1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/proto_memory.h> 76 #include <net/inet_common.h> 77 #include <linux/ipsec.h> 78 #include <linux/unaligned.h> 79 #include <linux/errqueue.h> 80 #include <trace/events/tcp.h> 81 #include <linux/jump_label_ratelimit.h> 82 #include <net/busy_poll.h> 83 #include <net/mptcp.h> 84 85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 86 87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 93 #define FLAG_ECE 0x40 /* ECE in this ACK */ 94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 105 106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 110 111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 113 114 #define REXMIT_NONE 0 /* no loss recovery to do */ 115 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 116 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 117 118 #if IS_ENABLED(CONFIG_TLS_DEVICE) 119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 120 121 void clean_acked_data_enable(struct inet_connection_sock *icsk, 122 void (*cad)(struct sock *sk, u32 ack_seq)) 123 { 124 icsk->icsk_clean_acked = cad; 125 static_branch_deferred_inc(&clean_acked_data_enabled); 126 } 127 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 128 129 void clean_acked_data_disable(struct inet_connection_sock *icsk) 130 { 131 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 132 icsk->icsk_clean_acked = NULL; 133 } 134 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 135 136 void clean_acked_data_flush(void) 137 { 138 static_key_deferred_flush(&clean_acked_data_enabled); 139 } 140 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 141 #endif 142 143 #ifdef CONFIG_CGROUP_BPF 144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 145 { 146 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 147 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 148 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 149 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 150 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 151 struct bpf_sock_ops_kern sock_ops; 152 153 if (likely(!unknown_opt && !parse_all_opt)) 154 return; 155 156 /* The skb will be handled in the 157 * bpf_skops_established() or 158 * bpf_skops_write_hdr_opt(). 159 */ 160 switch (sk->sk_state) { 161 case TCP_SYN_RECV: 162 case TCP_SYN_SENT: 163 case TCP_LISTEN: 164 return; 165 } 166 167 sock_owned_by_me(sk); 168 169 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 170 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 171 sock_ops.is_fullsock = 1; 172 sock_ops.sk = sk; 173 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 174 175 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 176 } 177 178 static void bpf_skops_established(struct sock *sk, int bpf_op, 179 struct sk_buff *skb) 180 { 181 struct bpf_sock_ops_kern sock_ops; 182 183 sock_owned_by_me(sk); 184 185 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 186 sock_ops.op = bpf_op; 187 sock_ops.is_fullsock = 1; 188 sock_ops.sk = sk; 189 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 190 if (skb) 191 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 192 193 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 194 } 195 #else 196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 197 { 198 } 199 200 static void bpf_skops_established(struct sock *sk, int bpf_op, 201 struct sk_buff *skb) 202 { 203 } 204 #endif 205 206 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 207 unsigned int len) 208 { 209 struct net_device *dev; 210 211 rcu_read_lock(); 212 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 213 if (!dev || len >= READ_ONCE(dev->mtu)) 214 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 215 dev ? dev->name : "Unknown driver"); 216 rcu_read_unlock(); 217 } 218 219 /* Adapt the MSS value used to make delayed ack decision to the 220 * real world. 221 */ 222 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 223 { 224 struct inet_connection_sock *icsk = inet_csk(sk); 225 const unsigned int lss = icsk->icsk_ack.last_seg_size; 226 unsigned int len; 227 228 icsk->icsk_ack.last_seg_size = 0; 229 230 /* skb->len may jitter because of SACKs, even if peer 231 * sends good full-sized frames. 232 */ 233 len = skb_shinfo(skb)->gso_size ? : skb->len; 234 if (len >= icsk->icsk_ack.rcv_mss) { 235 /* Note: divides are still a bit expensive. 236 * For the moment, only adjust scaling_ratio 237 * when we update icsk_ack.rcv_mss. 238 */ 239 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 240 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 241 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 242 243 do_div(val, skb->truesize); 244 tcp_sk(sk)->scaling_ratio = val ? val : 1; 245 246 if (old_ratio != tcp_sk(sk)->scaling_ratio) 247 WRITE_ONCE(tcp_sk(sk)->window_clamp, 248 tcp_win_from_space(sk, sk->sk_rcvbuf)); 249 } 250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 251 tcp_sk(sk)->advmss); 252 /* Account for possibly-removed options */ 253 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 254 tcp_gro_dev_warn, sk, skb, len); 255 /* If the skb has a len of exactly 1*MSS and has the PSH bit 256 * set then it is likely the end of an application write. So 257 * more data may not be arriving soon, and yet the data sender 258 * may be waiting for an ACK if cwnd-bound or using TX zero 259 * copy. So we set ICSK_ACK_PUSHED here so that 260 * tcp_cleanup_rbuf() will send an ACK immediately if the app 261 * reads all of the data and is not ping-pong. If len > MSS 262 * then this logic does not matter (and does not hurt) because 263 * tcp_cleanup_rbuf() will always ACK immediately if the app 264 * reads data and there is more than an MSS of unACKed data. 265 */ 266 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 267 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 268 } else { 269 /* Otherwise, we make more careful check taking into account, 270 * that SACKs block is variable. 271 * 272 * "len" is invariant segment length, including TCP header. 273 */ 274 len += skb->data - skb_transport_header(skb); 275 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 276 /* If PSH is not set, packet should be 277 * full sized, provided peer TCP is not badly broken. 278 * This observation (if it is correct 8)) allows 279 * to handle super-low mtu links fairly. 280 */ 281 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 282 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 283 /* Subtract also invariant (if peer is RFC compliant), 284 * tcp header plus fixed timestamp option length. 285 * Resulting "len" is MSS free of SACK jitter. 286 */ 287 len -= tcp_sk(sk)->tcp_header_len; 288 icsk->icsk_ack.last_seg_size = len; 289 if (len == lss) { 290 icsk->icsk_ack.rcv_mss = len; 291 return; 292 } 293 } 294 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 295 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 296 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 297 } 298 } 299 300 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 301 { 302 struct inet_connection_sock *icsk = inet_csk(sk); 303 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 304 305 if (quickacks == 0) 306 quickacks = 2; 307 quickacks = min(quickacks, max_quickacks); 308 if (quickacks > icsk->icsk_ack.quick) 309 icsk->icsk_ack.quick = quickacks; 310 } 311 312 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 313 { 314 struct inet_connection_sock *icsk = inet_csk(sk); 315 316 tcp_incr_quickack(sk, max_quickacks); 317 inet_csk_exit_pingpong_mode(sk); 318 icsk->icsk_ack.ato = TCP_ATO_MIN; 319 } 320 321 /* Send ACKs quickly, if "quick" count is not exhausted 322 * and the session is not interactive. 323 */ 324 325 static bool tcp_in_quickack_mode(struct sock *sk) 326 { 327 const struct inet_connection_sock *icsk = inet_csk(sk); 328 const struct dst_entry *dst = __sk_dst_get(sk); 329 330 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 331 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 332 } 333 334 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 335 { 336 if (tp->ecn_flags & TCP_ECN_OK) 337 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 338 } 339 340 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 341 { 342 if (tcp_hdr(skb)->cwr) { 343 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 344 345 /* If the sender is telling us it has entered CWR, then its 346 * cwnd may be very low (even just 1 packet), so we should ACK 347 * immediately. 348 */ 349 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 350 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 351 } 352 } 353 354 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 355 { 356 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 357 } 358 359 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 360 { 361 struct tcp_sock *tp = tcp_sk(sk); 362 363 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 364 case INET_ECN_NOT_ECT: 365 /* Funny extension: if ECT is not set on a segment, 366 * and we already seen ECT on a previous segment, 367 * it is probably a retransmit. 368 */ 369 if (tp->ecn_flags & TCP_ECN_SEEN) 370 tcp_enter_quickack_mode(sk, 2); 371 break; 372 case INET_ECN_CE: 373 if (tcp_ca_needs_ecn(sk)) 374 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 375 376 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 377 /* Better not delay acks, sender can have a very low cwnd */ 378 tcp_enter_quickack_mode(sk, 2); 379 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 380 } 381 tp->ecn_flags |= TCP_ECN_SEEN; 382 break; 383 default: 384 if (tcp_ca_needs_ecn(sk)) 385 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 386 tp->ecn_flags |= TCP_ECN_SEEN; 387 break; 388 } 389 } 390 391 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 392 { 393 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 394 __tcp_ecn_check_ce(sk, skb); 395 } 396 397 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 398 { 399 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 400 tp->ecn_flags &= ~TCP_ECN_OK; 401 } 402 403 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 404 { 405 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 406 tp->ecn_flags &= ~TCP_ECN_OK; 407 } 408 409 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 410 { 411 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 412 return true; 413 return false; 414 } 415 416 /* Buffer size and advertised window tuning. 417 * 418 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 419 */ 420 421 static void tcp_sndbuf_expand(struct sock *sk) 422 { 423 const struct tcp_sock *tp = tcp_sk(sk); 424 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 425 int sndmem, per_mss; 426 u32 nr_segs; 427 428 /* Worst case is non GSO/TSO : each frame consumes one skb 429 * and skb->head is kmalloced using power of two area of memory 430 */ 431 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 432 MAX_TCP_HEADER + 433 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 434 435 per_mss = roundup_pow_of_two(per_mss) + 436 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 437 438 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 439 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 440 441 /* Fast Recovery (RFC 5681 3.2) : 442 * Cubic needs 1.7 factor, rounded to 2 to include 443 * extra cushion (application might react slowly to EPOLLOUT) 444 */ 445 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 446 sndmem *= nr_segs * per_mss; 447 448 if (sk->sk_sndbuf < sndmem) 449 WRITE_ONCE(sk->sk_sndbuf, 450 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 451 } 452 453 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 454 * 455 * All tcp_full_space() is split to two parts: "network" buffer, allocated 456 * forward and advertised in receiver window (tp->rcv_wnd) and 457 * "application buffer", required to isolate scheduling/application 458 * latencies from network. 459 * window_clamp is maximal advertised window. It can be less than 460 * tcp_full_space(), in this case tcp_full_space() - window_clamp 461 * is reserved for "application" buffer. The less window_clamp is 462 * the smoother our behaviour from viewpoint of network, but the lower 463 * throughput and the higher sensitivity of the connection to losses. 8) 464 * 465 * rcv_ssthresh is more strict window_clamp used at "slow start" 466 * phase to predict further behaviour of this connection. 467 * It is used for two goals: 468 * - to enforce header prediction at sender, even when application 469 * requires some significant "application buffer". It is check #1. 470 * - to prevent pruning of receive queue because of misprediction 471 * of receiver window. Check #2. 472 * 473 * The scheme does not work when sender sends good segments opening 474 * window and then starts to feed us spaghetti. But it should work 475 * in common situations. Otherwise, we have to rely on queue collapsing. 476 */ 477 478 /* Slow part of check#2. */ 479 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 480 unsigned int skbtruesize) 481 { 482 const struct tcp_sock *tp = tcp_sk(sk); 483 /* Optimize this! */ 484 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 485 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 486 487 while (tp->rcv_ssthresh <= window) { 488 if (truesize <= skb->len) 489 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 490 491 truesize >>= 1; 492 window >>= 1; 493 } 494 return 0; 495 } 496 497 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 498 * can play nice with us, as sk_buff and skb->head might be either 499 * freed or shared with up to MAX_SKB_FRAGS segments. 500 * Only give a boost to drivers using page frag(s) to hold the frame(s), 501 * and if no payload was pulled in skb->head before reaching us. 502 */ 503 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 504 { 505 u32 truesize = skb->truesize; 506 507 if (adjust && !skb_headlen(skb)) { 508 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 509 /* paranoid check, some drivers might be buggy */ 510 if (unlikely((int)truesize < (int)skb->len)) 511 truesize = skb->truesize; 512 } 513 return truesize; 514 } 515 516 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 517 bool adjust) 518 { 519 struct tcp_sock *tp = tcp_sk(sk); 520 int room; 521 522 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 523 524 if (room <= 0) 525 return; 526 527 /* Check #1 */ 528 if (!tcp_under_memory_pressure(sk)) { 529 unsigned int truesize = truesize_adjust(adjust, skb); 530 int incr; 531 532 /* Check #2. Increase window, if skb with such overhead 533 * will fit to rcvbuf in future. 534 */ 535 if (tcp_win_from_space(sk, truesize) <= skb->len) 536 incr = 2 * tp->advmss; 537 else 538 incr = __tcp_grow_window(sk, skb, truesize); 539 540 if (incr) { 541 incr = max_t(int, incr, 2 * skb->len); 542 tp->rcv_ssthresh += min(room, incr); 543 inet_csk(sk)->icsk_ack.quick |= 1; 544 } 545 } else { 546 /* Under pressure: 547 * Adjust rcv_ssthresh according to reserved mem 548 */ 549 tcp_adjust_rcv_ssthresh(sk); 550 } 551 } 552 553 /* 3. Try to fixup all. It is made immediately after connection enters 554 * established state. 555 */ 556 static void tcp_init_buffer_space(struct sock *sk) 557 { 558 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 559 struct tcp_sock *tp = tcp_sk(sk); 560 int maxwin; 561 562 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 563 tcp_sndbuf_expand(sk); 564 565 tcp_mstamp_refresh(tp); 566 tp->rcvq_space.time = tp->tcp_mstamp; 567 tp->rcvq_space.seq = tp->copied_seq; 568 569 maxwin = tcp_full_space(sk); 570 571 if (tp->window_clamp >= maxwin) { 572 WRITE_ONCE(tp->window_clamp, maxwin); 573 574 if (tcp_app_win && maxwin > 4 * tp->advmss) 575 WRITE_ONCE(tp->window_clamp, 576 max(maxwin - (maxwin >> tcp_app_win), 577 4 * tp->advmss)); 578 } 579 580 /* Force reservation of one segment. */ 581 if (tcp_app_win && 582 tp->window_clamp > 2 * tp->advmss && 583 tp->window_clamp + tp->advmss > maxwin) 584 WRITE_ONCE(tp->window_clamp, 585 max(2 * tp->advmss, maxwin - tp->advmss)); 586 587 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 588 tp->snd_cwnd_stamp = tcp_jiffies32; 589 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 590 (u32)TCP_INIT_CWND * tp->advmss); 591 } 592 593 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 594 static void tcp_clamp_window(struct sock *sk) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 struct inet_connection_sock *icsk = inet_csk(sk); 598 struct net *net = sock_net(sk); 599 int rmem2; 600 601 icsk->icsk_ack.quick = 0; 602 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 603 604 if (sk->sk_rcvbuf < rmem2 && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 606 !tcp_under_memory_pressure(sk) && 607 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 608 WRITE_ONCE(sk->sk_rcvbuf, 609 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 610 } 611 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 612 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 613 } 614 615 /* Initialize RCV_MSS value. 616 * RCV_MSS is an our guess about MSS used by the peer. 617 * We haven't any direct information about the MSS. 618 * It's better to underestimate the RCV_MSS rather than overestimate. 619 * Overestimations make us ACKing less frequently than needed. 620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 621 */ 622 void tcp_initialize_rcv_mss(struct sock *sk) 623 { 624 const struct tcp_sock *tp = tcp_sk(sk); 625 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 626 627 hint = min(hint, tp->rcv_wnd / 2); 628 hint = min(hint, TCP_MSS_DEFAULT); 629 hint = max(hint, TCP_MIN_MSS); 630 631 inet_csk(sk)->icsk_ack.rcv_mss = hint; 632 } 633 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 634 635 /* Receiver "autotuning" code. 636 * 637 * The algorithm for RTT estimation w/o timestamps is based on 638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 639 * <https://public.lanl.gov/radiant/pubs.html#DRS> 640 * 641 * More detail on this code can be found at 642 * <http://staff.psc.edu/jheffner/>, 643 * though this reference is out of date. A new paper 644 * is pending. 645 */ 646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 647 { 648 u32 new_sample = tp->rcv_rtt_est.rtt_us; 649 long m = sample; 650 651 if (new_sample != 0) { 652 /* If we sample in larger samples in the non-timestamp 653 * case, we could grossly overestimate the RTT especially 654 * with chatty applications or bulk transfer apps which 655 * are stalled on filesystem I/O. 656 * 657 * Also, since we are only going for a minimum in the 658 * non-timestamp case, we do not smooth things out 659 * else with timestamps disabled convergence takes too 660 * long. 661 */ 662 if (!win_dep) { 663 m -= (new_sample >> 3); 664 new_sample += m; 665 } else { 666 m <<= 3; 667 if (m < new_sample) 668 new_sample = m; 669 } 670 } else { 671 /* No previous measure. */ 672 new_sample = m << 3; 673 } 674 675 tp->rcv_rtt_est.rtt_us = new_sample; 676 } 677 678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 679 { 680 u32 delta_us; 681 682 if (tp->rcv_rtt_est.time == 0) 683 goto new_measure; 684 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 685 return; 686 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 687 if (!delta_us) 688 delta_us = 1; 689 tcp_rcv_rtt_update(tp, delta_us, 1); 690 691 new_measure: 692 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 693 tp->rcv_rtt_est.time = tp->tcp_mstamp; 694 } 695 696 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp) 697 { 698 u32 delta, delta_us; 699 700 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 701 if (tp->tcp_usec_ts) 702 return delta; 703 704 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 705 if (!delta) 706 delta = 1; 707 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 708 return delta_us; 709 } 710 return -1; 711 } 712 713 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 714 const struct sk_buff *skb) 715 { 716 struct tcp_sock *tp = tcp_sk(sk); 717 718 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 719 return; 720 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 721 722 if (TCP_SKB_CB(skb)->end_seq - 723 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 724 s32 delta = tcp_rtt_tsopt_us(tp); 725 726 if (delta >= 0) 727 tcp_rcv_rtt_update(tp, delta, 0); 728 } 729 } 730 731 /* 732 * This function should be called every time data is copied to user space. 733 * It calculates the appropriate TCP receive buffer space. 734 */ 735 void tcp_rcv_space_adjust(struct sock *sk) 736 { 737 struct tcp_sock *tp = tcp_sk(sk); 738 u32 copied; 739 int time; 740 741 trace_tcp_rcv_space_adjust(sk); 742 743 tcp_mstamp_refresh(tp); 744 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 745 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 746 return; 747 748 /* Number of bytes copied to user in last RTT */ 749 copied = tp->copied_seq - tp->rcvq_space.seq; 750 if (copied <= tp->rcvq_space.space) 751 goto new_measure; 752 753 /* A bit of theory : 754 * copied = bytes received in previous RTT, our base window 755 * To cope with packet losses, we need a 2x factor 756 * To cope with slow start, and sender growing its cwin by 100 % 757 * every RTT, we need a 4x factor, because the ACK we are sending 758 * now is for the next RTT, not the current one : 759 * <prev RTT . ><current RTT .. ><next RTT .... > 760 */ 761 762 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 763 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 764 u64 rcvwin, grow; 765 int rcvbuf; 766 767 /* minimal window to cope with packet losses, assuming 768 * steady state. Add some cushion because of small variations. 769 */ 770 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 771 772 /* Accommodate for sender rate increase (eg. slow start) */ 773 grow = rcvwin * (copied - tp->rcvq_space.space); 774 do_div(grow, tp->rcvq_space.space); 775 rcvwin += (grow << 1); 776 777 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 778 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 779 if (rcvbuf > sk->sk_rcvbuf) { 780 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 781 782 /* Make the window clamp follow along. */ 783 WRITE_ONCE(tp->window_clamp, 784 tcp_win_from_space(sk, rcvbuf)); 785 } 786 } 787 tp->rcvq_space.space = copied; 788 789 new_measure: 790 tp->rcvq_space.seq = tp->copied_seq; 791 tp->rcvq_space.time = tp->tcp_mstamp; 792 } 793 794 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 795 { 796 #if IS_ENABLED(CONFIG_IPV6) 797 struct inet_connection_sock *icsk = inet_csk(sk); 798 799 if (skb->protocol == htons(ETH_P_IPV6)) 800 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 801 #endif 802 } 803 804 /* There is something which you must keep in mind when you analyze the 805 * behavior of the tp->ato delayed ack timeout interval. When a 806 * connection starts up, we want to ack as quickly as possible. The 807 * problem is that "good" TCP's do slow start at the beginning of data 808 * transmission. The means that until we send the first few ACK's the 809 * sender will sit on his end and only queue most of his data, because 810 * he can only send snd_cwnd unacked packets at any given time. For 811 * each ACK we send, he increments snd_cwnd and transmits more of his 812 * queue. -DaveM 813 */ 814 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 815 { 816 struct tcp_sock *tp = tcp_sk(sk); 817 struct inet_connection_sock *icsk = inet_csk(sk); 818 u32 now; 819 820 inet_csk_schedule_ack(sk); 821 822 tcp_measure_rcv_mss(sk, skb); 823 824 tcp_rcv_rtt_measure(tp); 825 826 now = tcp_jiffies32; 827 828 if (!icsk->icsk_ack.ato) { 829 /* The _first_ data packet received, initialize 830 * delayed ACK engine. 831 */ 832 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 833 icsk->icsk_ack.ato = TCP_ATO_MIN; 834 } else { 835 int m = now - icsk->icsk_ack.lrcvtime; 836 837 if (m <= TCP_ATO_MIN / 2) { 838 /* The fastest case is the first. */ 839 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 840 } else if (m < icsk->icsk_ack.ato) { 841 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 842 if (icsk->icsk_ack.ato > icsk->icsk_rto) 843 icsk->icsk_ack.ato = icsk->icsk_rto; 844 } else if (m > icsk->icsk_rto) { 845 /* Too long gap. Apparently sender failed to 846 * restart window, so that we send ACKs quickly. 847 */ 848 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 849 } 850 } 851 icsk->icsk_ack.lrcvtime = now; 852 tcp_save_lrcv_flowlabel(sk, skb); 853 854 tcp_ecn_check_ce(sk, skb); 855 856 if (skb->len >= 128) 857 tcp_grow_window(sk, skb, true); 858 } 859 860 /* Called to compute a smoothed rtt estimate. The data fed to this 861 * routine either comes from timestamps, or from segments that were 862 * known _not_ to have been retransmitted [see Karn/Partridge 863 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 864 * piece by Van Jacobson. 865 * NOTE: the next three routines used to be one big routine. 866 * To save cycles in the RFC 1323 implementation it was better to break 867 * it up into three procedures. -- erics 868 */ 869 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 870 { 871 struct tcp_sock *tp = tcp_sk(sk); 872 long m = mrtt_us; /* RTT */ 873 u32 srtt = tp->srtt_us; 874 875 /* The following amusing code comes from Jacobson's 876 * article in SIGCOMM '88. Note that rtt and mdev 877 * are scaled versions of rtt and mean deviation. 878 * This is designed to be as fast as possible 879 * m stands for "measurement". 880 * 881 * On a 1990 paper the rto value is changed to: 882 * RTO = rtt + 4 * mdev 883 * 884 * Funny. This algorithm seems to be very broken. 885 * These formulae increase RTO, when it should be decreased, increase 886 * too slowly, when it should be increased quickly, decrease too quickly 887 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 888 * does not matter how to _calculate_ it. Seems, it was trap 889 * that VJ failed to avoid. 8) 890 */ 891 if (srtt != 0) { 892 m -= (srtt >> 3); /* m is now error in rtt est */ 893 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 894 if (m < 0) { 895 m = -m; /* m is now abs(error) */ 896 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 897 /* This is similar to one of Eifel findings. 898 * Eifel blocks mdev updates when rtt decreases. 899 * This solution is a bit different: we use finer gain 900 * for mdev in this case (alpha*beta). 901 * Like Eifel it also prevents growth of rto, 902 * but also it limits too fast rto decreases, 903 * happening in pure Eifel. 904 */ 905 if (m > 0) 906 m >>= 3; 907 } else { 908 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 909 } 910 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 911 if (tp->mdev_us > tp->mdev_max_us) { 912 tp->mdev_max_us = tp->mdev_us; 913 if (tp->mdev_max_us > tp->rttvar_us) 914 tp->rttvar_us = tp->mdev_max_us; 915 } 916 if (after(tp->snd_una, tp->rtt_seq)) { 917 if (tp->mdev_max_us < tp->rttvar_us) 918 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 919 tp->rtt_seq = tp->snd_nxt; 920 tp->mdev_max_us = tcp_rto_min_us(sk); 921 922 tcp_bpf_rtt(sk, mrtt_us, srtt); 923 } 924 } else { 925 /* no previous measure. */ 926 srtt = m << 3; /* take the measured time to be rtt */ 927 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 928 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 929 tp->mdev_max_us = tp->rttvar_us; 930 tp->rtt_seq = tp->snd_nxt; 931 932 tcp_bpf_rtt(sk, mrtt_us, srtt); 933 } 934 tp->srtt_us = max(1U, srtt); 935 } 936 937 static void tcp_update_pacing_rate(struct sock *sk) 938 { 939 const struct tcp_sock *tp = tcp_sk(sk); 940 u64 rate; 941 942 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 943 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 944 945 /* current rate is (cwnd * mss) / srtt 946 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 947 * In Congestion Avoidance phase, set it to 120 % the current rate. 948 * 949 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 950 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 951 * end of slow start and should slow down. 952 */ 953 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 954 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 955 else 956 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 957 958 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 959 960 if (likely(tp->srtt_us)) 961 do_div(rate, tp->srtt_us); 962 963 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 964 * without any lock. We want to make sure compiler wont store 965 * intermediate values in this location. 966 */ 967 WRITE_ONCE(sk->sk_pacing_rate, 968 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 969 } 970 971 /* Calculate rto without backoff. This is the second half of Van Jacobson's 972 * routine referred to above. 973 */ 974 static void tcp_set_rto(struct sock *sk) 975 { 976 const struct tcp_sock *tp = tcp_sk(sk); 977 /* Old crap is replaced with new one. 8) 978 * 979 * More seriously: 980 * 1. If rtt variance happened to be less 50msec, it is hallucination. 981 * It cannot be less due to utterly erratic ACK generation made 982 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 983 * to do with delayed acks, because at cwnd>2 true delack timeout 984 * is invisible. Actually, Linux-2.4 also generates erratic 985 * ACKs in some circumstances. 986 */ 987 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 988 989 /* 2. Fixups made earlier cannot be right. 990 * If we do not estimate RTO correctly without them, 991 * all the algo is pure shit and should be replaced 992 * with correct one. It is exactly, which we pretend to do. 993 */ 994 995 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 996 * guarantees that rto is higher. 997 */ 998 tcp_bound_rto(sk); 999 } 1000 1001 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1002 { 1003 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1004 1005 if (!cwnd) 1006 cwnd = TCP_INIT_CWND; 1007 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1008 } 1009 1010 struct tcp_sacktag_state { 1011 /* Timestamps for earliest and latest never-retransmitted segment 1012 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1013 * but congestion control should still get an accurate delay signal. 1014 */ 1015 u64 first_sackt; 1016 u64 last_sackt; 1017 u32 reord; 1018 u32 sack_delivered; 1019 int flag; 1020 unsigned int mss_now; 1021 struct rate_sample *rate; 1022 }; 1023 1024 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1025 * and spurious retransmission information if this DSACK is unlikely caused by 1026 * sender's action: 1027 * - DSACKed sequence range is larger than maximum receiver's window. 1028 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1029 */ 1030 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1031 u32 end_seq, struct tcp_sacktag_state *state) 1032 { 1033 u32 seq_len, dup_segs = 1; 1034 1035 if (!before(start_seq, end_seq)) 1036 return 0; 1037 1038 seq_len = end_seq - start_seq; 1039 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1040 if (seq_len > tp->max_window) 1041 return 0; 1042 if (seq_len > tp->mss_cache) 1043 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1044 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1045 state->flag |= FLAG_DSACK_TLP; 1046 1047 tp->dsack_dups += dup_segs; 1048 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1049 if (tp->dsack_dups > tp->total_retrans) 1050 return 0; 1051 1052 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1053 /* We increase the RACK ordering window in rounds where we receive 1054 * DSACKs that may have been due to reordering causing RACK to trigger 1055 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1056 * without having seen reordering, or that match TLP probes (TLP 1057 * is timer-driven, not triggered by RACK). 1058 */ 1059 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1060 tp->rack.dsack_seen = 1; 1061 1062 state->flag |= FLAG_DSACKING_ACK; 1063 /* A spurious retransmission is delivered */ 1064 state->sack_delivered += dup_segs; 1065 1066 return dup_segs; 1067 } 1068 1069 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1070 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1071 * distance is approximated in full-mss packet distance ("reordering"). 1072 */ 1073 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1074 const int ts) 1075 { 1076 struct tcp_sock *tp = tcp_sk(sk); 1077 const u32 mss = tp->mss_cache; 1078 u32 fack, metric; 1079 1080 fack = tcp_highest_sack_seq(tp); 1081 if (!before(low_seq, fack)) 1082 return; 1083 1084 metric = fack - low_seq; 1085 if ((metric > tp->reordering * mss) && mss) { 1086 #if FASTRETRANS_DEBUG > 1 1087 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1088 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1089 tp->reordering, 1090 0, 1091 tp->sacked_out, 1092 tp->undo_marker ? tp->undo_retrans : 0); 1093 #endif 1094 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1095 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1096 } 1097 1098 /* This exciting event is worth to be remembered. 8) */ 1099 tp->reord_seen++; 1100 NET_INC_STATS(sock_net(sk), 1101 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1102 } 1103 1104 /* This must be called before lost_out or retrans_out are updated 1105 * on a new loss, because we want to know if all skbs previously 1106 * known to be lost have already been retransmitted, indicating 1107 * that this newly lost skb is our next skb to retransmit. 1108 */ 1109 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1110 { 1111 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1112 (tp->retransmit_skb_hint && 1113 before(TCP_SKB_CB(skb)->seq, 1114 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1115 tp->retransmit_skb_hint = skb; 1116 } 1117 1118 /* Sum the number of packets on the wire we have marked as lost, and 1119 * notify the congestion control module that the given skb was marked lost. 1120 */ 1121 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1122 { 1123 tp->lost += tcp_skb_pcount(skb); 1124 } 1125 1126 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1127 { 1128 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1129 struct tcp_sock *tp = tcp_sk(sk); 1130 1131 if (sacked & TCPCB_SACKED_ACKED) 1132 return; 1133 1134 tcp_verify_retransmit_hint(tp, skb); 1135 if (sacked & TCPCB_LOST) { 1136 if (sacked & TCPCB_SACKED_RETRANS) { 1137 /* Account for retransmits that are lost again */ 1138 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1139 tp->retrans_out -= tcp_skb_pcount(skb); 1140 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1141 tcp_skb_pcount(skb)); 1142 tcp_notify_skb_loss_event(tp, skb); 1143 } 1144 } else { 1145 tp->lost_out += tcp_skb_pcount(skb); 1146 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1147 tcp_notify_skb_loss_event(tp, skb); 1148 } 1149 } 1150 1151 /* Updates the delivered and delivered_ce counts */ 1152 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1153 bool ece_ack) 1154 { 1155 tp->delivered += delivered; 1156 if (ece_ack) 1157 tp->delivered_ce += delivered; 1158 } 1159 1160 /* This procedure tags the retransmission queue when SACKs arrive. 1161 * 1162 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1163 * Packets in queue with these bits set are counted in variables 1164 * sacked_out, retrans_out and lost_out, correspondingly. 1165 * 1166 * Valid combinations are: 1167 * Tag InFlight Description 1168 * 0 1 - orig segment is in flight. 1169 * S 0 - nothing flies, orig reached receiver. 1170 * L 0 - nothing flies, orig lost by net. 1171 * R 2 - both orig and retransmit are in flight. 1172 * L|R 1 - orig is lost, retransmit is in flight. 1173 * S|R 1 - orig reached receiver, retrans is still in flight. 1174 * (L|S|R is logically valid, it could occur when L|R is sacked, 1175 * but it is equivalent to plain S and code short-circuits it to S. 1176 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1177 * 1178 * These 6 states form finite state machine, controlled by the following events: 1179 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1180 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1181 * 3. Loss detection event of two flavors: 1182 * A. Scoreboard estimator decided the packet is lost. 1183 * A'. Reno "three dupacks" marks head of queue lost. 1184 * B. SACK arrives sacking SND.NXT at the moment, when the 1185 * segment was retransmitted. 1186 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1187 * 1188 * It is pleasant to note, that state diagram turns out to be commutative, 1189 * so that we are allowed not to be bothered by order of our actions, 1190 * when multiple events arrive simultaneously. (see the function below). 1191 * 1192 * Reordering detection. 1193 * -------------------- 1194 * Reordering metric is maximal distance, which a packet can be displaced 1195 * in packet stream. With SACKs we can estimate it: 1196 * 1197 * 1. SACK fills old hole and the corresponding segment was not 1198 * ever retransmitted -> reordering. Alas, we cannot use it 1199 * when segment was retransmitted. 1200 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1201 * for retransmitted and already SACKed segment -> reordering.. 1202 * Both of these heuristics are not used in Loss state, when we cannot 1203 * account for retransmits accurately. 1204 * 1205 * SACK block validation. 1206 * ---------------------- 1207 * 1208 * SACK block range validation checks that the received SACK block fits to 1209 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1210 * Note that SND.UNA is not included to the range though being valid because 1211 * it means that the receiver is rather inconsistent with itself reporting 1212 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1213 * perfectly valid, however, in light of RFC2018 which explicitly states 1214 * that "SACK block MUST reflect the newest segment. Even if the newest 1215 * segment is going to be discarded ...", not that it looks very clever 1216 * in case of head skb. Due to potentional receiver driven attacks, we 1217 * choose to avoid immediate execution of a walk in write queue due to 1218 * reneging and defer head skb's loss recovery to standard loss recovery 1219 * procedure that will eventually trigger (nothing forbids us doing this). 1220 * 1221 * Implements also blockage to start_seq wrap-around. Problem lies in the 1222 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1223 * there's no guarantee that it will be before snd_nxt (n). The problem 1224 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1225 * wrap (s_w): 1226 * 1227 * <- outs wnd -> <- wrapzone -> 1228 * u e n u_w e_w s n_w 1229 * | | | | | | | 1230 * |<------------+------+----- TCP seqno space --------------+---------->| 1231 * ...-- <2^31 ->| |<--------... 1232 * ...---- >2^31 ------>| |<--------... 1233 * 1234 * Current code wouldn't be vulnerable but it's better still to discard such 1235 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1236 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1237 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1238 * equal to the ideal case (infinite seqno space without wrap caused issues). 1239 * 1240 * With D-SACK the lower bound is extended to cover sequence space below 1241 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1242 * again, D-SACK block must not to go across snd_una (for the same reason as 1243 * for the normal SACK blocks, explained above). But there all simplicity 1244 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1245 * fully below undo_marker they do not affect behavior in anyway and can 1246 * therefore be safely ignored. In rare cases (which are more or less 1247 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1248 * fragmentation and packet reordering past skb's retransmission. To consider 1249 * them correctly, the acceptable range must be extended even more though 1250 * the exact amount is rather hard to quantify. However, tp->max_window can 1251 * be used as an exaggerated estimate. 1252 */ 1253 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1254 u32 start_seq, u32 end_seq) 1255 { 1256 /* Too far in future, or reversed (interpretation is ambiguous) */ 1257 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1258 return false; 1259 1260 /* Nasty start_seq wrap-around check (see comments above) */ 1261 if (!before(start_seq, tp->snd_nxt)) 1262 return false; 1263 1264 /* In outstanding window? ...This is valid exit for D-SACKs too. 1265 * start_seq == snd_una is non-sensical (see comments above) 1266 */ 1267 if (after(start_seq, tp->snd_una)) 1268 return true; 1269 1270 if (!is_dsack || !tp->undo_marker) 1271 return false; 1272 1273 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1274 if (after(end_seq, tp->snd_una)) 1275 return false; 1276 1277 if (!before(start_seq, tp->undo_marker)) 1278 return true; 1279 1280 /* Too old */ 1281 if (!after(end_seq, tp->undo_marker)) 1282 return false; 1283 1284 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1285 * start_seq < undo_marker and end_seq >= undo_marker. 1286 */ 1287 return !before(start_seq, end_seq - tp->max_window); 1288 } 1289 1290 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1291 struct tcp_sack_block_wire *sp, int num_sacks, 1292 u32 prior_snd_una, struct tcp_sacktag_state *state) 1293 { 1294 struct tcp_sock *tp = tcp_sk(sk); 1295 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1296 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1297 u32 dup_segs; 1298 1299 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1301 } else if (num_sacks > 1) { 1302 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1303 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1304 1305 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1306 return false; 1307 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1308 } else { 1309 return false; 1310 } 1311 1312 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1313 if (!dup_segs) { /* Skip dubious DSACK */ 1314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1315 return false; 1316 } 1317 1318 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1319 1320 /* D-SACK for already forgotten data... Do dumb counting. */ 1321 if (tp->undo_marker && tp->undo_retrans > 0 && 1322 !after(end_seq_0, prior_snd_una) && 1323 after(end_seq_0, tp->undo_marker)) 1324 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1325 1326 return true; 1327 } 1328 1329 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1330 * the incoming SACK may not exactly match but we can find smaller MSS 1331 * aligned portion of it that matches. Therefore we might need to fragment 1332 * which may fail and creates some hassle (caller must handle error case 1333 * returns). 1334 * 1335 * FIXME: this could be merged to shift decision code 1336 */ 1337 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1338 u32 start_seq, u32 end_seq) 1339 { 1340 int err; 1341 bool in_sack; 1342 unsigned int pkt_len; 1343 unsigned int mss; 1344 1345 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1346 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1347 1348 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1349 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1350 mss = tcp_skb_mss(skb); 1351 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1352 1353 if (!in_sack) { 1354 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1355 if (pkt_len < mss) 1356 pkt_len = mss; 1357 } else { 1358 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1359 if (pkt_len < mss) 1360 return -EINVAL; 1361 } 1362 1363 /* Round if necessary so that SACKs cover only full MSSes 1364 * and/or the remaining small portion (if present) 1365 */ 1366 if (pkt_len > mss) { 1367 unsigned int new_len = (pkt_len / mss) * mss; 1368 if (!in_sack && new_len < pkt_len) 1369 new_len += mss; 1370 pkt_len = new_len; 1371 } 1372 1373 if (pkt_len >= skb->len && !in_sack) 1374 return 0; 1375 1376 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1377 pkt_len, mss, GFP_ATOMIC); 1378 if (err < 0) 1379 return err; 1380 } 1381 1382 return in_sack; 1383 } 1384 1385 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1386 static u8 tcp_sacktag_one(struct sock *sk, 1387 struct tcp_sacktag_state *state, u8 sacked, 1388 u32 start_seq, u32 end_seq, 1389 int dup_sack, int pcount, 1390 u64 xmit_time) 1391 { 1392 struct tcp_sock *tp = tcp_sk(sk); 1393 1394 /* Account D-SACK for retransmitted packet. */ 1395 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1396 if (tp->undo_marker && tp->undo_retrans > 0 && 1397 after(end_seq, tp->undo_marker)) 1398 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1399 if ((sacked & TCPCB_SACKED_ACKED) && 1400 before(start_seq, state->reord)) 1401 state->reord = start_seq; 1402 } 1403 1404 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1405 if (!after(end_seq, tp->snd_una)) 1406 return sacked; 1407 1408 if (!(sacked & TCPCB_SACKED_ACKED)) { 1409 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1410 1411 if (sacked & TCPCB_SACKED_RETRANS) { 1412 /* If the segment is not tagged as lost, 1413 * we do not clear RETRANS, believing 1414 * that retransmission is still in flight. 1415 */ 1416 if (sacked & TCPCB_LOST) { 1417 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1418 tp->lost_out -= pcount; 1419 tp->retrans_out -= pcount; 1420 } 1421 } else { 1422 if (!(sacked & TCPCB_RETRANS)) { 1423 /* New sack for not retransmitted frame, 1424 * which was in hole. It is reordering. 1425 */ 1426 if (before(start_seq, 1427 tcp_highest_sack_seq(tp)) && 1428 before(start_seq, state->reord)) 1429 state->reord = start_seq; 1430 1431 if (!after(end_seq, tp->high_seq)) 1432 state->flag |= FLAG_ORIG_SACK_ACKED; 1433 if (state->first_sackt == 0) 1434 state->first_sackt = xmit_time; 1435 state->last_sackt = xmit_time; 1436 } 1437 1438 if (sacked & TCPCB_LOST) { 1439 sacked &= ~TCPCB_LOST; 1440 tp->lost_out -= pcount; 1441 } 1442 } 1443 1444 sacked |= TCPCB_SACKED_ACKED; 1445 state->flag |= FLAG_DATA_SACKED; 1446 tp->sacked_out += pcount; 1447 /* Out-of-order packets delivered */ 1448 state->sack_delivered += pcount; 1449 1450 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1451 if (tp->lost_skb_hint && 1452 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1453 tp->lost_cnt_hint += pcount; 1454 } 1455 1456 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1457 * frames and clear it. undo_retrans is decreased above, L|R frames 1458 * are accounted above as well. 1459 */ 1460 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1461 sacked &= ~TCPCB_SACKED_RETRANS; 1462 tp->retrans_out -= pcount; 1463 } 1464 1465 return sacked; 1466 } 1467 1468 /* Shift newly-SACKed bytes from this skb to the immediately previous 1469 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1470 */ 1471 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1472 struct sk_buff *skb, 1473 struct tcp_sacktag_state *state, 1474 unsigned int pcount, int shifted, int mss, 1475 bool dup_sack) 1476 { 1477 struct tcp_sock *tp = tcp_sk(sk); 1478 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1479 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1480 1481 BUG_ON(!pcount); 1482 1483 /* Adjust counters and hints for the newly sacked sequence 1484 * range but discard the return value since prev is already 1485 * marked. We must tag the range first because the seq 1486 * advancement below implicitly advances 1487 * tcp_highest_sack_seq() when skb is highest_sack. 1488 */ 1489 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1490 start_seq, end_seq, dup_sack, pcount, 1491 tcp_skb_timestamp_us(skb)); 1492 tcp_rate_skb_delivered(sk, skb, state->rate); 1493 1494 if (skb == tp->lost_skb_hint) 1495 tp->lost_cnt_hint += pcount; 1496 1497 TCP_SKB_CB(prev)->end_seq += shifted; 1498 TCP_SKB_CB(skb)->seq += shifted; 1499 1500 tcp_skb_pcount_add(prev, pcount); 1501 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1502 tcp_skb_pcount_add(skb, -pcount); 1503 1504 /* When we're adding to gso_segs == 1, gso_size will be zero, 1505 * in theory this shouldn't be necessary but as long as DSACK 1506 * code can come after this skb later on it's better to keep 1507 * setting gso_size to something. 1508 */ 1509 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1510 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1511 1512 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1513 if (tcp_skb_pcount(skb) <= 1) 1514 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1515 1516 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1517 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1518 1519 if (skb->len > 0) { 1520 BUG_ON(!tcp_skb_pcount(skb)); 1521 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1522 return false; 1523 } 1524 1525 /* Whole SKB was eaten :-) */ 1526 1527 if (skb == tp->retransmit_skb_hint) 1528 tp->retransmit_skb_hint = prev; 1529 if (skb == tp->lost_skb_hint) { 1530 tp->lost_skb_hint = prev; 1531 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1532 } 1533 1534 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1535 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1536 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1537 TCP_SKB_CB(prev)->end_seq++; 1538 1539 if (skb == tcp_highest_sack(sk)) 1540 tcp_advance_highest_sack(sk, skb); 1541 1542 tcp_skb_collapse_tstamp(prev, skb); 1543 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1544 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1545 1546 tcp_rtx_queue_unlink_and_free(skb, sk); 1547 1548 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1549 1550 return true; 1551 } 1552 1553 /* I wish gso_size would have a bit more sane initialization than 1554 * something-or-zero which complicates things 1555 */ 1556 static int tcp_skb_seglen(const struct sk_buff *skb) 1557 { 1558 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1559 } 1560 1561 /* Shifting pages past head area doesn't work */ 1562 static int skb_can_shift(const struct sk_buff *skb) 1563 { 1564 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1565 } 1566 1567 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1568 int pcount, int shiftlen) 1569 { 1570 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1571 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1572 * to make sure not storing more than 65535 * 8 bytes per skb, 1573 * even if current MSS is bigger. 1574 */ 1575 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1576 return 0; 1577 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1578 return 0; 1579 return skb_shift(to, from, shiftlen); 1580 } 1581 1582 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1583 * skb. 1584 */ 1585 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1586 struct tcp_sacktag_state *state, 1587 u32 start_seq, u32 end_seq, 1588 bool dup_sack) 1589 { 1590 struct tcp_sock *tp = tcp_sk(sk); 1591 struct sk_buff *prev; 1592 int mss; 1593 int pcount = 0; 1594 int len; 1595 int in_sack; 1596 1597 /* Normally R but no L won't result in plain S */ 1598 if (!dup_sack && 1599 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1600 goto fallback; 1601 if (!skb_can_shift(skb)) 1602 goto fallback; 1603 /* This frame is about to be dropped (was ACKed). */ 1604 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1605 goto fallback; 1606 1607 /* Can only happen with delayed DSACK + discard craziness */ 1608 prev = skb_rb_prev(skb); 1609 if (!prev) 1610 goto fallback; 1611 1612 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1613 goto fallback; 1614 1615 if (!tcp_skb_can_collapse(prev, skb)) 1616 goto fallback; 1617 1618 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1619 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1620 1621 if (in_sack) { 1622 len = skb->len; 1623 pcount = tcp_skb_pcount(skb); 1624 mss = tcp_skb_seglen(skb); 1625 1626 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1627 * drop this restriction as unnecessary 1628 */ 1629 if (mss != tcp_skb_seglen(prev)) 1630 goto fallback; 1631 } else { 1632 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1633 goto noop; 1634 /* CHECKME: This is non-MSS split case only?, this will 1635 * cause skipped skbs due to advancing loop btw, original 1636 * has that feature too 1637 */ 1638 if (tcp_skb_pcount(skb) <= 1) 1639 goto noop; 1640 1641 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1642 if (!in_sack) { 1643 /* TODO: head merge to next could be attempted here 1644 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1645 * though it might not be worth of the additional hassle 1646 * 1647 * ...we can probably just fallback to what was done 1648 * previously. We could try merging non-SACKed ones 1649 * as well but it probably isn't going to buy off 1650 * because later SACKs might again split them, and 1651 * it would make skb timestamp tracking considerably 1652 * harder problem. 1653 */ 1654 goto fallback; 1655 } 1656 1657 len = end_seq - TCP_SKB_CB(skb)->seq; 1658 BUG_ON(len < 0); 1659 BUG_ON(len > skb->len); 1660 1661 /* MSS boundaries should be honoured or else pcount will 1662 * severely break even though it makes things bit trickier. 1663 * Optimize common case to avoid most of the divides 1664 */ 1665 mss = tcp_skb_mss(skb); 1666 1667 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1668 * drop this restriction as unnecessary 1669 */ 1670 if (mss != tcp_skb_seglen(prev)) 1671 goto fallback; 1672 1673 if (len == mss) { 1674 pcount = 1; 1675 } else if (len < mss) { 1676 goto noop; 1677 } else { 1678 pcount = len / mss; 1679 len = pcount * mss; 1680 } 1681 } 1682 1683 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1684 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1685 goto fallback; 1686 1687 if (!tcp_skb_shift(prev, skb, pcount, len)) 1688 goto fallback; 1689 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1690 goto out; 1691 1692 /* Hole filled allows collapsing with the next as well, this is very 1693 * useful when hole on every nth skb pattern happens 1694 */ 1695 skb = skb_rb_next(prev); 1696 if (!skb) 1697 goto out; 1698 1699 if (!skb_can_shift(skb) || 1700 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1701 (mss != tcp_skb_seglen(skb))) 1702 goto out; 1703 1704 if (!tcp_skb_can_collapse(prev, skb)) 1705 goto out; 1706 len = skb->len; 1707 pcount = tcp_skb_pcount(skb); 1708 if (tcp_skb_shift(prev, skb, pcount, len)) 1709 tcp_shifted_skb(sk, prev, skb, state, pcount, 1710 len, mss, 0); 1711 1712 out: 1713 return prev; 1714 1715 noop: 1716 return skb; 1717 1718 fallback: 1719 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1720 return NULL; 1721 } 1722 1723 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1724 struct tcp_sack_block *next_dup, 1725 struct tcp_sacktag_state *state, 1726 u32 start_seq, u32 end_seq, 1727 bool dup_sack_in) 1728 { 1729 struct tcp_sock *tp = tcp_sk(sk); 1730 struct sk_buff *tmp; 1731 1732 skb_rbtree_walk_from(skb) { 1733 int in_sack = 0; 1734 bool dup_sack = dup_sack_in; 1735 1736 /* queue is in-order => we can short-circuit the walk early */ 1737 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1738 break; 1739 1740 if (next_dup && 1741 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1742 in_sack = tcp_match_skb_to_sack(sk, skb, 1743 next_dup->start_seq, 1744 next_dup->end_seq); 1745 if (in_sack > 0) 1746 dup_sack = true; 1747 } 1748 1749 /* skb reference here is a bit tricky to get right, since 1750 * shifting can eat and free both this skb and the next, 1751 * so not even _safe variant of the loop is enough. 1752 */ 1753 if (in_sack <= 0) { 1754 tmp = tcp_shift_skb_data(sk, skb, state, 1755 start_seq, end_seq, dup_sack); 1756 if (tmp) { 1757 if (tmp != skb) { 1758 skb = tmp; 1759 continue; 1760 } 1761 1762 in_sack = 0; 1763 } else { 1764 in_sack = tcp_match_skb_to_sack(sk, skb, 1765 start_seq, 1766 end_seq); 1767 } 1768 } 1769 1770 if (unlikely(in_sack < 0)) 1771 break; 1772 1773 if (in_sack) { 1774 TCP_SKB_CB(skb)->sacked = 1775 tcp_sacktag_one(sk, 1776 state, 1777 TCP_SKB_CB(skb)->sacked, 1778 TCP_SKB_CB(skb)->seq, 1779 TCP_SKB_CB(skb)->end_seq, 1780 dup_sack, 1781 tcp_skb_pcount(skb), 1782 tcp_skb_timestamp_us(skb)); 1783 tcp_rate_skb_delivered(sk, skb, state->rate); 1784 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1785 list_del_init(&skb->tcp_tsorted_anchor); 1786 1787 if (!before(TCP_SKB_CB(skb)->seq, 1788 tcp_highest_sack_seq(tp))) 1789 tcp_advance_highest_sack(sk, skb); 1790 } 1791 } 1792 return skb; 1793 } 1794 1795 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1796 { 1797 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1798 struct sk_buff *skb; 1799 1800 while (*p) { 1801 parent = *p; 1802 skb = rb_to_skb(parent); 1803 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1804 p = &parent->rb_left; 1805 continue; 1806 } 1807 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1808 p = &parent->rb_right; 1809 continue; 1810 } 1811 return skb; 1812 } 1813 return NULL; 1814 } 1815 1816 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1817 u32 skip_to_seq) 1818 { 1819 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1820 return skb; 1821 1822 return tcp_sacktag_bsearch(sk, skip_to_seq); 1823 } 1824 1825 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1826 struct sock *sk, 1827 struct tcp_sack_block *next_dup, 1828 struct tcp_sacktag_state *state, 1829 u32 skip_to_seq) 1830 { 1831 if (!next_dup) 1832 return skb; 1833 1834 if (before(next_dup->start_seq, skip_to_seq)) { 1835 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1836 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1837 next_dup->start_seq, next_dup->end_seq, 1838 1); 1839 } 1840 1841 return skb; 1842 } 1843 1844 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1845 { 1846 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1847 } 1848 1849 static int 1850 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1851 u32 prior_snd_una, struct tcp_sacktag_state *state) 1852 { 1853 struct tcp_sock *tp = tcp_sk(sk); 1854 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1855 TCP_SKB_CB(ack_skb)->sacked); 1856 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1857 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1858 struct tcp_sack_block *cache; 1859 struct sk_buff *skb; 1860 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1861 int used_sacks; 1862 bool found_dup_sack = false; 1863 int i, j; 1864 int first_sack_index; 1865 1866 state->flag = 0; 1867 state->reord = tp->snd_nxt; 1868 1869 if (!tp->sacked_out) 1870 tcp_highest_sack_reset(sk); 1871 1872 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1873 num_sacks, prior_snd_una, state); 1874 1875 /* Eliminate too old ACKs, but take into 1876 * account more or less fresh ones, they can 1877 * contain valid SACK info. 1878 */ 1879 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1880 return 0; 1881 1882 if (!tp->packets_out) 1883 goto out; 1884 1885 used_sacks = 0; 1886 first_sack_index = 0; 1887 for (i = 0; i < num_sacks; i++) { 1888 bool dup_sack = !i && found_dup_sack; 1889 1890 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1891 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1892 1893 if (!tcp_is_sackblock_valid(tp, dup_sack, 1894 sp[used_sacks].start_seq, 1895 sp[used_sacks].end_seq)) { 1896 int mib_idx; 1897 1898 if (dup_sack) { 1899 if (!tp->undo_marker) 1900 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1901 else 1902 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1903 } else { 1904 /* Don't count olds caused by ACK reordering */ 1905 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1906 !after(sp[used_sacks].end_seq, tp->snd_una)) 1907 continue; 1908 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1909 } 1910 1911 NET_INC_STATS(sock_net(sk), mib_idx); 1912 if (i == 0) 1913 first_sack_index = -1; 1914 continue; 1915 } 1916 1917 /* Ignore very old stuff early */ 1918 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1919 if (i == 0) 1920 first_sack_index = -1; 1921 continue; 1922 } 1923 1924 used_sacks++; 1925 } 1926 1927 /* order SACK blocks to allow in order walk of the retrans queue */ 1928 for (i = used_sacks - 1; i > 0; i--) { 1929 for (j = 0; j < i; j++) { 1930 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1931 swap(sp[j], sp[j + 1]); 1932 1933 /* Track where the first SACK block goes to */ 1934 if (j == first_sack_index) 1935 first_sack_index = j + 1; 1936 } 1937 } 1938 } 1939 1940 state->mss_now = tcp_current_mss(sk); 1941 skb = NULL; 1942 i = 0; 1943 1944 if (!tp->sacked_out) { 1945 /* It's already past, so skip checking against it */ 1946 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1947 } else { 1948 cache = tp->recv_sack_cache; 1949 /* Skip empty blocks in at head of the cache */ 1950 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1951 !cache->end_seq) 1952 cache++; 1953 } 1954 1955 while (i < used_sacks) { 1956 u32 start_seq = sp[i].start_seq; 1957 u32 end_seq = sp[i].end_seq; 1958 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1959 struct tcp_sack_block *next_dup = NULL; 1960 1961 if (found_dup_sack && ((i + 1) == first_sack_index)) 1962 next_dup = &sp[i + 1]; 1963 1964 /* Skip too early cached blocks */ 1965 while (tcp_sack_cache_ok(tp, cache) && 1966 !before(start_seq, cache->end_seq)) 1967 cache++; 1968 1969 /* Can skip some work by looking recv_sack_cache? */ 1970 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1971 after(end_seq, cache->start_seq)) { 1972 1973 /* Head todo? */ 1974 if (before(start_seq, cache->start_seq)) { 1975 skb = tcp_sacktag_skip(skb, sk, start_seq); 1976 skb = tcp_sacktag_walk(skb, sk, next_dup, 1977 state, 1978 start_seq, 1979 cache->start_seq, 1980 dup_sack); 1981 } 1982 1983 /* Rest of the block already fully processed? */ 1984 if (!after(end_seq, cache->end_seq)) 1985 goto advance_sp; 1986 1987 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1988 state, 1989 cache->end_seq); 1990 1991 /* ...tail remains todo... */ 1992 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1993 /* ...but better entrypoint exists! */ 1994 skb = tcp_highest_sack(sk); 1995 if (!skb) 1996 break; 1997 cache++; 1998 goto walk; 1999 } 2000 2001 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 2002 /* Check overlap against next cached too (past this one already) */ 2003 cache++; 2004 continue; 2005 } 2006 2007 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2008 skb = tcp_highest_sack(sk); 2009 if (!skb) 2010 break; 2011 } 2012 skb = tcp_sacktag_skip(skb, sk, start_seq); 2013 2014 walk: 2015 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2016 start_seq, end_seq, dup_sack); 2017 2018 advance_sp: 2019 i++; 2020 } 2021 2022 /* Clear the head of the cache sack blocks so we can skip it next time */ 2023 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2024 tp->recv_sack_cache[i].start_seq = 0; 2025 tp->recv_sack_cache[i].end_seq = 0; 2026 } 2027 for (j = 0; j < used_sacks; j++) 2028 tp->recv_sack_cache[i++] = sp[j]; 2029 2030 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2031 tcp_check_sack_reordering(sk, state->reord, 0); 2032 2033 tcp_verify_left_out(tp); 2034 out: 2035 2036 #if FASTRETRANS_DEBUG > 0 2037 WARN_ON((int)tp->sacked_out < 0); 2038 WARN_ON((int)tp->lost_out < 0); 2039 WARN_ON((int)tp->retrans_out < 0); 2040 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2041 #endif 2042 return state->flag; 2043 } 2044 2045 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2046 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2047 */ 2048 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2049 { 2050 u32 holes; 2051 2052 holes = max(tp->lost_out, 1U); 2053 holes = min(holes, tp->packets_out); 2054 2055 if ((tp->sacked_out + holes) > tp->packets_out) { 2056 tp->sacked_out = tp->packets_out - holes; 2057 return true; 2058 } 2059 return false; 2060 } 2061 2062 /* If we receive more dupacks than we expected counting segments 2063 * in assumption of absent reordering, interpret this as reordering. 2064 * The only another reason could be bug in receiver TCP. 2065 */ 2066 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2067 { 2068 struct tcp_sock *tp = tcp_sk(sk); 2069 2070 if (!tcp_limit_reno_sacked(tp)) 2071 return; 2072 2073 tp->reordering = min_t(u32, tp->packets_out + addend, 2074 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2075 tp->reord_seen++; 2076 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2077 } 2078 2079 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2080 2081 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2082 { 2083 if (num_dupack) { 2084 struct tcp_sock *tp = tcp_sk(sk); 2085 u32 prior_sacked = tp->sacked_out; 2086 s32 delivered; 2087 2088 tp->sacked_out += num_dupack; 2089 tcp_check_reno_reordering(sk, 0); 2090 delivered = tp->sacked_out - prior_sacked; 2091 if (delivered > 0) 2092 tcp_count_delivered(tp, delivered, ece_ack); 2093 tcp_verify_left_out(tp); 2094 } 2095 } 2096 2097 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2098 2099 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2100 { 2101 struct tcp_sock *tp = tcp_sk(sk); 2102 2103 if (acked > 0) { 2104 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2105 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2106 ece_ack); 2107 if (acked - 1 >= tp->sacked_out) 2108 tp->sacked_out = 0; 2109 else 2110 tp->sacked_out -= acked - 1; 2111 } 2112 tcp_check_reno_reordering(sk, acked); 2113 tcp_verify_left_out(tp); 2114 } 2115 2116 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2117 { 2118 tp->sacked_out = 0; 2119 } 2120 2121 void tcp_clear_retrans(struct tcp_sock *tp) 2122 { 2123 tp->retrans_out = 0; 2124 tp->lost_out = 0; 2125 tp->undo_marker = 0; 2126 tp->undo_retrans = -1; 2127 tp->sacked_out = 0; 2128 tp->rto_stamp = 0; 2129 tp->total_rto = 0; 2130 tp->total_rto_recoveries = 0; 2131 tp->total_rto_time = 0; 2132 } 2133 2134 static inline void tcp_init_undo(struct tcp_sock *tp) 2135 { 2136 tp->undo_marker = tp->snd_una; 2137 2138 /* Retransmission still in flight may cause DSACKs later. */ 2139 /* First, account for regular retransmits in flight: */ 2140 tp->undo_retrans = tp->retrans_out; 2141 /* Next, account for TLP retransmits in flight: */ 2142 if (tp->tlp_high_seq && tp->tlp_retrans) 2143 tp->undo_retrans++; 2144 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2145 if (!tp->undo_retrans) 2146 tp->undo_retrans = -1; 2147 } 2148 2149 static bool tcp_is_rack(const struct sock *sk) 2150 { 2151 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2152 TCP_RACK_LOSS_DETECTION; 2153 } 2154 2155 /* If we detect SACK reneging, forget all SACK information 2156 * and reset tags completely, otherwise preserve SACKs. If receiver 2157 * dropped its ofo queue, we will know this due to reneging detection. 2158 */ 2159 static void tcp_timeout_mark_lost(struct sock *sk) 2160 { 2161 struct tcp_sock *tp = tcp_sk(sk); 2162 struct sk_buff *skb, *head; 2163 bool is_reneg; /* is receiver reneging on SACKs? */ 2164 2165 head = tcp_rtx_queue_head(sk); 2166 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2167 if (is_reneg) { 2168 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2169 tp->sacked_out = 0; 2170 /* Mark SACK reneging until we recover from this loss event. */ 2171 tp->is_sack_reneg = 1; 2172 } else if (tcp_is_reno(tp)) { 2173 tcp_reset_reno_sack(tp); 2174 } 2175 2176 skb = head; 2177 skb_rbtree_walk_from(skb) { 2178 if (is_reneg) 2179 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2180 else if (tcp_is_rack(sk) && skb != head && 2181 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2182 continue; /* Don't mark recently sent ones lost yet */ 2183 tcp_mark_skb_lost(sk, skb); 2184 } 2185 tcp_verify_left_out(tp); 2186 tcp_clear_all_retrans_hints(tp); 2187 } 2188 2189 /* Enter Loss state. */ 2190 void tcp_enter_loss(struct sock *sk) 2191 { 2192 const struct inet_connection_sock *icsk = inet_csk(sk); 2193 struct tcp_sock *tp = tcp_sk(sk); 2194 struct net *net = sock_net(sk); 2195 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2196 u8 reordering; 2197 2198 tcp_timeout_mark_lost(sk); 2199 2200 /* Reduce ssthresh if it has not yet been made inside this window. */ 2201 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2202 !after(tp->high_seq, tp->snd_una) || 2203 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2204 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2205 tp->prior_cwnd = tcp_snd_cwnd(tp); 2206 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2207 tcp_ca_event(sk, CA_EVENT_LOSS); 2208 tcp_init_undo(tp); 2209 } 2210 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2211 tp->snd_cwnd_cnt = 0; 2212 tp->snd_cwnd_stamp = tcp_jiffies32; 2213 2214 /* Timeout in disordered state after receiving substantial DUPACKs 2215 * suggests that the degree of reordering is over-estimated. 2216 */ 2217 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2218 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2219 tp->sacked_out >= reordering) 2220 tp->reordering = min_t(unsigned int, tp->reordering, 2221 reordering); 2222 2223 tcp_set_ca_state(sk, TCP_CA_Loss); 2224 tp->high_seq = tp->snd_nxt; 2225 tp->tlp_high_seq = 0; 2226 tcp_ecn_queue_cwr(tp); 2227 2228 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2229 * loss recovery is underway except recurring timeout(s) on 2230 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2231 */ 2232 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2233 (new_recovery || icsk->icsk_retransmits) && 2234 !inet_csk(sk)->icsk_mtup.probe_size; 2235 } 2236 2237 /* If ACK arrived pointing to a remembered SACK, it means that our 2238 * remembered SACKs do not reflect real state of receiver i.e. 2239 * receiver _host_ is heavily congested (or buggy). 2240 * 2241 * To avoid big spurious retransmission bursts due to transient SACK 2242 * scoreboard oddities that look like reneging, we give the receiver a 2243 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2244 * restore sanity to the SACK scoreboard. If the apparent reneging 2245 * persists until this RTO then we'll clear the SACK scoreboard. 2246 */ 2247 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2248 { 2249 if (*ack_flag & FLAG_SACK_RENEGING && 2250 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2251 struct tcp_sock *tp = tcp_sk(sk); 2252 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2253 msecs_to_jiffies(10)); 2254 2255 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false); 2256 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2257 return true; 2258 } 2259 return false; 2260 } 2261 2262 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2263 * counter when SACK is enabled (without SACK, sacked_out is used for 2264 * that purpose). 2265 * 2266 * With reordering, holes may still be in flight, so RFC3517 recovery 2267 * uses pure sacked_out (total number of SACKed segments) even though 2268 * it violates the RFC that uses duplicate ACKs, often these are equal 2269 * but when e.g. out-of-window ACKs or packet duplication occurs, 2270 * they differ. Since neither occurs due to loss, TCP should really 2271 * ignore them. 2272 */ 2273 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2274 { 2275 return tp->sacked_out + 1; 2276 } 2277 2278 /* Linux NewReno/SACK/ECN state machine. 2279 * -------------------------------------- 2280 * 2281 * "Open" Normal state, no dubious events, fast path. 2282 * "Disorder" In all the respects it is "Open", 2283 * but requires a bit more attention. It is entered when 2284 * we see some SACKs or dupacks. It is split of "Open" 2285 * mainly to move some processing from fast path to slow one. 2286 * "CWR" CWND was reduced due to some Congestion Notification event. 2287 * It can be ECN, ICMP source quench, local device congestion. 2288 * "Recovery" CWND was reduced, we are fast-retransmitting. 2289 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2290 * 2291 * tcp_fastretrans_alert() is entered: 2292 * - each incoming ACK, if state is not "Open" 2293 * - when arrived ACK is unusual, namely: 2294 * * SACK 2295 * * Duplicate ACK. 2296 * * ECN ECE. 2297 * 2298 * Counting packets in flight is pretty simple. 2299 * 2300 * in_flight = packets_out - left_out + retrans_out 2301 * 2302 * packets_out is SND.NXT-SND.UNA counted in packets. 2303 * 2304 * retrans_out is number of retransmitted segments. 2305 * 2306 * left_out is number of segments left network, but not ACKed yet. 2307 * 2308 * left_out = sacked_out + lost_out 2309 * 2310 * sacked_out: Packets, which arrived to receiver out of order 2311 * and hence not ACKed. With SACKs this number is simply 2312 * amount of SACKed data. Even without SACKs 2313 * it is easy to give pretty reliable estimate of this number, 2314 * counting duplicate ACKs. 2315 * 2316 * lost_out: Packets lost by network. TCP has no explicit 2317 * "loss notification" feedback from network (for now). 2318 * It means that this number can be only _guessed_. 2319 * Actually, it is the heuristics to predict lossage that 2320 * distinguishes different algorithms. 2321 * 2322 * F.e. after RTO, when all the queue is considered as lost, 2323 * lost_out = packets_out and in_flight = retrans_out. 2324 * 2325 * Essentially, we have now a few algorithms detecting 2326 * lost packets. 2327 * 2328 * If the receiver supports SACK: 2329 * 2330 * RFC6675/3517: It is the conventional algorithm. A packet is 2331 * considered lost if the number of higher sequence packets 2332 * SACKed is greater than or equal the DUPACK thoreshold 2333 * (reordering). This is implemented in tcp_mark_head_lost and 2334 * tcp_update_scoreboard. 2335 * 2336 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2337 * (2017-) that checks timing instead of counting DUPACKs. 2338 * Essentially a packet is considered lost if it's not S/ACKed 2339 * after RTT + reordering_window, where both metrics are 2340 * dynamically measured and adjusted. This is implemented in 2341 * tcp_rack_mark_lost. 2342 * 2343 * If the receiver does not support SACK: 2344 * 2345 * NewReno (RFC6582): in Recovery we assume that one segment 2346 * is lost (classic Reno). While we are in Recovery and 2347 * a partial ACK arrives, we assume that one more packet 2348 * is lost (NewReno). This heuristics are the same in NewReno 2349 * and SACK. 2350 * 2351 * Really tricky (and requiring careful tuning) part of algorithm 2352 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2353 * The first determines the moment _when_ we should reduce CWND and, 2354 * hence, slow down forward transmission. In fact, it determines the moment 2355 * when we decide that hole is caused by loss, rather than by a reorder. 2356 * 2357 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2358 * holes, caused by lost packets. 2359 * 2360 * And the most logically complicated part of algorithm is undo 2361 * heuristics. We detect false retransmits due to both too early 2362 * fast retransmit (reordering) and underestimated RTO, analyzing 2363 * timestamps and D-SACKs. When we detect that some segments were 2364 * retransmitted by mistake and CWND reduction was wrong, we undo 2365 * window reduction and abort recovery phase. This logic is hidden 2366 * inside several functions named tcp_try_undo_<something>. 2367 */ 2368 2369 /* This function decides, when we should leave Disordered state 2370 * and enter Recovery phase, reducing congestion window. 2371 * 2372 * Main question: may we further continue forward transmission 2373 * with the same cwnd? 2374 */ 2375 static bool tcp_time_to_recover(struct sock *sk, int flag) 2376 { 2377 struct tcp_sock *tp = tcp_sk(sk); 2378 2379 /* Trick#1: The loss is proven. */ 2380 if (tp->lost_out) 2381 return true; 2382 2383 /* Not-A-Trick#2 : Classic rule... */ 2384 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2385 return true; 2386 2387 return false; 2388 } 2389 2390 /* Detect loss in event "A" above by marking head of queue up as lost. 2391 * For RFC3517 SACK, a segment is considered lost if it 2392 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2393 * the maximum SACKed segments to pass before reaching this limit. 2394 */ 2395 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2396 { 2397 struct tcp_sock *tp = tcp_sk(sk); 2398 struct sk_buff *skb; 2399 int cnt; 2400 /* Use SACK to deduce losses of new sequences sent during recovery */ 2401 const u32 loss_high = tp->snd_nxt; 2402 2403 WARN_ON(packets > tp->packets_out); 2404 skb = tp->lost_skb_hint; 2405 if (skb) { 2406 /* Head already handled? */ 2407 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2408 return; 2409 cnt = tp->lost_cnt_hint; 2410 } else { 2411 skb = tcp_rtx_queue_head(sk); 2412 cnt = 0; 2413 } 2414 2415 skb_rbtree_walk_from(skb) { 2416 /* TODO: do this better */ 2417 /* this is not the most efficient way to do this... */ 2418 tp->lost_skb_hint = skb; 2419 tp->lost_cnt_hint = cnt; 2420 2421 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2422 break; 2423 2424 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2425 cnt += tcp_skb_pcount(skb); 2426 2427 if (cnt > packets) 2428 break; 2429 2430 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2431 tcp_mark_skb_lost(sk, skb); 2432 2433 if (mark_head) 2434 break; 2435 } 2436 tcp_verify_left_out(tp); 2437 } 2438 2439 /* Account newly detected lost packet(s) */ 2440 2441 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2442 { 2443 struct tcp_sock *tp = tcp_sk(sk); 2444 2445 if (tcp_is_sack(tp)) { 2446 int sacked_upto = tp->sacked_out - tp->reordering; 2447 if (sacked_upto >= 0) 2448 tcp_mark_head_lost(sk, sacked_upto, 0); 2449 else if (fast_rexmit) 2450 tcp_mark_head_lost(sk, 1, 1); 2451 } 2452 } 2453 2454 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2455 { 2456 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2457 before(tp->rx_opt.rcv_tsecr, when); 2458 } 2459 2460 /* skb is spurious retransmitted if the returned timestamp echo 2461 * reply is prior to the skb transmission time 2462 */ 2463 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2464 const struct sk_buff *skb) 2465 { 2466 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2467 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2468 } 2469 2470 /* Nothing was retransmitted or returned timestamp is less 2471 * than timestamp of the first retransmission. 2472 */ 2473 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2474 { 2475 const struct sock *sk = (const struct sock *)tp; 2476 2477 if (tp->retrans_stamp && 2478 tcp_tsopt_ecr_before(tp, tp->retrans_stamp)) 2479 return true; /* got echoed TS before first retransmission */ 2480 2481 /* Check if nothing was retransmitted (retrans_stamp==0), which may 2482 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp 2483 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear 2484 * retrans_stamp even if we had retransmitted the SYN. 2485 */ 2486 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */ 2487 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */ 2488 return true; /* nothing was retransmitted */ 2489 2490 return false; 2491 } 2492 2493 /* Undo procedures. */ 2494 2495 /* We can clear retrans_stamp when there are no retransmissions in the 2496 * window. It would seem that it is trivially available for us in 2497 * tp->retrans_out, however, that kind of assumptions doesn't consider 2498 * what will happen if errors occur when sending retransmission for the 2499 * second time. ...It could the that such segment has only 2500 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2501 * the head skb is enough except for some reneging corner cases that 2502 * are not worth the effort. 2503 * 2504 * Main reason for all this complexity is the fact that connection dying 2505 * time now depends on the validity of the retrans_stamp, in particular, 2506 * that successive retransmissions of a segment must not advance 2507 * retrans_stamp under any conditions. 2508 */ 2509 static bool tcp_any_retrans_done(const struct sock *sk) 2510 { 2511 const struct tcp_sock *tp = tcp_sk(sk); 2512 struct sk_buff *skb; 2513 2514 if (tp->retrans_out) 2515 return true; 2516 2517 skb = tcp_rtx_queue_head(sk); 2518 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2519 return true; 2520 2521 return false; 2522 } 2523 2524 /* If loss recovery is finished and there are no retransmits out in the 2525 * network, then we clear retrans_stamp so that upon the next loss recovery 2526 * retransmits_timed_out() and timestamp-undo are using the correct value. 2527 */ 2528 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2529 { 2530 if (!tcp_any_retrans_done(sk)) 2531 tcp_sk(sk)->retrans_stamp = 0; 2532 } 2533 2534 static void DBGUNDO(struct sock *sk, const char *msg) 2535 { 2536 #if FASTRETRANS_DEBUG > 1 2537 struct tcp_sock *tp = tcp_sk(sk); 2538 struct inet_sock *inet = inet_sk(sk); 2539 2540 if (sk->sk_family == AF_INET) { 2541 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2542 msg, 2543 &inet->inet_daddr, ntohs(inet->inet_dport), 2544 tcp_snd_cwnd(tp), tcp_left_out(tp), 2545 tp->snd_ssthresh, tp->prior_ssthresh, 2546 tp->packets_out); 2547 } 2548 #if IS_ENABLED(CONFIG_IPV6) 2549 else if (sk->sk_family == AF_INET6) { 2550 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2551 msg, 2552 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2553 tcp_snd_cwnd(tp), tcp_left_out(tp), 2554 tp->snd_ssthresh, tp->prior_ssthresh, 2555 tp->packets_out); 2556 } 2557 #endif 2558 #endif 2559 } 2560 2561 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2562 { 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 2565 if (unmark_loss) { 2566 struct sk_buff *skb; 2567 2568 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2569 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2570 } 2571 tp->lost_out = 0; 2572 tcp_clear_all_retrans_hints(tp); 2573 } 2574 2575 if (tp->prior_ssthresh) { 2576 const struct inet_connection_sock *icsk = inet_csk(sk); 2577 2578 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2579 2580 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2581 tp->snd_ssthresh = tp->prior_ssthresh; 2582 tcp_ecn_withdraw_cwr(tp); 2583 } 2584 } 2585 tp->snd_cwnd_stamp = tcp_jiffies32; 2586 tp->undo_marker = 0; 2587 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2588 } 2589 2590 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2591 { 2592 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2593 } 2594 2595 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2596 { 2597 struct tcp_sock *tp = tcp_sk(sk); 2598 2599 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2600 /* Hold old state until something *above* high_seq 2601 * is ACKed. For Reno it is MUST to prevent false 2602 * fast retransmits (RFC2582). SACK TCP is safe. */ 2603 if (!tcp_any_retrans_done(sk)) 2604 tp->retrans_stamp = 0; 2605 return true; 2606 } 2607 return false; 2608 } 2609 2610 /* People celebrate: "We love our President!" */ 2611 static bool tcp_try_undo_recovery(struct sock *sk) 2612 { 2613 struct tcp_sock *tp = tcp_sk(sk); 2614 2615 if (tcp_may_undo(tp)) { 2616 int mib_idx; 2617 2618 /* Happy end! We did not retransmit anything 2619 * or our original transmission succeeded. 2620 */ 2621 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2622 tcp_undo_cwnd_reduction(sk, false); 2623 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2624 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2625 else 2626 mib_idx = LINUX_MIB_TCPFULLUNDO; 2627 2628 NET_INC_STATS(sock_net(sk), mib_idx); 2629 } else if (tp->rack.reo_wnd_persist) { 2630 tp->rack.reo_wnd_persist--; 2631 } 2632 if (tcp_is_non_sack_preventing_reopen(sk)) 2633 return true; 2634 tcp_set_ca_state(sk, TCP_CA_Open); 2635 tp->is_sack_reneg = 0; 2636 return false; 2637 } 2638 2639 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2640 static bool tcp_try_undo_dsack(struct sock *sk) 2641 { 2642 struct tcp_sock *tp = tcp_sk(sk); 2643 2644 if (tp->undo_marker && !tp->undo_retrans) { 2645 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2646 tp->rack.reo_wnd_persist + 1); 2647 DBGUNDO(sk, "D-SACK"); 2648 tcp_undo_cwnd_reduction(sk, false); 2649 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2650 return true; 2651 } 2652 return false; 2653 } 2654 2655 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2656 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2657 { 2658 struct tcp_sock *tp = tcp_sk(sk); 2659 2660 if (frto_undo || tcp_may_undo(tp)) { 2661 tcp_undo_cwnd_reduction(sk, true); 2662 2663 DBGUNDO(sk, "partial loss"); 2664 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2665 if (frto_undo) 2666 NET_INC_STATS(sock_net(sk), 2667 LINUX_MIB_TCPSPURIOUSRTOS); 2668 inet_csk(sk)->icsk_retransmits = 0; 2669 if (tcp_is_non_sack_preventing_reopen(sk)) 2670 return true; 2671 if (frto_undo || tcp_is_sack(tp)) { 2672 tcp_set_ca_state(sk, TCP_CA_Open); 2673 tp->is_sack_reneg = 0; 2674 } 2675 return true; 2676 } 2677 return false; 2678 } 2679 2680 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2681 * It computes the number of packets to send (sndcnt) based on packets newly 2682 * delivered: 2683 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2684 * cwnd reductions across a full RTT. 2685 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2686 * But when SND_UNA is acked without further losses, 2687 * slow starts cwnd up to ssthresh to speed up the recovery. 2688 */ 2689 static void tcp_init_cwnd_reduction(struct sock *sk) 2690 { 2691 struct tcp_sock *tp = tcp_sk(sk); 2692 2693 tp->high_seq = tp->snd_nxt; 2694 tp->tlp_high_seq = 0; 2695 tp->snd_cwnd_cnt = 0; 2696 tp->prior_cwnd = tcp_snd_cwnd(tp); 2697 tp->prr_delivered = 0; 2698 tp->prr_out = 0; 2699 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2700 tcp_ecn_queue_cwr(tp); 2701 } 2702 2703 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2704 { 2705 struct tcp_sock *tp = tcp_sk(sk); 2706 int sndcnt = 0; 2707 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2708 2709 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2710 return; 2711 2712 tp->prr_delivered += newly_acked_sacked; 2713 if (delta < 0) { 2714 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2715 tp->prior_cwnd - 1; 2716 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2717 } else { 2718 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2719 newly_acked_sacked); 2720 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2721 sndcnt++; 2722 sndcnt = min(delta, sndcnt); 2723 } 2724 /* Force a fast retransmit upon entering fast recovery */ 2725 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2726 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2727 } 2728 2729 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2730 { 2731 struct tcp_sock *tp = tcp_sk(sk); 2732 2733 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2734 return; 2735 2736 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2737 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2738 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2739 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2740 tp->snd_cwnd_stamp = tcp_jiffies32; 2741 } 2742 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2743 } 2744 2745 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2746 void tcp_enter_cwr(struct sock *sk) 2747 { 2748 struct tcp_sock *tp = tcp_sk(sk); 2749 2750 tp->prior_ssthresh = 0; 2751 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2752 tp->undo_marker = 0; 2753 tcp_init_cwnd_reduction(sk); 2754 tcp_set_ca_state(sk, TCP_CA_CWR); 2755 } 2756 } 2757 EXPORT_SYMBOL(tcp_enter_cwr); 2758 2759 static void tcp_try_keep_open(struct sock *sk) 2760 { 2761 struct tcp_sock *tp = tcp_sk(sk); 2762 int state = TCP_CA_Open; 2763 2764 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2765 state = TCP_CA_Disorder; 2766 2767 if (inet_csk(sk)->icsk_ca_state != state) { 2768 tcp_set_ca_state(sk, state); 2769 tp->high_seq = tp->snd_nxt; 2770 } 2771 } 2772 2773 static void tcp_try_to_open(struct sock *sk, int flag) 2774 { 2775 struct tcp_sock *tp = tcp_sk(sk); 2776 2777 tcp_verify_left_out(tp); 2778 2779 if (!tcp_any_retrans_done(sk)) 2780 tp->retrans_stamp = 0; 2781 2782 if (flag & FLAG_ECE) 2783 tcp_enter_cwr(sk); 2784 2785 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2786 tcp_try_keep_open(sk); 2787 } 2788 } 2789 2790 static void tcp_mtup_probe_failed(struct sock *sk) 2791 { 2792 struct inet_connection_sock *icsk = inet_csk(sk); 2793 2794 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2795 icsk->icsk_mtup.probe_size = 0; 2796 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2797 } 2798 2799 static void tcp_mtup_probe_success(struct sock *sk) 2800 { 2801 struct tcp_sock *tp = tcp_sk(sk); 2802 struct inet_connection_sock *icsk = inet_csk(sk); 2803 u64 val; 2804 2805 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2806 2807 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2808 do_div(val, icsk->icsk_mtup.probe_size); 2809 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2810 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2811 2812 tp->snd_cwnd_cnt = 0; 2813 tp->snd_cwnd_stamp = tcp_jiffies32; 2814 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2815 2816 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2817 icsk->icsk_mtup.probe_size = 0; 2818 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2819 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2820 } 2821 2822 /* Sometimes we deduce that packets have been dropped due to reasons other than 2823 * congestion, like path MTU reductions or failed client TFO attempts. In these 2824 * cases we call this function to retransmit as many packets as cwnd allows, 2825 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2826 * non-zero value (and may do so in a later calling context due to TSQ), we 2827 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2828 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2829 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2830 * prematurely). 2831 */ 2832 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2833 { 2834 const struct inet_connection_sock *icsk = inet_csk(sk); 2835 struct tcp_sock *tp = tcp_sk(sk); 2836 2837 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2838 tp->high_seq = tp->snd_nxt; 2839 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2840 tp->prior_ssthresh = 0; 2841 tp->undo_marker = 0; 2842 tcp_set_ca_state(sk, TCP_CA_Loss); 2843 } 2844 tcp_xmit_retransmit_queue(sk); 2845 } 2846 2847 /* Do a simple retransmit without using the backoff mechanisms in 2848 * tcp_timer. This is used for path mtu discovery. 2849 * The socket is already locked here. 2850 */ 2851 void tcp_simple_retransmit(struct sock *sk) 2852 { 2853 struct tcp_sock *tp = tcp_sk(sk); 2854 struct sk_buff *skb; 2855 int mss; 2856 2857 /* A fastopen SYN request is stored as two separate packets within 2858 * the retransmit queue, this is done by tcp_send_syn_data(). 2859 * As a result simply checking the MSS of the frames in the queue 2860 * will not work for the SYN packet. 2861 * 2862 * Us being here is an indication of a path MTU issue so we can 2863 * assume that the fastopen SYN was lost and just mark all the 2864 * frames in the retransmit queue as lost. We will use an MSS of 2865 * -1 to mark all frames as lost, otherwise compute the current MSS. 2866 */ 2867 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2868 mss = -1; 2869 else 2870 mss = tcp_current_mss(sk); 2871 2872 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2873 if (tcp_skb_seglen(skb) > mss) 2874 tcp_mark_skb_lost(sk, skb); 2875 } 2876 2877 tcp_clear_retrans_hints_partial(tp); 2878 2879 if (!tp->lost_out) 2880 return; 2881 2882 if (tcp_is_reno(tp)) 2883 tcp_limit_reno_sacked(tp); 2884 2885 tcp_verify_left_out(tp); 2886 2887 /* Don't muck with the congestion window here. 2888 * Reason is that we do not increase amount of _data_ 2889 * in network, but units changed and effective 2890 * cwnd/ssthresh really reduced now. 2891 */ 2892 tcp_non_congestion_loss_retransmit(sk); 2893 } 2894 EXPORT_SYMBOL(tcp_simple_retransmit); 2895 2896 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2897 { 2898 struct tcp_sock *tp = tcp_sk(sk); 2899 int mib_idx; 2900 2901 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2902 tcp_retrans_stamp_cleanup(sk); 2903 2904 if (tcp_is_reno(tp)) 2905 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2906 else 2907 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2908 2909 NET_INC_STATS(sock_net(sk), mib_idx); 2910 2911 tp->prior_ssthresh = 0; 2912 tcp_init_undo(tp); 2913 2914 if (!tcp_in_cwnd_reduction(sk)) { 2915 if (!ece_ack) 2916 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2917 tcp_init_cwnd_reduction(sk); 2918 } 2919 tcp_set_ca_state(sk, TCP_CA_Recovery); 2920 } 2921 2922 static void tcp_update_rto_time(struct tcp_sock *tp) 2923 { 2924 if (tp->rto_stamp) { 2925 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2926 tp->rto_stamp = 0; 2927 } 2928 } 2929 2930 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2931 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2932 */ 2933 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2934 int *rexmit) 2935 { 2936 struct tcp_sock *tp = tcp_sk(sk); 2937 bool recovered = !before(tp->snd_una, tp->high_seq); 2938 2939 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2940 tcp_try_undo_loss(sk, false)) 2941 return; 2942 2943 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2944 /* Step 3.b. A timeout is spurious if not all data are 2945 * lost, i.e., never-retransmitted data are (s)acked. 2946 */ 2947 if ((flag & FLAG_ORIG_SACK_ACKED) && 2948 tcp_try_undo_loss(sk, true)) 2949 return; 2950 2951 if (after(tp->snd_nxt, tp->high_seq)) { 2952 if (flag & FLAG_DATA_SACKED || num_dupack) 2953 tp->frto = 0; /* Step 3.a. loss was real */ 2954 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2955 tp->high_seq = tp->snd_nxt; 2956 /* Step 2.b. Try send new data (but deferred until cwnd 2957 * is updated in tcp_ack()). Otherwise fall back to 2958 * the conventional recovery. 2959 */ 2960 if (!tcp_write_queue_empty(sk) && 2961 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2962 *rexmit = REXMIT_NEW; 2963 return; 2964 } 2965 tp->frto = 0; 2966 } 2967 } 2968 2969 if (recovered) { 2970 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2971 tcp_try_undo_recovery(sk); 2972 return; 2973 } 2974 if (tcp_is_reno(tp)) { 2975 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2976 * delivered. Lower inflight to clock out (re)transmissions. 2977 */ 2978 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2979 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2980 else if (flag & FLAG_SND_UNA_ADVANCED) 2981 tcp_reset_reno_sack(tp); 2982 } 2983 *rexmit = REXMIT_LOST; 2984 } 2985 2986 static bool tcp_force_fast_retransmit(struct sock *sk) 2987 { 2988 struct tcp_sock *tp = tcp_sk(sk); 2989 2990 return after(tcp_highest_sack_seq(tp), 2991 tp->snd_una + tp->reordering * tp->mss_cache); 2992 } 2993 2994 /* Undo during fast recovery after partial ACK. */ 2995 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2996 bool *do_lost) 2997 { 2998 struct tcp_sock *tp = tcp_sk(sk); 2999 3000 if (tp->undo_marker && tcp_packet_delayed(tp)) { 3001 /* Plain luck! Hole if filled with delayed 3002 * packet, rather than with a retransmit. Check reordering. 3003 */ 3004 tcp_check_sack_reordering(sk, prior_snd_una, 1); 3005 3006 /* We are getting evidence that the reordering degree is higher 3007 * than we realized. If there are no retransmits out then we 3008 * can undo. Otherwise we clock out new packets but do not 3009 * mark more packets lost or retransmit more. 3010 */ 3011 if (tp->retrans_out) 3012 return true; 3013 3014 if (!tcp_any_retrans_done(sk)) 3015 tp->retrans_stamp = 0; 3016 3017 DBGUNDO(sk, "partial recovery"); 3018 tcp_undo_cwnd_reduction(sk, true); 3019 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3020 tcp_try_keep_open(sk); 3021 } else { 3022 /* Partial ACK arrived. Force fast retransmit. */ 3023 *do_lost = tcp_force_fast_retransmit(sk); 3024 } 3025 return false; 3026 } 3027 3028 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3029 { 3030 struct tcp_sock *tp = tcp_sk(sk); 3031 3032 if (tcp_rtx_queue_empty(sk)) 3033 return; 3034 3035 if (unlikely(tcp_is_reno(tp))) { 3036 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3037 } else if (tcp_is_rack(sk)) { 3038 u32 prior_retrans = tp->retrans_out; 3039 3040 if (tcp_rack_mark_lost(sk)) 3041 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3042 if (prior_retrans > tp->retrans_out) 3043 *ack_flag |= FLAG_LOST_RETRANS; 3044 } 3045 } 3046 3047 /* Process an event, which can update packets-in-flight not trivially. 3048 * Main goal of this function is to calculate new estimate for left_out, 3049 * taking into account both packets sitting in receiver's buffer and 3050 * packets lost by network. 3051 * 3052 * Besides that it updates the congestion state when packet loss or ECN 3053 * is detected. But it does not reduce the cwnd, it is done by the 3054 * congestion control later. 3055 * 3056 * It does _not_ decide what to send, it is made in function 3057 * tcp_xmit_retransmit_queue(). 3058 */ 3059 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3060 int num_dupack, int *ack_flag, int *rexmit) 3061 { 3062 struct inet_connection_sock *icsk = inet_csk(sk); 3063 struct tcp_sock *tp = tcp_sk(sk); 3064 int fast_rexmit = 0, flag = *ack_flag; 3065 bool ece_ack = flag & FLAG_ECE; 3066 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3067 tcp_force_fast_retransmit(sk)); 3068 3069 if (!tp->packets_out && tp->sacked_out) 3070 tp->sacked_out = 0; 3071 3072 /* Now state machine starts. 3073 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3074 if (ece_ack) 3075 tp->prior_ssthresh = 0; 3076 3077 /* B. In all the states check for reneging SACKs. */ 3078 if (tcp_check_sack_reneging(sk, ack_flag)) 3079 return; 3080 3081 /* C. Check consistency of the current state. */ 3082 tcp_verify_left_out(tp); 3083 3084 /* D. Check state exit conditions. State can be terminated 3085 * when high_seq is ACKed. */ 3086 if (icsk->icsk_ca_state == TCP_CA_Open) { 3087 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3088 tp->retrans_stamp = 0; 3089 } else if (!before(tp->snd_una, tp->high_seq)) { 3090 switch (icsk->icsk_ca_state) { 3091 case TCP_CA_CWR: 3092 /* CWR is to be held something *above* high_seq 3093 * is ACKed for CWR bit to reach receiver. */ 3094 if (tp->snd_una != tp->high_seq) { 3095 tcp_end_cwnd_reduction(sk); 3096 tcp_set_ca_state(sk, TCP_CA_Open); 3097 } 3098 break; 3099 3100 case TCP_CA_Recovery: 3101 if (tcp_is_reno(tp)) 3102 tcp_reset_reno_sack(tp); 3103 if (tcp_try_undo_recovery(sk)) 3104 return; 3105 tcp_end_cwnd_reduction(sk); 3106 break; 3107 } 3108 } 3109 3110 /* E. Process state. */ 3111 switch (icsk->icsk_ca_state) { 3112 case TCP_CA_Recovery: 3113 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3114 if (tcp_is_reno(tp)) 3115 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3116 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3117 return; 3118 3119 if (tcp_try_undo_dsack(sk)) 3120 tcp_try_to_open(sk, flag); 3121 3122 tcp_identify_packet_loss(sk, ack_flag); 3123 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3124 if (!tcp_time_to_recover(sk, flag)) 3125 return; 3126 /* Undo reverts the recovery state. If loss is evident, 3127 * starts a new recovery (e.g. reordering then loss); 3128 */ 3129 tcp_enter_recovery(sk, ece_ack); 3130 } 3131 break; 3132 case TCP_CA_Loss: 3133 tcp_process_loss(sk, flag, num_dupack, rexmit); 3134 if (icsk->icsk_ca_state != TCP_CA_Loss) 3135 tcp_update_rto_time(tp); 3136 tcp_identify_packet_loss(sk, ack_flag); 3137 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3138 (*ack_flag & FLAG_LOST_RETRANS))) 3139 return; 3140 /* Change state if cwnd is undone or retransmits are lost */ 3141 fallthrough; 3142 default: 3143 if (tcp_is_reno(tp)) { 3144 if (flag & FLAG_SND_UNA_ADVANCED) 3145 tcp_reset_reno_sack(tp); 3146 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3147 } 3148 3149 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3150 tcp_try_undo_dsack(sk); 3151 3152 tcp_identify_packet_loss(sk, ack_flag); 3153 if (!tcp_time_to_recover(sk, flag)) { 3154 tcp_try_to_open(sk, flag); 3155 return; 3156 } 3157 3158 /* MTU probe failure: don't reduce cwnd */ 3159 if (icsk->icsk_ca_state < TCP_CA_CWR && 3160 icsk->icsk_mtup.probe_size && 3161 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3162 tcp_mtup_probe_failed(sk); 3163 /* Restores the reduction we did in tcp_mtup_probe() */ 3164 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3165 tcp_simple_retransmit(sk); 3166 return; 3167 } 3168 3169 /* Otherwise enter Recovery state */ 3170 tcp_enter_recovery(sk, ece_ack); 3171 fast_rexmit = 1; 3172 } 3173 3174 if (!tcp_is_rack(sk) && do_lost) 3175 tcp_update_scoreboard(sk, fast_rexmit); 3176 *rexmit = REXMIT_LOST; 3177 } 3178 3179 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3180 { 3181 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3182 struct tcp_sock *tp = tcp_sk(sk); 3183 3184 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3185 /* If the remote keeps returning delayed ACKs, eventually 3186 * the min filter would pick it up and overestimate the 3187 * prop. delay when it expires. Skip suspected delayed ACKs. 3188 */ 3189 return; 3190 } 3191 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3192 rtt_us ? : jiffies_to_usecs(1)); 3193 } 3194 3195 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3196 long seq_rtt_us, long sack_rtt_us, 3197 long ca_rtt_us, struct rate_sample *rs) 3198 { 3199 const struct tcp_sock *tp = tcp_sk(sk); 3200 3201 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3202 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3203 * Karn's algorithm forbids taking RTT if some retransmitted data 3204 * is acked (RFC6298). 3205 */ 3206 if (seq_rtt_us < 0) 3207 seq_rtt_us = sack_rtt_us; 3208 3209 /* RTTM Rule: A TSecr value received in a segment is used to 3210 * update the averaged RTT measurement only if the segment 3211 * acknowledges some new data, i.e., only if it advances the 3212 * left edge of the send window. 3213 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3214 */ 3215 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3216 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3217 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp); 3218 3219 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3220 if (seq_rtt_us < 0) 3221 return false; 3222 3223 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3224 * always taken together with ACK, SACK, or TS-opts. Any negative 3225 * values will be skipped with the seq_rtt_us < 0 check above. 3226 */ 3227 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3228 tcp_rtt_estimator(sk, seq_rtt_us); 3229 tcp_set_rto(sk); 3230 3231 /* RFC6298: only reset backoff on valid RTT measurement. */ 3232 inet_csk(sk)->icsk_backoff = 0; 3233 return true; 3234 } 3235 3236 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3237 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3238 { 3239 struct rate_sample rs; 3240 long rtt_us = -1L; 3241 3242 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3243 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3244 3245 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3246 } 3247 3248 3249 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3250 { 3251 const struct inet_connection_sock *icsk = inet_csk(sk); 3252 3253 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3254 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3255 } 3256 3257 /* Restart timer after forward progress on connection. 3258 * RFC2988 recommends to restart timer to now+rto. 3259 */ 3260 void tcp_rearm_rto(struct sock *sk) 3261 { 3262 const struct inet_connection_sock *icsk = inet_csk(sk); 3263 struct tcp_sock *tp = tcp_sk(sk); 3264 3265 /* If the retrans timer is currently being used by Fast Open 3266 * for SYN-ACK retrans purpose, stay put. 3267 */ 3268 if (rcu_access_pointer(tp->fastopen_rsk)) 3269 return; 3270 3271 if (!tp->packets_out) { 3272 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3273 } else { 3274 u32 rto = inet_csk(sk)->icsk_rto; 3275 /* Offset the time elapsed after installing regular RTO */ 3276 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3277 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3278 s64 delta_us = tcp_rto_delta_us(sk); 3279 /* delta_us may not be positive if the socket is locked 3280 * when the retrans timer fires and is rescheduled. 3281 */ 3282 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3283 } 3284 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true); 3285 } 3286 } 3287 3288 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3289 static void tcp_set_xmit_timer(struct sock *sk) 3290 { 3291 if (!tcp_schedule_loss_probe(sk, true)) 3292 tcp_rearm_rto(sk); 3293 } 3294 3295 /* If we get here, the whole TSO packet has not been acked. */ 3296 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3297 { 3298 struct tcp_sock *tp = tcp_sk(sk); 3299 u32 packets_acked; 3300 3301 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3302 3303 packets_acked = tcp_skb_pcount(skb); 3304 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3305 return 0; 3306 packets_acked -= tcp_skb_pcount(skb); 3307 3308 if (packets_acked) { 3309 BUG_ON(tcp_skb_pcount(skb) == 0); 3310 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3311 } 3312 3313 return packets_acked; 3314 } 3315 3316 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3317 const struct sk_buff *ack_skb, u32 prior_snd_una) 3318 { 3319 const struct skb_shared_info *shinfo; 3320 3321 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3322 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3323 return; 3324 3325 shinfo = skb_shinfo(skb); 3326 if (!before(shinfo->tskey, prior_snd_una) && 3327 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3328 tcp_skb_tsorted_save(skb) { 3329 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3330 } tcp_skb_tsorted_restore(skb); 3331 } 3332 } 3333 3334 /* Remove acknowledged frames from the retransmission queue. If our packet 3335 * is before the ack sequence we can discard it as it's confirmed to have 3336 * arrived at the other end. 3337 */ 3338 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3339 u32 prior_fack, u32 prior_snd_una, 3340 struct tcp_sacktag_state *sack, bool ece_ack) 3341 { 3342 const struct inet_connection_sock *icsk = inet_csk(sk); 3343 u64 first_ackt, last_ackt; 3344 struct tcp_sock *tp = tcp_sk(sk); 3345 u32 prior_sacked = tp->sacked_out; 3346 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3347 struct sk_buff *skb, *next; 3348 bool fully_acked = true; 3349 long sack_rtt_us = -1L; 3350 long seq_rtt_us = -1L; 3351 long ca_rtt_us = -1L; 3352 u32 pkts_acked = 0; 3353 bool rtt_update; 3354 int flag = 0; 3355 3356 first_ackt = 0; 3357 3358 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3359 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3360 const u32 start_seq = scb->seq; 3361 u8 sacked = scb->sacked; 3362 u32 acked_pcount; 3363 3364 /* Determine how many packets and what bytes were acked, tso and else */ 3365 if (after(scb->end_seq, tp->snd_una)) { 3366 if (tcp_skb_pcount(skb) == 1 || 3367 !after(tp->snd_una, scb->seq)) 3368 break; 3369 3370 acked_pcount = tcp_tso_acked(sk, skb); 3371 if (!acked_pcount) 3372 break; 3373 fully_acked = false; 3374 } else { 3375 acked_pcount = tcp_skb_pcount(skb); 3376 } 3377 3378 if (unlikely(sacked & TCPCB_RETRANS)) { 3379 if (sacked & TCPCB_SACKED_RETRANS) 3380 tp->retrans_out -= acked_pcount; 3381 flag |= FLAG_RETRANS_DATA_ACKED; 3382 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3383 last_ackt = tcp_skb_timestamp_us(skb); 3384 WARN_ON_ONCE(last_ackt == 0); 3385 if (!first_ackt) 3386 first_ackt = last_ackt; 3387 3388 if (before(start_seq, reord)) 3389 reord = start_seq; 3390 if (!after(scb->end_seq, tp->high_seq)) 3391 flag |= FLAG_ORIG_SACK_ACKED; 3392 } 3393 3394 if (sacked & TCPCB_SACKED_ACKED) { 3395 tp->sacked_out -= acked_pcount; 3396 } else if (tcp_is_sack(tp)) { 3397 tcp_count_delivered(tp, acked_pcount, ece_ack); 3398 if (!tcp_skb_spurious_retrans(tp, skb)) 3399 tcp_rack_advance(tp, sacked, scb->end_seq, 3400 tcp_skb_timestamp_us(skb)); 3401 } 3402 if (sacked & TCPCB_LOST) 3403 tp->lost_out -= acked_pcount; 3404 3405 tp->packets_out -= acked_pcount; 3406 pkts_acked += acked_pcount; 3407 tcp_rate_skb_delivered(sk, skb, sack->rate); 3408 3409 /* Initial outgoing SYN's get put onto the write_queue 3410 * just like anything else we transmit. It is not 3411 * true data, and if we misinform our callers that 3412 * this ACK acks real data, we will erroneously exit 3413 * connection startup slow start one packet too 3414 * quickly. This is severely frowned upon behavior. 3415 */ 3416 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3417 flag |= FLAG_DATA_ACKED; 3418 } else { 3419 flag |= FLAG_SYN_ACKED; 3420 tp->retrans_stamp = 0; 3421 } 3422 3423 if (!fully_acked) 3424 break; 3425 3426 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3427 3428 next = skb_rb_next(skb); 3429 if (unlikely(skb == tp->retransmit_skb_hint)) 3430 tp->retransmit_skb_hint = NULL; 3431 if (unlikely(skb == tp->lost_skb_hint)) 3432 tp->lost_skb_hint = NULL; 3433 tcp_highest_sack_replace(sk, skb, next); 3434 tcp_rtx_queue_unlink_and_free(skb, sk); 3435 } 3436 3437 if (!skb) 3438 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3439 3440 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3441 tp->snd_up = tp->snd_una; 3442 3443 if (skb) { 3444 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3445 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3446 flag |= FLAG_SACK_RENEGING; 3447 } 3448 3449 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3450 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3451 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3452 3453 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3454 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3455 sack->rate->prior_delivered + 1 == tp->delivered && 3456 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3457 /* Conservatively mark a delayed ACK. It's typically 3458 * from a lone runt packet over the round trip to 3459 * a receiver w/o out-of-order or CE events. 3460 */ 3461 flag |= FLAG_ACK_MAYBE_DELAYED; 3462 } 3463 } 3464 if (sack->first_sackt) { 3465 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3466 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3467 } 3468 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3469 ca_rtt_us, sack->rate); 3470 3471 if (flag & FLAG_ACKED) { 3472 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3473 if (unlikely(icsk->icsk_mtup.probe_size && 3474 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3475 tcp_mtup_probe_success(sk); 3476 } 3477 3478 if (tcp_is_reno(tp)) { 3479 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3480 3481 /* If any of the cumulatively ACKed segments was 3482 * retransmitted, non-SACK case cannot confirm that 3483 * progress was due to original transmission due to 3484 * lack of TCPCB_SACKED_ACKED bits even if some of 3485 * the packets may have been never retransmitted. 3486 */ 3487 if (flag & FLAG_RETRANS_DATA_ACKED) 3488 flag &= ~FLAG_ORIG_SACK_ACKED; 3489 } else { 3490 int delta; 3491 3492 /* Non-retransmitted hole got filled? That's reordering */ 3493 if (before(reord, prior_fack)) 3494 tcp_check_sack_reordering(sk, reord, 0); 3495 3496 delta = prior_sacked - tp->sacked_out; 3497 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3498 } 3499 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3500 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3501 tcp_skb_timestamp_us(skb))) { 3502 /* Do not re-arm RTO if the sack RTT is measured from data sent 3503 * after when the head was last (re)transmitted. Otherwise the 3504 * timeout may continue to extend in loss recovery. 3505 */ 3506 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3507 } 3508 3509 if (icsk->icsk_ca_ops->pkts_acked) { 3510 struct ack_sample sample = { .pkts_acked = pkts_acked, 3511 .rtt_us = sack->rate->rtt_us }; 3512 3513 sample.in_flight = tp->mss_cache * 3514 (tp->delivered - sack->rate->prior_delivered); 3515 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3516 } 3517 3518 #if FASTRETRANS_DEBUG > 0 3519 WARN_ON((int)tp->sacked_out < 0); 3520 WARN_ON((int)tp->lost_out < 0); 3521 WARN_ON((int)tp->retrans_out < 0); 3522 if (!tp->packets_out && tcp_is_sack(tp)) { 3523 icsk = inet_csk(sk); 3524 if (tp->lost_out) { 3525 pr_debug("Leak l=%u %d\n", 3526 tp->lost_out, icsk->icsk_ca_state); 3527 tp->lost_out = 0; 3528 } 3529 if (tp->sacked_out) { 3530 pr_debug("Leak s=%u %d\n", 3531 tp->sacked_out, icsk->icsk_ca_state); 3532 tp->sacked_out = 0; 3533 } 3534 if (tp->retrans_out) { 3535 pr_debug("Leak r=%u %d\n", 3536 tp->retrans_out, icsk->icsk_ca_state); 3537 tp->retrans_out = 0; 3538 } 3539 } 3540 #endif 3541 return flag; 3542 } 3543 3544 static void tcp_ack_probe(struct sock *sk) 3545 { 3546 struct inet_connection_sock *icsk = inet_csk(sk); 3547 struct sk_buff *head = tcp_send_head(sk); 3548 const struct tcp_sock *tp = tcp_sk(sk); 3549 3550 /* Was it a usable window open? */ 3551 if (!head) 3552 return; 3553 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3554 icsk->icsk_backoff = 0; 3555 icsk->icsk_probes_tstamp = 0; 3556 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3557 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3558 * This function is not for random using! 3559 */ 3560 } else { 3561 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk)); 3562 3563 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3564 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true); 3565 } 3566 } 3567 3568 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3569 { 3570 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3571 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3572 } 3573 3574 /* Decide wheather to run the increase function of congestion control. */ 3575 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3576 { 3577 /* If reordering is high then always grow cwnd whenever data is 3578 * delivered regardless of its ordering. Otherwise stay conservative 3579 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3580 * new SACK or ECE mark may first advance cwnd here and later reduce 3581 * cwnd in tcp_fastretrans_alert() based on more states. 3582 */ 3583 if (tcp_sk(sk)->reordering > 3584 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3585 return flag & FLAG_FORWARD_PROGRESS; 3586 3587 return flag & FLAG_DATA_ACKED; 3588 } 3589 3590 /* The "ultimate" congestion control function that aims to replace the rigid 3591 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3592 * It's called toward the end of processing an ACK with precise rate 3593 * information. All transmission or retransmission are delayed afterwards. 3594 */ 3595 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3596 int flag, const struct rate_sample *rs) 3597 { 3598 const struct inet_connection_sock *icsk = inet_csk(sk); 3599 3600 if (icsk->icsk_ca_ops->cong_control) { 3601 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3602 return; 3603 } 3604 3605 if (tcp_in_cwnd_reduction(sk)) { 3606 /* Reduce cwnd if state mandates */ 3607 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3608 } else if (tcp_may_raise_cwnd(sk, flag)) { 3609 /* Advance cwnd if state allows */ 3610 tcp_cong_avoid(sk, ack, acked_sacked); 3611 } 3612 tcp_update_pacing_rate(sk); 3613 } 3614 3615 /* Check that window update is acceptable. 3616 * The function assumes that snd_una<=ack<=snd_next. 3617 */ 3618 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3619 const u32 ack, const u32 ack_seq, 3620 const u32 nwin) 3621 { 3622 return after(ack, tp->snd_una) || 3623 after(ack_seq, tp->snd_wl1) || 3624 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3625 } 3626 3627 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3628 { 3629 #ifdef CONFIG_TCP_AO 3630 struct tcp_ao_info *ao; 3631 3632 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3633 return; 3634 3635 ao = rcu_dereference_protected(tp->ao_info, 3636 lockdep_sock_is_held((struct sock *)tp)); 3637 if (ao && ack < tp->snd_una) { 3638 ao->snd_sne++; 3639 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne); 3640 } 3641 #endif 3642 } 3643 3644 /* If we update tp->snd_una, also update tp->bytes_acked */ 3645 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3646 { 3647 u32 delta = ack - tp->snd_una; 3648 3649 sock_owned_by_me((struct sock *)tp); 3650 tp->bytes_acked += delta; 3651 tcp_snd_sne_update(tp, ack); 3652 tp->snd_una = ack; 3653 } 3654 3655 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3656 { 3657 #ifdef CONFIG_TCP_AO 3658 struct tcp_ao_info *ao; 3659 3660 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3661 return; 3662 3663 ao = rcu_dereference_protected(tp->ao_info, 3664 lockdep_sock_is_held((struct sock *)tp)); 3665 if (ao && seq < tp->rcv_nxt) { 3666 ao->rcv_sne++; 3667 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne); 3668 } 3669 #endif 3670 } 3671 3672 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3673 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3674 { 3675 u32 delta = seq - tp->rcv_nxt; 3676 3677 sock_owned_by_me((struct sock *)tp); 3678 tp->bytes_received += delta; 3679 tcp_rcv_sne_update(tp, seq); 3680 WRITE_ONCE(tp->rcv_nxt, seq); 3681 } 3682 3683 /* Update our send window. 3684 * 3685 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3686 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3687 */ 3688 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3689 u32 ack_seq) 3690 { 3691 struct tcp_sock *tp = tcp_sk(sk); 3692 int flag = 0; 3693 u32 nwin = ntohs(tcp_hdr(skb)->window); 3694 3695 if (likely(!tcp_hdr(skb)->syn)) 3696 nwin <<= tp->rx_opt.snd_wscale; 3697 3698 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3699 flag |= FLAG_WIN_UPDATE; 3700 tcp_update_wl(tp, ack_seq); 3701 3702 if (tp->snd_wnd != nwin) { 3703 tp->snd_wnd = nwin; 3704 3705 /* Note, it is the only place, where 3706 * fast path is recovered for sending TCP. 3707 */ 3708 tp->pred_flags = 0; 3709 tcp_fast_path_check(sk); 3710 3711 if (!tcp_write_queue_empty(sk)) 3712 tcp_slow_start_after_idle_check(sk); 3713 3714 if (nwin > tp->max_window) { 3715 tp->max_window = nwin; 3716 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3717 } 3718 } 3719 } 3720 3721 tcp_snd_una_update(tp, ack); 3722 3723 return flag; 3724 } 3725 3726 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3727 u32 *last_oow_ack_time) 3728 { 3729 /* Paired with the WRITE_ONCE() in this function. */ 3730 u32 val = READ_ONCE(*last_oow_ack_time); 3731 3732 if (val) { 3733 s32 elapsed = (s32)(tcp_jiffies32 - val); 3734 3735 if (0 <= elapsed && 3736 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3737 NET_INC_STATS(net, mib_idx); 3738 return true; /* rate-limited: don't send yet! */ 3739 } 3740 } 3741 3742 /* Paired with the prior READ_ONCE() and with itself, 3743 * as we might be lockless. 3744 */ 3745 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3746 3747 return false; /* not rate-limited: go ahead, send dupack now! */ 3748 } 3749 3750 /* Return true if we're currently rate-limiting out-of-window ACKs and 3751 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3752 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3753 * attacks that send repeated SYNs or ACKs for the same connection. To 3754 * do this, we do not send a duplicate SYNACK or ACK if the remote 3755 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3756 */ 3757 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3758 int mib_idx, u32 *last_oow_ack_time) 3759 { 3760 /* Data packets without SYNs are not likely part of an ACK loop. */ 3761 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3762 !tcp_hdr(skb)->syn) 3763 return false; 3764 3765 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3766 } 3767 3768 /* RFC 5961 7 [ACK Throttling] */ 3769 static void tcp_send_challenge_ack(struct sock *sk) 3770 { 3771 struct tcp_sock *tp = tcp_sk(sk); 3772 struct net *net = sock_net(sk); 3773 u32 count, now, ack_limit; 3774 3775 /* First check our per-socket dupack rate limit. */ 3776 if (__tcp_oow_rate_limited(net, 3777 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3778 &tp->last_oow_ack_time)) 3779 return; 3780 3781 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3782 if (ack_limit == INT_MAX) 3783 goto send_ack; 3784 3785 /* Then check host-wide RFC 5961 rate limit. */ 3786 now = jiffies / HZ; 3787 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3788 u32 half = (ack_limit + 1) >> 1; 3789 3790 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3791 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3792 get_random_u32_inclusive(half, ack_limit + half - 1)); 3793 } 3794 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3795 if (count > 0) { 3796 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3797 send_ack: 3798 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3799 tcp_send_ack(sk); 3800 } 3801 } 3802 3803 static void tcp_store_ts_recent(struct tcp_sock *tp) 3804 { 3805 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3806 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3807 } 3808 3809 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3810 { 3811 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3812 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3813 * extra check below makes sure this can only happen 3814 * for pure ACK frames. -DaveM 3815 * 3816 * Not only, also it occurs for expired timestamps. 3817 */ 3818 3819 if (tcp_paws_check(&tp->rx_opt, 0)) 3820 tcp_store_ts_recent(tp); 3821 } 3822 } 3823 3824 /* This routine deals with acks during a TLP episode and ends an episode by 3825 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3826 */ 3827 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3828 { 3829 struct tcp_sock *tp = tcp_sk(sk); 3830 3831 if (before(ack, tp->tlp_high_seq)) 3832 return; 3833 3834 if (!tp->tlp_retrans) { 3835 /* TLP of new data has been acknowledged */ 3836 tp->tlp_high_seq = 0; 3837 } else if (flag & FLAG_DSACK_TLP) { 3838 /* This DSACK means original and TLP probe arrived; no loss */ 3839 tp->tlp_high_seq = 0; 3840 } else if (after(ack, tp->tlp_high_seq)) { 3841 /* ACK advances: there was a loss, so reduce cwnd. Reset 3842 * tlp_high_seq in tcp_init_cwnd_reduction() 3843 */ 3844 tcp_init_cwnd_reduction(sk); 3845 tcp_set_ca_state(sk, TCP_CA_CWR); 3846 tcp_end_cwnd_reduction(sk); 3847 tcp_try_keep_open(sk); 3848 NET_INC_STATS(sock_net(sk), 3849 LINUX_MIB_TCPLOSSPROBERECOVERY); 3850 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3851 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3852 /* Pure dupack: original and TLP probe arrived; no loss */ 3853 tp->tlp_high_seq = 0; 3854 } 3855 } 3856 3857 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3858 { 3859 const struct inet_connection_sock *icsk = inet_csk(sk); 3860 3861 if (icsk->icsk_ca_ops->in_ack_event) 3862 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3863 } 3864 3865 /* Congestion control has updated the cwnd already. So if we're in 3866 * loss recovery then now we do any new sends (for FRTO) or 3867 * retransmits (for CA_Loss or CA_recovery) that make sense. 3868 */ 3869 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3870 { 3871 struct tcp_sock *tp = tcp_sk(sk); 3872 3873 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3874 return; 3875 3876 if (unlikely(rexmit == REXMIT_NEW)) { 3877 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3878 TCP_NAGLE_OFF); 3879 if (after(tp->snd_nxt, tp->high_seq)) 3880 return; 3881 tp->frto = 0; 3882 } 3883 tcp_xmit_retransmit_queue(sk); 3884 } 3885 3886 /* Returns the number of packets newly acked or sacked by the current ACK */ 3887 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3888 { 3889 const struct net *net = sock_net(sk); 3890 struct tcp_sock *tp = tcp_sk(sk); 3891 u32 delivered; 3892 3893 delivered = tp->delivered - prior_delivered; 3894 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3895 if (flag & FLAG_ECE) 3896 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3897 3898 return delivered; 3899 } 3900 3901 /* This routine deals with incoming acks, but not outgoing ones. */ 3902 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3903 { 3904 struct inet_connection_sock *icsk = inet_csk(sk); 3905 struct tcp_sock *tp = tcp_sk(sk); 3906 struct tcp_sacktag_state sack_state; 3907 struct rate_sample rs = { .prior_delivered = 0 }; 3908 u32 prior_snd_una = tp->snd_una; 3909 bool is_sack_reneg = tp->is_sack_reneg; 3910 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3911 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3912 int num_dupack = 0; 3913 int prior_packets = tp->packets_out; 3914 u32 delivered = tp->delivered; 3915 u32 lost = tp->lost; 3916 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3917 u32 prior_fack; 3918 3919 sack_state.first_sackt = 0; 3920 sack_state.rate = &rs; 3921 sack_state.sack_delivered = 0; 3922 3923 /* We very likely will need to access rtx queue. */ 3924 prefetch(sk->tcp_rtx_queue.rb_node); 3925 3926 /* If the ack is older than previous acks 3927 * then we can probably ignore it. 3928 */ 3929 if (before(ack, prior_snd_una)) { 3930 u32 max_window; 3931 3932 /* do not accept ACK for bytes we never sent. */ 3933 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3934 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3935 if (before(ack, prior_snd_una - max_window)) { 3936 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3937 tcp_send_challenge_ack(sk); 3938 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3939 } 3940 goto old_ack; 3941 } 3942 3943 /* If the ack includes data we haven't sent yet, discard 3944 * this segment (RFC793 Section 3.9). 3945 */ 3946 if (after(ack, tp->snd_nxt)) 3947 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3948 3949 if (after(ack, prior_snd_una)) { 3950 flag |= FLAG_SND_UNA_ADVANCED; 3951 icsk->icsk_retransmits = 0; 3952 3953 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3954 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3955 if (icsk->icsk_clean_acked) 3956 icsk->icsk_clean_acked(sk, ack); 3957 #endif 3958 } 3959 3960 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3961 rs.prior_in_flight = tcp_packets_in_flight(tp); 3962 3963 /* ts_recent update must be made after we are sure that the packet 3964 * is in window. 3965 */ 3966 if (flag & FLAG_UPDATE_TS_RECENT) 3967 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3968 3969 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3970 FLAG_SND_UNA_ADVANCED) { 3971 /* Window is constant, pure forward advance. 3972 * No more checks are required. 3973 * Note, we use the fact that SND.UNA>=SND.WL2. 3974 */ 3975 tcp_update_wl(tp, ack_seq); 3976 tcp_snd_una_update(tp, ack); 3977 flag |= FLAG_WIN_UPDATE; 3978 3979 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3980 3981 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3982 } else { 3983 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3984 3985 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3986 flag |= FLAG_DATA; 3987 else 3988 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3989 3990 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3991 3992 if (TCP_SKB_CB(skb)->sacked) 3993 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3994 &sack_state); 3995 3996 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3997 flag |= FLAG_ECE; 3998 ack_ev_flags |= CA_ACK_ECE; 3999 } 4000 4001 if (sack_state.sack_delivered) 4002 tcp_count_delivered(tp, sack_state.sack_delivered, 4003 flag & FLAG_ECE); 4004 4005 if (flag & FLAG_WIN_UPDATE) 4006 ack_ev_flags |= CA_ACK_WIN_UPDATE; 4007 4008 tcp_in_ack_event(sk, ack_ev_flags); 4009 } 4010 4011 /* This is a deviation from RFC3168 since it states that: 4012 * "When the TCP data sender is ready to set the CWR bit after reducing 4013 * the congestion window, it SHOULD set the CWR bit only on the first 4014 * new data packet that it transmits." 4015 * We accept CWR on pure ACKs to be more robust 4016 * with widely-deployed TCP implementations that do this. 4017 */ 4018 tcp_ecn_accept_cwr(sk, skb); 4019 4020 /* We passed data and got it acked, remove any soft error 4021 * log. Something worked... 4022 */ 4023 WRITE_ONCE(sk->sk_err_soft, 0); 4024 icsk->icsk_probes_out = 0; 4025 tp->rcv_tstamp = tcp_jiffies32; 4026 if (!prior_packets) 4027 goto no_queue; 4028 4029 /* See if we can take anything off of the retransmit queue. */ 4030 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 4031 &sack_state, flag & FLAG_ECE); 4032 4033 tcp_rack_update_reo_wnd(sk, &rs); 4034 4035 if (tp->tlp_high_seq) 4036 tcp_process_tlp_ack(sk, ack, flag); 4037 4038 if (tcp_ack_is_dubious(sk, flag)) { 4039 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4040 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4041 num_dupack = 1; 4042 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4043 if (!(flag & FLAG_DATA)) 4044 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4045 } 4046 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4047 &rexmit); 4048 } 4049 4050 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4051 if (flag & FLAG_SET_XMIT_TIMER) 4052 tcp_set_xmit_timer(sk); 4053 4054 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4055 sk_dst_confirm(sk); 4056 4057 delivered = tcp_newly_delivered(sk, delivered, flag); 4058 lost = tp->lost - lost; /* freshly marked lost */ 4059 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4060 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4061 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4062 tcp_xmit_recovery(sk, rexmit); 4063 return 1; 4064 4065 no_queue: 4066 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4067 if (flag & FLAG_DSACKING_ACK) { 4068 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4069 &rexmit); 4070 tcp_newly_delivered(sk, delivered, flag); 4071 } 4072 /* If this ack opens up a zero window, clear backoff. It was 4073 * being used to time the probes, and is probably far higher than 4074 * it needs to be for normal retransmission. 4075 */ 4076 tcp_ack_probe(sk); 4077 4078 if (tp->tlp_high_seq) 4079 tcp_process_tlp_ack(sk, ack, flag); 4080 return 1; 4081 4082 old_ack: 4083 /* If data was SACKed, tag it and see if we should send more data. 4084 * If data was DSACKed, see if we can undo a cwnd reduction. 4085 */ 4086 if (TCP_SKB_CB(skb)->sacked) { 4087 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4088 &sack_state); 4089 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4090 &rexmit); 4091 tcp_newly_delivered(sk, delivered, flag); 4092 tcp_xmit_recovery(sk, rexmit); 4093 } 4094 4095 return 0; 4096 } 4097 4098 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4099 bool syn, struct tcp_fastopen_cookie *foc, 4100 bool exp_opt) 4101 { 4102 /* Valid only in SYN or SYN-ACK with an even length. */ 4103 if (!foc || !syn || len < 0 || (len & 1)) 4104 return; 4105 4106 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4107 len <= TCP_FASTOPEN_COOKIE_MAX) 4108 memcpy(foc->val, cookie, len); 4109 else if (len != 0) 4110 len = -1; 4111 foc->len = len; 4112 foc->exp = exp_opt; 4113 } 4114 4115 static bool smc_parse_options(const struct tcphdr *th, 4116 struct tcp_options_received *opt_rx, 4117 const unsigned char *ptr, 4118 int opsize) 4119 { 4120 #if IS_ENABLED(CONFIG_SMC) 4121 if (static_branch_unlikely(&tcp_have_smc)) { 4122 if (th->syn && !(opsize & 1) && 4123 opsize >= TCPOLEN_EXP_SMC_BASE && 4124 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4125 opt_rx->smc_ok = 1; 4126 return true; 4127 } 4128 } 4129 #endif 4130 return false; 4131 } 4132 4133 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4134 * value on success. 4135 */ 4136 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4137 { 4138 const unsigned char *ptr = (const unsigned char *)(th + 1); 4139 int length = (th->doff * 4) - sizeof(struct tcphdr); 4140 u16 mss = 0; 4141 4142 while (length > 0) { 4143 int opcode = *ptr++; 4144 int opsize; 4145 4146 switch (opcode) { 4147 case TCPOPT_EOL: 4148 return mss; 4149 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4150 length--; 4151 continue; 4152 default: 4153 if (length < 2) 4154 return mss; 4155 opsize = *ptr++; 4156 if (opsize < 2) /* "silly options" */ 4157 return mss; 4158 if (opsize > length) 4159 return mss; /* fail on partial options */ 4160 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4161 u16 in_mss = get_unaligned_be16(ptr); 4162 4163 if (in_mss) { 4164 if (user_mss && user_mss < in_mss) 4165 in_mss = user_mss; 4166 mss = in_mss; 4167 } 4168 } 4169 ptr += opsize - 2; 4170 length -= opsize; 4171 } 4172 } 4173 return mss; 4174 } 4175 4176 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4177 * But, this can also be called on packets in the established flow when 4178 * the fast version below fails. 4179 */ 4180 void tcp_parse_options(const struct net *net, 4181 const struct sk_buff *skb, 4182 struct tcp_options_received *opt_rx, int estab, 4183 struct tcp_fastopen_cookie *foc) 4184 { 4185 const unsigned char *ptr; 4186 const struct tcphdr *th = tcp_hdr(skb); 4187 int length = (th->doff * 4) - sizeof(struct tcphdr); 4188 4189 ptr = (const unsigned char *)(th + 1); 4190 opt_rx->saw_tstamp = 0; 4191 opt_rx->saw_unknown = 0; 4192 4193 while (length > 0) { 4194 int opcode = *ptr++; 4195 int opsize; 4196 4197 switch (opcode) { 4198 case TCPOPT_EOL: 4199 return; 4200 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4201 length--; 4202 continue; 4203 default: 4204 if (length < 2) 4205 return; 4206 opsize = *ptr++; 4207 if (opsize < 2) /* "silly options" */ 4208 return; 4209 if (opsize > length) 4210 return; /* don't parse partial options */ 4211 switch (opcode) { 4212 case TCPOPT_MSS: 4213 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4214 u16 in_mss = get_unaligned_be16(ptr); 4215 if (in_mss) { 4216 if (opt_rx->user_mss && 4217 opt_rx->user_mss < in_mss) 4218 in_mss = opt_rx->user_mss; 4219 opt_rx->mss_clamp = in_mss; 4220 } 4221 } 4222 break; 4223 case TCPOPT_WINDOW: 4224 if (opsize == TCPOLEN_WINDOW && th->syn && 4225 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4226 __u8 snd_wscale = *(__u8 *)ptr; 4227 opt_rx->wscale_ok = 1; 4228 if (snd_wscale > TCP_MAX_WSCALE) { 4229 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4230 __func__, 4231 snd_wscale, 4232 TCP_MAX_WSCALE); 4233 snd_wscale = TCP_MAX_WSCALE; 4234 } 4235 opt_rx->snd_wscale = snd_wscale; 4236 } 4237 break; 4238 case TCPOPT_TIMESTAMP: 4239 if ((opsize == TCPOLEN_TIMESTAMP) && 4240 ((estab && opt_rx->tstamp_ok) || 4241 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4242 opt_rx->saw_tstamp = 1; 4243 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4244 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4245 } 4246 break; 4247 case TCPOPT_SACK_PERM: 4248 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4249 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4250 opt_rx->sack_ok = TCP_SACK_SEEN; 4251 tcp_sack_reset(opt_rx); 4252 } 4253 break; 4254 4255 case TCPOPT_SACK: 4256 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4257 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4258 opt_rx->sack_ok) { 4259 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4260 } 4261 break; 4262 #ifdef CONFIG_TCP_MD5SIG 4263 case TCPOPT_MD5SIG: 4264 /* The MD5 Hash has already been 4265 * checked (see tcp_v{4,6}_rcv()). 4266 */ 4267 break; 4268 #endif 4269 #ifdef CONFIG_TCP_AO 4270 case TCPOPT_AO: 4271 /* TCP AO has already been checked 4272 * (see tcp_inbound_ao_hash()). 4273 */ 4274 break; 4275 #endif 4276 case TCPOPT_FASTOPEN: 4277 tcp_parse_fastopen_option( 4278 opsize - TCPOLEN_FASTOPEN_BASE, 4279 ptr, th->syn, foc, false); 4280 break; 4281 4282 case TCPOPT_EXP: 4283 /* Fast Open option shares code 254 using a 4284 * 16 bits magic number. 4285 */ 4286 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4287 get_unaligned_be16(ptr) == 4288 TCPOPT_FASTOPEN_MAGIC) { 4289 tcp_parse_fastopen_option(opsize - 4290 TCPOLEN_EXP_FASTOPEN_BASE, 4291 ptr + 2, th->syn, foc, true); 4292 break; 4293 } 4294 4295 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4296 break; 4297 4298 opt_rx->saw_unknown = 1; 4299 break; 4300 4301 default: 4302 opt_rx->saw_unknown = 1; 4303 } 4304 ptr += opsize-2; 4305 length -= opsize; 4306 } 4307 } 4308 } 4309 EXPORT_SYMBOL(tcp_parse_options); 4310 4311 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4312 { 4313 const __be32 *ptr = (const __be32 *)(th + 1); 4314 4315 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4316 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4317 tp->rx_opt.saw_tstamp = 1; 4318 ++ptr; 4319 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4320 ++ptr; 4321 if (*ptr) 4322 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4323 else 4324 tp->rx_opt.rcv_tsecr = 0; 4325 return true; 4326 } 4327 return false; 4328 } 4329 4330 /* Fast parse options. This hopes to only see timestamps. 4331 * If it is wrong it falls back on tcp_parse_options(). 4332 */ 4333 static bool tcp_fast_parse_options(const struct net *net, 4334 const struct sk_buff *skb, 4335 const struct tcphdr *th, struct tcp_sock *tp) 4336 { 4337 /* In the spirit of fast parsing, compare doff directly to constant 4338 * values. Because equality is used, short doff can be ignored here. 4339 */ 4340 if (th->doff == (sizeof(*th) / 4)) { 4341 tp->rx_opt.saw_tstamp = 0; 4342 return false; 4343 } else if (tp->rx_opt.tstamp_ok && 4344 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4345 if (tcp_parse_aligned_timestamp(tp, th)) 4346 return true; 4347 } 4348 4349 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4350 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4351 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4352 4353 return true; 4354 } 4355 4356 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4357 /* 4358 * Parse Signature options 4359 */ 4360 int tcp_do_parse_auth_options(const struct tcphdr *th, 4361 const u8 **md5_hash, const u8 **ao_hash) 4362 { 4363 int length = (th->doff << 2) - sizeof(*th); 4364 const u8 *ptr = (const u8 *)(th + 1); 4365 unsigned int minlen = TCPOLEN_MD5SIG; 4366 4367 if (IS_ENABLED(CONFIG_TCP_AO)) 4368 minlen = sizeof(struct tcp_ao_hdr) + 1; 4369 4370 *md5_hash = NULL; 4371 *ao_hash = NULL; 4372 4373 /* If not enough data remaining, we can short cut */ 4374 while (length >= minlen) { 4375 int opcode = *ptr++; 4376 int opsize; 4377 4378 switch (opcode) { 4379 case TCPOPT_EOL: 4380 return 0; 4381 case TCPOPT_NOP: 4382 length--; 4383 continue; 4384 default: 4385 opsize = *ptr++; 4386 if (opsize < 2 || opsize > length) 4387 return -EINVAL; 4388 if (opcode == TCPOPT_MD5SIG) { 4389 if (opsize != TCPOLEN_MD5SIG) 4390 return -EINVAL; 4391 if (unlikely(*md5_hash || *ao_hash)) 4392 return -EEXIST; 4393 *md5_hash = ptr; 4394 } else if (opcode == TCPOPT_AO) { 4395 if (opsize <= sizeof(struct tcp_ao_hdr)) 4396 return -EINVAL; 4397 if (unlikely(*md5_hash || *ao_hash)) 4398 return -EEXIST; 4399 *ao_hash = ptr; 4400 } 4401 } 4402 ptr += opsize - 2; 4403 length -= opsize; 4404 } 4405 return 0; 4406 } 4407 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4408 #endif 4409 4410 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4411 * 4412 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4413 * it can pass through stack. So, the following predicate verifies that 4414 * this segment is not used for anything but congestion avoidance or 4415 * fast retransmit. Moreover, we even are able to eliminate most of such 4416 * second order effects, if we apply some small "replay" window (~RTO) 4417 * to timestamp space. 4418 * 4419 * All these measures still do not guarantee that we reject wrapped ACKs 4420 * on networks with high bandwidth, when sequence space is recycled fastly, 4421 * but it guarantees that such events will be very rare and do not affect 4422 * connection seriously. This doesn't look nice, but alas, PAWS is really 4423 * buggy extension. 4424 * 4425 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4426 * states that events when retransmit arrives after original data are rare. 4427 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4428 * the biggest problem on large power networks even with minor reordering. 4429 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4430 * up to bandwidth of 18Gigabit/sec. 8) ] 4431 */ 4432 4433 /* Estimates max number of increments of remote peer TSval in 4434 * a replay window (based on our current RTO estimation). 4435 */ 4436 static u32 tcp_tsval_replay(const struct sock *sk) 4437 { 4438 /* If we use usec TS resolution, 4439 * then expect the remote peer to use the same resolution. 4440 */ 4441 if (tcp_sk(sk)->tcp_usec_ts) 4442 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4443 4444 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4445 * We know that some OS (including old linux) can use 1200 Hz. 4446 */ 4447 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4448 } 4449 4450 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk, 4451 const struct sk_buff *skb) 4452 { 4453 const struct tcp_sock *tp = tcp_sk(sk); 4454 const struct tcphdr *th = tcp_hdr(skb); 4455 SKB_DR_INIT(reason, TCP_RFC7323_PAWS); 4456 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4457 u32 seq = TCP_SKB_CB(skb)->seq; 4458 4459 /* 1. Is this not a pure ACK ? */ 4460 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq) 4461 return reason; 4462 4463 /* 2. Is its sequence not the expected one ? */ 4464 if (seq != tp->rcv_nxt) 4465 return before(seq, tp->rcv_nxt) ? 4466 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK : 4467 reason; 4468 4469 /* 3. Is this not a duplicate ACK ? */ 4470 if (ack != tp->snd_una) 4471 return reason; 4472 4473 /* 4. Is this updating the window ? */ 4474 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) << 4475 tp->rx_opt.snd_wscale)) 4476 return reason; 4477 4478 /* 5. Is this not in the replay window ? */ 4479 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > 4480 tcp_tsval_replay(sk)) 4481 return reason; 4482 4483 return 0; 4484 } 4485 4486 /* Check segment sequence number for validity. 4487 * 4488 * Segment controls are considered valid, if the segment 4489 * fits to the window after truncation to the window. Acceptability 4490 * of data (and SYN, FIN, of course) is checked separately. 4491 * See tcp_data_queue(), for example. 4492 * 4493 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4494 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4495 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4496 * (borrowed from freebsd) 4497 */ 4498 4499 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4500 u32 seq, u32 end_seq) 4501 { 4502 if (before(end_seq, tp->rcv_wup)) 4503 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4504 4505 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4506 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4507 4508 return SKB_NOT_DROPPED_YET; 4509 } 4510 4511 4512 void tcp_done_with_error(struct sock *sk, int err) 4513 { 4514 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4515 WRITE_ONCE(sk->sk_err, err); 4516 smp_wmb(); 4517 4518 tcp_write_queue_purge(sk); 4519 tcp_done(sk); 4520 4521 if (!sock_flag(sk, SOCK_DEAD)) 4522 sk_error_report(sk); 4523 } 4524 EXPORT_SYMBOL(tcp_done_with_error); 4525 4526 /* When we get a reset we do this. */ 4527 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4528 { 4529 int err; 4530 4531 trace_tcp_receive_reset(sk); 4532 4533 /* mptcp can't tell us to ignore reset pkts, 4534 * so just ignore the return value of mptcp_incoming_options(). 4535 */ 4536 if (sk_is_mptcp(sk)) 4537 mptcp_incoming_options(sk, skb); 4538 4539 /* We want the right error as BSD sees it (and indeed as we do). */ 4540 switch (sk->sk_state) { 4541 case TCP_SYN_SENT: 4542 err = ECONNREFUSED; 4543 break; 4544 case TCP_CLOSE_WAIT: 4545 err = EPIPE; 4546 break; 4547 case TCP_CLOSE: 4548 return; 4549 default: 4550 err = ECONNRESET; 4551 } 4552 tcp_done_with_error(sk, err); 4553 } 4554 4555 /* 4556 * Process the FIN bit. This now behaves as it is supposed to work 4557 * and the FIN takes effect when it is validly part of sequence 4558 * space. Not before when we get holes. 4559 * 4560 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4561 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4562 * TIME-WAIT) 4563 * 4564 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4565 * close and we go into CLOSING (and later onto TIME-WAIT) 4566 * 4567 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4568 */ 4569 void tcp_fin(struct sock *sk) 4570 { 4571 struct tcp_sock *tp = tcp_sk(sk); 4572 4573 inet_csk_schedule_ack(sk); 4574 4575 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4576 sock_set_flag(sk, SOCK_DONE); 4577 4578 switch (sk->sk_state) { 4579 case TCP_SYN_RECV: 4580 case TCP_ESTABLISHED: 4581 /* Move to CLOSE_WAIT */ 4582 tcp_set_state(sk, TCP_CLOSE_WAIT); 4583 inet_csk_enter_pingpong_mode(sk); 4584 break; 4585 4586 case TCP_CLOSE_WAIT: 4587 case TCP_CLOSING: 4588 /* Received a retransmission of the FIN, do 4589 * nothing. 4590 */ 4591 break; 4592 case TCP_LAST_ACK: 4593 /* RFC793: Remain in the LAST-ACK state. */ 4594 break; 4595 4596 case TCP_FIN_WAIT1: 4597 /* This case occurs when a simultaneous close 4598 * happens, we must ack the received FIN and 4599 * enter the CLOSING state. 4600 */ 4601 tcp_send_ack(sk); 4602 tcp_set_state(sk, TCP_CLOSING); 4603 break; 4604 case TCP_FIN_WAIT2: 4605 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4606 tcp_send_ack(sk); 4607 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4608 break; 4609 default: 4610 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4611 * cases we should never reach this piece of code. 4612 */ 4613 pr_err("%s: Impossible, sk->sk_state=%d\n", 4614 __func__, sk->sk_state); 4615 break; 4616 } 4617 4618 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4619 * Probably, we should reset in this case. For now drop them. 4620 */ 4621 skb_rbtree_purge(&tp->out_of_order_queue); 4622 if (tcp_is_sack(tp)) 4623 tcp_sack_reset(&tp->rx_opt); 4624 4625 if (!sock_flag(sk, SOCK_DEAD)) { 4626 sk->sk_state_change(sk); 4627 4628 /* Do not send POLL_HUP for half duplex close. */ 4629 if (sk->sk_shutdown == SHUTDOWN_MASK || 4630 sk->sk_state == TCP_CLOSE) 4631 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4632 else 4633 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4634 } 4635 } 4636 4637 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4638 u32 end_seq) 4639 { 4640 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4641 if (before(seq, sp->start_seq)) 4642 sp->start_seq = seq; 4643 if (after(end_seq, sp->end_seq)) 4644 sp->end_seq = end_seq; 4645 return true; 4646 } 4647 return false; 4648 } 4649 4650 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4651 { 4652 struct tcp_sock *tp = tcp_sk(sk); 4653 4654 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4655 int mib_idx; 4656 4657 if (before(seq, tp->rcv_nxt)) 4658 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4659 else 4660 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4661 4662 NET_INC_STATS(sock_net(sk), mib_idx); 4663 4664 tp->rx_opt.dsack = 1; 4665 tp->duplicate_sack[0].start_seq = seq; 4666 tp->duplicate_sack[0].end_seq = end_seq; 4667 } 4668 } 4669 4670 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4671 { 4672 struct tcp_sock *tp = tcp_sk(sk); 4673 4674 if (!tp->rx_opt.dsack) 4675 tcp_dsack_set(sk, seq, end_seq); 4676 else 4677 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4678 } 4679 4680 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4681 { 4682 /* When the ACK path fails or drops most ACKs, the sender would 4683 * timeout and spuriously retransmit the same segment repeatedly. 4684 * If it seems our ACKs are not reaching the other side, 4685 * based on receiving a duplicate data segment with new flowlabel 4686 * (suggesting the sender suffered an RTO), and we are not already 4687 * repathing due to our own RTO, then rehash the socket to repath our 4688 * packets. 4689 */ 4690 #if IS_ENABLED(CONFIG_IPV6) 4691 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4692 skb->protocol == htons(ETH_P_IPV6) && 4693 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4694 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4695 sk_rethink_txhash(sk)) 4696 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4697 4698 /* Save last flowlabel after a spurious retrans. */ 4699 tcp_save_lrcv_flowlabel(sk, skb); 4700 #endif 4701 } 4702 4703 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4704 { 4705 struct tcp_sock *tp = tcp_sk(sk); 4706 4707 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4708 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4709 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4710 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4711 4712 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4713 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4714 4715 tcp_rcv_spurious_retrans(sk, skb); 4716 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4717 end_seq = tp->rcv_nxt; 4718 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4719 } 4720 } 4721 4722 tcp_send_ack(sk); 4723 } 4724 4725 /* These routines update the SACK block as out-of-order packets arrive or 4726 * in-order packets close up the sequence space. 4727 */ 4728 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4729 { 4730 int this_sack; 4731 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4732 struct tcp_sack_block *swalk = sp + 1; 4733 4734 /* See if the recent change to the first SACK eats into 4735 * or hits the sequence space of other SACK blocks, if so coalesce. 4736 */ 4737 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4738 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4739 int i; 4740 4741 /* Zap SWALK, by moving every further SACK up by one slot. 4742 * Decrease num_sacks. 4743 */ 4744 tp->rx_opt.num_sacks--; 4745 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4746 sp[i] = sp[i + 1]; 4747 continue; 4748 } 4749 this_sack++; 4750 swalk++; 4751 } 4752 } 4753 4754 void tcp_sack_compress_send_ack(struct sock *sk) 4755 { 4756 struct tcp_sock *tp = tcp_sk(sk); 4757 4758 if (!tp->compressed_ack) 4759 return; 4760 4761 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4762 __sock_put(sk); 4763 4764 /* Since we have to send one ack finally, 4765 * substract one from tp->compressed_ack to keep 4766 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4767 */ 4768 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4769 tp->compressed_ack - 1); 4770 4771 tp->compressed_ack = 0; 4772 tcp_send_ack(sk); 4773 } 4774 4775 /* Reasonable amount of sack blocks included in TCP SACK option 4776 * The max is 4, but this becomes 3 if TCP timestamps are there. 4777 * Given that SACK packets might be lost, be conservative and use 2. 4778 */ 4779 #define TCP_SACK_BLOCKS_EXPECTED 2 4780 4781 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4782 { 4783 struct tcp_sock *tp = tcp_sk(sk); 4784 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4785 int cur_sacks = tp->rx_opt.num_sacks; 4786 int this_sack; 4787 4788 if (!cur_sacks) 4789 goto new_sack; 4790 4791 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4792 if (tcp_sack_extend(sp, seq, end_seq)) { 4793 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4794 tcp_sack_compress_send_ack(sk); 4795 /* Rotate this_sack to the first one. */ 4796 for (; this_sack > 0; this_sack--, sp--) 4797 swap(*sp, *(sp - 1)); 4798 if (cur_sacks > 1) 4799 tcp_sack_maybe_coalesce(tp); 4800 return; 4801 } 4802 } 4803 4804 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4805 tcp_sack_compress_send_ack(sk); 4806 4807 /* Could not find an adjacent existing SACK, build a new one, 4808 * put it at the front, and shift everyone else down. We 4809 * always know there is at least one SACK present already here. 4810 * 4811 * If the sack array is full, forget about the last one. 4812 */ 4813 if (this_sack >= TCP_NUM_SACKS) { 4814 this_sack--; 4815 tp->rx_opt.num_sacks--; 4816 sp--; 4817 } 4818 for (; this_sack > 0; this_sack--, sp--) 4819 *sp = *(sp - 1); 4820 4821 new_sack: 4822 /* Build the new head SACK, and we're done. */ 4823 sp->start_seq = seq; 4824 sp->end_seq = end_seq; 4825 tp->rx_opt.num_sacks++; 4826 } 4827 4828 /* RCV.NXT advances, some SACKs should be eaten. */ 4829 4830 static void tcp_sack_remove(struct tcp_sock *tp) 4831 { 4832 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4833 int num_sacks = tp->rx_opt.num_sacks; 4834 int this_sack; 4835 4836 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4837 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4838 tp->rx_opt.num_sacks = 0; 4839 return; 4840 } 4841 4842 for (this_sack = 0; this_sack < num_sacks;) { 4843 /* Check if the start of the sack is covered by RCV.NXT. */ 4844 if (!before(tp->rcv_nxt, sp->start_seq)) { 4845 int i; 4846 4847 /* RCV.NXT must cover all the block! */ 4848 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4849 4850 /* Zap this SACK, by moving forward any other SACKS. */ 4851 for (i = this_sack+1; i < num_sacks; i++) 4852 tp->selective_acks[i-1] = tp->selective_acks[i]; 4853 num_sacks--; 4854 continue; 4855 } 4856 this_sack++; 4857 sp++; 4858 } 4859 tp->rx_opt.num_sacks = num_sacks; 4860 } 4861 4862 /** 4863 * tcp_try_coalesce - try to merge skb to prior one 4864 * @sk: socket 4865 * @to: prior buffer 4866 * @from: buffer to add in queue 4867 * @fragstolen: pointer to boolean 4868 * 4869 * Before queueing skb @from after @to, try to merge them 4870 * to reduce overall memory use and queue lengths, if cost is small. 4871 * Packets in ofo or receive queues can stay a long time. 4872 * Better try to coalesce them right now to avoid future collapses. 4873 * Returns true if caller should free @from instead of queueing it 4874 */ 4875 static bool tcp_try_coalesce(struct sock *sk, 4876 struct sk_buff *to, 4877 struct sk_buff *from, 4878 bool *fragstolen) 4879 { 4880 int delta; 4881 4882 *fragstolen = false; 4883 4884 /* Its possible this segment overlaps with prior segment in queue */ 4885 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4886 return false; 4887 4888 if (!tcp_skb_can_collapse_rx(to, from)) 4889 return false; 4890 4891 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4892 return false; 4893 4894 atomic_add(delta, &sk->sk_rmem_alloc); 4895 sk_mem_charge(sk, delta); 4896 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4897 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4898 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4899 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4900 4901 if (TCP_SKB_CB(from)->has_rxtstamp) { 4902 TCP_SKB_CB(to)->has_rxtstamp = true; 4903 to->tstamp = from->tstamp; 4904 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4905 } 4906 4907 return true; 4908 } 4909 4910 static bool tcp_ooo_try_coalesce(struct sock *sk, 4911 struct sk_buff *to, 4912 struct sk_buff *from, 4913 bool *fragstolen) 4914 { 4915 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4916 4917 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4918 if (res) { 4919 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4920 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4921 4922 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4923 } 4924 return res; 4925 } 4926 4927 noinline_for_tracing static void 4928 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 4929 { 4930 sk_drops_add(sk, skb); 4931 sk_skb_reason_drop(sk, skb, reason); 4932 } 4933 4934 /* This one checks to see if we can put data from the 4935 * out_of_order queue into the receive_queue. 4936 */ 4937 static void tcp_ofo_queue(struct sock *sk) 4938 { 4939 struct tcp_sock *tp = tcp_sk(sk); 4940 __u32 dsack_high = tp->rcv_nxt; 4941 bool fin, fragstolen, eaten; 4942 struct sk_buff *skb, *tail; 4943 struct rb_node *p; 4944 4945 p = rb_first(&tp->out_of_order_queue); 4946 while (p) { 4947 skb = rb_to_skb(p); 4948 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4949 break; 4950 4951 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4952 __u32 dsack = dsack_high; 4953 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4954 dsack_high = TCP_SKB_CB(skb)->end_seq; 4955 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4956 } 4957 p = rb_next(p); 4958 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4959 4960 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4961 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4962 continue; 4963 } 4964 4965 tail = skb_peek_tail(&sk->sk_receive_queue); 4966 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4967 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4968 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4969 if (!eaten) 4970 __skb_queue_tail(&sk->sk_receive_queue, skb); 4971 else 4972 kfree_skb_partial(skb, fragstolen); 4973 4974 if (unlikely(fin)) { 4975 tcp_fin(sk); 4976 /* tcp_fin() purges tp->out_of_order_queue, 4977 * so we must end this loop right now. 4978 */ 4979 break; 4980 } 4981 } 4982 } 4983 4984 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4985 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4986 4987 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4988 unsigned int size) 4989 { 4990 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4991 !sk_rmem_schedule(sk, skb, size)) { 4992 4993 if (tcp_prune_queue(sk, skb) < 0) 4994 return -1; 4995 4996 while (!sk_rmem_schedule(sk, skb, size)) { 4997 if (!tcp_prune_ofo_queue(sk, skb)) 4998 return -1; 4999 } 5000 } 5001 return 0; 5002 } 5003 5004 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 5005 { 5006 struct tcp_sock *tp = tcp_sk(sk); 5007 struct rb_node **p, *parent; 5008 struct sk_buff *skb1; 5009 u32 seq, end_seq; 5010 bool fragstolen; 5011 5012 tcp_save_lrcv_flowlabel(sk, skb); 5013 tcp_ecn_check_ce(sk, skb); 5014 5015 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 5016 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 5017 sk->sk_data_ready(sk); 5018 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 5019 return; 5020 } 5021 5022 /* Disable header prediction. */ 5023 tp->pred_flags = 0; 5024 inet_csk_schedule_ack(sk); 5025 5026 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 5027 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 5028 seq = TCP_SKB_CB(skb)->seq; 5029 end_seq = TCP_SKB_CB(skb)->end_seq; 5030 5031 p = &tp->out_of_order_queue.rb_node; 5032 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5033 /* Initial out of order segment, build 1 SACK. */ 5034 if (tcp_is_sack(tp)) { 5035 tp->rx_opt.num_sacks = 1; 5036 tp->selective_acks[0].start_seq = seq; 5037 tp->selective_acks[0].end_seq = end_seq; 5038 } 5039 rb_link_node(&skb->rbnode, NULL, p); 5040 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5041 tp->ooo_last_skb = skb; 5042 goto end; 5043 } 5044 5045 /* In the typical case, we are adding an skb to the end of the list. 5046 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 5047 */ 5048 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 5049 skb, &fragstolen)) { 5050 coalesce_done: 5051 /* For non sack flows, do not grow window to force DUPACK 5052 * and trigger fast retransmit. 5053 */ 5054 if (tcp_is_sack(tp)) 5055 tcp_grow_window(sk, skb, true); 5056 kfree_skb_partial(skb, fragstolen); 5057 skb = NULL; 5058 goto add_sack; 5059 } 5060 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 5061 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 5062 parent = &tp->ooo_last_skb->rbnode; 5063 p = &parent->rb_right; 5064 goto insert; 5065 } 5066 5067 /* Find place to insert this segment. Handle overlaps on the way. */ 5068 parent = NULL; 5069 while (*p) { 5070 parent = *p; 5071 skb1 = rb_to_skb(parent); 5072 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 5073 p = &parent->rb_left; 5074 continue; 5075 } 5076 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 5077 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5078 /* All the bits are present. Drop. */ 5079 NET_INC_STATS(sock_net(sk), 5080 LINUX_MIB_TCPOFOMERGE); 5081 tcp_drop_reason(sk, skb, 5082 SKB_DROP_REASON_TCP_OFOMERGE); 5083 skb = NULL; 5084 tcp_dsack_set(sk, seq, end_seq); 5085 goto add_sack; 5086 } 5087 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5088 /* Partial overlap. */ 5089 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5090 } else { 5091 /* skb's seq == skb1's seq and skb covers skb1. 5092 * Replace skb1 with skb. 5093 */ 5094 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5095 &tp->out_of_order_queue); 5096 tcp_dsack_extend(sk, 5097 TCP_SKB_CB(skb1)->seq, 5098 TCP_SKB_CB(skb1)->end_seq); 5099 NET_INC_STATS(sock_net(sk), 5100 LINUX_MIB_TCPOFOMERGE); 5101 tcp_drop_reason(sk, skb1, 5102 SKB_DROP_REASON_TCP_OFOMERGE); 5103 goto merge_right; 5104 } 5105 } else if (tcp_ooo_try_coalesce(sk, skb1, 5106 skb, &fragstolen)) { 5107 goto coalesce_done; 5108 } 5109 p = &parent->rb_right; 5110 } 5111 insert: 5112 /* Insert segment into RB tree. */ 5113 rb_link_node(&skb->rbnode, parent, p); 5114 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5115 5116 merge_right: 5117 /* Remove other segments covered by skb. */ 5118 while ((skb1 = skb_rb_next(skb)) != NULL) { 5119 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5120 break; 5121 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5122 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5123 end_seq); 5124 break; 5125 } 5126 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5127 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5128 TCP_SKB_CB(skb1)->end_seq); 5129 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5130 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5131 } 5132 /* If there is no skb after us, we are the last_skb ! */ 5133 if (!skb1) 5134 tp->ooo_last_skb = skb; 5135 5136 add_sack: 5137 if (tcp_is_sack(tp)) 5138 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5139 end: 5140 if (skb) { 5141 /* For non sack flows, do not grow window to force DUPACK 5142 * and trigger fast retransmit. 5143 */ 5144 if (tcp_is_sack(tp)) 5145 tcp_grow_window(sk, skb, false); 5146 skb_condense(skb); 5147 skb_set_owner_r(skb, sk); 5148 } 5149 } 5150 5151 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5152 bool *fragstolen) 5153 { 5154 int eaten; 5155 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5156 5157 eaten = (tail && 5158 tcp_try_coalesce(sk, tail, 5159 skb, fragstolen)) ? 1 : 0; 5160 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5161 if (!eaten) { 5162 __skb_queue_tail(&sk->sk_receive_queue, skb); 5163 skb_set_owner_r(skb, sk); 5164 } 5165 return eaten; 5166 } 5167 5168 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5169 { 5170 struct sk_buff *skb; 5171 int err = -ENOMEM; 5172 int data_len = 0; 5173 bool fragstolen; 5174 5175 if (size == 0) 5176 return 0; 5177 5178 if (size > PAGE_SIZE) { 5179 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5180 5181 data_len = npages << PAGE_SHIFT; 5182 size = data_len + (size & ~PAGE_MASK); 5183 } 5184 skb = alloc_skb_with_frags(size - data_len, data_len, 5185 PAGE_ALLOC_COSTLY_ORDER, 5186 &err, sk->sk_allocation); 5187 if (!skb) 5188 goto err; 5189 5190 skb_put(skb, size - data_len); 5191 skb->data_len = data_len; 5192 skb->len = size; 5193 5194 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5195 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5196 goto err_free; 5197 } 5198 5199 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5200 if (err) 5201 goto err_free; 5202 5203 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5204 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5205 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5206 5207 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5208 WARN_ON_ONCE(fragstolen); /* should not happen */ 5209 __kfree_skb(skb); 5210 } 5211 return size; 5212 5213 err_free: 5214 kfree_skb(skb); 5215 err: 5216 return err; 5217 5218 } 5219 5220 void tcp_data_ready(struct sock *sk) 5221 { 5222 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5223 sk->sk_data_ready(sk); 5224 } 5225 5226 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5227 { 5228 struct tcp_sock *tp = tcp_sk(sk); 5229 enum skb_drop_reason reason; 5230 bool fragstolen; 5231 int eaten; 5232 5233 /* If a subflow has been reset, the packet should not continue 5234 * to be processed, drop the packet. 5235 */ 5236 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5237 __kfree_skb(skb); 5238 return; 5239 } 5240 5241 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5242 __kfree_skb(skb); 5243 return; 5244 } 5245 skb_dst_drop(skb); 5246 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5247 5248 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5249 tp->rx_opt.dsack = 0; 5250 5251 /* Queue data for delivery to the user. 5252 * Packets in sequence go to the receive queue. 5253 * Out of sequence packets to the out_of_order_queue. 5254 */ 5255 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5256 if (tcp_receive_window(tp) == 0) { 5257 /* Some stacks are known to send bare FIN packets 5258 * in a loop even if we send RWIN 0 in our ACK. 5259 * Accepting this FIN does not hurt memory pressure 5260 * because the FIN flag will simply be merged to the 5261 * receive queue tail skb in most cases. 5262 */ 5263 if (!skb->len && 5264 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5265 goto queue_and_out; 5266 5267 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5268 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5269 goto out_of_window; 5270 } 5271 5272 /* Ok. In sequence. In window. */ 5273 queue_and_out: 5274 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5275 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5276 inet_csk(sk)->icsk_ack.pending |= 5277 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5278 inet_csk_schedule_ack(sk); 5279 sk->sk_data_ready(sk); 5280 5281 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5282 reason = SKB_DROP_REASON_PROTO_MEM; 5283 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5284 goto drop; 5285 } 5286 sk_forced_mem_schedule(sk, skb->truesize); 5287 } 5288 5289 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5290 if (skb->len) 5291 tcp_event_data_recv(sk, skb); 5292 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5293 tcp_fin(sk); 5294 5295 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5296 tcp_ofo_queue(sk); 5297 5298 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5299 * gap in queue is filled. 5300 */ 5301 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5302 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5303 } 5304 5305 if (tp->rx_opt.num_sacks) 5306 tcp_sack_remove(tp); 5307 5308 tcp_fast_path_check(sk); 5309 5310 if (eaten > 0) 5311 kfree_skb_partial(skb, fragstolen); 5312 if (!sock_flag(sk, SOCK_DEAD)) 5313 tcp_data_ready(sk); 5314 return; 5315 } 5316 5317 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5318 tcp_rcv_spurious_retrans(sk, skb); 5319 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5320 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5321 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5322 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5323 5324 out_of_window: 5325 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5326 inet_csk_schedule_ack(sk); 5327 drop: 5328 tcp_drop_reason(sk, skb, reason); 5329 return; 5330 } 5331 5332 /* Out of window. F.e. zero window probe. */ 5333 if (!before(TCP_SKB_CB(skb)->seq, 5334 tp->rcv_nxt + tcp_receive_window(tp))) { 5335 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5336 goto out_of_window; 5337 } 5338 5339 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5340 /* Partial packet, seq < rcv_next < end_seq */ 5341 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5342 5343 /* If window is closed, drop tail of packet. But after 5344 * remembering D-SACK for its head made in previous line. 5345 */ 5346 if (!tcp_receive_window(tp)) { 5347 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5348 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5349 goto out_of_window; 5350 } 5351 goto queue_and_out; 5352 } 5353 5354 tcp_data_queue_ofo(sk, skb); 5355 } 5356 5357 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5358 { 5359 if (list) 5360 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5361 5362 return skb_rb_next(skb); 5363 } 5364 5365 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5366 struct sk_buff_head *list, 5367 struct rb_root *root) 5368 { 5369 struct sk_buff *next = tcp_skb_next(skb, list); 5370 5371 if (list) 5372 __skb_unlink(skb, list); 5373 else 5374 rb_erase(&skb->rbnode, root); 5375 5376 __kfree_skb(skb); 5377 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5378 5379 return next; 5380 } 5381 5382 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5383 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5384 { 5385 struct rb_node **p = &root->rb_node; 5386 struct rb_node *parent = NULL; 5387 struct sk_buff *skb1; 5388 5389 while (*p) { 5390 parent = *p; 5391 skb1 = rb_to_skb(parent); 5392 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5393 p = &parent->rb_left; 5394 else 5395 p = &parent->rb_right; 5396 } 5397 rb_link_node(&skb->rbnode, parent, p); 5398 rb_insert_color(&skb->rbnode, root); 5399 } 5400 5401 /* Collapse contiguous sequence of skbs head..tail with 5402 * sequence numbers start..end. 5403 * 5404 * If tail is NULL, this means until the end of the queue. 5405 * 5406 * Segments with FIN/SYN are not collapsed (only because this 5407 * simplifies code) 5408 */ 5409 static void 5410 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5411 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5412 { 5413 struct sk_buff *skb = head, *n; 5414 struct sk_buff_head tmp; 5415 bool end_of_skbs; 5416 5417 /* First, check that queue is collapsible and find 5418 * the point where collapsing can be useful. 5419 */ 5420 restart: 5421 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5422 n = tcp_skb_next(skb, list); 5423 5424 if (!skb_frags_readable(skb)) 5425 goto skip_this; 5426 5427 /* No new bits? It is possible on ofo queue. */ 5428 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5429 skb = tcp_collapse_one(sk, skb, list, root); 5430 if (!skb) 5431 break; 5432 goto restart; 5433 } 5434 5435 /* The first skb to collapse is: 5436 * - not SYN/FIN and 5437 * - bloated or contains data before "start" or 5438 * overlaps to the next one and mptcp allow collapsing. 5439 */ 5440 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5441 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5442 before(TCP_SKB_CB(skb)->seq, start))) { 5443 end_of_skbs = false; 5444 break; 5445 } 5446 5447 if (n && n != tail && skb_frags_readable(n) && 5448 tcp_skb_can_collapse_rx(skb, n) && 5449 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5450 end_of_skbs = false; 5451 break; 5452 } 5453 5454 skip_this: 5455 /* Decided to skip this, advance start seq. */ 5456 start = TCP_SKB_CB(skb)->end_seq; 5457 } 5458 if (end_of_skbs || 5459 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5460 !skb_frags_readable(skb)) 5461 return; 5462 5463 __skb_queue_head_init(&tmp); 5464 5465 while (before(start, end)) { 5466 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5467 struct sk_buff *nskb; 5468 5469 nskb = alloc_skb(copy, GFP_ATOMIC); 5470 if (!nskb) 5471 break; 5472 5473 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5474 skb_copy_decrypted(nskb, skb); 5475 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5476 if (list) 5477 __skb_queue_before(list, skb, nskb); 5478 else 5479 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5480 skb_set_owner_r(nskb, sk); 5481 mptcp_skb_ext_move(nskb, skb); 5482 5483 /* Copy data, releasing collapsed skbs. */ 5484 while (copy > 0) { 5485 int offset = start - TCP_SKB_CB(skb)->seq; 5486 int size = TCP_SKB_CB(skb)->end_seq - start; 5487 5488 BUG_ON(offset < 0); 5489 if (size > 0) { 5490 size = min(copy, size); 5491 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5492 BUG(); 5493 TCP_SKB_CB(nskb)->end_seq += size; 5494 copy -= size; 5495 start += size; 5496 } 5497 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5498 skb = tcp_collapse_one(sk, skb, list, root); 5499 if (!skb || 5500 skb == tail || 5501 !tcp_skb_can_collapse_rx(nskb, skb) || 5502 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5503 !skb_frags_readable(skb)) 5504 goto end; 5505 } 5506 } 5507 } 5508 end: 5509 skb_queue_walk_safe(&tmp, skb, n) 5510 tcp_rbtree_insert(root, skb); 5511 } 5512 5513 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5514 * and tcp_collapse() them until all the queue is collapsed. 5515 */ 5516 static void tcp_collapse_ofo_queue(struct sock *sk) 5517 { 5518 struct tcp_sock *tp = tcp_sk(sk); 5519 u32 range_truesize, sum_tiny = 0; 5520 struct sk_buff *skb, *head; 5521 u32 start, end; 5522 5523 skb = skb_rb_first(&tp->out_of_order_queue); 5524 new_range: 5525 if (!skb) { 5526 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5527 return; 5528 } 5529 start = TCP_SKB_CB(skb)->seq; 5530 end = TCP_SKB_CB(skb)->end_seq; 5531 range_truesize = skb->truesize; 5532 5533 for (head = skb;;) { 5534 skb = skb_rb_next(skb); 5535 5536 /* Range is terminated when we see a gap or when 5537 * we are at the queue end. 5538 */ 5539 if (!skb || 5540 after(TCP_SKB_CB(skb)->seq, end) || 5541 before(TCP_SKB_CB(skb)->end_seq, start)) { 5542 /* Do not attempt collapsing tiny skbs */ 5543 if (range_truesize != head->truesize || 5544 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5545 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5546 head, skb, start, end); 5547 } else { 5548 sum_tiny += range_truesize; 5549 if (sum_tiny > sk->sk_rcvbuf >> 3) 5550 return; 5551 } 5552 goto new_range; 5553 } 5554 5555 range_truesize += skb->truesize; 5556 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5557 start = TCP_SKB_CB(skb)->seq; 5558 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5559 end = TCP_SKB_CB(skb)->end_seq; 5560 } 5561 } 5562 5563 /* 5564 * Clean the out-of-order queue to make room. 5565 * We drop high sequences packets to : 5566 * 1) Let a chance for holes to be filled. 5567 * This means we do not drop packets from ooo queue if their sequence 5568 * is before incoming packet sequence. 5569 * 2) not add too big latencies if thousands of packets sit there. 5570 * (But if application shrinks SO_RCVBUF, we could still end up 5571 * freeing whole queue here) 5572 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5573 * 5574 * Return true if queue has shrunk. 5575 */ 5576 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5577 { 5578 struct tcp_sock *tp = tcp_sk(sk); 5579 struct rb_node *node, *prev; 5580 bool pruned = false; 5581 int goal; 5582 5583 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5584 return false; 5585 5586 goal = sk->sk_rcvbuf >> 3; 5587 node = &tp->ooo_last_skb->rbnode; 5588 5589 do { 5590 struct sk_buff *skb = rb_to_skb(node); 5591 5592 /* If incoming skb would land last in ofo queue, stop pruning. */ 5593 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5594 break; 5595 pruned = true; 5596 prev = rb_prev(node); 5597 rb_erase(node, &tp->out_of_order_queue); 5598 goal -= skb->truesize; 5599 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5600 tp->ooo_last_skb = rb_to_skb(prev); 5601 if (!prev || goal <= 0) { 5602 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5603 !tcp_under_memory_pressure(sk)) 5604 break; 5605 goal = sk->sk_rcvbuf >> 3; 5606 } 5607 node = prev; 5608 } while (node); 5609 5610 if (pruned) { 5611 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5612 /* Reset SACK state. A conforming SACK implementation will 5613 * do the same at a timeout based retransmit. When a connection 5614 * is in a sad state like this, we care only about integrity 5615 * of the connection not performance. 5616 */ 5617 if (tp->rx_opt.sack_ok) 5618 tcp_sack_reset(&tp->rx_opt); 5619 } 5620 return pruned; 5621 } 5622 5623 /* Reduce allocated memory if we can, trying to get 5624 * the socket within its memory limits again. 5625 * 5626 * Return less than zero if we should start dropping frames 5627 * until the socket owning process reads some of the data 5628 * to stabilize the situation. 5629 */ 5630 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5631 { 5632 struct tcp_sock *tp = tcp_sk(sk); 5633 5634 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5635 5636 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5637 tcp_clamp_window(sk); 5638 else if (tcp_under_memory_pressure(sk)) 5639 tcp_adjust_rcv_ssthresh(sk); 5640 5641 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5642 return 0; 5643 5644 tcp_collapse_ofo_queue(sk); 5645 if (!skb_queue_empty(&sk->sk_receive_queue)) 5646 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5647 skb_peek(&sk->sk_receive_queue), 5648 NULL, 5649 tp->copied_seq, tp->rcv_nxt); 5650 5651 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5652 return 0; 5653 5654 /* Collapsing did not help, destructive actions follow. 5655 * This must not ever occur. */ 5656 5657 tcp_prune_ofo_queue(sk, in_skb); 5658 5659 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5660 return 0; 5661 5662 /* If we are really being abused, tell the caller to silently 5663 * drop receive data on the floor. It will get retransmitted 5664 * and hopefully then we'll have sufficient space. 5665 */ 5666 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5667 5668 /* Massive buffer overcommit. */ 5669 tp->pred_flags = 0; 5670 return -1; 5671 } 5672 5673 static bool tcp_should_expand_sndbuf(struct sock *sk) 5674 { 5675 const struct tcp_sock *tp = tcp_sk(sk); 5676 5677 /* If the user specified a specific send buffer setting, do 5678 * not modify it. 5679 */ 5680 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5681 return false; 5682 5683 /* If we are under global TCP memory pressure, do not expand. */ 5684 if (tcp_under_memory_pressure(sk)) { 5685 int unused_mem = sk_unused_reserved_mem(sk); 5686 5687 /* Adjust sndbuf according to reserved mem. But make sure 5688 * it never goes below SOCK_MIN_SNDBUF. 5689 * See sk_stream_moderate_sndbuf() for more details. 5690 */ 5691 if (unused_mem > SOCK_MIN_SNDBUF) 5692 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5693 5694 return false; 5695 } 5696 5697 /* If we are under soft global TCP memory pressure, do not expand. */ 5698 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5699 return false; 5700 5701 /* If we filled the congestion window, do not expand. */ 5702 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5703 return false; 5704 5705 return true; 5706 } 5707 5708 static void tcp_new_space(struct sock *sk) 5709 { 5710 struct tcp_sock *tp = tcp_sk(sk); 5711 5712 if (tcp_should_expand_sndbuf(sk)) { 5713 tcp_sndbuf_expand(sk); 5714 tp->snd_cwnd_stamp = tcp_jiffies32; 5715 } 5716 5717 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5718 } 5719 5720 /* Caller made space either from: 5721 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5722 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5723 * 5724 * We might be able to generate EPOLLOUT to the application if: 5725 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5726 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5727 * small enough that tcp_stream_memory_free() decides it 5728 * is time to generate EPOLLOUT. 5729 */ 5730 void tcp_check_space(struct sock *sk) 5731 { 5732 /* pairs with tcp_poll() */ 5733 smp_mb(); 5734 if (sk->sk_socket && 5735 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5736 tcp_new_space(sk); 5737 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5738 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5739 } 5740 } 5741 5742 static inline void tcp_data_snd_check(struct sock *sk) 5743 { 5744 tcp_push_pending_frames(sk); 5745 tcp_check_space(sk); 5746 } 5747 5748 /* 5749 * Check if sending an ack is needed. 5750 */ 5751 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5752 { 5753 struct tcp_sock *tp = tcp_sk(sk); 5754 unsigned long rtt, delay; 5755 5756 /* More than one full frame received... */ 5757 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5758 /* ... and right edge of window advances far enough. 5759 * (tcp_recvmsg() will send ACK otherwise). 5760 * If application uses SO_RCVLOWAT, we want send ack now if 5761 * we have not received enough bytes to satisfy the condition. 5762 */ 5763 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5764 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5765 /* We ACK each frame or... */ 5766 tcp_in_quickack_mode(sk) || 5767 /* Protocol state mandates a one-time immediate ACK */ 5768 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5769 /* If we are running from __release_sock() in user context, 5770 * Defer the ack until tcp_release_cb(). 5771 */ 5772 if (sock_owned_by_user_nocheck(sk) && 5773 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5774 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5775 return; 5776 } 5777 send_now: 5778 tcp_send_ack(sk); 5779 return; 5780 } 5781 5782 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5783 tcp_send_delayed_ack(sk); 5784 return; 5785 } 5786 5787 if (!tcp_is_sack(tp) || 5788 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5789 goto send_now; 5790 5791 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5792 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5793 tp->dup_ack_counter = 0; 5794 } 5795 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5796 tp->dup_ack_counter++; 5797 goto send_now; 5798 } 5799 tp->compressed_ack++; 5800 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5801 return; 5802 5803 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5804 5805 rtt = tp->rcv_rtt_est.rtt_us; 5806 if (tp->srtt_us && tp->srtt_us < rtt) 5807 rtt = tp->srtt_us; 5808 5809 delay = min_t(unsigned long, 5810 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5811 rtt * (NSEC_PER_USEC >> 3)/20); 5812 sock_hold(sk); 5813 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5814 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5815 HRTIMER_MODE_REL_PINNED_SOFT); 5816 } 5817 5818 static inline void tcp_ack_snd_check(struct sock *sk) 5819 { 5820 if (!inet_csk_ack_scheduled(sk)) { 5821 /* We sent a data segment already. */ 5822 return; 5823 } 5824 __tcp_ack_snd_check(sk, 1); 5825 } 5826 5827 /* 5828 * This routine is only called when we have urgent data 5829 * signaled. Its the 'slow' part of tcp_urg. It could be 5830 * moved inline now as tcp_urg is only called from one 5831 * place. We handle URGent data wrong. We have to - as 5832 * BSD still doesn't use the correction from RFC961. 5833 * For 1003.1g we should support a new option TCP_STDURG to permit 5834 * either form (or just set the sysctl tcp_stdurg). 5835 */ 5836 5837 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5838 { 5839 struct tcp_sock *tp = tcp_sk(sk); 5840 u32 ptr = ntohs(th->urg_ptr); 5841 5842 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5843 ptr--; 5844 ptr += ntohl(th->seq); 5845 5846 /* Ignore urgent data that we've already seen and read. */ 5847 if (after(tp->copied_seq, ptr)) 5848 return; 5849 5850 /* Do not replay urg ptr. 5851 * 5852 * NOTE: interesting situation not covered by specs. 5853 * Misbehaving sender may send urg ptr, pointing to segment, 5854 * which we already have in ofo queue. We are not able to fetch 5855 * such data and will stay in TCP_URG_NOTYET until will be eaten 5856 * by recvmsg(). Seems, we are not obliged to handle such wicked 5857 * situations. But it is worth to think about possibility of some 5858 * DoSes using some hypothetical application level deadlock. 5859 */ 5860 if (before(ptr, tp->rcv_nxt)) 5861 return; 5862 5863 /* Do we already have a newer (or duplicate) urgent pointer? */ 5864 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5865 return; 5866 5867 /* Tell the world about our new urgent pointer. */ 5868 sk_send_sigurg(sk); 5869 5870 /* We may be adding urgent data when the last byte read was 5871 * urgent. To do this requires some care. We cannot just ignore 5872 * tp->copied_seq since we would read the last urgent byte again 5873 * as data, nor can we alter copied_seq until this data arrives 5874 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5875 * 5876 * NOTE. Double Dutch. Rendering to plain English: author of comment 5877 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5878 * and expect that both A and B disappear from stream. This is _wrong_. 5879 * Though this happens in BSD with high probability, this is occasional. 5880 * Any application relying on this is buggy. Note also, that fix "works" 5881 * only in this artificial test. Insert some normal data between A and B and we will 5882 * decline of BSD again. Verdict: it is better to remove to trap 5883 * buggy users. 5884 */ 5885 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5886 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5887 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5888 tp->copied_seq++; 5889 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5890 __skb_unlink(skb, &sk->sk_receive_queue); 5891 __kfree_skb(skb); 5892 } 5893 } 5894 5895 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5896 WRITE_ONCE(tp->urg_seq, ptr); 5897 5898 /* Disable header prediction. */ 5899 tp->pred_flags = 0; 5900 } 5901 5902 /* This is the 'fast' part of urgent handling. */ 5903 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5904 { 5905 struct tcp_sock *tp = tcp_sk(sk); 5906 5907 /* Check if we get a new urgent pointer - normally not. */ 5908 if (unlikely(th->urg)) 5909 tcp_check_urg(sk, th); 5910 5911 /* Do we wait for any urgent data? - normally not... */ 5912 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5913 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5914 th->syn; 5915 5916 /* Is the urgent pointer pointing into this packet? */ 5917 if (ptr < skb->len) { 5918 u8 tmp; 5919 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5920 BUG(); 5921 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5922 if (!sock_flag(sk, SOCK_DEAD)) 5923 sk->sk_data_ready(sk); 5924 } 5925 } 5926 } 5927 5928 /* Accept RST for rcv_nxt - 1 after a FIN. 5929 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5930 * FIN is sent followed by a RST packet. The RST is sent with the same 5931 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5932 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5933 * ACKs on the closed socket. In addition middleboxes can drop either the 5934 * challenge ACK or a subsequent RST. 5935 */ 5936 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5937 { 5938 const struct tcp_sock *tp = tcp_sk(sk); 5939 5940 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5941 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5942 TCPF_CLOSING)); 5943 } 5944 5945 /* Does PAWS and seqno based validation of an incoming segment, flags will 5946 * play significant role here. 5947 */ 5948 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5949 const struct tcphdr *th, int syn_inerr) 5950 { 5951 struct tcp_sock *tp = tcp_sk(sk); 5952 SKB_DR(reason); 5953 5954 /* RFC1323: H1. Apply PAWS check first. */ 5955 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) || 5956 !tp->rx_opt.saw_tstamp || 5957 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW)) 5958 goto step1; 5959 5960 reason = tcp_disordered_ack_check(sk, skb); 5961 if (!reason) 5962 goto step1; 5963 /* Reset is accepted even if it did not pass PAWS. */ 5964 if (th->rst) 5965 goto step1; 5966 if (unlikely(th->syn)) 5967 goto syn_challenge; 5968 5969 /* Old ACK are common, increment PAWS_OLD_ACK 5970 * and do not send a dupack. 5971 */ 5972 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) { 5973 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK); 5974 goto discard; 5975 } 5976 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5977 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5978 LINUX_MIB_TCPACKSKIPPEDPAWS, 5979 &tp->last_oow_ack_time)) 5980 tcp_send_dupack(sk, skb); 5981 goto discard; 5982 5983 step1: 5984 /* Step 1: check sequence number */ 5985 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5986 if (reason) { 5987 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5988 * (RST) segments are validated by checking their SEQ-fields." 5989 * And page 69: "If an incoming segment is not acceptable, 5990 * an acknowledgment should be sent in reply (unless the RST 5991 * bit is set, if so drop the segment and return)". 5992 */ 5993 if (!th->rst) { 5994 if (th->syn) 5995 goto syn_challenge; 5996 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5997 LINUX_MIB_TCPACKSKIPPEDSEQ, 5998 &tp->last_oow_ack_time)) 5999 tcp_send_dupack(sk, skb); 6000 } else if (tcp_reset_check(sk, skb)) { 6001 goto reset; 6002 } 6003 goto discard; 6004 } 6005 6006 /* Step 2: check RST bit */ 6007 if (th->rst) { 6008 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 6009 * FIN and SACK too if available): 6010 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 6011 * the right-most SACK block, 6012 * then 6013 * RESET the connection 6014 * else 6015 * Send a challenge ACK 6016 */ 6017 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 6018 tcp_reset_check(sk, skb)) 6019 goto reset; 6020 6021 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 6022 struct tcp_sack_block *sp = &tp->selective_acks[0]; 6023 int max_sack = sp[0].end_seq; 6024 int this_sack; 6025 6026 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 6027 ++this_sack) { 6028 max_sack = after(sp[this_sack].end_seq, 6029 max_sack) ? 6030 sp[this_sack].end_seq : max_sack; 6031 } 6032 6033 if (TCP_SKB_CB(skb)->seq == max_sack) 6034 goto reset; 6035 } 6036 6037 /* Disable TFO if RST is out-of-order 6038 * and no data has been received 6039 * for current active TFO socket 6040 */ 6041 if (tp->syn_fastopen && !tp->data_segs_in && 6042 sk->sk_state == TCP_ESTABLISHED) 6043 tcp_fastopen_active_disable(sk); 6044 tcp_send_challenge_ack(sk); 6045 SKB_DR_SET(reason, TCP_RESET); 6046 goto discard; 6047 } 6048 6049 /* step 3: check security and precedence [ignored] */ 6050 6051 /* step 4: Check for a SYN 6052 * RFC 5961 4.2 : Send a challenge ack 6053 */ 6054 if (th->syn) { 6055 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 6056 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 6057 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 6058 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 6059 goto pass; 6060 syn_challenge: 6061 if (syn_inerr) 6062 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6063 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 6064 tcp_send_challenge_ack(sk); 6065 SKB_DR_SET(reason, TCP_INVALID_SYN); 6066 goto discard; 6067 } 6068 6069 pass: 6070 bpf_skops_parse_hdr(sk, skb); 6071 6072 return true; 6073 6074 discard: 6075 tcp_drop_reason(sk, skb, reason); 6076 return false; 6077 6078 reset: 6079 tcp_reset(sk, skb); 6080 __kfree_skb(skb); 6081 return false; 6082 } 6083 6084 /* 6085 * TCP receive function for the ESTABLISHED state. 6086 * 6087 * It is split into a fast path and a slow path. The fast path is 6088 * disabled when: 6089 * - A zero window was announced from us - zero window probing 6090 * is only handled properly in the slow path. 6091 * - Out of order segments arrived. 6092 * - Urgent data is expected. 6093 * - There is no buffer space left 6094 * - Unexpected TCP flags/window values/header lengths are received 6095 * (detected by checking the TCP header against pred_flags) 6096 * - Data is sent in both directions. Fast path only supports pure senders 6097 * or pure receivers (this means either the sequence number or the ack 6098 * value must stay constant) 6099 * - Unexpected TCP option. 6100 * 6101 * When these conditions are not satisfied it drops into a standard 6102 * receive procedure patterned after RFC793 to handle all cases. 6103 * The first three cases are guaranteed by proper pred_flags setting, 6104 * the rest is checked inline. Fast processing is turned on in 6105 * tcp_data_queue when everything is OK. 6106 */ 6107 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6108 { 6109 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6110 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6111 struct tcp_sock *tp = tcp_sk(sk); 6112 unsigned int len = skb->len; 6113 6114 /* TCP congestion window tracking */ 6115 trace_tcp_probe(sk, skb); 6116 6117 tcp_mstamp_refresh(tp); 6118 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6119 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6120 /* 6121 * Header prediction. 6122 * The code loosely follows the one in the famous 6123 * "30 instruction TCP receive" Van Jacobson mail. 6124 * 6125 * Van's trick is to deposit buffers into socket queue 6126 * on a device interrupt, to call tcp_recv function 6127 * on the receive process context and checksum and copy 6128 * the buffer to user space. smart... 6129 * 6130 * Our current scheme is not silly either but we take the 6131 * extra cost of the net_bh soft interrupt processing... 6132 * We do checksum and copy also but from device to kernel. 6133 */ 6134 6135 tp->rx_opt.saw_tstamp = 0; 6136 6137 /* pred_flags is 0xS?10 << 16 + snd_wnd 6138 * if header_prediction is to be made 6139 * 'S' will always be tp->tcp_header_len >> 2 6140 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6141 * turn it off (when there are holes in the receive 6142 * space for instance) 6143 * PSH flag is ignored. 6144 */ 6145 6146 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6147 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6148 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6149 int tcp_header_len = tp->tcp_header_len; 6150 6151 /* Timestamp header prediction: tcp_header_len 6152 * is automatically equal to th->doff*4 due to pred_flags 6153 * match. 6154 */ 6155 6156 /* Check timestamp */ 6157 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6158 /* No? Slow path! */ 6159 if (!tcp_parse_aligned_timestamp(tp, th)) 6160 goto slow_path; 6161 6162 /* If PAWS failed, check it more carefully in slow path */ 6163 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 6164 goto slow_path; 6165 6166 /* DO NOT update ts_recent here, if checksum fails 6167 * and timestamp was corrupted part, it will result 6168 * in a hung connection since we will drop all 6169 * future packets due to the PAWS test. 6170 */ 6171 } 6172 6173 if (len <= tcp_header_len) { 6174 /* Bulk data transfer: sender */ 6175 if (len == tcp_header_len) { 6176 /* Predicted packet is in window by definition. 6177 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6178 * Hence, check seq<=rcv_wup reduces to: 6179 */ 6180 if (tcp_header_len == 6181 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6182 tp->rcv_nxt == tp->rcv_wup) 6183 tcp_store_ts_recent(tp); 6184 6185 /* We know that such packets are checksummed 6186 * on entry. 6187 */ 6188 tcp_ack(sk, skb, 0); 6189 __kfree_skb(skb); 6190 tcp_data_snd_check(sk); 6191 /* When receiving pure ack in fast path, update 6192 * last ts ecr directly instead of calling 6193 * tcp_rcv_rtt_measure_ts() 6194 */ 6195 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6196 return; 6197 } else { /* Header too small */ 6198 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6199 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6200 goto discard; 6201 } 6202 } else { 6203 int eaten = 0; 6204 bool fragstolen = false; 6205 6206 if (tcp_checksum_complete(skb)) 6207 goto csum_error; 6208 6209 if ((int)skb->truesize > sk->sk_forward_alloc) 6210 goto step5; 6211 6212 /* Predicted packet is in window by definition. 6213 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6214 * Hence, check seq<=rcv_wup reduces to: 6215 */ 6216 if (tcp_header_len == 6217 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6218 tp->rcv_nxt == tp->rcv_wup) 6219 tcp_store_ts_recent(tp); 6220 6221 tcp_rcv_rtt_measure_ts(sk, skb); 6222 6223 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6224 6225 /* Bulk data transfer: receiver */ 6226 skb_dst_drop(skb); 6227 __skb_pull(skb, tcp_header_len); 6228 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6229 6230 tcp_event_data_recv(sk, skb); 6231 6232 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6233 /* Well, only one small jumplet in fast path... */ 6234 tcp_ack(sk, skb, FLAG_DATA); 6235 tcp_data_snd_check(sk); 6236 if (!inet_csk_ack_scheduled(sk)) 6237 goto no_ack; 6238 } else { 6239 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6240 } 6241 6242 __tcp_ack_snd_check(sk, 0); 6243 no_ack: 6244 if (eaten) 6245 kfree_skb_partial(skb, fragstolen); 6246 tcp_data_ready(sk); 6247 return; 6248 } 6249 } 6250 6251 slow_path: 6252 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6253 goto csum_error; 6254 6255 if (!th->ack && !th->rst && !th->syn) { 6256 reason = SKB_DROP_REASON_TCP_FLAGS; 6257 goto discard; 6258 } 6259 6260 /* 6261 * Standard slow path. 6262 */ 6263 6264 if (!tcp_validate_incoming(sk, skb, th, 1)) 6265 return; 6266 6267 step5: 6268 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6269 if ((int)reason < 0) { 6270 reason = -reason; 6271 goto discard; 6272 } 6273 tcp_rcv_rtt_measure_ts(sk, skb); 6274 6275 /* Process urgent data. */ 6276 tcp_urg(sk, skb, th); 6277 6278 /* step 7: process the segment text */ 6279 tcp_data_queue(sk, skb); 6280 6281 tcp_data_snd_check(sk); 6282 tcp_ack_snd_check(sk); 6283 return; 6284 6285 csum_error: 6286 reason = SKB_DROP_REASON_TCP_CSUM; 6287 trace_tcp_bad_csum(skb); 6288 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6289 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6290 6291 discard: 6292 tcp_drop_reason(sk, skb, reason); 6293 } 6294 EXPORT_SYMBOL(tcp_rcv_established); 6295 6296 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6297 { 6298 struct inet_connection_sock *icsk = inet_csk(sk); 6299 struct tcp_sock *tp = tcp_sk(sk); 6300 6301 tcp_mtup_init(sk); 6302 icsk->icsk_af_ops->rebuild_header(sk); 6303 tcp_init_metrics(sk); 6304 6305 /* Initialize the congestion window to start the transfer. 6306 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6307 * retransmitted. In light of RFC6298 more aggressive 1sec 6308 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6309 * retransmission has occurred. 6310 */ 6311 if (tp->total_retrans > 1 && tp->undo_marker) 6312 tcp_snd_cwnd_set(tp, 1); 6313 else 6314 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6315 tp->snd_cwnd_stamp = tcp_jiffies32; 6316 6317 bpf_skops_established(sk, bpf_op, skb); 6318 /* Initialize congestion control unless BPF initialized it already: */ 6319 if (!icsk->icsk_ca_initialized) 6320 tcp_init_congestion_control(sk); 6321 tcp_init_buffer_space(sk); 6322 } 6323 6324 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6325 { 6326 struct tcp_sock *tp = tcp_sk(sk); 6327 struct inet_connection_sock *icsk = inet_csk(sk); 6328 6329 tcp_ao_finish_connect(sk, skb); 6330 tcp_set_state(sk, TCP_ESTABLISHED); 6331 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6332 6333 if (skb) { 6334 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6335 security_inet_conn_established(sk, skb); 6336 sk_mark_napi_id(sk, skb); 6337 } 6338 6339 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6340 6341 /* Prevent spurious tcp_cwnd_restart() on first data 6342 * packet. 6343 */ 6344 tp->lsndtime = tcp_jiffies32; 6345 6346 if (sock_flag(sk, SOCK_KEEPOPEN)) 6347 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6348 6349 if (!tp->rx_opt.snd_wscale) 6350 __tcp_fast_path_on(tp, tp->snd_wnd); 6351 else 6352 tp->pred_flags = 0; 6353 } 6354 6355 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6356 struct tcp_fastopen_cookie *cookie) 6357 { 6358 struct tcp_sock *tp = tcp_sk(sk); 6359 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6360 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6361 bool syn_drop = false; 6362 6363 if (mss == tp->rx_opt.user_mss) { 6364 struct tcp_options_received opt; 6365 6366 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6367 tcp_clear_options(&opt); 6368 opt.user_mss = opt.mss_clamp = 0; 6369 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6370 mss = opt.mss_clamp; 6371 } 6372 6373 if (!tp->syn_fastopen) { 6374 /* Ignore an unsolicited cookie */ 6375 cookie->len = -1; 6376 } else if (tp->total_retrans) { 6377 /* SYN timed out and the SYN-ACK neither has a cookie nor 6378 * acknowledges data. Presumably the remote received only 6379 * the retransmitted (regular) SYNs: either the original 6380 * SYN-data or the corresponding SYN-ACK was dropped. 6381 */ 6382 syn_drop = (cookie->len < 0 && data); 6383 } else if (cookie->len < 0 && !tp->syn_data) { 6384 /* We requested a cookie but didn't get it. If we did not use 6385 * the (old) exp opt format then try so next time (try_exp=1). 6386 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6387 */ 6388 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6389 } 6390 6391 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6392 6393 if (data) { /* Retransmit unacked data in SYN */ 6394 if (tp->total_retrans) 6395 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6396 else 6397 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6398 skb_rbtree_walk_from(data) 6399 tcp_mark_skb_lost(sk, data); 6400 tcp_non_congestion_loss_retransmit(sk); 6401 NET_INC_STATS(sock_net(sk), 6402 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6403 return true; 6404 } 6405 tp->syn_data_acked = tp->syn_data; 6406 if (tp->syn_data_acked) { 6407 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6408 /* SYN-data is counted as two separate packets in tcp_ack() */ 6409 if (tp->delivered > 1) 6410 --tp->delivered; 6411 } 6412 6413 tcp_fastopen_add_skb(sk, synack); 6414 6415 return false; 6416 } 6417 6418 static void smc_check_reset_syn(struct tcp_sock *tp) 6419 { 6420 #if IS_ENABLED(CONFIG_SMC) 6421 if (static_branch_unlikely(&tcp_have_smc)) { 6422 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6423 tp->syn_smc = 0; 6424 } 6425 #endif 6426 } 6427 6428 static void tcp_try_undo_spurious_syn(struct sock *sk) 6429 { 6430 struct tcp_sock *tp = tcp_sk(sk); 6431 u32 syn_stamp; 6432 6433 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6434 * spurious if the ACK's timestamp option echo value matches the 6435 * original SYN timestamp. 6436 */ 6437 syn_stamp = tp->retrans_stamp; 6438 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6439 syn_stamp == tp->rx_opt.rcv_tsecr) 6440 tp->undo_marker = 0; 6441 } 6442 6443 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6444 const struct tcphdr *th) 6445 { 6446 struct inet_connection_sock *icsk = inet_csk(sk); 6447 struct tcp_sock *tp = tcp_sk(sk); 6448 struct tcp_fastopen_cookie foc = { .len = -1 }; 6449 int saved_clamp = tp->rx_opt.mss_clamp; 6450 bool fastopen_fail; 6451 SKB_DR(reason); 6452 6453 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6454 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6455 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6456 6457 if (th->ack) { 6458 /* rfc793: 6459 * "If the state is SYN-SENT then 6460 * first check the ACK bit 6461 * If the ACK bit is set 6462 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6463 * a reset (unless the RST bit is set, if so drop 6464 * the segment and return)" 6465 */ 6466 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6467 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6468 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6469 if (icsk->icsk_retransmits == 0) 6470 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 6471 TCP_TIMEOUT_MIN, false); 6472 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6473 goto reset_and_undo; 6474 } 6475 6476 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6477 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6478 tcp_time_stamp_ts(tp))) { 6479 NET_INC_STATS(sock_net(sk), 6480 LINUX_MIB_PAWSACTIVEREJECTED); 6481 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6482 goto reset_and_undo; 6483 } 6484 6485 /* Now ACK is acceptable. 6486 * 6487 * "If the RST bit is set 6488 * If the ACK was acceptable then signal the user "error: 6489 * connection reset", drop the segment, enter CLOSED state, 6490 * delete TCB, and return." 6491 */ 6492 6493 if (th->rst) { 6494 tcp_reset(sk, skb); 6495 consume: 6496 __kfree_skb(skb); 6497 return 0; 6498 } 6499 6500 /* rfc793: 6501 * "fifth, if neither of the SYN or RST bits is set then 6502 * drop the segment and return." 6503 * 6504 * See note below! 6505 * --ANK(990513) 6506 */ 6507 if (!th->syn) { 6508 SKB_DR_SET(reason, TCP_FLAGS); 6509 goto discard_and_undo; 6510 } 6511 /* rfc793: 6512 * "If the SYN bit is on ... 6513 * are acceptable then ... 6514 * (our SYN has been ACKed), change the connection 6515 * state to ESTABLISHED..." 6516 */ 6517 6518 tcp_ecn_rcv_synack(tp, th); 6519 6520 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6521 tcp_try_undo_spurious_syn(sk); 6522 tcp_ack(sk, skb, FLAG_SLOWPATH); 6523 6524 /* Ok.. it's good. Set up sequence numbers and 6525 * move to established. 6526 */ 6527 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6528 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6529 6530 /* RFC1323: The window in SYN & SYN/ACK segments is 6531 * never scaled. 6532 */ 6533 tp->snd_wnd = ntohs(th->window); 6534 6535 if (!tp->rx_opt.wscale_ok) { 6536 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6537 WRITE_ONCE(tp->window_clamp, 6538 min(tp->window_clamp, 65535U)); 6539 } 6540 6541 if (tp->rx_opt.saw_tstamp) { 6542 tp->rx_opt.tstamp_ok = 1; 6543 tp->tcp_header_len = 6544 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6545 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6546 tcp_store_ts_recent(tp); 6547 } else { 6548 tp->tcp_header_len = sizeof(struct tcphdr); 6549 } 6550 6551 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6552 tcp_initialize_rcv_mss(sk); 6553 6554 /* Remember, tcp_poll() does not lock socket! 6555 * Change state from SYN-SENT only after copied_seq 6556 * is initialized. */ 6557 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6558 6559 smc_check_reset_syn(tp); 6560 6561 smp_mb(); 6562 6563 tcp_finish_connect(sk, skb); 6564 6565 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6566 tcp_rcv_fastopen_synack(sk, skb, &foc); 6567 6568 if (!sock_flag(sk, SOCK_DEAD)) { 6569 sk->sk_state_change(sk); 6570 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6571 } 6572 if (fastopen_fail) 6573 return -1; 6574 if (sk->sk_write_pending || 6575 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6576 inet_csk_in_pingpong_mode(sk)) { 6577 /* Save one ACK. Data will be ready after 6578 * several ticks, if write_pending is set. 6579 * 6580 * It may be deleted, but with this feature tcpdumps 6581 * look so _wonderfully_ clever, that I was not able 6582 * to stand against the temptation 8) --ANK 6583 */ 6584 inet_csk_schedule_ack(sk); 6585 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6586 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, 6587 TCP_DELACK_MAX, false); 6588 goto consume; 6589 } 6590 tcp_send_ack(sk); 6591 return -1; 6592 } 6593 6594 /* No ACK in the segment */ 6595 6596 if (th->rst) { 6597 /* rfc793: 6598 * "If the RST bit is set 6599 * 6600 * Otherwise (no ACK) drop the segment and return." 6601 */ 6602 SKB_DR_SET(reason, TCP_RESET); 6603 goto discard_and_undo; 6604 } 6605 6606 /* PAWS check. */ 6607 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6608 tcp_paws_reject(&tp->rx_opt, 0)) { 6609 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6610 goto discard_and_undo; 6611 } 6612 if (th->syn) { 6613 /* We see SYN without ACK. It is attempt of 6614 * simultaneous connect with crossed SYNs. 6615 * Particularly, it can be connect to self. 6616 */ 6617 #ifdef CONFIG_TCP_AO 6618 struct tcp_ao_info *ao; 6619 6620 ao = rcu_dereference_protected(tp->ao_info, 6621 lockdep_sock_is_held(sk)); 6622 if (ao) { 6623 WRITE_ONCE(ao->risn, th->seq); 6624 ao->rcv_sne = 0; 6625 } 6626 #endif 6627 tcp_set_state(sk, TCP_SYN_RECV); 6628 6629 if (tp->rx_opt.saw_tstamp) { 6630 tp->rx_opt.tstamp_ok = 1; 6631 tcp_store_ts_recent(tp); 6632 tp->tcp_header_len = 6633 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6634 } else { 6635 tp->tcp_header_len = sizeof(struct tcphdr); 6636 } 6637 6638 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6639 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6640 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6641 6642 /* RFC1323: The window in SYN & SYN/ACK segments is 6643 * never scaled. 6644 */ 6645 tp->snd_wnd = ntohs(th->window); 6646 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6647 tp->max_window = tp->snd_wnd; 6648 6649 tcp_ecn_rcv_syn(tp, th); 6650 6651 tcp_mtup_init(sk); 6652 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6653 tcp_initialize_rcv_mss(sk); 6654 6655 tcp_send_synack(sk); 6656 #if 0 6657 /* Note, we could accept data and URG from this segment. 6658 * There are no obstacles to make this (except that we must 6659 * either change tcp_recvmsg() to prevent it from returning data 6660 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6661 * 6662 * However, if we ignore data in ACKless segments sometimes, 6663 * we have no reasons to accept it sometimes. 6664 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6665 * is not flawless. So, discard packet for sanity. 6666 * Uncomment this return to process the data. 6667 */ 6668 return -1; 6669 #else 6670 goto consume; 6671 #endif 6672 } 6673 /* "fifth, if neither of the SYN or RST bits is set then 6674 * drop the segment and return." 6675 */ 6676 6677 discard_and_undo: 6678 tcp_clear_options(&tp->rx_opt); 6679 tp->rx_opt.mss_clamp = saved_clamp; 6680 tcp_drop_reason(sk, skb, reason); 6681 return 0; 6682 6683 reset_and_undo: 6684 tcp_clear_options(&tp->rx_opt); 6685 tp->rx_opt.mss_clamp = saved_clamp; 6686 /* we can reuse/return @reason to its caller to handle the exception */ 6687 return reason; 6688 } 6689 6690 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6691 { 6692 struct tcp_sock *tp = tcp_sk(sk); 6693 struct request_sock *req; 6694 6695 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6696 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6697 */ 6698 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6699 tcp_try_undo_recovery(sk); 6700 6701 tcp_update_rto_time(tp); 6702 inet_csk(sk)->icsk_retransmits = 0; 6703 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6704 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6705 * need to zero retrans_stamp here to prevent spurious 6706 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6707 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6708 * set entering CA_Recovery, for correct retransmits_timed_out() and 6709 * undo behavior. 6710 */ 6711 tcp_retrans_stamp_cleanup(sk); 6712 6713 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6714 * we no longer need req so release it. 6715 */ 6716 req = rcu_dereference_protected(tp->fastopen_rsk, 6717 lockdep_sock_is_held(sk)); 6718 reqsk_fastopen_remove(sk, req, false); 6719 6720 /* Re-arm the timer because data may have been sent out. 6721 * This is similar to the regular data transmission case 6722 * when new data has just been ack'ed. 6723 * 6724 * (TFO) - we could try to be more aggressive and 6725 * retransmitting any data sooner based on when they 6726 * are sent out. 6727 */ 6728 tcp_rearm_rto(sk); 6729 } 6730 6731 /* 6732 * This function implements the receiving procedure of RFC 793 for 6733 * all states except ESTABLISHED and TIME_WAIT. 6734 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6735 * address independent. 6736 */ 6737 6738 enum skb_drop_reason 6739 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6740 { 6741 struct tcp_sock *tp = tcp_sk(sk); 6742 struct inet_connection_sock *icsk = inet_csk(sk); 6743 const struct tcphdr *th = tcp_hdr(skb); 6744 struct request_sock *req; 6745 int queued = 0; 6746 SKB_DR(reason); 6747 6748 switch (sk->sk_state) { 6749 case TCP_CLOSE: 6750 SKB_DR_SET(reason, TCP_CLOSE); 6751 goto discard; 6752 6753 case TCP_LISTEN: 6754 if (th->ack) 6755 return SKB_DROP_REASON_TCP_FLAGS; 6756 6757 if (th->rst) { 6758 SKB_DR_SET(reason, TCP_RESET); 6759 goto discard; 6760 } 6761 if (th->syn) { 6762 if (th->fin) { 6763 SKB_DR_SET(reason, TCP_FLAGS); 6764 goto discard; 6765 } 6766 /* It is possible that we process SYN packets from backlog, 6767 * so we need to make sure to disable BH and RCU right there. 6768 */ 6769 rcu_read_lock(); 6770 local_bh_disable(); 6771 icsk->icsk_af_ops->conn_request(sk, skb); 6772 local_bh_enable(); 6773 rcu_read_unlock(); 6774 6775 consume_skb(skb); 6776 return 0; 6777 } 6778 SKB_DR_SET(reason, TCP_FLAGS); 6779 goto discard; 6780 6781 case TCP_SYN_SENT: 6782 tp->rx_opt.saw_tstamp = 0; 6783 tcp_mstamp_refresh(tp); 6784 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6785 if (queued >= 0) 6786 return queued; 6787 6788 /* Do step6 onward by hand. */ 6789 tcp_urg(sk, skb, th); 6790 __kfree_skb(skb); 6791 tcp_data_snd_check(sk); 6792 return 0; 6793 } 6794 6795 tcp_mstamp_refresh(tp); 6796 tp->rx_opt.saw_tstamp = 0; 6797 req = rcu_dereference_protected(tp->fastopen_rsk, 6798 lockdep_sock_is_held(sk)); 6799 if (req) { 6800 bool req_stolen; 6801 6802 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6803 sk->sk_state != TCP_FIN_WAIT1); 6804 6805 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6806 SKB_DR_SET(reason, TCP_FASTOPEN); 6807 goto discard; 6808 } 6809 } 6810 6811 if (!th->ack && !th->rst && !th->syn) { 6812 SKB_DR_SET(reason, TCP_FLAGS); 6813 goto discard; 6814 } 6815 if (!tcp_validate_incoming(sk, skb, th, 0)) 6816 return 0; 6817 6818 /* step 5: check the ACK field */ 6819 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 6820 FLAG_UPDATE_TS_RECENT | 6821 FLAG_NO_CHALLENGE_ACK); 6822 6823 if ((int)reason <= 0) { 6824 if (sk->sk_state == TCP_SYN_RECV) { 6825 /* send one RST */ 6826 if (!reason) 6827 return SKB_DROP_REASON_TCP_OLD_ACK; 6828 return -reason; 6829 } 6830 /* accept old ack during closing */ 6831 if ((int)reason < 0) { 6832 tcp_send_challenge_ack(sk); 6833 reason = -reason; 6834 goto discard; 6835 } 6836 } 6837 SKB_DR_SET(reason, NOT_SPECIFIED); 6838 switch (sk->sk_state) { 6839 case TCP_SYN_RECV: 6840 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6841 if (!tp->srtt_us) 6842 tcp_synack_rtt_meas(sk, req); 6843 6844 if (req) { 6845 tcp_rcv_synrecv_state_fastopen(sk); 6846 } else { 6847 tcp_try_undo_spurious_syn(sk); 6848 tp->retrans_stamp = 0; 6849 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6850 skb); 6851 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6852 } 6853 tcp_ao_established(sk); 6854 smp_mb(); 6855 tcp_set_state(sk, TCP_ESTABLISHED); 6856 sk->sk_state_change(sk); 6857 6858 /* Note, that this wakeup is only for marginal crossed SYN case. 6859 * Passively open sockets are not waked up, because 6860 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6861 */ 6862 if (sk->sk_socket) 6863 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6864 6865 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6866 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6867 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6868 6869 if (tp->rx_opt.tstamp_ok) 6870 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6871 6872 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6873 tcp_update_pacing_rate(sk); 6874 6875 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6876 tp->lsndtime = tcp_jiffies32; 6877 6878 tcp_initialize_rcv_mss(sk); 6879 tcp_fast_path_on(tp); 6880 if (sk->sk_shutdown & SEND_SHUTDOWN) 6881 tcp_shutdown(sk, SEND_SHUTDOWN); 6882 break; 6883 6884 case TCP_FIN_WAIT1: { 6885 int tmo; 6886 6887 if (req) 6888 tcp_rcv_synrecv_state_fastopen(sk); 6889 6890 if (tp->snd_una != tp->write_seq) 6891 break; 6892 6893 tcp_set_state(sk, TCP_FIN_WAIT2); 6894 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6895 6896 sk_dst_confirm(sk); 6897 6898 if (!sock_flag(sk, SOCK_DEAD)) { 6899 /* Wake up lingering close() */ 6900 sk->sk_state_change(sk); 6901 break; 6902 } 6903 6904 if (READ_ONCE(tp->linger2) < 0) { 6905 tcp_done(sk); 6906 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6907 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6908 } 6909 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6910 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6911 /* Receive out of order FIN after close() */ 6912 if (tp->syn_fastopen && th->fin) 6913 tcp_fastopen_active_disable(sk); 6914 tcp_done(sk); 6915 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6916 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6917 } 6918 6919 tmo = tcp_fin_time(sk); 6920 if (tmo > TCP_TIMEWAIT_LEN) { 6921 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6922 } else if (th->fin || sock_owned_by_user(sk)) { 6923 /* Bad case. We could lose such FIN otherwise. 6924 * It is not a big problem, but it looks confusing 6925 * and not so rare event. We still can lose it now, 6926 * if it spins in bh_lock_sock(), but it is really 6927 * marginal case. 6928 */ 6929 tcp_reset_keepalive_timer(sk, tmo); 6930 } else { 6931 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6932 goto consume; 6933 } 6934 break; 6935 } 6936 6937 case TCP_CLOSING: 6938 if (tp->snd_una == tp->write_seq) { 6939 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6940 goto consume; 6941 } 6942 break; 6943 6944 case TCP_LAST_ACK: 6945 if (tp->snd_una == tp->write_seq) { 6946 tcp_update_metrics(sk); 6947 tcp_done(sk); 6948 goto consume; 6949 } 6950 break; 6951 } 6952 6953 /* step 6: check the URG bit */ 6954 tcp_urg(sk, skb, th); 6955 6956 /* step 7: process the segment text */ 6957 switch (sk->sk_state) { 6958 case TCP_CLOSE_WAIT: 6959 case TCP_CLOSING: 6960 case TCP_LAST_ACK: 6961 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6962 /* If a subflow has been reset, the packet should not 6963 * continue to be processed, drop the packet. 6964 */ 6965 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6966 goto discard; 6967 break; 6968 } 6969 fallthrough; 6970 case TCP_FIN_WAIT1: 6971 case TCP_FIN_WAIT2: 6972 /* RFC 793 says to queue data in these states, 6973 * RFC 1122 says we MUST send a reset. 6974 * BSD 4.4 also does reset. 6975 */ 6976 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6977 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6978 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6979 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6980 tcp_reset(sk, skb); 6981 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6982 } 6983 } 6984 fallthrough; 6985 case TCP_ESTABLISHED: 6986 tcp_data_queue(sk, skb); 6987 queued = 1; 6988 break; 6989 } 6990 6991 /* tcp_data could move socket to TIME-WAIT */ 6992 if (sk->sk_state != TCP_CLOSE) { 6993 tcp_data_snd_check(sk); 6994 tcp_ack_snd_check(sk); 6995 } 6996 6997 if (!queued) { 6998 discard: 6999 tcp_drop_reason(sk, skb, reason); 7000 } 7001 return 0; 7002 7003 consume: 7004 __kfree_skb(skb); 7005 return 0; 7006 } 7007 EXPORT_SYMBOL(tcp_rcv_state_process); 7008 7009 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 7010 { 7011 struct inet_request_sock *ireq = inet_rsk(req); 7012 7013 if (family == AF_INET) 7014 net_dbg_ratelimited("drop open request from %pI4/%u\n", 7015 &ireq->ir_rmt_addr, port); 7016 #if IS_ENABLED(CONFIG_IPV6) 7017 else if (family == AF_INET6) 7018 net_dbg_ratelimited("drop open request from %pI6/%u\n", 7019 &ireq->ir_v6_rmt_addr, port); 7020 #endif 7021 } 7022 7023 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 7024 * 7025 * If we receive a SYN packet with these bits set, it means a 7026 * network is playing bad games with TOS bits. In order to 7027 * avoid possible false congestion notifications, we disable 7028 * TCP ECN negotiation. 7029 * 7030 * Exception: tcp_ca wants ECN. This is required for DCTCP 7031 * congestion control: Linux DCTCP asserts ECT on all packets, 7032 * including SYN, which is most optimal solution; however, 7033 * others, such as FreeBSD do not. 7034 * 7035 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 7036 * set, indicating the use of a future TCP extension (such as AccECN). See 7037 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 7038 * extensions. 7039 */ 7040 static void tcp_ecn_create_request(struct request_sock *req, 7041 const struct sk_buff *skb, 7042 const struct sock *listen_sk, 7043 const struct dst_entry *dst) 7044 { 7045 const struct tcphdr *th = tcp_hdr(skb); 7046 const struct net *net = sock_net(listen_sk); 7047 bool th_ecn = th->ece && th->cwr; 7048 bool ect, ecn_ok; 7049 u32 ecn_ok_dst; 7050 7051 if (!th_ecn) 7052 return; 7053 7054 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 7055 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 7056 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 7057 7058 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 7059 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 7060 tcp_bpf_ca_needs_ecn((struct sock *)req)) 7061 inet_rsk(req)->ecn_ok = 1; 7062 } 7063 7064 static void tcp_openreq_init(struct request_sock *req, 7065 const struct tcp_options_received *rx_opt, 7066 struct sk_buff *skb, const struct sock *sk) 7067 { 7068 struct inet_request_sock *ireq = inet_rsk(req); 7069 7070 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 7071 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 7072 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 7073 tcp_rsk(req)->snt_synack = 0; 7074 tcp_rsk(req)->last_oow_ack_time = 0; 7075 req->mss = rx_opt->mss_clamp; 7076 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 7077 ireq->tstamp_ok = rx_opt->tstamp_ok; 7078 ireq->sack_ok = rx_opt->sack_ok; 7079 ireq->snd_wscale = rx_opt->snd_wscale; 7080 ireq->wscale_ok = rx_opt->wscale_ok; 7081 ireq->acked = 0; 7082 ireq->ecn_ok = 0; 7083 ireq->ir_rmt_port = tcp_hdr(skb)->source; 7084 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 7085 ireq->ir_mark = inet_request_mark(sk, skb); 7086 #if IS_ENABLED(CONFIG_SMC) 7087 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 7088 tcp_sk(sk)->smc_hs_congested(sk)); 7089 #endif 7090 } 7091 7092 /* 7093 * Return true if a syncookie should be sent 7094 */ 7095 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 7096 { 7097 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7098 const char *msg = "Dropping request"; 7099 struct net *net = sock_net(sk); 7100 bool want_cookie = false; 7101 u8 syncookies; 7102 7103 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7104 7105 #ifdef CONFIG_SYN_COOKIES 7106 if (syncookies) { 7107 msg = "Sending cookies"; 7108 want_cookie = true; 7109 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7110 } else 7111 #endif 7112 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7113 7114 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7115 xchg(&queue->synflood_warned, 1) == 0) { 7116 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7117 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7118 proto, inet6_rcv_saddr(sk), 7119 sk->sk_num, msg); 7120 } else { 7121 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7122 proto, &sk->sk_rcv_saddr, 7123 sk->sk_num, msg); 7124 } 7125 } 7126 7127 return want_cookie; 7128 } 7129 7130 static void tcp_reqsk_record_syn(const struct sock *sk, 7131 struct request_sock *req, 7132 const struct sk_buff *skb) 7133 { 7134 if (tcp_sk(sk)->save_syn) { 7135 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7136 struct saved_syn *saved_syn; 7137 u32 mac_hdrlen; 7138 void *base; 7139 7140 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7141 base = skb_mac_header(skb); 7142 mac_hdrlen = skb_mac_header_len(skb); 7143 len += mac_hdrlen; 7144 } else { 7145 base = skb_network_header(skb); 7146 mac_hdrlen = 0; 7147 } 7148 7149 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7150 GFP_ATOMIC); 7151 if (saved_syn) { 7152 saved_syn->mac_hdrlen = mac_hdrlen; 7153 saved_syn->network_hdrlen = skb_network_header_len(skb); 7154 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7155 memcpy(saved_syn->data, base, len); 7156 req->saved_syn = saved_syn; 7157 } 7158 } 7159 } 7160 7161 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7162 * used for SYN cookie generation. 7163 */ 7164 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7165 const struct tcp_request_sock_ops *af_ops, 7166 struct sock *sk, struct tcphdr *th) 7167 { 7168 struct tcp_sock *tp = tcp_sk(sk); 7169 u16 mss; 7170 7171 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7172 !inet_csk_reqsk_queue_is_full(sk)) 7173 return 0; 7174 7175 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7176 return 0; 7177 7178 if (sk_acceptq_is_full(sk)) { 7179 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7180 return 0; 7181 } 7182 7183 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7184 if (!mss) 7185 mss = af_ops->mss_clamp; 7186 7187 return mss; 7188 } 7189 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7190 7191 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7192 const struct tcp_request_sock_ops *af_ops, 7193 struct sock *sk, struct sk_buff *skb) 7194 { 7195 struct tcp_fastopen_cookie foc = { .len = -1 }; 7196 struct tcp_options_received tmp_opt; 7197 struct tcp_sock *tp = tcp_sk(sk); 7198 struct net *net = sock_net(sk); 7199 struct sock *fastopen_sk = NULL; 7200 struct request_sock *req; 7201 bool want_cookie = false; 7202 struct dst_entry *dst; 7203 struct flowi fl; 7204 u8 syncookies; 7205 u32 isn; 7206 7207 #ifdef CONFIG_TCP_AO 7208 const struct tcp_ao_hdr *aoh; 7209 #endif 7210 7211 isn = __this_cpu_read(tcp_tw_isn); 7212 if (isn) { 7213 /* TW buckets are converted to open requests without 7214 * limitations, they conserve resources and peer is 7215 * evidently real one. 7216 */ 7217 __this_cpu_write(tcp_tw_isn, 0); 7218 } else { 7219 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7220 7221 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7222 want_cookie = tcp_syn_flood_action(sk, 7223 rsk_ops->slab_name); 7224 if (!want_cookie) 7225 goto drop; 7226 } 7227 } 7228 7229 if (sk_acceptq_is_full(sk)) { 7230 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7231 goto drop; 7232 } 7233 7234 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7235 if (!req) 7236 goto drop; 7237 7238 req->syncookie = want_cookie; 7239 tcp_rsk(req)->af_specific = af_ops; 7240 tcp_rsk(req)->ts_off = 0; 7241 tcp_rsk(req)->req_usec_ts = false; 7242 #if IS_ENABLED(CONFIG_MPTCP) 7243 tcp_rsk(req)->is_mptcp = 0; 7244 #endif 7245 7246 tcp_clear_options(&tmp_opt); 7247 tmp_opt.mss_clamp = af_ops->mss_clamp; 7248 tmp_opt.user_mss = tp->rx_opt.user_mss; 7249 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7250 want_cookie ? NULL : &foc); 7251 7252 if (want_cookie && !tmp_opt.saw_tstamp) 7253 tcp_clear_options(&tmp_opt); 7254 7255 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7256 tmp_opt.smc_ok = 0; 7257 7258 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7259 tcp_openreq_init(req, &tmp_opt, skb, sk); 7260 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7261 7262 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7263 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7264 7265 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7266 if (!dst) 7267 goto drop_and_free; 7268 7269 if (tmp_opt.tstamp_ok) { 7270 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7271 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7272 } 7273 if (!want_cookie && !isn) { 7274 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7275 7276 /* Kill the following clause, if you dislike this way. */ 7277 if (!syncookies && 7278 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7279 (max_syn_backlog >> 2)) && 7280 !tcp_peer_is_proven(req, dst)) { 7281 /* Without syncookies last quarter of 7282 * backlog is filled with destinations, 7283 * proven to be alive. 7284 * It means that we continue to communicate 7285 * to destinations, already remembered 7286 * to the moment of synflood. 7287 */ 7288 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7289 rsk_ops->family); 7290 goto drop_and_release; 7291 } 7292 7293 isn = af_ops->init_seq(skb); 7294 } 7295 7296 tcp_ecn_create_request(req, skb, sk, dst); 7297 7298 if (want_cookie) { 7299 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7300 if (!tmp_opt.tstamp_ok) 7301 inet_rsk(req)->ecn_ok = 0; 7302 } 7303 7304 #ifdef CONFIG_TCP_AO 7305 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7306 goto drop_and_release; /* Invalid TCP options */ 7307 if (aoh) { 7308 tcp_rsk(req)->used_tcp_ao = true; 7309 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7310 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7311 7312 } else { 7313 tcp_rsk(req)->used_tcp_ao = false; 7314 } 7315 #endif 7316 tcp_rsk(req)->snt_isn = isn; 7317 tcp_rsk(req)->txhash = net_tx_rndhash(); 7318 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7319 tcp_openreq_init_rwin(req, sk, dst); 7320 sk_rx_queue_set(req_to_sk(req), skb); 7321 if (!want_cookie) { 7322 tcp_reqsk_record_syn(sk, req, skb); 7323 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7324 } 7325 if (fastopen_sk) { 7326 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7327 &foc, TCP_SYNACK_FASTOPEN, skb); 7328 /* Add the child socket directly into the accept queue */ 7329 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7330 reqsk_fastopen_remove(fastopen_sk, req, false); 7331 bh_unlock_sock(fastopen_sk); 7332 sock_put(fastopen_sk); 7333 goto drop_and_free; 7334 } 7335 sk->sk_data_ready(sk); 7336 bh_unlock_sock(fastopen_sk); 7337 sock_put(fastopen_sk); 7338 } else { 7339 tcp_rsk(req)->tfo_listener = false; 7340 if (!want_cookie) { 7341 req->timeout = tcp_timeout_init((struct sock *)req); 7342 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7343 req->timeout))) { 7344 reqsk_free(req); 7345 dst_release(dst); 7346 return 0; 7347 } 7348 7349 } 7350 af_ops->send_synack(sk, dst, &fl, req, &foc, 7351 !want_cookie ? TCP_SYNACK_NORMAL : 7352 TCP_SYNACK_COOKIE, 7353 skb); 7354 if (want_cookie) { 7355 reqsk_free(req); 7356 return 0; 7357 } 7358 } 7359 reqsk_put(req); 7360 return 0; 7361 7362 drop_and_release: 7363 dst_release(dst); 7364 drop_and_free: 7365 __reqsk_free(req); 7366 drop: 7367 tcp_listendrop(sk); 7368 return 0; 7369 } 7370 EXPORT_SYMBOL(tcp_conn_request); 7371