Process the FIN bit. This now behaves as it is supposed to work 4452 * and the FIN takes effect when it is validly part of sequence 4453 * space. Not before when we get holes. 4454 * 4455 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4456 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4457 * TIME-WAIT) 4458 * 4459 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4460 * close and we go into CLOSING (and later onto TIME-WAIT) 4461 * 4462 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4463 */ 4464 void tcp_fin(struct sock *sk) 4465 { 4466 struct tcp_sock *tp = tcp_sk(sk); 4467 4468 inet_csk_schedule_ack(sk); 4469 4470 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4471 sock_set_flag(sk, SOCK_DONE); 4472 4473 switch (sk->sk_state) { 4474 case TCP_SYN_RECV: 4475 case TCP_ESTABLISHED: 4476 /* Move to CLOSE_WAIT */ 4477 tcp_set_state(sk, TCP_CLOSE_WAIT); 4478 inet_csk_enter_pingpong_mode(sk); 4479 break; 4480 4481 case TCP_CLOSE_WAIT: 4482 case TCP_CLOSING: 4483 /* Received a retransmission of the FIN, do 4484 * nothing. 4485 */ 4486 break; 4487 case TCP_LAST_ACK: 4488 /* RFC793: Remain in the LAST-ACK state. */ 4489 break; 4490 4491 case TCP_FIN_WAIT1: 4492 /* This case occurs when a simultaneous close 4493 * happens, we must ack the received FIN and 4494 * enter the CLOSING state. 4495 */ 4496 tcp_send_ack(sk); 4497 tcp_set_state(sk, TCP_CLOSING); 4498 break; 4499 case TCP_FIN_WAIT2: 4500 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4501 tcp_send_ack(sk); 4502 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4503 break; 4504 default: 4505 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4506 * cases we should never reach this piece of code. 4507 */ 4508 pr_err("%s: Impossible, sk->sk_state=%d\n", 4509 __func__, sk->sk_state); 4510 break; 4511 } 4512 4513 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4514 * Probably, we should reset in this case. For now drop them. 4515 */ 4516 skb_rbtree_purge(&tp->out_of_order_queue); 4517 if (tcp_is_sack(tp)) 4518 tcp_sack_reset(&tp->rx_opt); 4519 4520 if (!sock_flag(sk, SOCK_DEAD)) { 4521 sk->sk_state_change(sk); 4522 4523 /* Do not send POLL_HUP for half duplex close. */ 4524 if (sk->sk_shutdown == SHUTDOWN_MASK || 4525 sk->sk_state == TCP_CLOSE) 4526 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4527 else 4528 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4529 } 4530 } 4531 4532 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4533 u32 end_seq) 4534 { 4535 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4536 if (before(seq, sp->start_seq)) 4537 sp->start_seq = seq; 4538 if (after(end_seq, sp->end_seq)) 4539 sp->end_seq = end_seq; 4540 return true; 4541 } 4542 return false; 4543 } 4544 4545 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4546 { 4547 struct tcp_sock *tp = tcp_sk(sk); 4548 4549 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4550 int mib_idx; 4551 4552 if (before(seq, tp->rcv_nxt)) 4553 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4554 else 4555 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4556 4557 NET_INC_STATS(sock_net(sk), mib_idx); 4558 4559 tp->rx_opt.dsack = 1; 4560 tp->duplicate_sack[0].start_seq = seq; 4561 tp->duplicate_sack[0].end_seq = end_seq; 4562 } 4563 } 4564 4565 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4566 { 4567 struct tcp_sock *tp = tcp_sk(sk); 4568 4569 if (!tp->rx_opt.dsack) 4570 tcp_dsack_set(sk, seq, end_seq); 4571 else 4572 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4573 } 4574 4575 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4576 { 4577 /* When the ACK path fails or drops most ACKs, the sender would 4578 * timeout and spuriously retransmit the same segment repeatedly. 4579 * If it seems our ACKs are not reaching the other side, 4580 * based on receiving a duplicate data segment with new flowlabel 4581 * (suggesting the sender suffered an RTO), and we are not already 4582 * repathing due to our own RTO, then rehash the socket to repath our 4583 * packets. 4584 */ 4585 #if IS_ENABLED(CONFIG_IPV6) 4586 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4587 skb->protocol == htons(ETH_P_IPV6) && 4588 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4589 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4590 sk_rethink_txhash(sk)) 4591 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4592 4593 /* Save last flowlabel after a spurious retrans. */ 4594 tcp_save_lrcv_flowlabel(sk, skb); 4595 #endif 4596 } 4597 4598 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4599 { 4600 struct tcp_sock *tp = tcp_sk(sk); 4601 4602 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4603 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4604 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4605 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4606 4607 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4608 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4609 4610 tcp_rcv_spurious_retrans(sk, skb); 4611 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4612 end_seq = tp->rcv_nxt; 4613 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4614 } 4615 } 4616 4617 tcp_send_ack(sk); 4618 } 4619 4620 /* These routines update the SACK block as out-of-order packets arrive or 4621 * in-order packets close up the sequence space. 4622 */ 4623 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4624 { 4625 int this_sack; 4626 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4627 struct tcp_sack_block *swalk = sp + 1; 4628 4629 /* See if the recent change to the first SACK eats into 4630 * or hits the sequence space of other SACK blocks, if so coalesce. 4631 */ 4632 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4633 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4634 int i; 4635 4636 /* Zap SWALK, by moving every further SACK up by one slot. 4637 * Decrease num_sacks. 4638 */ 4639 tp->rx_opt.num_sacks--; 4640 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4641 sp[i] = sp[i + 1]; 4642 continue; 4643 } 4644 this_sack++; 4645 swalk++; 4646 } 4647 } 4648 4649 void tcp_sack_compress_send_ack(struct sock *sk) 4650 { 4651 struct tcp_sock *tp = tcp_sk(sk); 4652 4653 if (!tp->compressed_ack) 4654 return; 4655 4656 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4657 __sock_put(sk); 4658 4659 /* Since we have to send one ack finally, 4660 * substract one from tp->compressed_ack to keep 4661 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4662 */ 4663 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4664 tp->compressed_ack - 1); 4665 4666 tp->compressed_ack = 0; 4667 tcp_send_ack(sk); 4668 } 4669 4670 /* Reasonable amount of sack blocks included in TCP SACK option 4671 * The max is 4, but this becomes 3 if TCP timestamps are there. 4672 * Given that SACK packets might be lost, be conservative and use 2. 4673 */ 4674 #define TCP_SACK_BLOCKS_EXPECTED 2 4675 4676 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4677 { 4678 struct tcp_sock *tp = tcp_sk(sk); 4679 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4680 int cur_sacks = tp->rx_opt.num_sacks; 4681 int this_sack; 4682 4683 if (!cur_sacks) 4684 goto new_sack; 4685 4686 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4687 if (tcp_sack_extend(sp, seq, end_seq)) { 4688 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4689 tcp_sack_compress_send_ack(sk); 4690 /* Rotate this_sack to the first one. */ 4691 for (; this_sack > 0; this_sack--, sp--) 4692 swap(*sp, *(sp - 1)); 4693 if (cur_sacks > 1) 4694 tcp_sack_maybe_coalesce(tp); 4695 return; 4696 } 4697 } 4698 4699 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4700 tcp_sack_compress_send_ack(sk); 4701 4702 /* Could not find an adjacent existing SACK, build a new one, 4703 * put it at the front, and shift everyone else down. We 4704 * always know there is at least one SACK present already here. 4705 * 4706 * If the sack array is full, forget about the last one. 4707 */ 4708 if (this_sack >= TCP_NUM_SACKS) { 4709 this_sack--; 4710 tp->rx_opt.num_sacks--; 4711 sp--; 4712 } 4713 for (; this_sack > 0; this_sack--, sp--) 4714 *sp = *(sp - 1); 4715 4716 new_sack: 4717 /* Build the new head SACK, and we're done. */ 4718 sp->start_seq = seq; 4719 sp->end_seq = end_seq; 4720 tp->rx_opt.num_sacks++; 4721 } 4722 4723 /* RCV.NXT advances, some SACKs should be eaten. */ 4724 4725 static void tcp_sack_remove(struct tcp_sock *tp) 4726 { 4727 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4728 int num_sacks = tp->rx_opt.num_sacks; 4729 int this_sack; 4730 4731 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4732 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4733 tp->rx_opt.num_sacks = 0; 4734 return; 4735 } 4736 4737 for (this_sack = 0; this_sack < num_sacks;) { 4738 /* Check if the start of the sack is covered by RCV.NXT. */ 4739 if (!before(tp->rcv_nxt, sp->start_seq)) { 4740 int i; 4741 4742 /* RCV.NXT must cover all the block! */ 4743 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4744 4745 /* Zap this SACK, by moving forward any other SACKS. */ 4746 for (i = this_sack+1; i < num_sacks; i++) 4747 tp->selective_acks[i-1] = tp->selective_acks[i]; 4748 num_sacks--; 4749 continue; 4750 } 4751 this_sack++; 4752 sp++; 4753 } 4754 tp->rx_opt.num_sacks = num_sacks; 4755 } 4756 4757 /** 4758 * tcp_try_coalesce - try to merge skb to prior one 4759 * @sk: socket 4760 * @to: prior buffer 4761 * @from: buffer to add in queue 4762 * @fragstolen: pointer to boolean 4763 * 4764 * Before queueing skb @from after @to, try to merge them 4765 * to reduce overall memory use and queue lengths, if cost is small. 4766 * Packets in ofo or receive queues can stay a long time. 4767 * Better try to coalesce them right now to avoid future collapses. 4768 * Returns true if caller should free @from instead of queueing it 4769 */ 4770 static bool tcp_try_coalesce(struct sock *sk, 4771 struct sk_buff *to, 4772 struct sk_buff *from, 4773 bool *fragstolen) 4774 { 4775 int delta; 4776 4777 *fragstolen = false; 4778 4779 /* Its possible this segment overlaps with prior segment in queue */ 4780 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4781 return false; 4782 4783 if (!tcp_skb_can_collapse_rx(to, from)) 4784 return false; 4785 4786 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4787 return false; 4788 4789 atomic_add(delta, &sk->sk_rmem_alloc); 4790 sk_mem_charge(sk, delta); 4791 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4792 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4793 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4794 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4795 4796 if (TCP_SKB_CB(from)->has_rxtstamp) { 4797 TCP_SKB_CB(to)->has_rxtstamp = true; 4798 to->tstamp = from->tstamp; 4799 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4800 } 4801 4802 return true; 4803 } 4804 4805 static bool tcp_ooo_try_coalesce(struct sock *sk, 4806 struct sk_buff *to, 4807 struct sk_buff *from, 4808 bool *fragstolen) 4809 { 4810 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4811 4812 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4813 if (res) { 4814 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4815 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4816 4817 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4818 } 4819 return res; 4820 } 4821 4822 noinline_for_tracing static void 4823 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 4824 { 4825 sk_drops_add(sk, skb); 4826 sk_skb_reason_drop(sk, skb, reason); 4827 } 4828 4829 /* This one checks to see if we can put data from the 4830 * out_of_order queue into the receive_queue. 4831 */ 4832 static void tcp_ofo_queue(struct sock *sk) 4833 { 4834 struct tcp_sock *tp = tcp_sk(sk); 4835 __u32 dsack_high = tp->rcv_nxt; 4836 bool fin, fragstolen, eaten; 4837 struct sk_buff *skb, *tail; 4838 struct rb_node *p; 4839 4840 p = rb_first(&tp->out_of_order_queue); 4841 while (p) { 4842 skb = rb_to_skb(p); 4843 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4844 break; 4845 4846 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4847 __u32 dsack = dsack_high; 4848 4849 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4850 dsack = TCP_SKB_CB(skb)->end_seq; 4851 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4852 } 4853 p = rb_next(p); 4854 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4855 4856 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4857 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4858 continue; 4859 } 4860 4861 tail = skb_peek_tail(&sk->sk_receive_queue); 4862 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4863 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4864 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4865 if (!eaten) 4866 tcp_add_receive_queue(sk, skb); 4867 else 4868 kfree_skb_partial(skb, fragstolen); 4869 4870 if (unlikely(fin)) { 4871 tcp_fin(sk); 4872 /* tcp_fin() purges tp->out_of_order_queue, 4873 * so we must end this loop right now. 4874 */ 4875 break; 4876 } 4877 } 4878 } 4879 4880 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4881 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4882 4883 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4884 unsigned int size) 4885 { 4886 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4887 !sk_rmem_schedule(sk, skb, size)) { 4888 4889 if (tcp_prune_queue(sk, skb) < 0) 4890 return -1; 4891 4892 while (!sk_rmem_schedule(sk, skb, size)) { 4893 if (!tcp_prune_ofo_queue(sk, skb)) 4894 return -1; 4895 } 4896 } 4897 return 0; 4898 } 4899 4900 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4901 { 4902 struct tcp_sock *tp = tcp_sk(sk); 4903 struct rb_node **p, *parent; 4904 struct sk_buff *skb1; 4905 u32 seq, end_seq; 4906 bool fragstolen; 4907 4908 tcp_save_lrcv_flowlabel(sk, skb); 4909 tcp_data_ecn_check(sk, skb); 4910 4911 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4912 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4913 sk->sk_data_ready(sk); 4914 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4915 return; 4916 } 4917 4918 /* Disable header prediction. */ 4919 tp->pred_flags = 0; 4920 inet_csk_schedule_ack(sk); 4921 4922 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4923 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4924 seq = TCP_SKB_CB(skb)->seq; 4925 end_seq = TCP_SKB_CB(skb)->end_seq; 4926 4927 p = &tp->out_of_order_queue.rb_node; 4928 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4929 /* Initial out of order segment, build 1 SACK. */ 4930 if (tcp_is_sack(tp)) { 4931 tp->rx_opt.num_sacks = 1; 4932 tp->selective_acks[0].start_seq = seq; 4933 tp->selective_acks[0].end_seq = end_seq; 4934 } 4935 rb_link_node(&skb->rbnode, NULL, p); 4936 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4937 tp->ooo_last_skb = skb; 4938 goto end; 4939 } 4940 4941 /* In the typical case, we are adding an skb to the end of the list. 4942 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4943 */ 4944 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4945 skb, &fragstolen)) { 4946 coalesce_done: 4947 /* For non sack flows, do not grow window to force DUPACK 4948 * and trigger fast retransmit. 4949 */ 4950 if (tcp_is_sack(tp)) 4951 tcp_grow_window(sk, skb, true); 4952 kfree_skb_partial(skb, fragstolen); 4953 skb = NULL; 4954 goto add_sack; 4955 } 4956 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4957 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4958 parent = &tp->ooo_last_skb->rbnode; 4959 p = &parent->rb_right; 4960 goto insert; 4961 } 4962 4963 /* Find place to insert this segment. Handle overlaps on the way. */ 4964 parent = NULL; 4965 while (*p) { 4966 parent = *p; 4967 skb1 = rb_to_skb(parent); 4968 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4969 p = &parent->rb_left; 4970 continue; 4971 } 4972 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4973 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4974 /* All the bits are present. Drop. */ 4975 NET_INC_STATS(sock_net(sk), 4976 LINUX_MIB_TCPOFOMERGE); 4977 tcp_drop_reason(sk, skb, 4978 SKB_DROP_REASON_TCP_OFOMERGE); 4979 skb = NULL; 4980 tcp_dsack_set(sk, seq, end_seq); 4981 goto add_sack; 4982 } 4983 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4984 /* Partial overlap. */ 4985 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4986 } else { 4987 /* skb's seq == skb1's seq and skb covers skb1. 4988 * Replace skb1 with skb. 4989 */ 4990 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4991 &tp->out_of_order_queue); 4992 tcp_dsack_extend(sk, 4993 TCP_SKB_CB(skb1)->seq, 4994 TCP_SKB_CB(skb1)->end_seq); 4995 NET_INC_STATS(sock_net(sk), 4996 LINUX_MIB_TCPOFOMERGE); 4997 tcp_drop_reason(sk, skb1, 4998 SKB_DROP_REASON_TCP_OFOMERGE); 4999 goto merge_right; 5000 } 5001 } else if (tcp_ooo_try_coalesce(sk, skb1, 5002 skb, &fragstolen)) { 5003 goto coalesce_done; 5004 } 5005 p = &parent->rb_right; 5006 } 5007 insert: 5008 /* Insert segment into RB tree. */ 5009 rb_link_node(&skb->rbnode, parent, p); 5010 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5011 5012 merge_right: 5013 /* Remove other segments covered by skb. */ 5014 while ((skb1 = skb_rb_next(skb)) != NULL) { 5015 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5016 break; 5017 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5018 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5019 end_seq); 5020 break; 5021 } 5022 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5023 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5024 TCP_SKB_CB(skb1)->end_seq); 5025 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5026 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5027 } 5028 /* If there is no skb after us, we are the last_skb ! */ 5029 if (!skb1) 5030 tp->ooo_last_skb = skb; 5031 5032 add_sack: 5033 if (tcp_is_sack(tp)) 5034 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5035 end: 5036 if (skb) { 5037 /* For non sack flows, do not grow window to force DUPACK 5038 * and trigger fast retransmit. 5039 */ 5040 if (tcp_is_sack(tp)) 5041 tcp_grow_window(sk, skb, false); 5042 skb_condense(skb); 5043 skb_set_owner_r(skb, sk); 5044 } 5045 tcp_rcvbuf_grow(sk); 5046 } 5047 5048 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5049 bool *fragstolen) 5050 { 5051 int eaten; 5052 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5053 5054 eaten = (tail && 5055 tcp_try_coalesce(sk, tail, 5056 skb, fragstolen)) ? 1 : 0; 5057 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5058 if (!eaten) { 5059 tcp_add_receive_queue(sk, skb); 5060 skb_set_owner_r(skb, sk); 5061 } 5062 return eaten; 5063 } 5064 5065 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5066 { 5067 struct sk_buff *skb; 5068 int err = -ENOMEM; 5069 int data_len = 0; 5070 bool fragstolen; 5071 5072 if (size == 0) 5073 return 0; 5074 5075 if (size > PAGE_SIZE) { 5076 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5077 5078 data_len = npages << PAGE_SHIFT; 5079 size = data_len + (size & ~PAGE_MASK); 5080 } 5081 skb = alloc_skb_with_frags(size - data_len, data_len, 5082 PAGE_ALLOC_COSTLY_ORDER, 5083 &err, sk->sk_allocation); 5084 if (!skb) 5085 goto err; 5086 5087 skb_put(skb, size - data_len); 5088 skb->data_len = data_len; 5089 skb->len = size; 5090 5091 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5093 goto err_free; 5094 } 5095 5096 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5097 if (err) 5098 goto err_free; 5099 5100 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5101 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5102 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5103 5104 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5105 WARN_ON_ONCE(fragstolen); /* should not happen */ 5106 __kfree_skb(skb); 5107 } 5108 return size; 5109 5110 err_free: 5111 kfree_skb(skb); 5112 err: 5113 return err; 5114 5115 } 5116 5117 void tcp_data_ready(struct sock *sk) 5118 { 5119 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5120 sk->sk_data_ready(sk); 5121 } 5122 5123 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5124 { 5125 struct tcp_sock *tp = tcp_sk(sk); 5126 enum skb_drop_reason reason; 5127 bool fragstolen; 5128 int eaten; 5129 5130 /* If a subflow has been reset, the packet should not continue 5131 * to be processed, drop the packet. 5132 */ 5133 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5134 __kfree_skb(skb); 5135 return; 5136 } 5137 5138 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5139 __kfree_skb(skb); 5140 return; 5141 } 5142 tcp_cleanup_skb(skb); 5143 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5144 5145 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5146 tp->rx_opt.dsack = 0; 5147 5148 /* Queue data for delivery to the user. 5149 * Packets in sequence go to the receive queue. 5150 * Out of sequence packets to the out_of_order_queue. 5151 */ 5152 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5153 if (tcp_receive_window(tp) == 0) { 5154 /* Some stacks are known to send bare FIN packets 5155 * in a loop even if we send RWIN 0 in our ACK. 5156 * Accepting this FIN does not hurt memory pressure 5157 * because the FIN flag will simply be merged to the 5158 * receive queue tail skb in most cases. 5159 */ 5160 if (!skb->len && 5161 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5162 goto queue_and_out; 5163 5164 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5165 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5166 goto out_of_window; 5167 } 5168 5169 /* Ok. In sequence. In window. */ 5170 queue_and_out: 5171 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5172 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5173 inet_csk(sk)->icsk_ack.pending |= 5174 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5175 inet_csk_schedule_ack(sk); 5176 sk->sk_data_ready(sk); 5177 5178 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5179 reason = SKB_DROP_REASON_PROTO_MEM; 5180 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5181 goto drop; 5182 } 5183 sk_forced_mem_schedule(sk, skb->truesize); 5184 } 5185 5186 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5187 if (skb->len) 5188 tcp_event_data_recv(sk, skb); 5189 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5190 tcp_fin(sk); 5191 5192 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5193 tcp_ofo_queue(sk); 5194 5195 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5196 * gap in queue is filled. 5197 */ 5198 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5199 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5200 } 5201 5202 if (tp->rx_opt.num_sacks) 5203 tcp_sack_remove(tp); 5204 5205 tcp_fast_path_check(sk); 5206 5207 if (eaten > 0) 5208 kfree_skb_partial(skb, fragstolen); 5209 if (!sock_flag(sk, SOCK_DEAD)) 5210 tcp_data_ready(sk); 5211 return; 5212 } 5213 5214 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5215 tcp_rcv_spurious_retrans(sk, skb); 5216 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5217 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5218 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5219 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5220 5221 out_of_window: 5222 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5223 inet_csk_schedule_ack(sk); 5224 drop: 5225 tcp_drop_reason(sk, skb, reason); 5226 return; 5227 } 5228 5229 /* Out of window. F.e. zero window probe. */ 5230 if (!before(TCP_SKB_CB(skb)->seq, 5231 tp->rcv_nxt + tcp_receive_window(tp))) { 5232 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5233 goto out_of_window; 5234 } 5235 5236 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5237 /* Partial packet, seq < rcv_next < end_seq */ 5238 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5239 5240 /* If window is closed, drop tail of packet. But after 5241 * remembering D-SACK for its head made in previous line. 5242 */ 5243 if (!tcp_receive_window(tp)) { 5244 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5245 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5246 goto out_of_window; 5247 } 5248 goto queue_and_out; 5249 } 5250 5251 tcp_data_queue_ofo(sk, skb); 5252 } 5253 5254 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5255 { 5256 if (list) 5257 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5258 5259 return skb_rb_next(skb); 5260 } 5261 5262 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5263 struct sk_buff_head *list, 5264 struct rb_root *root) 5265 { 5266 struct sk_buff *next = tcp_skb_next(skb, list); 5267 5268 if (list) 5269 __skb_unlink(skb, list); 5270 else 5271 rb_erase(&skb->rbnode, root); 5272 5273 __kfree_skb(skb); 5274 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5275 5276 return next; 5277 } 5278 5279 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5280 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5281 { 5282 struct rb_node **p = &root->rb_node; 5283 struct rb_node *parent = NULL; 5284 struct sk_buff *skb1; 5285 5286 while (*p) { 5287 parent = *p; 5288 skb1 = rb_to_skb(parent); 5289 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5290 p = &parent->rb_left; 5291 else 5292 p = &parent->rb_right; 5293 } 5294 rb_link_node(&skb->rbnode, parent, p); 5295 rb_insert_color(&skb->rbnode, root); 5296 } 5297 5298 /* Collapse contiguous sequence of skbs head..tail with 5299 * sequence numbers start..end. 5300 * 5301 * If tail is NULL, this means until the end of the queue. 5302 * 5303 * Segments with FIN/SYN are not collapsed (only because this 5304 * simplifies code) 5305 */ 5306 static void 5307 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5308 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5309 { 5310 struct sk_buff *skb = head, *n; 5311 struct sk_buff_head tmp; 5312 bool end_of_skbs; 5313 5314 /* First, check that queue is collapsible and find 5315 * the point where collapsing can be useful. 5316 */ 5317 restart: 5318 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5319 n = tcp_skb_next(skb, list); 5320 5321 if (!skb_frags_readable(skb)) 5322 goto skip_this; 5323 5324 /* No new bits? It is possible on ofo queue. */ 5325 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5326 skb = tcp_collapse_one(sk, skb, list, root); 5327 if (!skb) 5328 break; 5329 goto restart; 5330 } 5331 5332 /* The first skb to collapse is: 5333 * - not SYN/FIN and 5334 * - bloated or contains data before "start" or 5335 * overlaps to the next one and mptcp allow collapsing. 5336 */ 5337 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5338 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5339 before(TCP_SKB_CB(skb)->seq, start))) { 5340 end_of_skbs = false; 5341 break; 5342 } 5343 5344 if (n && n != tail && skb_frags_readable(n) && 5345 tcp_skb_can_collapse_rx(skb, n) && 5346 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5347 end_of_skbs = false; 5348 break; 5349 } 5350 5351 skip_this: 5352 /* Decided to skip this, advance start seq. */ 5353 start = TCP_SKB_CB(skb)->end_seq; 5354 } 5355 if (end_of_skbs || 5356 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5357 !skb_frags_readable(skb)) 5358 return; 5359 5360 __skb_queue_head_init(&tmp); 5361 5362 while (before(start, end)) { 5363 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5364 struct sk_buff *nskb; 5365 5366 nskb = alloc_skb(copy, GFP_ATOMIC); 5367 if (!nskb) 5368 break; 5369 5370 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5371 skb_copy_decrypted(nskb, skb); 5372 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5373 if (list) 5374 __skb_queue_before(list, skb, nskb); 5375 else 5376 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5377 skb_set_owner_r(nskb, sk); 5378 mptcp_skb_ext_move(nskb, skb); 5379 5380 /* Copy data, releasing collapsed skbs. */ 5381 while (copy > 0) { 5382 int offset = start - TCP_SKB_CB(skb)->seq; 5383 int size = TCP_SKB_CB(skb)->end_seq - start; 5384 5385 BUG_ON(offset < 0); 5386 if (size > 0) { 5387 size = min(copy, size); 5388 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5389 BUG(); 5390 TCP_SKB_CB(nskb)->end_seq += size; 5391 copy -= size; 5392 start += size; 5393 } 5394 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5395 skb = tcp_collapse_one(sk, skb, list, root); 5396 if (!skb || 5397 skb == tail || 5398 !tcp_skb_can_collapse_rx(nskb, skb) || 5399 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5400 !skb_frags_readable(skb)) 5401 goto end; 5402 } 5403 } 5404 } 5405 end: 5406 skb_queue_walk_safe(&tmp, skb, n) 5407 tcp_rbtree_insert(root, skb); 5408 } 5409 5410 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5411 * and tcp_collapse() them until all the queue is collapsed. 5412 */ 5413 static void tcp_collapse_ofo_queue(struct sock *sk) 5414 { 5415 struct tcp_sock *tp = tcp_sk(sk); 5416 u32 range_truesize, sum_tiny = 0; 5417 struct sk_buff *skb, *head; 5418 u32 start, end; 5419 5420 skb = skb_rb_first(&tp->out_of_order_queue); 5421 new_range: 5422 if (!skb) { 5423 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5424 return; 5425 } 5426 start = TCP_SKB_CB(skb)->seq; 5427 end = TCP_SKB_CB(skb)->end_seq; 5428 range_truesize = skb->truesize; 5429 5430 for (head = skb;;) { 5431 skb = skb_rb_next(skb); 5432 5433 /* Range is terminated when we see a gap or when 5434 * we are at the queue end. 5435 */ 5436 if (!skb || 5437 after(TCP_SKB_CB(skb)->seq, end) || 5438 before(TCP_SKB_CB(skb)->end_seq, start)) { 5439 /* Do not attempt collapsing tiny skbs */ 5440 if (range_truesize != head->truesize || 5441 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5442 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5443 head, skb, start, end); 5444 } else { 5445 sum_tiny += range_truesize; 5446 if (sum_tiny > sk->sk_rcvbuf >> 3) 5447 return; 5448 } 5449 goto new_range; 5450 } 5451 5452 range_truesize += skb->truesize; 5453 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5454 start = TCP_SKB_CB(skb)->seq; 5455 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5456 end = TCP_SKB_CB(skb)->end_seq; 5457 } 5458 } 5459 5460 /* 5461 * Clean the out-of-order queue to make room. 5462 * We drop high sequences packets to : 5463 * 1) Let a chance for holes to be filled. 5464 * This means we do not drop packets from ooo queue if their sequence 5465 * is before incoming packet sequence. 5466 * 2) not add too big latencies if thousands of packets sit there. 5467 * (But if application shrinks SO_RCVBUF, we could still end up 5468 * freeing whole queue here) 5469 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5470 * 5471 * Return true if queue has shrunk. 5472 */ 5473 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5474 { 5475 struct tcp_sock *tp = tcp_sk(sk); 5476 struct rb_node *node, *prev; 5477 bool pruned = false; 5478 int goal; 5479 5480 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5481 return false; 5482 5483 goal = sk->sk_rcvbuf >> 3; 5484 node = &tp->ooo_last_skb->rbnode; 5485 5486 do { 5487 struct sk_buff *skb = rb_to_skb(node); 5488 5489 /* If incoming skb would land last in ofo queue, stop pruning. */ 5490 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5491 break; 5492 pruned = true; 5493 prev = rb_prev(node); 5494 rb_erase(node, &tp->out_of_order_queue); 5495 goal -= skb->truesize; 5496 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5497 tp->ooo_last_skb = rb_to_skb(prev); 5498 if (!prev || goal <= 0) { 5499 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5500 !tcp_under_memory_pressure(sk)) 5501 break; 5502 goal = sk->sk_rcvbuf >> 3; 5503 } 5504 node = prev; 5505 } while (node); 5506 5507 if (pruned) { 5508 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5509 /* Reset SACK state. A conforming SACK implementation will 5510 * do the same at a timeout based retransmit. When a connection 5511 * is in a sad state like this, we care only about integrity 5512 * of the connection not performance. 5513 */ 5514 if (tp->rx_opt.sack_ok) 5515 tcp_sack_reset(&tp->rx_opt); 5516 } 5517 return pruned; 5518 } 5519 5520 /* Reduce allocated memory if we can, trying to get 5521 * the socket within its memory limits again. 5522 * 5523 * Return less than zero if we should start dropping frames 5524 * until the socket owning process reads some of the data 5525 * to stabilize the situation. 5526 */ 5527 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5528 { 5529 struct tcp_sock *tp = tcp_sk(sk); 5530 5531 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5532 5533 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5534 tcp_clamp_window(sk); 5535 else if (tcp_under_memory_pressure(sk)) 5536 tcp_adjust_rcv_ssthresh(sk); 5537 5538 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5539 return 0; 5540 5541 tcp_collapse_ofo_queue(sk); 5542 if (!skb_queue_empty(&sk->sk_receive_queue)) 5543 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5544 skb_peek(&sk->sk_receive_queue), 5545 NULL, 5546 tp->copied_seq, tp->rcv_nxt); 5547 5548 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5549 return 0; 5550 5551 /* Collapsing did not help, destructive actions follow. 5552 * This must not ever occur. */ 5553 5554 tcp_prune_ofo_queue(sk, in_skb); 5555 5556 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5557 return 0; 5558 5559 /* If we are really being abused, tell the caller to silently 5560 * drop receive data on the floor. It will get retransmitted 5561 * and hopefully then we'll have sufficient space. 5562 */ 5563 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5564 5565 /* Massive buffer overcommit. */ 5566 tp->pred_flags = 0; 5567 return -1; 5568 } 5569 5570 static bool tcp_should_expand_sndbuf(struct sock *sk) 5571 { 5572 const struct tcp_sock *tp = tcp_sk(sk); 5573 5574 /* If the user specified a specific send buffer setting, do 5575 * not modify it. 5576 */ 5577 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5578 return false; 5579 5580 /* If we are under global TCP memory pressure, do not expand. */ 5581 if (tcp_under_memory_pressure(sk)) { 5582 int unused_mem = sk_unused_reserved_mem(sk); 5583 5584 /* Adjust sndbuf according to reserved mem. But make sure 5585 * it never goes below SOCK_MIN_SNDBUF. 5586 * See sk_stream_moderate_sndbuf() for more details. 5587 */ 5588 if (unused_mem > SOCK_MIN_SNDBUF) 5589 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5590 5591 return false; 5592 } 5593 5594 /* If we are under soft global TCP memory pressure, do not expand. */ 5595 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5596 return false; 5597 5598 /* If we filled the congestion window, do not expand. */ 5599 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5600 return false; 5601 5602 return true; 5603 } 5604 5605 static void tcp_new_space(struct sock *sk) 5606 { 5607 struct tcp_sock *tp = tcp_sk(sk); 5608 5609 if (tcp_should_expand_sndbuf(sk)) { 5610 tcp_sndbuf_expand(sk); 5611 tp->snd_cwnd_stamp = tcp_jiffies32; 5612 } 5613 5614 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5615 } 5616 5617 /* Caller made space either from: 5618 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5619 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5620 * 5621 * We might be able to generate EPOLLOUT to the application if: 5622 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5623 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5624 * small enough that tcp_stream_memory_free() decides it 5625 * is time to generate EPOLLOUT. 5626 */ 5627 void tcp_check_space(struct sock *sk) 5628 { 5629 /* pairs with tcp_poll() */ 5630 smp_mb(); 5631 if (sk->sk_socket && 5632 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5633 tcp_new_space(sk); 5634 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5635 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5636 } 5637 } 5638 5639 static inline void tcp_data_snd_check(struct sock *sk) 5640 { 5641 tcp_push_pending_frames(sk); 5642 tcp_check_space(sk); 5643 } 5644 5645 /* 5646 * Check if sending an ack is needed. 5647 */ 5648 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5649 { 5650 struct tcp_sock *tp = tcp_sk(sk); 5651 unsigned long rtt, delay; 5652 5653 /* More than one full frame received... */ 5654 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5655 /* ... and right edge of window advances far enough. 5656 * (tcp_recvmsg() will send ACK otherwise). 5657 * If application uses SO_RCVLOWAT, we want send ack now if 5658 * we have not received enough bytes to satisfy the condition. 5659 */ 5660 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5661 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5662 /* We ACK each frame or... */ 5663 tcp_in_quickack_mode(sk) || 5664 /* Protocol state mandates a one-time immediate ACK */ 5665 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5666 /* If we are running from __release_sock() in user context, 5667 * Defer the ack until tcp_release_cb(). 5668 */ 5669 if (sock_owned_by_user_nocheck(sk) && 5670 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5671 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5672 return; 5673 } 5674 send_now: 5675 tcp_send_ack(sk); 5676 return; 5677 } 5678 5679 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5680 tcp_send_delayed_ack(sk); 5681 return; 5682 } 5683 5684 if (!tcp_is_sack(tp) || 5685 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5686 goto send_now; 5687 5688 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5689 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5690 tp->dup_ack_counter = 0; 5691 } 5692 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5693 tp->dup_ack_counter++; 5694 goto send_now; 5695 } 5696 tp->compressed_ack++; 5697 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5698 return; 5699 5700 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5701 5702 rtt = tp->rcv_rtt_est.rtt_us; 5703 if (tp->srtt_us && tp->srtt_us < rtt) 5704 rtt = tp->srtt_us; 5705 5706 delay = min_t(unsigned long, 5707 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5708 rtt * (NSEC_PER_USEC >> 3)/20); 5709 sock_hold(sk); 5710 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5711 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5712 HRTIMER_MODE_REL_PINNED_SOFT); 5713 } 5714 5715 static inline void tcp_ack_snd_check(struct sock *sk) 5716 { 5717 if (!inet_csk_ack_scheduled(sk)) { 5718 /* We sent a data segment already. */ 5719 return; 5720 } 5721 __tcp_ack_snd_check(sk, 1); 5722 } 5723 5724 /* 5725 * This routine is only called when we have urgent data 5726 * signaled. Its the 'slow' part of tcp_urg. It could be 5727 * moved inline now as tcp_urg is only called from one 5728 * place. We handle URGent data wrong. We have to - as 5729 * BSD still doesn't use the correction from RFC961. 5730 * For 1003.1g we should support a new option TCP_STDURG to permit 5731 * either form (or just set the sysctl tcp_stdurg). 5732 */ 5733 5734 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5735 { 5736 struct tcp_sock *tp = tcp_sk(sk); 5737 u32 ptr = ntohs(th->urg_ptr); 5738 5739 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5740 ptr--; 5741 ptr += ntohl(th->seq); 5742 5743 /* Ignore urgent data that we've already seen and read. */ 5744 if (after(tp->copied_seq, ptr)) 5745 return; 5746 5747 /* Do not replay urg ptr. 5748 * 5749 * NOTE: interesting situation not covered by specs. 5750 * Misbehaving sender may send urg ptr, pointing to segment, 5751 * which we already have in ofo queue. We are not able to fetch 5752 * such data and will stay in TCP_URG_NOTYET until will be eaten 5753 * by recvmsg(). Seems, we are not obliged to handle such wicked 5754 * situations. But it is worth to think about possibility of some 5755 * DoSes using some hypothetical application level deadlock. 5756 */ 5757 if (before(ptr, tp->rcv_nxt)) 5758 return; 5759 5760 /* Do we already have a newer (or duplicate) urgent pointer? */ 5761 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5762 return; 5763 5764 /* Tell the world about our new urgent pointer. */ 5765 sk_send_sigurg(sk); 5766 5767 /* We may be adding urgent data when the last byte read was 5768 * urgent. To do this requires some care. We cannot just ignore 5769 * tp->copied_seq since we would read the last urgent byte again 5770 * as data, nor can we alter copied_seq until this data arrives 5771 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5772 * 5773 * NOTE. Double Dutch. Rendering to plain English: author of comment 5774 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5775 * and expect that both A and B disappear from stream. This is _wrong_. 5776 * Though this happens in BSD with high probability, this is occasional. 5777 * Any application relying on this is buggy. Note also, that fix "works" 5778 * only in this artificial test. Insert some normal data between A and B and we will 5779 * decline of BSD again. Verdict: it is better to remove to trap 5780 * buggy users. 5781 */ 5782 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5783 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5784 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5785 tp->copied_seq++; 5786 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5787 __skb_unlink(skb, &sk->sk_receive_queue); 5788 __kfree_skb(skb); 5789 } 5790 } 5791 5792 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5793 WRITE_ONCE(tp->urg_seq, ptr); 5794 5795 /* Disable header prediction. */ 5796 tp->pred_flags = 0; 5797 } 5798 5799 /* This is the 'fast' part of urgent handling. */ 5800 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5801 { 5802 struct tcp_sock *tp = tcp_sk(sk); 5803 5804 /* Check if we get a new urgent pointer - normally not. */ 5805 if (unlikely(th->urg)) 5806 tcp_check_urg(sk, th); 5807 5808 /* Do we wait for any urgent data? - normally not... */ 5809 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5810 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5811 th->syn; 5812 5813 /* Is the urgent pointer pointing into this packet? */ 5814 if (ptr < skb->len) { 5815 u8 tmp; 5816 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5817 BUG(); 5818 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5819 if (!sock_flag(sk, SOCK_DEAD)) 5820 sk->sk_data_ready(sk); 5821 } 5822 } 5823 } 5824 5825 /* Accept RST for rcv_nxt - 1 after a FIN. 5826 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5827 * FIN is sent followed by a RST packet. The RST is sent with the same 5828 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5829 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5830 * ACKs on the closed socket. In addition middleboxes can drop either the 5831 * challenge ACK or a subsequent RST. 5832 */ 5833 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5834 { 5835 const struct tcp_sock *tp = tcp_sk(sk); 5836 5837 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5838 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5839 TCPF_CLOSING)); 5840 } 5841 5842 /* Does PAWS and seqno based validation of an incoming segment, flags will 5843 * play significant role here. 5844 */ 5845 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5846 const struct tcphdr *th, int syn_inerr) 5847 { 5848 struct tcp_sock *tp = tcp_sk(sk); 5849 SKB_DR(reason); 5850 5851 /* RFC1323: H1. Apply PAWS check first. */ 5852 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) || 5853 !tp->rx_opt.saw_tstamp || 5854 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW)) 5855 goto step1; 5856 5857 reason = tcp_disordered_ack_check(sk, skb); 5858 if (!reason) 5859 goto step1; 5860 /* Reset is accepted even if it did not pass PAWS. */ 5861 if (th->rst) 5862 goto step1; 5863 if (unlikely(th->syn)) 5864 goto syn_challenge; 5865 5866 /* Old ACK are common, increment PAWS_OLD_ACK 5867 * and do not send a dupack. 5868 */ 5869 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) { 5870 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK); 5871 goto discard; 5872 } 5873 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5874 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5875 LINUX_MIB_TCPACKSKIPPEDPAWS, 5876 &tp->last_oow_ack_time)) 5877 tcp_send_dupack(sk, skb); 5878 goto discard; 5879 5880 step1: 5881 /* Step 1: check sequence number */ 5882 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5883 if (reason) { 5884 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5885 * (RST) segments are validated by checking their SEQ-fields." 5886 * And page 69: "If an incoming segment is not acceptable, 5887 * an acknowledgment should be sent in reply (unless the RST 5888 * bit is set, if so drop the segment and return)". 5889 */ 5890 if (!th->rst) { 5891 if (th->syn) 5892 goto syn_challenge; 5893 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5894 LINUX_MIB_TCPACKSKIPPEDSEQ, 5895 &tp->last_oow_ack_time)) 5896 tcp_send_dupack(sk, skb); 5897 } else if (tcp_reset_check(sk, skb)) { 5898 goto reset; 5899 } 5900 goto discard; 5901 } 5902 5903 /* Step 2: check RST bit */ 5904 if (th->rst) { 5905 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5906 * FIN and SACK too if available): 5907 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5908 * the right-most SACK block, 5909 * then 5910 * RESET the connection 5911 * else 5912 * Send a challenge ACK 5913 */ 5914 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5915 tcp_reset_check(sk, skb)) 5916 goto reset; 5917 5918 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5919 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5920 int max_sack = sp[0].end_seq; 5921 int this_sack; 5922 5923 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5924 ++this_sack) { 5925 max_sack = after(sp[this_sack].end_seq, 5926 max_sack) ? 5927 sp[this_sack].end_seq : max_sack; 5928 } 5929 5930 if (TCP_SKB_CB(skb)->seq == max_sack) 5931 goto reset; 5932 } 5933 5934 /* Disable TFO if RST is out-of-order 5935 * and no data has been received 5936 * for current active TFO socket 5937 */ 5938 if (tp->syn_fastopen && !tp->data_segs_in && 5939 sk->sk_state == TCP_ESTABLISHED) 5940 tcp_fastopen_active_disable(sk); 5941 tcp_send_challenge_ack(sk); 5942 SKB_DR_SET(reason, TCP_RESET); 5943 goto discard; 5944 } 5945 5946 /* step 3: check security and precedence [ignored] */ 5947 5948 /* step 4: Check for a SYN 5949 * RFC 5961 4.2 : Send a challenge ack 5950 */ 5951 if (th->syn) { 5952 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 5953 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 5954 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 5955 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 5956 goto pass; 5957 syn_challenge: 5958 if (syn_inerr) 5959 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5960 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5961 tcp_send_challenge_ack(sk); 5962 SKB_DR_SET(reason, TCP_INVALID_SYN); 5963 goto discard; 5964 } 5965 5966 pass: 5967 bpf_skops_parse_hdr(sk, skb); 5968 5969 return true; 5970 5971 discard: 5972 tcp_drop_reason(sk, skb, reason); 5973 return false; 5974 5975 reset: 5976 tcp_reset(sk, skb); 5977 __kfree_skb(skb); 5978 return false; 5979 } 5980 5981 /* 5982 * TCP receive function for the ESTABLISHED state. 5983 * 5984 * It is split into a fast path and a slow path. The fast path is 5985 * disabled when: 5986 * - A zero window was announced from us - zero window probing 5987 * is only handled properly in the slow path. 5988 * - Out of order segments arrived. 5989 * - Urgent data is expected. 5990 * - There is no buffer space left 5991 * - Unexpected TCP flags/window values/header lengths are received 5992 * (detected by checking the TCP header against pred_flags) 5993 * - Data is sent in both directions. Fast path only supports pure senders 5994 * or pure receivers (this means either the sequence number or the ack 5995 * value must stay constant) 5996 * - Unexpected TCP option. 5997 * 5998 * When these conditions are not satisfied it drops into a standard 5999 * receive procedure patterned after RFC793 to handle all cases. 6000 * The first three cases are guaranteed by proper pred_flags setting, 6001 * the rest is checked inline. Fast processing is turned on in 6002 * tcp_data_queue when everything is OK. 6003 */ 6004 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6005 { 6006 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6007 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6008 struct tcp_sock *tp = tcp_sk(sk); 6009 unsigned int len = skb->len; 6010 6011 /* TCP congestion window tracking */ 6012 trace_tcp_probe(sk, skb); 6013 6014 tcp_mstamp_refresh(tp); 6015 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6016 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6017 /* 6018 * Header prediction. 6019 * The code loosely follows the one in the famous 6020 * "30 instruction TCP receive" Van Jacobson mail. 6021 * 6022 * Van's trick is to deposit buffers into socket queue 6023 * on a device interrupt, to call tcp_recv function 6024 * on the receive process context and checksum and copy 6025 * the buffer to user space. smart... 6026 * 6027 * Our current scheme is not silly either but we take the 6028 * extra cost of the net_bh soft interrupt processing... 6029 * We do checksum and copy also but from device to kernel. 6030 */ 6031 6032 tp->rx_opt.saw_tstamp = 0; 6033 6034 /* pred_flags is 0xS?10 << 16 + snd_wnd 6035 * if header_prediction is to be made 6036 * 'S' will always be tp->tcp_header_len >> 2 6037 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6038 * turn it off (when there are holes in the receive 6039 * space for instance) 6040 * PSH flag is ignored. 6041 */ 6042 6043 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6044 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6045 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6046 int tcp_header_len = tp->tcp_header_len; 6047 s32 delta = 0; 6048 int flag = 0; 6049 6050 /* Timestamp header prediction: tcp_header_len 6051 * is automatically equal to th->doff*4 due to pred_flags 6052 * match. 6053 */ 6054 6055 /* Check timestamp */ 6056 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6057 /* No? Slow path! */ 6058 if (!tcp_parse_aligned_timestamp(tp, th)) 6059 goto slow_path; 6060 6061 delta = tp->rx_opt.rcv_tsval - 6062 tp->rx_opt.ts_recent; 6063 /* If PAWS failed, check it more carefully in slow path */ 6064 if (delta < 0) 6065 goto slow_path; 6066 6067 /* DO NOT update ts_recent here, if checksum fails 6068 * and timestamp was corrupted part, it will result 6069 * in a hung connection since we will drop all 6070 * future packets due to the PAWS test. 6071 */ 6072 } 6073 6074 if (len <= tcp_header_len) { 6075 /* Bulk data transfer: sender */ 6076 if (len == tcp_header_len) { 6077 /* Predicted packet is in window by definition. 6078 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6079 * Hence, check seq<=rcv_wup reduces to: 6080 */ 6081 if (tcp_header_len == 6082 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6083 tp->rcv_nxt == tp->rcv_wup) 6084 flag |= __tcp_replace_ts_recent(tp, 6085 delta); 6086 6087 /* We know that such packets are checksummed 6088 * on entry. 6089 */ 6090 tcp_ack(sk, skb, flag); 6091 __kfree_skb(skb); 6092 tcp_data_snd_check(sk); 6093 /* When receiving pure ack in fast path, update 6094 * last ts ecr directly instead of calling 6095 * tcp_rcv_rtt_measure_ts() 6096 */ 6097 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6098 return; 6099 } else { /* Header too small */ 6100 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6101 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6102 goto discard; 6103 } 6104 } else { 6105 int eaten = 0; 6106 bool fragstolen = false; 6107 6108 if (tcp_checksum_complete(skb)) 6109 goto csum_error; 6110 6111 if ((int)skb->truesize > sk->sk_forward_alloc) 6112 goto step5; 6113 6114 /* Predicted packet is in window by definition. 6115 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6116 * Hence, check seq<=rcv_wup reduces to: 6117 */ 6118 if (tcp_header_len == 6119 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6120 tp->rcv_nxt == tp->rcv_wup) 6121 flag |= __tcp_replace_ts_recent(tp, 6122 delta); 6123 6124 tcp_rcv_rtt_measure_ts(sk, skb); 6125 6126 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6127 6128 /* Bulk data transfer: receiver */ 6129 tcp_cleanup_skb(skb); 6130 __skb_pull(skb, tcp_header_len); 6131 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6132 6133 tcp_event_data_recv(sk, skb); 6134 6135 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6136 /* Well, only one small jumplet in fast path... */ 6137 tcp_ack(sk, skb, flag | FLAG_DATA); 6138 tcp_data_snd_check(sk); 6139 if (!inet_csk_ack_scheduled(sk)) 6140 goto no_ack; 6141 } else { 6142 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6143 } 6144 6145 __tcp_ack_snd_check(sk, 0); 6146 no_ack: 6147 if (eaten) 6148 kfree_skb_partial(skb, fragstolen); 6149 tcp_data_ready(sk); 6150 return; 6151 } 6152 } 6153 6154 slow_path: 6155 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6156 goto csum_error; 6157 6158 if (!th->ack && !th->rst && !th->syn) { 6159 reason = SKB_DROP_REASON_TCP_FLAGS; 6160 goto discard; 6161 } 6162 6163 /* 6164 * Standard slow path. 6165 */ 6166 6167 if (!tcp_validate_incoming(sk, skb, th, 1)) 6168 return; 6169 6170 step5: 6171 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6172 if ((int)reason < 0) { 6173 reason = -reason; 6174 goto discard; 6175 } 6176 tcp_rcv_rtt_measure_ts(sk, skb); 6177 6178 /* Process urgent data. */ 6179 tcp_urg(sk, skb, th); 6180 6181 /* step 7: process the segment text */ 6182 tcp_data_queue(sk, skb); 6183 6184 tcp_data_snd_check(sk); 6185 tcp_ack_snd_check(sk); 6186 return; 6187 6188 csum_error: 6189 reason = SKB_DROP_REASON_TCP_CSUM; 6190 trace_tcp_bad_csum(skb); 6191 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6192 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6193 6194 discard: 6195 tcp_drop_reason(sk, skb, reason); 6196 } 6197 EXPORT_IPV6_MOD(tcp_rcv_established); 6198 6199 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6200 { 6201 struct inet_connection_sock *icsk = inet_csk(sk); 6202 struct tcp_sock *tp = tcp_sk(sk); 6203 6204 tcp_mtup_init(sk); 6205 icsk->icsk_af_ops->rebuild_header(sk); 6206 tcp_init_metrics(sk); 6207 6208 /* Initialize the congestion window to start the transfer. 6209 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6210 * retransmitted. In light of RFC6298 more aggressive 1sec 6211 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6212 * retransmission has occurred. 6213 */ 6214 if (tp->total_retrans > 1 && tp->undo_marker) 6215 tcp_snd_cwnd_set(tp, 1); 6216 else 6217 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6218 tp->snd_cwnd_stamp = tcp_jiffies32; 6219 6220 bpf_skops_established(sk, bpf_op, skb); 6221 /* Initialize congestion control unless BPF initialized it already: */ 6222 if (!icsk->icsk_ca_initialized) 6223 tcp_init_congestion_control(sk); 6224 tcp_init_buffer_space(sk); 6225 } 6226 6227 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6228 { 6229 struct tcp_sock *tp = tcp_sk(sk); 6230 struct inet_connection_sock *icsk = inet_csk(sk); 6231 6232 tcp_ao_finish_connect(sk, skb); 6233 tcp_set_state(sk, TCP_ESTABLISHED); 6234 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6235 6236 if (skb) { 6237 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6238 security_inet_conn_established(sk, skb); 6239 sk_mark_napi_id(sk, skb); 6240 } 6241 6242 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6243 6244 /* Prevent spurious tcp_cwnd_restart() on first data 6245 * packet. 6246 */ 6247 tp->lsndtime = tcp_jiffies32; 6248 6249 if (sock_flag(sk, SOCK_KEEPOPEN)) 6250 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6251 6252 if (!tp->rx_opt.snd_wscale) 6253 __tcp_fast_path_on(tp, tp->snd_wnd); 6254 else 6255 tp->pred_flags = 0; 6256 } 6257 6258 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6259 struct tcp_fastopen_cookie *cookie) 6260 { 6261 struct tcp_sock *tp = tcp_sk(sk); 6262 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6263 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6264 bool syn_drop = false; 6265 6266 if (mss == tp->rx_opt.user_mss) { 6267 struct tcp_options_received opt; 6268 6269 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6270 tcp_clear_options(&opt); 6271 opt.user_mss = opt.mss_clamp = 0; 6272 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6273 mss = opt.mss_clamp; 6274 } 6275 6276 if (!tp->syn_fastopen) { 6277 /* Ignore an unsolicited cookie */ 6278 cookie->len = -1; 6279 } else if (tp->total_retrans) { 6280 /* SYN timed out and the SYN-ACK neither has a cookie nor 6281 * acknowledges data. Presumably the remote received only 6282 * the retransmitted (regular) SYNs: either the original 6283 * SYN-data or the corresponding SYN-ACK was dropped. 6284 */ 6285 syn_drop = (cookie->len < 0 && data); 6286 } else if (cookie->len < 0 && !tp->syn_data) { 6287 /* We requested a cookie but didn't get it. If we did not use 6288 * the (old) exp opt format then try so next time (try_exp=1). 6289 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6290 */ 6291 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6292 } 6293 6294 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6295 6296 if (data) { /* Retransmit unacked data in SYN */ 6297 if (tp->total_retrans) 6298 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6299 else 6300 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6301 skb_rbtree_walk_from(data) 6302 tcp_mark_skb_lost(sk, data); 6303 tcp_non_congestion_loss_retransmit(sk); 6304 NET_INC_STATS(sock_net(sk), 6305 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6306 return true; 6307 } 6308 tp->syn_data_acked = tp->syn_data; 6309 if (tp->syn_data_acked) { 6310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6311 /* SYN-data is counted as two separate packets in tcp_ack() */ 6312 if (tp->delivered > 1) 6313 --tp->delivered; 6314 } 6315 6316 tcp_fastopen_add_skb(sk, synack); 6317 6318 return false; 6319 } 6320 6321 static void smc_check_reset_syn(struct tcp_sock *tp) 6322 { 6323 #if IS_ENABLED(CONFIG_SMC) 6324 if (static_branch_unlikely(&tcp_have_smc)) { 6325 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6326 tp->syn_smc = 0; 6327 } 6328 #endif 6329 } 6330 6331 static void tcp_try_undo_spurious_syn(struct sock *sk) 6332 { 6333 struct tcp_sock *tp = tcp_sk(sk); 6334 u32 syn_stamp; 6335 6336 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6337 * spurious if the ACK's timestamp option echo value matches the 6338 * original SYN timestamp. 6339 */ 6340 syn_stamp = tp->retrans_stamp; 6341 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6342 syn_stamp == tp->rx_opt.rcv_tsecr) 6343 tp->undo_marker = 0; 6344 } 6345 6346 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6347 const struct tcphdr *th) 6348 { 6349 struct inet_connection_sock *icsk = inet_csk(sk); 6350 struct tcp_sock *tp = tcp_sk(sk); 6351 struct tcp_fastopen_cookie foc = { .len = -1 }; 6352 int saved_clamp = tp->rx_opt.mss_clamp; 6353 bool fastopen_fail; 6354 SKB_DR(reason); 6355 6356 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6357 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6358 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6359 6360 if (th->ack) { 6361 /* rfc793: 6362 * "If the state is SYN-SENT then 6363 * first check the ACK bit 6364 * If the ACK bit is set 6365 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6366 * a reset (unless the RST bit is set, if so drop 6367 * the segment and return)" 6368 */ 6369 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6370 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6371 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6372 if (icsk->icsk_retransmits == 0) 6373 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 6374 TCP_TIMEOUT_MIN, false); 6375 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6376 goto reset_and_undo; 6377 } 6378 6379 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6380 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6381 tcp_time_stamp_ts(tp))) { 6382 NET_INC_STATS(sock_net(sk), 6383 LINUX_MIB_PAWSACTIVEREJECTED); 6384 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6385 goto reset_and_undo; 6386 } 6387 6388 /* Now ACK is acceptable. 6389 * 6390 * "If the RST bit is set 6391 * If the ACK was acceptable then signal the user "error: 6392 * connection reset", drop the segment, enter CLOSED state, 6393 * delete TCB, and return." 6394 */ 6395 6396 if (th->rst) { 6397 tcp_reset(sk, skb); 6398 consume: 6399 __kfree_skb(skb); 6400 return 0; 6401 } 6402 6403 /* rfc793: 6404 * "fifth, if neither of the SYN or RST bits is set then 6405 * drop the segment and return." 6406 * 6407 * See note below! 6408 * --ANK(990513) 6409 */ 6410 if (!th->syn) { 6411 SKB_DR_SET(reason, TCP_FLAGS); 6412 goto discard_and_undo; 6413 } 6414 /* rfc793: 6415 * "If the SYN bit is on ... 6416 * are acceptable then ... 6417 * (our SYN has been ACKed), change the connection 6418 * state to ESTABLISHED..." 6419 */ 6420 6421 tcp_ecn_rcv_synack(tp, th); 6422 6423 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6424 tcp_try_undo_spurious_syn(sk); 6425 tcp_ack(sk, skb, FLAG_SLOWPATH); 6426 6427 /* Ok.. it's good. Set up sequence numbers and 6428 * move to established. 6429 */ 6430 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6431 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6432 6433 /* RFC1323: The window in SYN & SYN/ACK segments is 6434 * never scaled. 6435 */ 6436 tp->snd_wnd = ntohs(th->window); 6437 6438 if (!tp->rx_opt.wscale_ok) { 6439 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6440 WRITE_ONCE(tp->window_clamp, 6441 min(tp->window_clamp, 65535U)); 6442 } 6443 6444 if (tp->rx_opt.saw_tstamp) { 6445 tp->rx_opt.tstamp_ok = 1; 6446 tp->tcp_header_len = 6447 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6448 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6449 tcp_store_ts_recent(tp); 6450 } else { 6451 tp->tcp_header_len = sizeof(struct tcphdr); 6452 } 6453 6454 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6455 tcp_initialize_rcv_mss(sk); 6456 6457 /* Remember, tcp_poll() does not lock socket! 6458 * Change state from SYN-SENT only after copied_seq 6459 * is initialized. */ 6460 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6461 6462 smc_check_reset_syn(tp); 6463 6464 smp_mb(); 6465 6466 tcp_finish_connect(sk, skb); 6467 6468 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6469 tcp_rcv_fastopen_synack(sk, skb, &foc); 6470 6471 if (!sock_flag(sk, SOCK_DEAD)) { 6472 sk->sk_state_change(sk); 6473 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6474 } 6475 if (fastopen_fail) 6476 return -1; 6477 if (sk->sk_write_pending || 6478 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6479 inet_csk_in_pingpong_mode(sk)) { 6480 /* Save one ACK. Data will be ready after 6481 * several ticks, if write_pending is set. 6482 * 6483 * It may be deleted, but with this feature tcpdumps 6484 * look so _wonderfully_ clever, that I was not able 6485 * to stand against the temptation 8) --ANK 6486 */ 6487 inet_csk_schedule_ack(sk); 6488 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6489 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, 6490 TCP_DELACK_MAX, false); 6491 goto consume; 6492 } 6493 tcp_send_ack(sk); 6494 return -1; 6495 } 6496 6497 /* No ACK in the segment */ 6498 6499 if (th->rst) { 6500 /* rfc793: 6501 * "If the RST bit is set 6502 * 6503 * Otherwise (no ACK) drop the segment and return." 6504 */ 6505 SKB_DR_SET(reason, TCP_RESET); 6506 goto discard_and_undo; 6507 } 6508 6509 /* PAWS check. */ 6510 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6511 tcp_paws_reject(&tp->rx_opt, 0)) { 6512 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6513 goto discard_and_undo; 6514 } 6515 if (th->syn) { 6516 /* We see SYN without ACK. It is attempt of 6517 * simultaneous connect with crossed SYNs. 6518 * Particularly, it can be connect to self. 6519 */ 6520 #ifdef CONFIG_TCP_AO 6521 struct tcp_ao_info *ao; 6522 6523 ao = rcu_dereference_protected(tp->ao_info, 6524 lockdep_sock_is_held(sk)); 6525 if (ao) { 6526 WRITE_ONCE(ao->risn, th->seq); 6527 ao->rcv_sne = 0; 6528 } 6529 #endif 6530 tcp_set_state(sk, TCP_SYN_RECV); 6531 6532 if (tp->rx_opt.saw_tstamp) { 6533 tp->rx_opt.tstamp_ok = 1; 6534 tcp_store_ts_recent(tp); 6535 tp->tcp_header_len = 6536 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6537 } else { 6538 tp->tcp_header_len = sizeof(struct tcphdr); 6539 } 6540 6541 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6542 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6543 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6544 6545 /* RFC1323: The window in SYN & SYN/ACK segments is 6546 * never scaled. 6547 */ 6548 tp->snd_wnd = ntohs(th->window); 6549 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6550 tp->max_window = tp->snd_wnd; 6551 6552 tcp_ecn_rcv_syn(tp, th); 6553 6554 tcp_mtup_init(sk); 6555 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6556 tcp_initialize_rcv_mss(sk); 6557 6558 tcp_send_synack(sk); 6559 #if 0 6560 /* Note, we could accept data and URG from this segment. 6561 * There are no obstacles to make this (except that we must 6562 * either change tcp_recvmsg() to prevent it from returning data 6563 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6564 * 6565 * However, if we ignore data in ACKless segments sometimes, 6566 * we have no reasons to accept it sometimes. 6567 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6568 * is not flawless. So, discard packet for sanity. 6569 * Uncomment this return to process the data. 6570 */ 6571 return -1; 6572 #else 6573 goto consume; 6574 #endif 6575 } 6576 /* "fifth, if neither of the SYN or RST bits is set then 6577 * drop the segment and return." 6578 */ 6579 6580 discard_and_undo: 6581 tcp_clear_options(&tp->rx_opt); 6582 tp->rx_opt.mss_clamp = saved_clamp; 6583 tcp_drop_reason(sk, skb, reason); 6584 return 0; 6585 6586 reset_and_undo: 6587 tcp_clear_options(&tp->rx_opt); 6588 tp->rx_opt.mss_clamp = saved_clamp; 6589 /* we can reuse/return @reason to its caller to handle the exception */ 6590 return reason; 6591 } 6592 6593 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6594 { 6595 struct tcp_sock *tp = tcp_sk(sk); 6596 struct request_sock *req; 6597 6598 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6599 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6600 */ 6601 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6602 tcp_try_undo_recovery(sk); 6603 6604 tcp_update_rto_time(tp); 6605 inet_csk(sk)->icsk_retransmits = 0; 6606 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6607 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6608 * need to zero retrans_stamp here to prevent spurious 6609 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6610 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6611 * set entering CA_Recovery, for correct retransmits_timed_out() and 6612 * undo behavior. 6613 */ 6614 tcp_retrans_stamp_cleanup(sk); 6615 6616 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6617 * we no longer need req so release it. 6618 */ 6619 req = rcu_dereference_protected(tp->fastopen_rsk, 6620 lockdep_sock_is_held(sk)); 6621 reqsk_fastopen_remove(sk, req, false); 6622 6623 /* Re-arm the timer because data may have been sent out. 6624 * This is similar to the regular data transmission case 6625 * when new data has just been ack'ed. 6626 * 6627 * (TFO) - we could try to be more aggressive and 6628 * retransmitting any data sooner based on when they 6629 * are sent out. 6630 */ 6631 tcp_rearm_rto(sk); 6632 } 6633 6634 /* 6635 * This function implements the receiving procedure of RFC 793 for 6636 * all states except ESTABLISHED and TIME_WAIT. 6637 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6638 * address independent. 6639 */ 6640 6641 enum skb_drop_reason 6642 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6643 { 6644 struct tcp_sock *tp = tcp_sk(sk); 6645 struct inet_connection_sock *icsk = inet_csk(sk); 6646 const struct tcphdr *th = tcp_hdr(skb); 6647 struct request_sock *req; 6648 int queued = 0; 6649 SKB_DR(reason); 6650 6651 switch (sk->sk_state) { 6652 case TCP_CLOSE: 6653 SKB_DR_SET(reason, TCP_CLOSE); 6654 goto discard; 6655 6656 case TCP_LISTEN: 6657 if (th->ack) 6658 return SKB_DROP_REASON_TCP_FLAGS; 6659 6660 if (th->rst) { 6661 SKB_DR_SET(reason, TCP_RESET); 6662 goto discard; 6663 } 6664 if (th->syn) { 6665 if (th->fin) { 6666 SKB_DR_SET(reason, TCP_FLAGS); 6667 goto discard; 6668 } 6669 /* It is possible that we process SYN packets from backlog, 6670 * so we need to make sure to disable BH and RCU right there. 6671 */ 6672 rcu_read_lock(); 6673 local_bh_disable(); 6674 icsk->icsk_af_ops->conn_request(sk, skb); 6675 local_bh_enable(); 6676 rcu_read_unlock(); 6677 6678 consume_skb(skb); 6679 return 0; 6680 } 6681 SKB_DR_SET(reason, TCP_FLAGS); 6682 goto discard; 6683 6684 case TCP_SYN_SENT: 6685 tp->rx_opt.saw_tstamp = 0; 6686 tcp_mstamp_refresh(tp); 6687 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6688 if (queued >= 0) 6689 return queued; 6690 6691 /* Do step6 onward by hand. */ 6692 tcp_urg(sk, skb, th); 6693 __kfree_skb(skb); 6694 tcp_data_snd_check(sk); 6695 return 0; 6696 } 6697 6698 tcp_mstamp_refresh(tp); 6699 tp->rx_opt.saw_tstamp = 0; 6700 req = rcu_dereference_protected(tp->fastopen_rsk, 6701 lockdep_sock_is_held(sk)); 6702 if (req) { 6703 bool req_stolen; 6704 6705 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6706 sk->sk_state != TCP_FIN_WAIT1); 6707 6708 SKB_DR_SET(reason, TCP_FASTOPEN); 6709 if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason)) 6710 goto discard; 6711 } 6712 6713 if (!th->ack && !th->rst && !th->syn) { 6714 SKB_DR_SET(reason, TCP_FLAGS); 6715 goto discard; 6716 } 6717 if (!tcp_validate_incoming(sk, skb, th, 0)) 6718 return 0; 6719 6720 /* step 5: check the ACK field */ 6721 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 6722 FLAG_UPDATE_TS_RECENT | 6723 FLAG_NO_CHALLENGE_ACK); 6724 6725 if ((int)reason <= 0) { 6726 if (sk->sk_state == TCP_SYN_RECV) { 6727 /* send one RST */ 6728 if (!reason) 6729 return SKB_DROP_REASON_TCP_OLD_ACK; 6730 return -reason; 6731 } 6732 /* accept old ack during closing */ 6733 if ((int)reason < 0) { 6734 tcp_send_challenge_ack(sk); 6735 reason = -reason; 6736 goto discard; 6737 } 6738 } 6739 SKB_DR_SET(reason, NOT_SPECIFIED); 6740 switch (sk->sk_state) { 6741 case TCP_SYN_RECV: 6742 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6743 if (!tp->srtt_us) 6744 tcp_synack_rtt_meas(sk, req); 6745 6746 if (tp->rx_opt.tstamp_ok) 6747 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6748 6749 if (req) { 6750 tcp_rcv_synrecv_state_fastopen(sk); 6751 } else { 6752 tcp_try_undo_spurious_syn(sk); 6753 tp->retrans_stamp = 0; 6754 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6755 skb); 6756 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6757 } 6758 tcp_ao_established(sk); 6759 smp_mb(); 6760 tcp_set_state(sk, TCP_ESTABLISHED); 6761 sk->sk_state_change(sk); 6762 6763 /* Note, that this wakeup is only for marginal crossed SYN case. 6764 * Passively open sockets are not waked up, because 6765 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6766 */ 6767 if (sk->sk_socket) 6768 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6769 6770 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6771 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6772 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6773 6774 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6775 tcp_update_pacing_rate(sk); 6776 6777 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6778 tp->lsndtime = tcp_jiffies32; 6779 6780 tcp_initialize_rcv_mss(sk); 6781 tcp_fast_path_on(tp); 6782 if (sk->sk_shutdown & SEND_SHUTDOWN) 6783 tcp_shutdown(sk, SEND_SHUTDOWN); 6784 break; 6785 6786 case TCP_FIN_WAIT1: { 6787 int tmo; 6788 6789 if (req) 6790 tcp_rcv_synrecv_state_fastopen(sk); 6791 6792 if (tp->snd_una != tp->write_seq) 6793 break; 6794 6795 tcp_set_state(sk, TCP_FIN_WAIT2); 6796 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6797 6798 sk_dst_confirm(sk); 6799 6800 if (!sock_flag(sk, SOCK_DEAD)) { 6801 /* Wake up lingering close() */ 6802 sk->sk_state_change(sk); 6803 break; 6804 } 6805 6806 if (READ_ONCE(tp->linger2) < 0) { 6807 tcp_done(sk); 6808 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6809 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6810 } 6811 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6812 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6813 /* Receive out of order FIN after close() */ 6814 if (tp->syn_fastopen && th->fin) 6815 tcp_fastopen_active_disable(sk); 6816 tcp_done(sk); 6817 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6818 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6819 } 6820 6821 tmo = tcp_fin_time(sk); 6822 if (tmo > TCP_TIMEWAIT_LEN) { 6823 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6824 } else if (th->fin || sock_owned_by_user(sk)) { 6825 /* Bad case. We could lose such FIN otherwise. 6826 * It is not a big problem, but it looks confusing 6827 * and not so rare event. We still can lose it now, 6828 * if it spins in bh_lock_sock(), but it is really 6829 * marginal case. 6830 */ 6831 tcp_reset_keepalive_timer(sk, tmo); 6832 } else { 6833 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6834 goto consume; 6835 } 6836 break; 6837 } 6838 6839 case TCP_CLOSING: 6840 if (tp->snd_una == tp->write_seq) { 6841 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6842 goto consume; 6843 } 6844 break; 6845 6846 case TCP_LAST_ACK: 6847 if (tp->snd_una == tp->write_seq) { 6848 tcp_update_metrics(sk); 6849 tcp_done(sk); 6850 goto consume; 6851 } 6852 break; 6853 } 6854 6855 /* step 6: check the URG bit */ 6856 tcp_urg(sk, skb, th); 6857 6858 /* step 7: process the segment text */ 6859 switch (sk->sk_state) { 6860 case TCP_CLOSE_WAIT: 6861 case TCP_CLOSING: 6862 case TCP_LAST_ACK: 6863 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6864 /* If a subflow has been reset, the packet should not 6865 * continue to be processed, drop the packet. 6866 */ 6867 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6868 goto discard; 6869 break; 6870 } 6871 fallthrough; 6872 case TCP_FIN_WAIT1: 6873 case TCP_FIN_WAIT2: 6874 /* RFC 793 says to queue data in these states, 6875 * RFC 1122 says we MUST send a reset. 6876 * BSD 4.4 also does reset. 6877 */ 6878 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6879 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6880 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6881 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6882 tcp_reset(sk, skb); 6883 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6884 } 6885 } 6886 fallthrough; 6887 case TCP_ESTABLISHED: 6888 tcp_data_queue(sk, skb); 6889 queued = 1; 6890 break; 6891 } 6892 6893 /* tcp_data could move socket to TIME-WAIT */ 6894 if (sk->sk_state != TCP_CLOSE) { 6895 tcp_data_snd_check(sk); 6896 tcp_ack_snd_check(sk); 6897 } 6898 6899 if (!queued) { 6900 discard: 6901 tcp_drop_reason(sk, skb, reason); 6902 } 6903 return 0; 6904 6905 consume: 6906 __kfree_skb(skb); 6907 return 0; 6908 } 6909 EXPORT_IPV6_MOD(tcp_rcv_state_process); 6910 6911 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6912 { 6913 struct inet_request_sock *ireq = inet_rsk(req); 6914 6915 if (family == AF_INET) 6916 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6917 &ireq->ir_rmt_addr, port); 6918 #if IS_ENABLED(CONFIG_IPV6) 6919 else if (family == AF_INET6) 6920 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6921 &ireq->ir_v6_rmt_addr, port); 6922 #endif 6923 } 6924 6925 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6926 * 6927 * If we receive a SYN packet with these bits set, it means a 6928 * network is playing bad games with TOS bits. In order to 6929 * avoid possible false congestion notifications, we disable 6930 * TCP ECN negotiation. 6931 * 6932 * Exception: tcp_ca wants ECN. This is required for DCTCP 6933 * congestion control: Linux DCTCP asserts ECT on all packets, 6934 * including SYN, which is most optimal solution; however, 6935 * others, such as FreeBSD do not. 6936 * 6937 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6938 * set, indicating the use of a future TCP extension (such as AccECN). See 6939 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6940 * extensions. 6941 */ 6942 static void tcp_ecn_create_request(struct request_sock *req, 6943 const struct sk_buff *skb, 6944 const struct sock *listen_sk, 6945 const struct dst_entry *dst) 6946 { 6947 const struct tcphdr *th = tcp_hdr(skb); 6948 const struct net *net = sock_net(listen_sk); 6949 bool th_ecn = th->ece && th->cwr; 6950 bool ect, ecn_ok; 6951 u32 ecn_ok_dst; 6952 6953 if (!th_ecn) 6954 return; 6955 6956 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6957 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6958 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6959 6960 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6961 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6962 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6963 inet_rsk(req)->ecn_ok = 1; 6964 } 6965 6966 static void tcp_openreq_init(struct request_sock *req, 6967 const struct tcp_options_received *rx_opt, 6968 struct sk_buff *skb, const struct sock *sk) 6969 { 6970 struct inet_request_sock *ireq = inet_rsk(req); 6971 6972 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6973 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6974 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6975 tcp_rsk(req)->snt_synack = 0; 6976 tcp_rsk(req)->snt_tsval_first = 0; 6977 tcp_rsk(req)->last_oow_ack_time = 0; 6978 req->mss = rx_opt->mss_clamp; 6979 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6980 ireq->tstamp_ok = rx_opt->tstamp_ok; 6981 ireq->sack_ok = rx_opt->sack_ok; 6982 ireq->snd_wscale = rx_opt->snd_wscale; 6983 ireq->wscale_ok = rx_opt->wscale_ok; 6984 ireq->acked = 0; 6985 ireq->ecn_ok = 0; 6986 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6987 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6988 ireq->ir_mark = inet_request_mark(sk, skb); 6989 #if IS_ENABLED(CONFIG_SMC) 6990 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6991 tcp_sk(sk)->smc_hs_congested(sk)); 6992 #endif 6993 } 6994 6995 /* 6996 * Return true if a syncookie should be sent 6997 */ 6998 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 6999 { 7000 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7001 const char *msg = "Dropping request"; 7002 struct net *net = sock_net(sk); 7003 bool want_cookie = false; 7004 u8 syncookies; 7005 7006 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7007 7008 #ifdef CONFIG_SYN_COOKIES 7009 if (syncookies) { 7010 msg = "Sending cookies"; 7011 want_cookie = true; 7012 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7013 } else 7014 #endif 7015 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7016 7017 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7018 xchg(&queue->synflood_warned, 1) == 0) { 7019 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7020 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7021 proto, inet6_rcv_saddr(sk), 7022 sk->sk_num, msg); 7023 } else { 7024 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7025 proto, &sk->sk_rcv_saddr, 7026 sk->sk_num, msg); 7027 } 7028 } 7029 7030 return want_cookie; 7031 } 7032 7033 static void tcp_reqsk_record_syn(const struct sock *sk, 7034 struct request_sock *req, 7035 const struct sk_buff *skb) 7036 { 7037 if (tcp_sk(sk)->save_syn) { 7038 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7039 struct saved_syn *saved_syn; 7040 u32 mac_hdrlen; 7041 void *base; 7042 7043 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7044 base = skb_mac_header(skb); 7045 mac_hdrlen = skb_mac_header_len(skb); 7046 len += mac_hdrlen; 7047 } else { 7048 base = skb_network_header(skb); 7049 mac_hdrlen = 0; 7050 } 7051 7052 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7053 GFP_ATOMIC); 7054 if (saved_syn) { 7055 saved_syn->mac_hdrlen = mac_hdrlen; 7056 saved_syn->network_hdrlen = skb_network_header_len(skb); 7057 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7058 memcpy(saved_syn->data, base, len); 7059 req->saved_syn = saved_syn; 7060 } 7061 } 7062 } 7063 7064 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7065 * used for SYN cookie generation. 7066 */ 7067 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7068 const struct tcp_request_sock_ops *af_ops, 7069 struct sock *sk, struct tcphdr *th) 7070 { 7071 struct tcp_sock *tp = tcp_sk(sk); 7072 u16 mss; 7073 7074 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7075 !inet_csk_reqsk_queue_is_full(sk)) 7076 return 0; 7077 7078 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7079 return 0; 7080 7081 if (sk_acceptq_is_full(sk)) { 7082 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7083 return 0; 7084 } 7085 7086 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7087 if (!mss) 7088 mss = af_ops->mss_clamp; 7089 7090 return mss; 7091 } 7092 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss); 7093 7094 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7095 const struct tcp_request_sock_ops *af_ops, 7096 struct sock *sk, struct sk_buff *skb) 7097 { 7098 struct tcp_fastopen_cookie foc = { .len = -1 }; 7099 struct tcp_options_received tmp_opt; 7100 struct tcp_sock *tp = tcp_sk(sk); 7101 struct net *net = sock_net(sk); 7102 struct sock *fastopen_sk = NULL; 7103 struct request_sock *req; 7104 bool want_cookie = false; 7105 struct dst_entry *dst; 7106 struct flowi fl; 7107 u8 syncookies; 7108 u32 isn; 7109 7110 #ifdef CONFIG_TCP_AO 7111 const struct tcp_ao_hdr *aoh; 7112 #endif 7113 7114 isn = __this_cpu_read(tcp_tw_isn); 7115 if (isn) { 7116 /* TW buckets are converted to open requests without 7117 * limitations, they conserve resources and peer is 7118 * evidently real one. 7119 */ 7120 __this_cpu_write(tcp_tw_isn, 0); 7121 } else { 7122 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7123 7124 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7125 want_cookie = tcp_syn_flood_action(sk, 7126 rsk_ops->slab_name); 7127 if (!want_cookie) 7128 goto drop; 7129 } 7130 } 7131 7132 if (sk_acceptq_is_full(sk)) { 7133 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7134 goto drop; 7135 } 7136 7137 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7138 if (!req) 7139 goto drop; 7140 7141 req->syncookie = want_cookie; 7142 tcp_rsk(req)->af_specific = af_ops; 7143 tcp_rsk(req)->ts_off = 0; 7144 tcp_rsk(req)->req_usec_ts = false; 7145 #if IS_ENABLED(CONFIG_MPTCP) 7146 tcp_rsk(req)->is_mptcp = 0; 7147 #endif 7148 7149 tcp_clear_options(&tmp_opt); 7150 tmp_opt.mss_clamp = af_ops->mss_clamp; 7151 tmp_opt.user_mss = tp->rx_opt.user_mss; 7152 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7153 want_cookie ? NULL : &foc); 7154 7155 if (want_cookie && !tmp_opt.saw_tstamp) 7156 tcp_clear_options(&tmp_opt); 7157 7158 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7159 tmp_opt.smc_ok = 0; 7160 7161 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7162 tcp_openreq_init(req, &tmp_opt, skb, sk); 7163 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7164 7165 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7166 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7167 7168 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7169 if (!dst) 7170 goto drop_and_free; 7171 7172 if (tmp_opt.tstamp_ok) { 7173 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7174 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7175 } 7176 if (!want_cookie && !isn) { 7177 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7178 7179 /* Kill the following clause, if you dislike this way. */ 7180 if (!syncookies && 7181 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7182 (max_syn_backlog >> 2)) && 7183 !tcp_peer_is_proven(req, dst)) { 7184 /* Without syncookies last quarter of 7185 * backlog is filled with destinations, 7186 * proven to be alive. 7187 * It means that we continue to communicate 7188 * to destinations, already remembered 7189 * to the moment of synflood. 7190 */ 7191 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7192 rsk_ops->family); 7193 goto drop_and_release; 7194 } 7195 7196 isn = af_ops->init_seq(skb); 7197 } 7198 7199 tcp_ecn_create_request(req, skb, sk, dst); 7200 7201 if (want_cookie) { 7202 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7203 if (!tmp_opt.tstamp_ok) 7204 inet_rsk(req)->ecn_ok = 0; 7205 } 7206 7207 #ifdef CONFIG_TCP_AO 7208 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7209 goto drop_and_release; /* Invalid TCP options */ 7210 if (aoh) { 7211 tcp_rsk(req)->used_tcp_ao = true; 7212 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7213 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7214 7215 } else { 7216 tcp_rsk(req)->used_tcp_ao = false; 7217 } 7218 #endif 7219 tcp_rsk(req)->snt_isn = isn; 7220 tcp_rsk(req)->txhash = net_tx_rndhash(); 7221 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7222 tcp_openreq_init_rwin(req, sk, dst); 7223 sk_rx_queue_set(req_to_sk(req), skb); 7224 if (!want_cookie) { 7225 tcp_reqsk_record_syn(sk, req, skb); 7226 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7227 } 7228 if (fastopen_sk) { 7229 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7230 &foc, TCP_SYNACK_FASTOPEN, skb); 7231 /* Add the child socket directly into the accept queue */ 7232 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7233 reqsk_fastopen_remove(fastopen_sk, req, false); 7234 bh_unlock_sock(fastopen_sk); 7235 sock_put(fastopen_sk); 7236 goto drop_and_free; 7237 } 7238 sk->sk_data_ready(sk); 7239 bh_unlock_sock(fastopen_sk); 7240 sock_put(fastopen_sk); 7241 } else { 7242 tcp_rsk(req)->tfo_listener = false; 7243 if (!want_cookie) { 7244 req->timeout = tcp_timeout_init((struct sock *)req); 7245 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7246 req->timeout))) { 7247 reqsk_free(req); 7248 dst_release(dst); 7249 return 0; 7250 } 7251 7252 } 7253 af_ops->send_synack(sk, dst, &fl, req, &foc, 7254 !want_cookie ? TCP_SYNACK_NORMAL : 7255 TCP_SYNACK_COOKIE, 7256 skb); 7257 if (want_cookie) { 7258 reqsk_free(req); 7259 return 0; 7260 } 7261 } 7262 reqsk_put(req); 7263 return 0; 7264 7265 drop_and_release: 7266 dst_release(dst); 7267 drop_and_free: 7268 __reqsk_free(req); 7269 drop: 7270 tcp_listendrop(sk); 7271 return 0; 7272 } 7273 EXPORT_IPV6_MOD(tcp_conn_request); 7274