xref: /linux/net/ipv4/tcp_input.c (revision 1fc31357ad194fb98691f3d122bcd47e59239e83)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103 
104 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
105 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
106 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
107 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
108 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
109 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
110 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
111 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
114 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
118 
119 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 #define REXMIT_NONE	0 /* no loss recovery to do */
128 #define REXMIT_LOST	1 /* retransmit packets marked lost */
129 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
130 
131 /* Adapt the MSS value used to make delayed ack decision to the
132  * real world.
133  */
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 	struct inet_connection_sock *icsk = inet_csk(sk);
137 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 	unsigned int len;
139 
140 	icsk->icsk_ack.last_seg_size = 0;
141 
142 	/* skb->len may jitter because of SACKs, even if peer
143 	 * sends good full-sized frames.
144 	 */
145 	len = skb_shinfo(skb)->gso_size ? : skb->len;
146 	if (len >= icsk->icsk_ack.rcv_mss) {
147 		icsk->icsk_ack.rcv_mss = len;
148 	} else {
149 		/* Otherwise, we make more careful check taking into account,
150 		 * that SACKs block is variable.
151 		 *
152 		 * "len" is invariant segment length, including TCP header.
153 		 */
154 		len += skb->data - skb_transport_header(skb);
155 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 		    /* If PSH is not set, packet should be
157 		     * full sized, provided peer TCP is not badly broken.
158 		     * This observation (if it is correct 8)) allows
159 		     * to handle super-low mtu links fairly.
160 		     */
161 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 			/* Subtract also invariant (if peer is RFC compliant),
164 			 * tcp header plus fixed timestamp option length.
165 			 * Resulting "len" is MSS free of SACK jitter.
166 			 */
167 			len -= tcp_sk(sk)->tcp_header_len;
168 			icsk->icsk_ack.last_seg_size = len;
169 			if (len == lss) {
170 				icsk->icsk_ack.rcv_mss = len;
171 				return;
172 			}
173 		}
174 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
177 	}
178 }
179 
180 static void tcp_incr_quickack(struct sock *sk)
181 {
182 	struct inet_connection_sock *icsk = inet_csk(sk);
183 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184 
185 	if (quickacks == 0)
186 		quickacks = 2;
187 	if (quickacks > icsk->icsk_ack.quick)
188 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
189 }
190 
191 static void tcp_enter_quickack_mode(struct sock *sk)
192 {
193 	struct inet_connection_sock *icsk = inet_csk(sk);
194 	tcp_incr_quickack(sk);
195 	icsk->icsk_ack.pingpong = 0;
196 	icsk->icsk_ack.ato = TCP_ATO_MIN;
197 }
198 
199 /* Send ACKs quickly, if "quick" count is not exhausted
200  * and the session is not interactive.
201  */
202 
203 static bool tcp_in_quickack_mode(struct sock *sk)
204 {
205 	const struct inet_connection_sock *icsk = inet_csk(sk);
206 	const struct dst_entry *dst = __sk_dst_get(sk);
207 
208 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
210 }
211 
212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
213 {
214 	if (tp->ecn_flags & TCP_ECN_OK)
215 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216 }
217 
218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
219 {
220 	if (tcp_hdr(skb)->cwr)
221 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223 
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
225 {
226 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227 }
228 
229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
230 {
231 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
232 	case INET_ECN_NOT_ECT:
233 		/* Funny extension: if ECT is not set on a segment,
234 		 * and we already seen ECT on a previous segment,
235 		 * it is probably a retransmit.
236 		 */
237 		if (tp->ecn_flags & TCP_ECN_SEEN)
238 			tcp_enter_quickack_mode((struct sock *)tp);
239 		break;
240 	case INET_ECN_CE:
241 		if (tcp_ca_needs_ecn((struct sock *)tp))
242 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243 
244 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 			/* Better not delay acks, sender can have a very low cwnd */
246 			tcp_enter_quickack_mode((struct sock *)tp);
247 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 		}
249 		tp->ecn_flags |= TCP_ECN_SEEN;
250 		break;
251 	default:
252 		if (tcp_ca_needs_ecn((struct sock *)tp))
253 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
254 		tp->ecn_flags |= TCP_ECN_SEEN;
255 		break;
256 	}
257 }
258 
259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260 {
261 	if (tp->ecn_flags & TCP_ECN_OK)
262 		__tcp_ecn_check_ce(tp, skb);
263 }
264 
265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
268 		tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270 
271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
274 		tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276 
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
280 		return true;
281 	return false;
282 }
283 
284 /* Buffer size and advertised window tuning.
285  *
286  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287  */
288 
289 static void tcp_sndbuf_expand(struct sock *sk)
290 {
291 	const struct tcp_sock *tp = tcp_sk(sk);
292 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
293 	int sndmem, per_mss;
294 	u32 nr_segs;
295 
296 	/* Worst case is non GSO/TSO : each frame consumes one skb
297 	 * and skb->head is kmalloced using power of two area of memory
298 	 */
299 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
300 		  MAX_TCP_HEADER +
301 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
302 
303 	per_mss = roundup_pow_of_two(per_mss) +
304 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
305 
306 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
307 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
308 
309 	/* Fast Recovery (RFC 5681 3.2) :
310 	 * Cubic needs 1.7 factor, rounded to 2 to include
311 	 * extra cushion (application might react slowly to POLLOUT)
312 	 */
313 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
314 	sndmem *= nr_segs * per_mss;
315 
316 	if (sk->sk_sndbuf < sndmem)
317 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
318 }
319 
320 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
321  *
322  * All tcp_full_space() is split to two parts: "network" buffer, allocated
323  * forward and advertised in receiver window (tp->rcv_wnd) and
324  * "application buffer", required to isolate scheduling/application
325  * latencies from network.
326  * window_clamp is maximal advertised window. It can be less than
327  * tcp_full_space(), in this case tcp_full_space() - window_clamp
328  * is reserved for "application" buffer. The less window_clamp is
329  * the smoother our behaviour from viewpoint of network, but the lower
330  * throughput and the higher sensitivity of the connection to losses. 8)
331  *
332  * rcv_ssthresh is more strict window_clamp used at "slow start"
333  * phase to predict further behaviour of this connection.
334  * It is used for two goals:
335  * - to enforce header prediction at sender, even when application
336  *   requires some significant "application buffer". It is check #1.
337  * - to prevent pruning of receive queue because of misprediction
338  *   of receiver window. Check #2.
339  *
340  * The scheme does not work when sender sends good segments opening
341  * window and then starts to feed us spaghetti. But it should work
342  * in common situations. Otherwise, we have to rely on queue collapsing.
343  */
344 
345 /* Slow part of check#2. */
346 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
347 {
348 	struct tcp_sock *tp = tcp_sk(sk);
349 	/* Optimize this! */
350 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
351 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
352 
353 	while (tp->rcv_ssthresh <= window) {
354 		if (truesize <= skb->len)
355 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
356 
357 		truesize >>= 1;
358 		window >>= 1;
359 	}
360 	return 0;
361 }
362 
363 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
364 {
365 	struct tcp_sock *tp = tcp_sk(sk);
366 
367 	/* Check #1 */
368 	if (tp->rcv_ssthresh < tp->window_clamp &&
369 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
370 	    !tcp_under_memory_pressure(sk)) {
371 		int incr;
372 
373 		/* Check #2. Increase window, if skb with such overhead
374 		 * will fit to rcvbuf in future.
375 		 */
376 		if (tcp_win_from_space(skb->truesize) <= skb->len)
377 			incr = 2 * tp->advmss;
378 		else
379 			incr = __tcp_grow_window(sk, skb);
380 
381 		if (incr) {
382 			incr = max_t(int, incr, 2 * skb->len);
383 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
384 					       tp->window_clamp);
385 			inet_csk(sk)->icsk_ack.quick |= 1;
386 		}
387 	}
388 }
389 
390 /* 3. Tuning rcvbuf, when connection enters established state. */
391 static void tcp_fixup_rcvbuf(struct sock *sk)
392 {
393 	u32 mss = tcp_sk(sk)->advmss;
394 	int rcvmem;
395 
396 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
397 		 tcp_default_init_rwnd(mss);
398 
399 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
400 	 * Allow enough cushion so that sender is not limited by our window
401 	 */
402 	if (sysctl_tcp_moderate_rcvbuf)
403 		rcvmem <<= 2;
404 
405 	if (sk->sk_rcvbuf < rcvmem)
406 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
407 }
408 
409 /* 4. Try to fixup all. It is made immediately after connection enters
410  *    established state.
411  */
412 void tcp_init_buffer_space(struct sock *sk)
413 {
414 	struct tcp_sock *tp = tcp_sk(sk);
415 	int maxwin;
416 
417 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
418 		tcp_fixup_rcvbuf(sk);
419 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
420 		tcp_sndbuf_expand(sk);
421 
422 	tp->rcvq_space.space = tp->rcv_wnd;
423 	tp->rcvq_space.time = tcp_time_stamp;
424 	tp->rcvq_space.seq = tp->copied_seq;
425 
426 	maxwin = tcp_full_space(sk);
427 
428 	if (tp->window_clamp >= maxwin) {
429 		tp->window_clamp = maxwin;
430 
431 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
432 			tp->window_clamp = max(maxwin -
433 					       (maxwin >> sysctl_tcp_app_win),
434 					       4 * tp->advmss);
435 	}
436 
437 	/* Force reservation of one segment. */
438 	if (sysctl_tcp_app_win &&
439 	    tp->window_clamp > 2 * tp->advmss &&
440 	    tp->window_clamp + tp->advmss > maxwin)
441 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
442 
443 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
444 	tp->snd_cwnd_stamp = tcp_time_stamp;
445 }
446 
447 /* 5. Recalculate window clamp after socket hit its memory bounds. */
448 static void tcp_clamp_window(struct sock *sk)
449 {
450 	struct tcp_sock *tp = tcp_sk(sk);
451 	struct inet_connection_sock *icsk = inet_csk(sk);
452 
453 	icsk->icsk_ack.quick = 0;
454 
455 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
456 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
457 	    !tcp_under_memory_pressure(sk) &&
458 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
459 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
460 				    sysctl_tcp_rmem[2]);
461 	}
462 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
463 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
464 }
465 
466 /* Initialize RCV_MSS value.
467  * RCV_MSS is an our guess about MSS used by the peer.
468  * We haven't any direct information about the MSS.
469  * It's better to underestimate the RCV_MSS rather than overestimate.
470  * Overestimations make us ACKing less frequently than needed.
471  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
472  */
473 void tcp_initialize_rcv_mss(struct sock *sk)
474 {
475 	const struct tcp_sock *tp = tcp_sk(sk);
476 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
477 
478 	hint = min(hint, tp->rcv_wnd / 2);
479 	hint = min(hint, TCP_MSS_DEFAULT);
480 	hint = max(hint, TCP_MIN_MSS);
481 
482 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
483 }
484 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
485 
486 /* Receiver "autotuning" code.
487  *
488  * The algorithm for RTT estimation w/o timestamps is based on
489  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
490  * <http://public.lanl.gov/radiant/pubs.html#DRS>
491  *
492  * More detail on this code can be found at
493  * <http://staff.psc.edu/jheffner/>,
494  * though this reference is out of date.  A new paper
495  * is pending.
496  */
497 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
498 {
499 	u32 new_sample = tp->rcv_rtt_est.rtt;
500 	long m = sample;
501 
502 	if (m == 0)
503 		m = 1;
504 
505 	if (new_sample != 0) {
506 		/* If we sample in larger samples in the non-timestamp
507 		 * case, we could grossly overestimate the RTT especially
508 		 * with chatty applications or bulk transfer apps which
509 		 * are stalled on filesystem I/O.
510 		 *
511 		 * Also, since we are only going for a minimum in the
512 		 * non-timestamp case, we do not smooth things out
513 		 * else with timestamps disabled convergence takes too
514 		 * long.
515 		 */
516 		if (!win_dep) {
517 			m -= (new_sample >> 3);
518 			new_sample += m;
519 		} else {
520 			m <<= 3;
521 			if (m < new_sample)
522 				new_sample = m;
523 		}
524 	} else {
525 		/* No previous measure. */
526 		new_sample = m << 3;
527 	}
528 
529 	if (tp->rcv_rtt_est.rtt != new_sample)
530 		tp->rcv_rtt_est.rtt = new_sample;
531 }
532 
533 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
534 {
535 	if (tp->rcv_rtt_est.time == 0)
536 		goto new_measure;
537 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
538 		return;
539 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
540 
541 new_measure:
542 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
543 	tp->rcv_rtt_est.time = tcp_time_stamp;
544 }
545 
546 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
547 					  const struct sk_buff *skb)
548 {
549 	struct tcp_sock *tp = tcp_sk(sk);
550 	if (tp->rx_opt.rcv_tsecr &&
551 	    (TCP_SKB_CB(skb)->end_seq -
552 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
553 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
554 }
555 
556 /*
557  * This function should be called every time data is copied to user space.
558  * It calculates the appropriate TCP receive buffer space.
559  */
560 void tcp_rcv_space_adjust(struct sock *sk)
561 {
562 	struct tcp_sock *tp = tcp_sk(sk);
563 	int time;
564 	int copied;
565 
566 	time = tcp_time_stamp - tp->rcvq_space.time;
567 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
568 		return;
569 
570 	/* Number of bytes copied to user in last RTT */
571 	copied = tp->copied_seq - tp->rcvq_space.seq;
572 	if (copied <= tp->rcvq_space.space)
573 		goto new_measure;
574 
575 	/* A bit of theory :
576 	 * copied = bytes received in previous RTT, our base window
577 	 * To cope with packet losses, we need a 2x factor
578 	 * To cope with slow start, and sender growing its cwin by 100 %
579 	 * every RTT, we need a 4x factor, because the ACK we are sending
580 	 * now is for the next RTT, not the current one :
581 	 * <prev RTT . ><current RTT .. ><next RTT .... >
582 	 */
583 
584 	if (sysctl_tcp_moderate_rcvbuf &&
585 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
586 		int rcvwin, rcvmem, rcvbuf;
587 
588 		/* minimal window to cope with packet losses, assuming
589 		 * steady state. Add some cushion because of small variations.
590 		 */
591 		rcvwin = (copied << 1) + 16 * tp->advmss;
592 
593 		/* If rate increased by 25%,
594 		 *	assume slow start, rcvwin = 3 * copied
595 		 * If rate increased by 50%,
596 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
597 		 */
598 		if (copied >=
599 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
600 			if (copied >=
601 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
602 				rcvwin <<= 1;
603 			else
604 				rcvwin += (rcvwin >> 1);
605 		}
606 
607 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
608 		while (tcp_win_from_space(rcvmem) < tp->advmss)
609 			rcvmem += 128;
610 
611 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
612 		if (rcvbuf > sk->sk_rcvbuf) {
613 			sk->sk_rcvbuf = rcvbuf;
614 
615 			/* Make the window clamp follow along.  */
616 			tp->window_clamp = rcvwin;
617 		}
618 	}
619 	tp->rcvq_space.space = copied;
620 
621 new_measure:
622 	tp->rcvq_space.seq = tp->copied_seq;
623 	tp->rcvq_space.time = tcp_time_stamp;
624 }
625 
626 /* There is something which you must keep in mind when you analyze the
627  * behavior of the tp->ato delayed ack timeout interval.  When a
628  * connection starts up, we want to ack as quickly as possible.  The
629  * problem is that "good" TCP's do slow start at the beginning of data
630  * transmission.  The means that until we send the first few ACK's the
631  * sender will sit on his end and only queue most of his data, because
632  * he can only send snd_cwnd unacked packets at any given time.  For
633  * each ACK we send, he increments snd_cwnd and transmits more of his
634  * queue.  -DaveM
635  */
636 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
637 {
638 	struct tcp_sock *tp = tcp_sk(sk);
639 	struct inet_connection_sock *icsk = inet_csk(sk);
640 	u32 now;
641 
642 	inet_csk_schedule_ack(sk);
643 
644 	tcp_measure_rcv_mss(sk, skb);
645 
646 	tcp_rcv_rtt_measure(tp);
647 
648 	now = tcp_time_stamp;
649 
650 	if (!icsk->icsk_ack.ato) {
651 		/* The _first_ data packet received, initialize
652 		 * delayed ACK engine.
653 		 */
654 		tcp_incr_quickack(sk);
655 		icsk->icsk_ack.ato = TCP_ATO_MIN;
656 	} else {
657 		int m = now - icsk->icsk_ack.lrcvtime;
658 
659 		if (m <= TCP_ATO_MIN / 2) {
660 			/* The fastest case is the first. */
661 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
662 		} else if (m < icsk->icsk_ack.ato) {
663 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
664 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
665 				icsk->icsk_ack.ato = icsk->icsk_rto;
666 		} else if (m > icsk->icsk_rto) {
667 			/* Too long gap. Apparently sender failed to
668 			 * restart window, so that we send ACKs quickly.
669 			 */
670 			tcp_incr_quickack(sk);
671 			sk_mem_reclaim(sk);
672 		}
673 	}
674 	icsk->icsk_ack.lrcvtime = now;
675 
676 	tcp_ecn_check_ce(tp, skb);
677 
678 	if (skb->len >= 128)
679 		tcp_grow_window(sk, skb);
680 }
681 
682 /* Called to compute a smoothed rtt estimate. The data fed to this
683  * routine either comes from timestamps, or from segments that were
684  * known _not_ to have been retransmitted [see Karn/Partridge
685  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
686  * piece by Van Jacobson.
687  * NOTE: the next three routines used to be one big routine.
688  * To save cycles in the RFC 1323 implementation it was better to break
689  * it up into three procedures. -- erics
690  */
691 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
692 {
693 	struct tcp_sock *tp = tcp_sk(sk);
694 	long m = mrtt_us; /* RTT */
695 	u32 srtt = tp->srtt_us;
696 
697 	/*	The following amusing code comes from Jacobson's
698 	 *	article in SIGCOMM '88.  Note that rtt and mdev
699 	 *	are scaled versions of rtt and mean deviation.
700 	 *	This is designed to be as fast as possible
701 	 *	m stands for "measurement".
702 	 *
703 	 *	On a 1990 paper the rto value is changed to:
704 	 *	RTO = rtt + 4 * mdev
705 	 *
706 	 * Funny. This algorithm seems to be very broken.
707 	 * These formulae increase RTO, when it should be decreased, increase
708 	 * too slowly, when it should be increased quickly, decrease too quickly
709 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
710 	 * does not matter how to _calculate_ it. Seems, it was trap
711 	 * that VJ failed to avoid. 8)
712 	 */
713 	if (srtt != 0) {
714 		m -= (srtt >> 3);	/* m is now error in rtt est */
715 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
716 		if (m < 0) {
717 			m = -m;		/* m is now abs(error) */
718 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
719 			/* This is similar to one of Eifel findings.
720 			 * Eifel blocks mdev updates when rtt decreases.
721 			 * This solution is a bit different: we use finer gain
722 			 * for mdev in this case (alpha*beta).
723 			 * Like Eifel it also prevents growth of rto,
724 			 * but also it limits too fast rto decreases,
725 			 * happening in pure Eifel.
726 			 */
727 			if (m > 0)
728 				m >>= 3;
729 		} else {
730 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
731 		}
732 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
733 		if (tp->mdev_us > tp->mdev_max_us) {
734 			tp->mdev_max_us = tp->mdev_us;
735 			if (tp->mdev_max_us > tp->rttvar_us)
736 				tp->rttvar_us = tp->mdev_max_us;
737 		}
738 		if (after(tp->snd_una, tp->rtt_seq)) {
739 			if (tp->mdev_max_us < tp->rttvar_us)
740 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
741 			tp->rtt_seq = tp->snd_nxt;
742 			tp->mdev_max_us = tcp_rto_min_us(sk);
743 		}
744 	} else {
745 		/* no previous measure. */
746 		srtt = m << 3;		/* take the measured time to be rtt */
747 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
748 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
749 		tp->mdev_max_us = tp->rttvar_us;
750 		tp->rtt_seq = tp->snd_nxt;
751 	}
752 	tp->srtt_us = max(1U, srtt);
753 }
754 
755 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
756  * Note: TCP stack does not yet implement pacing.
757  * FQ packet scheduler can be used to implement cheap but effective
758  * TCP pacing, to smooth the burst on large writes when packets
759  * in flight is significantly lower than cwnd (or rwin)
760  */
761 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
762 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
763 
764 static void tcp_update_pacing_rate(struct sock *sk)
765 {
766 	const struct tcp_sock *tp = tcp_sk(sk);
767 	u64 rate;
768 
769 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
770 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
771 
772 	/* current rate is (cwnd * mss) / srtt
773 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
774 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
775 	 *
776 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
777 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
778 	 *	 end of slow start and should slow down.
779 	 */
780 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
781 		rate *= sysctl_tcp_pacing_ss_ratio;
782 	else
783 		rate *= sysctl_tcp_pacing_ca_ratio;
784 
785 	rate *= max(tp->snd_cwnd, tp->packets_out);
786 
787 	if (likely(tp->srtt_us))
788 		do_div(rate, tp->srtt_us);
789 
790 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
791 	 * without any lock. We want to make sure compiler wont store
792 	 * intermediate values in this location.
793 	 */
794 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
795 						sk->sk_max_pacing_rate);
796 }
797 
798 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
799  * routine referred to above.
800  */
801 static void tcp_set_rto(struct sock *sk)
802 {
803 	const struct tcp_sock *tp = tcp_sk(sk);
804 	/* Old crap is replaced with new one. 8)
805 	 *
806 	 * More seriously:
807 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
808 	 *    It cannot be less due to utterly erratic ACK generation made
809 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
810 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
811 	 *    is invisible. Actually, Linux-2.4 also generates erratic
812 	 *    ACKs in some circumstances.
813 	 */
814 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
815 
816 	/* 2. Fixups made earlier cannot be right.
817 	 *    If we do not estimate RTO correctly without them,
818 	 *    all the algo is pure shit and should be replaced
819 	 *    with correct one. It is exactly, which we pretend to do.
820 	 */
821 
822 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
823 	 * guarantees that rto is higher.
824 	 */
825 	tcp_bound_rto(sk);
826 }
827 
828 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
829 {
830 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
831 
832 	if (!cwnd)
833 		cwnd = TCP_INIT_CWND;
834 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836 
837 /*
838  * Packet counting of FACK is based on in-order assumptions, therefore TCP
839  * disables it when reordering is detected
840  */
841 void tcp_disable_fack(struct tcp_sock *tp)
842 {
843 	/* RFC3517 uses different metric in lost marker => reset on change */
844 	if (tcp_is_fack(tp))
845 		tp->lost_skb_hint = NULL;
846 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
847 }
848 
849 /* Take a notice that peer is sending D-SACKs */
850 static void tcp_dsack_seen(struct tcp_sock *tp)
851 {
852 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
853 }
854 
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 				  const int ts)
857 {
858 	struct tcp_sock *tp = tcp_sk(sk);
859 	if (metric > tp->reordering) {
860 		int mib_idx;
861 
862 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
863 
864 		/* This exciting event is worth to be remembered. 8) */
865 		if (ts)
866 			mib_idx = LINUX_MIB_TCPTSREORDER;
867 		else if (tcp_is_reno(tp))
868 			mib_idx = LINUX_MIB_TCPRENOREORDER;
869 		else if (tcp_is_fack(tp))
870 			mib_idx = LINUX_MIB_TCPFACKREORDER;
871 		else
872 			mib_idx = LINUX_MIB_TCPSACKREORDER;
873 
874 		NET_INC_STATS(sock_net(sk), mib_idx);
875 #if FASTRETRANS_DEBUG > 1
876 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
877 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
878 			 tp->reordering,
879 			 tp->fackets_out,
880 			 tp->sacked_out,
881 			 tp->undo_marker ? tp->undo_retrans : 0);
882 #endif
883 		tcp_disable_fack(tp);
884 	}
885 
886 	if (metric > 0)
887 		tcp_disable_early_retrans(tp);
888 	tp->rack.reord = 1;
889 }
890 
891 /* This must be called before lost_out is incremented */
892 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
893 {
894 	if (!tp->retransmit_skb_hint ||
895 	    before(TCP_SKB_CB(skb)->seq,
896 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
897 		tp->retransmit_skb_hint = skb;
898 
899 	if (!tp->lost_out ||
900 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
901 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
902 }
903 
904 /* Sum the number of packets on the wire we have marked as lost.
905  * There are two cases we care about here:
906  * a) Packet hasn't been marked lost (nor retransmitted),
907  *    and this is the first loss.
908  * b) Packet has been marked both lost and retransmitted,
909  *    and this means we think it was lost again.
910  */
911 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
912 {
913 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
914 
915 	if (!(sacked & TCPCB_LOST) ||
916 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
917 		tp->lost += tcp_skb_pcount(skb);
918 }
919 
920 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
921 {
922 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
923 		tcp_verify_retransmit_hint(tp, skb);
924 
925 		tp->lost_out += tcp_skb_pcount(skb);
926 		tcp_sum_lost(tp, skb);
927 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
928 	}
929 }
930 
931 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
932 {
933 	tcp_verify_retransmit_hint(tp, skb);
934 
935 	tcp_sum_lost(tp, skb);
936 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
937 		tp->lost_out += tcp_skb_pcount(skb);
938 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
939 	}
940 }
941 
942 /* This procedure tags the retransmission queue when SACKs arrive.
943  *
944  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
945  * Packets in queue with these bits set are counted in variables
946  * sacked_out, retrans_out and lost_out, correspondingly.
947  *
948  * Valid combinations are:
949  * Tag  InFlight	Description
950  * 0	1		- orig segment is in flight.
951  * S	0		- nothing flies, orig reached receiver.
952  * L	0		- nothing flies, orig lost by net.
953  * R	2		- both orig and retransmit are in flight.
954  * L|R	1		- orig is lost, retransmit is in flight.
955  * S|R  1		- orig reached receiver, retrans is still in flight.
956  * (L|S|R is logically valid, it could occur when L|R is sacked,
957  *  but it is equivalent to plain S and code short-curcuits it to S.
958  *  L|S is logically invalid, it would mean -1 packet in flight 8))
959  *
960  * These 6 states form finite state machine, controlled by the following events:
961  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
962  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
963  * 3. Loss detection event of two flavors:
964  *	A. Scoreboard estimator decided the packet is lost.
965  *	   A'. Reno "three dupacks" marks head of queue lost.
966  *	   A''. Its FACK modification, head until snd.fack is lost.
967  *	B. SACK arrives sacking SND.NXT at the moment, when the
968  *	   segment was retransmitted.
969  * 4. D-SACK added new rule: D-SACK changes any tag to S.
970  *
971  * It is pleasant to note, that state diagram turns out to be commutative,
972  * so that we are allowed not to be bothered by order of our actions,
973  * when multiple events arrive simultaneously. (see the function below).
974  *
975  * Reordering detection.
976  * --------------------
977  * Reordering metric is maximal distance, which a packet can be displaced
978  * in packet stream. With SACKs we can estimate it:
979  *
980  * 1. SACK fills old hole and the corresponding segment was not
981  *    ever retransmitted -> reordering. Alas, we cannot use it
982  *    when segment was retransmitted.
983  * 2. The last flaw is solved with D-SACK. D-SACK arrives
984  *    for retransmitted and already SACKed segment -> reordering..
985  * Both of these heuristics are not used in Loss state, when we cannot
986  * account for retransmits accurately.
987  *
988  * SACK block validation.
989  * ----------------------
990  *
991  * SACK block range validation checks that the received SACK block fits to
992  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
993  * Note that SND.UNA is not included to the range though being valid because
994  * it means that the receiver is rather inconsistent with itself reporting
995  * SACK reneging when it should advance SND.UNA. Such SACK block this is
996  * perfectly valid, however, in light of RFC2018 which explicitly states
997  * that "SACK block MUST reflect the newest segment.  Even if the newest
998  * segment is going to be discarded ...", not that it looks very clever
999  * in case of head skb. Due to potentional receiver driven attacks, we
1000  * choose to avoid immediate execution of a walk in write queue due to
1001  * reneging and defer head skb's loss recovery to standard loss recovery
1002  * procedure that will eventually trigger (nothing forbids us doing this).
1003  *
1004  * Implements also blockage to start_seq wrap-around. Problem lies in the
1005  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1006  * there's no guarantee that it will be before snd_nxt (n). The problem
1007  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1008  * wrap (s_w):
1009  *
1010  *         <- outs wnd ->                          <- wrapzone ->
1011  *         u     e      n                         u_w   e_w  s n_w
1012  *         |     |      |                          |     |   |  |
1013  * |<------------+------+----- TCP seqno space --------------+---------->|
1014  * ...-- <2^31 ->|                                           |<--------...
1015  * ...---- >2^31 ------>|                                    |<--------...
1016  *
1017  * Current code wouldn't be vulnerable but it's better still to discard such
1018  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1019  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1020  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1021  * equal to the ideal case (infinite seqno space without wrap caused issues).
1022  *
1023  * With D-SACK the lower bound is extended to cover sequence space below
1024  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1025  * again, D-SACK block must not to go across snd_una (for the same reason as
1026  * for the normal SACK blocks, explained above). But there all simplicity
1027  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1028  * fully below undo_marker they do not affect behavior in anyway and can
1029  * therefore be safely ignored. In rare cases (which are more or less
1030  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1031  * fragmentation and packet reordering past skb's retransmission. To consider
1032  * them correctly, the acceptable range must be extended even more though
1033  * the exact amount is rather hard to quantify. However, tp->max_window can
1034  * be used as an exaggerated estimate.
1035  */
1036 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1037 				   u32 start_seq, u32 end_seq)
1038 {
1039 	/* Too far in future, or reversed (interpretation is ambiguous) */
1040 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1041 		return false;
1042 
1043 	/* Nasty start_seq wrap-around check (see comments above) */
1044 	if (!before(start_seq, tp->snd_nxt))
1045 		return false;
1046 
1047 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1048 	 * start_seq == snd_una is non-sensical (see comments above)
1049 	 */
1050 	if (after(start_seq, tp->snd_una))
1051 		return true;
1052 
1053 	if (!is_dsack || !tp->undo_marker)
1054 		return false;
1055 
1056 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1057 	if (after(end_seq, tp->snd_una))
1058 		return false;
1059 
1060 	if (!before(start_seq, tp->undo_marker))
1061 		return true;
1062 
1063 	/* Too old */
1064 	if (!after(end_seq, tp->undo_marker))
1065 		return false;
1066 
1067 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1068 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1069 	 */
1070 	return !before(start_seq, end_seq - tp->max_window);
1071 }
1072 
1073 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1074 			    struct tcp_sack_block_wire *sp, int num_sacks,
1075 			    u32 prior_snd_una)
1076 {
1077 	struct tcp_sock *tp = tcp_sk(sk);
1078 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1079 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1080 	bool dup_sack = false;
1081 
1082 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1083 		dup_sack = true;
1084 		tcp_dsack_seen(tp);
1085 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1086 	} else if (num_sacks > 1) {
1087 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1088 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1089 
1090 		if (!after(end_seq_0, end_seq_1) &&
1091 		    !before(start_seq_0, start_seq_1)) {
1092 			dup_sack = true;
1093 			tcp_dsack_seen(tp);
1094 			NET_INC_STATS(sock_net(sk),
1095 					LINUX_MIB_TCPDSACKOFORECV);
1096 		}
1097 	}
1098 
1099 	/* D-SACK for already forgotten data... Do dumb counting. */
1100 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1101 	    !after(end_seq_0, prior_snd_una) &&
1102 	    after(end_seq_0, tp->undo_marker))
1103 		tp->undo_retrans--;
1104 
1105 	return dup_sack;
1106 }
1107 
1108 struct tcp_sacktag_state {
1109 	int	reord;
1110 	int	fack_count;
1111 	/* Timestamps for earliest and latest never-retransmitted segment
1112 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1113 	 * but congestion control should still get an accurate delay signal.
1114 	 */
1115 	struct skb_mstamp first_sackt;
1116 	struct skb_mstamp last_sackt;
1117 	struct rate_sample *rate;
1118 	int	flag;
1119 };
1120 
1121 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1122  * the incoming SACK may not exactly match but we can find smaller MSS
1123  * aligned portion of it that matches. Therefore we might need to fragment
1124  * which may fail and creates some hassle (caller must handle error case
1125  * returns).
1126  *
1127  * FIXME: this could be merged to shift decision code
1128  */
1129 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1130 				  u32 start_seq, u32 end_seq)
1131 {
1132 	int err;
1133 	bool in_sack;
1134 	unsigned int pkt_len;
1135 	unsigned int mss;
1136 
1137 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1138 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1139 
1140 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1141 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1142 		mss = tcp_skb_mss(skb);
1143 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1144 
1145 		if (!in_sack) {
1146 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1147 			if (pkt_len < mss)
1148 				pkt_len = mss;
1149 		} else {
1150 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1151 			if (pkt_len < mss)
1152 				return -EINVAL;
1153 		}
1154 
1155 		/* Round if necessary so that SACKs cover only full MSSes
1156 		 * and/or the remaining small portion (if present)
1157 		 */
1158 		if (pkt_len > mss) {
1159 			unsigned int new_len = (pkt_len / mss) * mss;
1160 			if (!in_sack && new_len < pkt_len) {
1161 				new_len += mss;
1162 				if (new_len >= skb->len)
1163 					return 0;
1164 			}
1165 			pkt_len = new_len;
1166 		}
1167 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1168 		if (err < 0)
1169 			return err;
1170 	}
1171 
1172 	return in_sack;
1173 }
1174 
1175 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1176 static u8 tcp_sacktag_one(struct sock *sk,
1177 			  struct tcp_sacktag_state *state, u8 sacked,
1178 			  u32 start_seq, u32 end_seq,
1179 			  int dup_sack, int pcount,
1180 			  const struct skb_mstamp *xmit_time)
1181 {
1182 	struct tcp_sock *tp = tcp_sk(sk);
1183 	int fack_count = state->fack_count;
1184 
1185 	/* Account D-SACK for retransmitted packet. */
1186 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1187 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1188 		    after(end_seq, tp->undo_marker))
1189 			tp->undo_retrans--;
1190 		if (sacked & TCPCB_SACKED_ACKED)
1191 			state->reord = min(fack_count, state->reord);
1192 	}
1193 
1194 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1195 	if (!after(end_seq, tp->snd_una))
1196 		return sacked;
1197 
1198 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1199 		tcp_rack_advance(tp, xmit_time, sacked);
1200 
1201 		if (sacked & TCPCB_SACKED_RETRANS) {
1202 			/* If the segment is not tagged as lost,
1203 			 * we do not clear RETRANS, believing
1204 			 * that retransmission is still in flight.
1205 			 */
1206 			if (sacked & TCPCB_LOST) {
1207 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1208 				tp->lost_out -= pcount;
1209 				tp->retrans_out -= pcount;
1210 			}
1211 		} else {
1212 			if (!(sacked & TCPCB_RETRANS)) {
1213 				/* New sack for not retransmitted frame,
1214 				 * which was in hole. It is reordering.
1215 				 */
1216 				if (before(start_seq,
1217 					   tcp_highest_sack_seq(tp)))
1218 					state->reord = min(fack_count,
1219 							   state->reord);
1220 				if (!after(end_seq, tp->high_seq))
1221 					state->flag |= FLAG_ORIG_SACK_ACKED;
1222 				if (state->first_sackt.v64 == 0)
1223 					state->first_sackt = *xmit_time;
1224 				state->last_sackt = *xmit_time;
1225 			}
1226 
1227 			if (sacked & TCPCB_LOST) {
1228 				sacked &= ~TCPCB_LOST;
1229 				tp->lost_out -= pcount;
1230 			}
1231 		}
1232 
1233 		sacked |= TCPCB_SACKED_ACKED;
1234 		state->flag |= FLAG_DATA_SACKED;
1235 		tp->sacked_out += pcount;
1236 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1237 
1238 		fack_count += pcount;
1239 
1240 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1241 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1242 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1243 			tp->lost_cnt_hint += pcount;
1244 
1245 		if (fack_count > tp->fackets_out)
1246 			tp->fackets_out = fack_count;
1247 	}
1248 
1249 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1250 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1251 	 * are accounted above as well.
1252 	 */
1253 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1254 		sacked &= ~TCPCB_SACKED_RETRANS;
1255 		tp->retrans_out -= pcount;
1256 	}
1257 
1258 	return sacked;
1259 }
1260 
1261 /* Shift newly-SACKed bytes from this skb to the immediately previous
1262  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1263  */
1264 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1265 			    struct tcp_sacktag_state *state,
1266 			    unsigned int pcount, int shifted, int mss,
1267 			    bool dup_sack)
1268 {
1269 	struct tcp_sock *tp = tcp_sk(sk);
1270 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1271 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1272 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1273 
1274 	BUG_ON(!pcount);
1275 
1276 	/* Adjust counters and hints for the newly sacked sequence
1277 	 * range but discard the return value since prev is already
1278 	 * marked. We must tag the range first because the seq
1279 	 * advancement below implicitly advances
1280 	 * tcp_highest_sack_seq() when skb is highest_sack.
1281 	 */
1282 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1283 			start_seq, end_seq, dup_sack, pcount,
1284 			&skb->skb_mstamp);
1285 	tcp_rate_skb_delivered(sk, skb, state->rate);
1286 
1287 	if (skb == tp->lost_skb_hint)
1288 		tp->lost_cnt_hint += pcount;
1289 
1290 	TCP_SKB_CB(prev)->end_seq += shifted;
1291 	TCP_SKB_CB(skb)->seq += shifted;
1292 
1293 	tcp_skb_pcount_add(prev, pcount);
1294 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1295 	tcp_skb_pcount_add(skb, -pcount);
1296 
1297 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1298 	 * in theory this shouldn't be necessary but as long as DSACK
1299 	 * code can come after this skb later on it's better to keep
1300 	 * setting gso_size to something.
1301 	 */
1302 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1303 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1304 
1305 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1306 	if (tcp_skb_pcount(skb) <= 1)
1307 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1308 
1309 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1310 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1311 
1312 	if (skb->len > 0) {
1313 		BUG_ON(!tcp_skb_pcount(skb));
1314 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1315 		return false;
1316 	}
1317 
1318 	/* Whole SKB was eaten :-) */
1319 
1320 	if (skb == tp->retransmit_skb_hint)
1321 		tp->retransmit_skb_hint = prev;
1322 	if (skb == tp->lost_skb_hint) {
1323 		tp->lost_skb_hint = prev;
1324 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1325 	}
1326 
1327 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1328 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1329 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1330 		TCP_SKB_CB(prev)->end_seq++;
1331 
1332 	if (skb == tcp_highest_sack(sk))
1333 		tcp_advance_highest_sack(sk, skb);
1334 
1335 	tcp_skb_collapse_tstamp(prev, skb);
1336 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1337 		TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1338 
1339 	tcp_unlink_write_queue(skb, sk);
1340 	sk_wmem_free_skb(sk, skb);
1341 
1342 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1343 
1344 	return true;
1345 }
1346 
1347 /* I wish gso_size would have a bit more sane initialization than
1348  * something-or-zero which complicates things
1349  */
1350 static int tcp_skb_seglen(const struct sk_buff *skb)
1351 {
1352 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1353 }
1354 
1355 /* Shifting pages past head area doesn't work */
1356 static int skb_can_shift(const struct sk_buff *skb)
1357 {
1358 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1359 }
1360 
1361 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1362  * skb.
1363  */
1364 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1365 					  struct tcp_sacktag_state *state,
1366 					  u32 start_seq, u32 end_seq,
1367 					  bool dup_sack)
1368 {
1369 	struct tcp_sock *tp = tcp_sk(sk);
1370 	struct sk_buff *prev;
1371 	int mss;
1372 	int pcount = 0;
1373 	int len;
1374 	int in_sack;
1375 
1376 	if (!sk_can_gso(sk))
1377 		goto fallback;
1378 
1379 	/* Normally R but no L won't result in plain S */
1380 	if (!dup_sack &&
1381 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1382 		goto fallback;
1383 	if (!skb_can_shift(skb))
1384 		goto fallback;
1385 	/* This frame is about to be dropped (was ACKed). */
1386 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1387 		goto fallback;
1388 
1389 	/* Can only happen with delayed DSACK + discard craziness */
1390 	if (unlikely(skb == tcp_write_queue_head(sk)))
1391 		goto fallback;
1392 	prev = tcp_write_queue_prev(sk, skb);
1393 
1394 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1395 		goto fallback;
1396 
1397 	if (!tcp_skb_can_collapse_to(prev))
1398 		goto fallback;
1399 
1400 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1401 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1402 
1403 	if (in_sack) {
1404 		len = skb->len;
1405 		pcount = tcp_skb_pcount(skb);
1406 		mss = tcp_skb_seglen(skb);
1407 
1408 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1409 		 * drop this restriction as unnecessary
1410 		 */
1411 		if (mss != tcp_skb_seglen(prev))
1412 			goto fallback;
1413 	} else {
1414 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1415 			goto noop;
1416 		/* CHECKME: This is non-MSS split case only?, this will
1417 		 * cause skipped skbs due to advancing loop btw, original
1418 		 * has that feature too
1419 		 */
1420 		if (tcp_skb_pcount(skb) <= 1)
1421 			goto noop;
1422 
1423 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1424 		if (!in_sack) {
1425 			/* TODO: head merge to next could be attempted here
1426 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1427 			 * though it might not be worth of the additional hassle
1428 			 *
1429 			 * ...we can probably just fallback to what was done
1430 			 * previously. We could try merging non-SACKed ones
1431 			 * as well but it probably isn't going to buy off
1432 			 * because later SACKs might again split them, and
1433 			 * it would make skb timestamp tracking considerably
1434 			 * harder problem.
1435 			 */
1436 			goto fallback;
1437 		}
1438 
1439 		len = end_seq - TCP_SKB_CB(skb)->seq;
1440 		BUG_ON(len < 0);
1441 		BUG_ON(len > skb->len);
1442 
1443 		/* MSS boundaries should be honoured or else pcount will
1444 		 * severely break even though it makes things bit trickier.
1445 		 * Optimize common case to avoid most of the divides
1446 		 */
1447 		mss = tcp_skb_mss(skb);
1448 
1449 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1450 		 * drop this restriction as unnecessary
1451 		 */
1452 		if (mss != tcp_skb_seglen(prev))
1453 			goto fallback;
1454 
1455 		if (len == mss) {
1456 			pcount = 1;
1457 		} else if (len < mss) {
1458 			goto noop;
1459 		} else {
1460 			pcount = len / mss;
1461 			len = pcount * mss;
1462 		}
1463 	}
1464 
1465 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1466 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1467 		goto fallback;
1468 
1469 	if (!skb_shift(prev, skb, len))
1470 		goto fallback;
1471 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1472 		goto out;
1473 
1474 	/* Hole filled allows collapsing with the next as well, this is very
1475 	 * useful when hole on every nth skb pattern happens
1476 	 */
1477 	if (prev == tcp_write_queue_tail(sk))
1478 		goto out;
1479 	skb = tcp_write_queue_next(sk, prev);
1480 
1481 	if (!skb_can_shift(skb) ||
1482 	    (skb == tcp_send_head(sk)) ||
1483 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484 	    (mss != tcp_skb_seglen(skb)))
1485 		goto out;
1486 
1487 	len = skb->len;
1488 	if (skb_shift(prev, skb, len)) {
1489 		pcount += tcp_skb_pcount(skb);
1490 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1491 	}
1492 
1493 out:
1494 	state->fack_count += pcount;
1495 	return prev;
1496 
1497 noop:
1498 	return skb;
1499 
1500 fallback:
1501 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502 	return NULL;
1503 }
1504 
1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 					struct tcp_sack_block *next_dup,
1507 					struct tcp_sacktag_state *state,
1508 					u32 start_seq, u32 end_seq,
1509 					bool dup_sack_in)
1510 {
1511 	struct tcp_sock *tp = tcp_sk(sk);
1512 	struct sk_buff *tmp;
1513 
1514 	tcp_for_write_queue_from(skb, sk) {
1515 		int in_sack = 0;
1516 		bool dup_sack = dup_sack_in;
1517 
1518 		if (skb == tcp_send_head(sk))
1519 			break;
1520 
1521 		/* queue is in-order => we can short-circuit the walk early */
1522 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1523 			break;
1524 
1525 		if (next_dup  &&
1526 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1527 			in_sack = tcp_match_skb_to_sack(sk, skb,
1528 							next_dup->start_seq,
1529 							next_dup->end_seq);
1530 			if (in_sack > 0)
1531 				dup_sack = true;
1532 		}
1533 
1534 		/* skb reference here is a bit tricky to get right, since
1535 		 * shifting can eat and free both this skb and the next,
1536 		 * so not even _safe variant of the loop is enough.
1537 		 */
1538 		if (in_sack <= 0) {
1539 			tmp = tcp_shift_skb_data(sk, skb, state,
1540 						 start_seq, end_seq, dup_sack);
1541 			if (tmp) {
1542 				if (tmp != skb) {
1543 					skb = tmp;
1544 					continue;
1545 				}
1546 
1547 				in_sack = 0;
1548 			} else {
1549 				in_sack = tcp_match_skb_to_sack(sk, skb,
1550 								start_seq,
1551 								end_seq);
1552 			}
1553 		}
1554 
1555 		if (unlikely(in_sack < 0))
1556 			break;
1557 
1558 		if (in_sack) {
1559 			TCP_SKB_CB(skb)->sacked =
1560 				tcp_sacktag_one(sk,
1561 						state,
1562 						TCP_SKB_CB(skb)->sacked,
1563 						TCP_SKB_CB(skb)->seq,
1564 						TCP_SKB_CB(skb)->end_seq,
1565 						dup_sack,
1566 						tcp_skb_pcount(skb),
1567 						&skb->skb_mstamp);
1568 			tcp_rate_skb_delivered(sk, skb, state->rate);
1569 
1570 			if (!before(TCP_SKB_CB(skb)->seq,
1571 				    tcp_highest_sack_seq(tp)))
1572 				tcp_advance_highest_sack(sk, skb);
1573 		}
1574 
1575 		state->fack_count += tcp_skb_pcount(skb);
1576 	}
1577 	return skb;
1578 }
1579 
1580 /* Avoid all extra work that is being done by sacktag while walking in
1581  * a normal way
1582  */
1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1584 					struct tcp_sacktag_state *state,
1585 					u32 skip_to_seq)
1586 {
1587 	tcp_for_write_queue_from(skb, sk) {
1588 		if (skb == tcp_send_head(sk))
1589 			break;
1590 
1591 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1592 			break;
1593 
1594 		state->fack_count += tcp_skb_pcount(skb);
1595 	}
1596 	return skb;
1597 }
1598 
1599 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600 						struct sock *sk,
1601 						struct tcp_sack_block *next_dup,
1602 						struct tcp_sacktag_state *state,
1603 						u32 skip_to_seq)
1604 {
1605 	if (!next_dup)
1606 		return skb;
1607 
1608 	if (before(next_dup->start_seq, skip_to_seq)) {
1609 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611 				       next_dup->start_seq, next_dup->end_seq,
1612 				       1);
1613 	}
1614 
1615 	return skb;
1616 }
1617 
1618 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1619 {
1620 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621 }
1622 
1623 static int
1624 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1625 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1626 {
1627 	struct tcp_sock *tp = tcp_sk(sk);
1628 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629 				    TCP_SKB_CB(ack_skb)->sacked);
1630 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1631 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1632 	struct tcp_sack_block *cache;
1633 	struct sk_buff *skb;
1634 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1635 	int used_sacks;
1636 	bool found_dup_sack = false;
1637 	int i, j;
1638 	int first_sack_index;
1639 
1640 	state->flag = 0;
1641 	state->reord = tp->packets_out;
1642 
1643 	if (!tp->sacked_out) {
1644 		if (WARN_ON(tp->fackets_out))
1645 			tp->fackets_out = 0;
1646 		tcp_highest_sack_reset(sk);
1647 	}
1648 
1649 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1650 					 num_sacks, prior_snd_una);
1651 	if (found_dup_sack) {
1652 		state->flag |= FLAG_DSACKING_ACK;
1653 		tp->delivered++; /* A spurious retransmission is delivered */
1654 	}
1655 
1656 	/* Eliminate too old ACKs, but take into
1657 	 * account more or less fresh ones, they can
1658 	 * contain valid SACK info.
1659 	 */
1660 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 		return 0;
1662 
1663 	if (!tp->packets_out)
1664 		goto out;
1665 
1666 	used_sacks = 0;
1667 	first_sack_index = 0;
1668 	for (i = 0; i < num_sacks; i++) {
1669 		bool dup_sack = !i && found_dup_sack;
1670 
1671 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1672 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1673 
1674 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1675 					    sp[used_sacks].start_seq,
1676 					    sp[used_sacks].end_seq)) {
1677 			int mib_idx;
1678 
1679 			if (dup_sack) {
1680 				if (!tp->undo_marker)
1681 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1682 				else
1683 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1684 			} else {
1685 				/* Don't count olds caused by ACK reordering */
1686 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1687 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1688 					continue;
1689 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1690 			}
1691 
1692 			NET_INC_STATS(sock_net(sk), mib_idx);
1693 			if (i == 0)
1694 				first_sack_index = -1;
1695 			continue;
1696 		}
1697 
1698 		/* Ignore very old stuff early */
1699 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1700 			continue;
1701 
1702 		used_sacks++;
1703 	}
1704 
1705 	/* order SACK blocks to allow in order walk of the retrans queue */
1706 	for (i = used_sacks - 1; i > 0; i--) {
1707 		for (j = 0; j < i; j++) {
1708 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1709 				swap(sp[j], sp[j + 1]);
1710 
1711 				/* Track where the first SACK block goes to */
1712 				if (j == first_sack_index)
1713 					first_sack_index = j + 1;
1714 			}
1715 		}
1716 	}
1717 
1718 	skb = tcp_write_queue_head(sk);
1719 	state->fack_count = 0;
1720 	i = 0;
1721 
1722 	if (!tp->sacked_out) {
1723 		/* It's already past, so skip checking against it */
1724 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1725 	} else {
1726 		cache = tp->recv_sack_cache;
1727 		/* Skip empty blocks in at head of the cache */
1728 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1729 		       !cache->end_seq)
1730 			cache++;
1731 	}
1732 
1733 	while (i < used_sacks) {
1734 		u32 start_seq = sp[i].start_seq;
1735 		u32 end_seq = sp[i].end_seq;
1736 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1737 		struct tcp_sack_block *next_dup = NULL;
1738 
1739 		if (found_dup_sack && ((i + 1) == first_sack_index))
1740 			next_dup = &sp[i + 1];
1741 
1742 		/* Skip too early cached blocks */
1743 		while (tcp_sack_cache_ok(tp, cache) &&
1744 		       !before(start_seq, cache->end_seq))
1745 			cache++;
1746 
1747 		/* Can skip some work by looking recv_sack_cache? */
1748 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1749 		    after(end_seq, cache->start_seq)) {
1750 
1751 			/* Head todo? */
1752 			if (before(start_seq, cache->start_seq)) {
1753 				skb = tcp_sacktag_skip(skb, sk, state,
1754 						       start_seq);
1755 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1756 						       state,
1757 						       start_seq,
1758 						       cache->start_seq,
1759 						       dup_sack);
1760 			}
1761 
1762 			/* Rest of the block already fully processed? */
1763 			if (!after(end_seq, cache->end_seq))
1764 				goto advance_sp;
1765 
1766 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1767 						       state,
1768 						       cache->end_seq);
1769 
1770 			/* ...tail remains todo... */
1771 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1772 				/* ...but better entrypoint exists! */
1773 				skb = tcp_highest_sack(sk);
1774 				if (!skb)
1775 					break;
1776 				state->fack_count = tp->fackets_out;
1777 				cache++;
1778 				goto walk;
1779 			}
1780 
1781 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1782 			/* Check overlap against next cached too (past this one already) */
1783 			cache++;
1784 			continue;
1785 		}
1786 
1787 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1788 			skb = tcp_highest_sack(sk);
1789 			if (!skb)
1790 				break;
1791 			state->fack_count = tp->fackets_out;
1792 		}
1793 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1794 
1795 walk:
1796 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1797 				       start_seq, end_seq, dup_sack);
1798 
1799 advance_sp:
1800 		i++;
1801 	}
1802 
1803 	/* Clear the head of the cache sack blocks so we can skip it next time */
1804 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1805 		tp->recv_sack_cache[i].start_seq = 0;
1806 		tp->recv_sack_cache[i].end_seq = 0;
1807 	}
1808 	for (j = 0; j < used_sacks; j++)
1809 		tp->recv_sack_cache[i++] = sp[j];
1810 
1811 	if ((state->reord < tp->fackets_out) &&
1812 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1813 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1814 
1815 	tcp_verify_left_out(tp);
1816 out:
1817 
1818 #if FASTRETRANS_DEBUG > 0
1819 	WARN_ON((int)tp->sacked_out < 0);
1820 	WARN_ON((int)tp->lost_out < 0);
1821 	WARN_ON((int)tp->retrans_out < 0);
1822 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1823 #endif
1824 	return state->flag;
1825 }
1826 
1827 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1828  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1829  */
1830 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1831 {
1832 	u32 holes;
1833 
1834 	holes = max(tp->lost_out, 1U);
1835 	holes = min(holes, tp->packets_out);
1836 
1837 	if ((tp->sacked_out + holes) > tp->packets_out) {
1838 		tp->sacked_out = tp->packets_out - holes;
1839 		return true;
1840 	}
1841 	return false;
1842 }
1843 
1844 /* If we receive more dupacks than we expected counting segments
1845  * in assumption of absent reordering, interpret this as reordering.
1846  * The only another reason could be bug in receiver TCP.
1847  */
1848 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1849 {
1850 	struct tcp_sock *tp = tcp_sk(sk);
1851 	if (tcp_limit_reno_sacked(tp))
1852 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1853 }
1854 
1855 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1856 
1857 static void tcp_add_reno_sack(struct sock *sk)
1858 {
1859 	struct tcp_sock *tp = tcp_sk(sk);
1860 	u32 prior_sacked = tp->sacked_out;
1861 
1862 	tp->sacked_out++;
1863 	tcp_check_reno_reordering(sk, 0);
1864 	if (tp->sacked_out > prior_sacked)
1865 		tp->delivered++; /* Some out-of-order packet is delivered */
1866 	tcp_verify_left_out(tp);
1867 }
1868 
1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1870 
1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 
1875 	if (acked > 0) {
1876 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1877 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1878 		if (acked - 1 >= tp->sacked_out)
1879 			tp->sacked_out = 0;
1880 		else
1881 			tp->sacked_out -= acked - 1;
1882 	}
1883 	tcp_check_reno_reordering(sk, acked);
1884 	tcp_verify_left_out(tp);
1885 }
1886 
1887 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1888 {
1889 	tp->sacked_out = 0;
1890 }
1891 
1892 void tcp_clear_retrans(struct tcp_sock *tp)
1893 {
1894 	tp->retrans_out = 0;
1895 	tp->lost_out = 0;
1896 	tp->undo_marker = 0;
1897 	tp->undo_retrans = -1;
1898 	tp->fackets_out = 0;
1899 	tp->sacked_out = 0;
1900 }
1901 
1902 static inline void tcp_init_undo(struct tcp_sock *tp)
1903 {
1904 	tp->undo_marker = tp->snd_una;
1905 	/* Retransmission still in flight may cause DSACKs later. */
1906 	tp->undo_retrans = tp->retrans_out ? : -1;
1907 }
1908 
1909 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1910  * and reset tags completely, otherwise preserve SACKs. If receiver
1911  * dropped its ofo queue, we will know this due to reneging detection.
1912  */
1913 void tcp_enter_loss(struct sock *sk)
1914 {
1915 	const struct inet_connection_sock *icsk = inet_csk(sk);
1916 	struct tcp_sock *tp = tcp_sk(sk);
1917 	struct net *net = sock_net(sk);
1918 	struct sk_buff *skb;
1919 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1920 	bool is_reneg;			/* is receiver reneging on SACKs? */
1921 	bool mark_lost;
1922 
1923 	/* Reduce ssthresh if it has not yet been made inside this window. */
1924 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1925 	    !after(tp->high_seq, tp->snd_una) ||
1926 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1927 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1928 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1929 		tcp_ca_event(sk, CA_EVENT_LOSS);
1930 		tcp_init_undo(tp);
1931 	}
1932 	tp->snd_cwnd	   = 1;
1933 	tp->snd_cwnd_cnt   = 0;
1934 	tp->snd_cwnd_stamp = tcp_time_stamp;
1935 
1936 	tp->retrans_out = 0;
1937 	tp->lost_out = 0;
1938 
1939 	if (tcp_is_reno(tp))
1940 		tcp_reset_reno_sack(tp);
1941 
1942 	skb = tcp_write_queue_head(sk);
1943 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1944 	if (is_reneg) {
1945 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1946 		tp->sacked_out = 0;
1947 		tp->fackets_out = 0;
1948 	}
1949 	tcp_clear_all_retrans_hints(tp);
1950 
1951 	tcp_for_write_queue(skb, sk) {
1952 		if (skb == tcp_send_head(sk))
1953 			break;
1954 
1955 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1956 			     is_reneg);
1957 		if (mark_lost)
1958 			tcp_sum_lost(tp, skb);
1959 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1960 		if (mark_lost) {
1961 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1962 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1963 			tp->lost_out += tcp_skb_pcount(skb);
1964 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1965 		}
1966 	}
1967 	tcp_verify_left_out(tp);
1968 
1969 	/* Timeout in disordered state after receiving substantial DUPACKs
1970 	 * suggests that the degree of reordering is over-estimated.
1971 	 */
1972 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1973 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1974 		tp->reordering = min_t(unsigned int, tp->reordering,
1975 				       net->ipv4.sysctl_tcp_reordering);
1976 	tcp_set_ca_state(sk, TCP_CA_Loss);
1977 	tp->high_seq = tp->snd_nxt;
1978 	tcp_ecn_queue_cwr(tp);
1979 
1980 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1981 	 * loss recovery is underway except recurring timeout(s) on
1982 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1983 	 */
1984 	tp->frto = sysctl_tcp_frto &&
1985 		   (new_recovery || icsk->icsk_retransmits) &&
1986 		   !inet_csk(sk)->icsk_mtup.probe_size;
1987 }
1988 
1989 /* If ACK arrived pointing to a remembered SACK, it means that our
1990  * remembered SACKs do not reflect real state of receiver i.e.
1991  * receiver _host_ is heavily congested (or buggy).
1992  *
1993  * To avoid big spurious retransmission bursts due to transient SACK
1994  * scoreboard oddities that look like reneging, we give the receiver a
1995  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1996  * restore sanity to the SACK scoreboard. If the apparent reneging
1997  * persists until this RTO then we'll clear the SACK scoreboard.
1998  */
1999 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2000 {
2001 	if (flag & FLAG_SACK_RENEGING) {
2002 		struct tcp_sock *tp = tcp_sk(sk);
2003 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2004 					  msecs_to_jiffies(10));
2005 
2006 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2007 					  delay, TCP_RTO_MAX);
2008 		return true;
2009 	}
2010 	return false;
2011 }
2012 
2013 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2014 {
2015 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2016 }
2017 
2018 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2019  * counter when SACK is enabled (without SACK, sacked_out is used for
2020  * that purpose).
2021  *
2022  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2023  * segments up to the highest received SACK block so far and holes in
2024  * between them.
2025  *
2026  * With reordering, holes may still be in flight, so RFC3517 recovery
2027  * uses pure sacked_out (total number of SACKed segments) even though
2028  * it violates the RFC that uses duplicate ACKs, often these are equal
2029  * but when e.g. out-of-window ACKs or packet duplication occurs,
2030  * they differ. Since neither occurs due to loss, TCP should really
2031  * ignore them.
2032  */
2033 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2034 {
2035 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2036 }
2037 
2038 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2039 {
2040 	struct tcp_sock *tp = tcp_sk(sk);
2041 	unsigned long delay;
2042 
2043 	/* Delay early retransmit and entering fast recovery for
2044 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2045 	 * available, or RTO is scheduled to fire first.
2046 	 */
2047 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2048 	    (flag & FLAG_ECE) || !tp->srtt_us)
2049 		return false;
2050 
2051 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2052 		    msecs_to_jiffies(2));
2053 
2054 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2055 		return false;
2056 
2057 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2058 				  TCP_RTO_MAX);
2059 	return true;
2060 }
2061 
2062 /* Linux NewReno/SACK/FACK/ECN state machine.
2063  * --------------------------------------
2064  *
2065  * "Open"	Normal state, no dubious events, fast path.
2066  * "Disorder"   In all the respects it is "Open",
2067  *		but requires a bit more attention. It is entered when
2068  *		we see some SACKs or dupacks. It is split of "Open"
2069  *		mainly to move some processing from fast path to slow one.
2070  * "CWR"	CWND was reduced due to some Congestion Notification event.
2071  *		It can be ECN, ICMP source quench, local device congestion.
2072  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2073  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2074  *
2075  * tcp_fastretrans_alert() is entered:
2076  * - each incoming ACK, if state is not "Open"
2077  * - when arrived ACK is unusual, namely:
2078  *	* SACK
2079  *	* Duplicate ACK.
2080  *	* ECN ECE.
2081  *
2082  * Counting packets in flight is pretty simple.
2083  *
2084  *	in_flight = packets_out - left_out + retrans_out
2085  *
2086  *	packets_out is SND.NXT-SND.UNA counted in packets.
2087  *
2088  *	retrans_out is number of retransmitted segments.
2089  *
2090  *	left_out is number of segments left network, but not ACKed yet.
2091  *
2092  *		left_out = sacked_out + lost_out
2093  *
2094  *     sacked_out: Packets, which arrived to receiver out of order
2095  *		   and hence not ACKed. With SACKs this number is simply
2096  *		   amount of SACKed data. Even without SACKs
2097  *		   it is easy to give pretty reliable estimate of this number,
2098  *		   counting duplicate ACKs.
2099  *
2100  *       lost_out: Packets lost by network. TCP has no explicit
2101  *		   "loss notification" feedback from network (for now).
2102  *		   It means that this number can be only _guessed_.
2103  *		   Actually, it is the heuristics to predict lossage that
2104  *		   distinguishes different algorithms.
2105  *
2106  *	F.e. after RTO, when all the queue is considered as lost,
2107  *	lost_out = packets_out and in_flight = retrans_out.
2108  *
2109  *		Essentially, we have now two algorithms counting
2110  *		lost packets.
2111  *
2112  *		FACK: It is the simplest heuristics. As soon as we decided
2113  *		that something is lost, we decide that _all_ not SACKed
2114  *		packets until the most forward SACK are lost. I.e.
2115  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2116  *		It is absolutely correct estimate, if network does not reorder
2117  *		packets. And it loses any connection to reality when reordering
2118  *		takes place. We use FACK by default until reordering
2119  *		is suspected on the path to this destination.
2120  *
2121  *		NewReno: when Recovery is entered, we assume that one segment
2122  *		is lost (classic Reno). While we are in Recovery and
2123  *		a partial ACK arrives, we assume that one more packet
2124  *		is lost (NewReno). This heuristics are the same in NewReno
2125  *		and SACK.
2126  *
2127  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2128  *  deflation etc. CWND is real congestion window, never inflated, changes
2129  *  only according to classic VJ rules.
2130  *
2131  * Really tricky (and requiring careful tuning) part of algorithm
2132  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2133  * The first determines the moment _when_ we should reduce CWND and,
2134  * hence, slow down forward transmission. In fact, it determines the moment
2135  * when we decide that hole is caused by loss, rather than by a reorder.
2136  *
2137  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2138  * holes, caused by lost packets.
2139  *
2140  * And the most logically complicated part of algorithm is undo
2141  * heuristics. We detect false retransmits due to both too early
2142  * fast retransmit (reordering) and underestimated RTO, analyzing
2143  * timestamps and D-SACKs. When we detect that some segments were
2144  * retransmitted by mistake and CWND reduction was wrong, we undo
2145  * window reduction and abort recovery phase. This logic is hidden
2146  * inside several functions named tcp_try_undo_<something>.
2147  */
2148 
2149 /* This function decides, when we should leave Disordered state
2150  * and enter Recovery phase, reducing congestion window.
2151  *
2152  * Main question: may we further continue forward transmission
2153  * with the same cwnd?
2154  */
2155 static bool tcp_time_to_recover(struct sock *sk, int flag)
2156 {
2157 	struct tcp_sock *tp = tcp_sk(sk);
2158 	__u32 packets_out;
2159 	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2160 
2161 	/* Trick#1: The loss is proven. */
2162 	if (tp->lost_out)
2163 		return true;
2164 
2165 	/* Not-A-Trick#2 : Classic rule... */
2166 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2167 		return true;
2168 
2169 	/* Trick#4: It is still not OK... But will it be useful to delay
2170 	 * recovery more?
2171 	 */
2172 	packets_out = tp->packets_out;
2173 	if (packets_out <= tp->reordering &&
2174 	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2175 	    !tcp_may_send_now(sk)) {
2176 		/* We have nothing to send. This connection is limited
2177 		 * either by receiver window or by application.
2178 		 */
2179 		return true;
2180 	}
2181 
2182 	/* If a thin stream is detected, retransmit after first
2183 	 * received dupack. Employ only if SACK is supported in order
2184 	 * to avoid possible corner-case series of spurious retransmissions
2185 	 * Use only if there are no unsent data.
2186 	 */
2187 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2188 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2189 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2190 		return true;
2191 
2192 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2193 	 * retransmissions due to small network reorderings, we implement
2194 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2195 	 * interval if appropriate.
2196 	 */
2197 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2198 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2199 	    !tcp_may_send_now(sk))
2200 		return !tcp_pause_early_retransmit(sk, flag);
2201 
2202 	return false;
2203 }
2204 
2205 /* Detect loss in event "A" above by marking head of queue up as lost.
2206  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2207  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2208  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2209  * the maximum SACKed segments to pass before reaching this limit.
2210  */
2211 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2212 {
2213 	struct tcp_sock *tp = tcp_sk(sk);
2214 	struct sk_buff *skb;
2215 	int cnt, oldcnt, lost;
2216 	unsigned int mss;
2217 	/* Use SACK to deduce losses of new sequences sent during recovery */
2218 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2219 
2220 	WARN_ON(packets > tp->packets_out);
2221 	if (tp->lost_skb_hint) {
2222 		skb = tp->lost_skb_hint;
2223 		cnt = tp->lost_cnt_hint;
2224 		/* Head already handled? */
2225 		if (mark_head && skb != tcp_write_queue_head(sk))
2226 			return;
2227 	} else {
2228 		skb = tcp_write_queue_head(sk);
2229 		cnt = 0;
2230 	}
2231 
2232 	tcp_for_write_queue_from(skb, sk) {
2233 		if (skb == tcp_send_head(sk))
2234 			break;
2235 		/* TODO: do this better */
2236 		/* this is not the most efficient way to do this... */
2237 		tp->lost_skb_hint = skb;
2238 		tp->lost_cnt_hint = cnt;
2239 
2240 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2241 			break;
2242 
2243 		oldcnt = cnt;
2244 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2245 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2246 			cnt += tcp_skb_pcount(skb);
2247 
2248 		if (cnt > packets) {
2249 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2250 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2251 			    (oldcnt >= packets))
2252 				break;
2253 
2254 			mss = tcp_skb_mss(skb);
2255 			/* If needed, chop off the prefix to mark as lost. */
2256 			lost = (packets - oldcnt) * mss;
2257 			if (lost < skb->len &&
2258 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2259 				break;
2260 			cnt = packets;
2261 		}
2262 
2263 		tcp_skb_mark_lost(tp, skb);
2264 
2265 		if (mark_head)
2266 			break;
2267 	}
2268 	tcp_verify_left_out(tp);
2269 }
2270 
2271 /* Account newly detected lost packet(s) */
2272 
2273 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2274 {
2275 	struct tcp_sock *tp = tcp_sk(sk);
2276 
2277 	if (tcp_is_reno(tp)) {
2278 		tcp_mark_head_lost(sk, 1, 1);
2279 	} else if (tcp_is_fack(tp)) {
2280 		int lost = tp->fackets_out - tp->reordering;
2281 		if (lost <= 0)
2282 			lost = 1;
2283 		tcp_mark_head_lost(sk, lost, 0);
2284 	} else {
2285 		int sacked_upto = tp->sacked_out - tp->reordering;
2286 		if (sacked_upto >= 0)
2287 			tcp_mark_head_lost(sk, sacked_upto, 0);
2288 		else if (fast_rexmit)
2289 			tcp_mark_head_lost(sk, 1, 1);
2290 	}
2291 }
2292 
2293 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2294 {
2295 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2296 	       before(tp->rx_opt.rcv_tsecr, when);
2297 }
2298 
2299 /* skb is spurious retransmitted if the returned timestamp echo
2300  * reply is prior to the skb transmission time
2301  */
2302 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2303 				     const struct sk_buff *skb)
2304 {
2305 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2306 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2307 }
2308 
2309 /* Nothing was retransmitted or returned timestamp is less
2310  * than timestamp of the first retransmission.
2311  */
2312 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2313 {
2314 	return !tp->retrans_stamp ||
2315 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2316 }
2317 
2318 /* Undo procedures. */
2319 
2320 /* We can clear retrans_stamp when there are no retransmissions in the
2321  * window. It would seem that it is trivially available for us in
2322  * tp->retrans_out, however, that kind of assumptions doesn't consider
2323  * what will happen if errors occur when sending retransmission for the
2324  * second time. ...It could the that such segment has only
2325  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2326  * the head skb is enough except for some reneging corner cases that
2327  * are not worth the effort.
2328  *
2329  * Main reason for all this complexity is the fact that connection dying
2330  * time now depends on the validity of the retrans_stamp, in particular,
2331  * that successive retransmissions of a segment must not advance
2332  * retrans_stamp under any conditions.
2333  */
2334 static bool tcp_any_retrans_done(const struct sock *sk)
2335 {
2336 	const struct tcp_sock *tp = tcp_sk(sk);
2337 	struct sk_buff *skb;
2338 
2339 	if (tp->retrans_out)
2340 		return true;
2341 
2342 	skb = tcp_write_queue_head(sk);
2343 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2344 		return true;
2345 
2346 	return false;
2347 }
2348 
2349 #if FASTRETRANS_DEBUG > 1
2350 static void DBGUNDO(struct sock *sk, const char *msg)
2351 {
2352 	struct tcp_sock *tp = tcp_sk(sk);
2353 	struct inet_sock *inet = inet_sk(sk);
2354 
2355 	if (sk->sk_family == AF_INET) {
2356 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2357 			 msg,
2358 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2359 			 tp->snd_cwnd, tcp_left_out(tp),
2360 			 tp->snd_ssthresh, tp->prior_ssthresh,
2361 			 tp->packets_out);
2362 	}
2363 #if IS_ENABLED(CONFIG_IPV6)
2364 	else if (sk->sk_family == AF_INET6) {
2365 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2366 			 msg,
2367 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2368 			 tp->snd_cwnd, tcp_left_out(tp),
2369 			 tp->snd_ssthresh, tp->prior_ssthresh,
2370 			 tp->packets_out);
2371 	}
2372 #endif
2373 }
2374 #else
2375 #define DBGUNDO(x...) do { } while (0)
2376 #endif
2377 
2378 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2379 {
2380 	struct tcp_sock *tp = tcp_sk(sk);
2381 
2382 	if (unmark_loss) {
2383 		struct sk_buff *skb;
2384 
2385 		tcp_for_write_queue(skb, sk) {
2386 			if (skb == tcp_send_head(sk))
2387 				break;
2388 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2389 		}
2390 		tp->lost_out = 0;
2391 		tcp_clear_all_retrans_hints(tp);
2392 	}
2393 
2394 	if (tp->prior_ssthresh) {
2395 		const struct inet_connection_sock *icsk = inet_csk(sk);
2396 
2397 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2398 
2399 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2400 			tp->snd_ssthresh = tp->prior_ssthresh;
2401 			tcp_ecn_withdraw_cwr(tp);
2402 		}
2403 	}
2404 	tp->snd_cwnd_stamp = tcp_time_stamp;
2405 	tp->undo_marker = 0;
2406 }
2407 
2408 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2409 {
2410 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2411 }
2412 
2413 /* People celebrate: "We love our President!" */
2414 static bool tcp_try_undo_recovery(struct sock *sk)
2415 {
2416 	struct tcp_sock *tp = tcp_sk(sk);
2417 
2418 	if (tcp_may_undo(tp)) {
2419 		int mib_idx;
2420 
2421 		/* Happy end! We did not retransmit anything
2422 		 * or our original transmission succeeded.
2423 		 */
2424 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2425 		tcp_undo_cwnd_reduction(sk, false);
2426 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2427 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2428 		else
2429 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2430 
2431 		NET_INC_STATS(sock_net(sk), mib_idx);
2432 	}
2433 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2434 		/* Hold old state until something *above* high_seq
2435 		 * is ACKed. For Reno it is MUST to prevent false
2436 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2437 		if (!tcp_any_retrans_done(sk))
2438 			tp->retrans_stamp = 0;
2439 		return true;
2440 	}
2441 	tcp_set_ca_state(sk, TCP_CA_Open);
2442 	return false;
2443 }
2444 
2445 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2446 static bool tcp_try_undo_dsack(struct sock *sk)
2447 {
2448 	struct tcp_sock *tp = tcp_sk(sk);
2449 
2450 	if (tp->undo_marker && !tp->undo_retrans) {
2451 		DBGUNDO(sk, "D-SACK");
2452 		tcp_undo_cwnd_reduction(sk, false);
2453 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2454 		return true;
2455 	}
2456 	return false;
2457 }
2458 
2459 /* Undo during loss recovery after partial ACK or using F-RTO. */
2460 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2461 {
2462 	struct tcp_sock *tp = tcp_sk(sk);
2463 
2464 	if (frto_undo || tcp_may_undo(tp)) {
2465 		tcp_undo_cwnd_reduction(sk, true);
2466 
2467 		DBGUNDO(sk, "partial loss");
2468 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2469 		if (frto_undo)
2470 			NET_INC_STATS(sock_net(sk),
2471 					LINUX_MIB_TCPSPURIOUSRTOS);
2472 		inet_csk(sk)->icsk_retransmits = 0;
2473 		if (frto_undo || tcp_is_sack(tp))
2474 			tcp_set_ca_state(sk, TCP_CA_Open);
2475 		return true;
2476 	}
2477 	return false;
2478 }
2479 
2480 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2481  * It computes the number of packets to send (sndcnt) based on packets newly
2482  * delivered:
2483  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2484  *	cwnd reductions across a full RTT.
2485  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2486  *      But when the retransmits are acked without further losses, PRR
2487  *      slow starts cwnd up to ssthresh to speed up the recovery.
2488  */
2489 static void tcp_init_cwnd_reduction(struct sock *sk)
2490 {
2491 	struct tcp_sock *tp = tcp_sk(sk);
2492 
2493 	tp->high_seq = tp->snd_nxt;
2494 	tp->tlp_high_seq = 0;
2495 	tp->snd_cwnd_cnt = 0;
2496 	tp->prior_cwnd = tp->snd_cwnd;
2497 	tp->prr_delivered = 0;
2498 	tp->prr_out = 0;
2499 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2500 	tcp_ecn_queue_cwr(tp);
2501 }
2502 
2503 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2504 			       int flag)
2505 {
2506 	struct tcp_sock *tp = tcp_sk(sk);
2507 	int sndcnt = 0;
2508 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2509 
2510 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2511 		return;
2512 
2513 	tp->prr_delivered += newly_acked_sacked;
2514 	if (delta < 0) {
2515 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2516 			       tp->prior_cwnd - 1;
2517 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2518 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2519 		   !(flag & FLAG_LOST_RETRANS)) {
2520 		sndcnt = min_t(int, delta,
2521 			       max_t(int, tp->prr_delivered - tp->prr_out,
2522 				     newly_acked_sacked) + 1);
2523 	} else {
2524 		sndcnt = min(delta, newly_acked_sacked);
2525 	}
2526 	/* Force a fast retransmit upon entering fast recovery */
2527 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2528 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2529 }
2530 
2531 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2532 {
2533 	struct tcp_sock *tp = tcp_sk(sk);
2534 
2535 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2536 		return;
2537 
2538 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2539 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2540 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2541 		tp->snd_cwnd = tp->snd_ssthresh;
2542 		tp->snd_cwnd_stamp = tcp_time_stamp;
2543 	}
2544 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2545 }
2546 
2547 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2548 void tcp_enter_cwr(struct sock *sk)
2549 {
2550 	struct tcp_sock *tp = tcp_sk(sk);
2551 
2552 	tp->prior_ssthresh = 0;
2553 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2554 		tp->undo_marker = 0;
2555 		tcp_init_cwnd_reduction(sk);
2556 		tcp_set_ca_state(sk, TCP_CA_CWR);
2557 	}
2558 }
2559 EXPORT_SYMBOL(tcp_enter_cwr);
2560 
2561 static void tcp_try_keep_open(struct sock *sk)
2562 {
2563 	struct tcp_sock *tp = tcp_sk(sk);
2564 	int state = TCP_CA_Open;
2565 
2566 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2567 		state = TCP_CA_Disorder;
2568 
2569 	if (inet_csk(sk)->icsk_ca_state != state) {
2570 		tcp_set_ca_state(sk, state);
2571 		tp->high_seq = tp->snd_nxt;
2572 	}
2573 }
2574 
2575 static void tcp_try_to_open(struct sock *sk, int flag)
2576 {
2577 	struct tcp_sock *tp = tcp_sk(sk);
2578 
2579 	tcp_verify_left_out(tp);
2580 
2581 	if (!tcp_any_retrans_done(sk))
2582 		tp->retrans_stamp = 0;
2583 
2584 	if (flag & FLAG_ECE)
2585 		tcp_enter_cwr(sk);
2586 
2587 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2588 		tcp_try_keep_open(sk);
2589 	}
2590 }
2591 
2592 static void tcp_mtup_probe_failed(struct sock *sk)
2593 {
2594 	struct inet_connection_sock *icsk = inet_csk(sk);
2595 
2596 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2597 	icsk->icsk_mtup.probe_size = 0;
2598 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2599 }
2600 
2601 static void tcp_mtup_probe_success(struct sock *sk)
2602 {
2603 	struct tcp_sock *tp = tcp_sk(sk);
2604 	struct inet_connection_sock *icsk = inet_csk(sk);
2605 
2606 	/* FIXME: breaks with very large cwnd */
2607 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2608 	tp->snd_cwnd = tp->snd_cwnd *
2609 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2610 		       icsk->icsk_mtup.probe_size;
2611 	tp->snd_cwnd_cnt = 0;
2612 	tp->snd_cwnd_stamp = tcp_time_stamp;
2613 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2614 
2615 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2616 	icsk->icsk_mtup.probe_size = 0;
2617 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2618 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2619 }
2620 
2621 /* Do a simple retransmit without using the backoff mechanisms in
2622  * tcp_timer. This is used for path mtu discovery.
2623  * The socket is already locked here.
2624  */
2625 void tcp_simple_retransmit(struct sock *sk)
2626 {
2627 	const struct inet_connection_sock *icsk = inet_csk(sk);
2628 	struct tcp_sock *tp = tcp_sk(sk);
2629 	struct sk_buff *skb;
2630 	unsigned int mss = tcp_current_mss(sk);
2631 	u32 prior_lost = tp->lost_out;
2632 
2633 	tcp_for_write_queue(skb, sk) {
2634 		if (skb == tcp_send_head(sk))
2635 			break;
2636 		if (tcp_skb_seglen(skb) > mss &&
2637 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2638 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2639 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2640 				tp->retrans_out -= tcp_skb_pcount(skb);
2641 			}
2642 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2643 		}
2644 	}
2645 
2646 	tcp_clear_retrans_hints_partial(tp);
2647 
2648 	if (prior_lost == tp->lost_out)
2649 		return;
2650 
2651 	if (tcp_is_reno(tp))
2652 		tcp_limit_reno_sacked(tp);
2653 
2654 	tcp_verify_left_out(tp);
2655 
2656 	/* Don't muck with the congestion window here.
2657 	 * Reason is that we do not increase amount of _data_
2658 	 * in network, but units changed and effective
2659 	 * cwnd/ssthresh really reduced now.
2660 	 */
2661 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2662 		tp->high_seq = tp->snd_nxt;
2663 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2664 		tp->prior_ssthresh = 0;
2665 		tp->undo_marker = 0;
2666 		tcp_set_ca_state(sk, TCP_CA_Loss);
2667 	}
2668 	tcp_xmit_retransmit_queue(sk);
2669 }
2670 EXPORT_SYMBOL(tcp_simple_retransmit);
2671 
2672 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2673 {
2674 	struct tcp_sock *tp = tcp_sk(sk);
2675 	int mib_idx;
2676 
2677 	if (tcp_is_reno(tp))
2678 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2679 	else
2680 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2681 
2682 	NET_INC_STATS(sock_net(sk), mib_idx);
2683 
2684 	tp->prior_ssthresh = 0;
2685 	tcp_init_undo(tp);
2686 
2687 	if (!tcp_in_cwnd_reduction(sk)) {
2688 		if (!ece_ack)
2689 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2690 		tcp_init_cwnd_reduction(sk);
2691 	}
2692 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2693 }
2694 
2695 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2696  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2697  */
2698 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2699 			     int *rexmit)
2700 {
2701 	struct tcp_sock *tp = tcp_sk(sk);
2702 	bool recovered = !before(tp->snd_una, tp->high_seq);
2703 
2704 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2705 	    tcp_try_undo_loss(sk, false))
2706 		return;
2707 
2708 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2709 		/* Step 3.b. A timeout is spurious if not all data are
2710 		 * lost, i.e., never-retransmitted data are (s)acked.
2711 		 */
2712 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2713 		    tcp_try_undo_loss(sk, true))
2714 			return;
2715 
2716 		if (after(tp->snd_nxt, tp->high_seq)) {
2717 			if (flag & FLAG_DATA_SACKED || is_dupack)
2718 				tp->frto = 0; /* Step 3.a. loss was real */
2719 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2720 			tp->high_seq = tp->snd_nxt;
2721 			/* Step 2.b. Try send new data (but deferred until cwnd
2722 			 * is updated in tcp_ack()). Otherwise fall back to
2723 			 * the conventional recovery.
2724 			 */
2725 			if (tcp_send_head(sk) &&
2726 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2727 				*rexmit = REXMIT_NEW;
2728 				return;
2729 			}
2730 			tp->frto = 0;
2731 		}
2732 	}
2733 
2734 	if (recovered) {
2735 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2736 		tcp_try_undo_recovery(sk);
2737 		return;
2738 	}
2739 	if (tcp_is_reno(tp)) {
2740 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2741 		 * delivered. Lower inflight to clock out (re)tranmissions.
2742 		 */
2743 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2744 			tcp_add_reno_sack(sk);
2745 		else if (flag & FLAG_SND_UNA_ADVANCED)
2746 			tcp_reset_reno_sack(tp);
2747 	}
2748 	*rexmit = REXMIT_LOST;
2749 }
2750 
2751 /* Undo during fast recovery after partial ACK. */
2752 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2753 {
2754 	struct tcp_sock *tp = tcp_sk(sk);
2755 
2756 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2757 		/* Plain luck! Hole if filled with delayed
2758 		 * packet, rather than with a retransmit.
2759 		 */
2760 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2761 
2762 		/* We are getting evidence that the reordering degree is higher
2763 		 * than we realized. If there are no retransmits out then we
2764 		 * can undo. Otherwise we clock out new packets but do not
2765 		 * mark more packets lost or retransmit more.
2766 		 */
2767 		if (tp->retrans_out)
2768 			return true;
2769 
2770 		if (!tcp_any_retrans_done(sk))
2771 			tp->retrans_stamp = 0;
2772 
2773 		DBGUNDO(sk, "partial recovery");
2774 		tcp_undo_cwnd_reduction(sk, true);
2775 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2776 		tcp_try_keep_open(sk);
2777 		return true;
2778 	}
2779 	return false;
2780 }
2781 
2782 /* Process an event, which can update packets-in-flight not trivially.
2783  * Main goal of this function is to calculate new estimate for left_out,
2784  * taking into account both packets sitting in receiver's buffer and
2785  * packets lost by network.
2786  *
2787  * Besides that it updates the congestion state when packet loss or ECN
2788  * is detected. But it does not reduce the cwnd, it is done by the
2789  * congestion control later.
2790  *
2791  * It does _not_ decide what to send, it is made in function
2792  * tcp_xmit_retransmit_queue().
2793  */
2794 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2795 				  bool is_dupack, int *ack_flag, int *rexmit)
2796 {
2797 	struct inet_connection_sock *icsk = inet_csk(sk);
2798 	struct tcp_sock *tp = tcp_sk(sk);
2799 	int fast_rexmit = 0, flag = *ack_flag;
2800 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2801 				    (tcp_fackets_out(tp) > tp->reordering));
2802 
2803 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2804 		tp->sacked_out = 0;
2805 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2806 		tp->fackets_out = 0;
2807 
2808 	/* Now state machine starts.
2809 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2810 	if (flag & FLAG_ECE)
2811 		tp->prior_ssthresh = 0;
2812 
2813 	/* B. In all the states check for reneging SACKs. */
2814 	if (tcp_check_sack_reneging(sk, flag))
2815 		return;
2816 
2817 	/* C. Check consistency of the current state. */
2818 	tcp_verify_left_out(tp);
2819 
2820 	/* D. Check state exit conditions. State can be terminated
2821 	 *    when high_seq is ACKed. */
2822 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2823 		WARN_ON(tp->retrans_out != 0);
2824 		tp->retrans_stamp = 0;
2825 	} else if (!before(tp->snd_una, tp->high_seq)) {
2826 		switch (icsk->icsk_ca_state) {
2827 		case TCP_CA_CWR:
2828 			/* CWR is to be held something *above* high_seq
2829 			 * is ACKed for CWR bit to reach receiver. */
2830 			if (tp->snd_una != tp->high_seq) {
2831 				tcp_end_cwnd_reduction(sk);
2832 				tcp_set_ca_state(sk, TCP_CA_Open);
2833 			}
2834 			break;
2835 
2836 		case TCP_CA_Recovery:
2837 			if (tcp_is_reno(tp))
2838 				tcp_reset_reno_sack(tp);
2839 			if (tcp_try_undo_recovery(sk))
2840 				return;
2841 			tcp_end_cwnd_reduction(sk);
2842 			break;
2843 		}
2844 	}
2845 
2846 	/* Use RACK to detect loss */
2847 	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2848 	    tcp_rack_mark_lost(sk)) {
2849 		flag |= FLAG_LOST_RETRANS;
2850 		*ack_flag |= FLAG_LOST_RETRANS;
2851 	}
2852 
2853 	/* E. Process state. */
2854 	switch (icsk->icsk_ca_state) {
2855 	case TCP_CA_Recovery:
2856 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2857 			if (tcp_is_reno(tp) && is_dupack)
2858 				tcp_add_reno_sack(sk);
2859 		} else {
2860 			if (tcp_try_undo_partial(sk, acked))
2861 				return;
2862 			/* Partial ACK arrived. Force fast retransmit. */
2863 			do_lost = tcp_is_reno(tp) ||
2864 				  tcp_fackets_out(tp) > tp->reordering;
2865 		}
2866 		if (tcp_try_undo_dsack(sk)) {
2867 			tcp_try_keep_open(sk);
2868 			return;
2869 		}
2870 		break;
2871 	case TCP_CA_Loss:
2872 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2873 		if (icsk->icsk_ca_state != TCP_CA_Open &&
2874 		    !(flag & FLAG_LOST_RETRANS))
2875 			return;
2876 		/* Change state if cwnd is undone or retransmits are lost */
2877 	default:
2878 		if (tcp_is_reno(tp)) {
2879 			if (flag & FLAG_SND_UNA_ADVANCED)
2880 				tcp_reset_reno_sack(tp);
2881 			if (is_dupack)
2882 				tcp_add_reno_sack(sk);
2883 		}
2884 
2885 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2886 			tcp_try_undo_dsack(sk);
2887 
2888 		if (!tcp_time_to_recover(sk, flag)) {
2889 			tcp_try_to_open(sk, flag);
2890 			return;
2891 		}
2892 
2893 		/* MTU probe failure: don't reduce cwnd */
2894 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2895 		    icsk->icsk_mtup.probe_size &&
2896 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2897 			tcp_mtup_probe_failed(sk);
2898 			/* Restores the reduction we did in tcp_mtup_probe() */
2899 			tp->snd_cwnd++;
2900 			tcp_simple_retransmit(sk);
2901 			return;
2902 		}
2903 
2904 		/* Otherwise enter Recovery state */
2905 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2906 		fast_rexmit = 1;
2907 	}
2908 
2909 	if (do_lost)
2910 		tcp_update_scoreboard(sk, fast_rexmit);
2911 	*rexmit = REXMIT_LOST;
2912 }
2913 
2914 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2915 {
2916 	struct tcp_sock *tp = tcp_sk(sk);
2917 	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2918 
2919 	minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2920 			   rtt_us ? : jiffies_to_usecs(1));
2921 }
2922 
2923 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2924 				      long seq_rtt_us, long sack_rtt_us,
2925 				      long ca_rtt_us)
2926 {
2927 	const struct tcp_sock *tp = tcp_sk(sk);
2928 
2929 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2930 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2931 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2932 	 * is acked (RFC6298).
2933 	 */
2934 	if (seq_rtt_us < 0)
2935 		seq_rtt_us = sack_rtt_us;
2936 
2937 	/* RTTM Rule: A TSecr value received in a segment is used to
2938 	 * update the averaged RTT measurement only if the segment
2939 	 * acknowledges some new data, i.e., only if it advances the
2940 	 * left edge of the send window.
2941 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2942 	 */
2943 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2944 	    flag & FLAG_ACKED)
2945 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2946 							  tp->rx_opt.rcv_tsecr);
2947 	if (seq_rtt_us < 0)
2948 		return false;
2949 
2950 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2951 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2952 	 * values will be skipped with the seq_rtt_us < 0 check above.
2953 	 */
2954 	tcp_update_rtt_min(sk, ca_rtt_us);
2955 	tcp_rtt_estimator(sk, seq_rtt_us);
2956 	tcp_set_rto(sk);
2957 
2958 	/* RFC6298: only reset backoff on valid RTT measurement. */
2959 	inet_csk(sk)->icsk_backoff = 0;
2960 	return true;
2961 }
2962 
2963 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2964 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2965 {
2966 	long rtt_us = -1L;
2967 
2968 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2969 		struct skb_mstamp now;
2970 
2971 		skb_mstamp_get(&now);
2972 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2973 	}
2974 
2975 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2976 }
2977 
2978 
2979 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2980 {
2981 	const struct inet_connection_sock *icsk = inet_csk(sk);
2982 
2983 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2984 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2985 }
2986 
2987 /* Restart timer after forward progress on connection.
2988  * RFC2988 recommends to restart timer to now+rto.
2989  */
2990 void tcp_rearm_rto(struct sock *sk)
2991 {
2992 	const struct inet_connection_sock *icsk = inet_csk(sk);
2993 	struct tcp_sock *tp = tcp_sk(sk);
2994 
2995 	/* If the retrans timer is currently being used by Fast Open
2996 	 * for SYN-ACK retrans purpose, stay put.
2997 	 */
2998 	if (tp->fastopen_rsk)
2999 		return;
3000 
3001 	if (!tp->packets_out) {
3002 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3003 	} else {
3004 		u32 rto = inet_csk(sk)->icsk_rto;
3005 		/* Offset the time elapsed after installing regular RTO */
3006 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3007 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3008 			struct sk_buff *skb = tcp_write_queue_head(sk);
3009 			const u32 rto_time_stamp =
3010 				tcp_skb_timestamp(skb) + rto;
3011 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3012 			/* delta may not be positive if the socket is locked
3013 			 * when the retrans timer fires and is rescheduled.
3014 			 */
3015 			if (delta > 0)
3016 				rto = delta;
3017 		}
3018 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3019 					  TCP_RTO_MAX);
3020 	}
3021 }
3022 
3023 /* This function is called when the delayed ER timer fires. TCP enters
3024  * fast recovery and performs fast-retransmit.
3025  */
3026 void tcp_resume_early_retransmit(struct sock *sk)
3027 {
3028 	struct tcp_sock *tp = tcp_sk(sk);
3029 
3030 	tcp_rearm_rto(sk);
3031 
3032 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3033 	if (!tp->do_early_retrans)
3034 		return;
3035 
3036 	tcp_enter_recovery(sk, false);
3037 	tcp_update_scoreboard(sk, 1);
3038 	tcp_xmit_retransmit_queue(sk);
3039 }
3040 
3041 /* If we get here, the whole TSO packet has not been acked. */
3042 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3043 {
3044 	struct tcp_sock *tp = tcp_sk(sk);
3045 	u32 packets_acked;
3046 
3047 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3048 
3049 	packets_acked = tcp_skb_pcount(skb);
3050 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3051 		return 0;
3052 	packets_acked -= tcp_skb_pcount(skb);
3053 
3054 	if (packets_acked) {
3055 		BUG_ON(tcp_skb_pcount(skb) == 0);
3056 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3057 	}
3058 
3059 	return packets_acked;
3060 }
3061 
3062 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3063 			   u32 prior_snd_una)
3064 {
3065 	const struct skb_shared_info *shinfo;
3066 
3067 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3068 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3069 		return;
3070 
3071 	shinfo = skb_shinfo(skb);
3072 	if (!before(shinfo->tskey, prior_snd_una) &&
3073 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3074 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3075 }
3076 
3077 /* Remove acknowledged frames from the retransmission queue. If our packet
3078  * is before the ack sequence we can discard it as it's confirmed to have
3079  * arrived at the other end.
3080  */
3081 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3082 			       u32 prior_snd_una, int *acked,
3083 			       struct tcp_sacktag_state *sack,
3084 			       struct skb_mstamp *now)
3085 {
3086 	const struct inet_connection_sock *icsk = inet_csk(sk);
3087 	struct skb_mstamp first_ackt, last_ackt;
3088 	struct tcp_sock *tp = tcp_sk(sk);
3089 	u32 prior_sacked = tp->sacked_out;
3090 	u32 reord = tp->packets_out;
3091 	bool fully_acked = true;
3092 	long sack_rtt_us = -1L;
3093 	long seq_rtt_us = -1L;
3094 	long ca_rtt_us = -1L;
3095 	struct sk_buff *skb;
3096 	u32 pkts_acked = 0;
3097 	u32 last_in_flight = 0;
3098 	bool rtt_update;
3099 	int flag = 0;
3100 
3101 	first_ackt.v64 = 0;
3102 
3103 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3104 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3105 		u8 sacked = scb->sacked;
3106 		u32 acked_pcount;
3107 
3108 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3109 
3110 		/* Determine how many packets and what bytes were acked, tso and else */
3111 		if (after(scb->end_seq, tp->snd_una)) {
3112 			if (tcp_skb_pcount(skb) == 1 ||
3113 			    !after(tp->snd_una, scb->seq))
3114 				break;
3115 
3116 			acked_pcount = tcp_tso_acked(sk, skb);
3117 			if (!acked_pcount)
3118 				break;
3119 			fully_acked = false;
3120 		} else {
3121 			/* Speedup tcp_unlink_write_queue() and next loop */
3122 			prefetchw(skb->next);
3123 			acked_pcount = tcp_skb_pcount(skb);
3124 		}
3125 
3126 		if (unlikely(sacked & TCPCB_RETRANS)) {
3127 			if (sacked & TCPCB_SACKED_RETRANS)
3128 				tp->retrans_out -= acked_pcount;
3129 			flag |= FLAG_RETRANS_DATA_ACKED;
3130 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3131 			last_ackt = skb->skb_mstamp;
3132 			WARN_ON_ONCE(last_ackt.v64 == 0);
3133 			if (!first_ackt.v64)
3134 				first_ackt = last_ackt;
3135 
3136 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3137 			reord = min(pkts_acked, reord);
3138 			if (!after(scb->end_seq, tp->high_seq))
3139 				flag |= FLAG_ORIG_SACK_ACKED;
3140 		}
3141 
3142 		if (sacked & TCPCB_SACKED_ACKED) {
3143 			tp->sacked_out -= acked_pcount;
3144 		} else if (tcp_is_sack(tp)) {
3145 			tp->delivered += acked_pcount;
3146 			if (!tcp_skb_spurious_retrans(tp, skb))
3147 				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3148 		}
3149 		if (sacked & TCPCB_LOST)
3150 			tp->lost_out -= acked_pcount;
3151 
3152 		tp->packets_out -= acked_pcount;
3153 		pkts_acked += acked_pcount;
3154 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3155 
3156 		/* Initial outgoing SYN's get put onto the write_queue
3157 		 * just like anything else we transmit.  It is not
3158 		 * true data, and if we misinform our callers that
3159 		 * this ACK acks real data, we will erroneously exit
3160 		 * connection startup slow start one packet too
3161 		 * quickly.  This is severely frowned upon behavior.
3162 		 */
3163 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3164 			flag |= FLAG_DATA_ACKED;
3165 		} else {
3166 			flag |= FLAG_SYN_ACKED;
3167 			tp->retrans_stamp = 0;
3168 		}
3169 
3170 		if (!fully_acked)
3171 			break;
3172 
3173 		tcp_unlink_write_queue(skb, sk);
3174 		sk_wmem_free_skb(sk, skb);
3175 		if (unlikely(skb == tp->retransmit_skb_hint))
3176 			tp->retransmit_skb_hint = NULL;
3177 		if (unlikely(skb == tp->lost_skb_hint))
3178 			tp->lost_skb_hint = NULL;
3179 	}
3180 
3181 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3182 		tp->snd_up = tp->snd_una;
3183 
3184 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3185 		flag |= FLAG_SACK_RENEGING;
3186 
3187 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3188 		seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3189 		ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3190 	}
3191 	if (sack->first_sackt.v64) {
3192 		sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3193 		ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3194 	}
3195 	sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3196 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3197 					ca_rtt_us);
3198 
3199 	if (flag & FLAG_ACKED) {
3200 		tcp_rearm_rto(sk);
3201 		if (unlikely(icsk->icsk_mtup.probe_size &&
3202 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3203 			tcp_mtup_probe_success(sk);
3204 		}
3205 
3206 		if (tcp_is_reno(tp)) {
3207 			tcp_remove_reno_sacks(sk, pkts_acked);
3208 		} else {
3209 			int delta;
3210 
3211 			/* Non-retransmitted hole got filled? That's reordering */
3212 			if (reord < prior_fackets)
3213 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3214 
3215 			delta = tcp_is_fack(tp) ? pkts_acked :
3216 						  prior_sacked - tp->sacked_out;
3217 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3218 		}
3219 
3220 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3221 
3222 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3223 		   sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3224 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3225 		 * after when the head was last (re)transmitted. Otherwise the
3226 		 * timeout may continue to extend in loss recovery.
3227 		 */
3228 		tcp_rearm_rto(sk);
3229 	}
3230 
3231 	if (icsk->icsk_ca_ops->pkts_acked) {
3232 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3233 					     .rtt_us = ca_rtt_us,
3234 					     .in_flight = last_in_flight };
3235 
3236 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3237 	}
3238 
3239 #if FASTRETRANS_DEBUG > 0
3240 	WARN_ON((int)tp->sacked_out < 0);
3241 	WARN_ON((int)tp->lost_out < 0);
3242 	WARN_ON((int)tp->retrans_out < 0);
3243 	if (!tp->packets_out && tcp_is_sack(tp)) {
3244 		icsk = inet_csk(sk);
3245 		if (tp->lost_out) {
3246 			pr_debug("Leak l=%u %d\n",
3247 				 tp->lost_out, icsk->icsk_ca_state);
3248 			tp->lost_out = 0;
3249 		}
3250 		if (tp->sacked_out) {
3251 			pr_debug("Leak s=%u %d\n",
3252 				 tp->sacked_out, icsk->icsk_ca_state);
3253 			tp->sacked_out = 0;
3254 		}
3255 		if (tp->retrans_out) {
3256 			pr_debug("Leak r=%u %d\n",
3257 				 tp->retrans_out, icsk->icsk_ca_state);
3258 			tp->retrans_out = 0;
3259 		}
3260 	}
3261 #endif
3262 	*acked = pkts_acked;
3263 	return flag;
3264 }
3265 
3266 static void tcp_ack_probe(struct sock *sk)
3267 {
3268 	const struct tcp_sock *tp = tcp_sk(sk);
3269 	struct inet_connection_sock *icsk = inet_csk(sk);
3270 
3271 	/* Was it a usable window open? */
3272 
3273 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3274 		icsk->icsk_backoff = 0;
3275 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3276 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3277 		 * This function is not for random using!
3278 		 */
3279 	} else {
3280 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3281 
3282 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3283 					  when, TCP_RTO_MAX);
3284 	}
3285 }
3286 
3287 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3288 {
3289 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3290 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3291 }
3292 
3293 /* Decide wheather to run the increase function of congestion control. */
3294 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3295 {
3296 	/* If reordering is high then always grow cwnd whenever data is
3297 	 * delivered regardless of its ordering. Otherwise stay conservative
3298 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3299 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3300 	 * cwnd in tcp_fastretrans_alert() based on more states.
3301 	 */
3302 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3303 		return flag & FLAG_FORWARD_PROGRESS;
3304 
3305 	return flag & FLAG_DATA_ACKED;
3306 }
3307 
3308 /* The "ultimate" congestion control function that aims to replace the rigid
3309  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3310  * It's called toward the end of processing an ACK with precise rate
3311  * information. All transmission or retransmission are delayed afterwards.
3312  */
3313 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3314 			     int flag, const struct rate_sample *rs)
3315 {
3316 	const struct inet_connection_sock *icsk = inet_csk(sk);
3317 
3318 	if (icsk->icsk_ca_ops->cong_control) {
3319 		icsk->icsk_ca_ops->cong_control(sk, rs);
3320 		return;
3321 	}
3322 
3323 	if (tcp_in_cwnd_reduction(sk)) {
3324 		/* Reduce cwnd if state mandates */
3325 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3326 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3327 		/* Advance cwnd if state allows */
3328 		tcp_cong_avoid(sk, ack, acked_sacked);
3329 	}
3330 	tcp_update_pacing_rate(sk);
3331 }
3332 
3333 /* Check that window update is acceptable.
3334  * The function assumes that snd_una<=ack<=snd_next.
3335  */
3336 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3337 					const u32 ack, const u32 ack_seq,
3338 					const u32 nwin)
3339 {
3340 	return	after(ack, tp->snd_una) ||
3341 		after(ack_seq, tp->snd_wl1) ||
3342 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3343 }
3344 
3345 /* If we update tp->snd_una, also update tp->bytes_acked */
3346 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3347 {
3348 	u32 delta = ack - tp->snd_una;
3349 
3350 	sock_owned_by_me((struct sock *)tp);
3351 	tp->bytes_acked += delta;
3352 	tp->snd_una = ack;
3353 }
3354 
3355 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3356 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3357 {
3358 	u32 delta = seq - tp->rcv_nxt;
3359 
3360 	sock_owned_by_me((struct sock *)tp);
3361 	tp->bytes_received += delta;
3362 	tp->rcv_nxt = seq;
3363 }
3364 
3365 /* Update our send window.
3366  *
3367  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3368  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3369  */
3370 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3371 				 u32 ack_seq)
3372 {
3373 	struct tcp_sock *tp = tcp_sk(sk);
3374 	int flag = 0;
3375 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3376 
3377 	if (likely(!tcp_hdr(skb)->syn))
3378 		nwin <<= tp->rx_opt.snd_wscale;
3379 
3380 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3381 		flag |= FLAG_WIN_UPDATE;
3382 		tcp_update_wl(tp, ack_seq);
3383 
3384 		if (tp->snd_wnd != nwin) {
3385 			tp->snd_wnd = nwin;
3386 
3387 			/* Note, it is the only place, where
3388 			 * fast path is recovered for sending TCP.
3389 			 */
3390 			tp->pred_flags = 0;
3391 			tcp_fast_path_check(sk);
3392 
3393 			if (tcp_send_head(sk))
3394 				tcp_slow_start_after_idle_check(sk);
3395 
3396 			if (nwin > tp->max_window) {
3397 				tp->max_window = nwin;
3398 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3399 			}
3400 		}
3401 	}
3402 
3403 	tcp_snd_una_update(tp, ack);
3404 
3405 	return flag;
3406 }
3407 
3408 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3409 				   u32 *last_oow_ack_time)
3410 {
3411 	if (*last_oow_ack_time) {
3412 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3413 
3414 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3415 			NET_INC_STATS(net, mib_idx);
3416 			return true;	/* rate-limited: don't send yet! */
3417 		}
3418 	}
3419 
3420 	*last_oow_ack_time = tcp_time_stamp;
3421 
3422 	return false;	/* not rate-limited: go ahead, send dupack now! */
3423 }
3424 
3425 /* Return true if we're currently rate-limiting out-of-window ACKs and
3426  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3427  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3428  * attacks that send repeated SYNs or ACKs for the same connection. To
3429  * do this, we do not send a duplicate SYNACK or ACK if the remote
3430  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3431  */
3432 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3433 			  int mib_idx, u32 *last_oow_ack_time)
3434 {
3435 	/* Data packets without SYNs are not likely part of an ACK loop. */
3436 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3437 	    !tcp_hdr(skb)->syn)
3438 		return false;
3439 
3440 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3441 }
3442 
3443 /* RFC 5961 7 [ACK Throttling] */
3444 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3445 {
3446 	/* unprotected vars, we dont care of overwrites */
3447 	static u32 challenge_timestamp;
3448 	static unsigned int challenge_count;
3449 	struct tcp_sock *tp = tcp_sk(sk);
3450 	u32 count, now;
3451 
3452 	/* First check our per-socket dupack rate limit. */
3453 	if (__tcp_oow_rate_limited(sock_net(sk),
3454 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3455 				   &tp->last_oow_ack_time))
3456 		return;
3457 
3458 	/* Then check host-wide RFC 5961 rate limit. */
3459 	now = jiffies / HZ;
3460 	if (now != challenge_timestamp) {
3461 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3462 
3463 		challenge_timestamp = now;
3464 		WRITE_ONCE(challenge_count, half +
3465 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3466 	}
3467 	count = READ_ONCE(challenge_count);
3468 	if (count > 0) {
3469 		WRITE_ONCE(challenge_count, count - 1);
3470 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3471 		tcp_send_ack(sk);
3472 	}
3473 }
3474 
3475 static void tcp_store_ts_recent(struct tcp_sock *tp)
3476 {
3477 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3478 	tp->rx_opt.ts_recent_stamp = get_seconds();
3479 }
3480 
3481 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3482 {
3483 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3484 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3485 		 * extra check below makes sure this can only happen
3486 		 * for pure ACK frames.  -DaveM
3487 		 *
3488 		 * Not only, also it occurs for expired timestamps.
3489 		 */
3490 
3491 		if (tcp_paws_check(&tp->rx_opt, 0))
3492 			tcp_store_ts_recent(tp);
3493 	}
3494 }
3495 
3496 /* This routine deals with acks during a TLP episode.
3497  * We mark the end of a TLP episode on receiving TLP dupack or when
3498  * ack is after tlp_high_seq.
3499  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3500  */
3501 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3502 {
3503 	struct tcp_sock *tp = tcp_sk(sk);
3504 
3505 	if (before(ack, tp->tlp_high_seq))
3506 		return;
3507 
3508 	if (flag & FLAG_DSACKING_ACK) {
3509 		/* This DSACK means original and TLP probe arrived; no loss */
3510 		tp->tlp_high_seq = 0;
3511 	} else if (after(ack, tp->tlp_high_seq)) {
3512 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3513 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3514 		 */
3515 		tcp_init_cwnd_reduction(sk);
3516 		tcp_set_ca_state(sk, TCP_CA_CWR);
3517 		tcp_end_cwnd_reduction(sk);
3518 		tcp_try_keep_open(sk);
3519 		NET_INC_STATS(sock_net(sk),
3520 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3521 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3522 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3523 		/* Pure dupack: original and TLP probe arrived; no loss */
3524 		tp->tlp_high_seq = 0;
3525 	}
3526 }
3527 
3528 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3529 {
3530 	const struct inet_connection_sock *icsk = inet_csk(sk);
3531 
3532 	if (icsk->icsk_ca_ops->in_ack_event)
3533 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3534 }
3535 
3536 /* Congestion control has updated the cwnd already. So if we're in
3537  * loss recovery then now we do any new sends (for FRTO) or
3538  * retransmits (for CA_Loss or CA_recovery) that make sense.
3539  */
3540 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3541 {
3542 	struct tcp_sock *tp = tcp_sk(sk);
3543 
3544 	if (rexmit == REXMIT_NONE)
3545 		return;
3546 
3547 	if (unlikely(rexmit == 2)) {
3548 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3549 					  TCP_NAGLE_OFF);
3550 		if (after(tp->snd_nxt, tp->high_seq))
3551 			return;
3552 		tp->frto = 0;
3553 	}
3554 	tcp_xmit_retransmit_queue(sk);
3555 }
3556 
3557 /* This routine deals with incoming acks, but not outgoing ones. */
3558 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3559 {
3560 	struct inet_connection_sock *icsk = inet_csk(sk);
3561 	struct tcp_sock *tp = tcp_sk(sk);
3562 	struct tcp_sacktag_state sack_state;
3563 	struct rate_sample rs = { .prior_delivered = 0 };
3564 	u32 prior_snd_una = tp->snd_una;
3565 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3566 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3567 	bool is_dupack = false;
3568 	u32 prior_fackets;
3569 	int prior_packets = tp->packets_out;
3570 	u32 delivered = tp->delivered;
3571 	u32 lost = tp->lost;
3572 	int acked = 0; /* Number of packets newly acked */
3573 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3574 	struct skb_mstamp now;
3575 
3576 	sack_state.first_sackt.v64 = 0;
3577 	sack_state.rate = &rs;
3578 
3579 	/* We very likely will need to access write queue head. */
3580 	prefetchw(sk->sk_write_queue.next);
3581 
3582 	/* If the ack is older than previous acks
3583 	 * then we can probably ignore it.
3584 	 */
3585 	if (before(ack, prior_snd_una)) {
3586 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3587 		if (before(ack, prior_snd_una - tp->max_window)) {
3588 			tcp_send_challenge_ack(sk, skb);
3589 			return -1;
3590 		}
3591 		goto old_ack;
3592 	}
3593 
3594 	/* If the ack includes data we haven't sent yet, discard
3595 	 * this segment (RFC793 Section 3.9).
3596 	 */
3597 	if (after(ack, tp->snd_nxt))
3598 		goto invalid_ack;
3599 
3600 	skb_mstamp_get(&now);
3601 
3602 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3603 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3604 		tcp_rearm_rto(sk);
3605 
3606 	if (after(ack, prior_snd_una)) {
3607 		flag |= FLAG_SND_UNA_ADVANCED;
3608 		icsk->icsk_retransmits = 0;
3609 	}
3610 
3611 	prior_fackets = tp->fackets_out;
3612 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3613 
3614 	/* ts_recent update must be made after we are sure that the packet
3615 	 * is in window.
3616 	 */
3617 	if (flag & FLAG_UPDATE_TS_RECENT)
3618 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3619 
3620 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3621 		/* Window is constant, pure forward advance.
3622 		 * No more checks are required.
3623 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3624 		 */
3625 		tcp_update_wl(tp, ack_seq);
3626 		tcp_snd_una_update(tp, ack);
3627 		flag |= FLAG_WIN_UPDATE;
3628 
3629 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3630 
3631 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3632 	} else {
3633 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3634 
3635 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3636 			flag |= FLAG_DATA;
3637 		else
3638 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3639 
3640 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3641 
3642 		if (TCP_SKB_CB(skb)->sacked)
3643 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3644 							&sack_state);
3645 
3646 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3647 			flag |= FLAG_ECE;
3648 			ack_ev_flags |= CA_ACK_ECE;
3649 		}
3650 
3651 		if (flag & FLAG_WIN_UPDATE)
3652 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3653 
3654 		tcp_in_ack_event(sk, ack_ev_flags);
3655 	}
3656 
3657 	/* We passed data and got it acked, remove any soft error
3658 	 * log. Something worked...
3659 	 */
3660 	sk->sk_err_soft = 0;
3661 	icsk->icsk_probes_out = 0;
3662 	tp->rcv_tstamp = tcp_time_stamp;
3663 	if (!prior_packets)
3664 		goto no_queue;
3665 
3666 	/* See if we can take anything off of the retransmit queue. */
3667 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3668 				    &sack_state, &now);
3669 
3670 	if (tcp_ack_is_dubious(sk, flag)) {
3671 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3672 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3673 	}
3674 	if (tp->tlp_high_seq)
3675 		tcp_process_tlp_ack(sk, ack, flag);
3676 
3677 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3678 		struct dst_entry *dst = __sk_dst_get(sk);
3679 		if (dst)
3680 			dst_confirm(dst);
3681 	}
3682 
3683 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3684 		tcp_schedule_loss_probe(sk);
3685 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3686 	lost = tp->lost - lost;			/* freshly marked lost */
3687 	tcp_rate_gen(sk, delivered, lost, &now, &rs);
3688 	tcp_cong_control(sk, ack, delivered, flag, &rs);
3689 	tcp_xmit_recovery(sk, rexmit);
3690 	return 1;
3691 
3692 no_queue:
3693 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3694 	if (flag & FLAG_DSACKING_ACK)
3695 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3696 	/* If this ack opens up a zero window, clear backoff.  It was
3697 	 * being used to time the probes, and is probably far higher than
3698 	 * it needs to be for normal retransmission.
3699 	 */
3700 	if (tcp_send_head(sk))
3701 		tcp_ack_probe(sk);
3702 
3703 	if (tp->tlp_high_seq)
3704 		tcp_process_tlp_ack(sk, ack, flag);
3705 	return 1;
3706 
3707 invalid_ack:
3708 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3709 	return -1;
3710 
3711 old_ack:
3712 	/* If data was SACKed, tag it and see if we should send more data.
3713 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3714 	 */
3715 	if (TCP_SKB_CB(skb)->sacked) {
3716 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3717 						&sack_state);
3718 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3719 		tcp_xmit_recovery(sk, rexmit);
3720 	}
3721 
3722 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3723 	return 0;
3724 }
3725 
3726 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3727 				      bool syn, struct tcp_fastopen_cookie *foc,
3728 				      bool exp_opt)
3729 {
3730 	/* Valid only in SYN or SYN-ACK with an even length.  */
3731 	if (!foc || !syn || len < 0 || (len & 1))
3732 		return;
3733 
3734 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3735 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3736 		memcpy(foc->val, cookie, len);
3737 	else if (len != 0)
3738 		len = -1;
3739 	foc->len = len;
3740 	foc->exp = exp_opt;
3741 }
3742 
3743 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3744  * But, this can also be called on packets in the established flow when
3745  * the fast version below fails.
3746  */
3747 void tcp_parse_options(const struct sk_buff *skb,
3748 		       struct tcp_options_received *opt_rx, int estab,
3749 		       struct tcp_fastopen_cookie *foc)
3750 {
3751 	const unsigned char *ptr;
3752 	const struct tcphdr *th = tcp_hdr(skb);
3753 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3754 
3755 	ptr = (const unsigned char *)(th + 1);
3756 	opt_rx->saw_tstamp = 0;
3757 
3758 	while (length > 0) {
3759 		int opcode = *ptr++;
3760 		int opsize;
3761 
3762 		switch (opcode) {
3763 		case TCPOPT_EOL:
3764 			return;
3765 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3766 			length--;
3767 			continue;
3768 		default:
3769 			opsize = *ptr++;
3770 			if (opsize < 2) /* "silly options" */
3771 				return;
3772 			if (opsize > length)
3773 				return;	/* don't parse partial options */
3774 			switch (opcode) {
3775 			case TCPOPT_MSS:
3776 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3777 					u16 in_mss = get_unaligned_be16(ptr);
3778 					if (in_mss) {
3779 						if (opt_rx->user_mss &&
3780 						    opt_rx->user_mss < in_mss)
3781 							in_mss = opt_rx->user_mss;
3782 						opt_rx->mss_clamp = in_mss;
3783 					}
3784 				}
3785 				break;
3786 			case TCPOPT_WINDOW:
3787 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3788 				    !estab && sysctl_tcp_window_scaling) {
3789 					__u8 snd_wscale = *(__u8 *)ptr;
3790 					opt_rx->wscale_ok = 1;
3791 					if (snd_wscale > 14) {
3792 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3793 								     __func__,
3794 								     snd_wscale);
3795 						snd_wscale = 14;
3796 					}
3797 					opt_rx->snd_wscale = snd_wscale;
3798 				}
3799 				break;
3800 			case TCPOPT_TIMESTAMP:
3801 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3802 				    ((estab && opt_rx->tstamp_ok) ||
3803 				     (!estab && sysctl_tcp_timestamps))) {
3804 					opt_rx->saw_tstamp = 1;
3805 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3806 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3807 				}
3808 				break;
3809 			case TCPOPT_SACK_PERM:
3810 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3811 				    !estab && sysctl_tcp_sack) {
3812 					opt_rx->sack_ok = TCP_SACK_SEEN;
3813 					tcp_sack_reset(opt_rx);
3814 				}
3815 				break;
3816 
3817 			case TCPOPT_SACK:
3818 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3819 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3820 				   opt_rx->sack_ok) {
3821 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3822 				}
3823 				break;
3824 #ifdef CONFIG_TCP_MD5SIG
3825 			case TCPOPT_MD5SIG:
3826 				/*
3827 				 * The MD5 Hash has already been
3828 				 * checked (see tcp_v{4,6}_do_rcv()).
3829 				 */
3830 				break;
3831 #endif
3832 			case TCPOPT_FASTOPEN:
3833 				tcp_parse_fastopen_option(
3834 					opsize - TCPOLEN_FASTOPEN_BASE,
3835 					ptr, th->syn, foc, false);
3836 				break;
3837 
3838 			case TCPOPT_EXP:
3839 				/* Fast Open option shares code 254 using a
3840 				 * 16 bits magic number.
3841 				 */
3842 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3843 				    get_unaligned_be16(ptr) ==
3844 				    TCPOPT_FASTOPEN_MAGIC)
3845 					tcp_parse_fastopen_option(opsize -
3846 						TCPOLEN_EXP_FASTOPEN_BASE,
3847 						ptr + 2, th->syn, foc, true);
3848 				break;
3849 
3850 			}
3851 			ptr += opsize-2;
3852 			length -= opsize;
3853 		}
3854 	}
3855 }
3856 EXPORT_SYMBOL(tcp_parse_options);
3857 
3858 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3859 {
3860 	const __be32 *ptr = (const __be32 *)(th + 1);
3861 
3862 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3863 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3864 		tp->rx_opt.saw_tstamp = 1;
3865 		++ptr;
3866 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3867 		++ptr;
3868 		if (*ptr)
3869 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3870 		else
3871 			tp->rx_opt.rcv_tsecr = 0;
3872 		return true;
3873 	}
3874 	return false;
3875 }
3876 
3877 /* Fast parse options. This hopes to only see timestamps.
3878  * If it is wrong it falls back on tcp_parse_options().
3879  */
3880 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3881 				   const struct tcphdr *th, struct tcp_sock *tp)
3882 {
3883 	/* In the spirit of fast parsing, compare doff directly to constant
3884 	 * values.  Because equality is used, short doff can be ignored here.
3885 	 */
3886 	if (th->doff == (sizeof(*th) / 4)) {
3887 		tp->rx_opt.saw_tstamp = 0;
3888 		return false;
3889 	} else if (tp->rx_opt.tstamp_ok &&
3890 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3891 		if (tcp_parse_aligned_timestamp(tp, th))
3892 			return true;
3893 	}
3894 
3895 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3896 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3897 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3898 
3899 	return true;
3900 }
3901 
3902 #ifdef CONFIG_TCP_MD5SIG
3903 /*
3904  * Parse MD5 Signature option
3905  */
3906 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3907 {
3908 	int length = (th->doff << 2) - sizeof(*th);
3909 	const u8 *ptr = (const u8 *)(th + 1);
3910 
3911 	/* If the TCP option is too short, we can short cut */
3912 	if (length < TCPOLEN_MD5SIG)
3913 		return NULL;
3914 
3915 	while (length > 0) {
3916 		int opcode = *ptr++;
3917 		int opsize;
3918 
3919 		switch (opcode) {
3920 		case TCPOPT_EOL:
3921 			return NULL;
3922 		case TCPOPT_NOP:
3923 			length--;
3924 			continue;
3925 		default:
3926 			opsize = *ptr++;
3927 			if (opsize < 2 || opsize > length)
3928 				return NULL;
3929 			if (opcode == TCPOPT_MD5SIG)
3930 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3931 		}
3932 		ptr += opsize - 2;
3933 		length -= opsize;
3934 	}
3935 	return NULL;
3936 }
3937 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3938 #endif
3939 
3940 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3941  *
3942  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3943  * it can pass through stack. So, the following predicate verifies that
3944  * this segment is not used for anything but congestion avoidance or
3945  * fast retransmit. Moreover, we even are able to eliminate most of such
3946  * second order effects, if we apply some small "replay" window (~RTO)
3947  * to timestamp space.
3948  *
3949  * All these measures still do not guarantee that we reject wrapped ACKs
3950  * on networks with high bandwidth, when sequence space is recycled fastly,
3951  * but it guarantees that such events will be very rare and do not affect
3952  * connection seriously. This doesn't look nice, but alas, PAWS is really
3953  * buggy extension.
3954  *
3955  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3956  * states that events when retransmit arrives after original data are rare.
3957  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3958  * the biggest problem on large power networks even with minor reordering.
3959  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3960  * up to bandwidth of 18Gigabit/sec. 8) ]
3961  */
3962 
3963 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3964 {
3965 	const struct tcp_sock *tp = tcp_sk(sk);
3966 	const struct tcphdr *th = tcp_hdr(skb);
3967 	u32 seq = TCP_SKB_CB(skb)->seq;
3968 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3969 
3970 	return (/* 1. Pure ACK with correct sequence number. */
3971 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3972 
3973 		/* 2. ... and duplicate ACK. */
3974 		ack == tp->snd_una &&
3975 
3976 		/* 3. ... and does not update window. */
3977 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3978 
3979 		/* 4. ... and sits in replay window. */
3980 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3981 }
3982 
3983 static inline bool tcp_paws_discard(const struct sock *sk,
3984 				   const struct sk_buff *skb)
3985 {
3986 	const struct tcp_sock *tp = tcp_sk(sk);
3987 
3988 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3989 	       !tcp_disordered_ack(sk, skb);
3990 }
3991 
3992 /* Check segment sequence number for validity.
3993  *
3994  * Segment controls are considered valid, if the segment
3995  * fits to the window after truncation to the window. Acceptability
3996  * of data (and SYN, FIN, of course) is checked separately.
3997  * See tcp_data_queue(), for example.
3998  *
3999  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4000  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4001  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4002  * (borrowed from freebsd)
4003  */
4004 
4005 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4006 {
4007 	return	!before(end_seq, tp->rcv_wup) &&
4008 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4009 }
4010 
4011 /* When we get a reset we do this. */
4012 void tcp_reset(struct sock *sk)
4013 {
4014 	/* We want the right error as BSD sees it (and indeed as we do). */
4015 	switch (sk->sk_state) {
4016 	case TCP_SYN_SENT:
4017 		sk->sk_err = ECONNREFUSED;
4018 		break;
4019 	case TCP_CLOSE_WAIT:
4020 		sk->sk_err = EPIPE;
4021 		break;
4022 	case TCP_CLOSE:
4023 		return;
4024 	default:
4025 		sk->sk_err = ECONNRESET;
4026 	}
4027 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4028 	smp_wmb();
4029 
4030 	if (!sock_flag(sk, SOCK_DEAD))
4031 		sk->sk_error_report(sk);
4032 
4033 	tcp_done(sk);
4034 }
4035 
4036 /*
4037  * 	Process the FIN bit. This now behaves as it is supposed to work
4038  *	and the FIN takes effect when it is validly part of sequence
4039  *	space. Not before when we get holes.
4040  *
4041  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4042  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4043  *	TIME-WAIT)
4044  *
4045  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4046  *	close and we go into CLOSING (and later onto TIME-WAIT)
4047  *
4048  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4049  */
4050 void tcp_fin(struct sock *sk)
4051 {
4052 	struct tcp_sock *tp = tcp_sk(sk);
4053 
4054 	inet_csk_schedule_ack(sk);
4055 
4056 	sk->sk_shutdown |= RCV_SHUTDOWN;
4057 	sock_set_flag(sk, SOCK_DONE);
4058 
4059 	switch (sk->sk_state) {
4060 	case TCP_SYN_RECV:
4061 	case TCP_ESTABLISHED:
4062 		/* Move to CLOSE_WAIT */
4063 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4064 		inet_csk(sk)->icsk_ack.pingpong = 1;
4065 		break;
4066 
4067 	case TCP_CLOSE_WAIT:
4068 	case TCP_CLOSING:
4069 		/* Received a retransmission of the FIN, do
4070 		 * nothing.
4071 		 */
4072 		break;
4073 	case TCP_LAST_ACK:
4074 		/* RFC793: Remain in the LAST-ACK state. */
4075 		break;
4076 
4077 	case TCP_FIN_WAIT1:
4078 		/* This case occurs when a simultaneous close
4079 		 * happens, we must ack the received FIN and
4080 		 * enter the CLOSING state.
4081 		 */
4082 		tcp_send_ack(sk);
4083 		tcp_set_state(sk, TCP_CLOSING);
4084 		break;
4085 	case TCP_FIN_WAIT2:
4086 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4087 		tcp_send_ack(sk);
4088 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4089 		break;
4090 	default:
4091 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4092 		 * cases we should never reach this piece of code.
4093 		 */
4094 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4095 		       __func__, sk->sk_state);
4096 		break;
4097 	}
4098 
4099 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4100 	 * Probably, we should reset in this case. For now drop them.
4101 	 */
4102 	skb_rbtree_purge(&tp->out_of_order_queue);
4103 	if (tcp_is_sack(tp))
4104 		tcp_sack_reset(&tp->rx_opt);
4105 	sk_mem_reclaim(sk);
4106 
4107 	if (!sock_flag(sk, SOCK_DEAD)) {
4108 		sk->sk_state_change(sk);
4109 
4110 		/* Do not send POLL_HUP for half duplex close. */
4111 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4112 		    sk->sk_state == TCP_CLOSE)
4113 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4114 		else
4115 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4116 	}
4117 }
4118 
4119 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4120 				  u32 end_seq)
4121 {
4122 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4123 		if (before(seq, sp->start_seq))
4124 			sp->start_seq = seq;
4125 		if (after(end_seq, sp->end_seq))
4126 			sp->end_seq = end_seq;
4127 		return true;
4128 	}
4129 	return false;
4130 }
4131 
4132 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4133 {
4134 	struct tcp_sock *tp = tcp_sk(sk);
4135 
4136 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4137 		int mib_idx;
4138 
4139 		if (before(seq, tp->rcv_nxt))
4140 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4141 		else
4142 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4143 
4144 		NET_INC_STATS(sock_net(sk), mib_idx);
4145 
4146 		tp->rx_opt.dsack = 1;
4147 		tp->duplicate_sack[0].start_seq = seq;
4148 		tp->duplicate_sack[0].end_seq = end_seq;
4149 	}
4150 }
4151 
4152 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4153 {
4154 	struct tcp_sock *tp = tcp_sk(sk);
4155 
4156 	if (!tp->rx_opt.dsack)
4157 		tcp_dsack_set(sk, seq, end_seq);
4158 	else
4159 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4160 }
4161 
4162 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4163 {
4164 	struct tcp_sock *tp = tcp_sk(sk);
4165 
4166 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4167 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4168 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4169 		tcp_enter_quickack_mode(sk);
4170 
4171 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4172 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4173 
4174 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4175 				end_seq = tp->rcv_nxt;
4176 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4177 		}
4178 	}
4179 
4180 	tcp_send_ack(sk);
4181 }
4182 
4183 /* These routines update the SACK block as out-of-order packets arrive or
4184  * in-order packets close up the sequence space.
4185  */
4186 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4187 {
4188 	int this_sack;
4189 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4190 	struct tcp_sack_block *swalk = sp + 1;
4191 
4192 	/* See if the recent change to the first SACK eats into
4193 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4194 	 */
4195 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4196 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4197 			int i;
4198 
4199 			/* Zap SWALK, by moving every further SACK up by one slot.
4200 			 * Decrease num_sacks.
4201 			 */
4202 			tp->rx_opt.num_sacks--;
4203 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4204 				sp[i] = sp[i + 1];
4205 			continue;
4206 		}
4207 		this_sack++, swalk++;
4208 	}
4209 }
4210 
4211 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4212 {
4213 	struct tcp_sock *tp = tcp_sk(sk);
4214 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4215 	int cur_sacks = tp->rx_opt.num_sacks;
4216 	int this_sack;
4217 
4218 	if (!cur_sacks)
4219 		goto new_sack;
4220 
4221 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4222 		if (tcp_sack_extend(sp, seq, end_seq)) {
4223 			/* Rotate this_sack to the first one. */
4224 			for (; this_sack > 0; this_sack--, sp--)
4225 				swap(*sp, *(sp - 1));
4226 			if (cur_sacks > 1)
4227 				tcp_sack_maybe_coalesce(tp);
4228 			return;
4229 		}
4230 	}
4231 
4232 	/* Could not find an adjacent existing SACK, build a new one,
4233 	 * put it at the front, and shift everyone else down.  We
4234 	 * always know there is at least one SACK present already here.
4235 	 *
4236 	 * If the sack array is full, forget about the last one.
4237 	 */
4238 	if (this_sack >= TCP_NUM_SACKS) {
4239 		this_sack--;
4240 		tp->rx_opt.num_sacks--;
4241 		sp--;
4242 	}
4243 	for (; this_sack > 0; this_sack--, sp--)
4244 		*sp = *(sp - 1);
4245 
4246 new_sack:
4247 	/* Build the new head SACK, and we're done. */
4248 	sp->start_seq = seq;
4249 	sp->end_seq = end_seq;
4250 	tp->rx_opt.num_sacks++;
4251 }
4252 
4253 /* RCV.NXT advances, some SACKs should be eaten. */
4254 
4255 static void tcp_sack_remove(struct tcp_sock *tp)
4256 {
4257 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4258 	int num_sacks = tp->rx_opt.num_sacks;
4259 	int this_sack;
4260 
4261 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4262 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4263 		tp->rx_opt.num_sacks = 0;
4264 		return;
4265 	}
4266 
4267 	for (this_sack = 0; this_sack < num_sacks;) {
4268 		/* Check if the start of the sack is covered by RCV.NXT. */
4269 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4270 			int i;
4271 
4272 			/* RCV.NXT must cover all the block! */
4273 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4274 
4275 			/* Zap this SACK, by moving forward any other SACKS. */
4276 			for (i = this_sack+1; i < num_sacks; i++)
4277 				tp->selective_acks[i-1] = tp->selective_acks[i];
4278 			num_sacks--;
4279 			continue;
4280 		}
4281 		this_sack++;
4282 		sp++;
4283 	}
4284 	tp->rx_opt.num_sacks = num_sacks;
4285 }
4286 
4287 /**
4288  * tcp_try_coalesce - try to merge skb to prior one
4289  * @sk: socket
4290  * @to: prior buffer
4291  * @from: buffer to add in queue
4292  * @fragstolen: pointer to boolean
4293  *
4294  * Before queueing skb @from after @to, try to merge them
4295  * to reduce overall memory use and queue lengths, if cost is small.
4296  * Packets in ofo or receive queues can stay a long time.
4297  * Better try to coalesce them right now to avoid future collapses.
4298  * Returns true if caller should free @from instead of queueing it
4299  */
4300 static bool tcp_try_coalesce(struct sock *sk,
4301 			     struct sk_buff *to,
4302 			     struct sk_buff *from,
4303 			     bool *fragstolen)
4304 {
4305 	int delta;
4306 
4307 	*fragstolen = false;
4308 
4309 	/* Its possible this segment overlaps with prior segment in queue */
4310 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4311 		return false;
4312 
4313 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4314 		return false;
4315 
4316 	atomic_add(delta, &sk->sk_rmem_alloc);
4317 	sk_mem_charge(sk, delta);
4318 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4319 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4320 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4321 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4322 	return true;
4323 }
4324 
4325 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4326 {
4327 	sk_drops_add(sk, skb);
4328 	__kfree_skb(skb);
4329 }
4330 
4331 /* This one checks to see if we can put data from the
4332  * out_of_order queue into the receive_queue.
4333  */
4334 static void tcp_ofo_queue(struct sock *sk)
4335 {
4336 	struct tcp_sock *tp = tcp_sk(sk);
4337 	__u32 dsack_high = tp->rcv_nxt;
4338 	bool fin, fragstolen, eaten;
4339 	struct sk_buff *skb, *tail;
4340 	struct rb_node *p;
4341 
4342 	p = rb_first(&tp->out_of_order_queue);
4343 	while (p) {
4344 		skb = rb_entry(p, struct sk_buff, rbnode);
4345 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4346 			break;
4347 
4348 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4349 			__u32 dsack = dsack_high;
4350 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4351 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4352 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4353 		}
4354 		p = rb_next(p);
4355 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4356 
4357 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4358 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4359 			tcp_drop(sk, skb);
4360 			continue;
4361 		}
4362 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4363 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4364 			   TCP_SKB_CB(skb)->end_seq);
4365 
4366 		tail = skb_peek_tail(&sk->sk_receive_queue);
4367 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4368 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4369 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4370 		if (!eaten)
4371 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4372 		else
4373 			kfree_skb_partial(skb, fragstolen);
4374 
4375 		if (unlikely(fin)) {
4376 			tcp_fin(sk);
4377 			/* tcp_fin() purges tp->out_of_order_queue,
4378 			 * so we must end this loop right now.
4379 			 */
4380 			break;
4381 		}
4382 	}
4383 }
4384 
4385 static bool tcp_prune_ofo_queue(struct sock *sk);
4386 static int tcp_prune_queue(struct sock *sk);
4387 
4388 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4389 				 unsigned int size)
4390 {
4391 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4392 	    !sk_rmem_schedule(sk, skb, size)) {
4393 
4394 		if (tcp_prune_queue(sk) < 0)
4395 			return -1;
4396 
4397 		while (!sk_rmem_schedule(sk, skb, size)) {
4398 			if (!tcp_prune_ofo_queue(sk))
4399 				return -1;
4400 		}
4401 	}
4402 	return 0;
4403 }
4404 
4405 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4406 {
4407 	struct tcp_sock *tp = tcp_sk(sk);
4408 	struct rb_node **p, *q, *parent;
4409 	struct sk_buff *skb1;
4410 	u32 seq, end_seq;
4411 	bool fragstolen;
4412 
4413 	tcp_ecn_check_ce(tp, skb);
4414 
4415 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4416 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4417 		tcp_drop(sk, skb);
4418 		return;
4419 	}
4420 
4421 	/* Disable header prediction. */
4422 	tp->pred_flags = 0;
4423 	inet_csk_schedule_ack(sk);
4424 
4425 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4426 	seq = TCP_SKB_CB(skb)->seq;
4427 	end_seq = TCP_SKB_CB(skb)->end_seq;
4428 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4429 		   tp->rcv_nxt, seq, end_seq);
4430 
4431 	p = &tp->out_of_order_queue.rb_node;
4432 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4433 		/* Initial out of order segment, build 1 SACK. */
4434 		if (tcp_is_sack(tp)) {
4435 			tp->rx_opt.num_sacks = 1;
4436 			tp->selective_acks[0].start_seq = seq;
4437 			tp->selective_acks[0].end_seq = end_seq;
4438 		}
4439 		rb_link_node(&skb->rbnode, NULL, p);
4440 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4441 		tp->ooo_last_skb = skb;
4442 		goto end;
4443 	}
4444 
4445 	/* In the typical case, we are adding an skb to the end of the list.
4446 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4447 	 */
4448 	if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4449 coalesce_done:
4450 		tcp_grow_window(sk, skb);
4451 		kfree_skb_partial(skb, fragstolen);
4452 		skb = NULL;
4453 		goto add_sack;
4454 	}
4455 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4456 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4457 		parent = &tp->ooo_last_skb->rbnode;
4458 		p = &parent->rb_right;
4459 		goto insert;
4460 	}
4461 
4462 	/* Find place to insert this segment. Handle overlaps on the way. */
4463 	parent = NULL;
4464 	while (*p) {
4465 		parent = *p;
4466 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4467 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4468 			p = &parent->rb_left;
4469 			continue;
4470 		}
4471 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4472 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4473 				/* All the bits are present. Drop. */
4474 				NET_INC_STATS(sock_net(sk),
4475 					      LINUX_MIB_TCPOFOMERGE);
4476 				__kfree_skb(skb);
4477 				skb = NULL;
4478 				tcp_dsack_set(sk, seq, end_seq);
4479 				goto add_sack;
4480 			}
4481 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4482 				/* Partial overlap. */
4483 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4484 			} else {
4485 				/* skb's seq == skb1's seq and skb covers skb1.
4486 				 * Replace skb1 with skb.
4487 				 */
4488 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4489 						&tp->out_of_order_queue);
4490 				tcp_dsack_extend(sk,
4491 						 TCP_SKB_CB(skb1)->seq,
4492 						 TCP_SKB_CB(skb1)->end_seq);
4493 				NET_INC_STATS(sock_net(sk),
4494 					      LINUX_MIB_TCPOFOMERGE);
4495 				__kfree_skb(skb1);
4496 				goto merge_right;
4497 			}
4498 		} else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4499 			goto coalesce_done;
4500 		}
4501 		p = &parent->rb_right;
4502 	}
4503 insert:
4504 	/* Insert segment into RB tree. */
4505 	rb_link_node(&skb->rbnode, parent, p);
4506 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4507 
4508 merge_right:
4509 	/* Remove other segments covered by skb. */
4510 	while ((q = rb_next(&skb->rbnode)) != NULL) {
4511 		skb1 = rb_entry(q, struct sk_buff, rbnode);
4512 
4513 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4514 			break;
4515 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4516 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4517 					 end_seq);
4518 			break;
4519 		}
4520 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4521 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4522 				 TCP_SKB_CB(skb1)->end_seq);
4523 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4524 		tcp_drop(sk, skb1);
4525 	}
4526 	/* If there is no skb after us, we are the last_skb ! */
4527 	if (!q)
4528 		tp->ooo_last_skb = skb;
4529 
4530 add_sack:
4531 	if (tcp_is_sack(tp))
4532 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4533 end:
4534 	if (skb) {
4535 		tcp_grow_window(sk, skb);
4536 		skb_set_owner_r(skb, sk);
4537 	}
4538 }
4539 
4540 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4541 		  bool *fragstolen)
4542 {
4543 	int eaten;
4544 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4545 
4546 	__skb_pull(skb, hdrlen);
4547 	eaten = (tail &&
4548 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4549 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4550 	if (!eaten) {
4551 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4552 		skb_set_owner_r(skb, sk);
4553 	}
4554 	return eaten;
4555 }
4556 
4557 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4558 {
4559 	struct sk_buff *skb;
4560 	int err = -ENOMEM;
4561 	int data_len = 0;
4562 	bool fragstolen;
4563 
4564 	if (size == 0)
4565 		return 0;
4566 
4567 	if (size > PAGE_SIZE) {
4568 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4569 
4570 		data_len = npages << PAGE_SHIFT;
4571 		size = data_len + (size & ~PAGE_MASK);
4572 	}
4573 	skb = alloc_skb_with_frags(size - data_len, data_len,
4574 				   PAGE_ALLOC_COSTLY_ORDER,
4575 				   &err, sk->sk_allocation);
4576 	if (!skb)
4577 		goto err;
4578 
4579 	skb_put(skb, size - data_len);
4580 	skb->data_len = data_len;
4581 	skb->len = size;
4582 
4583 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4584 		goto err_free;
4585 
4586 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4587 	if (err)
4588 		goto err_free;
4589 
4590 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4591 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4592 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4593 
4594 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4595 		WARN_ON_ONCE(fragstolen); /* should not happen */
4596 		__kfree_skb(skb);
4597 	}
4598 	return size;
4599 
4600 err_free:
4601 	kfree_skb(skb);
4602 err:
4603 	return err;
4604 
4605 }
4606 
4607 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4608 {
4609 	struct tcp_sock *tp = tcp_sk(sk);
4610 	bool fragstolen = false;
4611 	int eaten = -1;
4612 
4613 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4614 		__kfree_skb(skb);
4615 		return;
4616 	}
4617 	skb_dst_drop(skb);
4618 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4619 
4620 	tcp_ecn_accept_cwr(tp, skb);
4621 
4622 	tp->rx_opt.dsack = 0;
4623 
4624 	/*  Queue data for delivery to the user.
4625 	 *  Packets in sequence go to the receive queue.
4626 	 *  Out of sequence packets to the out_of_order_queue.
4627 	 */
4628 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4629 		if (tcp_receive_window(tp) == 0)
4630 			goto out_of_window;
4631 
4632 		/* Ok. In sequence. In window. */
4633 		if (tp->ucopy.task == current &&
4634 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4635 		    sock_owned_by_user(sk) && !tp->urg_data) {
4636 			int chunk = min_t(unsigned int, skb->len,
4637 					  tp->ucopy.len);
4638 
4639 			__set_current_state(TASK_RUNNING);
4640 
4641 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4642 				tp->ucopy.len -= chunk;
4643 				tp->copied_seq += chunk;
4644 				eaten = (chunk == skb->len);
4645 				tcp_rcv_space_adjust(sk);
4646 			}
4647 		}
4648 
4649 		if (eaten <= 0) {
4650 queue_and_out:
4651 			if (eaten < 0) {
4652 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4653 					sk_forced_mem_schedule(sk, skb->truesize);
4654 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4655 					goto drop;
4656 			}
4657 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4658 		}
4659 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4660 		if (skb->len)
4661 			tcp_event_data_recv(sk, skb);
4662 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4663 			tcp_fin(sk);
4664 
4665 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4666 			tcp_ofo_queue(sk);
4667 
4668 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4669 			 * gap in queue is filled.
4670 			 */
4671 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4672 				inet_csk(sk)->icsk_ack.pingpong = 0;
4673 		}
4674 
4675 		if (tp->rx_opt.num_sacks)
4676 			tcp_sack_remove(tp);
4677 
4678 		tcp_fast_path_check(sk);
4679 
4680 		if (eaten > 0)
4681 			kfree_skb_partial(skb, fragstolen);
4682 		if (!sock_flag(sk, SOCK_DEAD))
4683 			sk->sk_data_ready(sk);
4684 		return;
4685 	}
4686 
4687 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4688 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4689 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4690 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4691 
4692 out_of_window:
4693 		tcp_enter_quickack_mode(sk);
4694 		inet_csk_schedule_ack(sk);
4695 drop:
4696 		tcp_drop(sk, skb);
4697 		return;
4698 	}
4699 
4700 	/* Out of window. F.e. zero window probe. */
4701 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4702 		goto out_of_window;
4703 
4704 	tcp_enter_quickack_mode(sk);
4705 
4706 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4707 		/* Partial packet, seq < rcv_next < end_seq */
4708 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4709 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4710 			   TCP_SKB_CB(skb)->end_seq);
4711 
4712 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4713 
4714 		/* If window is closed, drop tail of packet. But after
4715 		 * remembering D-SACK for its head made in previous line.
4716 		 */
4717 		if (!tcp_receive_window(tp))
4718 			goto out_of_window;
4719 		goto queue_and_out;
4720 	}
4721 
4722 	tcp_data_queue_ofo(sk, skb);
4723 }
4724 
4725 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4726 {
4727 	if (list)
4728 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4729 
4730 	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4731 }
4732 
4733 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4734 					struct sk_buff_head *list,
4735 					struct rb_root *root)
4736 {
4737 	struct sk_buff *next = tcp_skb_next(skb, list);
4738 
4739 	if (list)
4740 		__skb_unlink(skb, list);
4741 	else
4742 		rb_erase(&skb->rbnode, root);
4743 
4744 	__kfree_skb(skb);
4745 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4746 
4747 	return next;
4748 }
4749 
4750 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4751 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4752 {
4753 	struct rb_node **p = &root->rb_node;
4754 	struct rb_node *parent = NULL;
4755 	struct sk_buff *skb1;
4756 
4757 	while (*p) {
4758 		parent = *p;
4759 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4760 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4761 			p = &parent->rb_left;
4762 		else
4763 			p = &parent->rb_right;
4764 	}
4765 	rb_link_node(&skb->rbnode, parent, p);
4766 	rb_insert_color(&skb->rbnode, root);
4767 }
4768 
4769 /* Collapse contiguous sequence of skbs head..tail with
4770  * sequence numbers start..end.
4771  *
4772  * If tail is NULL, this means until the end of the queue.
4773  *
4774  * Segments with FIN/SYN are not collapsed (only because this
4775  * simplifies code)
4776  */
4777 static void
4778 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4779 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4780 {
4781 	struct sk_buff *skb = head, *n;
4782 	struct sk_buff_head tmp;
4783 	bool end_of_skbs;
4784 
4785 	/* First, check that queue is collapsible and find
4786 	 * the point where collapsing can be useful.
4787 	 */
4788 restart:
4789 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4790 		n = tcp_skb_next(skb, list);
4791 
4792 		/* No new bits? It is possible on ofo queue. */
4793 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4794 			skb = tcp_collapse_one(sk, skb, list, root);
4795 			if (!skb)
4796 				break;
4797 			goto restart;
4798 		}
4799 
4800 		/* The first skb to collapse is:
4801 		 * - not SYN/FIN and
4802 		 * - bloated or contains data before "start" or
4803 		 *   overlaps to the next one.
4804 		 */
4805 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4806 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4807 		     before(TCP_SKB_CB(skb)->seq, start))) {
4808 			end_of_skbs = false;
4809 			break;
4810 		}
4811 
4812 		if (n && n != tail &&
4813 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4814 			end_of_skbs = false;
4815 			break;
4816 		}
4817 
4818 		/* Decided to skip this, advance start seq. */
4819 		start = TCP_SKB_CB(skb)->end_seq;
4820 	}
4821 	if (end_of_skbs ||
4822 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4823 		return;
4824 
4825 	__skb_queue_head_init(&tmp);
4826 
4827 	while (before(start, end)) {
4828 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4829 		struct sk_buff *nskb;
4830 
4831 		nskb = alloc_skb(copy, GFP_ATOMIC);
4832 		if (!nskb)
4833 			break;
4834 
4835 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4836 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4837 		if (list)
4838 			__skb_queue_before(list, skb, nskb);
4839 		else
4840 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4841 		skb_set_owner_r(nskb, sk);
4842 
4843 		/* Copy data, releasing collapsed skbs. */
4844 		while (copy > 0) {
4845 			int offset = start - TCP_SKB_CB(skb)->seq;
4846 			int size = TCP_SKB_CB(skb)->end_seq - start;
4847 
4848 			BUG_ON(offset < 0);
4849 			if (size > 0) {
4850 				size = min(copy, size);
4851 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4852 					BUG();
4853 				TCP_SKB_CB(nskb)->end_seq += size;
4854 				copy -= size;
4855 				start += size;
4856 			}
4857 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4858 				skb = tcp_collapse_one(sk, skb, list, root);
4859 				if (!skb ||
4860 				    skb == tail ||
4861 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4862 					goto end;
4863 			}
4864 		}
4865 	}
4866 end:
4867 	skb_queue_walk_safe(&tmp, skb, n)
4868 		tcp_rbtree_insert(root, skb);
4869 }
4870 
4871 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4872  * and tcp_collapse() them until all the queue is collapsed.
4873  */
4874 static void tcp_collapse_ofo_queue(struct sock *sk)
4875 {
4876 	struct tcp_sock *tp = tcp_sk(sk);
4877 	struct sk_buff *skb, *head;
4878 	struct rb_node *p;
4879 	u32 start, end;
4880 
4881 	p = rb_first(&tp->out_of_order_queue);
4882 	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4883 new_range:
4884 	if (!skb) {
4885 		p = rb_last(&tp->out_of_order_queue);
4886 		/* Note: This is possible p is NULL here. We do not
4887 		 * use rb_entry_safe(), as ooo_last_skb is valid only
4888 		 * if rbtree is not empty.
4889 		 */
4890 		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4891 		return;
4892 	}
4893 	start = TCP_SKB_CB(skb)->seq;
4894 	end = TCP_SKB_CB(skb)->end_seq;
4895 
4896 	for (head = skb;;) {
4897 		skb = tcp_skb_next(skb, NULL);
4898 
4899 		/* Range is terminated when we see a gap or when
4900 		 * we are at the queue end.
4901 		 */
4902 		if (!skb ||
4903 		    after(TCP_SKB_CB(skb)->seq, end) ||
4904 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4905 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4906 				     head, skb, start, end);
4907 			goto new_range;
4908 		}
4909 
4910 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4911 			start = TCP_SKB_CB(skb)->seq;
4912 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4913 			end = TCP_SKB_CB(skb)->end_seq;
4914 	}
4915 }
4916 
4917 /*
4918  * Clean the out-of-order queue to make room.
4919  * We drop high sequences packets to :
4920  * 1) Let a chance for holes to be filled.
4921  * 2) not add too big latencies if thousands of packets sit there.
4922  *    (But if application shrinks SO_RCVBUF, we could still end up
4923  *     freeing whole queue here)
4924  *
4925  * Return true if queue has shrunk.
4926  */
4927 static bool tcp_prune_ofo_queue(struct sock *sk)
4928 {
4929 	struct tcp_sock *tp = tcp_sk(sk);
4930 	struct rb_node *node, *prev;
4931 
4932 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4933 		return false;
4934 
4935 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4936 	node = &tp->ooo_last_skb->rbnode;
4937 	do {
4938 		prev = rb_prev(node);
4939 		rb_erase(node, &tp->out_of_order_queue);
4940 		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4941 		sk_mem_reclaim(sk);
4942 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4943 		    !tcp_under_memory_pressure(sk))
4944 			break;
4945 		node = prev;
4946 	} while (node);
4947 	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4948 
4949 	/* Reset SACK state.  A conforming SACK implementation will
4950 	 * do the same at a timeout based retransmit.  When a connection
4951 	 * is in a sad state like this, we care only about integrity
4952 	 * of the connection not performance.
4953 	 */
4954 	if (tp->rx_opt.sack_ok)
4955 		tcp_sack_reset(&tp->rx_opt);
4956 	return true;
4957 }
4958 
4959 /* Reduce allocated memory if we can, trying to get
4960  * the socket within its memory limits again.
4961  *
4962  * Return less than zero if we should start dropping frames
4963  * until the socket owning process reads some of the data
4964  * to stabilize the situation.
4965  */
4966 static int tcp_prune_queue(struct sock *sk)
4967 {
4968 	struct tcp_sock *tp = tcp_sk(sk);
4969 
4970 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4971 
4972 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4973 
4974 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4975 		tcp_clamp_window(sk);
4976 	else if (tcp_under_memory_pressure(sk))
4977 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4978 
4979 	tcp_collapse_ofo_queue(sk);
4980 	if (!skb_queue_empty(&sk->sk_receive_queue))
4981 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4982 			     skb_peek(&sk->sk_receive_queue),
4983 			     NULL,
4984 			     tp->copied_seq, tp->rcv_nxt);
4985 	sk_mem_reclaim(sk);
4986 
4987 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4988 		return 0;
4989 
4990 	/* Collapsing did not help, destructive actions follow.
4991 	 * This must not ever occur. */
4992 
4993 	tcp_prune_ofo_queue(sk);
4994 
4995 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4996 		return 0;
4997 
4998 	/* If we are really being abused, tell the caller to silently
4999 	 * drop receive data on the floor.  It will get retransmitted
5000 	 * and hopefully then we'll have sufficient space.
5001 	 */
5002 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5003 
5004 	/* Massive buffer overcommit. */
5005 	tp->pred_flags = 0;
5006 	return -1;
5007 }
5008 
5009 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5010 {
5011 	const struct tcp_sock *tp = tcp_sk(sk);
5012 
5013 	/* If the user specified a specific send buffer setting, do
5014 	 * not modify it.
5015 	 */
5016 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5017 		return false;
5018 
5019 	/* If we are under global TCP memory pressure, do not expand.  */
5020 	if (tcp_under_memory_pressure(sk))
5021 		return false;
5022 
5023 	/* If we are under soft global TCP memory pressure, do not expand.  */
5024 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5025 		return false;
5026 
5027 	/* If we filled the congestion window, do not expand.  */
5028 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5029 		return false;
5030 
5031 	return true;
5032 }
5033 
5034 /* When incoming ACK allowed to free some skb from write_queue,
5035  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5036  * on the exit from tcp input handler.
5037  *
5038  * PROBLEM: sndbuf expansion does not work well with largesend.
5039  */
5040 static void tcp_new_space(struct sock *sk)
5041 {
5042 	struct tcp_sock *tp = tcp_sk(sk);
5043 
5044 	if (tcp_should_expand_sndbuf(sk)) {
5045 		tcp_sndbuf_expand(sk);
5046 		tp->snd_cwnd_stamp = tcp_time_stamp;
5047 	}
5048 
5049 	sk->sk_write_space(sk);
5050 }
5051 
5052 static void tcp_check_space(struct sock *sk)
5053 {
5054 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5055 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5056 		/* pairs with tcp_poll() */
5057 		smp_mb__after_atomic();
5058 		if (sk->sk_socket &&
5059 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5060 			tcp_new_space(sk);
5061 	}
5062 }
5063 
5064 static inline void tcp_data_snd_check(struct sock *sk)
5065 {
5066 	tcp_push_pending_frames(sk);
5067 	tcp_check_space(sk);
5068 }
5069 
5070 /*
5071  * Check if sending an ack is needed.
5072  */
5073 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5074 {
5075 	struct tcp_sock *tp = tcp_sk(sk);
5076 
5077 	    /* More than one full frame received... */
5078 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5079 	     /* ... and right edge of window advances far enough.
5080 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5081 	      */
5082 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5083 	    /* We ACK each frame or... */
5084 	    tcp_in_quickack_mode(sk) ||
5085 	    /* We have out of order data. */
5086 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5087 		/* Then ack it now */
5088 		tcp_send_ack(sk);
5089 	} else {
5090 		/* Else, send delayed ack. */
5091 		tcp_send_delayed_ack(sk);
5092 	}
5093 }
5094 
5095 static inline void tcp_ack_snd_check(struct sock *sk)
5096 {
5097 	if (!inet_csk_ack_scheduled(sk)) {
5098 		/* We sent a data segment already. */
5099 		return;
5100 	}
5101 	__tcp_ack_snd_check(sk, 1);
5102 }
5103 
5104 /*
5105  *	This routine is only called when we have urgent data
5106  *	signaled. Its the 'slow' part of tcp_urg. It could be
5107  *	moved inline now as tcp_urg is only called from one
5108  *	place. We handle URGent data wrong. We have to - as
5109  *	BSD still doesn't use the correction from RFC961.
5110  *	For 1003.1g we should support a new option TCP_STDURG to permit
5111  *	either form (or just set the sysctl tcp_stdurg).
5112  */
5113 
5114 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5115 {
5116 	struct tcp_sock *tp = tcp_sk(sk);
5117 	u32 ptr = ntohs(th->urg_ptr);
5118 
5119 	if (ptr && !sysctl_tcp_stdurg)
5120 		ptr--;
5121 	ptr += ntohl(th->seq);
5122 
5123 	/* Ignore urgent data that we've already seen and read. */
5124 	if (after(tp->copied_seq, ptr))
5125 		return;
5126 
5127 	/* Do not replay urg ptr.
5128 	 *
5129 	 * NOTE: interesting situation not covered by specs.
5130 	 * Misbehaving sender may send urg ptr, pointing to segment,
5131 	 * which we already have in ofo queue. We are not able to fetch
5132 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5133 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5134 	 * situations. But it is worth to think about possibility of some
5135 	 * DoSes using some hypothetical application level deadlock.
5136 	 */
5137 	if (before(ptr, tp->rcv_nxt))
5138 		return;
5139 
5140 	/* Do we already have a newer (or duplicate) urgent pointer? */
5141 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5142 		return;
5143 
5144 	/* Tell the world about our new urgent pointer. */
5145 	sk_send_sigurg(sk);
5146 
5147 	/* We may be adding urgent data when the last byte read was
5148 	 * urgent. To do this requires some care. We cannot just ignore
5149 	 * tp->copied_seq since we would read the last urgent byte again
5150 	 * as data, nor can we alter copied_seq until this data arrives
5151 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5152 	 *
5153 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5154 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5155 	 * and expect that both A and B disappear from stream. This is _wrong_.
5156 	 * Though this happens in BSD with high probability, this is occasional.
5157 	 * Any application relying on this is buggy. Note also, that fix "works"
5158 	 * only in this artificial test. Insert some normal data between A and B and we will
5159 	 * decline of BSD again. Verdict: it is better to remove to trap
5160 	 * buggy users.
5161 	 */
5162 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5163 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5164 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5165 		tp->copied_seq++;
5166 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5167 			__skb_unlink(skb, &sk->sk_receive_queue);
5168 			__kfree_skb(skb);
5169 		}
5170 	}
5171 
5172 	tp->urg_data = TCP_URG_NOTYET;
5173 	tp->urg_seq = ptr;
5174 
5175 	/* Disable header prediction. */
5176 	tp->pred_flags = 0;
5177 }
5178 
5179 /* This is the 'fast' part of urgent handling. */
5180 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5181 {
5182 	struct tcp_sock *tp = tcp_sk(sk);
5183 
5184 	/* Check if we get a new urgent pointer - normally not. */
5185 	if (th->urg)
5186 		tcp_check_urg(sk, th);
5187 
5188 	/* Do we wait for any urgent data? - normally not... */
5189 	if (tp->urg_data == TCP_URG_NOTYET) {
5190 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5191 			  th->syn;
5192 
5193 		/* Is the urgent pointer pointing into this packet? */
5194 		if (ptr < skb->len) {
5195 			u8 tmp;
5196 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5197 				BUG();
5198 			tp->urg_data = TCP_URG_VALID | tmp;
5199 			if (!sock_flag(sk, SOCK_DEAD))
5200 				sk->sk_data_ready(sk);
5201 		}
5202 	}
5203 }
5204 
5205 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5206 {
5207 	struct tcp_sock *tp = tcp_sk(sk);
5208 	int chunk = skb->len - hlen;
5209 	int err;
5210 
5211 	if (skb_csum_unnecessary(skb))
5212 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5213 	else
5214 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5215 
5216 	if (!err) {
5217 		tp->ucopy.len -= chunk;
5218 		tp->copied_seq += chunk;
5219 		tcp_rcv_space_adjust(sk);
5220 	}
5221 
5222 	return err;
5223 }
5224 
5225 /* Does PAWS and seqno based validation of an incoming segment, flags will
5226  * play significant role here.
5227  */
5228 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5229 				  const struct tcphdr *th, int syn_inerr)
5230 {
5231 	struct tcp_sock *tp = tcp_sk(sk);
5232 	bool rst_seq_match = false;
5233 
5234 	/* RFC1323: H1. Apply PAWS check first. */
5235 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5236 	    tcp_paws_discard(sk, skb)) {
5237 		if (!th->rst) {
5238 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5239 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5240 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5241 						  &tp->last_oow_ack_time))
5242 				tcp_send_dupack(sk, skb);
5243 			goto discard;
5244 		}
5245 		/* Reset is accepted even if it did not pass PAWS. */
5246 	}
5247 
5248 	/* Step 1: check sequence number */
5249 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5250 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5251 		 * (RST) segments are validated by checking their SEQ-fields."
5252 		 * And page 69: "If an incoming segment is not acceptable,
5253 		 * an acknowledgment should be sent in reply (unless the RST
5254 		 * bit is set, if so drop the segment and return)".
5255 		 */
5256 		if (!th->rst) {
5257 			if (th->syn)
5258 				goto syn_challenge;
5259 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5260 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5261 						  &tp->last_oow_ack_time))
5262 				tcp_send_dupack(sk, skb);
5263 		}
5264 		goto discard;
5265 	}
5266 
5267 	/* Step 2: check RST bit */
5268 	if (th->rst) {
5269 		/* RFC 5961 3.2 (extend to match against SACK too if available):
5270 		 * If seq num matches RCV.NXT or the right-most SACK block,
5271 		 * then
5272 		 *     RESET the connection
5273 		 * else
5274 		 *     Send a challenge ACK
5275 		 */
5276 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5277 			rst_seq_match = true;
5278 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5279 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5280 			int max_sack = sp[0].end_seq;
5281 			int this_sack;
5282 
5283 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5284 			     ++this_sack) {
5285 				max_sack = after(sp[this_sack].end_seq,
5286 						 max_sack) ?
5287 					sp[this_sack].end_seq : max_sack;
5288 			}
5289 
5290 			if (TCP_SKB_CB(skb)->seq == max_sack)
5291 				rst_seq_match = true;
5292 		}
5293 
5294 		if (rst_seq_match)
5295 			tcp_reset(sk);
5296 		else
5297 			tcp_send_challenge_ack(sk, skb);
5298 		goto discard;
5299 	}
5300 
5301 	/* step 3: check security and precedence [ignored] */
5302 
5303 	/* step 4: Check for a SYN
5304 	 * RFC 5961 4.2 : Send a challenge ack
5305 	 */
5306 	if (th->syn) {
5307 syn_challenge:
5308 		if (syn_inerr)
5309 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5310 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5311 		tcp_send_challenge_ack(sk, skb);
5312 		goto discard;
5313 	}
5314 
5315 	return true;
5316 
5317 discard:
5318 	tcp_drop(sk, skb);
5319 	return false;
5320 }
5321 
5322 /*
5323  *	TCP receive function for the ESTABLISHED state.
5324  *
5325  *	It is split into a fast path and a slow path. The fast path is
5326  * 	disabled when:
5327  *	- A zero window was announced from us - zero window probing
5328  *        is only handled properly in the slow path.
5329  *	- Out of order segments arrived.
5330  *	- Urgent data is expected.
5331  *	- There is no buffer space left
5332  *	- Unexpected TCP flags/window values/header lengths are received
5333  *	  (detected by checking the TCP header against pred_flags)
5334  *	- Data is sent in both directions. Fast path only supports pure senders
5335  *	  or pure receivers (this means either the sequence number or the ack
5336  *	  value must stay constant)
5337  *	- Unexpected TCP option.
5338  *
5339  *	When these conditions are not satisfied it drops into a standard
5340  *	receive procedure patterned after RFC793 to handle all cases.
5341  *	The first three cases are guaranteed by proper pred_flags setting,
5342  *	the rest is checked inline. Fast processing is turned on in
5343  *	tcp_data_queue when everything is OK.
5344  */
5345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5346 			 const struct tcphdr *th, unsigned int len)
5347 {
5348 	struct tcp_sock *tp = tcp_sk(sk);
5349 
5350 	if (unlikely(!sk->sk_rx_dst))
5351 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5352 	/*
5353 	 *	Header prediction.
5354 	 *	The code loosely follows the one in the famous
5355 	 *	"30 instruction TCP receive" Van Jacobson mail.
5356 	 *
5357 	 *	Van's trick is to deposit buffers into socket queue
5358 	 *	on a device interrupt, to call tcp_recv function
5359 	 *	on the receive process context and checksum and copy
5360 	 *	the buffer to user space. smart...
5361 	 *
5362 	 *	Our current scheme is not silly either but we take the
5363 	 *	extra cost of the net_bh soft interrupt processing...
5364 	 *	We do checksum and copy also but from device to kernel.
5365 	 */
5366 
5367 	tp->rx_opt.saw_tstamp = 0;
5368 
5369 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5370 	 *	if header_prediction is to be made
5371 	 *	'S' will always be tp->tcp_header_len >> 2
5372 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5373 	 *  turn it off	(when there are holes in the receive
5374 	 *	 space for instance)
5375 	 *	PSH flag is ignored.
5376 	 */
5377 
5378 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5379 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5380 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5381 		int tcp_header_len = tp->tcp_header_len;
5382 
5383 		/* Timestamp header prediction: tcp_header_len
5384 		 * is automatically equal to th->doff*4 due to pred_flags
5385 		 * match.
5386 		 */
5387 
5388 		/* Check timestamp */
5389 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5390 			/* No? Slow path! */
5391 			if (!tcp_parse_aligned_timestamp(tp, th))
5392 				goto slow_path;
5393 
5394 			/* If PAWS failed, check it more carefully in slow path */
5395 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5396 				goto slow_path;
5397 
5398 			/* DO NOT update ts_recent here, if checksum fails
5399 			 * and timestamp was corrupted part, it will result
5400 			 * in a hung connection since we will drop all
5401 			 * future packets due to the PAWS test.
5402 			 */
5403 		}
5404 
5405 		if (len <= tcp_header_len) {
5406 			/* Bulk data transfer: sender */
5407 			if (len == tcp_header_len) {
5408 				/* Predicted packet is in window by definition.
5409 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5410 				 * Hence, check seq<=rcv_wup reduces to:
5411 				 */
5412 				if (tcp_header_len ==
5413 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5414 				    tp->rcv_nxt == tp->rcv_wup)
5415 					tcp_store_ts_recent(tp);
5416 
5417 				/* We know that such packets are checksummed
5418 				 * on entry.
5419 				 */
5420 				tcp_ack(sk, skb, 0);
5421 				__kfree_skb(skb);
5422 				tcp_data_snd_check(sk);
5423 				return;
5424 			} else { /* Header too small */
5425 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5426 				goto discard;
5427 			}
5428 		} else {
5429 			int eaten = 0;
5430 			bool fragstolen = false;
5431 
5432 			if (tp->ucopy.task == current &&
5433 			    tp->copied_seq == tp->rcv_nxt &&
5434 			    len - tcp_header_len <= tp->ucopy.len &&
5435 			    sock_owned_by_user(sk)) {
5436 				__set_current_state(TASK_RUNNING);
5437 
5438 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5439 					/* Predicted packet is in window by definition.
5440 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5441 					 * Hence, check seq<=rcv_wup reduces to:
5442 					 */
5443 					if (tcp_header_len ==
5444 					    (sizeof(struct tcphdr) +
5445 					     TCPOLEN_TSTAMP_ALIGNED) &&
5446 					    tp->rcv_nxt == tp->rcv_wup)
5447 						tcp_store_ts_recent(tp);
5448 
5449 					tcp_rcv_rtt_measure_ts(sk, skb);
5450 
5451 					__skb_pull(skb, tcp_header_len);
5452 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5453 					NET_INC_STATS(sock_net(sk),
5454 							LINUX_MIB_TCPHPHITSTOUSER);
5455 					eaten = 1;
5456 				}
5457 			}
5458 			if (!eaten) {
5459 				if (tcp_checksum_complete(skb))
5460 					goto csum_error;
5461 
5462 				if ((int)skb->truesize > sk->sk_forward_alloc)
5463 					goto step5;
5464 
5465 				/* Predicted packet is in window by definition.
5466 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5467 				 * Hence, check seq<=rcv_wup reduces to:
5468 				 */
5469 				if (tcp_header_len ==
5470 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5471 				    tp->rcv_nxt == tp->rcv_wup)
5472 					tcp_store_ts_recent(tp);
5473 
5474 				tcp_rcv_rtt_measure_ts(sk, skb);
5475 
5476 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5477 
5478 				/* Bulk data transfer: receiver */
5479 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5480 						      &fragstolen);
5481 			}
5482 
5483 			tcp_event_data_recv(sk, skb);
5484 
5485 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5486 				/* Well, only one small jumplet in fast path... */
5487 				tcp_ack(sk, skb, FLAG_DATA);
5488 				tcp_data_snd_check(sk);
5489 				if (!inet_csk_ack_scheduled(sk))
5490 					goto no_ack;
5491 			}
5492 
5493 			__tcp_ack_snd_check(sk, 0);
5494 no_ack:
5495 			if (eaten)
5496 				kfree_skb_partial(skb, fragstolen);
5497 			sk->sk_data_ready(sk);
5498 			return;
5499 		}
5500 	}
5501 
5502 slow_path:
5503 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5504 		goto csum_error;
5505 
5506 	if (!th->ack && !th->rst && !th->syn)
5507 		goto discard;
5508 
5509 	/*
5510 	 *	Standard slow path.
5511 	 */
5512 
5513 	if (!tcp_validate_incoming(sk, skb, th, 1))
5514 		return;
5515 
5516 step5:
5517 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5518 		goto discard;
5519 
5520 	tcp_rcv_rtt_measure_ts(sk, skb);
5521 
5522 	/* Process urgent data. */
5523 	tcp_urg(sk, skb, th);
5524 
5525 	/* step 7: process the segment text */
5526 	tcp_data_queue(sk, skb);
5527 
5528 	tcp_data_snd_check(sk);
5529 	tcp_ack_snd_check(sk);
5530 	return;
5531 
5532 csum_error:
5533 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5534 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5535 
5536 discard:
5537 	tcp_drop(sk, skb);
5538 }
5539 EXPORT_SYMBOL(tcp_rcv_established);
5540 
5541 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5542 {
5543 	struct tcp_sock *tp = tcp_sk(sk);
5544 	struct inet_connection_sock *icsk = inet_csk(sk);
5545 
5546 	tcp_set_state(sk, TCP_ESTABLISHED);
5547 
5548 	if (skb) {
5549 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5550 		security_inet_conn_established(sk, skb);
5551 	}
5552 
5553 	/* Make sure socket is routed, for correct metrics.  */
5554 	icsk->icsk_af_ops->rebuild_header(sk);
5555 
5556 	tcp_init_metrics(sk);
5557 
5558 	tcp_init_congestion_control(sk);
5559 
5560 	/* Prevent spurious tcp_cwnd_restart() on first data
5561 	 * packet.
5562 	 */
5563 	tp->lsndtime = tcp_time_stamp;
5564 
5565 	tcp_init_buffer_space(sk);
5566 
5567 	if (sock_flag(sk, SOCK_KEEPOPEN))
5568 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5569 
5570 	if (!tp->rx_opt.snd_wscale)
5571 		__tcp_fast_path_on(tp, tp->snd_wnd);
5572 	else
5573 		tp->pred_flags = 0;
5574 
5575 	if (!sock_flag(sk, SOCK_DEAD)) {
5576 		sk->sk_state_change(sk);
5577 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5578 	}
5579 }
5580 
5581 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5582 				    struct tcp_fastopen_cookie *cookie)
5583 {
5584 	struct tcp_sock *tp = tcp_sk(sk);
5585 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5586 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5587 	bool syn_drop = false;
5588 
5589 	if (mss == tp->rx_opt.user_mss) {
5590 		struct tcp_options_received opt;
5591 
5592 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5593 		tcp_clear_options(&opt);
5594 		opt.user_mss = opt.mss_clamp = 0;
5595 		tcp_parse_options(synack, &opt, 0, NULL);
5596 		mss = opt.mss_clamp;
5597 	}
5598 
5599 	if (!tp->syn_fastopen) {
5600 		/* Ignore an unsolicited cookie */
5601 		cookie->len = -1;
5602 	} else if (tp->total_retrans) {
5603 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5604 		 * acknowledges data. Presumably the remote received only
5605 		 * the retransmitted (regular) SYNs: either the original
5606 		 * SYN-data or the corresponding SYN-ACK was dropped.
5607 		 */
5608 		syn_drop = (cookie->len < 0 && data);
5609 	} else if (cookie->len < 0 && !tp->syn_data) {
5610 		/* We requested a cookie but didn't get it. If we did not use
5611 		 * the (old) exp opt format then try so next time (try_exp=1).
5612 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5613 		 */
5614 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5615 	}
5616 
5617 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5618 
5619 	if (data) { /* Retransmit unacked data in SYN */
5620 		tcp_for_write_queue_from(data, sk) {
5621 			if (data == tcp_send_head(sk) ||
5622 			    __tcp_retransmit_skb(sk, data, 1))
5623 				break;
5624 		}
5625 		tcp_rearm_rto(sk);
5626 		NET_INC_STATS(sock_net(sk),
5627 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5628 		return true;
5629 	}
5630 	tp->syn_data_acked = tp->syn_data;
5631 	if (tp->syn_data_acked)
5632 		NET_INC_STATS(sock_net(sk),
5633 				LINUX_MIB_TCPFASTOPENACTIVE);
5634 
5635 	tcp_fastopen_add_skb(sk, synack);
5636 
5637 	return false;
5638 }
5639 
5640 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5641 					 const struct tcphdr *th)
5642 {
5643 	struct inet_connection_sock *icsk = inet_csk(sk);
5644 	struct tcp_sock *tp = tcp_sk(sk);
5645 	struct tcp_fastopen_cookie foc = { .len = -1 };
5646 	int saved_clamp = tp->rx_opt.mss_clamp;
5647 
5648 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5649 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5650 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5651 
5652 	if (th->ack) {
5653 		/* rfc793:
5654 		 * "If the state is SYN-SENT then
5655 		 *    first check the ACK bit
5656 		 *      If the ACK bit is set
5657 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5658 		 *        a reset (unless the RST bit is set, if so drop
5659 		 *        the segment and return)"
5660 		 */
5661 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5662 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5663 			goto reset_and_undo;
5664 
5665 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5666 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5667 			     tcp_time_stamp)) {
5668 			NET_INC_STATS(sock_net(sk),
5669 					LINUX_MIB_PAWSACTIVEREJECTED);
5670 			goto reset_and_undo;
5671 		}
5672 
5673 		/* Now ACK is acceptable.
5674 		 *
5675 		 * "If the RST bit is set
5676 		 *    If the ACK was acceptable then signal the user "error:
5677 		 *    connection reset", drop the segment, enter CLOSED state,
5678 		 *    delete TCB, and return."
5679 		 */
5680 
5681 		if (th->rst) {
5682 			tcp_reset(sk);
5683 			goto discard;
5684 		}
5685 
5686 		/* rfc793:
5687 		 *   "fifth, if neither of the SYN or RST bits is set then
5688 		 *    drop the segment and return."
5689 		 *
5690 		 *    See note below!
5691 		 *                                        --ANK(990513)
5692 		 */
5693 		if (!th->syn)
5694 			goto discard_and_undo;
5695 
5696 		/* rfc793:
5697 		 *   "If the SYN bit is on ...
5698 		 *    are acceptable then ...
5699 		 *    (our SYN has been ACKed), change the connection
5700 		 *    state to ESTABLISHED..."
5701 		 */
5702 
5703 		tcp_ecn_rcv_synack(tp, th);
5704 
5705 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5706 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5707 
5708 		/* Ok.. it's good. Set up sequence numbers and
5709 		 * move to established.
5710 		 */
5711 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5712 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5713 
5714 		/* RFC1323: The window in SYN & SYN/ACK segments is
5715 		 * never scaled.
5716 		 */
5717 		tp->snd_wnd = ntohs(th->window);
5718 
5719 		if (!tp->rx_opt.wscale_ok) {
5720 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5721 			tp->window_clamp = min(tp->window_clamp, 65535U);
5722 		}
5723 
5724 		if (tp->rx_opt.saw_tstamp) {
5725 			tp->rx_opt.tstamp_ok	   = 1;
5726 			tp->tcp_header_len =
5727 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5728 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5729 			tcp_store_ts_recent(tp);
5730 		} else {
5731 			tp->tcp_header_len = sizeof(struct tcphdr);
5732 		}
5733 
5734 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5735 			tcp_enable_fack(tp);
5736 
5737 		tcp_mtup_init(sk);
5738 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5739 		tcp_initialize_rcv_mss(sk);
5740 
5741 		/* Remember, tcp_poll() does not lock socket!
5742 		 * Change state from SYN-SENT only after copied_seq
5743 		 * is initialized. */
5744 		tp->copied_seq = tp->rcv_nxt;
5745 
5746 		smp_mb();
5747 
5748 		tcp_finish_connect(sk, skb);
5749 
5750 		if ((tp->syn_fastopen || tp->syn_data) &&
5751 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5752 			return -1;
5753 
5754 		if (sk->sk_write_pending ||
5755 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5756 		    icsk->icsk_ack.pingpong) {
5757 			/* Save one ACK. Data will be ready after
5758 			 * several ticks, if write_pending is set.
5759 			 *
5760 			 * It may be deleted, but with this feature tcpdumps
5761 			 * look so _wonderfully_ clever, that I was not able
5762 			 * to stand against the temptation 8)     --ANK
5763 			 */
5764 			inet_csk_schedule_ack(sk);
5765 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5766 			tcp_enter_quickack_mode(sk);
5767 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5768 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5769 
5770 discard:
5771 			tcp_drop(sk, skb);
5772 			return 0;
5773 		} else {
5774 			tcp_send_ack(sk);
5775 		}
5776 		return -1;
5777 	}
5778 
5779 	/* No ACK in the segment */
5780 
5781 	if (th->rst) {
5782 		/* rfc793:
5783 		 * "If the RST bit is set
5784 		 *
5785 		 *      Otherwise (no ACK) drop the segment and return."
5786 		 */
5787 
5788 		goto discard_and_undo;
5789 	}
5790 
5791 	/* PAWS check. */
5792 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5793 	    tcp_paws_reject(&tp->rx_opt, 0))
5794 		goto discard_and_undo;
5795 
5796 	if (th->syn) {
5797 		/* We see SYN without ACK. It is attempt of
5798 		 * simultaneous connect with crossed SYNs.
5799 		 * Particularly, it can be connect to self.
5800 		 */
5801 		tcp_set_state(sk, TCP_SYN_RECV);
5802 
5803 		if (tp->rx_opt.saw_tstamp) {
5804 			tp->rx_opt.tstamp_ok = 1;
5805 			tcp_store_ts_recent(tp);
5806 			tp->tcp_header_len =
5807 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5808 		} else {
5809 			tp->tcp_header_len = sizeof(struct tcphdr);
5810 		}
5811 
5812 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5813 		tp->copied_seq = tp->rcv_nxt;
5814 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5815 
5816 		/* RFC1323: The window in SYN & SYN/ACK segments is
5817 		 * never scaled.
5818 		 */
5819 		tp->snd_wnd    = ntohs(th->window);
5820 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5821 		tp->max_window = tp->snd_wnd;
5822 
5823 		tcp_ecn_rcv_syn(tp, th);
5824 
5825 		tcp_mtup_init(sk);
5826 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5827 		tcp_initialize_rcv_mss(sk);
5828 
5829 		tcp_send_synack(sk);
5830 #if 0
5831 		/* Note, we could accept data and URG from this segment.
5832 		 * There are no obstacles to make this (except that we must
5833 		 * either change tcp_recvmsg() to prevent it from returning data
5834 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5835 		 *
5836 		 * However, if we ignore data in ACKless segments sometimes,
5837 		 * we have no reasons to accept it sometimes.
5838 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5839 		 * is not flawless. So, discard packet for sanity.
5840 		 * Uncomment this return to process the data.
5841 		 */
5842 		return -1;
5843 #else
5844 		goto discard;
5845 #endif
5846 	}
5847 	/* "fifth, if neither of the SYN or RST bits is set then
5848 	 * drop the segment and return."
5849 	 */
5850 
5851 discard_and_undo:
5852 	tcp_clear_options(&tp->rx_opt);
5853 	tp->rx_opt.mss_clamp = saved_clamp;
5854 	goto discard;
5855 
5856 reset_and_undo:
5857 	tcp_clear_options(&tp->rx_opt);
5858 	tp->rx_opt.mss_clamp = saved_clamp;
5859 	return 1;
5860 }
5861 
5862 /*
5863  *	This function implements the receiving procedure of RFC 793 for
5864  *	all states except ESTABLISHED and TIME_WAIT.
5865  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5866  *	address independent.
5867  */
5868 
5869 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5870 {
5871 	struct tcp_sock *tp = tcp_sk(sk);
5872 	struct inet_connection_sock *icsk = inet_csk(sk);
5873 	const struct tcphdr *th = tcp_hdr(skb);
5874 	struct request_sock *req;
5875 	int queued = 0;
5876 	bool acceptable;
5877 
5878 	switch (sk->sk_state) {
5879 	case TCP_CLOSE:
5880 		goto discard;
5881 
5882 	case TCP_LISTEN:
5883 		if (th->ack)
5884 			return 1;
5885 
5886 		if (th->rst)
5887 			goto discard;
5888 
5889 		if (th->syn) {
5890 			if (th->fin)
5891 				goto discard;
5892 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5893 				return 1;
5894 
5895 			consume_skb(skb);
5896 			return 0;
5897 		}
5898 		goto discard;
5899 
5900 	case TCP_SYN_SENT:
5901 		tp->rx_opt.saw_tstamp = 0;
5902 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5903 		if (queued >= 0)
5904 			return queued;
5905 
5906 		/* Do step6 onward by hand. */
5907 		tcp_urg(sk, skb, th);
5908 		__kfree_skb(skb);
5909 		tcp_data_snd_check(sk);
5910 		return 0;
5911 	}
5912 
5913 	tp->rx_opt.saw_tstamp = 0;
5914 	req = tp->fastopen_rsk;
5915 	if (req) {
5916 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5917 		    sk->sk_state != TCP_FIN_WAIT1);
5918 
5919 		if (!tcp_check_req(sk, skb, req, true))
5920 			goto discard;
5921 	}
5922 
5923 	if (!th->ack && !th->rst && !th->syn)
5924 		goto discard;
5925 
5926 	if (!tcp_validate_incoming(sk, skb, th, 0))
5927 		return 0;
5928 
5929 	/* step 5: check the ACK field */
5930 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5931 				      FLAG_UPDATE_TS_RECENT) > 0;
5932 
5933 	switch (sk->sk_state) {
5934 	case TCP_SYN_RECV:
5935 		if (!acceptable)
5936 			return 1;
5937 
5938 		if (!tp->srtt_us)
5939 			tcp_synack_rtt_meas(sk, req);
5940 
5941 		/* Once we leave TCP_SYN_RECV, we no longer need req
5942 		 * so release it.
5943 		 */
5944 		if (req) {
5945 			inet_csk(sk)->icsk_retransmits = 0;
5946 			reqsk_fastopen_remove(sk, req, false);
5947 		} else {
5948 			/* Make sure socket is routed, for correct metrics. */
5949 			icsk->icsk_af_ops->rebuild_header(sk);
5950 			tcp_init_congestion_control(sk);
5951 
5952 			tcp_mtup_init(sk);
5953 			tp->copied_seq = tp->rcv_nxt;
5954 			tcp_init_buffer_space(sk);
5955 		}
5956 		smp_mb();
5957 		tcp_set_state(sk, TCP_ESTABLISHED);
5958 		sk->sk_state_change(sk);
5959 
5960 		/* Note, that this wakeup is only for marginal crossed SYN case.
5961 		 * Passively open sockets are not waked up, because
5962 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5963 		 */
5964 		if (sk->sk_socket)
5965 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5966 
5967 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5968 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5969 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5970 
5971 		if (tp->rx_opt.tstamp_ok)
5972 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5973 
5974 		if (req) {
5975 			/* Re-arm the timer because data may have been sent out.
5976 			 * This is similar to the regular data transmission case
5977 			 * when new data has just been ack'ed.
5978 			 *
5979 			 * (TFO) - we could try to be more aggressive and
5980 			 * retransmitting any data sooner based on when they
5981 			 * are sent out.
5982 			 */
5983 			tcp_rearm_rto(sk);
5984 		} else
5985 			tcp_init_metrics(sk);
5986 
5987 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5988 			tcp_update_pacing_rate(sk);
5989 
5990 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5991 		tp->lsndtime = tcp_time_stamp;
5992 
5993 		tcp_initialize_rcv_mss(sk);
5994 		tcp_fast_path_on(tp);
5995 		break;
5996 
5997 	case TCP_FIN_WAIT1: {
5998 		struct dst_entry *dst;
5999 		int tmo;
6000 
6001 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6002 		 * Fast Open socket and this is the first acceptable
6003 		 * ACK we have received, this would have acknowledged
6004 		 * our SYNACK so stop the SYNACK timer.
6005 		 */
6006 		if (req) {
6007 			/* Return RST if ack_seq is invalid.
6008 			 * Note that RFC793 only says to generate a
6009 			 * DUPACK for it but for TCP Fast Open it seems
6010 			 * better to treat this case like TCP_SYN_RECV
6011 			 * above.
6012 			 */
6013 			if (!acceptable)
6014 				return 1;
6015 			/* We no longer need the request sock. */
6016 			reqsk_fastopen_remove(sk, req, false);
6017 			tcp_rearm_rto(sk);
6018 		}
6019 		if (tp->snd_una != tp->write_seq)
6020 			break;
6021 
6022 		tcp_set_state(sk, TCP_FIN_WAIT2);
6023 		sk->sk_shutdown |= SEND_SHUTDOWN;
6024 
6025 		dst = __sk_dst_get(sk);
6026 		if (dst)
6027 			dst_confirm(dst);
6028 
6029 		if (!sock_flag(sk, SOCK_DEAD)) {
6030 			/* Wake up lingering close() */
6031 			sk->sk_state_change(sk);
6032 			break;
6033 		}
6034 
6035 		if (tp->linger2 < 0 ||
6036 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6037 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6038 			tcp_done(sk);
6039 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6040 			return 1;
6041 		}
6042 
6043 		tmo = tcp_fin_time(sk);
6044 		if (tmo > TCP_TIMEWAIT_LEN) {
6045 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6046 		} else if (th->fin || sock_owned_by_user(sk)) {
6047 			/* Bad case. We could lose such FIN otherwise.
6048 			 * It is not a big problem, but it looks confusing
6049 			 * and not so rare event. We still can lose it now,
6050 			 * if it spins in bh_lock_sock(), but it is really
6051 			 * marginal case.
6052 			 */
6053 			inet_csk_reset_keepalive_timer(sk, tmo);
6054 		} else {
6055 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6056 			goto discard;
6057 		}
6058 		break;
6059 	}
6060 
6061 	case TCP_CLOSING:
6062 		if (tp->snd_una == tp->write_seq) {
6063 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6064 			goto discard;
6065 		}
6066 		break;
6067 
6068 	case TCP_LAST_ACK:
6069 		if (tp->snd_una == tp->write_seq) {
6070 			tcp_update_metrics(sk);
6071 			tcp_done(sk);
6072 			goto discard;
6073 		}
6074 		break;
6075 	}
6076 
6077 	/* step 6: check the URG bit */
6078 	tcp_urg(sk, skb, th);
6079 
6080 	/* step 7: process the segment text */
6081 	switch (sk->sk_state) {
6082 	case TCP_CLOSE_WAIT:
6083 	case TCP_CLOSING:
6084 	case TCP_LAST_ACK:
6085 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6086 			break;
6087 	case TCP_FIN_WAIT1:
6088 	case TCP_FIN_WAIT2:
6089 		/* RFC 793 says to queue data in these states,
6090 		 * RFC 1122 says we MUST send a reset.
6091 		 * BSD 4.4 also does reset.
6092 		 */
6093 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6094 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6095 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6096 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6097 				tcp_reset(sk);
6098 				return 1;
6099 			}
6100 		}
6101 		/* Fall through */
6102 	case TCP_ESTABLISHED:
6103 		tcp_data_queue(sk, skb);
6104 		queued = 1;
6105 		break;
6106 	}
6107 
6108 	/* tcp_data could move socket to TIME-WAIT */
6109 	if (sk->sk_state != TCP_CLOSE) {
6110 		tcp_data_snd_check(sk);
6111 		tcp_ack_snd_check(sk);
6112 	}
6113 
6114 	if (!queued) {
6115 discard:
6116 		tcp_drop(sk, skb);
6117 	}
6118 	return 0;
6119 }
6120 EXPORT_SYMBOL(tcp_rcv_state_process);
6121 
6122 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6123 {
6124 	struct inet_request_sock *ireq = inet_rsk(req);
6125 
6126 	if (family == AF_INET)
6127 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6128 				    &ireq->ir_rmt_addr, port);
6129 #if IS_ENABLED(CONFIG_IPV6)
6130 	else if (family == AF_INET6)
6131 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6132 				    &ireq->ir_v6_rmt_addr, port);
6133 #endif
6134 }
6135 
6136 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6137  *
6138  * If we receive a SYN packet with these bits set, it means a
6139  * network is playing bad games with TOS bits. In order to
6140  * avoid possible false congestion notifications, we disable
6141  * TCP ECN negotiation.
6142  *
6143  * Exception: tcp_ca wants ECN. This is required for DCTCP
6144  * congestion control: Linux DCTCP asserts ECT on all packets,
6145  * including SYN, which is most optimal solution; however,
6146  * others, such as FreeBSD do not.
6147  */
6148 static void tcp_ecn_create_request(struct request_sock *req,
6149 				   const struct sk_buff *skb,
6150 				   const struct sock *listen_sk,
6151 				   const struct dst_entry *dst)
6152 {
6153 	const struct tcphdr *th = tcp_hdr(skb);
6154 	const struct net *net = sock_net(listen_sk);
6155 	bool th_ecn = th->ece && th->cwr;
6156 	bool ect, ecn_ok;
6157 	u32 ecn_ok_dst;
6158 
6159 	if (!th_ecn)
6160 		return;
6161 
6162 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6163 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6164 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6165 
6166 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6167 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6168 		inet_rsk(req)->ecn_ok = 1;
6169 }
6170 
6171 static void tcp_openreq_init(struct request_sock *req,
6172 			     const struct tcp_options_received *rx_opt,
6173 			     struct sk_buff *skb, const struct sock *sk)
6174 {
6175 	struct inet_request_sock *ireq = inet_rsk(req);
6176 
6177 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6178 	req->cookie_ts = 0;
6179 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6180 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6181 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6182 	tcp_rsk(req)->last_oow_ack_time = 0;
6183 	req->mss = rx_opt->mss_clamp;
6184 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6185 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6186 	ireq->sack_ok = rx_opt->sack_ok;
6187 	ireq->snd_wscale = rx_opt->snd_wscale;
6188 	ireq->wscale_ok = rx_opt->wscale_ok;
6189 	ireq->acked = 0;
6190 	ireq->ecn_ok = 0;
6191 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6192 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6193 	ireq->ir_mark = inet_request_mark(sk, skb);
6194 }
6195 
6196 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6197 				      struct sock *sk_listener,
6198 				      bool attach_listener)
6199 {
6200 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6201 					       attach_listener);
6202 
6203 	if (req) {
6204 		struct inet_request_sock *ireq = inet_rsk(req);
6205 
6206 		kmemcheck_annotate_bitfield(ireq, flags);
6207 		ireq->opt = NULL;
6208 #if IS_ENABLED(CONFIG_IPV6)
6209 		ireq->pktopts = NULL;
6210 #endif
6211 		atomic64_set(&ireq->ir_cookie, 0);
6212 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6213 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6214 		ireq->ireq_family = sk_listener->sk_family;
6215 	}
6216 
6217 	return req;
6218 }
6219 EXPORT_SYMBOL(inet_reqsk_alloc);
6220 
6221 /*
6222  * Return true if a syncookie should be sent
6223  */
6224 static bool tcp_syn_flood_action(const struct sock *sk,
6225 				 const struct sk_buff *skb,
6226 				 const char *proto)
6227 {
6228 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6229 	const char *msg = "Dropping request";
6230 	bool want_cookie = false;
6231 	struct net *net = sock_net(sk);
6232 
6233 #ifdef CONFIG_SYN_COOKIES
6234 	if (net->ipv4.sysctl_tcp_syncookies) {
6235 		msg = "Sending cookies";
6236 		want_cookie = true;
6237 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6238 	} else
6239 #endif
6240 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6241 
6242 	if (!queue->synflood_warned &&
6243 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6244 	    xchg(&queue->synflood_warned, 1) == 0)
6245 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6246 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6247 
6248 	return want_cookie;
6249 }
6250 
6251 static void tcp_reqsk_record_syn(const struct sock *sk,
6252 				 struct request_sock *req,
6253 				 const struct sk_buff *skb)
6254 {
6255 	if (tcp_sk(sk)->save_syn) {
6256 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6257 		u32 *copy;
6258 
6259 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6260 		if (copy) {
6261 			copy[0] = len;
6262 			memcpy(&copy[1], skb_network_header(skb), len);
6263 			req->saved_syn = copy;
6264 		}
6265 	}
6266 }
6267 
6268 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6269 		     const struct tcp_request_sock_ops *af_ops,
6270 		     struct sock *sk, struct sk_buff *skb)
6271 {
6272 	struct tcp_fastopen_cookie foc = { .len = -1 };
6273 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6274 	struct tcp_options_received tmp_opt;
6275 	struct tcp_sock *tp = tcp_sk(sk);
6276 	struct net *net = sock_net(sk);
6277 	struct sock *fastopen_sk = NULL;
6278 	struct dst_entry *dst = NULL;
6279 	struct request_sock *req;
6280 	bool want_cookie = false;
6281 	struct flowi fl;
6282 
6283 	/* TW buckets are converted to open requests without
6284 	 * limitations, they conserve resources and peer is
6285 	 * evidently real one.
6286 	 */
6287 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6288 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6289 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6290 		if (!want_cookie)
6291 			goto drop;
6292 	}
6293 
6294 	if (sk_acceptq_is_full(sk)) {
6295 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6296 		goto drop;
6297 	}
6298 
6299 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6300 	if (!req)
6301 		goto drop;
6302 
6303 	tcp_rsk(req)->af_specific = af_ops;
6304 
6305 	tcp_clear_options(&tmp_opt);
6306 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6307 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6308 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6309 
6310 	if (want_cookie && !tmp_opt.saw_tstamp)
6311 		tcp_clear_options(&tmp_opt);
6312 
6313 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6314 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6315 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6316 
6317 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6318 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6319 
6320 	af_ops->init_req(req, sk, skb);
6321 
6322 	if (security_inet_conn_request(sk, skb, req))
6323 		goto drop_and_free;
6324 
6325 	if (!want_cookie && !isn) {
6326 		/* VJ's idea. We save last timestamp seen
6327 		 * from the destination in peer table, when entering
6328 		 * state TIME-WAIT, and check against it before
6329 		 * accepting new connection request.
6330 		 *
6331 		 * If "isn" is not zero, this request hit alive
6332 		 * timewait bucket, so that all the necessary checks
6333 		 * are made in the function processing timewait state.
6334 		 */
6335 		if (tcp_death_row.sysctl_tw_recycle) {
6336 			bool strict;
6337 
6338 			dst = af_ops->route_req(sk, &fl, req, &strict);
6339 
6340 			if (dst && strict &&
6341 			    !tcp_peer_is_proven(req, dst, true,
6342 						tmp_opt.saw_tstamp)) {
6343 				NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6344 				goto drop_and_release;
6345 			}
6346 		}
6347 		/* Kill the following clause, if you dislike this way. */
6348 		else if (!net->ipv4.sysctl_tcp_syncookies &&
6349 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6350 			  (sysctl_max_syn_backlog >> 2)) &&
6351 			 !tcp_peer_is_proven(req, dst, false,
6352 					     tmp_opt.saw_tstamp)) {
6353 			/* Without syncookies last quarter of
6354 			 * backlog is filled with destinations,
6355 			 * proven to be alive.
6356 			 * It means that we continue to communicate
6357 			 * to destinations, already remembered
6358 			 * to the moment of synflood.
6359 			 */
6360 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6361 				    rsk_ops->family);
6362 			goto drop_and_release;
6363 		}
6364 
6365 		isn = af_ops->init_seq(skb);
6366 	}
6367 	if (!dst) {
6368 		dst = af_ops->route_req(sk, &fl, req, NULL);
6369 		if (!dst)
6370 			goto drop_and_free;
6371 	}
6372 
6373 	tcp_ecn_create_request(req, skb, sk, dst);
6374 
6375 	if (want_cookie) {
6376 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6377 		req->cookie_ts = tmp_opt.tstamp_ok;
6378 		if (!tmp_opt.tstamp_ok)
6379 			inet_rsk(req)->ecn_ok = 0;
6380 	}
6381 
6382 	tcp_rsk(req)->snt_isn = isn;
6383 	tcp_rsk(req)->txhash = net_tx_rndhash();
6384 	tcp_openreq_init_rwin(req, sk, dst);
6385 	if (!want_cookie) {
6386 		tcp_reqsk_record_syn(sk, req, skb);
6387 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6388 	}
6389 	if (fastopen_sk) {
6390 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6391 				    &foc, TCP_SYNACK_FASTOPEN);
6392 		/* Add the child socket directly into the accept queue */
6393 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6394 		sk->sk_data_ready(sk);
6395 		bh_unlock_sock(fastopen_sk);
6396 		sock_put(fastopen_sk);
6397 	} else {
6398 		tcp_rsk(req)->tfo_listener = false;
6399 		if (!want_cookie)
6400 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6401 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6402 				    !want_cookie ? TCP_SYNACK_NORMAL :
6403 						   TCP_SYNACK_COOKIE);
6404 		if (want_cookie) {
6405 			reqsk_free(req);
6406 			return 0;
6407 		}
6408 	}
6409 	reqsk_put(req);
6410 	return 0;
6411 
6412 drop_and_release:
6413 	dst_release(dst);
6414 drop_and_free:
6415 	reqsk_free(req);
6416 drop:
6417 	tcp_listendrop(sk);
6418 	return 0;
6419 }
6420 EXPORT_SYMBOL(tcp_conn_request);
6421