xref: /linux/net/ipv4/tcp_input.c (revision 25489a4f556414445d342951615178368ee45cde)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/proto_memory.h>
76 #include <net/inet_common.h>
77 #include <linux/ipsec.h>
78 #include <linux/unaligned.h>
79 #include <linux/errqueue.h>
80 #include <trace/events/tcp.h>
81 #include <linux/jump_label_ratelimit.h>
82 #include <net/busy_poll.h>
83 #include <net/mptcp.h>
84 
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 
87 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
88 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
89 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
90 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
91 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
92 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
93 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
94 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
97 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
103 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
105 #define FLAG_TS_PROGRESS	0x40000 /* Positive timestamp delta */
106 
107 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
108 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
109 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
110 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
111 
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
114 
115 #define REXMIT_NONE	0 /* no loss recovery to do */
116 #define REXMIT_LOST	1 /* retransmit packets marked lost */
117 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
118 
119 #if IS_ENABLED(CONFIG_TLS_DEVICE)
120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
121 
122 void clean_acked_data_enable(struct tcp_sock *tp,
123 			     void (*cad)(struct sock *sk, u32 ack_seq))
124 {
125 	tp->tcp_clean_acked = cad;
126 	static_branch_deferred_inc(&clean_acked_data_enabled);
127 }
128 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
129 
130 void clean_acked_data_disable(struct tcp_sock *tp)
131 {
132 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
133 	tp->tcp_clean_acked = NULL;
134 }
135 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
136 
137 void clean_acked_data_flush(void)
138 {
139 	static_key_deferred_flush(&clean_acked_data_enabled);
140 }
141 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
142 #endif
143 
144 #ifdef CONFIG_CGROUP_BPF
145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
146 {
147 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
148 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
150 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
152 	struct bpf_sock_ops_kern sock_ops;
153 
154 	if (likely(!unknown_opt && !parse_all_opt))
155 		return;
156 
157 	/* The skb will be handled in the
158 	 * bpf_skops_established() or
159 	 * bpf_skops_write_hdr_opt().
160 	 */
161 	switch (sk->sk_state) {
162 	case TCP_SYN_RECV:
163 	case TCP_SYN_SENT:
164 	case TCP_LISTEN:
165 		return;
166 	}
167 
168 	sock_owned_by_me(sk);
169 
170 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
171 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
172 	sock_ops.is_fullsock = 1;
173 	sock_ops.is_locked_tcp_sock = 1;
174 	sock_ops.sk = sk;
175 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
176 
177 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
178 }
179 
180 static void bpf_skops_established(struct sock *sk, int bpf_op,
181 				  struct sk_buff *skb)
182 {
183 	struct bpf_sock_ops_kern sock_ops;
184 
185 	sock_owned_by_me(sk);
186 
187 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
188 	sock_ops.op = bpf_op;
189 	sock_ops.is_fullsock = 1;
190 	sock_ops.is_locked_tcp_sock = 1;
191 	sock_ops.sk = sk;
192 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
193 	if (skb)
194 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
195 
196 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
197 }
198 #else
199 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
200 {
201 }
202 
203 static void bpf_skops_established(struct sock *sk, int bpf_op,
204 				  struct sk_buff *skb)
205 {
206 }
207 #endif
208 
209 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
210 				    unsigned int len)
211 {
212 	struct net_device *dev;
213 
214 	rcu_read_lock();
215 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 	if (!dev || len >= READ_ONCE(dev->mtu))
217 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 			dev ? dev->name : "Unknown driver");
219 	rcu_read_unlock();
220 }
221 
222 /* Adapt the MSS value used to make delayed ack decision to the
223  * real world.
224  */
225 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
226 {
227 	struct inet_connection_sock *icsk = inet_csk(sk);
228 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
229 	unsigned int len;
230 
231 	icsk->icsk_ack.last_seg_size = 0;
232 
233 	/* skb->len may jitter because of SACKs, even if peer
234 	 * sends good full-sized frames.
235 	 */
236 	len = skb_shinfo(skb)->gso_size ? : skb->len;
237 	if (len >= icsk->icsk_ack.rcv_mss) {
238 		/* Note: divides are still a bit expensive.
239 		 * For the moment, only adjust scaling_ratio
240 		 * when we update icsk_ack.rcv_mss.
241 		 */
242 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
243 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
244 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
245 
246 			do_div(val, skb->truesize);
247 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
248 
249 			if (old_ratio != tcp_sk(sk)->scaling_ratio) {
250 				struct tcp_sock *tp = tcp_sk(sk);
251 
252 				val = tcp_win_from_space(sk, sk->sk_rcvbuf);
253 				tcp_set_window_clamp(sk, val);
254 
255 				if (tp->window_clamp < tp->rcvq_space.space)
256 					tp->rcvq_space.space = tp->window_clamp;
257 			}
258 		}
259 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
260 					       tcp_sk(sk)->advmss);
261 		/* Account for possibly-removed options */
262 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
263 				tcp_gro_dev_warn, sk, skb, len);
264 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
265 		 * set then it is likely the end of an application write. So
266 		 * more data may not be arriving soon, and yet the data sender
267 		 * may be waiting for an ACK if cwnd-bound or using TX zero
268 		 * copy. So we set ICSK_ACK_PUSHED here so that
269 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
270 		 * reads all of the data and is not ping-pong. If len > MSS
271 		 * then this logic does not matter (and does not hurt) because
272 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
273 		 * reads data and there is more than an MSS of unACKed data.
274 		 */
275 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
276 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
277 	} else {
278 		/* Otherwise, we make more careful check taking into account,
279 		 * that SACKs block is variable.
280 		 *
281 		 * "len" is invariant segment length, including TCP header.
282 		 */
283 		len += skb->data - skb_transport_header(skb);
284 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
285 		    /* If PSH is not set, packet should be
286 		     * full sized, provided peer TCP is not badly broken.
287 		     * This observation (if it is correct 8)) allows
288 		     * to handle super-low mtu links fairly.
289 		     */
290 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
291 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
292 			/* Subtract also invariant (if peer is RFC compliant),
293 			 * tcp header plus fixed timestamp option length.
294 			 * Resulting "len" is MSS free of SACK jitter.
295 			 */
296 			len -= tcp_sk(sk)->tcp_header_len;
297 			icsk->icsk_ack.last_seg_size = len;
298 			if (len == lss) {
299 				icsk->icsk_ack.rcv_mss = len;
300 				return;
301 			}
302 		}
303 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
304 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
305 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
306 	}
307 }
308 
309 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
310 {
311 	struct inet_connection_sock *icsk = inet_csk(sk);
312 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
313 
314 	if (quickacks == 0)
315 		quickacks = 2;
316 	quickacks = min(quickacks, max_quickacks);
317 	if (quickacks > icsk->icsk_ack.quick)
318 		icsk->icsk_ack.quick = quickacks;
319 }
320 
321 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
322 {
323 	struct inet_connection_sock *icsk = inet_csk(sk);
324 
325 	tcp_incr_quickack(sk, max_quickacks);
326 	inet_csk_exit_pingpong_mode(sk);
327 	icsk->icsk_ack.ato = TCP_ATO_MIN;
328 }
329 
330 /* Send ACKs quickly, if "quick" count is not exhausted
331  * and the session is not interactive.
332  */
333 
334 static bool tcp_in_quickack_mode(struct sock *sk)
335 {
336 	const struct inet_connection_sock *icsk = inet_csk(sk);
337 
338 	return icsk->icsk_ack.dst_quick_ack ||
339 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
340 }
341 
342 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
343 {
344 	if (tcp_ecn_mode_rfc3168(tp))
345 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
346 }
347 
348 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
349 {
350 	if (tcp_hdr(skb)->cwr) {
351 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
352 
353 		/* If the sender is telling us it has entered CWR, then its
354 		 * cwnd may be very low (even just 1 packet), so we should ACK
355 		 * immediately.
356 		 */
357 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
358 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
359 	}
360 }
361 
362 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
363 {
364 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
365 }
366 
367 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 
371 	if (tcp_ecn_disabled(tp))
372 		return;
373 
374 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
375 	case INET_ECN_NOT_ECT:
376 		/* Funny extension: if ECT is not set on a segment,
377 		 * and we already seen ECT on a previous segment,
378 		 * it is probably a retransmit.
379 		 */
380 		if (tp->ecn_flags & TCP_ECN_SEEN)
381 			tcp_enter_quickack_mode(sk, 2);
382 		break;
383 	case INET_ECN_CE:
384 		if (tcp_ca_needs_ecn(sk))
385 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
386 
387 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
388 			/* Better not delay acks, sender can have a very low cwnd */
389 			tcp_enter_quickack_mode(sk, 2);
390 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
391 		}
392 		tp->ecn_flags |= TCP_ECN_SEEN;
393 		break;
394 	default:
395 		if (tcp_ca_needs_ecn(sk))
396 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
397 		tp->ecn_flags |= TCP_ECN_SEEN;
398 		break;
399 	}
400 }
401 
402 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
403 {
404 	if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || th->cwr))
405 		tcp_ecn_mode_set(tp, TCP_ECN_DISABLED);
406 }
407 
408 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
409 {
410 	if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || !th->cwr))
411 		tcp_ecn_mode_set(tp, TCP_ECN_DISABLED);
412 }
413 
414 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
415 {
416 	if (th->ece && !th->syn && tcp_ecn_mode_rfc3168(tp))
417 		return true;
418 	return false;
419 }
420 
421 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
422 {
423 	tp->delivered_ce += ecn_count;
424 }
425 
426 /* Updates the delivered and delivered_ce counts */
427 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
428 				bool ece_ack)
429 {
430 	tp->delivered += delivered;
431 	if (ece_ack)
432 		tcp_count_delivered_ce(tp, delivered);
433 }
434 
435 /* Buffer size and advertised window tuning.
436  *
437  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
438  */
439 
440 static void tcp_sndbuf_expand(struct sock *sk)
441 {
442 	const struct tcp_sock *tp = tcp_sk(sk);
443 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
444 	int sndmem, per_mss;
445 	u32 nr_segs;
446 
447 	/* Worst case is non GSO/TSO : each frame consumes one skb
448 	 * and skb->head is kmalloced using power of two area of memory
449 	 */
450 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
451 		  MAX_TCP_HEADER +
452 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
453 
454 	per_mss = roundup_pow_of_two(per_mss) +
455 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
456 
457 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
458 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
459 
460 	/* Fast Recovery (RFC 5681 3.2) :
461 	 * Cubic needs 1.7 factor, rounded to 2 to include
462 	 * extra cushion (application might react slowly to EPOLLOUT)
463 	 */
464 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
465 	sndmem *= nr_segs * per_mss;
466 
467 	if (sk->sk_sndbuf < sndmem)
468 		WRITE_ONCE(sk->sk_sndbuf,
469 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
470 }
471 
472 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
473  *
474  * All tcp_full_space() is split to two parts: "network" buffer, allocated
475  * forward and advertised in receiver window (tp->rcv_wnd) and
476  * "application buffer", required to isolate scheduling/application
477  * latencies from network.
478  * window_clamp is maximal advertised window. It can be less than
479  * tcp_full_space(), in this case tcp_full_space() - window_clamp
480  * is reserved for "application" buffer. The less window_clamp is
481  * the smoother our behaviour from viewpoint of network, but the lower
482  * throughput and the higher sensitivity of the connection to losses. 8)
483  *
484  * rcv_ssthresh is more strict window_clamp used at "slow start"
485  * phase to predict further behaviour of this connection.
486  * It is used for two goals:
487  * - to enforce header prediction at sender, even when application
488  *   requires some significant "application buffer". It is check #1.
489  * - to prevent pruning of receive queue because of misprediction
490  *   of receiver window. Check #2.
491  *
492  * The scheme does not work when sender sends good segments opening
493  * window and then starts to feed us spaghetti. But it should work
494  * in common situations. Otherwise, we have to rely on queue collapsing.
495  */
496 
497 /* Slow part of check#2. */
498 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
499 			     unsigned int skbtruesize)
500 {
501 	const struct tcp_sock *tp = tcp_sk(sk);
502 	/* Optimize this! */
503 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
504 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
505 
506 	while (tp->rcv_ssthresh <= window) {
507 		if (truesize <= skb->len)
508 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
509 
510 		truesize >>= 1;
511 		window >>= 1;
512 	}
513 	return 0;
514 }
515 
516 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
517  * can play nice with us, as sk_buff and skb->head might be either
518  * freed or shared with up to MAX_SKB_FRAGS segments.
519  * Only give a boost to drivers using page frag(s) to hold the frame(s),
520  * and if no payload was pulled in skb->head before reaching us.
521  */
522 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
523 {
524 	u32 truesize = skb->truesize;
525 
526 	if (adjust && !skb_headlen(skb)) {
527 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
528 		/* paranoid check, some drivers might be buggy */
529 		if (unlikely((int)truesize < (int)skb->len))
530 			truesize = skb->truesize;
531 	}
532 	return truesize;
533 }
534 
535 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
536 			    bool adjust)
537 {
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	int room;
540 
541 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
542 
543 	if (room <= 0)
544 		return;
545 
546 	/* Check #1 */
547 	if (!tcp_under_memory_pressure(sk)) {
548 		unsigned int truesize = truesize_adjust(adjust, skb);
549 		int incr;
550 
551 		/* Check #2. Increase window, if skb with such overhead
552 		 * will fit to rcvbuf in future.
553 		 */
554 		if (tcp_win_from_space(sk, truesize) <= skb->len)
555 			incr = 2 * tp->advmss;
556 		else
557 			incr = __tcp_grow_window(sk, skb, truesize);
558 
559 		if (incr) {
560 			incr = max_t(int, incr, 2 * skb->len);
561 			tp->rcv_ssthresh += min(room, incr);
562 			inet_csk(sk)->icsk_ack.quick |= 1;
563 		}
564 	} else {
565 		/* Under pressure:
566 		 * Adjust rcv_ssthresh according to reserved mem
567 		 */
568 		tcp_adjust_rcv_ssthresh(sk);
569 	}
570 }
571 
572 /* 3. Try to fixup all. It is made immediately after connection enters
573  *    established state.
574  */
575 static void tcp_init_buffer_space(struct sock *sk)
576 {
577 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
578 	struct tcp_sock *tp = tcp_sk(sk);
579 	int maxwin;
580 
581 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
582 		tcp_sndbuf_expand(sk);
583 
584 	tcp_mstamp_refresh(tp);
585 	tp->rcvq_space.time = tp->tcp_mstamp;
586 	tp->rcvq_space.seq = tp->copied_seq;
587 
588 	maxwin = tcp_full_space(sk);
589 
590 	if (tp->window_clamp >= maxwin) {
591 		WRITE_ONCE(tp->window_clamp, maxwin);
592 
593 		if (tcp_app_win && maxwin > 4 * tp->advmss)
594 			WRITE_ONCE(tp->window_clamp,
595 				   max(maxwin - (maxwin >> tcp_app_win),
596 				       4 * tp->advmss));
597 	}
598 
599 	/* Force reservation of one segment. */
600 	if (tcp_app_win &&
601 	    tp->window_clamp > 2 * tp->advmss &&
602 	    tp->window_clamp + tp->advmss > maxwin)
603 		WRITE_ONCE(tp->window_clamp,
604 			   max(2 * tp->advmss, maxwin - tp->advmss));
605 
606 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
607 	tp->snd_cwnd_stamp = tcp_jiffies32;
608 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
609 				    (u32)TCP_INIT_CWND * tp->advmss);
610 }
611 
612 /* 4. Recalculate window clamp after socket hit its memory bounds. */
613 static void tcp_clamp_window(struct sock *sk)
614 {
615 	struct tcp_sock *tp = tcp_sk(sk);
616 	struct inet_connection_sock *icsk = inet_csk(sk);
617 	struct net *net = sock_net(sk);
618 	int rmem2;
619 
620 	icsk->icsk_ack.quick = 0;
621 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
622 
623 	if (sk->sk_rcvbuf < rmem2 &&
624 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
625 	    !tcp_under_memory_pressure(sk) &&
626 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
627 		WRITE_ONCE(sk->sk_rcvbuf,
628 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
629 	}
630 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
631 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
632 }
633 
634 /* Initialize RCV_MSS value.
635  * RCV_MSS is an our guess about MSS used by the peer.
636  * We haven't any direct information about the MSS.
637  * It's better to underestimate the RCV_MSS rather than overestimate.
638  * Overestimations make us ACKing less frequently than needed.
639  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
640  */
641 void tcp_initialize_rcv_mss(struct sock *sk)
642 {
643 	const struct tcp_sock *tp = tcp_sk(sk);
644 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
645 
646 	hint = min(hint, tp->rcv_wnd / 2);
647 	hint = min(hint, TCP_MSS_DEFAULT);
648 	hint = max(hint, TCP_MIN_MSS);
649 
650 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
651 }
652 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss);
653 
654 /* Receiver "autotuning" code.
655  *
656  * The algorithm for RTT estimation w/o timestamps is based on
657  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
658  * <https://public.lanl.gov/radiant/pubs.html#DRS>
659  *
660  * More detail on this code can be found at
661  * <http://staff.psc.edu/jheffner/>,
662  * though this reference is out of date.  A new paper
663  * is pending.
664  */
665 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
666 {
667 	u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us;
668 	long m = sample << 3;
669 
670 	if (old_sample == 0 || m < old_sample) {
671 		new_sample = m;
672 	} else {
673 		/* If we sample in larger samples in the non-timestamp
674 		 * case, we could grossly overestimate the RTT especially
675 		 * with chatty applications or bulk transfer apps which
676 		 * are stalled on filesystem I/O.
677 		 *
678 		 * Also, since we are only going for a minimum in the
679 		 * non-timestamp case, we do not smooth things out
680 		 * else with timestamps disabled convergence takes too
681 		 * long.
682 		 */
683 		if (win_dep)
684 			return;
685 		/* Do not use this sample if receive queue is not empty. */
686 		if (tp->rcv_nxt != tp->copied_seq)
687 			return;
688 		new_sample = old_sample - (old_sample >> 3) + sample;
689 	}
690 
691 	tp->rcv_rtt_est.rtt_us = new_sample;
692 }
693 
694 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
695 {
696 	u32 delta_us;
697 
698 	if (tp->rcv_rtt_est.time == 0)
699 		goto new_measure;
700 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
701 		return;
702 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
703 	if (!delta_us)
704 		delta_us = 1;
705 	tcp_rcv_rtt_update(tp, delta_us, 1);
706 
707 new_measure:
708 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
709 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
710 }
711 
712 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta)
713 {
714 	u32 delta, delta_us;
715 
716 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
717 	if (tp->tcp_usec_ts)
718 		return delta;
719 
720 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
721 		if (!delta)
722 			delta = min_delta;
723 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
724 		return delta_us;
725 	}
726 	return -1;
727 }
728 
729 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
730 					  const struct sk_buff *skb)
731 {
732 	struct tcp_sock *tp = tcp_sk(sk);
733 
734 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
735 		return;
736 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
737 
738 	if (TCP_SKB_CB(skb)->end_seq -
739 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
740 		s32 delta = tcp_rtt_tsopt_us(tp, 0);
741 
742 		if (delta > 0)
743 			tcp_rcv_rtt_update(tp, delta, 0);
744 	}
745 }
746 
747 static void tcp_rcvbuf_grow(struct sock *sk)
748 {
749 	const struct net *net = sock_net(sk);
750 	struct tcp_sock *tp = tcp_sk(sk);
751 	int rcvwin, rcvbuf, cap;
752 
753 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
754 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
755 		return;
756 
757 	/* slow start: allow the sender to double its rate. */
758 	rcvwin = tp->rcvq_space.space << 1;
759 
760 	if (!RB_EMPTY_ROOT(&tp->out_of_order_queue))
761 		rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt;
762 
763 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
764 
765 	rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap);
766 	if (rcvbuf > sk->sk_rcvbuf) {
767 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
768 		/* Make the window clamp follow along.  */
769 		WRITE_ONCE(tp->window_clamp,
770 			   tcp_win_from_space(sk, rcvbuf));
771 	}
772 }
773 /*
774  * This function should be called every time data is copied to user space.
775  * It calculates the appropriate TCP receive buffer space.
776  */
777 void tcp_rcv_space_adjust(struct sock *sk)
778 {
779 	struct tcp_sock *tp = tcp_sk(sk);
780 	int time, inq, copied;
781 
782 	trace_tcp_rcv_space_adjust(sk);
783 
784 	tcp_mstamp_refresh(tp);
785 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
786 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
787 		return;
788 
789 	/* Number of bytes copied to user in last RTT */
790 	copied = tp->copied_seq - tp->rcvq_space.seq;
791 	/* Number of bytes in receive queue. */
792 	inq = tp->rcv_nxt - tp->copied_seq;
793 	copied -= inq;
794 	if (copied <= tp->rcvq_space.space)
795 		goto new_measure;
796 
797 	trace_tcp_rcvbuf_grow(sk, time);
798 
799 	tp->rcvq_space.space = copied;
800 
801 	tcp_rcvbuf_grow(sk);
802 
803 new_measure:
804 	tp->rcvq_space.seq = tp->copied_seq;
805 	tp->rcvq_space.time = tp->tcp_mstamp;
806 }
807 
808 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
809 {
810 #if IS_ENABLED(CONFIG_IPV6)
811 	struct inet_connection_sock *icsk = inet_csk(sk);
812 
813 	if (skb->protocol == htons(ETH_P_IPV6))
814 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
815 #endif
816 }
817 
818 /* There is something which you must keep in mind when you analyze the
819  * behavior of the tp->ato delayed ack timeout interval.  When a
820  * connection starts up, we want to ack as quickly as possible.  The
821  * problem is that "good" TCP's do slow start at the beginning of data
822  * transmission.  The means that until we send the first few ACK's the
823  * sender will sit on his end and only queue most of his data, because
824  * he can only send snd_cwnd unacked packets at any given time.  For
825  * each ACK we send, he increments snd_cwnd and transmits more of his
826  * queue.  -DaveM
827  */
828 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
829 {
830 	struct tcp_sock *tp = tcp_sk(sk);
831 	struct inet_connection_sock *icsk = inet_csk(sk);
832 	u32 now;
833 
834 	inet_csk_schedule_ack(sk);
835 
836 	tcp_measure_rcv_mss(sk, skb);
837 
838 	tcp_rcv_rtt_measure(tp);
839 
840 	now = tcp_jiffies32;
841 
842 	if (!icsk->icsk_ack.ato) {
843 		/* The _first_ data packet received, initialize
844 		 * delayed ACK engine.
845 		 */
846 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
847 		icsk->icsk_ack.ato = TCP_ATO_MIN;
848 	} else {
849 		int m = now - icsk->icsk_ack.lrcvtime;
850 
851 		if (m <= TCP_ATO_MIN / 2) {
852 			/* The fastest case is the first. */
853 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
854 		} else if (m < icsk->icsk_ack.ato) {
855 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
856 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
857 				icsk->icsk_ack.ato = icsk->icsk_rto;
858 		} else if (m > icsk->icsk_rto) {
859 			/* Too long gap. Apparently sender failed to
860 			 * restart window, so that we send ACKs quickly.
861 			 */
862 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
863 		}
864 	}
865 	icsk->icsk_ack.lrcvtime = now;
866 	tcp_save_lrcv_flowlabel(sk, skb);
867 
868 	tcp_data_ecn_check(sk, skb);
869 
870 	if (skb->len >= 128)
871 		tcp_grow_window(sk, skb, true);
872 }
873 
874 /* Called to compute a smoothed rtt estimate. The data fed to this
875  * routine either comes from timestamps, or from segments that were
876  * known _not_ to have been retransmitted [see Karn/Partridge
877  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
878  * piece by Van Jacobson.
879  * NOTE: the next three routines used to be one big routine.
880  * To save cycles in the RFC 1323 implementation it was better to break
881  * it up into three procedures. -- erics
882  */
883 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
884 {
885 	struct tcp_sock *tp = tcp_sk(sk);
886 	long m = mrtt_us; /* RTT */
887 	u32 srtt = tp->srtt_us;
888 
889 	/*	The following amusing code comes from Jacobson's
890 	 *	article in SIGCOMM '88.  Note that rtt and mdev
891 	 *	are scaled versions of rtt and mean deviation.
892 	 *	This is designed to be as fast as possible
893 	 *	m stands for "measurement".
894 	 *
895 	 *	On a 1990 paper the rto value is changed to:
896 	 *	RTO = rtt + 4 * mdev
897 	 *
898 	 * Funny. This algorithm seems to be very broken.
899 	 * These formulae increase RTO, when it should be decreased, increase
900 	 * too slowly, when it should be increased quickly, decrease too quickly
901 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
902 	 * does not matter how to _calculate_ it. Seems, it was trap
903 	 * that VJ failed to avoid. 8)
904 	 */
905 	if (srtt != 0) {
906 		m -= (srtt >> 3);	/* m is now error in rtt est */
907 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
908 		if (m < 0) {
909 			m = -m;		/* m is now abs(error) */
910 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
911 			/* This is similar to one of Eifel findings.
912 			 * Eifel blocks mdev updates when rtt decreases.
913 			 * This solution is a bit different: we use finer gain
914 			 * for mdev in this case (alpha*beta).
915 			 * Like Eifel it also prevents growth of rto,
916 			 * but also it limits too fast rto decreases,
917 			 * happening in pure Eifel.
918 			 */
919 			if (m > 0)
920 				m >>= 3;
921 		} else {
922 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
923 		}
924 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
925 		if (tp->mdev_us > tp->mdev_max_us) {
926 			tp->mdev_max_us = tp->mdev_us;
927 			if (tp->mdev_max_us > tp->rttvar_us)
928 				tp->rttvar_us = tp->mdev_max_us;
929 		}
930 		if (after(tp->snd_una, tp->rtt_seq)) {
931 			if (tp->mdev_max_us < tp->rttvar_us)
932 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
933 			tp->rtt_seq = tp->snd_nxt;
934 			tp->mdev_max_us = tcp_rto_min_us(sk);
935 
936 			tcp_bpf_rtt(sk, mrtt_us, srtt);
937 		}
938 	} else {
939 		/* no previous measure. */
940 		srtt = m << 3;		/* take the measured time to be rtt */
941 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
942 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
943 		tp->mdev_max_us = tp->rttvar_us;
944 		tp->rtt_seq = tp->snd_nxt;
945 
946 		tcp_bpf_rtt(sk, mrtt_us, srtt);
947 	}
948 	tp->srtt_us = max(1U, srtt);
949 }
950 
951 static void tcp_update_pacing_rate(struct sock *sk)
952 {
953 	const struct tcp_sock *tp = tcp_sk(sk);
954 	u64 rate;
955 
956 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
957 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
958 
959 	/* current rate is (cwnd * mss) / srtt
960 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
961 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
962 	 *
963 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
964 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
965 	 *	 end of slow start and should slow down.
966 	 */
967 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
968 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
969 	else
970 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
971 
972 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
973 
974 	if (likely(tp->srtt_us))
975 		do_div(rate, tp->srtt_us);
976 
977 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
978 	 * without any lock. We want to make sure compiler wont store
979 	 * intermediate values in this location.
980 	 */
981 	WRITE_ONCE(sk->sk_pacing_rate,
982 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
983 }
984 
985 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
986  * routine referred to above.
987  */
988 static void tcp_set_rto(struct sock *sk)
989 {
990 	const struct tcp_sock *tp = tcp_sk(sk);
991 	/* Old crap is replaced with new one. 8)
992 	 *
993 	 * More seriously:
994 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
995 	 *    It cannot be less due to utterly erratic ACK generation made
996 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
997 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
998 	 *    is invisible. Actually, Linux-2.4 also generates erratic
999 	 *    ACKs in some circumstances.
1000 	 */
1001 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1002 
1003 	/* 2. Fixups made earlier cannot be right.
1004 	 *    If we do not estimate RTO correctly without them,
1005 	 *    all the algo is pure shit and should be replaced
1006 	 *    with correct one. It is exactly, which we pretend to do.
1007 	 */
1008 
1009 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1010 	 * guarantees that rto is higher.
1011 	 */
1012 	tcp_bound_rto(sk);
1013 }
1014 
1015 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1016 {
1017 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1018 
1019 	if (!cwnd)
1020 		cwnd = TCP_INIT_CWND;
1021 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1022 }
1023 
1024 struct tcp_sacktag_state {
1025 	/* Timestamps for earliest and latest never-retransmitted segment
1026 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1027 	 * but congestion control should still get an accurate delay signal.
1028 	 */
1029 	u64	first_sackt;
1030 	u64	last_sackt;
1031 	u32	reord;
1032 	u32	sack_delivered;
1033 	int	flag;
1034 	unsigned int mss_now;
1035 	struct rate_sample *rate;
1036 };
1037 
1038 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1039  * and spurious retransmission information if this DSACK is unlikely caused by
1040  * sender's action:
1041  * - DSACKed sequence range is larger than maximum receiver's window.
1042  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1043  */
1044 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1045 			  u32 end_seq, struct tcp_sacktag_state *state)
1046 {
1047 	u32 seq_len, dup_segs = 1;
1048 
1049 	if (!before(start_seq, end_seq))
1050 		return 0;
1051 
1052 	seq_len = end_seq - start_seq;
1053 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1054 	if (seq_len > tp->max_window)
1055 		return 0;
1056 	if (seq_len > tp->mss_cache)
1057 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1058 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1059 		state->flag |= FLAG_DSACK_TLP;
1060 
1061 	tp->dsack_dups += dup_segs;
1062 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1063 	if (tp->dsack_dups > tp->total_retrans)
1064 		return 0;
1065 
1066 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1067 	/* We increase the RACK ordering window in rounds where we receive
1068 	 * DSACKs that may have been due to reordering causing RACK to trigger
1069 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1070 	 * without having seen reordering, or that match TLP probes (TLP
1071 	 * is timer-driven, not triggered by RACK).
1072 	 */
1073 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1074 		tp->rack.dsack_seen = 1;
1075 
1076 	state->flag |= FLAG_DSACKING_ACK;
1077 	/* A spurious retransmission is delivered */
1078 	state->sack_delivered += dup_segs;
1079 
1080 	return dup_segs;
1081 }
1082 
1083 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1084  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1085  * distance is approximated in full-mss packet distance ("reordering").
1086  */
1087 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1088 				      const int ts)
1089 {
1090 	struct tcp_sock *tp = tcp_sk(sk);
1091 	const u32 mss = tp->mss_cache;
1092 	u32 fack, metric;
1093 
1094 	fack = tcp_highest_sack_seq(tp);
1095 	if (!before(low_seq, fack))
1096 		return;
1097 
1098 	metric = fack - low_seq;
1099 	if ((metric > tp->reordering * mss) && mss) {
1100 #if FASTRETRANS_DEBUG > 1
1101 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1102 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1103 			 tp->reordering,
1104 			 0,
1105 			 tp->sacked_out,
1106 			 tp->undo_marker ? tp->undo_retrans : 0);
1107 #endif
1108 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1109 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1110 	}
1111 
1112 	/* This exciting event is worth to be remembered. 8) */
1113 	tp->reord_seen++;
1114 	NET_INC_STATS(sock_net(sk),
1115 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1116 }
1117 
1118  /* This must be called before lost_out or retrans_out are updated
1119   * on a new loss, because we want to know if all skbs previously
1120   * known to be lost have already been retransmitted, indicating
1121   * that this newly lost skb is our next skb to retransmit.
1122   */
1123 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1124 {
1125 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1126 	    (tp->retransmit_skb_hint &&
1127 	     before(TCP_SKB_CB(skb)->seq,
1128 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1129 		tp->retransmit_skb_hint = skb;
1130 }
1131 
1132 /* Sum the number of packets on the wire we have marked as lost, and
1133  * notify the congestion control module that the given skb was marked lost.
1134  */
1135 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1136 {
1137 	tp->lost += tcp_skb_pcount(skb);
1138 }
1139 
1140 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1141 {
1142 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1143 	struct tcp_sock *tp = tcp_sk(sk);
1144 
1145 	if (sacked & TCPCB_SACKED_ACKED)
1146 		return;
1147 
1148 	tcp_verify_retransmit_hint(tp, skb);
1149 	if (sacked & TCPCB_LOST) {
1150 		if (sacked & TCPCB_SACKED_RETRANS) {
1151 			/* Account for retransmits that are lost again */
1152 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1153 			tp->retrans_out -= tcp_skb_pcount(skb);
1154 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1155 				      tcp_skb_pcount(skb));
1156 			tcp_notify_skb_loss_event(tp, skb);
1157 		}
1158 	} else {
1159 		tp->lost_out += tcp_skb_pcount(skb);
1160 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1161 		tcp_notify_skb_loss_event(tp, skb);
1162 	}
1163 }
1164 
1165 /* This procedure tags the retransmission queue when SACKs arrive.
1166  *
1167  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1168  * Packets in queue with these bits set are counted in variables
1169  * sacked_out, retrans_out and lost_out, correspondingly.
1170  *
1171  * Valid combinations are:
1172  * Tag  InFlight	Description
1173  * 0	1		- orig segment is in flight.
1174  * S	0		- nothing flies, orig reached receiver.
1175  * L	0		- nothing flies, orig lost by net.
1176  * R	2		- both orig and retransmit are in flight.
1177  * L|R	1		- orig is lost, retransmit is in flight.
1178  * S|R  1		- orig reached receiver, retrans is still in flight.
1179  * (L|S|R is logically valid, it could occur when L|R is sacked,
1180  *  but it is equivalent to plain S and code short-circuits it to S.
1181  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1182  *
1183  * These 6 states form finite state machine, controlled by the following events:
1184  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1185  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1186  * 3. Loss detection event of two flavors:
1187  *	A. Scoreboard estimator decided the packet is lost.
1188  *	   A'. Reno "three dupacks" marks head of queue lost.
1189  *	B. SACK arrives sacking SND.NXT at the moment, when the
1190  *	   segment was retransmitted.
1191  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1192  *
1193  * It is pleasant to note, that state diagram turns out to be commutative,
1194  * so that we are allowed not to be bothered by order of our actions,
1195  * when multiple events arrive simultaneously. (see the function below).
1196  *
1197  * Reordering detection.
1198  * --------------------
1199  * Reordering metric is maximal distance, which a packet can be displaced
1200  * in packet stream. With SACKs we can estimate it:
1201  *
1202  * 1. SACK fills old hole and the corresponding segment was not
1203  *    ever retransmitted -> reordering. Alas, we cannot use it
1204  *    when segment was retransmitted.
1205  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1206  *    for retransmitted and already SACKed segment -> reordering..
1207  * Both of these heuristics are not used in Loss state, when we cannot
1208  * account for retransmits accurately.
1209  *
1210  * SACK block validation.
1211  * ----------------------
1212  *
1213  * SACK block range validation checks that the received SACK block fits to
1214  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1215  * Note that SND.UNA is not included to the range though being valid because
1216  * it means that the receiver is rather inconsistent with itself reporting
1217  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1218  * perfectly valid, however, in light of RFC2018 which explicitly states
1219  * that "SACK block MUST reflect the newest segment.  Even if the newest
1220  * segment is going to be discarded ...", not that it looks very clever
1221  * in case of head skb. Due to potentional receiver driven attacks, we
1222  * choose to avoid immediate execution of a walk in write queue due to
1223  * reneging and defer head skb's loss recovery to standard loss recovery
1224  * procedure that will eventually trigger (nothing forbids us doing this).
1225  *
1226  * Implements also blockage to start_seq wrap-around. Problem lies in the
1227  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1228  * there's no guarantee that it will be before snd_nxt (n). The problem
1229  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1230  * wrap (s_w):
1231  *
1232  *         <- outs wnd ->                          <- wrapzone ->
1233  *         u     e      n                         u_w   e_w  s n_w
1234  *         |     |      |                          |     |   |  |
1235  * |<------------+------+----- TCP seqno space --------------+---------->|
1236  * ...-- <2^31 ->|                                           |<--------...
1237  * ...---- >2^31 ------>|                                    |<--------...
1238  *
1239  * Current code wouldn't be vulnerable but it's better still to discard such
1240  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1241  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1242  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1243  * equal to the ideal case (infinite seqno space without wrap caused issues).
1244  *
1245  * With D-SACK the lower bound is extended to cover sequence space below
1246  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1247  * again, D-SACK block must not to go across snd_una (for the same reason as
1248  * for the normal SACK blocks, explained above). But there all simplicity
1249  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1250  * fully below undo_marker they do not affect behavior in anyway and can
1251  * therefore be safely ignored. In rare cases (which are more or less
1252  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1253  * fragmentation and packet reordering past skb's retransmission. To consider
1254  * them correctly, the acceptable range must be extended even more though
1255  * the exact amount is rather hard to quantify. However, tp->max_window can
1256  * be used as an exaggerated estimate.
1257  */
1258 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1259 				   u32 start_seq, u32 end_seq)
1260 {
1261 	/* Too far in future, or reversed (interpretation is ambiguous) */
1262 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1263 		return false;
1264 
1265 	/* Nasty start_seq wrap-around check (see comments above) */
1266 	if (!before(start_seq, tp->snd_nxt))
1267 		return false;
1268 
1269 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1270 	 * start_seq == snd_una is non-sensical (see comments above)
1271 	 */
1272 	if (after(start_seq, tp->snd_una))
1273 		return true;
1274 
1275 	if (!is_dsack || !tp->undo_marker)
1276 		return false;
1277 
1278 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1279 	if (after(end_seq, tp->snd_una))
1280 		return false;
1281 
1282 	if (!before(start_seq, tp->undo_marker))
1283 		return true;
1284 
1285 	/* Too old */
1286 	if (!after(end_seq, tp->undo_marker))
1287 		return false;
1288 
1289 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1290 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1291 	 */
1292 	return !before(start_seq, end_seq - tp->max_window);
1293 }
1294 
1295 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1296 			    struct tcp_sack_block_wire *sp, int num_sacks,
1297 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1298 {
1299 	struct tcp_sock *tp = tcp_sk(sk);
1300 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1301 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1302 	u32 dup_segs;
1303 
1304 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1305 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1306 	} else if (num_sacks > 1) {
1307 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1308 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1309 
1310 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1311 			return false;
1312 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1313 	} else {
1314 		return false;
1315 	}
1316 
1317 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1318 	if (!dup_segs) {	/* Skip dubious DSACK */
1319 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1320 		return false;
1321 	}
1322 
1323 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1324 
1325 	/* D-SACK for already forgotten data... Do dumb counting. */
1326 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1327 	    !after(end_seq_0, prior_snd_una) &&
1328 	    after(end_seq_0, tp->undo_marker))
1329 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1330 
1331 	return true;
1332 }
1333 
1334 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1335  * the incoming SACK may not exactly match but we can find smaller MSS
1336  * aligned portion of it that matches. Therefore we might need to fragment
1337  * which may fail and creates some hassle (caller must handle error case
1338  * returns).
1339  *
1340  * FIXME: this could be merged to shift decision code
1341  */
1342 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1343 				  u32 start_seq, u32 end_seq)
1344 {
1345 	int err;
1346 	bool in_sack;
1347 	unsigned int pkt_len;
1348 	unsigned int mss;
1349 
1350 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1351 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1352 
1353 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1354 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1355 		mss = tcp_skb_mss(skb);
1356 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1357 
1358 		if (!in_sack) {
1359 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1360 			if (pkt_len < mss)
1361 				pkt_len = mss;
1362 		} else {
1363 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1364 			if (pkt_len < mss)
1365 				return -EINVAL;
1366 		}
1367 
1368 		/* Round if necessary so that SACKs cover only full MSSes
1369 		 * and/or the remaining small portion (if present)
1370 		 */
1371 		if (pkt_len > mss) {
1372 			unsigned int new_len = (pkt_len / mss) * mss;
1373 			if (!in_sack && new_len < pkt_len)
1374 				new_len += mss;
1375 			pkt_len = new_len;
1376 		}
1377 
1378 		if (pkt_len >= skb->len && !in_sack)
1379 			return 0;
1380 
1381 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1382 				   pkt_len, mss, GFP_ATOMIC);
1383 		if (err < 0)
1384 			return err;
1385 	}
1386 
1387 	return in_sack;
1388 }
1389 
1390 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1391 static u8 tcp_sacktag_one(struct sock *sk,
1392 			  struct tcp_sacktag_state *state, u8 sacked,
1393 			  u32 start_seq, u32 end_seq,
1394 			  int dup_sack, int pcount,
1395 			  u64 xmit_time)
1396 {
1397 	struct tcp_sock *tp = tcp_sk(sk);
1398 
1399 	/* Account D-SACK for retransmitted packet. */
1400 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1401 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1402 		    after(end_seq, tp->undo_marker))
1403 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1404 		if ((sacked & TCPCB_SACKED_ACKED) &&
1405 		    before(start_seq, state->reord))
1406 				state->reord = start_seq;
1407 	}
1408 
1409 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1410 	if (!after(end_seq, tp->snd_una))
1411 		return sacked;
1412 
1413 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1414 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1415 
1416 		if (sacked & TCPCB_SACKED_RETRANS) {
1417 			/* If the segment is not tagged as lost,
1418 			 * we do not clear RETRANS, believing
1419 			 * that retransmission is still in flight.
1420 			 */
1421 			if (sacked & TCPCB_LOST) {
1422 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1423 				tp->lost_out -= pcount;
1424 				tp->retrans_out -= pcount;
1425 			}
1426 		} else {
1427 			if (!(sacked & TCPCB_RETRANS)) {
1428 				/* New sack for not retransmitted frame,
1429 				 * which was in hole. It is reordering.
1430 				 */
1431 				if (before(start_seq,
1432 					   tcp_highest_sack_seq(tp)) &&
1433 				    before(start_seq, state->reord))
1434 					state->reord = start_seq;
1435 
1436 				if (!after(end_seq, tp->high_seq))
1437 					state->flag |= FLAG_ORIG_SACK_ACKED;
1438 				if (state->first_sackt == 0)
1439 					state->first_sackt = xmit_time;
1440 				state->last_sackt = xmit_time;
1441 			}
1442 
1443 			if (sacked & TCPCB_LOST) {
1444 				sacked &= ~TCPCB_LOST;
1445 				tp->lost_out -= pcount;
1446 			}
1447 		}
1448 
1449 		sacked |= TCPCB_SACKED_ACKED;
1450 		state->flag |= FLAG_DATA_SACKED;
1451 		tp->sacked_out += pcount;
1452 		/* Out-of-order packets delivered */
1453 		state->sack_delivered += pcount;
1454 	}
1455 
1456 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1457 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1458 	 * are accounted above as well.
1459 	 */
1460 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1461 		sacked &= ~TCPCB_SACKED_RETRANS;
1462 		tp->retrans_out -= pcount;
1463 	}
1464 
1465 	return sacked;
1466 }
1467 
1468 /* Shift newly-SACKed bytes from this skb to the immediately previous
1469  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1470  */
1471 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1472 			    struct sk_buff *skb,
1473 			    struct tcp_sacktag_state *state,
1474 			    unsigned int pcount, int shifted, int mss,
1475 			    bool dup_sack)
1476 {
1477 	struct tcp_sock *tp = tcp_sk(sk);
1478 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1479 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1480 
1481 	BUG_ON(!pcount);
1482 
1483 	/* Adjust counters and hints for the newly sacked sequence
1484 	 * range but discard the return value since prev is already
1485 	 * marked. We must tag the range first because the seq
1486 	 * advancement below implicitly advances
1487 	 * tcp_highest_sack_seq() when skb is highest_sack.
1488 	 */
1489 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1490 			start_seq, end_seq, dup_sack, pcount,
1491 			tcp_skb_timestamp_us(skb));
1492 	tcp_rate_skb_delivered(sk, skb, state->rate);
1493 
1494 	TCP_SKB_CB(prev)->end_seq += shifted;
1495 	TCP_SKB_CB(skb)->seq += shifted;
1496 
1497 	tcp_skb_pcount_add(prev, pcount);
1498 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1499 	tcp_skb_pcount_add(skb, -pcount);
1500 
1501 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1502 	 * in theory this shouldn't be necessary but as long as DSACK
1503 	 * code can come after this skb later on it's better to keep
1504 	 * setting gso_size to something.
1505 	 */
1506 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1507 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1508 
1509 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1510 	if (tcp_skb_pcount(skb) <= 1)
1511 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1512 
1513 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1514 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1515 
1516 	if (skb->len > 0) {
1517 		BUG_ON(!tcp_skb_pcount(skb));
1518 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1519 		return false;
1520 	}
1521 
1522 	/* Whole SKB was eaten :-) */
1523 
1524 	if (skb == tp->retransmit_skb_hint)
1525 		tp->retransmit_skb_hint = prev;
1526 
1527 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1528 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1529 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1530 		TCP_SKB_CB(prev)->end_seq++;
1531 
1532 	if (skb == tcp_highest_sack(sk))
1533 		tcp_advance_highest_sack(sk, skb);
1534 
1535 	tcp_skb_collapse_tstamp(prev, skb);
1536 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1537 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1538 
1539 	tcp_rtx_queue_unlink_and_free(skb, sk);
1540 
1541 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1542 
1543 	return true;
1544 }
1545 
1546 /* I wish gso_size would have a bit more sane initialization than
1547  * something-or-zero which complicates things
1548  */
1549 static int tcp_skb_seglen(const struct sk_buff *skb)
1550 {
1551 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1552 }
1553 
1554 /* Shifting pages past head area doesn't work */
1555 static int skb_can_shift(const struct sk_buff *skb)
1556 {
1557 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1558 }
1559 
1560 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1561 		  int pcount, int shiftlen)
1562 {
1563 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1564 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1565 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1566 	 * even if current MSS is bigger.
1567 	 */
1568 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1569 		return 0;
1570 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1571 		return 0;
1572 	return skb_shift(to, from, shiftlen);
1573 }
1574 
1575 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1576  * skb.
1577  */
1578 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1579 					  struct tcp_sacktag_state *state,
1580 					  u32 start_seq, u32 end_seq,
1581 					  bool dup_sack)
1582 {
1583 	struct tcp_sock *tp = tcp_sk(sk);
1584 	struct sk_buff *prev;
1585 	int mss;
1586 	int pcount = 0;
1587 	int len;
1588 	int in_sack;
1589 
1590 	/* Normally R but no L won't result in plain S */
1591 	if (!dup_sack &&
1592 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1593 		goto fallback;
1594 	if (!skb_can_shift(skb))
1595 		goto fallback;
1596 	/* This frame is about to be dropped (was ACKed). */
1597 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1598 		goto fallback;
1599 
1600 	/* Can only happen with delayed DSACK + discard craziness */
1601 	prev = skb_rb_prev(skb);
1602 	if (!prev)
1603 		goto fallback;
1604 
1605 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1606 		goto fallback;
1607 
1608 	if (!tcp_skb_can_collapse(prev, skb))
1609 		goto fallback;
1610 
1611 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1612 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1613 
1614 	if (in_sack) {
1615 		len = skb->len;
1616 		pcount = tcp_skb_pcount(skb);
1617 		mss = tcp_skb_seglen(skb);
1618 
1619 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1620 		 * drop this restriction as unnecessary
1621 		 */
1622 		if (mss != tcp_skb_seglen(prev))
1623 			goto fallback;
1624 	} else {
1625 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1626 			goto noop;
1627 		/* CHECKME: This is non-MSS split case only?, this will
1628 		 * cause skipped skbs due to advancing loop btw, original
1629 		 * has that feature too
1630 		 */
1631 		if (tcp_skb_pcount(skb) <= 1)
1632 			goto noop;
1633 
1634 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1635 		if (!in_sack) {
1636 			/* TODO: head merge to next could be attempted here
1637 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1638 			 * though it might not be worth of the additional hassle
1639 			 *
1640 			 * ...we can probably just fallback to what was done
1641 			 * previously. We could try merging non-SACKed ones
1642 			 * as well but it probably isn't going to buy off
1643 			 * because later SACKs might again split them, and
1644 			 * it would make skb timestamp tracking considerably
1645 			 * harder problem.
1646 			 */
1647 			goto fallback;
1648 		}
1649 
1650 		len = end_seq - TCP_SKB_CB(skb)->seq;
1651 		BUG_ON(len < 0);
1652 		BUG_ON(len > skb->len);
1653 
1654 		/* MSS boundaries should be honoured or else pcount will
1655 		 * severely break even though it makes things bit trickier.
1656 		 * Optimize common case to avoid most of the divides
1657 		 */
1658 		mss = tcp_skb_mss(skb);
1659 
1660 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1661 		 * drop this restriction as unnecessary
1662 		 */
1663 		if (mss != tcp_skb_seglen(prev))
1664 			goto fallback;
1665 
1666 		if (len == mss) {
1667 			pcount = 1;
1668 		} else if (len < mss) {
1669 			goto noop;
1670 		} else {
1671 			pcount = len / mss;
1672 			len = pcount * mss;
1673 		}
1674 	}
1675 
1676 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1677 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1678 		goto fallback;
1679 
1680 	if (!tcp_skb_shift(prev, skb, pcount, len))
1681 		goto fallback;
1682 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1683 		goto out;
1684 
1685 	/* Hole filled allows collapsing with the next as well, this is very
1686 	 * useful when hole on every nth skb pattern happens
1687 	 */
1688 	skb = skb_rb_next(prev);
1689 	if (!skb)
1690 		goto out;
1691 
1692 	if (!skb_can_shift(skb) ||
1693 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1694 	    (mss != tcp_skb_seglen(skb)))
1695 		goto out;
1696 
1697 	if (!tcp_skb_can_collapse(prev, skb))
1698 		goto out;
1699 	len = skb->len;
1700 	pcount = tcp_skb_pcount(skb);
1701 	if (tcp_skb_shift(prev, skb, pcount, len))
1702 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1703 				len, mss, 0);
1704 
1705 out:
1706 	return prev;
1707 
1708 noop:
1709 	return skb;
1710 
1711 fallback:
1712 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1713 	return NULL;
1714 }
1715 
1716 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1717 					struct tcp_sack_block *next_dup,
1718 					struct tcp_sacktag_state *state,
1719 					u32 start_seq, u32 end_seq,
1720 					bool dup_sack_in)
1721 {
1722 	struct tcp_sock *tp = tcp_sk(sk);
1723 	struct sk_buff *tmp;
1724 
1725 	skb_rbtree_walk_from(skb) {
1726 		int in_sack = 0;
1727 		bool dup_sack = dup_sack_in;
1728 
1729 		/* queue is in-order => we can short-circuit the walk early */
1730 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1731 			break;
1732 
1733 		if (next_dup  &&
1734 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1735 			in_sack = tcp_match_skb_to_sack(sk, skb,
1736 							next_dup->start_seq,
1737 							next_dup->end_seq);
1738 			if (in_sack > 0)
1739 				dup_sack = true;
1740 		}
1741 
1742 		/* skb reference here is a bit tricky to get right, since
1743 		 * shifting can eat and free both this skb and the next,
1744 		 * so not even _safe variant of the loop is enough.
1745 		 */
1746 		if (in_sack <= 0) {
1747 			tmp = tcp_shift_skb_data(sk, skb, state,
1748 						 start_seq, end_seq, dup_sack);
1749 			if (tmp) {
1750 				if (tmp != skb) {
1751 					skb = tmp;
1752 					continue;
1753 				}
1754 
1755 				in_sack = 0;
1756 			} else {
1757 				in_sack = tcp_match_skb_to_sack(sk, skb,
1758 								start_seq,
1759 								end_seq);
1760 			}
1761 		}
1762 
1763 		if (unlikely(in_sack < 0))
1764 			break;
1765 
1766 		if (in_sack) {
1767 			TCP_SKB_CB(skb)->sacked =
1768 				tcp_sacktag_one(sk,
1769 						state,
1770 						TCP_SKB_CB(skb)->sacked,
1771 						TCP_SKB_CB(skb)->seq,
1772 						TCP_SKB_CB(skb)->end_seq,
1773 						dup_sack,
1774 						tcp_skb_pcount(skb),
1775 						tcp_skb_timestamp_us(skb));
1776 			tcp_rate_skb_delivered(sk, skb, state->rate);
1777 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1778 				list_del_init(&skb->tcp_tsorted_anchor);
1779 
1780 			if (!before(TCP_SKB_CB(skb)->seq,
1781 				    tcp_highest_sack_seq(tp)))
1782 				tcp_advance_highest_sack(sk, skb);
1783 		}
1784 	}
1785 	return skb;
1786 }
1787 
1788 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1789 {
1790 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1791 	struct sk_buff *skb;
1792 
1793 	while (*p) {
1794 		parent = *p;
1795 		skb = rb_to_skb(parent);
1796 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1797 			p = &parent->rb_left;
1798 			continue;
1799 		}
1800 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1801 			p = &parent->rb_right;
1802 			continue;
1803 		}
1804 		return skb;
1805 	}
1806 	return NULL;
1807 }
1808 
1809 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1810 					u32 skip_to_seq)
1811 {
1812 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1813 		return skb;
1814 
1815 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1816 }
1817 
1818 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1819 						struct sock *sk,
1820 						struct tcp_sack_block *next_dup,
1821 						struct tcp_sacktag_state *state,
1822 						u32 skip_to_seq)
1823 {
1824 	if (!next_dup)
1825 		return skb;
1826 
1827 	if (before(next_dup->start_seq, skip_to_seq)) {
1828 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1829 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1830 				       next_dup->start_seq, next_dup->end_seq,
1831 				       1);
1832 	}
1833 
1834 	return skb;
1835 }
1836 
1837 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1838 {
1839 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1840 }
1841 
1842 static int
1843 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1844 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1845 {
1846 	struct tcp_sock *tp = tcp_sk(sk);
1847 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1848 				    TCP_SKB_CB(ack_skb)->sacked);
1849 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1850 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1851 	struct tcp_sack_block *cache;
1852 	struct sk_buff *skb;
1853 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1854 	int used_sacks;
1855 	bool found_dup_sack = false;
1856 	int i, j;
1857 	int first_sack_index;
1858 
1859 	state->flag = 0;
1860 	state->reord = tp->snd_nxt;
1861 
1862 	if (!tp->sacked_out)
1863 		tcp_highest_sack_reset(sk);
1864 
1865 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1866 					 num_sacks, prior_snd_una, state);
1867 
1868 	/* Eliminate too old ACKs, but take into
1869 	 * account more or less fresh ones, they can
1870 	 * contain valid SACK info.
1871 	 */
1872 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1873 		return 0;
1874 
1875 	if (!tp->packets_out)
1876 		goto out;
1877 
1878 	used_sacks = 0;
1879 	first_sack_index = 0;
1880 	for (i = 0; i < num_sacks; i++) {
1881 		bool dup_sack = !i && found_dup_sack;
1882 
1883 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1884 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1885 
1886 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1887 					    sp[used_sacks].start_seq,
1888 					    sp[used_sacks].end_seq)) {
1889 			int mib_idx;
1890 
1891 			if (dup_sack) {
1892 				if (!tp->undo_marker)
1893 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1894 				else
1895 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1896 			} else {
1897 				/* Don't count olds caused by ACK reordering */
1898 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1899 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1900 					continue;
1901 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1902 			}
1903 
1904 			NET_INC_STATS(sock_net(sk), mib_idx);
1905 			if (i == 0)
1906 				first_sack_index = -1;
1907 			continue;
1908 		}
1909 
1910 		/* Ignore very old stuff early */
1911 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1912 			if (i == 0)
1913 				first_sack_index = -1;
1914 			continue;
1915 		}
1916 
1917 		used_sacks++;
1918 	}
1919 
1920 	/* order SACK blocks to allow in order walk of the retrans queue */
1921 	for (i = used_sacks - 1; i > 0; i--) {
1922 		for (j = 0; j < i; j++) {
1923 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1924 				swap(sp[j], sp[j + 1]);
1925 
1926 				/* Track where the first SACK block goes to */
1927 				if (j == first_sack_index)
1928 					first_sack_index = j + 1;
1929 			}
1930 		}
1931 	}
1932 
1933 	state->mss_now = tcp_current_mss(sk);
1934 	skb = NULL;
1935 	i = 0;
1936 
1937 	if (!tp->sacked_out) {
1938 		/* It's already past, so skip checking against it */
1939 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1940 	} else {
1941 		cache = tp->recv_sack_cache;
1942 		/* Skip empty blocks in at head of the cache */
1943 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1944 		       !cache->end_seq)
1945 			cache++;
1946 	}
1947 
1948 	while (i < used_sacks) {
1949 		u32 start_seq = sp[i].start_seq;
1950 		u32 end_seq = sp[i].end_seq;
1951 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1952 		struct tcp_sack_block *next_dup = NULL;
1953 
1954 		if (found_dup_sack && ((i + 1) == first_sack_index))
1955 			next_dup = &sp[i + 1];
1956 
1957 		/* Skip too early cached blocks */
1958 		while (tcp_sack_cache_ok(tp, cache) &&
1959 		       !before(start_seq, cache->end_seq))
1960 			cache++;
1961 
1962 		/* Can skip some work by looking recv_sack_cache? */
1963 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1964 		    after(end_seq, cache->start_seq)) {
1965 
1966 			/* Head todo? */
1967 			if (before(start_seq, cache->start_seq)) {
1968 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1969 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1970 						       state,
1971 						       start_seq,
1972 						       cache->start_seq,
1973 						       dup_sack);
1974 			}
1975 
1976 			/* Rest of the block already fully processed? */
1977 			if (!after(end_seq, cache->end_seq))
1978 				goto advance_sp;
1979 
1980 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1981 						       state,
1982 						       cache->end_seq);
1983 
1984 			/* ...tail remains todo... */
1985 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1986 				/* ...but better entrypoint exists! */
1987 				skb = tcp_highest_sack(sk);
1988 				if (!skb)
1989 					break;
1990 				cache++;
1991 				goto walk;
1992 			}
1993 
1994 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1995 			/* Check overlap against next cached too (past this one already) */
1996 			cache++;
1997 			continue;
1998 		}
1999 
2000 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2001 			skb = tcp_highest_sack(sk);
2002 			if (!skb)
2003 				break;
2004 		}
2005 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2006 
2007 walk:
2008 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2009 				       start_seq, end_seq, dup_sack);
2010 
2011 advance_sp:
2012 		i++;
2013 	}
2014 
2015 	/* Clear the head of the cache sack blocks so we can skip it next time */
2016 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2017 		tp->recv_sack_cache[i].start_seq = 0;
2018 		tp->recv_sack_cache[i].end_seq = 0;
2019 	}
2020 	for (j = 0; j < used_sacks; j++)
2021 		tp->recv_sack_cache[i++] = sp[j];
2022 
2023 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2024 		tcp_check_sack_reordering(sk, state->reord, 0);
2025 
2026 	tcp_verify_left_out(tp);
2027 out:
2028 
2029 #if FASTRETRANS_DEBUG > 0
2030 	WARN_ON((int)tp->sacked_out < 0);
2031 	WARN_ON((int)tp->lost_out < 0);
2032 	WARN_ON((int)tp->retrans_out < 0);
2033 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2034 #endif
2035 	return state->flag;
2036 }
2037 
2038 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2039  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2040  */
2041 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2042 {
2043 	u32 holes;
2044 
2045 	holes = max(tp->lost_out, 1U);
2046 	holes = min(holes, tp->packets_out);
2047 
2048 	if ((tp->sacked_out + holes) > tp->packets_out) {
2049 		tp->sacked_out = tp->packets_out - holes;
2050 		return true;
2051 	}
2052 	return false;
2053 }
2054 
2055 /* If we receive more dupacks than we expected counting segments
2056  * in assumption of absent reordering, interpret this as reordering.
2057  * The only another reason could be bug in receiver TCP.
2058  */
2059 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2060 {
2061 	struct tcp_sock *tp = tcp_sk(sk);
2062 
2063 	if (!tcp_limit_reno_sacked(tp))
2064 		return;
2065 
2066 	tp->reordering = min_t(u32, tp->packets_out + addend,
2067 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2068 	tp->reord_seen++;
2069 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2070 }
2071 
2072 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2073 
2074 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2075 {
2076 	if (num_dupack) {
2077 		struct tcp_sock *tp = tcp_sk(sk);
2078 		u32 prior_sacked = tp->sacked_out;
2079 		s32 delivered;
2080 
2081 		tp->sacked_out += num_dupack;
2082 		tcp_check_reno_reordering(sk, 0);
2083 		delivered = tp->sacked_out - prior_sacked;
2084 		if (delivered > 0)
2085 			tcp_count_delivered(tp, delivered, ece_ack);
2086 		tcp_verify_left_out(tp);
2087 	}
2088 }
2089 
2090 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2091 
2092 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2093 {
2094 	struct tcp_sock *tp = tcp_sk(sk);
2095 
2096 	if (acked > 0) {
2097 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2098 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2099 				    ece_ack);
2100 		if (acked - 1 >= tp->sacked_out)
2101 			tp->sacked_out = 0;
2102 		else
2103 			tp->sacked_out -= acked - 1;
2104 	}
2105 	tcp_check_reno_reordering(sk, acked);
2106 	tcp_verify_left_out(tp);
2107 }
2108 
2109 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2110 {
2111 	tp->sacked_out = 0;
2112 }
2113 
2114 void tcp_clear_retrans(struct tcp_sock *tp)
2115 {
2116 	tp->retrans_out = 0;
2117 	tp->lost_out = 0;
2118 	tp->undo_marker = 0;
2119 	tp->undo_retrans = -1;
2120 	tp->sacked_out = 0;
2121 	tp->rto_stamp = 0;
2122 	tp->total_rto = 0;
2123 	tp->total_rto_recoveries = 0;
2124 	tp->total_rto_time = 0;
2125 }
2126 
2127 static inline void tcp_init_undo(struct tcp_sock *tp)
2128 {
2129 	tp->undo_marker = tp->snd_una;
2130 
2131 	/* Retransmission still in flight may cause DSACKs later. */
2132 	/* First, account for regular retransmits in flight: */
2133 	tp->undo_retrans = tp->retrans_out;
2134 	/* Next, account for TLP retransmits in flight: */
2135 	if (tp->tlp_high_seq && tp->tlp_retrans)
2136 		tp->undo_retrans++;
2137 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2138 	if (!tp->undo_retrans)
2139 		tp->undo_retrans = -1;
2140 }
2141 
2142 /* If we detect SACK reneging, forget all SACK information
2143  * and reset tags completely, otherwise preserve SACKs. If receiver
2144  * dropped its ofo queue, we will know this due to reneging detection.
2145  */
2146 static void tcp_timeout_mark_lost(struct sock *sk)
2147 {
2148 	struct tcp_sock *tp = tcp_sk(sk);
2149 	struct sk_buff *skb, *head;
2150 	bool is_reneg;			/* is receiver reneging on SACKs? */
2151 
2152 	head = tcp_rtx_queue_head(sk);
2153 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2154 	if (is_reneg) {
2155 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2156 		tp->sacked_out = 0;
2157 		/* Mark SACK reneging until we recover from this loss event. */
2158 		tp->is_sack_reneg = 1;
2159 	} else if (tcp_is_reno(tp)) {
2160 		tcp_reset_reno_sack(tp);
2161 	}
2162 
2163 	skb = head;
2164 	skb_rbtree_walk_from(skb) {
2165 		if (is_reneg)
2166 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2167 		else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0)
2168 			continue; /* Don't mark recently sent ones lost yet */
2169 		tcp_mark_skb_lost(sk, skb);
2170 	}
2171 	tcp_verify_left_out(tp);
2172 	tcp_clear_all_retrans_hints(tp);
2173 }
2174 
2175 /* Enter Loss state. */
2176 void tcp_enter_loss(struct sock *sk)
2177 {
2178 	const struct inet_connection_sock *icsk = inet_csk(sk);
2179 	struct tcp_sock *tp = tcp_sk(sk);
2180 	struct net *net = sock_net(sk);
2181 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2182 	u8 reordering;
2183 
2184 	tcp_timeout_mark_lost(sk);
2185 
2186 	/* Reduce ssthresh if it has not yet been made inside this window. */
2187 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2188 	    !after(tp->high_seq, tp->snd_una) ||
2189 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2190 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2191 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2192 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2193 		tcp_ca_event(sk, CA_EVENT_LOSS);
2194 		tcp_init_undo(tp);
2195 	}
2196 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2197 	tp->snd_cwnd_cnt   = 0;
2198 	tp->snd_cwnd_stamp = tcp_jiffies32;
2199 
2200 	/* Timeout in disordered state after receiving substantial DUPACKs
2201 	 * suggests that the degree of reordering is over-estimated.
2202 	 */
2203 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2204 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2205 	    tp->sacked_out >= reordering)
2206 		tp->reordering = min_t(unsigned int, tp->reordering,
2207 				       reordering);
2208 
2209 	tcp_set_ca_state(sk, TCP_CA_Loss);
2210 	tp->high_seq = tp->snd_nxt;
2211 	tp->tlp_high_seq = 0;
2212 	tcp_ecn_queue_cwr(tp);
2213 
2214 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2215 	 * loss recovery is underway except recurring timeout(s) on
2216 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2217 	 */
2218 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2219 		   (new_recovery || icsk->icsk_retransmits) &&
2220 		   !inet_csk(sk)->icsk_mtup.probe_size;
2221 }
2222 
2223 /* If ACK arrived pointing to a remembered SACK, it means that our
2224  * remembered SACKs do not reflect real state of receiver i.e.
2225  * receiver _host_ is heavily congested (or buggy).
2226  *
2227  * To avoid big spurious retransmission bursts due to transient SACK
2228  * scoreboard oddities that look like reneging, we give the receiver a
2229  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2230  * restore sanity to the SACK scoreboard. If the apparent reneging
2231  * persists until this RTO then we'll clear the SACK scoreboard.
2232  */
2233 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2234 {
2235 	if (*ack_flag & FLAG_SACK_RENEGING &&
2236 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2237 		struct tcp_sock *tp = tcp_sk(sk);
2238 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2239 					  msecs_to_jiffies(10));
2240 
2241 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false);
2242 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2243 		return true;
2244 	}
2245 	return false;
2246 }
2247 
2248 /* Linux NewReno/SACK/ECN state machine.
2249  * --------------------------------------
2250  *
2251  * "Open"	Normal state, no dubious events, fast path.
2252  * "Disorder"   In all the respects it is "Open",
2253  *		but requires a bit more attention. It is entered when
2254  *		we see some SACKs or dupacks. It is split of "Open"
2255  *		mainly to move some processing from fast path to slow one.
2256  * "CWR"	CWND was reduced due to some Congestion Notification event.
2257  *		It can be ECN, ICMP source quench, local device congestion.
2258  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2259  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2260  *
2261  * tcp_fastretrans_alert() is entered:
2262  * - each incoming ACK, if state is not "Open"
2263  * - when arrived ACK is unusual, namely:
2264  *	* SACK
2265  *	* Duplicate ACK.
2266  *	* ECN ECE.
2267  *
2268  * Counting packets in flight is pretty simple.
2269  *
2270  *	in_flight = packets_out - left_out + retrans_out
2271  *
2272  *	packets_out is SND.NXT-SND.UNA counted in packets.
2273  *
2274  *	retrans_out is number of retransmitted segments.
2275  *
2276  *	left_out is number of segments left network, but not ACKed yet.
2277  *
2278  *		left_out = sacked_out + lost_out
2279  *
2280  *     sacked_out: Packets, which arrived to receiver out of order
2281  *		   and hence not ACKed. With SACKs this number is simply
2282  *		   amount of SACKed data. Even without SACKs
2283  *		   it is easy to give pretty reliable estimate of this number,
2284  *		   counting duplicate ACKs.
2285  *
2286  *       lost_out: Packets lost by network. TCP has no explicit
2287  *		   "loss notification" feedback from network (for now).
2288  *		   It means that this number can be only _guessed_.
2289  *		   Actually, it is the heuristics to predict lossage that
2290  *		   distinguishes different algorithms.
2291  *
2292  *	F.e. after RTO, when all the queue is considered as lost,
2293  *	lost_out = packets_out and in_flight = retrans_out.
2294  *
2295  *		Essentially, we have now a few algorithms detecting
2296  *		lost packets.
2297  *
2298  *		If the receiver supports SACK:
2299  *
2300  *		RACK (RFC8985): RACK is a newer loss detection algorithm
2301  *		(2017-) that checks timing instead of counting DUPACKs.
2302  *		Essentially a packet is considered lost if it's not S/ACKed
2303  *		after RTT + reordering_window, where both metrics are
2304  *		dynamically measured and adjusted. This is implemented in
2305  *		tcp_rack_mark_lost.
2306  *
2307  *		If the receiver does not support SACK:
2308  *
2309  *		NewReno (RFC6582): in Recovery we assume that one segment
2310  *		is lost (classic Reno). While we are in Recovery and
2311  *		a partial ACK arrives, we assume that one more packet
2312  *		is lost (NewReno). This heuristics are the same in NewReno
2313  *		and SACK.
2314  *
2315  * The really tricky (and requiring careful tuning) part of the algorithm
2316  * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue().
2317  * The first determines the moment _when_ we should reduce CWND and,
2318  * hence, slow down forward transmission. In fact, it determines the moment
2319  * when we decide that hole is caused by loss, rather than by a reorder.
2320  *
2321  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2322  * holes, caused by lost packets.
2323  *
2324  * And the most logically complicated part of algorithm is undo
2325  * heuristics. We detect false retransmits due to both too early
2326  * fast retransmit (reordering) and underestimated RTO, analyzing
2327  * timestamps and D-SACKs. When we detect that some segments were
2328  * retransmitted by mistake and CWND reduction was wrong, we undo
2329  * window reduction and abort recovery phase. This logic is hidden
2330  * inside several functions named tcp_try_undo_<something>.
2331  */
2332 
2333 /* This function decides, when we should leave Disordered state
2334  * and enter Recovery phase, reducing congestion window.
2335  *
2336  * Main question: may we further continue forward transmission
2337  * with the same cwnd?
2338  */
2339 static bool tcp_time_to_recover(const struct tcp_sock *tp)
2340 {
2341 	/* Has loss detection marked at least one packet lost? */
2342 	return tp->lost_out != 0;
2343 }
2344 
2345 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2346 {
2347 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2348 	       before(tp->rx_opt.rcv_tsecr, when);
2349 }
2350 
2351 /* skb is spurious retransmitted if the returned timestamp echo
2352  * reply is prior to the skb transmission time
2353  */
2354 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2355 				     const struct sk_buff *skb)
2356 {
2357 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2358 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2359 }
2360 
2361 /* Nothing was retransmitted or returned timestamp is less
2362  * than timestamp of the first retransmission.
2363  */
2364 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2365 {
2366 	const struct sock *sk = (const struct sock *)tp;
2367 
2368 	/* Received an echoed timestamp before the first retransmission? */
2369 	if (tp->retrans_stamp)
2370 		return tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2371 
2372 	/* We set tp->retrans_stamp upon the first retransmission of a loss
2373 	 * recovery episode, so normally if tp->retrans_stamp is 0 then no
2374 	 * retransmission has happened yet (likely due to TSQ, which can cause
2375 	 * fast retransmits to be delayed). So if snd_una advanced while
2376 	 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed,
2377 	 * not lost. But there are exceptions where we retransmit but then
2378 	 * clear tp->retrans_stamp, so we check for those exceptions.
2379 	 */
2380 
2381 	/* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen()
2382 	 * clears tp->retrans_stamp when snd_una == high_seq.
2383 	 */
2384 	if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq))
2385 		return false;
2386 
2387 	/* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp
2388 	 * when setting FLAG_SYN_ACKED is set, even if the SYN was
2389 	 * retransmitted.
2390 	 */
2391 	if (sk->sk_state == TCP_SYN_SENT)
2392 		return false;
2393 
2394 	return true;	/* tp->retrans_stamp is zero; no retransmit yet */
2395 }
2396 
2397 /* Undo procedures. */
2398 
2399 /* We can clear retrans_stamp when there are no retransmissions in the
2400  * window. It would seem that it is trivially available for us in
2401  * tp->retrans_out, however, that kind of assumptions doesn't consider
2402  * what will happen if errors occur when sending retransmission for the
2403  * second time. ...It could the that such segment has only
2404  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2405  * the head skb is enough except for some reneging corner cases that
2406  * are not worth the effort.
2407  *
2408  * Main reason for all this complexity is the fact that connection dying
2409  * time now depends on the validity of the retrans_stamp, in particular,
2410  * that successive retransmissions of a segment must not advance
2411  * retrans_stamp under any conditions.
2412  */
2413 static bool tcp_any_retrans_done(const struct sock *sk)
2414 {
2415 	const struct tcp_sock *tp = tcp_sk(sk);
2416 	struct sk_buff *skb;
2417 
2418 	if (tp->retrans_out)
2419 		return true;
2420 
2421 	skb = tcp_rtx_queue_head(sk);
2422 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2423 		return true;
2424 
2425 	return false;
2426 }
2427 
2428 /* If loss recovery is finished and there are no retransmits out in the
2429  * network, then we clear retrans_stamp so that upon the next loss recovery
2430  * retransmits_timed_out() and timestamp-undo are using the correct value.
2431  */
2432 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2433 {
2434 	if (!tcp_any_retrans_done(sk))
2435 		tcp_sk(sk)->retrans_stamp = 0;
2436 }
2437 
2438 static void DBGUNDO(struct sock *sk, const char *msg)
2439 {
2440 #if FASTRETRANS_DEBUG > 1
2441 	struct tcp_sock *tp = tcp_sk(sk);
2442 	struct inet_sock *inet = inet_sk(sk);
2443 
2444 	if (sk->sk_family == AF_INET) {
2445 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2446 			 msg,
2447 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2448 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2449 			 tp->snd_ssthresh, tp->prior_ssthresh,
2450 			 tp->packets_out);
2451 	}
2452 #if IS_ENABLED(CONFIG_IPV6)
2453 	else if (sk->sk_family == AF_INET6) {
2454 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2455 			 msg,
2456 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2457 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2458 			 tp->snd_ssthresh, tp->prior_ssthresh,
2459 			 tp->packets_out);
2460 	}
2461 #endif
2462 #endif
2463 }
2464 
2465 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2466 {
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 
2469 	if (unmark_loss) {
2470 		struct sk_buff *skb;
2471 
2472 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2473 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2474 		}
2475 		tp->lost_out = 0;
2476 		tcp_clear_all_retrans_hints(tp);
2477 	}
2478 
2479 	if (tp->prior_ssthresh) {
2480 		const struct inet_connection_sock *icsk = inet_csk(sk);
2481 
2482 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2483 
2484 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2485 			tp->snd_ssthresh = tp->prior_ssthresh;
2486 			tcp_ecn_withdraw_cwr(tp);
2487 		}
2488 	}
2489 	tp->snd_cwnd_stamp = tcp_jiffies32;
2490 	tp->undo_marker = 0;
2491 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2492 }
2493 
2494 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2495 {
2496 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2497 }
2498 
2499 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2500 {
2501 	struct tcp_sock *tp = tcp_sk(sk);
2502 
2503 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2504 		/* Hold old state until something *above* high_seq
2505 		 * is ACKed. For Reno it is MUST to prevent false
2506 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2507 		if (!tcp_any_retrans_done(sk))
2508 			tp->retrans_stamp = 0;
2509 		return true;
2510 	}
2511 	return false;
2512 }
2513 
2514 /* People celebrate: "We love our President!" */
2515 static bool tcp_try_undo_recovery(struct sock *sk)
2516 {
2517 	struct tcp_sock *tp = tcp_sk(sk);
2518 
2519 	if (tcp_may_undo(tp)) {
2520 		int mib_idx;
2521 
2522 		/* Happy end! We did not retransmit anything
2523 		 * or our original transmission succeeded.
2524 		 */
2525 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2526 		tcp_undo_cwnd_reduction(sk, false);
2527 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2528 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2529 		else
2530 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2531 
2532 		NET_INC_STATS(sock_net(sk), mib_idx);
2533 	} else if (tp->rack.reo_wnd_persist) {
2534 		tp->rack.reo_wnd_persist--;
2535 	}
2536 	if (tcp_is_non_sack_preventing_reopen(sk))
2537 		return true;
2538 	tcp_set_ca_state(sk, TCP_CA_Open);
2539 	tp->is_sack_reneg = 0;
2540 	return false;
2541 }
2542 
2543 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2544 static bool tcp_try_undo_dsack(struct sock *sk)
2545 {
2546 	struct tcp_sock *tp = tcp_sk(sk);
2547 
2548 	if (tp->undo_marker && !tp->undo_retrans) {
2549 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2550 					       tp->rack.reo_wnd_persist + 1);
2551 		DBGUNDO(sk, "D-SACK");
2552 		tcp_undo_cwnd_reduction(sk, false);
2553 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2554 		return true;
2555 	}
2556 	return false;
2557 }
2558 
2559 /* Undo during loss recovery after partial ACK or using F-RTO. */
2560 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2561 {
2562 	struct tcp_sock *tp = tcp_sk(sk);
2563 
2564 	if (frto_undo || tcp_may_undo(tp)) {
2565 		tcp_undo_cwnd_reduction(sk, true);
2566 
2567 		DBGUNDO(sk, "partial loss");
2568 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2569 		if (frto_undo)
2570 			NET_INC_STATS(sock_net(sk),
2571 					LINUX_MIB_TCPSPURIOUSRTOS);
2572 		inet_csk(sk)->icsk_retransmits = 0;
2573 		if (tcp_is_non_sack_preventing_reopen(sk))
2574 			return true;
2575 		if (frto_undo || tcp_is_sack(tp)) {
2576 			tcp_set_ca_state(sk, TCP_CA_Open);
2577 			tp->is_sack_reneg = 0;
2578 		}
2579 		return true;
2580 	}
2581 	return false;
2582 }
2583 
2584 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2585  * It computes the number of packets to send (sndcnt) based on packets newly
2586  * delivered:
2587  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2588  *	cwnd reductions across a full RTT.
2589  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2590  *      But when SND_UNA is acked without further losses,
2591  *      slow starts cwnd up to ssthresh to speed up the recovery.
2592  */
2593 static void tcp_init_cwnd_reduction(struct sock *sk)
2594 {
2595 	struct tcp_sock *tp = tcp_sk(sk);
2596 
2597 	tp->high_seq = tp->snd_nxt;
2598 	tp->tlp_high_seq = 0;
2599 	tp->snd_cwnd_cnt = 0;
2600 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2601 	tp->prr_delivered = 0;
2602 	tp->prr_out = 0;
2603 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2604 	tcp_ecn_queue_cwr(tp);
2605 }
2606 
2607 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2608 {
2609 	struct tcp_sock *tp = tcp_sk(sk);
2610 	int sndcnt = 0;
2611 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2612 
2613 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2614 		return;
2615 
2616 	trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag);
2617 
2618 	tp->prr_delivered += newly_acked_sacked;
2619 	if (delta < 0) {
2620 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2621 			       tp->prior_cwnd - 1;
2622 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2623 	} else {
2624 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2625 			       newly_acked_sacked);
2626 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2627 			sndcnt++;
2628 		sndcnt = min(delta, sndcnt);
2629 	}
2630 	/* Force a fast retransmit upon entering fast recovery */
2631 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2632 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2633 }
2634 
2635 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2636 {
2637 	struct tcp_sock *tp = tcp_sk(sk);
2638 
2639 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2640 		return;
2641 
2642 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2643 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2644 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2645 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2646 		tp->snd_cwnd_stamp = tcp_jiffies32;
2647 	}
2648 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2649 }
2650 
2651 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2652 void tcp_enter_cwr(struct sock *sk)
2653 {
2654 	struct tcp_sock *tp = tcp_sk(sk);
2655 
2656 	tp->prior_ssthresh = 0;
2657 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2658 		tp->undo_marker = 0;
2659 		tcp_init_cwnd_reduction(sk);
2660 		tcp_set_ca_state(sk, TCP_CA_CWR);
2661 	}
2662 }
2663 EXPORT_SYMBOL(tcp_enter_cwr);
2664 
2665 static void tcp_try_keep_open(struct sock *sk)
2666 {
2667 	struct tcp_sock *tp = tcp_sk(sk);
2668 	int state = TCP_CA_Open;
2669 
2670 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2671 		state = TCP_CA_Disorder;
2672 
2673 	if (inet_csk(sk)->icsk_ca_state != state) {
2674 		tcp_set_ca_state(sk, state);
2675 		tp->high_seq = tp->snd_nxt;
2676 	}
2677 }
2678 
2679 static void tcp_try_to_open(struct sock *sk, int flag)
2680 {
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 
2683 	tcp_verify_left_out(tp);
2684 
2685 	if (!tcp_any_retrans_done(sk))
2686 		tp->retrans_stamp = 0;
2687 
2688 	if (flag & FLAG_ECE)
2689 		tcp_enter_cwr(sk);
2690 
2691 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2692 		tcp_try_keep_open(sk);
2693 	}
2694 }
2695 
2696 static void tcp_mtup_probe_failed(struct sock *sk)
2697 {
2698 	struct inet_connection_sock *icsk = inet_csk(sk);
2699 
2700 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2701 	icsk->icsk_mtup.probe_size = 0;
2702 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2703 }
2704 
2705 static void tcp_mtup_probe_success(struct sock *sk)
2706 {
2707 	struct tcp_sock *tp = tcp_sk(sk);
2708 	struct inet_connection_sock *icsk = inet_csk(sk);
2709 	u64 val;
2710 
2711 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2712 
2713 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2714 	do_div(val, icsk->icsk_mtup.probe_size);
2715 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2716 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2717 
2718 	tp->snd_cwnd_cnt = 0;
2719 	tp->snd_cwnd_stamp = tcp_jiffies32;
2720 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2721 
2722 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2723 	icsk->icsk_mtup.probe_size = 0;
2724 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2725 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2726 }
2727 
2728 /* Sometimes we deduce that packets have been dropped due to reasons other than
2729  * congestion, like path MTU reductions or failed client TFO attempts. In these
2730  * cases we call this function to retransmit as many packets as cwnd allows,
2731  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2732  * non-zero value (and may do so in a later calling context due to TSQ), we
2733  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2734  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2735  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2736  * prematurely).
2737  */
2738 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2739 {
2740 	const struct inet_connection_sock *icsk = inet_csk(sk);
2741 	struct tcp_sock *tp = tcp_sk(sk);
2742 
2743 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2744 		tp->high_seq = tp->snd_nxt;
2745 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2746 		tp->prior_ssthresh = 0;
2747 		tp->undo_marker = 0;
2748 		tcp_set_ca_state(sk, TCP_CA_Loss);
2749 	}
2750 	tcp_xmit_retransmit_queue(sk);
2751 }
2752 
2753 /* Do a simple retransmit without using the backoff mechanisms in
2754  * tcp_timer. This is used for path mtu discovery.
2755  * The socket is already locked here.
2756  */
2757 void tcp_simple_retransmit(struct sock *sk)
2758 {
2759 	struct tcp_sock *tp = tcp_sk(sk);
2760 	struct sk_buff *skb;
2761 	int mss;
2762 
2763 	/* A fastopen SYN request is stored as two separate packets within
2764 	 * the retransmit queue, this is done by tcp_send_syn_data().
2765 	 * As a result simply checking the MSS of the frames in the queue
2766 	 * will not work for the SYN packet.
2767 	 *
2768 	 * Us being here is an indication of a path MTU issue so we can
2769 	 * assume that the fastopen SYN was lost and just mark all the
2770 	 * frames in the retransmit queue as lost. We will use an MSS of
2771 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2772 	 */
2773 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2774 		mss = -1;
2775 	else
2776 		mss = tcp_current_mss(sk);
2777 
2778 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2779 		if (tcp_skb_seglen(skb) > mss)
2780 			tcp_mark_skb_lost(sk, skb);
2781 	}
2782 
2783 	if (!tp->lost_out)
2784 		return;
2785 
2786 	if (tcp_is_reno(tp))
2787 		tcp_limit_reno_sacked(tp);
2788 
2789 	tcp_verify_left_out(tp);
2790 
2791 	/* Don't muck with the congestion window here.
2792 	 * Reason is that we do not increase amount of _data_
2793 	 * in network, but units changed and effective
2794 	 * cwnd/ssthresh really reduced now.
2795 	 */
2796 	tcp_non_congestion_loss_retransmit(sk);
2797 }
2798 EXPORT_IPV6_MOD(tcp_simple_retransmit);
2799 
2800 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2801 {
2802 	struct tcp_sock *tp = tcp_sk(sk);
2803 	int mib_idx;
2804 
2805 	/* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2806 	tcp_retrans_stamp_cleanup(sk);
2807 
2808 	if (tcp_is_reno(tp))
2809 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2810 	else
2811 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2812 
2813 	NET_INC_STATS(sock_net(sk), mib_idx);
2814 
2815 	tp->prior_ssthresh = 0;
2816 	tcp_init_undo(tp);
2817 
2818 	if (!tcp_in_cwnd_reduction(sk)) {
2819 		if (!ece_ack)
2820 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2821 		tcp_init_cwnd_reduction(sk);
2822 	}
2823 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2824 }
2825 
2826 static void tcp_update_rto_time(struct tcp_sock *tp)
2827 {
2828 	if (tp->rto_stamp) {
2829 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2830 		tp->rto_stamp = 0;
2831 	}
2832 }
2833 
2834 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2835  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2836  */
2837 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2838 			     int *rexmit)
2839 {
2840 	struct tcp_sock *tp = tcp_sk(sk);
2841 	bool recovered = !before(tp->snd_una, tp->high_seq);
2842 
2843 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2844 	    tcp_try_undo_loss(sk, false))
2845 		return;
2846 
2847 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2848 		/* Step 3.b. A timeout is spurious if not all data are
2849 		 * lost, i.e., never-retransmitted data are (s)acked.
2850 		 */
2851 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2852 		    tcp_try_undo_loss(sk, true))
2853 			return;
2854 
2855 		if (after(tp->snd_nxt, tp->high_seq)) {
2856 			if (flag & FLAG_DATA_SACKED || num_dupack)
2857 				tp->frto = 0; /* Step 3.a. loss was real */
2858 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2859 			tp->high_seq = tp->snd_nxt;
2860 			/* Step 2.b. Try send new data (but deferred until cwnd
2861 			 * is updated in tcp_ack()). Otherwise fall back to
2862 			 * the conventional recovery.
2863 			 */
2864 			if (!tcp_write_queue_empty(sk) &&
2865 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2866 				*rexmit = REXMIT_NEW;
2867 				return;
2868 			}
2869 			tp->frto = 0;
2870 		}
2871 	}
2872 
2873 	if (recovered) {
2874 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2875 		tcp_try_undo_recovery(sk);
2876 		return;
2877 	}
2878 	if (tcp_is_reno(tp)) {
2879 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2880 		 * delivered. Lower inflight to clock out (re)transmissions.
2881 		 */
2882 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2883 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2884 		else if (flag & FLAG_SND_UNA_ADVANCED)
2885 			tcp_reset_reno_sack(tp);
2886 	}
2887 	*rexmit = REXMIT_LOST;
2888 }
2889 
2890 /* Undo during fast recovery after partial ACK. */
2891 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2892 {
2893 	struct tcp_sock *tp = tcp_sk(sk);
2894 
2895 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2896 		/* Plain luck! Hole if filled with delayed
2897 		 * packet, rather than with a retransmit. Check reordering.
2898 		 */
2899 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2900 
2901 		/* We are getting evidence that the reordering degree is higher
2902 		 * than we realized. If there are no retransmits out then we
2903 		 * can undo. Otherwise we clock out new packets but do not
2904 		 * mark more packets lost or retransmit more.
2905 		 */
2906 		if (tp->retrans_out)
2907 			return true;
2908 
2909 		if (!tcp_any_retrans_done(sk))
2910 			tp->retrans_stamp = 0;
2911 
2912 		DBGUNDO(sk, "partial recovery");
2913 		tcp_undo_cwnd_reduction(sk, true);
2914 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2915 		tcp_try_keep_open(sk);
2916 	}
2917 	return false;
2918 }
2919 
2920 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2921 {
2922 	struct tcp_sock *tp = tcp_sk(sk);
2923 
2924 	if (tcp_rtx_queue_empty(sk))
2925 		return;
2926 
2927 	if (unlikely(tcp_is_reno(tp))) {
2928 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2929 	} else {
2930 		u32 prior_retrans = tp->retrans_out;
2931 
2932 		if (tcp_rack_mark_lost(sk))
2933 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2934 		if (prior_retrans > tp->retrans_out)
2935 			*ack_flag |= FLAG_LOST_RETRANS;
2936 	}
2937 }
2938 
2939 /* Process an event, which can update packets-in-flight not trivially.
2940  * Main goal of this function is to calculate new estimate for left_out,
2941  * taking into account both packets sitting in receiver's buffer and
2942  * packets lost by network.
2943  *
2944  * Besides that it updates the congestion state when packet loss or ECN
2945  * is detected. But it does not reduce the cwnd, it is done by the
2946  * congestion control later.
2947  *
2948  * It does _not_ decide what to send, it is made in function
2949  * tcp_xmit_retransmit_queue().
2950  */
2951 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2952 				  int num_dupack, int *ack_flag, int *rexmit)
2953 {
2954 	struct inet_connection_sock *icsk = inet_csk(sk);
2955 	struct tcp_sock *tp = tcp_sk(sk);
2956 	int flag = *ack_flag;
2957 	bool ece_ack = flag & FLAG_ECE;
2958 
2959 	if (!tp->packets_out && tp->sacked_out)
2960 		tp->sacked_out = 0;
2961 
2962 	/* Now state machine starts.
2963 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2964 	if (ece_ack)
2965 		tp->prior_ssthresh = 0;
2966 
2967 	/* B. In all the states check for reneging SACKs. */
2968 	if (tcp_check_sack_reneging(sk, ack_flag))
2969 		return;
2970 
2971 	/* C. Check consistency of the current state. */
2972 	tcp_verify_left_out(tp);
2973 
2974 	/* D. Check state exit conditions. State can be terminated
2975 	 *    when high_seq is ACKed. */
2976 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2977 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2978 		tp->retrans_stamp = 0;
2979 	} else if (!before(tp->snd_una, tp->high_seq)) {
2980 		switch (icsk->icsk_ca_state) {
2981 		case TCP_CA_CWR:
2982 			/* CWR is to be held something *above* high_seq
2983 			 * is ACKed for CWR bit to reach receiver. */
2984 			if (tp->snd_una != tp->high_seq) {
2985 				tcp_end_cwnd_reduction(sk);
2986 				tcp_set_ca_state(sk, TCP_CA_Open);
2987 			}
2988 			break;
2989 
2990 		case TCP_CA_Recovery:
2991 			if (tcp_is_reno(tp))
2992 				tcp_reset_reno_sack(tp);
2993 			if (tcp_try_undo_recovery(sk))
2994 				return;
2995 			tcp_end_cwnd_reduction(sk);
2996 			break;
2997 		}
2998 	}
2999 
3000 	/* E. Process state. */
3001 	switch (icsk->icsk_ca_state) {
3002 	case TCP_CA_Recovery:
3003 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3004 			if (tcp_is_reno(tp))
3005 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3006 		} else if (tcp_try_undo_partial(sk, prior_snd_una))
3007 			return;
3008 
3009 		if (tcp_try_undo_dsack(sk))
3010 			tcp_try_to_open(sk, flag);
3011 
3012 		tcp_identify_packet_loss(sk, ack_flag);
3013 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3014 			if (!tcp_time_to_recover(tp))
3015 				return;
3016 			/* Undo reverts the recovery state. If loss is evident,
3017 			 * starts a new recovery (e.g. reordering then loss);
3018 			 */
3019 			tcp_enter_recovery(sk, ece_ack);
3020 		}
3021 		break;
3022 	case TCP_CA_Loss:
3023 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3024 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3025 			tcp_update_rto_time(tp);
3026 		tcp_identify_packet_loss(sk, ack_flag);
3027 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3028 		      (*ack_flag & FLAG_LOST_RETRANS)))
3029 			return;
3030 		/* Change state if cwnd is undone or retransmits are lost */
3031 		fallthrough;
3032 	default:
3033 		if (tcp_is_reno(tp)) {
3034 			if (flag & FLAG_SND_UNA_ADVANCED)
3035 				tcp_reset_reno_sack(tp);
3036 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3037 		}
3038 
3039 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3040 			tcp_try_undo_dsack(sk);
3041 
3042 		tcp_identify_packet_loss(sk, ack_flag);
3043 		if (!tcp_time_to_recover(tp)) {
3044 			tcp_try_to_open(sk, flag);
3045 			return;
3046 		}
3047 
3048 		/* MTU probe failure: don't reduce cwnd */
3049 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3050 		    icsk->icsk_mtup.probe_size &&
3051 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3052 			tcp_mtup_probe_failed(sk);
3053 			/* Restores the reduction we did in tcp_mtup_probe() */
3054 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3055 			tcp_simple_retransmit(sk);
3056 			return;
3057 		}
3058 
3059 		/* Otherwise enter Recovery state */
3060 		tcp_enter_recovery(sk, ece_ack);
3061 	}
3062 
3063 	*rexmit = REXMIT_LOST;
3064 }
3065 
3066 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3067 {
3068 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3069 	struct tcp_sock *tp = tcp_sk(sk);
3070 
3071 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3072 		/* If the remote keeps returning delayed ACKs, eventually
3073 		 * the min filter would pick it up and overestimate the
3074 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3075 		 */
3076 		return;
3077 	}
3078 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3079 			   rtt_us ? : jiffies_to_usecs(1));
3080 }
3081 
3082 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3083 			       long seq_rtt_us, long sack_rtt_us,
3084 			       long ca_rtt_us, struct rate_sample *rs)
3085 {
3086 	const struct tcp_sock *tp = tcp_sk(sk);
3087 
3088 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3089 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3090 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3091 	 * is acked (RFC6298).
3092 	 */
3093 	if (seq_rtt_us < 0)
3094 		seq_rtt_us = sack_rtt_us;
3095 
3096 	/* RTTM Rule: A TSecr value received in a segment is used to
3097 	 * update the averaged RTT measurement only if the segment
3098 	 * acknowledges some new data, i.e., only if it advances the
3099 	 * left edge of the send window.
3100 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3101 	 */
3102 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3103 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3104 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1);
3105 
3106 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3107 	if (seq_rtt_us < 0)
3108 		return false;
3109 
3110 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3111 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3112 	 * values will be skipped with the seq_rtt_us < 0 check above.
3113 	 */
3114 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3115 	tcp_rtt_estimator(sk, seq_rtt_us);
3116 	tcp_set_rto(sk);
3117 
3118 	/* RFC6298: only reset backoff on valid RTT measurement. */
3119 	inet_csk(sk)->icsk_backoff = 0;
3120 	return true;
3121 }
3122 
3123 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3124 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3125 {
3126 	struct rate_sample rs;
3127 	long rtt_us = -1L;
3128 
3129 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3130 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3131 
3132 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3133 }
3134 
3135 
3136 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3137 {
3138 	const struct inet_connection_sock *icsk = inet_csk(sk);
3139 
3140 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3141 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3142 }
3143 
3144 /* Restart timer after forward progress on connection.
3145  * RFC2988 recommends to restart timer to now+rto.
3146  */
3147 void tcp_rearm_rto(struct sock *sk)
3148 {
3149 	const struct inet_connection_sock *icsk = inet_csk(sk);
3150 	struct tcp_sock *tp = tcp_sk(sk);
3151 
3152 	/* If the retrans timer is currently being used by Fast Open
3153 	 * for SYN-ACK retrans purpose, stay put.
3154 	 */
3155 	if (rcu_access_pointer(tp->fastopen_rsk))
3156 		return;
3157 
3158 	if (!tp->packets_out) {
3159 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3160 	} else {
3161 		u32 rto = inet_csk(sk)->icsk_rto;
3162 		/* Offset the time elapsed after installing regular RTO */
3163 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3164 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3165 			s64 delta_us = tcp_rto_delta_us(sk);
3166 			/* delta_us may not be positive if the socket is locked
3167 			 * when the retrans timer fires and is rescheduled.
3168 			 */
3169 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3170 		}
3171 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true);
3172 	}
3173 }
3174 
3175 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3176 static void tcp_set_xmit_timer(struct sock *sk)
3177 {
3178 	if (!tcp_schedule_loss_probe(sk, true))
3179 		tcp_rearm_rto(sk);
3180 }
3181 
3182 /* If we get here, the whole TSO packet has not been acked. */
3183 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3184 {
3185 	struct tcp_sock *tp = tcp_sk(sk);
3186 	u32 packets_acked;
3187 
3188 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3189 
3190 	packets_acked = tcp_skb_pcount(skb);
3191 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3192 		return 0;
3193 	packets_acked -= tcp_skb_pcount(skb);
3194 
3195 	if (packets_acked) {
3196 		BUG_ON(tcp_skb_pcount(skb) == 0);
3197 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3198 	}
3199 
3200 	return packets_acked;
3201 }
3202 
3203 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3204 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3205 {
3206 	const struct skb_shared_info *shinfo;
3207 
3208 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3209 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3210 		return;
3211 
3212 	shinfo = skb_shinfo(skb);
3213 	if (!before(shinfo->tskey, prior_snd_una) &&
3214 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3215 		tcp_skb_tsorted_save(skb) {
3216 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3217 		} tcp_skb_tsorted_restore(skb);
3218 	}
3219 }
3220 
3221 /* Remove acknowledged frames from the retransmission queue. If our packet
3222  * is before the ack sequence we can discard it as it's confirmed to have
3223  * arrived at the other end.
3224  */
3225 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3226 			       u32 prior_fack, u32 prior_snd_una,
3227 			       struct tcp_sacktag_state *sack, bool ece_ack)
3228 {
3229 	const struct inet_connection_sock *icsk = inet_csk(sk);
3230 	u64 first_ackt, last_ackt;
3231 	struct tcp_sock *tp = tcp_sk(sk);
3232 	u32 prior_sacked = tp->sacked_out;
3233 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3234 	struct sk_buff *skb, *next;
3235 	bool fully_acked = true;
3236 	long sack_rtt_us = -1L;
3237 	long seq_rtt_us = -1L;
3238 	long ca_rtt_us = -1L;
3239 	u32 pkts_acked = 0;
3240 	bool rtt_update;
3241 	int flag = 0;
3242 
3243 	first_ackt = 0;
3244 
3245 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3246 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3247 		const u32 start_seq = scb->seq;
3248 		u8 sacked = scb->sacked;
3249 		u32 acked_pcount;
3250 
3251 		/* Determine how many packets and what bytes were acked, tso and else */
3252 		if (after(scb->end_seq, tp->snd_una)) {
3253 			if (tcp_skb_pcount(skb) == 1 ||
3254 			    !after(tp->snd_una, scb->seq))
3255 				break;
3256 
3257 			acked_pcount = tcp_tso_acked(sk, skb);
3258 			if (!acked_pcount)
3259 				break;
3260 			fully_acked = false;
3261 		} else {
3262 			acked_pcount = tcp_skb_pcount(skb);
3263 		}
3264 
3265 		if (unlikely(sacked & TCPCB_RETRANS)) {
3266 			if (sacked & TCPCB_SACKED_RETRANS)
3267 				tp->retrans_out -= acked_pcount;
3268 			flag |= FLAG_RETRANS_DATA_ACKED;
3269 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3270 			last_ackt = tcp_skb_timestamp_us(skb);
3271 			WARN_ON_ONCE(last_ackt == 0);
3272 			if (!first_ackt)
3273 				first_ackt = last_ackt;
3274 
3275 			if (before(start_seq, reord))
3276 				reord = start_seq;
3277 			if (!after(scb->end_seq, tp->high_seq))
3278 				flag |= FLAG_ORIG_SACK_ACKED;
3279 		}
3280 
3281 		if (sacked & TCPCB_SACKED_ACKED) {
3282 			tp->sacked_out -= acked_pcount;
3283 		} else if (tcp_is_sack(tp)) {
3284 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3285 			if (!tcp_skb_spurious_retrans(tp, skb))
3286 				tcp_rack_advance(tp, sacked, scb->end_seq,
3287 						 tcp_skb_timestamp_us(skb));
3288 		}
3289 		if (sacked & TCPCB_LOST)
3290 			tp->lost_out -= acked_pcount;
3291 
3292 		tp->packets_out -= acked_pcount;
3293 		pkts_acked += acked_pcount;
3294 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3295 
3296 		/* Initial outgoing SYN's get put onto the write_queue
3297 		 * just like anything else we transmit.  It is not
3298 		 * true data, and if we misinform our callers that
3299 		 * this ACK acks real data, we will erroneously exit
3300 		 * connection startup slow start one packet too
3301 		 * quickly.  This is severely frowned upon behavior.
3302 		 */
3303 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3304 			flag |= FLAG_DATA_ACKED;
3305 		} else {
3306 			flag |= FLAG_SYN_ACKED;
3307 			tp->retrans_stamp = 0;
3308 		}
3309 
3310 		if (!fully_acked)
3311 			break;
3312 
3313 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3314 
3315 		next = skb_rb_next(skb);
3316 		if (unlikely(skb == tp->retransmit_skb_hint))
3317 			tp->retransmit_skb_hint = NULL;
3318 		tcp_highest_sack_replace(sk, skb, next);
3319 		tcp_rtx_queue_unlink_and_free(skb, sk);
3320 	}
3321 
3322 	if (!skb)
3323 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3324 
3325 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3326 		tp->snd_up = tp->snd_una;
3327 
3328 	if (skb) {
3329 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3330 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3331 			flag |= FLAG_SACK_RENEGING;
3332 	}
3333 
3334 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3335 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3336 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3337 
3338 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3339 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3340 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3341 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3342 			/* Conservatively mark a delayed ACK. It's typically
3343 			 * from a lone runt packet over the round trip to
3344 			 * a receiver w/o out-of-order or CE events.
3345 			 */
3346 			flag |= FLAG_ACK_MAYBE_DELAYED;
3347 		}
3348 	}
3349 	if (sack->first_sackt) {
3350 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3351 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3352 	}
3353 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3354 					ca_rtt_us, sack->rate);
3355 
3356 	if (flag & FLAG_ACKED) {
3357 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3358 		if (unlikely(icsk->icsk_mtup.probe_size &&
3359 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3360 			tcp_mtup_probe_success(sk);
3361 		}
3362 
3363 		if (tcp_is_reno(tp)) {
3364 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3365 
3366 			/* If any of the cumulatively ACKed segments was
3367 			 * retransmitted, non-SACK case cannot confirm that
3368 			 * progress was due to original transmission due to
3369 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3370 			 * the packets may have been never retransmitted.
3371 			 */
3372 			if (flag & FLAG_RETRANS_DATA_ACKED)
3373 				flag &= ~FLAG_ORIG_SACK_ACKED;
3374 		} else {
3375 			/* Non-retransmitted hole got filled? That's reordering */
3376 			if (before(reord, prior_fack))
3377 				tcp_check_sack_reordering(sk, reord, 0);
3378 		}
3379 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3380 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3381 						    tcp_skb_timestamp_us(skb))) {
3382 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3383 		 * after when the head was last (re)transmitted. Otherwise the
3384 		 * timeout may continue to extend in loss recovery.
3385 		 */
3386 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3387 	}
3388 
3389 	if (icsk->icsk_ca_ops->pkts_acked) {
3390 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3391 					     .rtt_us = sack->rate->rtt_us };
3392 
3393 		sample.in_flight = tp->mss_cache *
3394 			(tp->delivered - sack->rate->prior_delivered);
3395 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3396 	}
3397 
3398 #if FASTRETRANS_DEBUG > 0
3399 	WARN_ON((int)tp->sacked_out < 0);
3400 	WARN_ON((int)tp->lost_out < 0);
3401 	WARN_ON((int)tp->retrans_out < 0);
3402 	if (!tp->packets_out && tcp_is_sack(tp)) {
3403 		icsk = inet_csk(sk);
3404 		if (tp->lost_out) {
3405 			pr_debug("Leak l=%u %d\n",
3406 				 tp->lost_out, icsk->icsk_ca_state);
3407 			tp->lost_out = 0;
3408 		}
3409 		if (tp->sacked_out) {
3410 			pr_debug("Leak s=%u %d\n",
3411 				 tp->sacked_out, icsk->icsk_ca_state);
3412 			tp->sacked_out = 0;
3413 		}
3414 		if (tp->retrans_out) {
3415 			pr_debug("Leak r=%u %d\n",
3416 				 tp->retrans_out, icsk->icsk_ca_state);
3417 			tp->retrans_out = 0;
3418 		}
3419 	}
3420 #endif
3421 	return flag;
3422 }
3423 
3424 static void tcp_ack_probe(struct sock *sk)
3425 {
3426 	struct inet_connection_sock *icsk = inet_csk(sk);
3427 	struct sk_buff *head = tcp_send_head(sk);
3428 	const struct tcp_sock *tp = tcp_sk(sk);
3429 
3430 	/* Was it a usable window open? */
3431 	if (!head)
3432 		return;
3433 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3434 		icsk->icsk_backoff = 0;
3435 		icsk->icsk_probes_tstamp = 0;
3436 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3437 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3438 		 * This function is not for random using!
3439 		 */
3440 	} else {
3441 		unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk));
3442 
3443 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3444 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true);
3445 	}
3446 }
3447 
3448 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3449 {
3450 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3451 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3452 }
3453 
3454 /* Decide wheather to run the increase function of congestion control. */
3455 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3456 {
3457 	/* If reordering is high then always grow cwnd whenever data is
3458 	 * delivered regardless of its ordering. Otherwise stay conservative
3459 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3460 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3461 	 * cwnd in tcp_fastretrans_alert() based on more states.
3462 	 */
3463 	if (tcp_sk(sk)->reordering >
3464 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3465 		return flag & FLAG_FORWARD_PROGRESS;
3466 
3467 	return flag & FLAG_DATA_ACKED;
3468 }
3469 
3470 /* The "ultimate" congestion control function that aims to replace the rigid
3471  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3472  * It's called toward the end of processing an ACK with precise rate
3473  * information. All transmission or retransmission are delayed afterwards.
3474  */
3475 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3476 			     int flag, const struct rate_sample *rs)
3477 {
3478 	const struct inet_connection_sock *icsk = inet_csk(sk);
3479 
3480 	if (icsk->icsk_ca_ops->cong_control) {
3481 		icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3482 		return;
3483 	}
3484 
3485 	if (tcp_in_cwnd_reduction(sk)) {
3486 		/* Reduce cwnd if state mandates */
3487 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3488 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3489 		/* Advance cwnd if state allows */
3490 		tcp_cong_avoid(sk, ack, acked_sacked);
3491 	}
3492 	tcp_update_pacing_rate(sk);
3493 }
3494 
3495 /* Check that window update is acceptable.
3496  * The function assumes that snd_una<=ack<=snd_next.
3497  */
3498 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3499 					const u32 ack, const u32 ack_seq,
3500 					const u32 nwin)
3501 {
3502 	return	after(ack, tp->snd_una) ||
3503 		after(ack_seq, tp->snd_wl1) ||
3504 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3505 }
3506 
3507 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3508 {
3509 #ifdef CONFIG_TCP_AO
3510 	struct tcp_ao_info *ao;
3511 
3512 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3513 		return;
3514 
3515 	ao = rcu_dereference_protected(tp->ao_info,
3516 				       lockdep_sock_is_held((struct sock *)tp));
3517 	if (ao && ack < tp->snd_una) {
3518 		ao->snd_sne++;
3519 		trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3520 	}
3521 #endif
3522 }
3523 
3524 /* If we update tp->snd_una, also update tp->bytes_acked */
3525 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3526 {
3527 	u32 delta = ack - tp->snd_una;
3528 
3529 	sock_owned_by_me((struct sock *)tp);
3530 	tp->bytes_acked += delta;
3531 	tcp_snd_sne_update(tp, ack);
3532 	tp->snd_una = ack;
3533 }
3534 
3535 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3536 {
3537 #ifdef CONFIG_TCP_AO
3538 	struct tcp_ao_info *ao;
3539 
3540 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3541 		return;
3542 
3543 	ao = rcu_dereference_protected(tp->ao_info,
3544 				       lockdep_sock_is_held((struct sock *)tp));
3545 	if (ao && seq < tp->rcv_nxt) {
3546 		ao->rcv_sne++;
3547 		trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3548 	}
3549 #endif
3550 }
3551 
3552 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3553 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3554 {
3555 	u32 delta = seq - tp->rcv_nxt;
3556 
3557 	sock_owned_by_me((struct sock *)tp);
3558 	tp->bytes_received += delta;
3559 	tcp_rcv_sne_update(tp, seq);
3560 	WRITE_ONCE(tp->rcv_nxt, seq);
3561 }
3562 
3563 /* Update our send window.
3564  *
3565  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3566  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3567  */
3568 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3569 				 u32 ack_seq)
3570 {
3571 	struct tcp_sock *tp = tcp_sk(sk);
3572 	int flag = 0;
3573 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3574 
3575 	if (likely(!tcp_hdr(skb)->syn))
3576 		nwin <<= tp->rx_opt.snd_wscale;
3577 
3578 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3579 		flag |= FLAG_WIN_UPDATE;
3580 		tcp_update_wl(tp, ack_seq);
3581 
3582 		if (tp->snd_wnd != nwin) {
3583 			tp->snd_wnd = nwin;
3584 
3585 			/* Note, it is the only place, where
3586 			 * fast path is recovered for sending TCP.
3587 			 */
3588 			tp->pred_flags = 0;
3589 			tcp_fast_path_check(sk);
3590 
3591 			if (!tcp_write_queue_empty(sk))
3592 				tcp_slow_start_after_idle_check(sk);
3593 
3594 			if (nwin > tp->max_window) {
3595 				tp->max_window = nwin;
3596 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3597 			}
3598 		}
3599 	}
3600 
3601 	tcp_snd_una_update(tp, ack);
3602 
3603 	return flag;
3604 }
3605 
3606 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3607 				   u32 *last_oow_ack_time)
3608 {
3609 	/* Paired with the WRITE_ONCE() in this function. */
3610 	u32 val = READ_ONCE(*last_oow_ack_time);
3611 
3612 	if (val) {
3613 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3614 
3615 		if (0 <= elapsed &&
3616 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3617 			NET_INC_STATS(net, mib_idx);
3618 			return true;	/* rate-limited: don't send yet! */
3619 		}
3620 	}
3621 
3622 	/* Paired with the prior READ_ONCE() and with itself,
3623 	 * as we might be lockless.
3624 	 */
3625 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3626 
3627 	return false;	/* not rate-limited: go ahead, send dupack now! */
3628 }
3629 
3630 /* Return true if we're currently rate-limiting out-of-window ACKs and
3631  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3632  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3633  * attacks that send repeated SYNs or ACKs for the same connection. To
3634  * do this, we do not send a duplicate SYNACK or ACK if the remote
3635  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3636  */
3637 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3638 			  int mib_idx, u32 *last_oow_ack_time)
3639 {
3640 	/* Data packets without SYNs are not likely part of an ACK loop. */
3641 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3642 	    !tcp_hdr(skb)->syn)
3643 		return false;
3644 
3645 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3646 }
3647 
3648 /* RFC 5961 7 [ACK Throttling] */
3649 static void tcp_send_challenge_ack(struct sock *sk)
3650 {
3651 	struct tcp_sock *tp = tcp_sk(sk);
3652 	struct net *net = sock_net(sk);
3653 	u32 count, now, ack_limit;
3654 
3655 	/* First check our per-socket dupack rate limit. */
3656 	if (__tcp_oow_rate_limited(net,
3657 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3658 				   &tp->last_oow_ack_time))
3659 		return;
3660 
3661 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3662 	if (ack_limit == INT_MAX)
3663 		goto send_ack;
3664 
3665 	/* Then check host-wide RFC 5961 rate limit. */
3666 	now = jiffies / HZ;
3667 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3668 		u32 half = (ack_limit + 1) >> 1;
3669 
3670 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3671 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3672 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3673 	}
3674 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3675 	if (count > 0) {
3676 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3677 send_ack:
3678 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3679 		tcp_send_ack(sk);
3680 	}
3681 }
3682 
3683 static void tcp_store_ts_recent(struct tcp_sock *tp)
3684 {
3685 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3686 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3687 }
3688 
3689 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta)
3690 {
3691 	tcp_store_ts_recent(tp);
3692 	return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0;
3693 }
3694 
3695 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3696 {
3697 	s32 delta;
3698 
3699 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3700 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3701 		 * extra check below makes sure this can only happen
3702 		 * for pure ACK frames.  -DaveM
3703 		 *
3704 		 * Not only, also it occurs for expired timestamps.
3705 		 */
3706 
3707 		if (tcp_paws_check(&tp->rx_opt, 0)) {
3708 			delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent;
3709 			return __tcp_replace_ts_recent(tp, delta);
3710 		}
3711 	}
3712 
3713 	return 0;
3714 }
3715 
3716 /* This routine deals with acks during a TLP episode and ends an episode by
3717  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3718  */
3719 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3720 {
3721 	struct tcp_sock *tp = tcp_sk(sk);
3722 
3723 	if (before(ack, tp->tlp_high_seq))
3724 		return;
3725 
3726 	if (!tp->tlp_retrans) {
3727 		/* TLP of new data has been acknowledged */
3728 		tp->tlp_high_seq = 0;
3729 	} else if (flag & FLAG_DSACK_TLP) {
3730 		/* This DSACK means original and TLP probe arrived; no loss */
3731 		tp->tlp_high_seq = 0;
3732 	} else if (after(ack, tp->tlp_high_seq)) {
3733 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3734 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3735 		 */
3736 		tcp_init_cwnd_reduction(sk);
3737 		tcp_set_ca_state(sk, TCP_CA_CWR);
3738 		tcp_end_cwnd_reduction(sk);
3739 		tcp_try_keep_open(sk);
3740 		NET_INC_STATS(sock_net(sk),
3741 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3742 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3743 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3744 		/* Pure dupack: original and TLP probe arrived; no loss */
3745 		tp->tlp_high_seq = 0;
3746 	}
3747 }
3748 
3749 static void tcp_in_ack_event(struct sock *sk, int flag)
3750 {
3751 	const struct inet_connection_sock *icsk = inet_csk(sk);
3752 
3753 	if (icsk->icsk_ca_ops->in_ack_event) {
3754 		u32 ack_ev_flags = 0;
3755 
3756 		if (flag & FLAG_WIN_UPDATE)
3757 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3758 		if (flag & FLAG_SLOWPATH) {
3759 			ack_ev_flags |= CA_ACK_SLOWPATH;
3760 			if (flag & FLAG_ECE)
3761 				ack_ev_flags |= CA_ACK_ECE;
3762 		}
3763 
3764 		icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3765 	}
3766 }
3767 
3768 /* Congestion control has updated the cwnd already. So if we're in
3769  * loss recovery then now we do any new sends (for FRTO) or
3770  * retransmits (for CA_Loss or CA_recovery) that make sense.
3771  */
3772 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3773 {
3774 	struct tcp_sock *tp = tcp_sk(sk);
3775 
3776 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3777 		return;
3778 
3779 	if (unlikely(rexmit == REXMIT_NEW)) {
3780 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3781 					  TCP_NAGLE_OFF);
3782 		if (after(tp->snd_nxt, tp->high_seq))
3783 			return;
3784 		tp->frto = 0;
3785 	}
3786 	tcp_xmit_retransmit_queue(sk);
3787 }
3788 
3789 /* Returns the number of packets newly acked or sacked by the current ACK */
3790 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3791 {
3792 	const struct net *net = sock_net(sk);
3793 	struct tcp_sock *tp = tcp_sk(sk);
3794 	u32 delivered;
3795 
3796 	delivered = tp->delivered - prior_delivered;
3797 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3798 	if (flag & FLAG_ECE)
3799 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3800 
3801 	return delivered;
3802 }
3803 
3804 /* This routine deals with incoming acks, but not outgoing ones. */
3805 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3806 {
3807 	struct inet_connection_sock *icsk = inet_csk(sk);
3808 	struct tcp_sock *tp = tcp_sk(sk);
3809 	struct tcp_sacktag_state sack_state;
3810 	struct rate_sample rs = { .prior_delivered = 0 };
3811 	u32 prior_snd_una = tp->snd_una;
3812 	bool is_sack_reneg = tp->is_sack_reneg;
3813 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3814 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3815 	int num_dupack = 0;
3816 	int prior_packets = tp->packets_out;
3817 	u32 delivered = tp->delivered;
3818 	u32 lost = tp->lost;
3819 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3820 	u32 prior_fack;
3821 
3822 	sack_state.first_sackt = 0;
3823 	sack_state.rate = &rs;
3824 	sack_state.sack_delivered = 0;
3825 
3826 	/* We very likely will need to access rtx queue. */
3827 	prefetch(sk->tcp_rtx_queue.rb_node);
3828 
3829 	/* If the ack is older than previous acks
3830 	 * then we can probably ignore it.
3831 	 */
3832 	if (before(ack, prior_snd_una)) {
3833 		u32 max_window;
3834 
3835 		/* do not accept ACK for bytes we never sent. */
3836 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3837 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3838 		if (before(ack, prior_snd_una - max_window)) {
3839 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3840 				tcp_send_challenge_ack(sk);
3841 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3842 		}
3843 		goto old_ack;
3844 	}
3845 
3846 	/* If the ack includes data we haven't sent yet, discard
3847 	 * this segment (RFC793 Section 3.9).
3848 	 */
3849 	if (after(ack, tp->snd_nxt))
3850 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3851 
3852 	if (after(ack, prior_snd_una)) {
3853 		flag |= FLAG_SND_UNA_ADVANCED;
3854 		icsk->icsk_retransmits = 0;
3855 
3856 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3857 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3858 			if (tp->tcp_clean_acked)
3859 				tp->tcp_clean_acked(sk, ack);
3860 #endif
3861 	}
3862 
3863 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3864 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3865 
3866 	/* ts_recent update must be made after we are sure that the packet
3867 	 * is in window.
3868 	 */
3869 	if (flag & FLAG_UPDATE_TS_RECENT)
3870 		flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3871 
3872 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3873 	    FLAG_SND_UNA_ADVANCED) {
3874 		/* Window is constant, pure forward advance.
3875 		 * No more checks are required.
3876 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3877 		 */
3878 		tcp_update_wl(tp, ack_seq);
3879 		tcp_snd_una_update(tp, ack);
3880 		flag |= FLAG_WIN_UPDATE;
3881 
3882 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3883 	} else {
3884 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3885 			flag |= FLAG_DATA;
3886 		else
3887 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3888 
3889 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3890 
3891 		if (TCP_SKB_CB(skb)->sacked)
3892 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3893 							&sack_state);
3894 
3895 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
3896 			flag |= FLAG_ECE;
3897 
3898 		if (sack_state.sack_delivered)
3899 			tcp_count_delivered(tp, sack_state.sack_delivered,
3900 					    flag & FLAG_ECE);
3901 	}
3902 
3903 	/* This is a deviation from RFC3168 since it states that:
3904 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3905 	 * the congestion window, it SHOULD set the CWR bit only on the first
3906 	 * new data packet that it transmits."
3907 	 * We accept CWR on pure ACKs to be more robust
3908 	 * with widely-deployed TCP implementations that do this.
3909 	 */
3910 	tcp_ecn_accept_cwr(sk, skb);
3911 
3912 	/* We passed data and got it acked, remove any soft error
3913 	 * log. Something worked...
3914 	 */
3915 	WRITE_ONCE(sk->sk_err_soft, 0);
3916 	icsk->icsk_probes_out = 0;
3917 	tp->rcv_tstamp = tcp_jiffies32;
3918 	if (!prior_packets)
3919 		goto no_queue;
3920 
3921 	/* See if we can take anything off of the retransmit queue. */
3922 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3923 				    &sack_state, flag & FLAG_ECE);
3924 
3925 	tcp_rack_update_reo_wnd(sk, &rs);
3926 
3927 	tcp_in_ack_event(sk, flag);
3928 
3929 	if (tp->tlp_high_seq)
3930 		tcp_process_tlp_ack(sk, ack, flag);
3931 
3932 	if (tcp_ack_is_dubious(sk, flag)) {
3933 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3934 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3935 			num_dupack = 1;
3936 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3937 			if (!(flag & FLAG_DATA))
3938 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3939 		}
3940 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3941 				      &rexmit);
3942 	}
3943 
3944 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3945 	if (flag & FLAG_SET_XMIT_TIMER)
3946 		tcp_set_xmit_timer(sk);
3947 
3948 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3949 		sk_dst_confirm(sk);
3950 
3951 	delivered = tcp_newly_delivered(sk, delivered, flag);
3952 	lost = tp->lost - lost;			/* freshly marked lost */
3953 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3954 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3955 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3956 	tcp_xmit_recovery(sk, rexmit);
3957 	return 1;
3958 
3959 no_queue:
3960 	tcp_in_ack_event(sk, flag);
3961 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3962 	if (flag & FLAG_DSACKING_ACK) {
3963 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3964 				      &rexmit);
3965 		tcp_newly_delivered(sk, delivered, flag);
3966 	}
3967 	/* If this ack opens up a zero window, clear backoff.  It was
3968 	 * being used to time the probes, and is probably far higher than
3969 	 * it needs to be for normal retransmission.
3970 	 */
3971 	tcp_ack_probe(sk);
3972 
3973 	if (tp->tlp_high_seq)
3974 		tcp_process_tlp_ack(sk, ack, flag);
3975 	return 1;
3976 
3977 old_ack:
3978 	/* If data was SACKed, tag it and see if we should send more data.
3979 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3980 	 */
3981 	if (TCP_SKB_CB(skb)->sacked) {
3982 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3983 						&sack_state);
3984 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3985 				      &rexmit);
3986 		tcp_newly_delivered(sk, delivered, flag);
3987 		tcp_xmit_recovery(sk, rexmit);
3988 	}
3989 
3990 	return 0;
3991 }
3992 
3993 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3994 				      bool syn, struct tcp_fastopen_cookie *foc,
3995 				      bool exp_opt)
3996 {
3997 	/* Valid only in SYN or SYN-ACK with an even length.  */
3998 	if (!foc || !syn || len < 0 || (len & 1))
3999 		return;
4000 
4001 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4002 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4003 		memcpy(foc->val, cookie, len);
4004 	else if (len != 0)
4005 		len = -1;
4006 	foc->len = len;
4007 	foc->exp = exp_opt;
4008 }
4009 
4010 static bool smc_parse_options(const struct tcphdr *th,
4011 			      struct tcp_options_received *opt_rx,
4012 			      const unsigned char *ptr,
4013 			      int opsize)
4014 {
4015 #if IS_ENABLED(CONFIG_SMC)
4016 	if (static_branch_unlikely(&tcp_have_smc)) {
4017 		if (th->syn && !(opsize & 1) &&
4018 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4019 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4020 			opt_rx->smc_ok = 1;
4021 			return true;
4022 		}
4023 	}
4024 #endif
4025 	return false;
4026 }
4027 
4028 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4029  * value on success.
4030  */
4031 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4032 {
4033 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4034 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4035 	u16 mss = 0;
4036 
4037 	while (length > 0) {
4038 		int opcode = *ptr++;
4039 		int opsize;
4040 
4041 		switch (opcode) {
4042 		case TCPOPT_EOL:
4043 			return mss;
4044 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4045 			length--;
4046 			continue;
4047 		default:
4048 			if (length < 2)
4049 				return mss;
4050 			opsize = *ptr++;
4051 			if (opsize < 2) /* "silly options" */
4052 				return mss;
4053 			if (opsize > length)
4054 				return mss;	/* fail on partial options */
4055 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4056 				u16 in_mss = get_unaligned_be16(ptr);
4057 
4058 				if (in_mss) {
4059 					if (user_mss && user_mss < in_mss)
4060 						in_mss = user_mss;
4061 					mss = in_mss;
4062 				}
4063 			}
4064 			ptr += opsize - 2;
4065 			length -= opsize;
4066 		}
4067 	}
4068 	return mss;
4069 }
4070 
4071 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4072  * But, this can also be called on packets in the established flow when
4073  * the fast version below fails.
4074  */
4075 void tcp_parse_options(const struct net *net,
4076 		       const struct sk_buff *skb,
4077 		       struct tcp_options_received *opt_rx, int estab,
4078 		       struct tcp_fastopen_cookie *foc)
4079 {
4080 	const unsigned char *ptr;
4081 	const struct tcphdr *th = tcp_hdr(skb);
4082 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4083 
4084 	ptr = (const unsigned char *)(th + 1);
4085 	opt_rx->saw_tstamp = 0;
4086 	opt_rx->saw_unknown = 0;
4087 
4088 	while (length > 0) {
4089 		int opcode = *ptr++;
4090 		int opsize;
4091 
4092 		switch (opcode) {
4093 		case TCPOPT_EOL:
4094 			return;
4095 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4096 			length--;
4097 			continue;
4098 		default:
4099 			if (length < 2)
4100 				return;
4101 			opsize = *ptr++;
4102 			if (opsize < 2) /* "silly options" */
4103 				return;
4104 			if (opsize > length)
4105 				return;	/* don't parse partial options */
4106 			switch (opcode) {
4107 			case TCPOPT_MSS:
4108 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4109 					u16 in_mss = get_unaligned_be16(ptr);
4110 					if (in_mss) {
4111 						if (opt_rx->user_mss &&
4112 						    opt_rx->user_mss < in_mss)
4113 							in_mss = opt_rx->user_mss;
4114 						opt_rx->mss_clamp = in_mss;
4115 					}
4116 				}
4117 				break;
4118 			case TCPOPT_WINDOW:
4119 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4120 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4121 					__u8 snd_wscale = *(__u8 *)ptr;
4122 					opt_rx->wscale_ok = 1;
4123 					if (snd_wscale > TCP_MAX_WSCALE) {
4124 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4125 								     __func__,
4126 								     snd_wscale,
4127 								     TCP_MAX_WSCALE);
4128 						snd_wscale = TCP_MAX_WSCALE;
4129 					}
4130 					opt_rx->snd_wscale = snd_wscale;
4131 				}
4132 				break;
4133 			case TCPOPT_TIMESTAMP:
4134 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4135 				    ((estab && opt_rx->tstamp_ok) ||
4136 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4137 					opt_rx->saw_tstamp = 1;
4138 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4139 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4140 				}
4141 				break;
4142 			case TCPOPT_SACK_PERM:
4143 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4144 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4145 					opt_rx->sack_ok = TCP_SACK_SEEN;
4146 					tcp_sack_reset(opt_rx);
4147 				}
4148 				break;
4149 
4150 			case TCPOPT_SACK:
4151 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4152 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4153 				   opt_rx->sack_ok) {
4154 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4155 				}
4156 				break;
4157 #ifdef CONFIG_TCP_MD5SIG
4158 			case TCPOPT_MD5SIG:
4159 				/* The MD5 Hash has already been
4160 				 * checked (see tcp_v{4,6}_rcv()).
4161 				 */
4162 				break;
4163 #endif
4164 #ifdef CONFIG_TCP_AO
4165 			case TCPOPT_AO:
4166 				/* TCP AO has already been checked
4167 				 * (see tcp_inbound_ao_hash()).
4168 				 */
4169 				break;
4170 #endif
4171 			case TCPOPT_FASTOPEN:
4172 				tcp_parse_fastopen_option(
4173 					opsize - TCPOLEN_FASTOPEN_BASE,
4174 					ptr, th->syn, foc, false);
4175 				break;
4176 
4177 			case TCPOPT_EXP:
4178 				/* Fast Open option shares code 254 using a
4179 				 * 16 bits magic number.
4180 				 */
4181 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4182 				    get_unaligned_be16(ptr) ==
4183 				    TCPOPT_FASTOPEN_MAGIC) {
4184 					tcp_parse_fastopen_option(opsize -
4185 						TCPOLEN_EXP_FASTOPEN_BASE,
4186 						ptr + 2, th->syn, foc, true);
4187 					break;
4188 				}
4189 
4190 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4191 					break;
4192 
4193 				opt_rx->saw_unknown = 1;
4194 				break;
4195 
4196 			default:
4197 				opt_rx->saw_unknown = 1;
4198 			}
4199 			ptr += opsize-2;
4200 			length -= opsize;
4201 		}
4202 	}
4203 }
4204 EXPORT_SYMBOL(tcp_parse_options);
4205 
4206 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4207 {
4208 	const __be32 *ptr = (const __be32 *)(th + 1);
4209 
4210 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4211 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4212 		tp->rx_opt.saw_tstamp = 1;
4213 		++ptr;
4214 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4215 		++ptr;
4216 		if (*ptr)
4217 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4218 		else
4219 			tp->rx_opt.rcv_tsecr = 0;
4220 		return true;
4221 	}
4222 	return false;
4223 }
4224 
4225 /* Fast parse options. This hopes to only see timestamps.
4226  * If it is wrong it falls back on tcp_parse_options().
4227  */
4228 static bool tcp_fast_parse_options(const struct net *net,
4229 				   const struct sk_buff *skb,
4230 				   const struct tcphdr *th, struct tcp_sock *tp)
4231 {
4232 	/* In the spirit of fast parsing, compare doff directly to constant
4233 	 * values.  Because equality is used, short doff can be ignored here.
4234 	 */
4235 	if (th->doff == (sizeof(*th) / 4)) {
4236 		tp->rx_opt.saw_tstamp = 0;
4237 		return false;
4238 	} else if (tp->rx_opt.tstamp_ok &&
4239 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4240 		if (tcp_parse_aligned_timestamp(tp, th))
4241 			return true;
4242 	}
4243 
4244 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4245 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4246 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4247 
4248 	return true;
4249 }
4250 
4251 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4252 /*
4253  * Parse Signature options
4254  */
4255 int tcp_do_parse_auth_options(const struct tcphdr *th,
4256 			      const u8 **md5_hash, const u8 **ao_hash)
4257 {
4258 	int length = (th->doff << 2) - sizeof(*th);
4259 	const u8 *ptr = (const u8 *)(th + 1);
4260 	unsigned int minlen = TCPOLEN_MD5SIG;
4261 
4262 	if (IS_ENABLED(CONFIG_TCP_AO))
4263 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4264 
4265 	*md5_hash = NULL;
4266 	*ao_hash = NULL;
4267 
4268 	/* If not enough data remaining, we can short cut */
4269 	while (length >= minlen) {
4270 		int opcode = *ptr++;
4271 		int opsize;
4272 
4273 		switch (opcode) {
4274 		case TCPOPT_EOL:
4275 			return 0;
4276 		case TCPOPT_NOP:
4277 			length--;
4278 			continue;
4279 		default:
4280 			opsize = *ptr++;
4281 			if (opsize < 2 || opsize > length)
4282 				return -EINVAL;
4283 			if (opcode == TCPOPT_MD5SIG) {
4284 				if (opsize != TCPOLEN_MD5SIG)
4285 					return -EINVAL;
4286 				if (unlikely(*md5_hash || *ao_hash))
4287 					return -EEXIST;
4288 				*md5_hash = ptr;
4289 			} else if (opcode == TCPOPT_AO) {
4290 				if (opsize <= sizeof(struct tcp_ao_hdr))
4291 					return -EINVAL;
4292 				if (unlikely(*md5_hash || *ao_hash))
4293 					return -EEXIST;
4294 				*ao_hash = ptr;
4295 			}
4296 		}
4297 		ptr += opsize - 2;
4298 		length -= opsize;
4299 	}
4300 	return 0;
4301 }
4302 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4303 #endif
4304 
4305 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4306  *
4307  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4308  * it can pass through stack. So, the following predicate verifies that
4309  * this segment is not used for anything but congestion avoidance or
4310  * fast retransmit. Moreover, we even are able to eliminate most of such
4311  * second order effects, if we apply some small "replay" window (~RTO)
4312  * to timestamp space.
4313  *
4314  * All these measures still do not guarantee that we reject wrapped ACKs
4315  * on networks with high bandwidth, when sequence space is recycled fastly,
4316  * but it guarantees that such events will be very rare and do not affect
4317  * connection seriously. This doesn't look nice, but alas, PAWS is really
4318  * buggy extension.
4319  *
4320  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4321  * states that events when retransmit arrives after original data are rare.
4322  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4323  * the biggest problem on large power networks even with minor reordering.
4324  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4325  * up to bandwidth of 18Gigabit/sec. 8) ]
4326  */
4327 
4328 /* Estimates max number of increments of remote peer TSval in
4329  * a replay window (based on our current RTO estimation).
4330  */
4331 static u32 tcp_tsval_replay(const struct sock *sk)
4332 {
4333 	/* If we use usec TS resolution,
4334 	 * then expect the remote peer to use the same resolution.
4335 	 */
4336 	if (tcp_sk(sk)->tcp_usec_ts)
4337 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4338 
4339 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4340 	 * We know that some OS (including old linux) can use 1200 Hz.
4341 	 */
4342 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4343 }
4344 
4345 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk,
4346 						     const struct sk_buff *skb)
4347 {
4348 	const struct tcp_sock *tp = tcp_sk(sk);
4349 	const struct tcphdr *th = tcp_hdr(skb);
4350 	SKB_DR_INIT(reason, TCP_RFC7323_PAWS);
4351 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4352 	u32 seq = TCP_SKB_CB(skb)->seq;
4353 
4354 	/* 1. Is this not a pure ACK ? */
4355 	if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq)
4356 		return reason;
4357 
4358 	/* 2. Is its sequence not the expected one ? */
4359 	if (seq != tp->rcv_nxt)
4360 		return before(seq, tp->rcv_nxt) ?
4361 			SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK :
4362 			reason;
4363 
4364 	/* 3. Is this not a duplicate ACK ? */
4365 	if (ack != tp->snd_una)
4366 		return reason;
4367 
4368 	/* 4. Is this updating the window ? */
4369 	if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) <<
4370 						tp->rx_opt.snd_wscale))
4371 		return reason;
4372 
4373 	/* 5. Is this not in the replay window ? */
4374 	if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) >
4375 	    tcp_tsval_replay(sk))
4376 		return reason;
4377 
4378 	return 0;
4379 }
4380 
4381 /* Check segment sequence number for validity.
4382  *
4383  * Segment controls are considered valid, if the segment
4384  * fits to the window after truncation to the window. Acceptability
4385  * of data (and SYN, FIN, of course) is checked separately.
4386  * See tcp_data_queue(), for example.
4387  *
4388  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4389  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4390  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4391  * (borrowed from freebsd)
4392  */
4393 
4394 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4395 					 u32 seq, u32 end_seq)
4396 {
4397 	if (before(end_seq, tp->rcv_wup))
4398 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4399 
4400 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4401 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4402 
4403 	return SKB_NOT_DROPPED_YET;
4404 }
4405 
4406 
4407 void tcp_done_with_error(struct sock *sk, int err)
4408 {
4409 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4410 	WRITE_ONCE(sk->sk_err, err);
4411 	smp_wmb();
4412 
4413 	tcp_write_queue_purge(sk);
4414 	tcp_done(sk);
4415 
4416 	if (!sock_flag(sk, SOCK_DEAD))
4417 		sk_error_report(sk);
4418 }
4419 EXPORT_IPV6_MOD(tcp_done_with_error);
4420 
4421 /* When we get a reset we do this. */
4422 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4423 {
4424 	int err;
4425 
4426 	trace_tcp_receive_reset(sk);
4427 
4428 	/* mptcp can't tell us to ignore reset pkts,
4429 	 * so just ignore the return value of mptcp_incoming_options().
4430 	 */
4431 	if (sk_is_mptcp(sk))
4432 		mptcp_incoming_options(sk, skb);
4433 
4434 	/* We want the right error as BSD sees it (and indeed as we do). */
4435 	switch (sk->sk_state) {
4436 	case TCP_SYN_SENT:
4437 		err = ECONNREFUSED;
4438 		break;
4439 	case TCP_CLOSE_WAIT:
4440 		err = EPIPE;
4441 		break;
4442 	case TCP_CLOSE:
4443 		return;
4444 	default:
4445 		err = ECONNRESET;
4446 	}
4447 	tcp_done_with_error(sk, err);
4448 }
4449 
4450 /*
4451  * 	Process the FIN bit. This now behaves as it is supposed to work
4452  *	and the FIN takes effect when it is validly part of sequence
4453  *	space. Not before when we get holes.
4454  *
4455  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4456  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4457  *	TIME-WAIT)
4458  *
4459  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4460  *	close and we go into CLOSING (and later onto TIME-WAIT)
4461  *
4462  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4463  */
4464 void tcp_fin(struct sock *sk)
4465 {
4466 	struct tcp_sock *tp = tcp_sk(sk);
4467 
4468 	inet_csk_schedule_ack(sk);
4469 
4470 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4471 	sock_set_flag(sk, SOCK_DONE);
4472 
4473 	switch (sk->sk_state) {
4474 	case TCP_SYN_RECV:
4475 	case TCP_ESTABLISHED:
4476 		/* Move to CLOSE_WAIT */
4477 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4478 		inet_csk_enter_pingpong_mode(sk);
4479 		break;
4480 
4481 	case TCP_CLOSE_WAIT:
4482 	case TCP_CLOSING:
4483 		/* Received a retransmission of the FIN, do
4484 		 * nothing.
4485 		 */
4486 		break;
4487 	case TCP_LAST_ACK:
4488 		/* RFC793: Remain in the LAST-ACK state. */
4489 		break;
4490 
4491 	case TCP_FIN_WAIT1:
4492 		/* This case occurs when a simultaneous close
4493 		 * happens, we must ack the received FIN and
4494 		 * enter the CLOSING state.
4495 		 */
4496 		tcp_send_ack(sk);
4497 		tcp_set_state(sk, TCP_CLOSING);
4498 		break;
4499 	case TCP_FIN_WAIT2:
4500 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4501 		tcp_send_ack(sk);
4502 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4503 		break;
4504 	default:
4505 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4506 		 * cases we should never reach this piece of code.
4507 		 */
4508 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4509 		       __func__, sk->sk_state);
4510 		break;
4511 	}
4512 
4513 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4514 	 * Probably, we should reset in this case. For now drop them.
4515 	 */
4516 	skb_rbtree_purge(&tp->out_of_order_queue);
4517 	if (tcp_is_sack(tp))
4518 		tcp_sack_reset(&tp->rx_opt);
4519 
4520 	if (!sock_flag(sk, SOCK_DEAD)) {
4521 		sk->sk_state_change(sk);
4522 
4523 		/* Do not send POLL_HUP for half duplex close. */
4524 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4525 		    sk->sk_state == TCP_CLOSE)
4526 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4527 		else
4528 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4529 	}
4530 }
4531 
4532 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4533 				  u32 end_seq)
4534 {
4535 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4536 		if (before(seq, sp->start_seq))
4537 			sp->start_seq = seq;
4538 		if (after(end_seq, sp->end_seq))
4539 			sp->end_seq = end_seq;
4540 		return true;
4541 	}
4542 	return false;
4543 }
4544 
4545 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4546 {
4547 	struct tcp_sock *tp = tcp_sk(sk);
4548 
4549 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4550 		int mib_idx;
4551 
4552 		if (before(seq, tp->rcv_nxt))
4553 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4554 		else
4555 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4556 
4557 		NET_INC_STATS(sock_net(sk), mib_idx);
4558 
4559 		tp->rx_opt.dsack = 1;
4560 		tp->duplicate_sack[0].start_seq = seq;
4561 		tp->duplicate_sack[0].end_seq = end_seq;
4562 	}
4563 }
4564 
4565 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4566 {
4567 	struct tcp_sock *tp = tcp_sk(sk);
4568 
4569 	if (!tp->rx_opt.dsack)
4570 		tcp_dsack_set(sk, seq, end_seq);
4571 	else
4572 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4573 }
4574 
4575 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4576 {
4577 	/* When the ACK path fails or drops most ACKs, the sender would
4578 	 * timeout and spuriously retransmit the same segment repeatedly.
4579 	 * If it seems our ACKs are not reaching the other side,
4580 	 * based on receiving a duplicate data segment with new flowlabel
4581 	 * (suggesting the sender suffered an RTO), and we are not already
4582 	 * repathing due to our own RTO, then rehash the socket to repath our
4583 	 * packets.
4584 	 */
4585 #if IS_ENABLED(CONFIG_IPV6)
4586 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4587 	    skb->protocol == htons(ETH_P_IPV6) &&
4588 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4589 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4590 	    sk_rethink_txhash(sk))
4591 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4592 
4593 	/* Save last flowlabel after a spurious retrans. */
4594 	tcp_save_lrcv_flowlabel(sk, skb);
4595 #endif
4596 }
4597 
4598 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4599 {
4600 	struct tcp_sock *tp = tcp_sk(sk);
4601 
4602 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4603 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4604 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4605 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4606 
4607 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4608 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4609 
4610 			tcp_rcv_spurious_retrans(sk, skb);
4611 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4612 				end_seq = tp->rcv_nxt;
4613 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4614 		}
4615 	}
4616 
4617 	tcp_send_ack(sk);
4618 }
4619 
4620 /* These routines update the SACK block as out-of-order packets arrive or
4621  * in-order packets close up the sequence space.
4622  */
4623 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4624 {
4625 	int this_sack;
4626 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4627 	struct tcp_sack_block *swalk = sp + 1;
4628 
4629 	/* See if the recent change to the first SACK eats into
4630 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4631 	 */
4632 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4633 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4634 			int i;
4635 
4636 			/* Zap SWALK, by moving every further SACK up by one slot.
4637 			 * Decrease num_sacks.
4638 			 */
4639 			tp->rx_opt.num_sacks--;
4640 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4641 				sp[i] = sp[i + 1];
4642 			continue;
4643 		}
4644 		this_sack++;
4645 		swalk++;
4646 	}
4647 }
4648 
4649 void tcp_sack_compress_send_ack(struct sock *sk)
4650 {
4651 	struct tcp_sock *tp = tcp_sk(sk);
4652 
4653 	if (!tp->compressed_ack)
4654 		return;
4655 
4656 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4657 		__sock_put(sk);
4658 
4659 	/* Since we have to send one ack finally,
4660 	 * substract one from tp->compressed_ack to keep
4661 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4662 	 */
4663 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4664 		      tp->compressed_ack - 1);
4665 
4666 	tp->compressed_ack = 0;
4667 	tcp_send_ack(sk);
4668 }
4669 
4670 /* Reasonable amount of sack blocks included in TCP SACK option
4671  * The max is 4, but this becomes 3 if TCP timestamps are there.
4672  * Given that SACK packets might be lost, be conservative and use 2.
4673  */
4674 #define TCP_SACK_BLOCKS_EXPECTED 2
4675 
4676 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4677 {
4678 	struct tcp_sock *tp = tcp_sk(sk);
4679 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4680 	int cur_sacks = tp->rx_opt.num_sacks;
4681 	int this_sack;
4682 
4683 	if (!cur_sacks)
4684 		goto new_sack;
4685 
4686 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4687 		if (tcp_sack_extend(sp, seq, end_seq)) {
4688 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4689 				tcp_sack_compress_send_ack(sk);
4690 			/* Rotate this_sack to the first one. */
4691 			for (; this_sack > 0; this_sack--, sp--)
4692 				swap(*sp, *(sp - 1));
4693 			if (cur_sacks > 1)
4694 				tcp_sack_maybe_coalesce(tp);
4695 			return;
4696 		}
4697 	}
4698 
4699 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4700 		tcp_sack_compress_send_ack(sk);
4701 
4702 	/* Could not find an adjacent existing SACK, build a new one,
4703 	 * put it at the front, and shift everyone else down.  We
4704 	 * always know there is at least one SACK present already here.
4705 	 *
4706 	 * If the sack array is full, forget about the last one.
4707 	 */
4708 	if (this_sack >= TCP_NUM_SACKS) {
4709 		this_sack--;
4710 		tp->rx_opt.num_sacks--;
4711 		sp--;
4712 	}
4713 	for (; this_sack > 0; this_sack--, sp--)
4714 		*sp = *(sp - 1);
4715 
4716 new_sack:
4717 	/* Build the new head SACK, and we're done. */
4718 	sp->start_seq = seq;
4719 	sp->end_seq = end_seq;
4720 	tp->rx_opt.num_sacks++;
4721 }
4722 
4723 /* RCV.NXT advances, some SACKs should be eaten. */
4724 
4725 static void tcp_sack_remove(struct tcp_sock *tp)
4726 {
4727 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4728 	int num_sacks = tp->rx_opt.num_sacks;
4729 	int this_sack;
4730 
4731 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4732 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4733 		tp->rx_opt.num_sacks = 0;
4734 		return;
4735 	}
4736 
4737 	for (this_sack = 0; this_sack < num_sacks;) {
4738 		/* Check if the start of the sack is covered by RCV.NXT. */
4739 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4740 			int i;
4741 
4742 			/* RCV.NXT must cover all the block! */
4743 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4744 
4745 			/* Zap this SACK, by moving forward any other SACKS. */
4746 			for (i = this_sack+1; i < num_sacks; i++)
4747 				tp->selective_acks[i-1] = tp->selective_acks[i];
4748 			num_sacks--;
4749 			continue;
4750 		}
4751 		this_sack++;
4752 		sp++;
4753 	}
4754 	tp->rx_opt.num_sacks = num_sacks;
4755 }
4756 
4757 /**
4758  * tcp_try_coalesce - try to merge skb to prior one
4759  * @sk: socket
4760  * @to: prior buffer
4761  * @from: buffer to add in queue
4762  * @fragstolen: pointer to boolean
4763  *
4764  * Before queueing skb @from after @to, try to merge them
4765  * to reduce overall memory use and queue lengths, if cost is small.
4766  * Packets in ofo or receive queues can stay a long time.
4767  * Better try to coalesce them right now to avoid future collapses.
4768  * Returns true if caller should free @from instead of queueing it
4769  */
4770 static bool tcp_try_coalesce(struct sock *sk,
4771 			     struct sk_buff *to,
4772 			     struct sk_buff *from,
4773 			     bool *fragstolen)
4774 {
4775 	int delta;
4776 
4777 	*fragstolen = false;
4778 
4779 	/* Its possible this segment overlaps with prior segment in queue */
4780 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4781 		return false;
4782 
4783 	if (!tcp_skb_can_collapse_rx(to, from))
4784 		return false;
4785 
4786 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4787 		return false;
4788 
4789 	atomic_add(delta, &sk->sk_rmem_alloc);
4790 	sk_mem_charge(sk, delta);
4791 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4792 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4793 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4794 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4795 
4796 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4797 		TCP_SKB_CB(to)->has_rxtstamp = true;
4798 		to->tstamp = from->tstamp;
4799 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4800 	}
4801 
4802 	return true;
4803 }
4804 
4805 static bool tcp_ooo_try_coalesce(struct sock *sk,
4806 			     struct sk_buff *to,
4807 			     struct sk_buff *from,
4808 			     bool *fragstolen)
4809 {
4810 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4811 
4812 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4813 	if (res) {
4814 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4815 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4816 
4817 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4818 	}
4819 	return res;
4820 }
4821 
4822 noinline_for_tracing static void
4823 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
4824 {
4825 	sk_drops_add(sk, skb);
4826 	sk_skb_reason_drop(sk, skb, reason);
4827 }
4828 
4829 /* This one checks to see if we can put data from the
4830  * out_of_order queue into the receive_queue.
4831  */
4832 static void tcp_ofo_queue(struct sock *sk)
4833 {
4834 	struct tcp_sock *tp = tcp_sk(sk);
4835 	__u32 dsack_high = tp->rcv_nxt;
4836 	bool fin, fragstolen, eaten;
4837 	struct sk_buff *skb, *tail;
4838 	struct rb_node *p;
4839 
4840 	p = rb_first(&tp->out_of_order_queue);
4841 	while (p) {
4842 		skb = rb_to_skb(p);
4843 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4844 			break;
4845 
4846 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4847 			__u32 dsack = dsack_high;
4848 
4849 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4850 				dsack = TCP_SKB_CB(skb)->end_seq;
4851 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4852 		}
4853 		p = rb_next(p);
4854 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4855 
4856 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4857 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4858 			continue;
4859 		}
4860 
4861 		tail = skb_peek_tail(&sk->sk_receive_queue);
4862 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4863 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4864 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4865 		if (!eaten)
4866 			tcp_add_receive_queue(sk, skb);
4867 		else
4868 			kfree_skb_partial(skb, fragstolen);
4869 
4870 		if (unlikely(fin)) {
4871 			tcp_fin(sk);
4872 			/* tcp_fin() purges tp->out_of_order_queue,
4873 			 * so we must end this loop right now.
4874 			 */
4875 			break;
4876 		}
4877 	}
4878 }
4879 
4880 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4881 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4882 
4883 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4884 				 unsigned int size)
4885 {
4886 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4887 	    !sk_rmem_schedule(sk, skb, size)) {
4888 
4889 		if (tcp_prune_queue(sk, skb) < 0)
4890 			return -1;
4891 
4892 		while (!sk_rmem_schedule(sk, skb, size)) {
4893 			if (!tcp_prune_ofo_queue(sk, skb))
4894 				return -1;
4895 		}
4896 	}
4897 	return 0;
4898 }
4899 
4900 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4901 {
4902 	struct tcp_sock *tp = tcp_sk(sk);
4903 	struct rb_node **p, *parent;
4904 	struct sk_buff *skb1;
4905 	u32 seq, end_seq;
4906 	bool fragstolen;
4907 
4908 	tcp_save_lrcv_flowlabel(sk, skb);
4909 	tcp_data_ecn_check(sk, skb);
4910 
4911 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4912 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4913 		sk->sk_data_ready(sk);
4914 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4915 		return;
4916 	}
4917 
4918 	/* Disable header prediction. */
4919 	tp->pred_flags = 0;
4920 	inet_csk_schedule_ack(sk);
4921 
4922 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4923 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4924 	seq = TCP_SKB_CB(skb)->seq;
4925 	end_seq = TCP_SKB_CB(skb)->end_seq;
4926 
4927 	p = &tp->out_of_order_queue.rb_node;
4928 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4929 		/* Initial out of order segment, build 1 SACK. */
4930 		if (tcp_is_sack(tp)) {
4931 			tp->rx_opt.num_sacks = 1;
4932 			tp->selective_acks[0].start_seq = seq;
4933 			tp->selective_acks[0].end_seq = end_seq;
4934 		}
4935 		rb_link_node(&skb->rbnode, NULL, p);
4936 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4937 		tp->ooo_last_skb = skb;
4938 		goto end;
4939 	}
4940 
4941 	/* In the typical case, we are adding an skb to the end of the list.
4942 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4943 	 */
4944 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4945 				 skb, &fragstolen)) {
4946 coalesce_done:
4947 		/* For non sack flows, do not grow window to force DUPACK
4948 		 * and trigger fast retransmit.
4949 		 */
4950 		if (tcp_is_sack(tp))
4951 			tcp_grow_window(sk, skb, true);
4952 		kfree_skb_partial(skb, fragstolen);
4953 		skb = NULL;
4954 		goto add_sack;
4955 	}
4956 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4957 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4958 		parent = &tp->ooo_last_skb->rbnode;
4959 		p = &parent->rb_right;
4960 		goto insert;
4961 	}
4962 
4963 	/* Find place to insert this segment. Handle overlaps on the way. */
4964 	parent = NULL;
4965 	while (*p) {
4966 		parent = *p;
4967 		skb1 = rb_to_skb(parent);
4968 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4969 			p = &parent->rb_left;
4970 			continue;
4971 		}
4972 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4973 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4974 				/* All the bits are present. Drop. */
4975 				NET_INC_STATS(sock_net(sk),
4976 					      LINUX_MIB_TCPOFOMERGE);
4977 				tcp_drop_reason(sk, skb,
4978 						SKB_DROP_REASON_TCP_OFOMERGE);
4979 				skb = NULL;
4980 				tcp_dsack_set(sk, seq, end_seq);
4981 				goto add_sack;
4982 			}
4983 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4984 				/* Partial overlap. */
4985 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4986 			} else {
4987 				/* skb's seq == skb1's seq and skb covers skb1.
4988 				 * Replace skb1 with skb.
4989 				 */
4990 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4991 						&tp->out_of_order_queue);
4992 				tcp_dsack_extend(sk,
4993 						 TCP_SKB_CB(skb1)->seq,
4994 						 TCP_SKB_CB(skb1)->end_seq);
4995 				NET_INC_STATS(sock_net(sk),
4996 					      LINUX_MIB_TCPOFOMERGE);
4997 				tcp_drop_reason(sk, skb1,
4998 						SKB_DROP_REASON_TCP_OFOMERGE);
4999 				goto merge_right;
5000 			}
5001 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5002 						skb, &fragstolen)) {
5003 			goto coalesce_done;
5004 		}
5005 		p = &parent->rb_right;
5006 	}
5007 insert:
5008 	/* Insert segment into RB tree. */
5009 	rb_link_node(&skb->rbnode, parent, p);
5010 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5011 
5012 merge_right:
5013 	/* Remove other segments covered by skb. */
5014 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5015 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5016 			break;
5017 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5018 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5019 					 end_seq);
5020 			break;
5021 		}
5022 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5023 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5024 				 TCP_SKB_CB(skb1)->end_seq);
5025 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5026 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5027 	}
5028 	/* If there is no skb after us, we are the last_skb ! */
5029 	if (!skb1)
5030 		tp->ooo_last_skb = skb;
5031 
5032 add_sack:
5033 	if (tcp_is_sack(tp))
5034 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5035 end:
5036 	if (skb) {
5037 		/* For non sack flows, do not grow window to force DUPACK
5038 		 * and trigger fast retransmit.
5039 		 */
5040 		if (tcp_is_sack(tp))
5041 			tcp_grow_window(sk, skb, false);
5042 		skb_condense(skb);
5043 		skb_set_owner_r(skb, sk);
5044 	}
5045 	tcp_rcvbuf_grow(sk);
5046 }
5047 
5048 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5049 				      bool *fragstolen)
5050 {
5051 	int eaten;
5052 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5053 
5054 	eaten = (tail &&
5055 		 tcp_try_coalesce(sk, tail,
5056 				  skb, fragstolen)) ? 1 : 0;
5057 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5058 	if (!eaten) {
5059 		tcp_add_receive_queue(sk, skb);
5060 		skb_set_owner_r(skb, sk);
5061 	}
5062 	return eaten;
5063 }
5064 
5065 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5066 {
5067 	struct sk_buff *skb;
5068 	int err = -ENOMEM;
5069 	int data_len = 0;
5070 	bool fragstolen;
5071 
5072 	if (size == 0)
5073 		return 0;
5074 
5075 	if (size > PAGE_SIZE) {
5076 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5077 
5078 		data_len = npages << PAGE_SHIFT;
5079 		size = data_len + (size & ~PAGE_MASK);
5080 	}
5081 	skb = alloc_skb_with_frags(size - data_len, data_len,
5082 				   PAGE_ALLOC_COSTLY_ORDER,
5083 				   &err, sk->sk_allocation);
5084 	if (!skb)
5085 		goto err;
5086 
5087 	skb_put(skb, size - data_len);
5088 	skb->data_len = data_len;
5089 	skb->len = size;
5090 
5091 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5092 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5093 		goto err_free;
5094 	}
5095 
5096 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5097 	if (err)
5098 		goto err_free;
5099 
5100 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5101 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5102 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5103 
5104 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5105 		WARN_ON_ONCE(fragstolen); /* should not happen */
5106 		__kfree_skb(skb);
5107 	}
5108 	return size;
5109 
5110 err_free:
5111 	kfree_skb(skb);
5112 err:
5113 	return err;
5114 
5115 }
5116 
5117 void tcp_data_ready(struct sock *sk)
5118 {
5119 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5120 		sk->sk_data_ready(sk);
5121 }
5122 
5123 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5124 {
5125 	struct tcp_sock *tp = tcp_sk(sk);
5126 	enum skb_drop_reason reason;
5127 	bool fragstolen;
5128 	int eaten;
5129 
5130 	/* If a subflow has been reset, the packet should not continue
5131 	 * to be processed, drop the packet.
5132 	 */
5133 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5134 		__kfree_skb(skb);
5135 		return;
5136 	}
5137 
5138 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5139 		__kfree_skb(skb);
5140 		return;
5141 	}
5142 	tcp_cleanup_skb(skb);
5143 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5144 
5145 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5146 	tp->rx_opt.dsack = 0;
5147 
5148 	/*  Queue data for delivery to the user.
5149 	 *  Packets in sequence go to the receive queue.
5150 	 *  Out of sequence packets to the out_of_order_queue.
5151 	 */
5152 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5153 		if (tcp_receive_window(tp) == 0) {
5154 			/* Some stacks are known to send bare FIN packets
5155 			 * in a loop even if we send RWIN 0 in our ACK.
5156 			 * Accepting this FIN does not hurt memory pressure
5157 			 * because the FIN flag will simply be merged to the
5158 			 * receive queue tail skb in most cases.
5159 			 */
5160 			if (!skb->len &&
5161 			    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5162 				goto queue_and_out;
5163 
5164 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5165 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5166 			goto out_of_window;
5167 		}
5168 
5169 		/* Ok. In sequence. In window. */
5170 queue_and_out:
5171 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5172 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5173 			inet_csk(sk)->icsk_ack.pending |=
5174 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5175 			inet_csk_schedule_ack(sk);
5176 			sk->sk_data_ready(sk);
5177 
5178 			if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5179 				reason = SKB_DROP_REASON_PROTO_MEM;
5180 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5181 				goto drop;
5182 			}
5183 			sk_forced_mem_schedule(sk, skb->truesize);
5184 		}
5185 
5186 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5187 		if (skb->len)
5188 			tcp_event_data_recv(sk, skb);
5189 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5190 			tcp_fin(sk);
5191 
5192 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5193 			tcp_ofo_queue(sk);
5194 
5195 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5196 			 * gap in queue is filled.
5197 			 */
5198 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5199 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5200 		}
5201 
5202 		if (tp->rx_opt.num_sacks)
5203 			tcp_sack_remove(tp);
5204 
5205 		tcp_fast_path_check(sk);
5206 
5207 		if (eaten > 0)
5208 			kfree_skb_partial(skb, fragstolen);
5209 		if (!sock_flag(sk, SOCK_DEAD))
5210 			tcp_data_ready(sk);
5211 		return;
5212 	}
5213 
5214 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5215 		tcp_rcv_spurious_retrans(sk, skb);
5216 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5217 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5218 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5219 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5220 
5221 out_of_window:
5222 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5223 		inet_csk_schedule_ack(sk);
5224 drop:
5225 		tcp_drop_reason(sk, skb, reason);
5226 		return;
5227 	}
5228 
5229 	/* Out of window. F.e. zero window probe. */
5230 	if (!before(TCP_SKB_CB(skb)->seq,
5231 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5232 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5233 		goto out_of_window;
5234 	}
5235 
5236 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5237 		/* Partial packet, seq < rcv_next < end_seq */
5238 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5239 
5240 		/* If window is closed, drop tail of packet. But after
5241 		 * remembering D-SACK for its head made in previous line.
5242 		 */
5243 		if (!tcp_receive_window(tp)) {
5244 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5245 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5246 			goto out_of_window;
5247 		}
5248 		goto queue_and_out;
5249 	}
5250 
5251 	tcp_data_queue_ofo(sk, skb);
5252 }
5253 
5254 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5255 {
5256 	if (list)
5257 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5258 
5259 	return skb_rb_next(skb);
5260 }
5261 
5262 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5263 					struct sk_buff_head *list,
5264 					struct rb_root *root)
5265 {
5266 	struct sk_buff *next = tcp_skb_next(skb, list);
5267 
5268 	if (list)
5269 		__skb_unlink(skb, list);
5270 	else
5271 		rb_erase(&skb->rbnode, root);
5272 
5273 	__kfree_skb(skb);
5274 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5275 
5276 	return next;
5277 }
5278 
5279 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5280 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5281 {
5282 	struct rb_node **p = &root->rb_node;
5283 	struct rb_node *parent = NULL;
5284 	struct sk_buff *skb1;
5285 
5286 	while (*p) {
5287 		parent = *p;
5288 		skb1 = rb_to_skb(parent);
5289 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5290 			p = &parent->rb_left;
5291 		else
5292 			p = &parent->rb_right;
5293 	}
5294 	rb_link_node(&skb->rbnode, parent, p);
5295 	rb_insert_color(&skb->rbnode, root);
5296 }
5297 
5298 /* Collapse contiguous sequence of skbs head..tail with
5299  * sequence numbers start..end.
5300  *
5301  * If tail is NULL, this means until the end of the queue.
5302  *
5303  * Segments with FIN/SYN are not collapsed (only because this
5304  * simplifies code)
5305  */
5306 static void
5307 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5308 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5309 {
5310 	struct sk_buff *skb = head, *n;
5311 	struct sk_buff_head tmp;
5312 	bool end_of_skbs;
5313 
5314 	/* First, check that queue is collapsible and find
5315 	 * the point where collapsing can be useful.
5316 	 */
5317 restart:
5318 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5319 		n = tcp_skb_next(skb, list);
5320 
5321 		if (!skb_frags_readable(skb))
5322 			goto skip_this;
5323 
5324 		/* No new bits? It is possible on ofo queue. */
5325 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5326 			skb = tcp_collapse_one(sk, skb, list, root);
5327 			if (!skb)
5328 				break;
5329 			goto restart;
5330 		}
5331 
5332 		/* The first skb to collapse is:
5333 		 * - not SYN/FIN and
5334 		 * - bloated or contains data before "start" or
5335 		 *   overlaps to the next one and mptcp allow collapsing.
5336 		 */
5337 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5338 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5339 		     before(TCP_SKB_CB(skb)->seq, start))) {
5340 			end_of_skbs = false;
5341 			break;
5342 		}
5343 
5344 		if (n && n != tail && skb_frags_readable(n) &&
5345 		    tcp_skb_can_collapse_rx(skb, n) &&
5346 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5347 			end_of_skbs = false;
5348 			break;
5349 		}
5350 
5351 skip_this:
5352 		/* Decided to skip this, advance start seq. */
5353 		start = TCP_SKB_CB(skb)->end_seq;
5354 	}
5355 	if (end_of_skbs ||
5356 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5357 	    !skb_frags_readable(skb))
5358 		return;
5359 
5360 	__skb_queue_head_init(&tmp);
5361 
5362 	while (before(start, end)) {
5363 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5364 		struct sk_buff *nskb;
5365 
5366 		nskb = alloc_skb(copy, GFP_ATOMIC);
5367 		if (!nskb)
5368 			break;
5369 
5370 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5371 		skb_copy_decrypted(nskb, skb);
5372 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5373 		if (list)
5374 			__skb_queue_before(list, skb, nskb);
5375 		else
5376 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5377 		skb_set_owner_r(nskb, sk);
5378 		mptcp_skb_ext_move(nskb, skb);
5379 
5380 		/* Copy data, releasing collapsed skbs. */
5381 		while (copy > 0) {
5382 			int offset = start - TCP_SKB_CB(skb)->seq;
5383 			int size = TCP_SKB_CB(skb)->end_seq - start;
5384 
5385 			BUG_ON(offset < 0);
5386 			if (size > 0) {
5387 				size = min(copy, size);
5388 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5389 					BUG();
5390 				TCP_SKB_CB(nskb)->end_seq += size;
5391 				copy -= size;
5392 				start += size;
5393 			}
5394 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5395 				skb = tcp_collapse_one(sk, skb, list, root);
5396 				if (!skb ||
5397 				    skb == tail ||
5398 				    !tcp_skb_can_collapse_rx(nskb, skb) ||
5399 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5400 				    !skb_frags_readable(skb))
5401 					goto end;
5402 			}
5403 		}
5404 	}
5405 end:
5406 	skb_queue_walk_safe(&tmp, skb, n)
5407 		tcp_rbtree_insert(root, skb);
5408 }
5409 
5410 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5411  * and tcp_collapse() them until all the queue is collapsed.
5412  */
5413 static void tcp_collapse_ofo_queue(struct sock *sk)
5414 {
5415 	struct tcp_sock *tp = tcp_sk(sk);
5416 	u32 range_truesize, sum_tiny = 0;
5417 	struct sk_buff *skb, *head;
5418 	u32 start, end;
5419 
5420 	skb = skb_rb_first(&tp->out_of_order_queue);
5421 new_range:
5422 	if (!skb) {
5423 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5424 		return;
5425 	}
5426 	start = TCP_SKB_CB(skb)->seq;
5427 	end = TCP_SKB_CB(skb)->end_seq;
5428 	range_truesize = skb->truesize;
5429 
5430 	for (head = skb;;) {
5431 		skb = skb_rb_next(skb);
5432 
5433 		/* Range is terminated when we see a gap or when
5434 		 * we are at the queue end.
5435 		 */
5436 		if (!skb ||
5437 		    after(TCP_SKB_CB(skb)->seq, end) ||
5438 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5439 			/* Do not attempt collapsing tiny skbs */
5440 			if (range_truesize != head->truesize ||
5441 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5442 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5443 					     head, skb, start, end);
5444 			} else {
5445 				sum_tiny += range_truesize;
5446 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5447 					return;
5448 			}
5449 			goto new_range;
5450 		}
5451 
5452 		range_truesize += skb->truesize;
5453 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5454 			start = TCP_SKB_CB(skb)->seq;
5455 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5456 			end = TCP_SKB_CB(skb)->end_seq;
5457 	}
5458 }
5459 
5460 /*
5461  * Clean the out-of-order queue to make room.
5462  * We drop high sequences packets to :
5463  * 1) Let a chance for holes to be filled.
5464  *    This means we do not drop packets from ooo queue if their sequence
5465  *    is before incoming packet sequence.
5466  * 2) not add too big latencies if thousands of packets sit there.
5467  *    (But if application shrinks SO_RCVBUF, we could still end up
5468  *     freeing whole queue here)
5469  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5470  *
5471  * Return true if queue has shrunk.
5472  */
5473 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5474 {
5475 	struct tcp_sock *tp = tcp_sk(sk);
5476 	struct rb_node *node, *prev;
5477 	bool pruned = false;
5478 	int goal;
5479 
5480 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5481 		return false;
5482 
5483 	goal = sk->sk_rcvbuf >> 3;
5484 	node = &tp->ooo_last_skb->rbnode;
5485 
5486 	do {
5487 		struct sk_buff *skb = rb_to_skb(node);
5488 
5489 		/* If incoming skb would land last in ofo queue, stop pruning. */
5490 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5491 			break;
5492 		pruned = true;
5493 		prev = rb_prev(node);
5494 		rb_erase(node, &tp->out_of_order_queue);
5495 		goal -= skb->truesize;
5496 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5497 		tp->ooo_last_skb = rb_to_skb(prev);
5498 		if (!prev || goal <= 0) {
5499 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5500 			    !tcp_under_memory_pressure(sk))
5501 				break;
5502 			goal = sk->sk_rcvbuf >> 3;
5503 		}
5504 		node = prev;
5505 	} while (node);
5506 
5507 	if (pruned) {
5508 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5509 		/* Reset SACK state.  A conforming SACK implementation will
5510 		 * do the same at a timeout based retransmit.  When a connection
5511 		 * is in a sad state like this, we care only about integrity
5512 		 * of the connection not performance.
5513 		 */
5514 		if (tp->rx_opt.sack_ok)
5515 			tcp_sack_reset(&tp->rx_opt);
5516 	}
5517 	return pruned;
5518 }
5519 
5520 /* Reduce allocated memory if we can, trying to get
5521  * the socket within its memory limits again.
5522  *
5523  * Return less than zero if we should start dropping frames
5524  * until the socket owning process reads some of the data
5525  * to stabilize the situation.
5526  */
5527 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5528 {
5529 	struct tcp_sock *tp = tcp_sk(sk);
5530 
5531 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5532 
5533 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5534 		tcp_clamp_window(sk);
5535 	else if (tcp_under_memory_pressure(sk))
5536 		tcp_adjust_rcv_ssthresh(sk);
5537 
5538 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5539 		return 0;
5540 
5541 	tcp_collapse_ofo_queue(sk);
5542 	if (!skb_queue_empty(&sk->sk_receive_queue))
5543 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5544 			     skb_peek(&sk->sk_receive_queue),
5545 			     NULL,
5546 			     tp->copied_seq, tp->rcv_nxt);
5547 
5548 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5549 		return 0;
5550 
5551 	/* Collapsing did not help, destructive actions follow.
5552 	 * This must not ever occur. */
5553 
5554 	tcp_prune_ofo_queue(sk, in_skb);
5555 
5556 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5557 		return 0;
5558 
5559 	/* If we are really being abused, tell the caller to silently
5560 	 * drop receive data on the floor.  It will get retransmitted
5561 	 * and hopefully then we'll have sufficient space.
5562 	 */
5563 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5564 
5565 	/* Massive buffer overcommit. */
5566 	tp->pred_flags = 0;
5567 	return -1;
5568 }
5569 
5570 static bool tcp_should_expand_sndbuf(struct sock *sk)
5571 {
5572 	const struct tcp_sock *tp = tcp_sk(sk);
5573 
5574 	/* If the user specified a specific send buffer setting, do
5575 	 * not modify it.
5576 	 */
5577 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5578 		return false;
5579 
5580 	/* If we are under global TCP memory pressure, do not expand.  */
5581 	if (tcp_under_memory_pressure(sk)) {
5582 		int unused_mem = sk_unused_reserved_mem(sk);
5583 
5584 		/* Adjust sndbuf according to reserved mem. But make sure
5585 		 * it never goes below SOCK_MIN_SNDBUF.
5586 		 * See sk_stream_moderate_sndbuf() for more details.
5587 		 */
5588 		if (unused_mem > SOCK_MIN_SNDBUF)
5589 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5590 
5591 		return false;
5592 	}
5593 
5594 	/* If we are under soft global TCP memory pressure, do not expand.  */
5595 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5596 		return false;
5597 
5598 	/* If we filled the congestion window, do not expand.  */
5599 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5600 		return false;
5601 
5602 	return true;
5603 }
5604 
5605 static void tcp_new_space(struct sock *sk)
5606 {
5607 	struct tcp_sock *tp = tcp_sk(sk);
5608 
5609 	if (tcp_should_expand_sndbuf(sk)) {
5610 		tcp_sndbuf_expand(sk);
5611 		tp->snd_cwnd_stamp = tcp_jiffies32;
5612 	}
5613 
5614 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5615 }
5616 
5617 /* Caller made space either from:
5618  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5619  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5620  *
5621  * We might be able to generate EPOLLOUT to the application if:
5622  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5623  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5624  *    small enough that tcp_stream_memory_free() decides it
5625  *    is time to generate EPOLLOUT.
5626  */
5627 void tcp_check_space(struct sock *sk)
5628 {
5629 	/* pairs with tcp_poll() */
5630 	smp_mb();
5631 	if (sk->sk_socket &&
5632 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5633 		tcp_new_space(sk);
5634 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5635 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5636 	}
5637 }
5638 
5639 static inline void tcp_data_snd_check(struct sock *sk)
5640 {
5641 	tcp_push_pending_frames(sk);
5642 	tcp_check_space(sk);
5643 }
5644 
5645 /*
5646  * Check if sending an ack is needed.
5647  */
5648 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5649 {
5650 	struct tcp_sock *tp = tcp_sk(sk);
5651 	unsigned long rtt, delay;
5652 
5653 	    /* More than one full frame received... */
5654 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5655 	     /* ... and right edge of window advances far enough.
5656 	      * (tcp_recvmsg() will send ACK otherwise).
5657 	      * If application uses SO_RCVLOWAT, we want send ack now if
5658 	      * we have not received enough bytes to satisfy the condition.
5659 	      */
5660 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5661 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5662 	    /* We ACK each frame or... */
5663 	    tcp_in_quickack_mode(sk) ||
5664 	    /* Protocol state mandates a one-time immediate ACK */
5665 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5666 		/* If we are running from __release_sock() in user context,
5667 		 * Defer the ack until tcp_release_cb().
5668 		 */
5669 		if (sock_owned_by_user_nocheck(sk) &&
5670 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5671 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5672 			return;
5673 		}
5674 send_now:
5675 		tcp_send_ack(sk);
5676 		return;
5677 	}
5678 
5679 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5680 		tcp_send_delayed_ack(sk);
5681 		return;
5682 	}
5683 
5684 	if (!tcp_is_sack(tp) ||
5685 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5686 		goto send_now;
5687 
5688 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5689 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5690 		tp->dup_ack_counter = 0;
5691 	}
5692 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5693 		tp->dup_ack_counter++;
5694 		goto send_now;
5695 	}
5696 	tp->compressed_ack++;
5697 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5698 		return;
5699 
5700 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5701 
5702 	rtt = tp->rcv_rtt_est.rtt_us;
5703 	if (tp->srtt_us && tp->srtt_us < rtt)
5704 		rtt = tp->srtt_us;
5705 
5706 	delay = min_t(unsigned long,
5707 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5708 		      rtt * (NSEC_PER_USEC >> 3)/20);
5709 	sock_hold(sk);
5710 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5711 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5712 			       HRTIMER_MODE_REL_PINNED_SOFT);
5713 }
5714 
5715 static inline void tcp_ack_snd_check(struct sock *sk)
5716 {
5717 	if (!inet_csk_ack_scheduled(sk)) {
5718 		/* We sent a data segment already. */
5719 		return;
5720 	}
5721 	__tcp_ack_snd_check(sk, 1);
5722 }
5723 
5724 /*
5725  *	This routine is only called when we have urgent data
5726  *	signaled. Its the 'slow' part of tcp_urg. It could be
5727  *	moved inline now as tcp_urg is only called from one
5728  *	place. We handle URGent data wrong. We have to - as
5729  *	BSD still doesn't use the correction from RFC961.
5730  *	For 1003.1g we should support a new option TCP_STDURG to permit
5731  *	either form (or just set the sysctl tcp_stdurg).
5732  */
5733 
5734 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5735 {
5736 	struct tcp_sock *tp = tcp_sk(sk);
5737 	u32 ptr = ntohs(th->urg_ptr);
5738 
5739 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5740 		ptr--;
5741 	ptr += ntohl(th->seq);
5742 
5743 	/* Ignore urgent data that we've already seen and read. */
5744 	if (after(tp->copied_seq, ptr))
5745 		return;
5746 
5747 	/* Do not replay urg ptr.
5748 	 *
5749 	 * NOTE: interesting situation not covered by specs.
5750 	 * Misbehaving sender may send urg ptr, pointing to segment,
5751 	 * which we already have in ofo queue. We are not able to fetch
5752 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5753 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5754 	 * situations. But it is worth to think about possibility of some
5755 	 * DoSes using some hypothetical application level deadlock.
5756 	 */
5757 	if (before(ptr, tp->rcv_nxt))
5758 		return;
5759 
5760 	/* Do we already have a newer (or duplicate) urgent pointer? */
5761 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5762 		return;
5763 
5764 	/* Tell the world about our new urgent pointer. */
5765 	sk_send_sigurg(sk);
5766 
5767 	/* We may be adding urgent data when the last byte read was
5768 	 * urgent. To do this requires some care. We cannot just ignore
5769 	 * tp->copied_seq since we would read the last urgent byte again
5770 	 * as data, nor can we alter copied_seq until this data arrives
5771 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5772 	 *
5773 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5774 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5775 	 * and expect that both A and B disappear from stream. This is _wrong_.
5776 	 * Though this happens in BSD with high probability, this is occasional.
5777 	 * Any application relying on this is buggy. Note also, that fix "works"
5778 	 * only in this artificial test. Insert some normal data between A and B and we will
5779 	 * decline of BSD again. Verdict: it is better to remove to trap
5780 	 * buggy users.
5781 	 */
5782 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5783 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5784 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5785 		tp->copied_seq++;
5786 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5787 			__skb_unlink(skb, &sk->sk_receive_queue);
5788 			__kfree_skb(skb);
5789 		}
5790 	}
5791 
5792 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5793 	WRITE_ONCE(tp->urg_seq, ptr);
5794 
5795 	/* Disable header prediction. */
5796 	tp->pred_flags = 0;
5797 }
5798 
5799 /* This is the 'fast' part of urgent handling. */
5800 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5801 {
5802 	struct tcp_sock *tp = tcp_sk(sk);
5803 
5804 	/* Check if we get a new urgent pointer - normally not. */
5805 	if (unlikely(th->urg))
5806 		tcp_check_urg(sk, th);
5807 
5808 	/* Do we wait for any urgent data? - normally not... */
5809 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5810 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5811 			  th->syn;
5812 
5813 		/* Is the urgent pointer pointing into this packet? */
5814 		if (ptr < skb->len) {
5815 			u8 tmp;
5816 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5817 				BUG();
5818 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5819 			if (!sock_flag(sk, SOCK_DEAD))
5820 				sk->sk_data_ready(sk);
5821 		}
5822 	}
5823 }
5824 
5825 /* Accept RST for rcv_nxt - 1 after a FIN.
5826  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5827  * FIN is sent followed by a RST packet. The RST is sent with the same
5828  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5829  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5830  * ACKs on the closed socket. In addition middleboxes can drop either the
5831  * challenge ACK or a subsequent RST.
5832  */
5833 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5834 {
5835 	const struct tcp_sock *tp = tcp_sk(sk);
5836 
5837 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5838 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5839 					       TCPF_CLOSING));
5840 }
5841 
5842 /* Does PAWS and seqno based validation of an incoming segment, flags will
5843  * play significant role here.
5844  */
5845 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5846 				  const struct tcphdr *th, int syn_inerr)
5847 {
5848 	struct tcp_sock *tp = tcp_sk(sk);
5849 	SKB_DR(reason);
5850 
5851 	/* RFC1323: H1. Apply PAWS check first. */
5852 	if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) ||
5853 	    !tp->rx_opt.saw_tstamp ||
5854 	    tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW))
5855 		goto step1;
5856 
5857 	reason = tcp_disordered_ack_check(sk, skb);
5858 	if (!reason)
5859 		goto step1;
5860 	/* Reset is accepted even if it did not pass PAWS. */
5861 	if (th->rst)
5862 		goto step1;
5863 	if (unlikely(th->syn))
5864 		goto syn_challenge;
5865 
5866 	/* Old ACK are common, increment PAWS_OLD_ACK
5867 	 * and do not send a dupack.
5868 	 */
5869 	if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) {
5870 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK);
5871 		goto discard;
5872 	}
5873 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5874 	if (!tcp_oow_rate_limited(sock_net(sk), skb,
5875 				  LINUX_MIB_TCPACKSKIPPEDPAWS,
5876 				  &tp->last_oow_ack_time))
5877 		tcp_send_dupack(sk, skb);
5878 	goto discard;
5879 
5880 step1:
5881 	/* Step 1: check sequence number */
5882 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5883 	if (reason) {
5884 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5885 		 * (RST) segments are validated by checking their SEQ-fields."
5886 		 * And page 69: "If an incoming segment is not acceptable,
5887 		 * an acknowledgment should be sent in reply (unless the RST
5888 		 * bit is set, if so drop the segment and return)".
5889 		 */
5890 		if (!th->rst) {
5891 			if (th->syn)
5892 				goto syn_challenge;
5893 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5894 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5895 						  &tp->last_oow_ack_time))
5896 				tcp_send_dupack(sk, skb);
5897 		} else if (tcp_reset_check(sk, skb)) {
5898 			goto reset;
5899 		}
5900 		goto discard;
5901 	}
5902 
5903 	/* Step 2: check RST bit */
5904 	if (th->rst) {
5905 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5906 		 * FIN and SACK too if available):
5907 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5908 		 * the right-most SACK block,
5909 		 * then
5910 		 *     RESET the connection
5911 		 * else
5912 		 *     Send a challenge ACK
5913 		 */
5914 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5915 		    tcp_reset_check(sk, skb))
5916 			goto reset;
5917 
5918 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5919 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5920 			int max_sack = sp[0].end_seq;
5921 			int this_sack;
5922 
5923 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5924 			     ++this_sack) {
5925 				max_sack = after(sp[this_sack].end_seq,
5926 						 max_sack) ?
5927 					sp[this_sack].end_seq : max_sack;
5928 			}
5929 
5930 			if (TCP_SKB_CB(skb)->seq == max_sack)
5931 				goto reset;
5932 		}
5933 
5934 		/* Disable TFO if RST is out-of-order
5935 		 * and no data has been received
5936 		 * for current active TFO socket
5937 		 */
5938 		if (tp->syn_fastopen && !tp->data_segs_in &&
5939 		    sk->sk_state == TCP_ESTABLISHED)
5940 			tcp_fastopen_active_disable(sk);
5941 		tcp_send_challenge_ack(sk);
5942 		SKB_DR_SET(reason, TCP_RESET);
5943 		goto discard;
5944 	}
5945 
5946 	/* step 3: check security and precedence [ignored] */
5947 
5948 	/* step 4: Check for a SYN
5949 	 * RFC 5961 4.2 : Send a challenge ack
5950 	 */
5951 	if (th->syn) {
5952 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
5953 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
5954 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
5955 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
5956 			goto pass;
5957 syn_challenge:
5958 		if (syn_inerr)
5959 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5960 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5961 		tcp_send_challenge_ack(sk);
5962 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5963 		goto discard;
5964 	}
5965 
5966 pass:
5967 	bpf_skops_parse_hdr(sk, skb);
5968 
5969 	return true;
5970 
5971 discard:
5972 	tcp_drop_reason(sk, skb, reason);
5973 	return false;
5974 
5975 reset:
5976 	tcp_reset(sk, skb);
5977 	__kfree_skb(skb);
5978 	return false;
5979 }
5980 
5981 /*
5982  *	TCP receive function for the ESTABLISHED state.
5983  *
5984  *	It is split into a fast path and a slow path. The fast path is
5985  * 	disabled when:
5986  *	- A zero window was announced from us - zero window probing
5987  *        is only handled properly in the slow path.
5988  *	- Out of order segments arrived.
5989  *	- Urgent data is expected.
5990  *	- There is no buffer space left
5991  *	- Unexpected TCP flags/window values/header lengths are received
5992  *	  (detected by checking the TCP header against pred_flags)
5993  *	- Data is sent in both directions. Fast path only supports pure senders
5994  *	  or pure receivers (this means either the sequence number or the ack
5995  *	  value must stay constant)
5996  *	- Unexpected TCP option.
5997  *
5998  *	When these conditions are not satisfied it drops into a standard
5999  *	receive procedure patterned after RFC793 to handle all cases.
6000  *	The first three cases are guaranteed by proper pred_flags setting,
6001  *	the rest is checked inline. Fast processing is turned on in
6002  *	tcp_data_queue when everything is OK.
6003  */
6004 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6005 {
6006 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6007 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6008 	struct tcp_sock *tp = tcp_sk(sk);
6009 	unsigned int len = skb->len;
6010 
6011 	/* TCP congestion window tracking */
6012 	trace_tcp_probe(sk, skb);
6013 
6014 	tcp_mstamp_refresh(tp);
6015 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6016 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6017 	/*
6018 	 *	Header prediction.
6019 	 *	The code loosely follows the one in the famous
6020 	 *	"30 instruction TCP receive" Van Jacobson mail.
6021 	 *
6022 	 *	Van's trick is to deposit buffers into socket queue
6023 	 *	on a device interrupt, to call tcp_recv function
6024 	 *	on the receive process context and checksum and copy
6025 	 *	the buffer to user space. smart...
6026 	 *
6027 	 *	Our current scheme is not silly either but we take the
6028 	 *	extra cost of the net_bh soft interrupt processing...
6029 	 *	We do checksum and copy also but from device to kernel.
6030 	 */
6031 
6032 	tp->rx_opt.saw_tstamp = 0;
6033 
6034 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6035 	 *	if header_prediction is to be made
6036 	 *	'S' will always be tp->tcp_header_len >> 2
6037 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6038 	 *  turn it off	(when there are holes in the receive
6039 	 *	 space for instance)
6040 	 *	PSH flag is ignored.
6041 	 */
6042 
6043 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6044 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6045 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6046 		int tcp_header_len = tp->tcp_header_len;
6047 		s32 delta = 0;
6048 		int flag = 0;
6049 
6050 		/* Timestamp header prediction: tcp_header_len
6051 		 * is automatically equal to th->doff*4 due to pred_flags
6052 		 * match.
6053 		 */
6054 
6055 		/* Check timestamp */
6056 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6057 			/* No? Slow path! */
6058 			if (!tcp_parse_aligned_timestamp(tp, th))
6059 				goto slow_path;
6060 
6061 			delta = tp->rx_opt.rcv_tsval -
6062 				tp->rx_opt.ts_recent;
6063 			/* If PAWS failed, check it more carefully in slow path */
6064 			if (delta < 0)
6065 				goto slow_path;
6066 
6067 			/* DO NOT update ts_recent here, if checksum fails
6068 			 * and timestamp was corrupted part, it will result
6069 			 * in a hung connection since we will drop all
6070 			 * future packets due to the PAWS test.
6071 			 */
6072 		}
6073 
6074 		if (len <= tcp_header_len) {
6075 			/* Bulk data transfer: sender */
6076 			if (len == tcp_header_len) {
6077 				/* Predicted packet is in window by definition.
6078 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6079 				 * Hence, check seq<=rcv_wup reduces to:
6080 				 */
6081 				if (tcp_header_len ==
6082 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6083 				    tp->rcv_nxt == tp->rcv_wup)
6084 					flag |= __tcp_replace_ts_recent(tp,
6085 									delta);
6086 
6087 				/* We know that such packets are checksummed
6088 				 * on entry.
6089 				 */
6090 				tcp_ack(sk, skb, flag);
6091 				__kfree_skb(skb);
6092 				tcp_data_snd_check(sk);
6093 				/* When receiving pure ack in fast path, update
6094 				 * last ts ecr directly instead of calling
6095 				 * tcp_rcv_rtt_measure_ts()
6096 				 */
6097 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6098 				return;
6099 			} else { /* Header too small */
6100 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6101 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6102 				goto discard;
6103 			}
6104 		} else {
6105 			int eaten = 0;
6106 			bool fragstolen = false;
6107 
6108 			if (tcp_checksum_complete(skb))
6109 				goto csum_error;
6110 
6111 			if ((int)skb->truesize > sk->sk_forward_alloc)
6112 				goto step5;
6113 
6114 			/* Predicted packet is in window by definition.
6115 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6116 			 * Hence, check seq<=rcv_wup reduces to:
6117 			 */
6118 			if (tcp_header_len ==
6119 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6120 			    tp->rcv_nxt == tp->rcv_wup)
6121 				flag |= __tcp_replace_ts_recent(tp,
6122 								delta);
6123 
6124 			tcp_rcv_rtt_measure_ts(sk, skb);
6125 
6126 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6127 
6128 			/* Bulk data transfer: receiver */
6129 			tcp_cleanup_skb(skb);
6130 			__skb_pull(skb, tcp_header_len);
6131 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6132 
6133 			tcp_event_data_recv(sk, skb);
6134 
6135 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6136 				/* Well, only one small jumplet in fast path... */
6137 				tcp_ack(sk, skb, flag | FLAG_DATA);
6138 				tcp_data_snd_check(sk);
6139 				if (!inet_csk_ack_scheduled(sk))
6140 					goto no_ack;
6141 			} else {
6142 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6143 			}
6144 
6145 			__tcp_ack_snd_check(sk, 0);
6146 no_ack:
6147 			if (eaten)
6148 				kfree_skb_partial(skb, fragstolen);
6149 			tcp_data_ready(sk);
6150 			return;
6151 		}
6152 	}
6153 
6154 slow_path:
6155 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6156 		goto csum_error;
6157 
6158 	if (!th->ack && !th->rst && !th->syn) {
6159 		reason = SKB_DROP_REASON_TCP_FLAGS;
6160 		goto discard;
6161 	}
6162 
6163 	/*
6164 	 *	Standard slow path.
6165 	 */
6166 
6167 	if (!tcp_validate_incoming(sk, skb, th, 1))
6168 		return;
6169 
6170 step5:
6171 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6172 	if ((int)reason < 0) {
6173 		reason = -reason;
6174 		goto discard;
6175 	}
6176 	tcp_rcv_rtt_measure_ts(sk, skb);
6177 
6178 	/* Process urgent data. */
6179 	tcp_urg(sk, skb, th);
6180 
6181 	/* step 7: process the segment text */
6182 	tcp_data_queue(sk, skb);
6183 
6184 	tcp_data_snd_check(sk);
6185 	tcp_ack_snd_check(sk);
6186 	return;
6187 
6188 csum_error:
6189 	reason = SKB_DROP_REASON_TCP_CSUM;
6190 	trace_tcp_bad_csum(skb);
6191 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6192 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6193 
6194 discard:
6195 	tcp_drop_reason(sk, skb, reason);
6196 }
6197 EXPORT_IPV6_MOD(tcp_rcv_established);
6198 
6199 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6200 {
6201 	struct inet_connection_sock *icsk = inet_csk(sk);
6202 	struct tcp_sock *tp = tcp_sk(sk);
6203 
6204 	tcp_mtup_init(sk);
6205 	icsk->icsk_af_ops->rebuild_header(sk);
6206 	tcp_init_metrics(sk);
6207 
6208 	/* Initialize the congestion window to start the transfer.
6209 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6210 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6211 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6212 	 * retransmission has occurred.
6213 	 */
6214 	if (tp->total_retrans > 1 && tp->undo_marker)
6215 		tcp_snd_cwnd_set(tp, 1);
6216 	else
6217 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6218 	tp->snd_cwnd_stamp = tcp_jiffies32;
6219 
6220 	bpf_skops_established(sk, bpf_op, skb);
6221 	/* Initialize congestion control unless BPF initialized it already: */
6222 	if (!icsk->icsk_ca_initialized)
6223 		tcp_init_congestion_control(sk);
6224 	tcp_init_buffer_space(sk);
6225 }
6226 
6227 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6228 {
6229 	struct tcp_sock *tp = tcp_sk(sk);
6230 	struct inet_connection_sock *icsk = inet_csk(sk);
6231 
6232 	tcp_ao_finish_connect(sk, skb);
6233 	tcp_set_state(sk, TCP_ESTABLISHED);
6234 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6235 
6236 	if (skb) {
6237 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6238 		security_inet_conn_established(sk, skb);
6239 		sk_mark_napi_id(sk, skb);
6240 	}
6241 
6242 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6243 
6244 	/* Prevent spurious tcp_cwnd_restart() on first data
6245 	 * packet.
6246 	 */
6247 	tp->lsndtime = tcp_jiffies32;
6248 
6249 	if (sock_flag(sk, SOCK_KEEPOPEN))
6250 		tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
6251 
6252 	if (!tp->rx_opt.snd_wscale)
6253 		__tcp_fast_path_on(tp, tp->snd_wnd);
6254 	else
6255 		tp->pred_flags = 0;
6256 }
6257 
6258 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6259 				    struct tcp_fastopen_cookie *cookie)
6260 {
6261 	struct tcp_sock *tp = tcp_sk(sk);
6262 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6263 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6264 	bool syn_drop = false;
6265 
6266 	if (mss == tp->rx_opt.user_mss) {
6267 		struct tcp_options_received opt;
6268 
6269 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6270 		tcp_clear_options(&opt);
6271 		opt.user_mss = opt.mss_clamp = 0;
6272 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6273 		mss = opt.mss_clamp;
6274 	}
6275 
6276 	if (!tp->syn_fastopen) {
6277 		/* Ignore an unsolicited cookie */
6278 		cookie->len = -1;
6279 	} else if (tp->total_retrans) {
6280 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6281 		 * acknowledges data. Presumably the remote received only
6282 		 * the retransmitted (regular) SYNs: either the original
6283 		 * SYN-data or the corresponding SYN-ACK was dropped.
6284 		 */
6285 		syn_drop = (cookie->len < 0 && data);
6286 	} else if (cookie->len < 0 && !tp->syn_data) {
6287 		/* We requested a cookie but didn't get it. If we did not use
6288 		 * the (old) exp opt format then try so next time (try_exp=1).
6289 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6290 		 */
6291 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6292 	}
6293 
6294 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6295 
6296 	if (data) { /* Retransmit unacked data in SYN */
6297 		if (tp->total_retrans)
6298 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6299 		else
6300 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6301 		skb_rbtree_walk_from(data)
6302 			 tcp_mark_skb_lost(sk, data);
6303 		tcp_non_congestion_loss_retransmit(sk);
6304 		NET_INC_STATS(sock_net(sk),
6305 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6306 		return true;
6307 	}
6308 	tp->syn_data_acked = tp->syn_data;
6309 	if (tp->syn_data_acked) {
6310 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6311 		/* SYN-data is counted as two separate packets in tcp_ack() */
6312 		if (tp->delivered > 1)
6313 			--tp->delivered;
6314 	}
6315 
6316 	tcp_fastopen_add_skb(sk, synack);
6317 
6318 	return false;
6319 }
6320 
6321 static void smc_check_reset_syn(struct tcp_sock *tp)
6322 {
6323 #if IS_ENABLED(CONFIG_SMC)
6324 	if (static_branch_unlikely(&tcp_have_smc)) {
6325 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6326 			tp->syn_smc = 0;
6327 	}
6328 #endif
6329 }
6330 
6331 static void tcp_try_undo_spurious_syn(struct sock *sk)
6332 {
6333 	struct tcp_sock *tp = tcp_sk(sk);
6334 	u32 syn_stamp;
6335 
6336 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6337 	 * spurious if the ACK's timestamp option echo value matches the
6338 	 * original SYN timestamp.
6339 	 */
6340 	syn_stamp = tp->retrans_stamp;
6341 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6342 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6343 		tp->undo_marker = 0;
6344 }
6345 
6346 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6347 					 const struct tcphdr *th)
6348 {
6349 	struct inet_connection_sock *icsk = inet_csk(sk);
6350 	struct tcp_sock *tp = tcp_sk(sk);
6351 	struct tcp_fastopen_cookie foc = { .len = -1 };
6352 	int saved_clamp = tp->rx_opt.mss_clamp;
6353 	bool fastopen_fail;
6354 	SKB_DR(reason);
6355 
6356 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6357 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6358 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6359 
6360 	if (th->ack) {
6361 		/* rfc793:
6362 		 * "If the state is SYN-SENT then
6363 		 *    first check the ACK bit
6364 		 *      If the ACK bit is set
6365 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6366 		 *        a reset (unless the RST bit is set, if so drop
6367 		 *        the segment and return)"
6368 		 */
6369 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6370 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6371 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6372 			if (icsk->icsk_retransmits == 0)
6373 				tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6374 						     TCP_TIMEOUT_MIN, false);
6375 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6376 			goto reset_and_undo;
6377 		}
6378 
6379 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6380 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6381 			     tcp_time_stamp_ts(tp))) {
6382 			NET_INC_STATS(sock_net(sk),
6383 					LINUX_MIB_PAWSACTIVEREJECTED);
6384 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6385 			goto reset_and_undo;
6386 		}
6387 
6388 		/* Now ACK is acceptable.
6389 		 *
6390 		 * "If the RST bit is set
6391 		 *    If the ACK was acceptable then signal the user "error:
6392 		 *    connection reset", drop the segment, enter CLOSED state,
6393 		 *    delete TCB, and return."
6394 		 */
6395 
6396 		if (th->rst) {
6397 			tcp_reset(sk, skb);
6398 consume:
6399 			__kfree_skb(skb);
6400 			return 0;
6401 		}
6402 
6403 		/* rfc793:
6404 		 *   "fifth, if neither of the SYN or RST bits is set then
6405 		 *    drop the segment and return."
6406 		 *
6407 		 *    See note below!
6408 		 *                                        --ANK(990513)
6409 		 */
6410 		if (!th->syn) {
6411 			SKB_DR_SET(reason, TCP_FLAGS);
6412 			goto discard_and_undo;
6413 		}
6414 		/* rfc793:
6415 		 *   "If the SYN bit is on ...
6416 		 *    are acceptable then ...
6417 		 *    (our SYN has been ACKed), change the connection
6418 		 *    state to ESTABLISHED..."
6419 		 */
6420 
6421 		tcp_ecn_rcv_synack(tp, th);
6422 
6423 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6424 		tcp_try_undo_spurious_syn(sk);
6425 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6426 
6427 		/* Ok.. it's good. Set up sequence numbers and
6428 		 * move to established.
6429 		 */
6430 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6431 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6432 
6433 		/* RFC1323: The window in SYN & SYN/ACK segments is
6434 		 * never scaled.
6435 		 */
6436 		tp->snd_wnd = ntohs(th->window);
6437 
6438 		if (!tp->rx_opt.wscale_ok) {
6439 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6440 			WRITE_ONCE(tp->window_clamp,
6441 				   min(tp->window_clamp, 65535U));
6442 		}
6443 
6444 		if (tp->rx_opt.saw_tstamp) {
6445 			tp->rx_opt.tstamp_ok	   = 1;
6446 			tp->tcp_header_len =
6447 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6448 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6449 			tcp_store_ts_recent(tp);
6450 		} else {
6451 			tp->tcp_header_len = sizeof(struct tcphdr);
6452 		}
6453 
6454 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6455 		tcp_initialize_rcv_mss(sk);
6456 
6457 		/* Remember, tcp_poll() does not lock socket!
6458 		 * Change state from SYN-SENT only after copied_seq
6459 		 * is initialized. */
6460 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6461 
6462 		smc_check_reset_syn(tp);
6463 
6464 		smp_mb();
6465 
6466 		tcp_finish_connect(sk, skb);
6467 
6468 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6469 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6470 
6471 		if (!sock_flag(sk, SOCK_DEAD)) {
6472 			sk->sk_state_change(sk);
6473 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6474 		}
6475 		if (fastopen_fail)
6476 			return -1;
6477 		if (sk->sk_write_pending ||
6478 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6479 		    inet_csk_in_pingpong_mode(sk)) {
6480 			/* Save one ACK. Data will be ready after
6481 			 * several ticks, if write_pending is set.
6482 			 *
6483 			 * It may be deleted, but with this feature tcpdumps
6484 			 * look so _wonderfully_ clever, that I was not able
6485 			 * to stand against the temptation 8)     --ANK
6486 			 */
6487 			inet_csk_schedule_ack(sk);
6488 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6489 			tcp_reset_xmit_timer(sk, ICSK_TIME_DACK,
6490 					     TCP_DELACK_MAX, false);
6491 			goto consume;
6492 		}
6493 		tcp_send_ack(sk);
6494 		return -1;
6495 	}
6496 
6497 	/* No ACK in the segment */
6498 
6499 	if (th->rst) {
6500 		/* rfc793:
6501 		 * "If the RST bit is set
6502 		 *
6503 		 *      Otherwise (no ACK) drop the segment and return."
6504 		 */
6505 		SKB_DR_SET(reason, TCP_RESET);
6506 		goto discard_and_undo;
6507 	}
6508 
6509 	/* PAWS check. */
6510 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6511 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6512 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6513 		goto discard_and_undo;
6514 	}
6515 	if (th->syn) {
6516 		/* We see SYN without ACK. It is attempt of
6517 		 * simultaneous connect with crossed SYNs.
6518 		 * Particularly, it can be connect to self.
6519 		 */
6520 #ifdef CONFIG_TCP_AO
6521 		struct tcp_ao_info *ao;
6522 
6523 		ao = rcu_dereference_protected(tp->ao_info,
6524 					       lockdep_sock_is_held(sk));
6525 		if (ao) {
6526 			WRITE_ONCE(ao->risn, th->seq);
6527 			ao->rcv_sne = 0;
6528 		}
6529 #endif
6530 		tcp_set_state(sk, TCP_SYN_RECV);
6531 
6532 		if (tp->rx_opt.saw_tstamp) {
6533 			tp->rx_opt.tstamp_ok = 1;
6534 			tcp_store_ts_recent(tp);
6535 			tp->tcp_header_len =
6536 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6537 		} else {
6538 			tp->tcp_header_len = sizeof(struct tcphdr);
6539 		}
6540 
6541 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6542 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6543 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6544 
6545 		/* RFC1323: The window in SYN & SYN/ACK segments is
6546 		 * never scaled.
6547 		 */
6548 		tp->snd_wnd    = ntohs(th->window);
6549 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6550 		tp->max_window = tp->snd_wnd;
6551 
6552 		tcp_ecn_rcv_syn(tp, th);
6553 
6554 		tcp_mtup_init(sk);
6555 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6556 		tcp_initialize_rcv_mss(sk);
6557 
6558 		tcp_send_synack(sk);
6559 #if 0
6560 		/* Note, we could accept data and URG from this segment.
6561 		 * There are no obstacles to make this (except that we must
6562 		 * either change tcp_recvmsg() to prevent it from returning data
6563 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6564 		 *
6565 		 * However, if we ignore data in ACKless segments sometimes,
6566 		 * we have no reasons to accept it sometimes.
6567 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6568 		 * is not flawless. So, discard packet for sanity.
6569 		 * Uncomment this return to process the data.
6570 		 */
6571 		return -1;
6572 #else
6573 		goto consume;
6574 #endif
6575 	}
6576 	/* "fifth, if neither of the SYN or RST bits is set then
6577 	 * drop the segment and return."
6578 	 */
6579 
6580 discard_and_undo:
6581 	tcp_clear_options(&tp->rx_opt);
6582 	tp->rx_opt.mss_clamp = saved_clamp;
6583 	tcp_drop_reason(sk, skb, reason);
6584 	return 0;
6585 
6586 reset_and_undo:
6587 	tcp_clear_options(&tp->rx_opt);
6588 	tp->rx_opt.mss_clamp = saved_clamp;
6589 	/* we can reuse/return @reason to its caller to handle the exception */
6590 	return reason;
6591 }
6592 
6593 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6594 {
6595 	struct tcp_sock *tp = tcp_sk(sk);
6596 	struct request_sock *req;
6597 
6598 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6599 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6600 	 */
6601 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6602 		tcp_try_undo_recovery(sk);
6603 
6604 	tcp_update_rto_time(tp);
6605 	inet_csk(sk)->icsk_retransmits = 0;
6606 	/* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6607 	 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6608 	 * need to zero retrans_stamp here to prevent spurious
6609 	 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6610 	 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6611 	 * set entering CA_Recovery, for correct retransmits_timed_out() and
6612 	 * undo behavior.
6613 	 */
6614 	tcp_retrans_stamp_cleanup(sk);
6615 
6616 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6617 	 * we no longer need req so release it.
6618 	 */
6619 	req = rcu_dereference_protected(tp->fastopen_rsk,
6620 					lockdep_sock_is_held(sk));
6621 	reqsk_fastopen_remove(sk, req, false);
6622 
6623 	/* Re-arm the timer because data may have been sent out.
6624 	 * This is similar to the regular data transmission case
6625 	 * when new data has just been ack'ed.
6626 	 *
6627 	 * (TFO) - we could try to be more aggressive and
6628 	 * retransmitting any data sooner based on when they
6629 	 * are sent out.
6630 	 */
6631 	tcp_rearm_rto(sk);
6632 }
6633 
6634 /*
6635  *	This function implements the receiving procedure of RFC 793 for
6636  *	all states except ESTABLISHED and TIME_WAIT.
6637  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6638  *	address independent.
6639  */
6640 
6641 enum skb_drop_reason
6642 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6643 {
6644 	struct tcp_sock *tp = tcp_sk(sk);
6645 	struct inet_connection_sock *icsk = inet_csk(sk);
6646 	const struct tcphdr *th = tcp_hdr(skb);
6647 	struct request_sock *req;
6648 	int queued = 0;
6649 	SKB_DR(reason);
6650 
6651 	switch (sk->sk_state) {
6652 	case TCP_CLOSE:
6653 		SKB_DR_SET(reason, TCP_CLOSE);
6654 		goto discard;
6655 
6656 	case TCP_LISTEN:
6657 		if (th->ack)
6658 			return SKB_DROP_REASON_TCP_FLAGS;
6659 
6660 		if (th->rst) {
6661 			SKB_DR_SET(reason, TCP_RESET);
6662 			goto discard;
6663 		}
6664 		if (th->syn) {
6665 			if (th->fin) {
6666 				SKB_DR_SET(reason, TCP_FLAGS);
6667 				goto discard;
6668 			}
6669 			/* It is possible that we process SYN packets from backlog,
6670 			 * so we need to make sure to disable BH and RCU right there.
6671 			 */
6672 			rcu_read_lock();
6673 			local_bh_disable();
6674 			icsk->icsk_af_ops->conn_request(sk, skb);
6675 			local_bh_enable();
6676 			rcu_read_unlock();
6677 
6678 			consume_skb(skb);
6679 			return 0;
6680 		}
6681 		SKB_DR_SET(reason, TCP_FLAGS);
6682 		goto discard;
6683 
6684 	case TCP_SYN_SENT:
6685 		tp->rx_opt.saw_tstamp = 0;
6686 		tcp_mstamp_refresh(tp);
6687 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6688 		if (queued >= 0)
6689 			return queued;
6690 
6691 		/* Do step6 onward by hand. */
6692 		tcp_urg(sk, skb, th);
6693 		__kfree_skb(skb);
6694 		tcp_data_snd_check(sk);
6695 		return 0;
6696 	}
6697 
6698 	tcp_mstamp_refresh(tp);
6699 	tp->rx_opt.saw_tstamp = 0;
6700 	req = rcu_dereference_protected(tp->fastopen_rsk,
6701 					lockdep_sock_is_held(sk));
6702 	if (req) {
6703 		bool req_stolen;
6704 
6705 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6706 		    sk->sk_state != TCP_FIN_WAIT1);
6707 
6708 		SKB_DR_SET(reason, TCP_FASTOPEN);
6709 		if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason))
6710 			goto discard;
6711 	}
6712 
6713 	if (!th->ack && !th->rst && !th->syn) {
6714 		SKB_DR_SET(reason, TCP_FLAGS);
6715 		goto discard;
6716 	}
6717 	if (!tcp_validate_incoming(sk, skb, th, 0))
6718 		return 0;
6719 
6720 	/* step 5: check the ACK field */
6721 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6722 				  FLAG_UPDATE_TS_RECENT |
6723 				  FLAG_NO_CHALLENGE_ACK);
6724 
6725 	if ((int)reason <= 0) {
6726 		if (sk->sk_state == TCP_SYN_RECV) {
6727 			/* send one RST */
6728 			if (!reason)
6729 				return SKB_DROP_REASON_TCP_OLD_ACK;
6730 			return -reason;
6731 		}
6732 		/* accept old ack during closing */
6733 		if ((int)reason < 0) {
6734 			tcp_send_challenge_ack(sk);
6735 			reason = -reason;
6736 			goto discard;
6737 		}
6738 	}
6739 	SKB_DR_SET(reason, NOT_SPECIFIED);
6740 	switch (sk->sk_state) {
6741 	case TCP_SYN_RECV:
6742 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6743 		if (!tp->srtt_us)
6744 			tcp_synack_rtt_meas(sk, req);
6745 
6746 		if (tp->rx_opt.tstamp_ok)
6747 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6748 
6749 		if (req) {
6750 			tcp_rcv_synrecv_state_fastopen(sk);
6751 		} else {
6752 			tcp_try_undo_spurious_syn(sk);
6753 			tp->retrans_stamp = 0;
6754 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6755 					  skb);
6756 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6757 		}
6758 		tcp_ao_established(sk);
6759 		smp_mb();
6760 		tcp_set_state(sk, TCP_ESTABLISHED);
6761 		sk->sk_state_change(sk);
6762 
6763 		/* Note, that this wakeup is only for marginal crossed SYN case.
6764 		 * Passively open sockets are not waked up, because
6765 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6766 		 */
6767 		if (sk->sk_socket)
6768 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6769 
6770 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6771 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6772 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6773 
6774 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6775 			tcp_update_pacing_rate(sk);
6776 
6777 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6778 		tp->lsndtime = tcp_jiffies32;
6779 
6780 		tcp_initialize_rcv_mss(sk);
6781 		tcp_fast_path_on(tp);
6782 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6783 			tcp_shutdown(sk, SEND_SHUTDOWN);
6784 		break;
6785 
6786 	case TCP_FIN_WAIT1: {
6787 		int tmo;
6788 
6789 		if (req)
6790 			tcp_rcv_synrecv_state_fastopen(sk);
6791 
6792 		if (tp->snd_una != tp->write_seq)
6793 			break;
6794 
6795 		tcp_set_state(sk, TCP_FIN_WAIT2);
6796 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6797 
6798 		sk_dst_confirm(sk);
6799 
6800 		if (!sock_flag(sk, SOCK_DEAD)) {
6801 			/* Wake up lingering close() */
6802 			sk->sk_state_change(sk);
6803 			break;
6804 		}
6805 
6806 		if (READ_ONCE(tp->linger2) < 0) {
6807 			tcp_done(sk);
6808 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6809 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6810 		}
6811 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6812 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6813 			/* Receive out of order FIN after close() */
6814 			if (tp->syn_fastopen && th->fin)
6815 				tcp_fastopen_active_disable(sk);
6816 			tcp_done(sk);
6817 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6818 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6819 		}
6820 
6821 		tmo = tcp_fin_time(sk);
6822 		if (tmo > TCP_TIMEWAIT_LEN) {
6823 			tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6824 		} else if (th->fin || sock_owned_by_user(sk)) {
6825 			/* Bad case. We could lose such FIN otherwise.
6826 			 * It is not a big problem, but it looks confusing
6827 			 * and not so rare event. We still can lose it now,
6828 			 * if it spins in bh_lock_sock(), but it is really
6829 			 * marginal case.
6830 			 */
6831 			tcp_reset_keepalive_timer(sk, tmo);
6832 		} else {
6833 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6834 			goto consume;
6835 		}
6836 		break;
6837 	}
6838 
6839 	case TCP_CLOSING:
6840 		if (tp->snd_una == tp->write_seq) {
6841 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6842 			goto consume;
6843 		}
6844 		break;
6845 
6846 	case TCP_LAST_ACK:
6847 		if (tp->snd_una == tp->write_seq) {
6848 			tcp_update_metrics(sk);
6849 			tcp_done(sk);
6850 			goto consume;
6851 		}
6852 		break;
6853 	}
6854 
6855 	/* step 6: check the URG bit */
6856 	tcp_urg(sk, skb, th);
6857 
6858 	/* step 7: process the segment text */
6859 	switch (sk->sk_state) {
6860 	case TCP_CLOSE_WAIT:
6861 	case TCP_CLOSING:
6862 	case TCP_LAST_ACK:
6863 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6864 			/* If a subflow has been reset, the packet should not
6865 			 * continue to be processed, drop the packet.
6866 			 */
6867 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6868 				goto discard;
6869 			break;
6870 		}
6871 		fallthrough;
6872 	case TCP_FIN_WAIT1:
6873 	case TCP_FIN_WAIT2:
6874 		/* RFC 793 says to queue data in these states,
6875 		 * RFC 1122 says we MUST send a reset.
6876 		 * BSD 4.4 also does reset.
6877 		 */
6878 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6879 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6880 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6881 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6882 				tcp_reset(sk, skb);
6883 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6884 			}
6885 		}
6886 		fallthrough;
6887 	case TCP_ESTABLISHED:
6888 		tcp_data_queue(sk, skb);
6889 		queued = 1;
6890 		break;
6891 	}
6892 
6893 	/* tcp_data could move socket to TIME-WAIT */
6894 	if (sk->sk_state != TCP_CLOSE) {
6895 		tcp_data_snd_check(sk);
6896 		tcp_ack_snd_check(sk);
6897 	}
6898 
6899 	if (!queued) {
6900 discard:
6901 		tcp_drop_reason(sk, skb, reason);
6902 	}
6903 	return 0;
6904 
6905 consume:
6906 	__kfree_skb(skb);
6907 	return 0;
6908 }
6909 EXPORT_IPV6_MOD(tcp_rcv_state_process);
6910 
6911 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6912 {
6913 	struct inet_request_sock *ireq = inet_rsk(req);
6914 
6915 	if (family == AF_INET)
6916 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6917 				    &ireq->ir_rmt_addr, port);
6918 #if IS_ENABLED(CONFIG_IPV6)
6919 	else if (family == AF_INET6)
6920 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6921 				    &ireq->ir_v6_rmt_addr, port);
6922 #endif
6923 }
6924 
6925 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6926  *
6927  * If we receive a SYN packet with these bits set, it means a
6928  * network is playing bad games with TOS bits. In order to
6929  * avoid possible false congestion notifications, we disable
6930  * TCP ECN negotiation.
6931  *
6932  * Exception: tcp_ca wants ECN. This is required for DCTCP
6933  * congestion control: Linux DCTCP asserts ECT on all packets,
6934  * including SYN, which is most optimal solution; however,
6935  * others, such as FreeBSD do not.
6936  *
6937  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6938  * set, indicating the use of a future TCP extension (such as AccECN). See
6939  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6940  * extensions.
6941  */
6942 static void tcp_ecn_create_request(struct request_sock *req,
6943 				   const struct sk_buff *skb,
6944 				   const struct sock *listen_sk,
6945 				   const struct dst_entry *dst)
6946 {
6947 	const struct tcphdr *th = tcp_hdr(skb);
6948 	const struct net *net = sock_net(listen_sk);
6949 	bool th_ecn = th->ece && th->cwr;
6950 	bool ect, ecn_ok;
6951 	u32 ecn_ok_dst;
6952 
6953 	if (!th_ecn)
6954 		return;
6955 
6956 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6957 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6958 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6959 
6960 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6961 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6962 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6963 		inet_rsk(req)->ecn_ok = 1;
6964 }
6965 
6966 static void tcp_openreq_init(struct request_sock *req,
6967 			     const struct tcp_options_received *rx_opt,
6968 			     struct sk_buff *skb, const struct sock *sk)
6969 {
6970 	struct inet_request_sock *ireq = inet_rsk(req);
6971 
6972 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6973 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6974 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6975 	tcp_rsk(req)->snt_synack = 0;
6976 	tcp_rsk(req)->snt_tsval_first = 0;
6977 	tcp_rsk(req)->last_oow_ack_time = 0;
6978 	req->mss = rx_opt->mss_clamp;
6979 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6980 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6981 	ireq->sack_ok = rx_opt->sack_ok;
6982 	ireq->snd_wscale = rx_opt->snd_wscale;
6983 	ireq->wscale_ok = rx_opt->wscale_ok;
6984 	ireq->acked = 0;
6985 	ireq->ecn_ok = 0;
6986 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6987 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6988 	ireq->ir_mark = inet_request_mark(sk, skb);
6989 #if IS_ENABLED(CONFIG_SMC)
6990 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6991 			tcp_sk(sk)->smc_hs_congested(sk));
6992 #endif
6993 }
6994 
6995 /*
6996  * Return true if a syncookie should be sent
6997  */
6998 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
6999 {
7000 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7001 	const char *msg = "Dropping request";
7002 	struct net *net = sock_net(sk);
7003 	bool want_cookie = false;
7004 	u8 syncookies;
7005 
7006 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7007 
7008 #ifdef CONFIG_SYN_COOKIES
7009 	if (syncookies) {
7010 		msg = "Sending cookies";
7011 		want_cookie = true;
7012 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7013 	} else
7014 #endif
7015 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7016 
7017 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7018 	    xchg(&queue->synflood_warned, 1) == 0) {
7019 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7020 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7021 					proto, inet6_rcv_saddr(sk),
7022 					sk->sk_num, msg);
7023 		} else {
7024 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7025 					proto, &sk->sk_rcv_saddr,
7026 					sk->sk_num, msg);
7027 		}
7028 	}
7029 
7030 	return want_cookie;
7031 }
7032 
7033 static void tcp_reqsk_record_syn(const struct sock *sk,
7034 				 struct request_sock *req,
7035 				 const struct sk_buff *skb)
7036 {
7037 	if (tcp_sk(sk)->save_syn) {
7038 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7039 		struct saved_syn *saved_syn;
7040 		u32 mac_hdrlen;
7041 		void *base;
7042 
7043 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7044 			base = skb_mac_header(skb);
7045 			mac_hdrlen = skb_mac_header_len(skb);
7046 			len += mac_hdrlen;
7047 		} else {
7048 			base = skb_network_header(skb);
7049 			mac_hdrlen = 0;
7050 		}
7051 
7052 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7053 				    GFP_ATOMIC);
7054 		if (saved_syn) {
7055 			saved_syn->mac_hdrlen = mac_hdrlen;
7056 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7057 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7058 			memcpy(saved_syn->data, base, len);
7059 			req->saved_syn = saved_syn;
7060 		}
7061 	}
7062 }
7063 
7064 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7065  * used for SYN cookie generation.
7066  */
7067 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7068 			  const struct tcp_request_sock_ops *af_ops,
7069 			  struct sock *sk, struct tcphdr *th)
7070 {
7071 	struct tcp_sock *tp = tcp_sk(sk);
7072 	u16 mss;
7073 
7074 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7075 	    !inet_csk_reqsk_queue_is_full(sk))
7076 		return 0;
7077 
7078 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7079 		return 0;
7080 
7081 	if (sk_acceptq_is_full(sk)) {
7082 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7083 		return 0;
7084 	}
7085 
7086 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7087 	if (!mss)
7088 		mss = af_ops->mss_clamp;
7089 
7090 	return mss;
7091 }
7092 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss);
7093 
7094 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7095 		     const struct tcp_request_sock_ops *af_ops,
7096 		     struct sock *sk, struct sk_buff *skb)
7097 {
7098 	struct tcp_fastopen_cookie foc = { .len = -1 };
7099 	struct tcp_options_received tmp_opt;
7100 	struct tcp_sock *tp = tcp_sk(sk);
7101 	struct net *net = sock_net(sk);
7102 	struct sock *fastopen_sk = NULL;
7103 	struct request_sock *req;
7104 	bool want_cookie = false;
7105 	struct dst_entry *dst;
7106 	struct flowi fl;
7107 	u8 syncookies;
7108 	u32 isn;
7109 
7110 #ifdef CONFIG_TCP_AO
7111 	const struct tcp_ao_hdr *aoh;
7112 #endif
7113 
7114 	isn = __this_cpu_read(tcp_tw_isn);
7115 	if (isn) {
7116 		/* TW buckets are converted to open requests without
7117 		 * limitations, they conserve resources and peer is
7118 		 * evidently real one.
7119 		 */
7120 		__this_cpu_write(tcp_tw_isn, 0);
7121 	} else {
7122 		syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7123 
7124 		if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7125 			want_cookie = tcp_syn_flood_action(sk,
7126 							   rsk_ops->slab_name);
7127 			if (!want_cookie)
7128 				goto drop;
7129 		}
7130 	}
7131 
7132 	if (sk_acceptq_is_full(sk)) {
7133 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7134 		goto drop;
7135 	}
7136 
7137 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7138 	if (!req)
7139 		goto drop;
7140 
7141 	req->syncookie = want_cookie;
7142 	tcp_rsk(req)->af_specific = af_ops;
7143 	tcp_rsk(req)->ts_off = 0;
7144 	tcp_rsk(req)->req_usec_ts = false;
7145 #if IS_ENABLED(CONFIG_MPTCP)
7146 	tcp_rsk(req)->is_mptcp = 0;
7147 #endif
7148 
7149 	tcp_clear_options(&tmp_opt);
7150 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7151 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7152 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7153 			  want_cookie ? NULL : &foc);
7154 
7155 	if (want_cookie && !tmp_opt.saw_tstamp)
7156 		tcp_clear_options(&tmp_opt);
7157 
7158 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7159 		tmp_opt.smc_ok = 0;
7160 
7161 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7162 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7163 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7164 
7165 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7166 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7167 
7168 	dst = af_ops->route_req(sk, skb, &fl, req, isn);
7169 	if (!dst)
7170 		goto drop_and_free;
7171 
7172 	if (tmp_opt.tstamp_ok) {
7173 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7174 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7175 	}
7176 	if (!want_cookie && !isn) {
7177 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7178 
7179 		/* Kill the following clause, if you dislike this way. */
7180 		if (!syncookies &&
7181 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7182 		     (max_syn_backlog >> 2)) &&
7183 		    !tcp_peer_is_proven(req, dst)) {
7184 			/* Without syncookies last quarter of
7185 			 * backlog is filled with destinations,
7186 			 * proven to be alive.
7187 			 * It means that we continue to communicate
7188 			 * to destinations, already remembered
7189 			 * to the moment of synflood.
7190 			 */
7191 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7192 				    rsk_ops->family);
7193 			goto drop_and_release;
7194 		}
7195 
7196 		isn = af_ops->init_seq(skb);
7197 	}
7198 
7199 	tcp_ecn_create_request(req, skb, sk, dst);
7200 
7201 	if (want_cookie) {
7202 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7203 		if (!tmp_opt.tstamp_ok)
7204 			inet_rsk(req)->ecn_ok = 0;
7205 	}
7206 
7207 #ifdef CONFIG_TCP_AO
7208 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7209 		goto drop_and_release; /* Invalid TCP options */
7210 	if (aoh) {
7211 		tcp_rsk(req)->used_tcp_ao = true;
7212 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7213 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7214 
7215 	} else {
7216 		tcp_rsk(req)->used_tcp_ao = false;
7217 	}
7218 #endif
7219 	tcp_rsk(req)->snt_isn = isn;
7220 	tcp_rsk(req)->txhash = net_tx_rndhash();
7221 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7222 	tcp_openreq_init_rwin(req, sk, dst);
7223 	sk_rx_queue_set(req_to_sk(req), skb);
7224 	if (!want_cookie) {
7225 		tcp_reqsk_record_syn(sk, req, skb);
7226 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7227 	}
7228 	if (fastopen_sk) {
7229 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7230 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7231 		/* Add the child socket directly into the accept queue */
7232 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7233 			reqsk_fastopen_remove(fastopen_sk, req, false);
7234 			bh_unlock_sock(fastopen_sk);
7235 			sock_put(fastopen_sk);
7236 			goto drop_and_free;
7237 		}
7238 		sk->sk_data_ready(sk);
7239 		bh_unlock_sock(fastopen_sk);
7240 		sock_put(fastopen_sk);
7241 	} else {
7242 		tcp_rsk(req)->tfo_listener = false;
7243 		if (!want_cookie) {
7244 			req->timeout = tcp_timeout_init((struct sock *)req);
7245 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7246 								    req->timeout))) {
7247 				reqsk_free(req);
7248 				dst_release(dst);
7249 				return 0;
7250 			}
7251 
7252 		}
7253 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7254 				    !want_cookie ? TCP_SYNACK_NORMAL :
7255 						   TCP_SYNACK_COOKIE,
7256 				    skb);
7257 		if (want_cookie) {
7258 			reqsk_free(req);
7259 			return 0;
7260 		}
7261 	}
7262 	reqsk_put(req);
7263 	return 0;
7264 
7265 drop_and_release:
7266 	dst_release(dst);
7267 drop_and_free:
7268 	__reqsk_free(req);
7269 drop:
7270 	tcp_listendrop(sk);
7271 	return 0;
7272 }
7273 EXPORT_IPV6_MOD(tcp_conn_request);
7274