1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_max_reordering __read_mostly = 300; 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 1000; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 97 98 int sysctl_tcp_thin_dupack __read_mostly; 99 100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 101 int sysctl_tcp_early_retrans __read_mostly = 3; 102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 103 104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 110 #define FLAG_ECE 0x40 /* ECE in this ACK */ 111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 118 119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 123 124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 126 127 #define REXMIT_NONE 0 /* no loss recovery to do */ 128 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 130 131 /* Adapt the MSS value used to make delayed ack decision to the 132 * real world. 133 */ 134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 135 { 136 struct inet_connection_sock *icsk = inet_csk(sk); 137 const unsigned int lss = icsk->icsk_ack.last_seg_size; 138 unsigned int len; 139 140 icsk->icsk_ack.last_seg_size = 0; 141 142 /* skb->len may jitter because of SACKs, even if peer 143 * sends good full-sized frames. 144 */ 145 len = skb_shinfo(skb)->gso_size ? : skb->len; 146 if (len >= icsk->icsk_ack.rcv_mss) { 147 icsk->icsk_ack.rcv_mss = len; 148 } else { 149 /* Otherwise, we make more careful check taking into account, 150 * that SACKs block is variable. 151 * 152 * "len" is invariant segment length, including TCP header. 153 */ 154 len += skb->data - skb_transport_header(skb); 155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 156 /* If PSH is not set, packet should be 157 * full sized, provided peer TCP is not badly broken. 158 * This observation (if it is correct 8)) allows 159 * to handle super-low mtu links fairly. 160 */ 161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 163 /* Subtract also invariant (if peer is RFC compliant), 164 * tcp header plus fixed timestamp option length. 165 * Resulting "len" is MSS free of SACK jitter. 166 */ 167 len -= tcp_sk(sk)->tcp_header_len; 168 icsk->icsk_ack.last_seg_size = len; 169 if (len == lss) { 170 icsk->icsk_ack.rcv_mss = len; 171 return; 172 } 173 } 174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 177 } 178 } 179 180 static void tcp_incr_quickack(struct sock *sk) 181 { 182 struct inet_connection_sock *icsk = inet_csk(sk); 183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 184 185 if (quickacks == 0) 186 quickacks = 2; 187 if (quickacks > icsk->icsk_ack.quick) 188 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 189 } 190 191 static void tcp_enter_quickack_mode(struct sock *sk) 192 { 193 struct inet_connection_sock *icsk = inet_csk(sk); 194 tcp_incr_quickack(sk); 195 icsk->icsk_ack.pingpong = 0; 196 icsk->icsk_ack.ato = TCP_ATO_MIN; 197 } 198 199 /* Send ACKs quickly, if "quick" count is not exhausted 200 * and the session is not interactive. 201 */ 202 203 static bool tcp_in_quickack_mode(struct sock *sk) 204 { 205 const struct inet_connection_sock *icsk = inet_csk(sk); 206 const struct dst_entry *dst = __sk_dst_get(sk); 207 208 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 209 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 210 } 211 212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 213 { 214 if (tp->ecn_flags & TCP_ECN_OK) 215 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 216 } 217 218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 219 { 220 if (tcp_hdr(skb)->cwr) 221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 222 } 223 224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 225 { 226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 227 } 228 229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 230 { 231 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 232 case INET_ECN_NOT_ECT: 233 /* Funny extension: if ECT is not set on a segment, 234 * and we already seen ECT on a previous segment, 235 * it is probably a retransmit. 236 */ 237 if (tp->ecn_flags & TCP_ECN_SEEN) 238 tcp_enter_quickack_mode((struct sock *)tp); 239 break; 240 case INET_ECN_CE: 241 if (tcp_ca_needs_ecn((struct sock *)tp)) 242 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 243 244 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 245 /* Better not delay acks, sender can have a very low cwnd */ 246 tcp_enter_quickack_mode((struct sock *)tp); 247 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 248 } 249 tp->ecn_flags |= TCP_ECN_SEEN; 250 break; 251 default: 252 if (tcp_ca_needs_ecn((struct sock *)tp)) 253 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 254 tp->ecn_flags |= TCP_ECN_SEEN; 255 break; 256 } 257 } 258 259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 260 { 261 if (tp->ecn_flags & TCP_ECN_OK) 262 __tcp_ecn_check_ce(tp, skb); 263 } 264 265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 266 { 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 268 tp->ecn_flags &= ~TCP_ECN_OK; 269 } 270 271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 274 tp->ecn_flags &= ~TCP_ECN_OK; 275 } 276 277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 278 { 279 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 280 return true; 281 return false; 282 } 283 284 /* Buffer size and advertised window tuning. 285 * 286 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 287 */ 288 289 static void tcp_sndbuf_expand(struct sock *sk) 290 { 291 const struct tcp_sock *tp = tcp_sk(sk); 292 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 293 int sndmem, per_mss; 294 u32 nr_segs; 295 296 /* Worst case is non GSO/TSO : each frame consumes one skb 297 * and skb->head is kmalloced using power of two area of memory 298 */ 299 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 300 MAX_TCP_HEADER + 301 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 302 303 per_mss = roundup_pow_of_two(per_mss) + 304 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 305 306 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 307 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 308 309 /* Fast Recovery (RFC 5681 3.2) : 310 * Cubic needs 1.7 factor, rounded to 2 to include 311 * extra cushion (application might react slowly to POLLOUT) 312 */ 313 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 314 sndmem *= nr_segs * per_mss; 315 316 if (sk->sk_sndbuf < sndmem) 317 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 318 } 319 320 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 321 * 322 * All tcp_full_space() is split to two parts: "network" buffer, allocated 323 * forward and advertised in receiver window (tp->rcv_wnd) and 324 * "application buffer", required to isolate scheduling/application 325 * latencies from network. 326 * window_clamp is maximal advertised window. It can be less than 327 * tcp_full_space(), in this case tcp_full_space() - window_clamp 328 * is reserved for "application" buffer. The less window_clamp is 329 * the smoother our behaviour from viewpoint of network, but the lower 330 * throughput and the higher sensitivity of the connection to losses. 8) 331 * 332 * rcv_ssthresh is more strict window_clamp used at "slow start" 333 * phase to predict further behaviour of this connection. 334 * It is used for two goals: 335 * - to enforce header prediction at sender, even when application 336 * requires some significant "application buffer". It is check #1. 337 * - to prevent pruning of receive queue because of misprediction 338 * of receiver window. Check #2. 339 * 340 * The scheme does not work when sender sends good segments opening 341 * window and then starts to feed us spaghetti. But it should work 342 * in common situations. Otherwise, we have to rely on queue collapsing. 343 */ 344 345 /* Slow part of check#2. */ 346 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 347 { 348 struct tcp_sock *tp = tcp_sk(sk); 349 /* Optimize this! */ 350 int truesize = tcp_win_from_space(skb->truesize) >> 1; 351 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 352 353 while (tp->rcv_ssthresh <= window) { 354 if (truesize <= skb->len) 355 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 356 357 truesize >>= 1; 358 window >>= 1; 359 } 360 return 0; 361 } 362 363 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 364 { 365 struct tcp_sock *tp = tcp_sk(sk); 366 367 /* Check #1 */ 368 if (tp->rcv_ssthresh < tp->window_clamp && 369 (int)tp->rcv_ssthresh < tcp_space(sk) && 370 !tcp_under_memory_pressure(sk)) { 371 int incr; 372 373 /* Check #2. Increase window, if skb with such overhead 374 * will fit to rcvbuf in future. 375 */ 376 if (tcp_win_from_space(skb->truesize) <= skb->len) 377 incr = 2 * tp->advmss; 378 else 379 incr = __tcp_grow_window(sk, skb); 380 381 if (incr) { 382 incr = max_t(int, incr, 2 * skb->len); 383 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 384 tp->window_clamp); 385 inet_csk(sk)->icsk_ack.quick |= 1; 386 } 387 } 388 } 389 390 /* 3. Tuning rcvbuf, when connection enters established state. */ 391 static void tcp_fixup_rcvbuf(struct sock *sk) 392 { 393 u32 mss = tcp_sk(sk)->advmss; 394 int rcvmem; 395 396 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 397 tcp_default_init_rwnd(mss); 398 399 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 400 * Allow enough cushion so that sender is not limited by our window 401 */ 402 if (sysctl_tcp_moderate_rcvbuf) 403 rcvmem <<= 2; 404 405 if (sk->sk_rcvbuf < rcvmem) 406 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 407 } 408 409 /* 4. Try to fixup all. It is made immediately after connection enters 410 * established state. 411 */ 412 void tcp_init_buffer_space(struct sock *sk) 413 { 414 struct tcp_sock *tp = tcp_sk(sk); 415 int maxwin; 416 417 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 418 tcp_fixup_rcvbuf(sk); 419 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 420 tcp_sndbuf_expand(sk); 421 422 tp->rcvq_space.space = tp->rcv_wnd; 423 tp->rcvq_space.time = tcp_time_stamp; 424 tp->rcvq_space.seq = tp->copied_seq; 425 426 maxwin = tcp_full_space(sk); 427 428 if (tp->window_clamp >= maxwin) { 429 tp->window_clamp = maxwin; 430 431 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 432 tp->window_clamp = max(maxwin - 433 (maxwin >> sysctl_tcp_app_win), 434 4 * tp->advmss); 435 } 436 437 /* Force reservation of one segment. */ 438 if (sysctl_tcp_app_win && 439 tp->window_clamp > 2 * tp->advmss && 440 tp->window_clamp + tp->advmss > maxwin) 441 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 442 443 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 444 tp->snd_cwnd_stamp = tcp_time_stamp; 445 } 446 447 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 448 static void tcp_clamp_window(struct sock *sk) 449 { 450 struct tcp_sock *tp = tcp_sk(sk); 451 struct inet_connection_sock *icsk = inet_csk(sk); 452 453 icsk->icsk_ack.quick = 0; 454 455 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 456 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 457 !tcp_under_memory_pressure(sk) && 458 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 459 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 460 sysctl_tcp_rmem[2]); 461 } 462 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 463 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 464 } 465 466 /* Initialize RCV_MSS value. 467 * RCV_MSS is an our guess about MSS used by the peer. 468 * We haven't any direct information about the MSS. 469 * It's better to underestimate the RCV_MSS rather than overestimate. 470 * Overestimations make us ACKing less frequently than needed. 471 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 472 */ 473 void tcp_initialize_rcv_mss(struct sock *sk) 474 { 475 const struct tcp_sock *tp = tcp_sk(sk); 476 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 477 478 hint = min(hint, tp->rcv_wnd / 2); 479 hint = min(hint, TCP_MSS_DEFAULT); 480 hint = max(hint, TCP_MIN_MSS); 481 482 inet_csk(sk)->icsk_ack.rcv_mss = hint; 483 } 484 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 485 486 /* Receiver "autotuning" code. 487 * 488 * The algorithm for RTT estimation w/o timestamps is based on 489 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 490 * <http://public.lanl.gov/radiant/pubs.html#DRS> 491 * 492 * More detail on this code can be found at 493 * <http://staff.psc.edu/jheffner/>, 494 * though this reference is out of date. A new paper 495 * is pending. 496 */ 497 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 498 { 499 u32 new_sample = tp->rcv_rtt_est.rtt; 500 long m = sample; 501 502 if (m == 0) 503 m = 1; 504 505 if (new_sample != 0) { 506 /* If we sample in larger samples in the non-timestamp 507 * case, we could grossly overestimate the RTT especially 508 * with chatty applications or bulk transfer apps which 509 * are stalled on filesystem I/O. 510 * 511 * Also, since we are only going for a minimum in the 512 * non-timestamp case, we do not smooth things out 513 * else with timestamps disabled convergence takes too 514 * long. 515 */ 516 if (!win_dep) { 517 m -= (new_sample >> 3); 518 new_sample += m; 519 } else { 520 m <<= 3; 521 if (m < new_sample) 522 new_sample = m; 523 } 524 } else { 525 /* No previous measure. */ 526 new_sample = m << 3; 527 } 528 529 if (tp->rcv_rtt_est.rtt != new_sample) 530 tp->rcv_rtt_est.rtt = new_sample; 531 } 532 533 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 534 { 535 if (tp->rcv_rtt_est.time == 0) 536 goto new_measure; 537 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 538 return; 539 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 540 541 new_measure: 542 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 543 tp->rcv_rtt_est.time = tcp_time_stamp; 544 } 545 546 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 547 const struct sk_buff *skb) 548 { 549 struct tcp_sock *tp = tcp_sk(sk); 550 if (tp->rx_opt.rcv_tsecr && 551 (TCP_SKB_CB(skb)->end_seq - 552 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 553 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 554 } 555 556 /* 557 * This function should be called every time data is copied to user space. 558 * It calculates the appropriate TCP receive buffer space. 559 */ 560 void tcp_rcv_space_adjust(struct sock *sk) 561 { 562 struct tcp_sock *tp = tcp_sk(sk); 563 int time; 564 int copied; 565 566 time = tcp_time_stamp - tp->rcvq_space.time; 567 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 568 return; 569 570 /* Number of bytes copied to user in last RTT */ 571 copied = tp->copied_seq - tp->rcvq_space.seq; 572 if (copied <= tp->rcvq_space.space) 573 goto new_measure; 574 575 /* A bit of theory : 576 * copied = bytes received in previous RTT, our base window 577 * To cope with packet losses, we need a 2x factor 578 * To cope with slow start, and sender growing its cwin by 100 % 579 * every RTT, we need a 4x factor, because the ACK we are sending 580 * now is for the next RTT, not the current one : 581 * <prev RTT . ><current RTT .. ><next RTT .... > 582 */ 583 584 if (sysctl_tcp_moderate_rcvbuf && 585 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 586 int rcvwin, rcvmem, rcvbuf; 587 588 /* minimal window to cope with packet losses, assuming 589 * steady state. Add some cushion because of small variations. 590 */ 591 rcvwin = (copied << 1) + 16 * tp->advmss; 592 593 /* If rate increased by 25%, 594 * assume slow start, rcvwin = 3 * copied 595 * If rate increased by 50%, 596 * assume sender can use 2x growth, rcvwin = 4 * copied 597 */ 598 if (copied >= 599 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 600 if (copied >= 601 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 602 rcvwin <<= 1; 603 else 604 rcvwin += (rcvwin >> 1); 605 } 606 607 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 608 while (tcp_win_from_space(rcvmem) < tp->advmss) 609 rcvmem += 128; 610 611 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 612 if (rcvbuf > sk->sk_rcvbuf) { 613 sk->sk_rcvbuf = rcvbuf; 614 615 /* Make the window clamp follow along. */ 616 tp->window_clamp = rcvwin; 617 } 618 } 619 tp->rcvq_space.space = copied; 620 621 new_measure: 622 tp->rcvq_space.seq = tp->copied_seq; 623 tp->rcvq_space.time = tcp_time_stamp; 624 } 625 626 /* There is something which you must keep in mind when you analyze the 627 * behavior of the tp->ato delayed ack timeout interval. When a 628 * connection starts up, we want to ack as quickly as possible. The 629 * problem is that "good" TCP's do slow start at the beginning of data 630 * transmission. The means that until we send the first few ACK's the 631 * sender will sit on his end and only queue most of his data, because 632 * he can only send snd_cwnd unacked packets at any given time. For 633 * each ACK we send, he increments snd_cwnd and transmits more of his 634 * queue. -DaveM 635 */ 636 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 637 { 638 struct tcp_sock *tp = tcp_sk(sk); 639 struct inet_connection_sock *icsk = inet_csk(sk); 640 u32 now; 641 642 inet_csk_schedule_ack(sk); 643 644 tcp_measure_rcv_mss(sk, skb); 645 646 tcp_rcv_rtt_measure(tp); 647 648 now = tcp_time_stamp; 649 650 if (!icsk->icsk_ack.ato) { 651 /* The _first_ data packet received, initialize 652 * delayed ACK engine. 653 */ 654 tcp_incr_quickack(sk); 655 icsk->icsk_ack.ato = TCP_ATO_MIN; 656 } else { 657 int m = now - icsk->icsk_ack.lrcvtime; 658 659 if (m <= TCP_ATO_MIN / 2) { 660 /* The fastest case is the first. */ 661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 662 } else if (m < icsk->icsk_ack.ato) { 663 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 664 if (icsk->icsk_ack.ato > icsk->icsk_rto) 665 icsk->icsk_ack.ato = icsk->icsk_rto; 666 } else if (m > icsk->icsk_rto) { 667 /* Too long gap. Apparently sender failed to 668 * restart window, so that we send ACKs quickly. 669 */ 670 tcp_incr_quickack(sk); 671 sk_mem_reclaim(sk); 672 } 673 } 674 icsk->icsk_ack.lrcvtime = now; 675 676 tcp_ecn_check_ce(tp, skb); 677 678 if (skb->len >= 128) 679 tcp_grow_window(sk, skb); 680 } 681 682 /* Called to compute a smoothed rtt estimate. The data fed to this 683 * routine either comes from timestamps, or from segments that were 684 * known _not_ to have been retransmitted [see Karn/Partridge 685 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 686 * piece by Van Jacobson. 687 * NOTE: the next three routines used to be one big routine. 688 * To save cycles in the RFC 1323 implementation it was better to break 689 * it up into three procedures. -- erics 690 */ 691 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 692 { 693 struct tcp_sock *tp = tcp_sk(sk); 694 long m = mrtt_us; /* RTT */ 695 u32 srtt = tp->srtt_us; 696 697 /* The following amusing code comes from Jacobson's 698 * article in SIGCOMM '88. Note that rtt and mdev 699 * are scaled versions of rtt and mean deviation. 700 * This is designed to be as fast as possible 701 * m stands for "measurement". 702 * 703 * On a 1990 paper the rto value is changed to: 704 * RTO = rtt + 4 * mdev 705 * 706 * Funny. This algorithm seems to be very broken. 707 * These formulae increase RTO, when it should be decreased, increase 708 * too slowly, when it should be increased quickly, decrease too quickly 709 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 710 * does not matter how to _calculate_ it. Seems, it was trap 711 * that VJ failed to avoid. 8) 712 */ 713 if (srtt != 0) { 714 m -= (srtt >> 3); /* m is now error in rtt est */ 715 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 716 if (m < 0) { 717 m = -m; /* m is now abs(error) */ 718 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 719 /* This is similar to one of Eifel findings. 720 * Eifel blocks mdev updates when rtt decreases. 721 * This solution is a bit different: we use finer gain 722 * for mdev in this case (alpha*beta). 723 * Like Eifel it also prevents growth of rto, 724 * but also it limits too fast rto decreases, 725 * happening in pure Eifel. 726 */ 727 if (m > 0) 728 m >>= 3; 729 } else { 730 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 731 } 732 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 733 if (tp->mdev_us > tp->mdev_max_us) { 734 tp->mdev_max_us = tp->mdev_us; 735 if (tp->mdev_max_us > tp->rttvar_us) 736 tp->rttvar_us = tp->mdev_max_us; 737 } 738 if (after(tp->snd_una, tp->rtt_seq)) { 739 if (tp->mdev_max_us < tp->rttvar_us) 740 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 741 tp->rtt_seq = tp->snd_nxt; 742 tp->mdev_max_us = tcp_rto_min_us(sk); 743 } 744 } else { 745 /* no previous measure. */ 746 srtt = m << 3; /* take the measured time to be rtt */ 747 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 748 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 749 tp->mdev_max_us = tp->rttvar_us; 750 tp->rtt_seq = tp->snd_nxt; 751 } 752 tp->srtt_us = max(1U, srtt); 753 } 754 755 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 756 * Note: TCP stack does not yet implement pacing. 757 * FQ packet scheduler can be used to implement cheap but effective 758 * TCP pacing, to smooth the burst on large writes when packets 759 * in flight is significantly lower than cwnd (or rwin) 760 */ 761 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 762 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 763 764 static void tcp_update_pacing_rate(struct sock *sk) 765 { 766 const struct tcp_sock *tp = tcp_sk(sk); 767 u64 rate; 768 769 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 770 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 771 772 /* current rate is (cwnd * mss) / srtt 773 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 774 * In Congestion Avoidance phase, set it to 120 % the current rate. 775 * 776 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 777 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 778 * end of slow start and should slow down. 779 */ 780 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 781 rate *= sysctl_tcp_pacing_ss_ratio; 782 else 783 rate *= sysctl_tcp_pacing_ca_ratio; 784 785 rate *= max(tp->snd_cwnd, tp->packets_out); 786 787 if (likely(tp->srtt_us)) 788 do_div(rate, tp->srtt_us); 789 790 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 791 * without any lock. We want to make sure compiler wont store 792 * intermediate values in this location. 793 */ 794 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 795 sk->sk_max_pacing_rate); 796 } 797 798 /* Calculate rto without backoff. This is the second half of Van Jacobson's 799 * routine referred to above. 800 */ 801 static void tcp_set_rto(struct sock *sk) 802 { 803 const struct tcp_sock *tp = tcp_sk(sk); 804 /* Old crap is replaced with new one. 8) 805 * 806 * More seriously: 807 * 1. If rtt variance happened to be less 50msec, it is hallucination. 808 * It cannot be less due to utterly erratic ACK generation made 809 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 810 * to do with delayed acks, because at cwnd>2 true delack timeout 811 * is invisible. Actually, Linux-2.4 also generates erratic 812 * ACKs in some circumstances. 813 */ 814 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 815 816 /* 2. Fixups made earlier cannot be right. 817 * If we do not estimate RTO correctly without them, 818 * all the algo is pure shit and should be replaced 819 * with correct one. It is exactly, which we pretend to do. 820 */ 821 822 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 823 * guarantees that rto is higher. 824 */ 825 tcp_bound_rto(sk); 826 } 827 828 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 829 { 830 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 831 832 if (!cwnd) 833 cwnd = TCP_INIT_CWND; 834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 835 } 836 837 /* 838 * Packet counting of FACK is based on in-order assumptions, therefore TCP 839 * disables it when reordering is detected 840 */ 841 void tcp_disable_fack(struct tcp_sock *tp) 842 { 843 /* RFC3517 uses different metric in lost marker => reset on change */ 844 if (tcp_is_fack(tp)) 845 tp->lost_skb_hint = NULL; 846 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 847 } 848 849 /* Take a notice that peer is sending D-SACKs */ 850 static void tcp_dsack_seen(struct tcp_sock *tp) 851 { 852 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 853 } 854 855 static void tcp_update_reordering(struct sock *sk, const int metric, 856 const int ts) 857 { 858 struct tcp_sock *tp = tcp_sk(sk); 859 if (metric > tp->reordering) { 860 int mib_idx; 861 862 tp->reordering = min(sysctl_tcp_max_reordering, metric); 863 864 /* This exciting event is worth to be remembered. 8) */ 865 if (ts) 866 mib_idx = LINUX_MIB_TCPTSREORDER; 867 else if (tcp_is_reno(tp)) 868 mib_idx = LINUX_MIB_TCPRENOREORDER; 869 else if (tcp_is_fack(tp)) 870 mib_idx = LINUX_MIB_TCPFACKREORDER; 871 else 872 mib_idx = LINUX_MIB_TCPSACKREORDER; 873 874 NET_INC_STATS(sock_net(sk), mib_idx); 875 #if FASTRETRANS_DEBUG > 1 876 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 877 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 878 tp->reordering, 879 tp->fackets_out, 880 tp->sacked_out, 881 tp->undo_marker ? tp->undo_retrans : 0); 882 #endif 883 tcp_disable_fack(tp); 884 } 885 886 if (metric > 0) 887 tcp_disable_early_retrans(tp); 888 tp->rack.reord = 1; 889 } 890 891 /* This must be called before lost_out is incremented */ 892 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 893 { 894 if (!tp->retransmit_skb_hint || 895 before(TCP_SKB_CB(skb)->seq, 896 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 897 tp->retransmit_skb_hint = skb; 898 899 if (!tp->lost_out || 900 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 901 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 902 } 903 904 /* Sum the number of packets on the wire we have marked as lost. 905 * There are two cases we care about here: 906 * a) Packet hasn't been marked lost (nor retransmitted), 907 * and this is the first loss. 908 * b) Packet has been marked both lost and retransmitted, 909 * and this means we think it was lost again. 910 */ 911 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 912 { 913 __u8 sacked = TCP_SKB_CB(skb)->sacked; 914 915 if (!(sacked & TCPCB_LOST) || 916 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 917 tp->lost += tcp_skb_pcount(skb); 918 } 919 920 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 921 { 922 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 923 tcp_verify_retransmit_hint(tp, skb); 924 925 tp->lost_out += tcp_skb_pcount(skb); 926 tcp_sum_lost(tp, skb); 927 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 928 } 929 } 930 931 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 932 { 933 tcp_verify_retransmit_hint(tp, skb); 934 935 tcp_sum_lost(tp, skb); 936 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 937 tp->lost_out += tcp_skb_pcount(skb); 938 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 939 } 940 } 941 942 /* This procedure tags the retransmission queue when SACKs arrive. 943 * 944 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 945 * Packets in queue with these bits set are counted in variables 946 * sacked_out, retrans_out and lost_out, correspondingly. 947 * 948 * Valid combinations are: 949 * Tag InFlight Description 950 * 0 1 - orig segment is in flight. 951 * S 0 - nothing flies, orig reached receiver. 952 * L 0 - nothing flies, orig lost by net. 953 * R 2 - both orig and retransmit are in flight. 954 * L|R 1 - orig is lost, retransmit is in flight. 955 * S|R 1 - orig reached receiver, retrans is still in flight. 956 * (L|S|R is logically valid, it could occur when L|R is sacked, 957 * but it is equivalent to plain S and code short-curcuits it to S. 958 * L|S is logically invalid, it would mean -1 packet in flight 8)) 959 * 960 * These 6 states form finite state machine, controlled by the following events: 961 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 962 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 963 * 3. Loss detection event of two flavors: 964 * A. Scoreboard estimator decided the packet is lost. 965 * A'. Reno "three dupacks" marks head of queue lost. 966 * A''. Its FACK modification, head until snd.fack is lost. 967 * B. SACK arrives sacking SND.NXT at the moment, when the 968 * segment was retransmitted. 969 * 4. D-SACK added new rule: D-SACK changes any tag to S. 970 * 971 * It is pleasant to note, that state diagram turns out to be commutative, 972 * so that we are allowed not to be bothered by order of our actions, 973 * when multiple events arrive simultaneously. (see the function below). 974 * 975 * Reordering detection. 976 * -------------------- 977 * Reordering metric is maximal distance, which a packet can be displaced 978 * in packet stream. With SACKs we can estimate it: 979 * 980 * 1. SACK fills old hole and the corresponding segment was not 981 * ever retransmitted -> reordering. Alas, we cannot use it 982 * when segment was retransmitted. 983 * 2. The last flaw is solved with D-SACK. D-SACK arrives 984 * for retransmitted and already SACKed segment -> reordering.. 985 * Both of these heuristics are not used in Loss state, when we cannot 986 * account for retransmits accurately. 987 * 988 * SACK block validation. 989 * ---------------------- 990 * 991 * SACK block range validation checks that the received SACK block fits to 992 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 993 * Note that SND.UNA is not included to the range though being valid because 994 * it means that the receiver is rather inconsistent with itself reporting 995 * SACK reneging when it should advance SND.UNA. Such SACK block this is 996 * perfectly valid, however, in light of RFC2018 which explicitly states 997 * that "SACK block MUST reflect the newest segment. Even if the newest 998 * segment is going to be discarded ...", not that it looks very clever 999 * in case of head skb. Due to potentional receiver driven attacks, we 1000 * choose to avoid immediate execution of a walk in write queue due to 1001 * reneging and defer head skb's loss recovery to standard loss recovery 1002 * procedure that will eventually trigger (nothing forbids us doing this). 1003 * 1004 * Implements also blockage to start_seq wrap-around. Problem lies in the 1005 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1006 * there's no guarantee that it will be before snd_nxt (n). The problem 1007 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1008 * wrap (s_w): 1009 * 1010 * <- outs wnd -> <- wrapzone -> 1011 * u e n u_w e_w s n_w 1012 * | | | | | | | 1013 * |<------------+------+----- TCP seqno space --------------+---------->| 1014 * ...-- <2^31 ->| |<--------... 1015 * ...---- >2^31 ------>| |<--------... 1016 * 1017 * Current code wouldn't be vulnerable but it's better still to discard such 1018 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1019 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1020 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1021 * equal to the ideal case (infinite seqno space without wrap caused issues). 1022 * 1023 * With D-SACK the lower bound is extended to cover sequence space below 1024 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1025 * again, D-SACK block must not to go across snd_una (for the same reason as 1026 * for the normal SACK blocks, explained above). But there all simplicity 1027 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1028 * fully below undo_marker they do not affect behavior in anyway and can 1029 * therefore be safely ignored. In rare cases (which are more or less 1030 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1031 * fragmentation and packet reordering past skb's retransmission. To consider 1032 * them correctly, the acceptable range must be extended even more though 1033 * the exact amount is rather hard to quantify. However, tp->max_window can 1034 * be used as an exaggerated estimate. 1035 */ 1036 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1037 u32 start_seq, u32 end_seq) 1038 { 1039 /* Too far in future, or reversed (interpretation is ambiguous) */ 1040 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1041 return false; 1042 1043 /* Nasty start_seq wrap-around check (see comments above) */ 1044 if (!before(start_seq, tp->snd_nxt)) 1045 return false; 1046 1047 /* In outstanding window? ...This is valid exit for D-SACKs too. 1048 * start_seq == snd_una is non-sensical (see comments above) 1049 */ 1050 if (after(start_seq, tp->snd_una)) 1051 return true; 1052 1053 if (!is_dsack || !tp->undo_marker) 1054 return false; 1055 1056 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1057 if (after(end_seq, tp->snd_una)) 1058 return false; 1059 1060 if (!before(start_seq, tp->undo_marker)) 1061 return true; 1062 1063 /* Too old */ 1064 if (!after(end_seq, tp->undo_marker)) 1065 return false; 1066 1067 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1068 * start_seq < undo_marker and end_seq >= undo_marker. 1069 */ 1070 return !before(start_seq, end_seq - tp->max_window); 1071 } 1072 1073 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1074 struct tcp_sack_block_wire *sp, int num_sacks, 1075 u32 prior_snd_una) 1076 { 1077 struct tcp_sock *tp = tcp_sk(sk); 1078 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1079 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1080 bool dup_sack = false; 1081 1082 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1083 dup_sack = true; 1084 tcp_dsack_seen(tp); 1085 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1086 } else if (num_sacks > 1) { 1087 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1088 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1089 1090 if (!after(end_seq_0, end_seq_1) && 1091 !before(start_seq_0, start_seq_1)) { 1092 dup_sack = true; 1093 tcp_dsack_seen(tp); 1094 NET_INC_STATS(sock_net(sk), 1095 LINUX_MIB_TCPDSACKOFORECV); 1096 } 1097 } 1098 1099 /* D-SACK for already forgotten data... Do dumb counting. */ 1100 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1101 !after(end_seq_0, prior_snd_una) && 1102 after(end_seq_0, tp->undo_marker)) 1103 tp->undo_retrans--; 1104 1105 return dup_sack; 1106 } 1107 1108 struct tcp_sacktag_state { 1109 int reord; 1110 int fack_count; 1111 /* Timestamps for earliest and latest never-retransmitted segment 1112 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1113 * but congestion control should still get an accurate delay signal. 1114 */ 1115 struct skb_mstamp first_sackt; 1116 struct skb_mstamp last_sackt; 1117 struct rate_sample *rate; 1118 int flag; 1119 }; 1120 1121 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1122 * the incoming SACK may not exactly match but we can find smaller MSS 1123 * aligned portion of it that matches. Therefore we might need to fragment 1124 * which may fail and creates some hassle (caller must handle error case 1125 * returns). 1126 * 1127 * FIXME: this could be merged to shift decision code 1128 */ 1129 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1130 u32 start_seq, u32 end_seq) 1131 { 1132 int err; 1133 bool in_sack; 1134 unsigned int pkt_len; 1135 unsigned int mss; 1136 1137 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1138 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1139 1140 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1141 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1142 mss = tcp_skb_mss(skb); 1143 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1144 1145 if (!in_sack) { 1146 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1147 if (pkt_len < mss) 1148 pkt_len = mss; 1149 } else { 1150 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1151 if (pkt_len < mss) 1152 return -EINVAL; 1153 } 1154 1155 /* Round if necessary so that SACKs cover only full MSSes 1156 * and/or the remaining small portion (if present) 1157 */ 1158 if (pkt_len > mss) { 1159 unsigned int new_len = (pkt_len / mss) * mss; 1160 if (!in_sack && new_len < pkt_len) { 1161 new_len += mss; 1162 if (new_len >= skb->len) 1163 return 0; 1164 } 1165 pkt_len = new_len; 1166 } 1167 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1168 if (err < 0) 1169 return err; 1170 } 1171 1172 return in_sack; 1173 } 1174 1175 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1176 static u8 tcp_sacktag_one(struct sock *sk, 1177 struct tcp_sacktag_state *state, u8 sacked, 1178 u32 start_seq, u32 end_seq, 1179 int dup_sack, int pcount, 1180 const struct skb_mstamp *xmit_time) 1181 { 1182 struct tcp_sock *tp = tcp_sk(sk); 1183 int fack_count = state->fack_count; 1184 1185 /* Account D-SACK for retransmitted packet. */ 1186 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1187 if (tp->undo_marker && tp->undo_retrans > 0 && 1188 after(end_seq, tp->undo_marker)) 1189 tp->undo_retrans--; 1190 if (sacked & TCPCB_SACKED_ACKED) 1191 state->reord = min(fack_count, state->reord); 1192 } 1193 1194 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1195 if (!after(end_seq, tp->snd_una)) 1196 return sacked; 1197 1198 if (!(sacked & TCPCB_SACKED_ACKED)) { 1199 tcp_rack_advance(tp, xmit_time, sacked); 1200 1201 if (sacked & TCPCB_SACKED_RETRANS) { 1202 /* If the segment is not tagged as lost, 1203 * we do not clear RETRANS, believing 1204 * that retransmission is still in flight. 1205 */ 1206 if (sacked & TCPCB_LOST) { 1207 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1208 tp->lost_out -= pcount; 1209 tp->retrans_out -= pcount; 1210 } 1211 } else { 1212 if (!(sacked & TCPCB_RETRANS)) { 1213 /* New sack for not retransmitted frame, 1214 * which was in hole. It is reordering. 1215 */ 1216 if (before(start_seq, 1217 tcp_highest_sack_seq(tp))) 1218 state->reord = min(fack_count, 1219 state->reord); 1220 if (!after(end_seq, tp->high_seq)) 1221 state->flag |= FLAG_ORIG_SACK_ACKED; 1222 if (state->first_sackt.v64 == 0) 1223 state->first_sackt = *xmit_time; 1224 state->last_sackt = *xmit_time; 1225 } 1226 1227 if (sacked & TCPCB_LOST) { 1228 sacked &= ~TCPCB_LOST; 1229 tp->lost_out -= pcount; 1230 } 1231 } 1232 1233 sacked |= TCPCB_SACKED_ACKED; 1234 state->flag |= FLAG_DATA_SACKED; 1235 tp->sacked_out += pcount; 1236 tp->delivered += pcount; /* Out-of-order packets delivered */ 1237 1238 fack_count += pcount; 1239 1240 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1241 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1242 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1243 tp->lost_cnt_hint += pcount; 1244 1245 if (fack_count > tp->fackets_out) 1246 tp->fackets_out = fack_count; 1247 } 1248 1249 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1250 * frames and clear it. undo_retrans is decreased above, L|R frames 1251 * are accounted above as well. 1252 */ 1253 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1254 sacked &= ~TCPCB_SACKED_RETRANS; 1255 tp->retrans_out -= pcount; 1256 } 1257 1258 return sacked; 1259 } 1260 1261 /* Shift newly-SACKed bytes from this skb to the immediately previous 1262 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1263 */ 1264 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1265 struct tcp_sacktag_state *state, 1266 unsigned int pcount, int shifted, int mss, 1267 bool dup_sack) 1268 { 1269 struct tcp_sock *tp = tcp_sk(sk); 1270 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1271 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1272 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1273 1274 BUG_ON(!pcount); 1275 1276 /* Adjust counters and hints for the newly sacked sequence 1277 * range but discard the return value since prev is already 1278 * marked. We must tag the range first because the seq 1279 * advancement below implicitly advances 1280 * tcp_highest_sack_seq() when skb is highest_sack. 1281 */ 1282 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1283 start_seq, end_seq, dup_sack, pcount, 1284 &skb->skb_mstamp); 1285 tcp_rate_skb_delivered(sk, skb, state->rate); 1286 1287 if (skb == tp->lost_skb_hint) 1288 tp->lost_cnt_hint += pcount; 1289 1290 TCP_SKB_CB(prev)->end_seq += shifted; 1291 TCP_SKB_CB(skb)->seq += shifted; 1292 1293 tcp_skb_pcount_add(prev, pcount); 1294 BUG_ON(tcp_skb_pcount(skb) < pcount); 1295 tcp_skb_pcount_add(skb, -pcount); 1296 1297 /* When we're adding to gso_segs == 1, gso_size will be zero, 1298 * in theory this shouldn't be necessary but as long as DSACK 1299 * code can come after this skb later on it's better to keep 1300 * setting gso_size to something. 1301 */ 1302 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1303 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1304 1305 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1306 if (tcp_skb_pcount(skb) <= 1) 1307 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1308 1309 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1310 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1311 1312 if (skb->len > 0) { 1313 BUG_ON(!tcp_skb_pcount(skb)); 1314 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1315 return false; 1316 } 1317 1318 /* Whole SKB was eaten :-) */ 1319 1320 if (skb == tp->retransmit_skb_hint) 1321 tp->retransmit_skb_hint = prev; 1322 if (skb == tp->lost_skb_hint) { 1323 tp->lost_skb_hint = prev; 1324 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1325 } 1326 1327 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1328 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1329 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1330 TCP_SKB_CB(prev)->end_seq++; 1331 1332 if (skb == tcp_highest_sack(sk)) 1333 tcp_advance_highest_sack(sk, skb); 1334 1335 tcp_skb_collapse_tstamp(prev, skb); 1336 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64)) 1337 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0; 1338 1339 tcp_unlink_write_queue(skb, sk); 1340 sk_wmem_free_skb(sk, skb); 1341 1342 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1343 1344 return true; 1345 } 1346 1347 /* I wish gso_size would have a bit more sane initialization than 1348 * something-or-zero which complicates things 1349 */ 1350 static int tcp_skb_seglen(const struct sk_buff *skb) 1351 { 1352 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1353 } 1354 1355 /* Shifting pages past head area doesn't work */ 1356 static int skb_can_shift(const struct sk_buff *skb) 1357 { 1358 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1359 } 1360 1361 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1362 * skb. 1363 */ 1364 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1365 struct tcp_sacktag_state *state, 1366 u32 start_seq, u32 end_seq, 1367 bool dup_sack) 1368 { 1369 struct tcp_sock *tp = tcp_sk(sk); 1370 struct sk_buff *prev; 1371 int mss; 1372 int pcount = 0; 1373 int len; 1374 int in_sack; 1375 1376 if (!sk_can_gso(sk)) 1377 goto fallback; 1378 1379 /* Normally R but no L won't result in plain S */ 1380 if (!dup_sack && 1381 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1382 goto fallback; 1383 if (!skb_can_shift(skb)) 1384 goto fallback; 1385 /* This frame is about to be dropped (was ACKed). */ 1386 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1387 goto fallback; 1388 1389 /* Can only happen with delayed DSACK + discard craziness */ 1390 if (unlikely(skb == tcp_write_queue_head(sk))) 1391 goto fallback; 1392 prev = tcp_write_queue_prev(sk, skb); 1393 1394 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1395 goto fallback; 1396 1397 if (!tcp_skb_can_collapse_to(prev)) 1398 goto fallback; 1399 1400 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1401 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1402 1403 if (in_sack) { 1404 len = skb->len; 1405 pcount = tcp_skb_pcount(skb); 1406 mss = tcp_skb_seglen(skb); 1407 1408 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1409 * drop this restriction as unnecessary 1410 */ 1411 if (mss != tcp_skb_seglen(prev)) 1412 goto fallback; 1413 } else { 1414 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1415 goto noop; 1416 /* CHECKME: This is non-MSS split case only?, this will 1417 * cause skipped skbs due to advancing loop btw, original 1418 * has that feature too 1419 */ 1420 if (tcp_skb_pcount(skb) <= 1) 1421 goto noop; 1422 1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1424 if (!in_sack) { 1425 /* TODO: head merge to next could be attempted here 1426 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1427 * though it might not be worth of the additional hassle 1428 * 1429 * ...we can probably just fallback to what was done 1430 * previously. We could try merging non-SACKed ones 1431 * as well but it probably isn't going to buy off 1432 * because later SACKs might again split them, and 1433 * it would make skb timestamp tracking considerably 1434 * harder problem. 1435 */ 1436 goto fallback; 1437 } 1438 1439 len = end_seq - TCP_SKB_CB(skb)->seq; 1440 BUG_ON(len < 0); 1441 BUG_ON(len > skb->len); 1442 1443 /* MSS boundaries should be honoured or else pcount will 1444 * severely break even though it makes things bit trickier. 1445 * Optimize common case to avoid most of the divides 1446 */ 1447 mss = tcp_skb_mss(skb); 1448 1449 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1450 * drop this restriction as unnecessary 1451 */ 1452 if (mss != tcp_skb_seglen(prev)) 1453 goto fallback; 1454 1455 if (len == mss) { 1456 pcount = 1; 1457 } else if (len < mss) { 1458 goto noop; 1459 } else { 1460 pcount = len / mss; 1461 len = pcount * mss; 1462 } 1463 } 1464 1465 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1466 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1467 goto fallback; 1468 1469 if (!skb_shift(prev, skb, len)) 1470 goto fallback; 1471 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1472 goto out; 1473 1474 /* Hole filled allows collapsing with the next as well, this is very 1475 * useful when hole on every nth skb pattern happens 1476 */ 1477 if (prev == tcp_write_queue_tail(sk)) 1478 goto out; 1479 skb = tcp_write_queue_next(sk, prev); 1480 1481 if (!skb_can_shift(skb) || 1482 (skb == tcp_send_head(sk)) || 1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1484 (mss != tcp_skb_seglen(skb))) 1485 goto out; 1486 1487 len = skb->len; 1488 if (skb_shift(prev, skb, len)) { 1489 pcount += tcp_skb_pcount(skb); 1490 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1491 } 1492 1493 out: 1494 state->fack_count += pcount; 1495 return prev; 1496 1497 noop: 1498 return skb; 1499 1500 fallback: 1501 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1502 return NULL; 1503 } 1504 1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1506 struct tcp_sack_block *next_dup, 1507 struct tcp_sacktag_state *state, 1508 u32 start_seq, u32 end_seq, 1509 bool dup_sack_in) 1510 { 1511 struct tcp_sock *tp = tcp_sk(sk); 1512 struct sk_buff *tmp; 1513 1514 tcp_for_write_queue_from(skb, sk) { 1515 int in_sack = 0; 1516 bool dup_sack = dup_sack_in; 1517 1518 if (skb == tcp_send_head(sk)) 1519 break; 1520 1521 /* queue is in-order => we can short-circuit the walk early */ 1522 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1523 break; 1524 1525 if (next_dup && 1526 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1527 in_sack = tcp_match_skb_to_sack(sk, skb, 1528 next_dup->start_seq, 1529 next_dup->end_seq); 1530 if (in_sack > 0) 1531 dup_sack = true; 1532 } 1533 1534 /* skb reference here is a bit tricky to get right, since 1535 * shifting can eat and free both this skb and the next, 1536 * so not even _safe variant of the loop is enough. 1537 */ 1538 if (in_sack <= 0) { 1539 tmp = tcp_shift_skb_data(sk, skb, state, 1540 start_seq, end_seq, dup_sack); 1541 if (tmp) { 1542 if (tmp != skb) { 1543 skb = tmp; 1544 continue; 1545 } 1546 1547 in_sack = 0; 1548 } else { 1549 in_sack = tcp_match_skb_to_sack(sk, skb, 1550 start_seq, 1551 end_seq); 1552 } 1553 } 1554 1555 if (unlikely(in_sack < 0)) 1556 break; 1557 1558 if (in_sack) { 1559 TCP_SKB_CB(skb)->sacked = 1560 tcp_sacktag_one(sk, 1561 state, 1562 TCP_SKB_CB(skb)->sacked, 1563 TCP_SKB_CB(skb)->seq, 1564 TCP_SKB_CB(skb)->end_seq, 1565 dup_sack, 1566 tcp_skb_pcount(skb), 1567 &skb->skb_mstamp); 1568 tcp_rate_skb_delivered(sk, skb, state->rate); 1569 1570 if (!before(TCP_SKB_CB(skb)->seq, 1571 tcp_highest_sack_seq(tp))) 1572 tcp_advance_highest_sack(sk, skb); 1573 } 1574 1575 state->fack_count += tcp_skb_pcount(skb); 1576 } 1577 return skb; 1578 } 1579 1580 /* Avoid all extra work that is being done by sacktag while walking in 1581 * a normal way 1582 */ 1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1584 struct tcp_sacktag_state *state, 1585 u32 skip_to_seq) 1586 { 1587 tcp_for_write_queue_from(skb, sk) { 1588 if (skb == tcp_send_head(sk)) 1589 break; 1590 1591 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1592 break; 1593 1594 state->fack_count += tcp_skb_pcount(skb); 1595 } 1596 return skb; 1597 } 1598 1599 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1600 struct sock *sk, 1601 struct tcp_sack_block *next_dup, 1602 struct tcp_sacktag_state *state, 1603 u32 skip_to_seq) 1604 { 1605 if (!next_dup) 1606 return skb; 1607 1608 if (before(next_dup->start_seq, skip_to_seq)) { 1609 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1610 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1611 next_dup->start_seq, next_dup->end_seq, 1612 1); 1613 } 1614 1615 return skb; 1616 } 1617 1618 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1619 { 1620 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1621 } 1622 1623 static int 1624 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1625 u32 prior_snd_una, struct tcp_sacktag_state *state) 1626 { 1627 struct tcp_sock *tp = tcp_sk(sk); 1628 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1629 TCP_SKB_CB(ack_skb)->sacked); 1630 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1631 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1632 struct tcp_sack_block *cache; 1633 struct sk_buff *skb; 1634 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1635 int used_sacks; 1636 bool found_dup_sack = false; 1637 int i, j; 1638 int first_sack_index; 1639 1640 state->flag = 0; 1641 state->reord = tp->packets_out; 1642 1643 if (!tp->sacked_out) { 1644 if (WARN_ON(tp->fackets_out)) 1645 tp->fackets_out = 0; 1646 tcp_highest_sack_reset(sk); 1647 } 1648 1649 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1650 num_sacks, prior_snd_una); 1651 if (found_dup_sack) { 1652 state->flag |= FLAG_DSACKING_ACK; 1653 tp->delivered++; /* A spurious retransmission is delivered */ 1654 } 1655 1656 /* Eliminate too old ACKs, but take into 1657 * account more or less fresh ones, they can 1658 * contain valid SACK info. 1659 */ 1660 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1661 return 0; 1662 1663 if (!tp->packets_out) 1664 goto out; 1665 1666 used_sacks = 0; 1667 first_sack_index = 0; 1668 for (i = 0; i < num_sacks; i++) { 1669 bool dup_sack = !i && found_dup_sack; 1670 1671 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1672 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1673 1674 if (!tcp_is_sackblock_valid(tp, dup_sack, 1675 sp[used_sacks].start_seq, 1676 sp[used_sacks].end_seq)) { 1677 int mib_idx; 1678 1679 if (dup_sack) { 1680 if (!tp->undo_marker) 1681 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1682 else 1683 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1684 } else { 1685 /* Don't count olds caused by ACK reordering */ 1686 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1687 !after(sp[used_sacks].end_seq, tp->snd_una)) 1688 continue; 1689 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1690 } 1691 1692 NET_INC_STATS(sock_net(sk), mib_idx); 1693 if (i == 0) 1694 first_sack_index = -1; 1695 continue; 1696 } 1697 1698 /* Ignore very old stuff early */ 1699 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1700 continue; 1701 1702 used_sacks++; 1703 } 1704 1705 /* order SACK blocks to allow in order walk of the retrans queue */ 1706 for (i = used_sacks - 1; i > 0; i--) { 1707 for (j = 0; j < i; j++) { 1708 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1709 swap(sp[j], sp[j + 1]); 1710 1711 /* Track where the first SACK block goes to */ 1712 if (j == first_sack_index) 1713 first_sack_index = j + 1; 1714 } 1715 } 1716 } 1717 1718 skb = tcp_write_queue_head(sk); 1719 state->fack_count = 0; 1720 i = 0; 1721 1722 if (!tp->sacked_out) { 1723 /* It's already past, so skip checking against it */ 1724 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1725 } else { 1726 cache = tp->recv_sack_cache; 1727 /* Skip empty blocks in at head of the cache */ 1728 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1729 !cache->end_seq) 1730 cache++; 1731 } 1732 1733 while (i < used_sacks) { 1734 u32 start_seq = sp[i].start_seq; 1735 u32 end_seq = sp[i].end_seq; 1736 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1737 struct tcp_sack_block *next_dup = NULL; 1738 1739 if (found_dup_sack && ((i + 1) == first_sack_index)) 1740 next_dup = &sp[i + 1]; 1741 1742 /* Skip too early cached blocks */ 1743 while (tcp_sack_cache_ok(tp, cache) && 1744 !before(start_seq, cache->end_seq)) 1745 cache++; 1746 1747 /* Can skip some work by looking recv_sack_cache? */ 1748 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1749 after(end_seq, cache->start_seq)) { 1750 1751 /* Head todo? */ 1752 if (before(start_seq, cache->start_seq)) { 1753 skb = tcp_sacktag_skip(skb, sk, state, 1754 start_seq); 1755 skb = tcp_sacktag_walk(skb, sk, next_dup, 1756 state, 1757 start_seq, 1758 cache->start_seq, 1759 dup_sack); 1760 } 1761 1762 /* Rest of the block already fully processed? */ 1763 if (!after(end_seq, cache->end_seq)) 1764 goto advance_sp; 1765 1766 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1767 state, 1768 cache->end_seq); 1769 1770 /* ...tail remains todo... */ 1771 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1772 /* ...but better entrypoint exists! */ 1773 skb = tcp_highest_sack(sk); 1774 if (!skb) 1775 break; 1776 state->fack_count = tp->fackets_out; 1777 cache++; 1778 goto walk; 1779 } 1780 1781 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1782 /* Check overlap against next cached too (past this one already) */ 1783 cache++; 1784 continue; 1785 } 1786 1787 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1788 skb = tcp_highest_sack(sk); 1789 if (!skb) 1790 break; 1791 state->fack_count = tp->fackets_out; 1792 } 1793 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1794 1795 walk: 1796 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1797 start_seq, end_seq, dup_sack); 1798 1799 advance_sp: 1800 i++; 1801 } 1802 1803 /* Clear the head of the cache sack blocks so we can skip it next time */ 1804 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1805 tp->recv_sack_cache[i].start_seq = 0; 1806 tp->recv_sack_cache[i].end_seq = 0; 1807 } 1808 for (j = 0; j < used_sacks; j++) 1809 tp->recv_sack_cache[i++] = sp[j]; 1810 1811 if ((state->reord < tp->fackets_out) && 1812 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1813 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1814 1815 tcp_verify_left_out(tp); 1816 out: 1817 1818 #if FASTRETRANS_DEBUG > 0 1819 WARN_ON((int)tp->sacked_out < 0); 1820 WARN_ON((int)tp->lost_out < 0); 1821 WARN_ON((int)tp->retrans_out < 0); 1822 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1823 #endif 1824 return state->flag; 1825 } 1826 1827 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1828 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1829 */ 1830 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1831 { 1832 u32 holes; 1833 1834 holes = max(tp->lost_out, 1U); 1835 holes = min(holes, tp->packets_out); 1836 1837 if ((tp->sacked_out + holes) > tp->packets_out) { 1838 tp->sacked_out = tp->packets_out - holes; 1839 return true; 1840 } 1841 return false; 1842 } 1843 1844 /* If we receive more dupacks than we expected counting segments 1845 * in assumption of absent reordering, interpret this as reordering. 1846 * The only another reason could be bug in receiver TCP. 1847 */ 1848 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1849 { 1850 struct tcp_sock *tp = tcp_sk(sk); 1851 if (tcp_limit_reno_sacked(tp)) 1852 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1853 } 1854 1855 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1856 1857 static void tcp_add_reno_sack(struct sock *sk) 1858 { 1859 struct tcp_sock *tp = tcp_sk(sk); 1860 u32 prior_sacked = tp->sacked_out; 1861 1862 tp->sacked_out++; 1863 tcp_check_reno_reordering(sk, 0); 1864 if (tp->sacked_out > prior_sacked) 1865 tp->delivered++; /* Some out-of-order packet is delivered */ 1866 tcp_verify_left_out(tp); 1867 } 1868 1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1870 1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1872 { 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 1875 if (acked > 0) { 1876 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1877 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1878 if (acked - 1 >= tp->sacked_out) 1879 tp->sacked_out = 0; 1880 else 1881 tp->sacked_out -= acked - 1; 1882 } 1883 tcp_check_reno_reordering(sk, acked); 1884 tcp_verify_left_out(tp); 1885 } 1886 1887 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1888 { 1889 tp->sacked_out = 0; 1890 } 1891 1892 void tcp_clear_retrans(struct tcp_sock *tp) 1893 { 1894 tp->retrans_out = 0; 1895 tp->lost_out = 0; 1896 tp->undo_marker = 0; 1897 tp->undo_retrans = -1; 1898 tp->fackets_out = 0; 1899 tp->sacked_out = 0; 1900 } 1901 1902 static inline void tcp_init_undo(struct tcp_sock *tp) 1903 { 1904 tp->undo_marker = tp->snd_una; 1905 /* Retransmission still in flight may cause DSACKs later. */ 1906 tp->undo_retrans = tp->retrans_out ? : -1; 1907 } 1908 1909 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1910 * and reset tags completely, otherwise preserve SACKs. If receiver 1911 * dropped its ofo queue, we will know this due to reneging detection. 1912 */ 1913 void tcp_enter_loss(struct sock *sk) 1914 { 1915 const struct inet_connection_sock *icsk = inet_csk(sk); 1916 struct tcp_sock *tp = tcp_sk(sk); 1917 struct net *net = sock_net(sk); 1918 struct sk_buff *skb; 1919 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1920 bool is_reneg; /* is receiver reneging on SACKs? */ 1921 bool mark_lost; 1922 1923 /* Reduce ssthresh if it has not yet been made inside this window. */ 1924 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1925 !after(tp->high_seq, tp->snd_una) || 1926 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1927 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1928 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1929 tcp_ca_event(sk, CA_EVENT_LOSS); 1930 tcp_init_undo(tp); 1931 } 1932 tp->snd_cwnd = 1; 1933 tp->snd_cwnd_cnt = 0; 1934 tp->snd_cwnd_stamp = tcp_time_stamp; 1935 1936 tp->retrans_out = 0; 1937 tp->lost_out = 0; 1938 1939 if (tcp_is_reno(tp)) 1940 tcp_reset_reno_sack(tp); 1941 1942 skb = tcp_write_queue_head(sk); 1943 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1944 if (is_reneg) { 1945 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1946 tp->sacked_out = 0; 1947 tp->fackets_out = 0; 1948 } 1949 tcp_clear_all_retrans_hints(tp); 1950 1951 tcp_for_write_queue(skb, sk) { 1952 if (skb == tcp_send_head(sk)) 1953 break; 1954 1955 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1956 is_reneg); 1957 if (mark_lost) 1958 tcp_sum_lost(tp, skb); 1959 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1960 if (mark_lost) { 1961 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1962 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1963 tp->lost_out += tcp_skb_pcount(skb); 1964 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1965 } 1966 } 1967 tcp_verify_left_out(tp); 1968 1969 /* Timeout in disordered state after receiving substantial DUPACKs 1970 * suggests that the degree of reordering is over-estimated. 1971 */ 1972 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1973 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1974 tp->reordering = min_t(unsigned int, tp->reordering, 1975 net->ipv4.sysctl_tcp_reordering); 1976 tcp_set_ca_state(sk, TCP_CA_Loss); 1977 tp->high_seq = tp->snd_nxt; 1978 tcp_ecn_queue_cwr(tp); 1979 1980 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1981 * loss recovery is underway except recurring timeout(s) on 1982 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1983 */ 1984 tp->frto = sysctl_tcp_frto && 1985 (new_recovery || icsk->icsk_retransmits) && 1986 !inet_csk(sk)->icsk_mtup.probe_size; 1987 } 1988 1989 /* If ACK arrived pointing to a remembered SACK, it means that our 1990 * remembered SACKs do not reflect real state of receiver i.e. 1991 * receiver _host_ is heavily congested (or buggy). 1992 * 1993 * To avoid big spurious retransmission bursts due to transient SACK 1994 * scoreboard oddities that look like reneging, we give the receiver a 1995 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1996 * restore sanity to the SACK scoreboard. If the apparent reneging 1997 * persists until this RTO then we'll clear the SACK scoreboard. 1998 */ 1999 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2000 { 2001 if (flag & FLAG_SACK_RENEGING) { 2002 struct tcp_sock *tp = tcp_sk(sk); 2003 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2004 msecs_to_jiffies(10)); 2005 2006 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2007 delay, TCP_RTO_MAX); 2008 return true; 2009 } 2010 return false; 2011 } 2012 2013 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2014 { 2015 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2016 } 2017 2018 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2019 * counter when SACK is enabled (without SACK, sacked_out is used for 2020 * that purpose). 2021 * 2022 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2023 * segments up to the highest received SACK block so far and holes in 2024 * between them. 2025 * 2026 * With reordering, holes may still be in flight, so RFC3517 recovery 2027 * uses pure sacked_out (total number of SACKed segments) even though 2028 * it violates the RFC that uses duplicate ACKs, often these are equal 2029 * but when e.g. out-of-window ACKs or packet duplication occurs, 2030 * they differ. Since neither occurs due to loss, TCP should really 2031 * ignore them. 2032 */ 2033 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2034 { 2035 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2036 } 2037 2038 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2039 { 2040 struct tcp_sock *tp = tcp_sk(sk); 2041 unsigned long delay; 2042 2043 /* Delay early retransmit and entering fast recovery for 2044 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2045 * available, or RTO is scheduled to fire first. 2046 */ 2047 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2048 (flag & FLAG_ECE) || !tp->srtt_us) 2049 return false; 2050 2051 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2052 msecs_to_jiffies(2)); 2053 2054 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2055 return false; 2056 2057 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2058 TCP_RTO_MAX); 2059 return true; 2060 } 2061 2062 /* Linux NewReno/SACK/FACK/ECN state machine. 2063 * -------------------------------------- 2064 * 2065 * "Open" Normal state, no dubious events, fast path. 2066 * "Disorder" In all the respects it is "Open", 2067 * but requires a bit more attention. It is entered when 2068 * we see some SACKs or dupacks. It is split of "Open" 2069 * mainly to move some processing from fast path to slow one. 2070 * "CWR" CWND was reduced due to some Congestion Notification event. 2071 * It can be ECN, ICMP source quench, local device congestion. 2072 * "Recovery" CWND was reduced, we are fast-retransmitting. 2073 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2074 * 2075 * tcp_fastretrans_alert() is entered: 2076 * - each incoming ACK, if state is not "Open" 2077 * - when arrived ACK is unusual, namely: 2078 * * SACK 2079 * * Duplicate ACK. 2080 * * ECN ECE. 2081 * 2082 * Counting packets in flight is pretty simple. 2083 * 2084 * in_flight = packets_out - left_out + retrans_out 2085 * 2086 * packets_out is SND.NXT-SND.UNA counted in packets. 2087 * 2088 * retrans_out is number of retransmitted segments. 2089 * 2090 * left_out is number of segments left network, but not ACKed yet. 2091 * 2092 * left_out = sacked_out + lost_out 2093 * 2094 * sacked_out: Packets, which arrived to receiver out of order 2095 * and hence not ACKed. With SACKs this number is simply 2096 * amount of SACKed data. Even without SACKs 2097 * it is easy to give pretty reliable estimate of this number, 2098 * counting duplicate ACKs. 2099 * 2100 * lost_out: Packets lost by network. TCP has no explicit 2101 * "loss notification" feedback from network (for now). 2102 * It means that this number can be only _guessed_. 2103 * Actually, it is the heuristics to predict lossage that 2104 * distinguishes different algorithms. 2105 * 2106 * F.e. after RTO, when all the queue is considered as lost, 2107 * lost_out = packets_out and in_flight = retrans_out. 2108 * 2109 * Essentially, we have now two algorithms counting 2110 * lost packets. 2111 * 2112 * FACK: It is the simplest heuristics. As soon as we decided 2113 * that something is lost, we decide that _all_ not SACKed 2114 * packets until the most forward SACK are lost. I.e. 2115 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2116 * It is absolutely correct estimate, if network does not reorder 2117 * packets. And it loses any connection to reality when reordering 2118 * takes place. We use FACK by default until reordering 2119 * is suspected on the path to this destination. 2120 * 2121 * NewReno: when Recovery is entered, we assume that one segment 2122 * is lost (classic Reno). While we are in Recovery and 2123 * a partial ACK arrives, we assume that one more packet 2124 * is lost (NewReno). This heuristics are the same in NewReno 2125 * and SACK. 2126 * 2127 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2128 * deflation etc. CWND is real congestion window, never inflated, changes 2129 * only according to classic VJ rules. 2130 * 2131 * Really tricky (and requiring careful tuning) part of algorithm 2132 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2133 * The first determines the moment _when_ we should reduce CWND and, 2134 * hence, slow down forward transmission. In fact, it determines the moment 2135 * when we decide that hole is caused by loss, rather than by a reorder. 2136 * 2137 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2138 * holes, caused by lost packets. 2139 * 2140 * And the most logically complicated part of algorithm is undo 2141 * heuristics. We detect false retransmits due to both too early 2142 * fast retransmit (reordering) and underestimated RTO, analyzing 2143 * timestamps and D-SACKs. When we detect that some segments were 2144 * retransmitted by mistake and CWND reduction was wrong, we undo 2145 * window reduction and abort recovery phase. This logic is hidden 2146 * inside several functions named tcp_try_undo_<something>. 2147 */ 2148 2149 /* This function decides, when we should leave Disordered state 2150 * and enter Recovery phase, reducing congestion window. 2151 * 2152 * Main question: may we further continue forward transmission 2153 * with the same cwnd? 2154 */ 2155 static bool tcp_time_to_recover(struct sock *sk, int flag) 2156 { 2157 struct tcp_sock *tp = tcp_sk(sk); 2158 __u32 packets_out; 2159 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 2160 2161 /* Trick#1: The loss is proven. */ 2162 if (tp->lost_out) 2163 return true; 2164 2165 /* Not-A-Trick#2 : Classic rule... */ 2166 if (tcp_dupack_heuristics(tp) > tp->reordering) 2167 return true; 2168 2169 /* Trick#4: It is still not OK... But will it be useful to delay 2170 * recovery more? 2171 */ 2172 packets_out = tp->packets_out; 2173 if (packets_out <= tp->reordering && 2174 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) && 2175 !tcp_may_send_now(sk)) { 2176 /* We have nothing to send. This connection is limited 2177 * either by receiver window or by application. 2178 */ 2179 return true; 2180 } 2181 2182 /* If a thin stream is detected, retransmit after first 2183 * received dupack. Employ only if SACK is supported in order 2184 * to avoid possible corner-case series of spurious retransmissions 2185 * Use only if there are no unsent data. 2186 */ 2187 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2188 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2189 tcp_is_sack(tp) && !tcp_send_head(sk)) 2190 return true; 2191 2192 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2193 * retransmissions due to small network reorderings, we implement 2194 * Mitigation A.3 in the RFC and delay the retransmission for a short 2195 * interval if appropriate. 2196 */ 2197 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2198 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2199 !tcp_may_send_now(sk)) 2200 return !tcp_pause_early_retransmit(sk, flag); 2201 2202 return false; 2203 } 2204 2205 /* Detect loss in event "A" above by marking head of queue up as lost. 2206 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2207 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2208 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2209 * the maximum SACKed segments to pass before reaching this limit. 2210 */ 2211 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2212 { 2213 struct tcp_sock *tp = tcp_sk(sk); 2214 struct sk_buff *skb; 2215 int cnt, oldcnt, lost; 2216 unsigned int mss; 2217 /* Use SACK to deduce losses of new sequences sent during recovery */ 2218 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2219 2220 WARN_ON(packets > tp->packets_out); 2221 if (tp->lost_skb_hint) { 2222 skb = tp->lost_skb_hint; 2223 cnt = tp->lost_cnt_hint; 2224 /* Head already handled? */ 2225 if (mark_head && skb != tcp_write_queue_head(sk)) 2226 return; 2227 } else { 2228 skb = tcp_write_queue_head(sk); 2229 cnt = 0; 2230 } 2231 2232 tcp_for_write_queue_from(skb, sk) { 2233 if (skb == tcp_send_head(sk)) 2234 break; 2235 /* TODO: do this better */ 2236 /* this is not the most efficient way to do this... */ 2237 tp->lost_skb_hint = skb; 2238 tp->lost_cnt_hint = cnt; 2239 2240 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2241 break; 2242 2243 oldcnt = cnt; 2244 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2245 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2246 cnt += tcp_skb_pcount(skb); 2247 2248 if (cnt > packets) { 2249 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2250 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2251 (oldcnt >= packets)) 2252 break; 2253 2254 mss = tcp_skb_mss(skb); 2255 /* If needed, chop off the prefix to mark as lost. */ 2256 lost = (packets - oldcnt) * mss; 2257 if (lost < skb->len && 2258 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2259 break; 2260 cnt = packets; 2261 } 2262 2263 tcp_skb_mark_lost(tp, skb); 2264 2265 if (mark_head) 2266 break; 2267 } 2268 tcp_verify_left_out(tp); 2269 } 2270 2271 /* Account newly detected lost packet(s) */ 2272 2273 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2274 { 2275 struct tcp_sock *tp = tcp_sk(sk); 2276 2277 if (tcp_is_reno(tp)) { 2278 tcp_mark_head_lost(sk, 1, 1); 2279 } else if (tcp_is_fack(tp)) { 2280 int lost = tp->fackets_out - tp->reordering; 2281 if (lost <= 0) 2282 lost = 1; 2283 tcp_mark_head_lost(sk, lost, 0); 2284 } else { 2285 int sacked_upto = tp->sacked_out - tp->reordering; 2286 if (sacked_upto >= 0) 2287 tcp_mark_head_lost(sk, sacked_upto, 0); 2288 else if (fast_rexmit) 2289 tcp_mark_head_lost(sk, 1, 1); 2290 } 2291 } 2292 2293 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2294 { 2295 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2296 before(tp->rx_opt.rcv_tsecr, when); 2297 } 2298 2299 /* skb is spurious retransmitted if the returned timestamp echo 2300 * reply is prior to the skb transmission time 2301 */ 2302 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2303 const struct sk_buff *skb) 2304 { 2305 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2306 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2307 } 2308 2309 /* Nothing was retransmitted or returned timestamp is less 2310 * than timestamp of the first retransmission. 2311 */ 2312 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2313 { 2314 return !tp->retrans_stamp || 2315 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2316 } 2317 2318 /* Undo procedures. */ 2319 2320 /* We can clear retrans_stamp when there are no retransmissions in the 2321 * window. It would seem that it is trivially available for us in 2322 * tp->retrans_out, however, that kind of assumptions doesn't consider 2323 * what will happen if errors occur when sending retransmission for the 2324 * second time. ...It could the that such segment has only 2325 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2326 * the head skb is enough except for some reneging corner cases that 2327 * are not worth the effort. 2328 * 2329 * Main reason for all this complexity is the fact that connection dying 2330 * time now depends on the validity of the retrans_stamp, in particular, 2331 * that successive retransmissions of a segment must not advance 2332 * retrans_stamp under any conditions. 2333 */ 2334 static bool tcp_any_retrans_done(const struct sock *sk) 2335 { 2336 const struct tcp_sock *tp = tcp_sk(sk); 2337 struct sk_buff *skb; 2338 2339 if (tp->retrans_out) 2340 return true; 2341 2342 skb = tcp_write_queue_head(sk); 2343 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2344 return true; 2345 2346 return false; 2347 } 2348 2349 #if FASTRETRANS_DEBUG > 1 2350 static void DBGUNDO(struct sock *sk, const char *msg) 2351 { 2352 struct tcp_sock *tp = tcp_sk(sk); 2353 struct inet_sock *inet = inet_sk(sk); 2354 2355 if (sk->sk_family == AF_INET) { 2356 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2357 msg, 2358 &inet->inet_daddr, ntohs(inet->inet_dport), 2359 tp->snd_cwnd, tcp_left_out(tp), 2360 tp->snd_ssthresh, tp->prior_ssthresh, 2361 tp->packets_out); 2362 } 2363 #if IS_ENABLED(CONFIG_IPV6) 2364 else if (sk->sk_family == AF_INET6) { 2365 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2366 msg, 2367 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2368 tp->snd_cwnd, tcp_left_out(tp), 2369 tp->snd_ssthresh, tp->prior_ssthresh, 2370 tp->packets_out); 2371 } 2372 #endif 2373 } 2374 #else 2375 #define DBGUNDO(x...) do { } while (0) 2376 #endif 2377 2378 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2379 { 2380 struct tcp_sock *tp = tcp_sk(sk); 2381 2382 if (unmark_loss) { 2383 struct sk_buff *skb; 2384 2385 tcp_for_write_queue(skb, sk) { 2386 if (skb == tcp_send_head(sk)) 2387 break; 2388 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2389 } 2390 tp->lost_out = 0; 2391 tcp_clear_all_retrans_hints(tp); 2392 } 2393 2394 if (tp->prior_ssthresh) { 2395 const struct inet_connection_sock *icsk = inet_csk(sk); 2396 2397 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2398 2399 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2400 tp->snd_ssthresh = tp->prior_ssthresh; 2401 tcp_ecn_withdraw_cwr(tp); 2402 } 2403 } 2404 tp->snd_cwnd_stamp = tcp_time_stamp; 2405 tp->undo_marker = 0; 2406 } 2407 2408 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2409 { 2410 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2411 } 2412 2413 /* People celebrate: "We love our President!" */ 2414 static bool tcp_try_undo_recovery(struct sock *sk) 2415 { 2416 struct tcp_sock *tp = tcp_sk(sk); 2417 2418 if (tcp_may_undo(tp)) { 2419 int mib_idx; 2420 2421 /* Happy end! We did not retransmit anything 2422 * or our original transmission succeeded. 2423 */ 2424 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2425 tcp_undo_cwnd_reduction(sk, false); 2426 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2427 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2428 else 2429 mib_idx = LINUX_MIB_TCPFULLUNDO; 2430 2431 NET_INC_STATS(sock_net(sk), mib_idx); 2432 } 2433 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2434 /* Hold old state until something *above* high_seq 2435 * is ACKed. For Reno it is MUST to prevent false 2436 * fast retransmits (RFC2582). SACK TCP is safe. */ 2437 if (!tcp_any_retrans_done(sk)) 2438 tp->retrans_stamp = 0; 2439 return true; 2440 } 2441 tcp_set_ca_state(sk, TCP_CA_Open); 2442 return false; 2443 } 2444 2445 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2446 static bool tcp_try_undo_dsack(struct sock *sk) 2447 { 2448 struct tcp_sock *tp = tcp_sk(sk); 2449 2450 if (tp->undo_marker && !tp->undo_retrans) { 2451 DBGUNDO(sk, "D-SACK"); 2452 tcp_undo_cwnd_reduction(sk, false); 2453 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2454 return true; 2455 } 2456 return false; 2457 } 2458 2459 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2460 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2461 { 2462 struct tcp_sock *tp = tcp_sk(sk); 2463 2464 if (frto_undo || tcp_may_undo(tp)) { 2465 tcp_undo_cwnd_reduction(sk, true); 2466 2467 DBGUNDO(sk, "partial loss"); 2468 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2469 if (frto_undo) 2470 NET_INC_STATS(sock_net(sk), 2471 LINUX_MIB_TCPSPURIOUSRTOS); 2472 inet_csk(sk)->icsk_retransmits = 0; 2473 if (frto_undo || tcp_is_sack(tp)) 2474 tcp_set_ca_state(sk, TCP_CA_Open); 2475 return true; 2476 } 2477 return false; 2478 } 2479 2480 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2481 * It computes the number of packets to send (sndcnt) based on packets newly 2482 * delivered: 2483 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2484 * cwnd reductions across a full RTT. 2485 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2486 * But when the retransmits are acked without further losses, PRR 2487 * slow starts cwnd up to ssthresh to speed up the recovery. 2488 */ 2489 static void tcp_init_cwnd_reduction(struct sock *sk) 2490 { 2491 struct tcp_sock *tp = tcp_sk(sk); 2492 2493 tp->high_seq = tp->snd_nxt; 2494 tp->tlp_high_seq = 0; 2495 tp->snd_cwnd_cnt = 0; 2496 tp->prior_cwnd = tp->snd_cwnd; 2497 tp->prr_delivered = 0; 2498 tp->prr_out = 0; 2499 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2500 tcp_ecn_queue_cwr(tp); 2501 } 2502 2503 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, 2504 int flag) 2505 { 2506 struct tcp_sock *tp = tcp_sk(sk); 2507 int sndcnt = 0; 2508 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2509 2510 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2511 return; 2512 2513 tp->prr_delivered += newly_acked_sacked; 2514 if (delta < 0) { 2515 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2516 tp->prior_cwnd - 1; 2517 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2518 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2519 !(flag & FLAG_LOST_RETRANS)) { 2520 sndcnt = min_t(int, delta, 2521 max_t(int, tp->prr_delivered - tp->prr_out, 2522 newly_acked_sacked) + 1); 2523 } else { 2524 sndcnt = min(delta, newly_acked_sacked); 2525 } 2526 /* Force a fast retransmit upon entering fast recovery */ 2527 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2528 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2529 } 2530 2531 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2532 { 2533 struct tcp_sock *tp = tcp_sk(sk); 2534 2535 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2536 return; 2537 2538 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2539 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2540 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2541 tp->snd_cwnd = tp->snd_ssthresh; 2542 tp->snd_cwnd_stamp = tcp_time_stamp; 2543 } 2544 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2545 } 2546 2547 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2548 void tcp_enter_cwr(struct sock *sk) 2549 { 2550 struct tcp_sock *tp = tcp_sk(sk); 2551 2552 tp->prior_ssthresh = 0; 2553 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2554 tp->undo_marker = 0; 2555 tcp_init_cwnd_reduction(sk); 2556 tcp_set_ca_state(sk, TCP_CA_CWR); 2557 } 2558 } 2559 EXPORT_SYMBOL(tcp_enter_cwr); 2560 2561 static void tcp_try_keep_open(struct sock *sk) 2562 { 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 int state = TCP_CA_Open; 2565 2566 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2567 state = TCP_CA_Disorder; 2568 2569 if (inet_csk(sk)->icsk_ca_state != state) { 2570 tcp_set_ca_state(sk, state); 2571 tp->high_seq = tp->snd_nxt; 2572 } 2573 } 2574 2575 static void tcp_try_to_open(struct sock *sk, int flag) 2576 { 2577 struct tcp_sock *tp = tcp_sk(sk); 2578 2579 tcp_verify_left_out(tp); 2580 2581 if (!tcp_any_retrans_done(sk)) 2582 tp->retrans_stamp = 0; 2583 2584 if (flag & FLAG_ECE) 2585 tcp_enter_cwr(sk); 2586 2587 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2588 tcp_try_keep_open(sk); 2589 } 2590 } 2591 2592 static void tcp_mtup_probe_failed(struct sock *sk) 2593 { 2594 struct inet_connection_sock *icsk = inet_csk(sk); 2595 2596 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2597 icsk->icsk_mtup.probe_size = 0; 2598 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2599 } 2600 2601 static void tcp_mtup_probe_success(struct sock *sk) 2602 { 2603 struct tcp_sock *tp = tcp_sk(sk); 2604 struct inet_connection_sock *icsk = inet_csk(sk); 2605 2606 /* FIXME: breaks with very large cwnd */ 2607 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2608 tp->snd_cwnd = tp->snd_cwnd * 2609 tcp_mss_to_mtu(sk, tp->mss_cache) / 2610 icsk->icsk_mtup.probe_size; 2611 tp->snd_cwnd_cnt = 0; 2612 tp->snd_cwnd_stamp = tcp_time_stamp; 2613 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2614 2615 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2616 icsk->icsk_mtup.probe_size = 0; 2617 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2618 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2619 } 2620 2621 /* Do a simple retransmit without using the backoff mechanisms in 2622 * tcp_timer. This is used for path mtu discovery. 2623 * The socket is already locked here. 2624 */ 2625 void tcp_simple_retransmit(struct sock *sk) 2626 { 2627 const struct inet_connection_sock *icsk = inet_csk(sk); 2628 struct tcp_sock *tp = tcp_sk(sk); 2629 struct sk_buff *skb; 2630 unsigned int mss = tcp_current_mss(sk); 2631 u32 prior_lost = tp->lost_out; 2632 2633 tcp_for_write_queue(skb, sk) { 2634 if (skb == tcp_send_head(sk)) 2635 break; 2636 if (tcp_skb_seglen(skb) > mss && 2637 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2638 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2639 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2640 tp->retrans_out -= tcp_skb_pcount(skb); 2641 } 2642 tcp_skb_mark_lost_uncond_verify(tp, skb); 2643 } 2644 } 2645 2646 tcp_clear_retrans_hints_partial(tp); 2647 2648 if (prior_lost == tp->lost_out) 2649 return; 2650 2651 if (tcp_is_reno(tp)) 2652 tcp_limit_reno_sacked(tp); 2653 2654 tcp_verify_left_out(tp); 2655 2656 /* Don't muck with the congestion window here. 2657 * Reason is that we do not increase amount of _data_ 2658 * in network, but units changed and effective 2659 * cwnd/ssthresh really reduced now. 2660 */ 2661 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2662 tp->high_seq = tp->snd_nxt; 2663 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2664 tp->prior_ssthresh = 0; 2665 tp->undo_marker = 0; 2666 tcp_set_ca_state(sk, TCP_CA_Loss); 2667 } 2668 tcp_xmit_retransmit_queue(sk); 2669 } 2670 EXPORT_SYMBOL(tcp_simple_retransmit); 2671 2672 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2673 { 2674 struct tcp_sock *tp = tcp_sk(sk); 2675 int mib_idx; 2676 2677 if (tcp_is_reno(tp)) 2678 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2679 else 2680 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2681 2682 NET_INC_STATS(sock_net(sk), mib_idx); 2683 2684 tp->prior_ssthresh = 0; 2685 tcp_init_undo(tp); 2686 2687 if (!tcp_in_cwnd_reduction(sk)) { 2688 if (!ece_ack) 2689 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2690 tcp_init_cwnd_reduction(sk); 2691 } 2692 tcp_set_ca_state(sk, TCP_CA_Recovery); 2693 } 2694 2695 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2696 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2697 */ 2698 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2699 int *rexmit) 2700 { 2701 struct tcp_sock *tp = tcp_sk(sk); 2702 bool recovered = !before(tp->snd_una, tp->high_seq); 2703 2704 if ((flag & FLAG_SND_UNA_ADVANCED) && 2705 tcp_try_undo_loss(sk, false)) 2706 return; 2707 2708 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2709 /* Step 3.b. A timeout is spurious if not all data are 2710 * lost, i.e., never-retransmitted data are (s)acked. 2711 */ 2712 if ((flag & FLAG_ORIG_SACK_ACKED) && 2713 tcp_try_undo_loss(sk, true)) 2714 return; 2715 2716 if (after(tp->snd_nxt, tp->high_seq)) { 2717 if (flag & FLAG_DATA_SACKED || is_dupack) 2718 tp->frto = 0; /* Step 3.a. loss was real */ 2719 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2720 tp->high_seq = tp->snd_nxt; 2721 /* Step 2.b. Try send new data (but deferred until cwnd 2722 * is updated in tcp_ack()). Otherwise fall back to 2723 * the conventional recovery. 2724 */ 2725 if (tcp_send_head(sk) && 2726 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2727 *rexmit = REXMIT_NEW; 2728 return; 2729 } 2730 tp->frto = 0; 2731 } 2732 } 2733 2734 if (recovered) { 2735 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2736 tcp_try_undo_recovery(sk); 2737 return; 2738 } 2739 if (tcp_is_reno(tp)) { 2740 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2741 * delivered. Lower inflight to clock out (re)tranmissions. 2742 */ 2743 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2744 tcp_add_reno_sack(sk); 2745 else if (flag & FLAG_SND_UNA_ADVANCED) 2746 tcp_reset_reno_sack(tp); 2747 } 2748 *rexmit = REXMIT_LOST; 2749 } 2750 2751 /* Undo during fast recovery after partial ACK. */ 2752 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2753 { 2754 struct tcp_sock *tp = tcp_sk(sk); 2755 2756 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2757 /* Plain luck! Hole if filled with delayed 2758 * packet, rather than with a retransmit. 2759 */ 2760 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2761 2762 /* We are getting evidence that the reordering degree is higher 2763 * than we realized. If there are no retransmits out then we 2764 * can undo. Otherwise we clock out new packets but do not 2765 * mark more packets lost or retransmit more. 2766 */ 2767 if (tp->retrans_out) 2768 return true; 2769 2770 if (!tcp_any_retrans_done(sk)) 2771 tp->retrans_stamp = 0; 2772 2773 DBGUNDO(sk, "partial recovery"); 2774 tcp_undo_cwnd_reduction(sk, true); 2775 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2776 tcp_try_keep_open(sk); 2777 return true; 2778 } 2779 return false; 2780 } 2781 2782 /* Process an event, which can update packets-in-flight not trivially. 2783 * Main goal of this function is to calculate new estimate for left_out, 2784 * taking into account both packets sitting in receiver's buffer and 2785 * packets lost by network. 2786 * 2787 * Besides that it updates the congestion state when packet loss or ECN 2788 * is detected. But it does not reduce the cwnd, it is done by the 2789 * congestion control later. 2790 * 2791 * It does _not_ decide what to send, it is made in function 2792 * tcp_xmit_retransmit_queue(). 2793 */ 2794 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2795 bool is_dupack, int *ack_flag, int *rexmit) 2796 { 2797 struct inet_connection_sock *icsk = inet_csk(sk); 2798 struct tcp_sock *tp = tcp_sk(sk); 2799 int fast_rexmit = 0, flag = *ack_flag; 2800 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2801 (tcp_fackets_out(tp) > tp->reordering)); 2802 2803 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2804 tp->sacked_out = 0; 2805 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2806 tp->fackets_out = 0; 2807 2808 /* Now state machine starts. 2809 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2810 if (flag & FLAG_ECE) 2811 tp->prior_ssthresh = 0; 2812 2813 /* B. In all the states check for reneging SACKs. */ 2814 if (tcp_check_sack_reneging(sk, flag)) 2815 return; 2816 2817 /* C. Check consistency of the current state. */ 2818 tcp_verify_left_out(tp); 2819 2820 /* D. Check state exit conditions. State can be terminated 2821 * when high_seq is ACKed. */ 2822 if (icsk->icsk_ca_state == TCP_CA_Open) { 2823 WARN_ON(tp->retrans_out != 0); 2824 tp->retrans_stamp = 0; 2825 } else if (!before(tp->snd_una, tp->high_seq)) { 2826 switch (icsk->icsk_ca_state) { 2827 case TCP_CA_CWR: 2828 /* CWR is to be held something *above* high_seq 2829 * is ACKed for CWR bit to reach receiver. */ 2830 if (tp->snd_una != tp->high_seq) { 2831 tcp_end_cwnd_reduction(sk); 2832 tcp_set_ca_state(sk, TCP_CA_Open); 2833 } 2834 break; 2835 2836 case TCP_CA_Recovery: 2837 if (tcp_is_reno(tp)) 2838 tcp_reset_reno_sack(tp); 2839 if (tcp_try_undo_recovery(sk)) 2840 return; 2841 tcp_end_cwnd_reduction(sk); 2842 break; 2843 } 2844 } 2845 2846 /* Use RACK to detect loss */ 2847 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS && 2848 tcp_rack_mark_lost(sk)) { 2849 flag |= FLAG_LOST_RETRANS; 2850 *ack_flag |= FLAG_LOST_RETRANS; 2851 } 2852 2853 /* E. Process state. */ 2854 switch (icsk->icsk_ca_state) { 2855 case TCP_CA_Recovery: 2856 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2857 if (tcp_is_reno(tp) && is_dupack) 2858 tcp_add_reno_sack(sk); 2859 } else { 2860 if (tcp_try_undo_partial(sk, acked)) 2861 return; 2862 /* Partial ACK arrived. Force fast retransmit. */ 2863 do_lost = tcp_is_reno(tp) || 2864 tcp_fackets_out(tp) > tp->reordering; 2865 } 2866 if (tcp_try_undo_dsack(sk)) { 2867 tcp_try_keep_open(sk); 2868 return; 2869 } 2870 break; 2871 case TCP_CA_Loss: 2872 tcp_process_loss(sk, flag, is_dupack, rexmit); 2873 if (icsk->icsk_ca_state != TCP_CA_Open && 2874 !(flag & FLAG_LOST_RETRANS)) 2875 return; 2876 /* Change state if cwnd is undone or retransmits are lost */ 2877 default: 2878 if (tcp_is_reno(tp)) { 2879 if (flag & FLAG_SND_UNA_ADVANCED) 2880 tcp_reset_reno_sack(tp); 2881 if (is_dupack) 2882 tcp_add_reno_sack(sk); 2883 } 2884 2885 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2886 tcp_try_undo_dsack(sk); 2887 2888 if (!tcp_time_to_recover(sk, flag)) { 2889 tcp_try_to_open(sk, flag); 2890 return; 2891 } 2892 2893 /* MTU probe failure: don't reduce cwnd */ 2894 if (icsk->icsk_ca_state < TCP_CA_CWR && 2895 icsk->icsk_mtup.probe_size && 2896 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2897 tcp_mtup_probe_failed(sk); 2898 /* Restores the reduction we did in tcp_mtup_probe() */ 2899 tp->snd_cwnd++; 2900 tcp_simple_retransmit(sk); 2901 return; 2902 } 2903 2904 /* Otherwise enter Recovery state */ 2905 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2906 fast_rexmit = 1; 2907 } 2908 2909 if (do_lost) 2910 tcp_update_scoreboard(sk, fast_rexmit); 2911 *rexmit = REXMIT_LOST; 2912 } 2913 2914 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2915 { 2916 struct tcp_sock *tp = tcp_sk(sk); 2917 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2918 2919 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp, 2920 rtt_us ? : jiffies_to_usecs(1)); 2921 } 2922 2923 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2924 long seq_rtt_us, long sack_rtt_us, 2925 long ca_rtt_us) 2926 { 2927 const struct tcp_sock *tp = tcp_sk(sk); 2928 2929 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2930 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2931 * Karn's algorithm forbids taking RTT if some retransmitted data 2932 * is acked (RFC6298). 2933 */ 2934 if (seq_rtt_us < 0) 2935 seq_rtt_us = sack_rtt_us; 2936 2937 /* RTTM Rule: A TSecr value received in a segment is used to 2938 * update the averaged RTT measurement only if the segment 2939 * acknowledges some new data, i.e., only if it advances the 2940 * left edge of the send window. 2941 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2942 */ 2943 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2944 flag & FLAG_ACKED) 2945 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - 2946 tp->rx_opt.rcv_tsecr); 2947 if (seq_rtt_us < 0) 2948 return false; 2949 2950 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2951 * always taken together with ACK, SACK, or TS-opts. Any negative 2952 * values will be skipped with the seq_rtt_us < 0 check above. 2953 */ 2954 tcp_update_rtt_min(sk, ca_rtt_us); 2955 tcp_rtt_estimator(sk, seq_rtt_us); 2956 tcp_set_rto(sk); 2957 2958 /* RFC6298: only reset backoff on valid RTT measurement. */ 2959 inet_csk(sk)->icsk_backoff = 0; 2960 return true; 2961 } 2962 2963 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2964 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2965 { 2966 long rtt_us = -1L; 2967 2968 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { 2969 struct skb_mstamp now; 2970 2971 skb_mstamp_get(&now); 2972 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); 2973 } 2974 2975 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); 2976 } 2977 2978 2979 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2980 { 2981 const struct inet_connection_sock *icsk = inet_csk(sk); 2982 2983 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2984 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2985 } 2986 2987 /* Restart timer after forward progress on connection. 2988 * RFC2988 recommends to restart timer to now+rto. 2989 */ 2990 void tcp_rearm_rto(struct sock *sk) 2991 { 2992 const struct inet_connection_sock *icsk = inet_csk(sk); 2993 struct tcp_sock *tp = tcp_sk(sk); 2994 2995 /* If the retrans timer is currently being used by Fast Open 2996 * for SYN-ACK retrans purpose, stay put. 2997 */ 2998 if (tp->fastopen_rsk) 2999 return; 3000 3001 if (!tp->packets_out) { 3002 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3003 } else { 3004 u32 rto = inet_csk(sk)->icsk_rto; 3005 /* Offset the time elapsed after installing regular RTO */ 3006 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3007 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3008 struct sk_buff *skb = tcp_write_queue_head(sk); 3009 const u32 rto_time_stamp = 3010 tcp_skb_timestamp(skb) + rto; 3011 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3012 /* delta may not be positive if the socket is locked 3013 * when the retrans timer fires and is rescheduled. 3014 */ 3015 if (delta > 0) 3016 rto = delta; 3017 } 3018 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3019 TCP_RTO_MAX); 3020 } 3021 } 3022 3023 /* This function is called when the delayed ER timer fires. TCP enters 3024 * fast recovery and performs fast-retransmit. 3025 */ 3026 void tcp_resume_early_retransmit(struct sock *sk) 3027 { 3028 struct tcp_sock *tp = tcp_sk(sk); 3029 3030 tcp_rearm_rto(sk); 3031 3032 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3033 if (!tp->do_early_retrans) 3034 return; 3035 3036 tcp_enter_recovery(sk, false); 3037 tcp_update_scoreboard(sk, 1); 3038 tcp_xmit_retransmit_queue(sk); 3039 } 3040 3041 /* If we get here, the whole TSO packet has not been acked. */ 3042 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3043 { 3044 struct tcp_sock *tp = tcp_sk(sk); 3045 u32 packets_acked; 3046 3047 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3048 3049 packets_acked = tcp_skb_pcount(skb); 3050 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3051 return 0; 3052 packets_acked -= tcp_skb_pcount(skb); 3053 3054 if (packets_acked) { 3055 BUG_ON(tcp_skb_pcount(skb) == 0); 3056 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3057 } 3058 3059 return packets_acked; 3060 } 3061 3062 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3063 u32 prior_snd_una) 3064 { 3065 const struct skb_shared_info *shinfo; 3066 3067 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3068 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3069 return; 3070 3071 shinfo = skb_shinfo(skb); 3072 if (!before(shinfo->tskey, prior_snd_una) && 3073 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3074 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3075 } 3076 3077 /* Remove acknowledged frames from the retransmission queue. If our packet 3078 * is before the ack sequence we can discard it as it's confirmed to have 3079 * arrived at the other end. 3080 */ 3081 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3082 u32 prior_snd_una, int *acked, 3083 struct tcp_sacktag_state *sack, 3084 struct skb_mstamp *now) 3085 { 3086 const struct inet_connection_sock *icsk = inet_csk(sk); 3087 struct skb_mstamp first_ackt, last_ackt; 3088 struct tcp_sock *tp = tcp_sk(sk); 3089 u32 prior_sacked = tp->sacked_out; 3090 u32 reord = tp->packets_out; 3091 bool fully_acked = true; 3092 long sack_rtt_us = -1L; 3093 long seq_rtt_us = -1L; 3094 long ca_rtt_us = -1L; 3095 struct sk_buff *skb; 3096 u32 pkts_acked = 0; 3097 u32 last_in_flight = 0; 3098 bool rtt_update; 3099 int flag = 0; 3100 3101 first_ackt.v64 = 0; 3102 3103 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3104 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3105 u8 sacked = scb->sacked; 3106 u32 acked_pcount; 3107 3108 tcp_ack_tstamp(sk, skb, prior_snd_una); 3109 3110 /* Determine how many packets and what bytes were acked, tso and else */ 3111 if (after(scb->end_seq, tp->snd_una)) { 3112 if (tcp_skb_pcount(skb) == 1 || 3113 !after(tp->snd_una, scb->seq)) 3114 break; 3115 3116 acked_pcount = tcp_tso_acked(sk, skb); 3117 if (!acked_pcount) 3118 break; 3119 fully_acked = false; 3120 } else { 3121 /* Speedup tcp_unlink_write_queue() and next loop */ 3122 prefetchw(skb->next); 3123 acked_pcount = tcp_skb_pcount(skb); 3124 } 3125 3126 if (unlikely(sacked & TCPCB_RETRANS)) { 3127 if (sacked & TCPCB_SACKED_RETRANS) 3128 tp->retrans_out -= acked_pcount; 3129 flag |= FLAG_RETRANS_DATA_ACKED; 3130 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3131 last_ackt = skb->skb_mstamp; 3132 WARN_ON_ONCE(last_ackt.v64 == 0); 3133 if (!first_ackt.v64) 3134 first_ackt = last_ackt; 3135 3136 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3137 reord = min(pkts_acked, reord); 3138 if (!after(scb->end_seq, tp->high_seq)) 3139 flag |= FLAG_ORIG_SACK_ACKED; 3140 } 3141 3142 if (sacked & TCPCB_SACKED_ACKED) { 3143 tp->sacked_out -= acked_pcount; 3144 } else if (tcp_is_sack(tp)) { 3145 tp->delivered += acked_pcount; 3146 if (!tcp_skb_spurious_retrans(tp, skb)) 3147 tcp_rack_advance(tp, &skb->skb_mstamp, sacked); 3148 } 3149 if (sacked & TCPCB_LOST) 3150 tp->lost_out -= acked_pcount; 3151 3152 tp->packets_out -= acked_pcount; 3153 pkts_acked += acked_pcount; 3154 tcp_rate_skb_delivered(sk, skb, sack->rate); 3155 3156 /* Initial outgoing SYN's get put onto the write_queue 3157 * just like anything else we transmit. It is not 3158 * true data, and if we misinform our callers that 3159 * this ACK acks real data, we will erroneously exit 3160 * connection startup slow start one packet too 3161 * quickly. This is severely frowned upon behavior. 3162 */ 3163 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3164 flag |= FLAG_DATA_ACKED; 3165 } else { 3166 flag |= FLAG_SYN_ACKED; 3167 tp->retrans_stamp = 0; 3168 } 3169 3170 if (!fully_acked) 3171 break; 3172 3173 tcp_unlink_write_queue(skb, sk); 3174 sk_wmem_free_skb(sk, skb); 3175 if (unlikely(skb == tp->retransmit_skb_hint)) 3176 tp->retransmit_skb_hint = NULL; 3177 if (unlikely(skb == tp->lost_skb_hint)) 3178 tp->lost_skb_hint = NULL; 3179 } 3180 3181 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3182 tp->snd_up = tp->snd_una; 3183 3184 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3185 flag |= FLAG_SACK_RENEGING; 3186 3187 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3188 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt); 3189 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt); 3190 } 3191 if (sack->first_sackt.v64) { 3192 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt); 3193 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt); 3194 } 3195 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */ 3196 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3197 ca_rtt_us); 3198 3199 if (flag & FLAG_ACKED) { 3200 tcp_rearm_rto(sk); 3201 if (unlikely(icsk->icsk_mtup.probe_size && 3202 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3203 tcp_mtup_probe_success(sk); 3204 } 3205 3206 if (tcp_is_reno(tp)) { 3207 tcp_remove_reno_sacks(sk, pkts_acked); 3208 } else { 3209 int delta; 3210 3211 /* Non-retransmitted hole got filled? That's reordering */ 3212 if (reord < prior_fackets) 3213 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3214 3215 delta = tcp_is_fack(tp) ? pkts_acked : 3216 prior_sacked - tp->sacked_out; 3217 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3218 } 3219 3220 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3221 3222 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3223 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) { 3224 /* Do not re-arm RTO if the sack RTT is measured from data sent 3225 * after when the head was last (re)transmitted. Otherwise the 3226 * timeout may continue to extend in loss recovery. 3227 */ 3228 tcp_rearm_rto(sk); 3229 } 3230 3231 if (icsk->icsk_ca_ops->pkts_acked) { 3232 struct ack_sample sample = { .pkts_acked = pkts_acked, 3233 .rtt_us = ca_rtt_us, 3234 .in_flight = last_in_flight }; 3235 3236 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3237 } 3238 3239 #if FASTRETRANS_DEBUG > 0 3240 WARN_ON((int)tp->sacked_out < 0); 3241 WARN_ON((int)tp->lost_out < 0); 3242 WARN_ON((int)tp->retrans_out < 0); 3243 if (!tp->packets_out && tcp_is_sack(tp)) { 3244 icsk = inet_csk(sk); 3245 if (tp->lost_out) { 3246 pr_debug("Leak l=%u %d\n", 3247 tp->lost_out, icsk->icsk_ca_state); 3248 tp->lost_out = 0; 3249 } 3250 if (tp->sacked_out) { 3251 pr_debug("Leak s=%u %d\n", 3252 tp->sacked_out, icsk->icsk_ca_state); 3253 tp->sacked_out = 0; 3254 } 3255 if (tp->retrans_out) { 3256 pr_debug("Leak r=%u %d\n", 3257 tp->retrans_out, icsk->icsk_ca_state); 3258 tp->retrans_out = 0; 3259 } 3260 } 3261 #endif 3262 *acked = pkts_acked; 3263 return flag; 3264 } 3265 3266 static void tcp_ack_probe(struct sock *sk) 3267 { 3268 const struct tcp_sock *tp = tcp_sk(sk); 3269 struct inet_connection_sock *icsk = inet_csk(sk); 3270 3271 /* Was it a usable window open? */ 3272 3273 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3274 icsk->icsk_backoff = 0; 3275 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3276 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3277 * This function is not for random using! 3278 */ 3279 } else { 3280 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3281 3282 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3283 when, TCP_RTO_MAX); 3284 } 3285 } 3286 3287 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3288 { 3289 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3290 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3291 } 3292 3293 /* Decide wheather to run the increase function of congestion control. */ 3294 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3295 { 3296 /* If reordering is high then always grow cwnd whenever data is 3297 * delivered regardless of its ordering. Otherwise stay conservative 3298 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3299 * new SACK or ECE mark may first advance cwnd here and later reduce 3300 * cwnd in tcp_fastretrans_alert() based on more states. 3301 */ 3302 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3303 return flag & FLAG_FORWARD_PROGRESS; 3304 3305 return flag & FLAG_DATA_ACKED; 3306 } 3307 3308 /* The "ultimate" congestion control function that aims to replace the rigid 3309 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3310 * It's called toward the end of processing an ACK with precise rate 3311 * information. All transmission or retransmission are delayed afterwards. 3312 */ 3313 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3314 int flag, const struct rate_sample *rs) 3315 { 3316 const struct inet_connection_sock *icsk = inet_csk(sk); 3317 3318 if (icsk->icsk_ca_ops->cong_control) { 3319 icsk->icsk_ca_ops->cong_control(sk, rs); 3320 return; 3321 } 3322 3323 if (tcp_in_cwnd_reduction(sk)) { 3324 /* Reduce cwnd if state mandates */ 3325 tcp_cwnd_reduction(sk, acked_sacked, flag); 3326 } else if (tcp_may_raise_cwnd(sk, flag)) { 3327 /* Advance cwnd if state allows */ 3328 tcp_cong_avoid(sk, ack, acked_sacked); 3329 } 3330 tcp_update_pacing_rate(sk); 3331 } 3332 3333 /* Check that window update is acceptable. 3334 * The function assumes that snd_una<=ack<=snd_next. 3335 */ 3336 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3337 const u32 ack, const u32 ack_seq, 3338 const u32 nwin) 3339 { 3340 return after(ack, tp->snd_una) || 3341 after(ack_seq, tp->snd_wl1) || 3342 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3343 } 3344 3345 /* If we update tp->snd_una, also update tp->bytes_acked */ 3346 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3347 { 3348 u32 delta = ack - tp->snd_una; 3349 3350 sock_owned_by_me((struct sock *)tp); 3351 tp->bytes_acked += delta; 3352 tp->snd_una = ack; 3353 } 3354 3355 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3356 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3357 { 3358 u32 delta = seq - tp->rcv_nxt; 3359 3360 sock_owned_by_me((struct sock *)tp); 3361 tp->bytes_received += delta; 3362 tp->rcv_nxt = seq; 3363 } 3364 3365 /* Update our send window. 3366 * 3367 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3368 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3369 */ 3370 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3371 u32 ack_seq) 3372 { 3373 struct tcp_sock *tp = tcp_sk(sk); 3374 int flag = 0; 3375 u32 nwin = ntohs(tcp_hdr(skb)->window); 3376 3377 if (likely(!tcp_hdr(skb)->syn)) 3378 nwin <<= tp->rx_opt.snd_wscale; 3379 3380 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3381 flag |= FLAG_WIN_UPDATE; 3382 tcp_update_wl(tp, ack_seq); 3383 3384 if (tp->snd_wnd != nwin) { 3385 tp->snd_wnd = nwin; 3386 3387 /* Note, it is the only place, where 3388 * fast path is recovered for sending TCP. 3389 */ 3390 tp->pred_flags = 0; 3391 tcp_fast_path_check(sk); 3392 3393 if (tcp_send_head(sk)) 3394 tcp_slow_start_after_idle_check(sk); 3395 3396 if (nwin > tp->max_window) { 3397 tp->max_window = nwin; 3398 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3399 } 3400 } 3401 } 3402 3403 tcp_snd_una_update(tp, ack); 3404 3405 return flag; 3406 } 3407 3408 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3409 u32 *last_oow_ack_time) 3410 { 3411 if (*last_oow_ack_time) { 3412 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3413 3414 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3415 NET_INC_STATS(net, mib_idx); 3416 return true; /* rate-limited: don't send yet! */ 3417 } 3418 } 3419 3420 *last_oow_ack_time = tcp_time_stamp; 3421 3422 return false; /* not rate-limited: go ahead, send dupack now! */ 3423 } 3424 3425 /* Return true if we're currently rate-limiting out-of-window ACKs and 3426 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3427 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3428 * attacks that send repeated SYNs or ACKs for the same connection. To 3429 * do this, we do not send a duplicate SYNACK or ACK if the remote 3430 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3431 */ 3432 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3433 int mib_idx, u32 *last_oow_ack_time) 3434 { 3435 /* Data packets without SYNs are not likely part of an ACK loop. */ 3436 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3437 !tcp_hdr(skb)->syn) 3438 return false; 3439 3440 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3441 } 3442 3443 /* RFC 5961 7 [ACK Throttling] */ 3444 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3445 { 3446 /* unprotected vars, we dont care of overwrites */ 3447 static u32 challenge_timestamp; 3448 static unsigned int challenge_count; 3449 struct tcp_sock *tp = tcp_sk(sk); 3450 u32 count, now; 3451 3452 /* First check our per-socket dupack rate limit. */ 3453 if (__tcp_oow_rate_limited(sock_net(sk), 3454 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3455 &tp->last_oow_ack_time)) 3456 return; 3457 3458 /* Then check host-wide RFC 5961 rate limit. */ 3459 now = jiffies / HZ; 3460 if (now != challenge_timestamp) { 3461 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3462 3463 challenge_timestamp = now; 3464 WRITE_ONCE(challenge_count, half + 3465 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3466 } 3467 count = READ_ONCE(challenge_count); 3468 if (count > 0) { 3469 WRITE_ONCE(challenge_count, count - 1); 3470 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3471 tcp_send_ack(sk); 3472 } 3473 } 3474 3475 static void tcp_store_ts_recent(struct tcp_sock *tp) 3476 { 3477 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3478 tp->rx_opt.ts_recent_stamp = get_seconds(); 3479 } 3480 3481 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3482 { 3483 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3484 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3485 * extra check below makes sure this can only happen 3486 * for pure ACK frames. -DaveM 3487 * 3488 * Not only, also it occurs for expired timestamps. 3489 */ 3490 3491 if (tcp_paws_check(&tp->rx_opt, 0)) 3492 tcp_store_ts_recent(tp); 3493 } 3494 } 3495 3496 /* This routine deals with acks during a TLP episode. 3497 * We mark the end of a TLP episode on receiving TLP dupack or when 3498 * ack is after tlp_high_seq. 3499 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3500 */ 3501 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3502 { 3503 struct tcp_sock *tp = tcp_sk(sk); 3504 3505 if (before(ack, tp->tlp_high_seq)) 3506 return; 3507 3508 if (flag & FLAG_DSACKING_ACK) { 3509 /* This DSACK means original and TLP probe arrived; no loss */ 3510 tp->tlp_high_seq = 0; 3511 } else if (after(ack, tp->tlp_high_seq)) { 3512 /* ACK advances: there was a loss, so reduce cwnd. Reset 3513 * tlp_high_seq in tcp_init_cwnd_reduction() 3514 */ 3515 tcp_init_cwnd_reduction(sk); 3516 tcp_set_ca_state(sk, TCP_CA_CWR); 3517 tcp_end_cwnd_reduction(sk); 3518 tcp_try_keep_open(sk); 3519 NET_INC_STATS(sock_net(sk), 3520 LINUX_MIB_TCPLOSSPROBERECOVERY); 3521 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3522 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3523 /* Pure dupack: original and TLP probe arrived; no loss */ 3524 tp->tlp_high_seq = 0; 3525 } 3526 } 3527 3528 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3529 { 3530 const struct inet_connection_sock *icsk = inet_csk(sk); 3531 3532 if (icsk->icsk_ca_ops->in_ack_event) 3533 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3534 } 3535 3536 /* Congestion control has updated the cwnd already. So if we're in 3537 * loss recovery then now we do any new sends (for FRTO) or 3538 * retransmits (for CA_Loss or CA_recovery) that make sense. 3539 */ 3540 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3541 { 3542 struct tcp_sock *tp = tcp_sk(sk); 3543 3544 if (rexmit == REXMIT_NONE) 3545 return; 3546 3547 if (unlikely(rexmit == 2)) { 3548 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3549 TCP_NAGLE_OFF); 3550 if (after(tp->snd_nxt, tp->high_seq)) 3551 return; 3552 tp->frto = 0; 3553 } 3554 tcp_xmit_retransmit_queue(sk); 3555 } 3556 3557 /* This routine deals with incoming acks, but not outgoing ones. */ 3558 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3559 { 3560 struct inet_connection_sock *icsk = inet_csk(sk); 3561 struct tcp_sock *tp = tcp_sk(sk); 3562 struct tcp_sacktag_state sack_state; 3563 struct rate_sample rs = { .prior_delivered = 0 }; 3564 u32 prior_snd_una = tp->snd_una; 3565 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3566 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3567 bool is_dupack = false; 3568 u32 prior_fackets; 3569 int prior_packets = tp->packets_out; 3570 u32 delivered = tp->delivered; 3571 u32 lost = tp->lost; 3572 int acked = 0; /* Number of packets newly acked */ 3573 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3574 struct skb_mstamp now; 3575 3576 sack_state.first_sackt.v64 = 0; 3577 sack_state.rate = &rs; 3578 3579 /* We very likely will need to access write queue head. */ 3580 prefetchw(sk->sk_write_queue.next); 3581 3582 /* If the ack is older than previous acks 3583 * then we can probably ignore it. 3584 */ 3585 if (before(ack, prior_snd_una)) { 3586 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3587 if (before(ack, prior_snd_una - tp->max_window)) { 3588 tcp_send_challenge_ack(sk, skb); 3589 return -1; 3590 } 3591 goto old_ack; 3592 } 3593 3594 /* If the ack includes data we haven't sent yet, discard 3595 * this segment (RFC793 Section 3.9). 3596 */ 3597 if (after(ack, tp->snd_nxt)) 3598 goto invalid_ack; 3599 3600 skb_mstamp_get(&now); 3601 3602 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3603 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3604 tcp_rearm_rto(sk); 3605 3606 if (after(ack, prior_snd_una)) { 3607 flag |= FLAG_SND_UNA_ADVANCED; 3608 icsk->icsk_retransmits = 0; 3609 } 3610 3611 prior_fackets = tp->fackets_out; 3612 rs.prior_in_flight = tcp_packets_in_flight(tp); 3613 3614 /* ts_recent update must be made after we are sure that the packet 3615 * is in window. 3616 */ 3617 if (flag & FLAG_UPDATE_TS_RECENT) 3618 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3619 3620 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3621 /* Window is constant, pure forward advance. 3622 * No more checks are required. 3623 * Note, we use the fact that SND.UNA>=SND.WL2. 3624 */ 3625 tcp_update_wl(tp, ack_seq); 3626 tcp_snd_una_update(tp, ack); 3627 flag |= FLAG_WIN_UPDATE; 3628 3629 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3630 3631 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3632 } else { 3633 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3634 3635 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3636 flag |= FLAG_DATA; 3637 else 3638 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3639 3640 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3641 3642 if (TCP_SKB_CB(skb)->sacked) 3643 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3644 &sack_state); 3645 3646 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3647 flag |= FLAG_ECE; 3648 ack_ev_flags |= CA_ACK_ECE; 3649 } 3650 3651 if (flag & FLAG_WIN_UPDATE) 3652 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3653 3654 tcp_in_ack_event(sk, ack_ev_flags); 3655 } 3656 3657 /* We passed data and got it acked, remove any soft error 3658 * log. Something worked... 3659 */ 3660 sk->sk_err_soft = 0; 3661 icsk->icsk_probes_out = 0; 3662 tp->rcv_tstamp = tcp_time_stamp; 3663 if (!prior_packets) 3664 goto no_queue; 3665 3666 /* See if we can take anything off of the retransmit queue. */ 3667 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3668 &sack_state, &now); 3669 3670 if (tcp_ack_is_dubious(sk, flag)) { 3671 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3672 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3673 } 3674 if (tp->tlp_high_seq) 3675 tcp_process_tlp_ack(sk, ack, flag); 3676 3677 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3678 struct dst_entry *dst = __sk_dst_get(sk); 3679 if (dst) 3680 dst_confirm(dst); 3681 } 3682 3683 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3684 tcp_schedule_loss_probe(sk); 3685 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3686 lost = tp->lost - lost; /* freshly marked lost */ 3687 tcp_rate_gen(sk, delivered, lost, &now, &rs); 3688 tcp_cong_control(sk, ack, delivered, flag, &rs); 3689 tcp_xmit_recovery(sk, rexmit); 3690 return 1; 3691 3692 no_queue: 3693 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3694 if (flag & FLAG_DSACKING_ACK) 3695 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3696 /* If this ack opens up a zero window, clear backoff. It was 3697 * being used to time the probes, and is probably far higher than 3698 * it needs to be for normal retransmission. 3699 */ 3700 if (tcp_send_head(sk)) 3701 tcp_ack_probe(sk); 3702 3703 if (tp->tlp_high_seq) 3704 tcp_process_tlp_ack(sk, ack, flag); 3705 return 1; 3706 3707 invalid_ack: 3708 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3709 return -1; 3710 3711 old_ack: 3712 /* If data was SACKed, tag it and see if we should send more data. 3713 * If data was DSACKed, see if we can undo a cwnd reduction. 3714 */ 3715 if (TCP_SKB_CB(skb)->sacked) { 3716 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3717 &sack_state); 3718 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3719 tcp_xmit_recovery(sk, rexmit); 3720 } 3721 3722 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3723 return 0; 3724 } 3725 3726 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3727 bool syn, struct tcp_fastopen_cookie *foc, 3728 bool exp_opt) 3729 { 3730 /* Valid only in SYN or SYN-ACK with an even length. */ 3731 if (!foc || !syn || len < 0 || (len & 1)) 3732 return; 3733 3734 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3735 len <= TCP_FASTOPEN_COOKIE_MAX) 3736 memcpy(foc->val, cookie, len); 3737 else if (len != 0) 3738 len = -1; 3739 foc->len = len; 3740 foc->exp = exp_opt; 3741 } 3742 3743 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3744 * But, this can also be called on packets in the established flow when 3745 * the fast version below fails. 3746 */ 3747 void tcp_parse_options(const struct sk_buff *skb, 3748 struct tcp_options_received *opt_rx, int estab, 3749 struct tcp_fastopen_cookie *foc) 3750 { 3751 const unsigned char *ptr; 3752 const struct tcphdr *th = tcp_hdr(skb); 3753 int length = (th->doff * 4) - sizeof(struct tcphdr); 3754 3755 ptr = (const unsigned char *)(th + 1); 3756 opt_rx->saw_tstamp = 0; 3757 3758 while (length > 0) { 3759 int opcode = *ptr++; 3760 int opsize; 3761 3762 switch (opcode) { 3763 case TCPOPT_EOL: 3764 return; 3765 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3766 length--; 3767 continue; 3768 default: 3769 opsize = *ptr++; 3770 if (opsize < 2) /* "silly options" */ 3771 return; 3772 if (opsize > length) 3773 return; /* don't parse partial options */ 3774 switch (opcode) { 3775 case TCPOPT_MSS: 3776 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3777 u16 in_mss = get_unaligned_be16(ptr); 3778 if (in_mss) { 3779 if (opt_rx->user_mss && 3780 opt_rx->user_mss < in_mss) 3781 in_mss = opt_rx->user_mss; 3782 opt_rx->mss_clamp = in_mss; 3783 } 3784 } 3785 break; 3786 case TCPOPT_WINDOW: 3787 if (opsize == TCPOLEN_WINDOW && th->syn && 3788 !estab && sysctl_tcp_window_scaling) { 3789 __u8 snd_wscale = *(__u8 *)ptr; 3790 opt_rx->wscale_ok = 1; 3791 if (snd_wscale > 14) { 3792 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3793 __func__, 3794 snd_wscale); 3795 snd_wscale = 14; 3796 } 3797 opt_rx->snd_wscale = snd_wscale; 3798 } 3799 break; 3800 case TCPOPT_TIMESTAMP: 3801 if ((opsize == TCPOLEN_TIMESTAMP) && 3802 ((estab && opt_rx->tstamp_ok) || 3803 (!estab && sysctl_tcp_timestamps))) { 3804 opt_rx->saw_tstamp = 1; 3805 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3806 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3807 } 3808 break; 3809 case TCPOPT_SACK_PERM: 3810 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3811 !estab && sysctl_tcp_sack) { 3812 opt_rx->sack_ok = TCP_SACK_SEEN; 3813 tcp_sack_reset(opt_rx); 3814 } 3815 break; 3816 3817 case TCPOPT_SACK: 3818 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3819 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3820 opt_rx->sack_ok) { 3821 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3822 } 3823 break; 3824 #ifdef CONFIG_TCP_MD5SIG 3825 case TCPOPT_MD5SIG: 3826 /* 3827 * The MD5 Hash has already been 3828 * checked (see tcp_v{4,6}_do_rcv()). 3829 */ 3830 break; 3831 #endif 3832 case TCPOPT_FASTOPEN: 3833 tcp_parse_fastopen_option( 3834 opsize - TCPOLEN_FASTOPEN_BASE, 3835 ptr, th->syn, foc, false); 3836 break; 3837 3838 case TCPOPT_EXP: 3839 /* Fast Open option shares code 254 using a 3840 * 16 bits magic number. 3841 */ 3842 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3843 get_unaligned_be16(ptr) == 3844 TCPOPT_FASTOPEN_MAGIC) 3845 tcp_parse_fastopen_option(opsize - 3846 TCPOLEN_EXP_FASTOPEN_BASE, 3847 ptr + 2, th->syn, foc, true); 3848 break; 3849 3850 } 3851 ptr += opsize-2; 3852 length -= opsize; 3853 } 3854 } 3855 } 3856 EXPORT_SYMBOL(tcp_parse_options); 3857 3858 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3859 { 3860 const __be32 *ptr = (const __be32 *)(th + 1); 3861 3862 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3863 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3864 tp->rx_opt.saw_tstamp = 1; 3865 ++ptr; 3866 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3867 ++ptr; 3868 if (*ptr) 3869 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3870 else 3871 tp->rx_opt.rcv_tsecr = 0; 3872 return true; 3873 } 3874 return false; 3875 } 3876 3877 /* Fast parse options. This hopes to only see timestamps. 3878 * If it is wrong it falls back on tcp_parse_options(). 3879 */ 3880 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3881 const struct tcphdr *th, struct tcp_sock *tp) 3882 { 3883 /* In the spirit of fast parsing, compare doff directly to constant 3884 * values. Because equality is used, short doff can be ignored here. 3885 */ 3886 if (th->doff == (sizeof(*th) / 4)) { 3887 tp->rx_opt.saw_tstamp = 0; 3888 return false; 3889 } else if (tp->rx_opt.tstamp_ok && 3890 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3891 if (tcp_parse_aligned_timestamp(tp, th)) 3892 return true; 3893 } 3894 3895 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3896 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3897 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3898 3899 return true; 3900 } 3901 3902 #ifdef CONFIG_TCP_MD5SIG 3903 /* 3904 * Parse MD5 Signature option 3905 */ 3906 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3907 { 3908 int length = (th->doff << 2) - sizeof(*th); 3909 const u8 *ptr = (const u8 *)(th + 1); 3910 3911 /* If the TCP option is too short, we can short cut */ 3912 if (length < TCPOLEN_MD5SIG) 3913 return NULL; 3914 3915 while (length > 0) { 3916 int opcode = *ptr++; 3917 int opsize; 3918 3919 switch (opcode) { 3920 case TCPOPT_EOL: 3921 return NULL; 3922 case TCPOPT_NOP: 3923 length--; 3924 continue; 3925 default: 3926 opsize = *ptr++; 3927 if (opsize < 2 || opsize > length) 3928 return NULL; 3929 if (opcode == TCPOPT_MD5SIG) 3930 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3931 } 3932 ptr += opsize - 2; 3933 length -= opsize; 3934 } 3935 return NULL; 3936 } 3937 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3938 #endif 3939 3940 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3941 * 3942 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3943 * it can pass through stack. So, the following predicate verifies that 3944 * this segment is not used for anything but congestion avoidance or 3945 * fast retransmit. Moreover, we even are able to eliminate most of such 3946 * second order effects, if we apply some small "replay" window (~RTO) 3947 * to timestamp space. 3948 * 3949 * All these measures still do not guarantee that we reject wrapped ACKs 3950 * on networks with high bandwidth, when sequence space is recycled fastly, 3951 * but it guarantees that such events will be very rare and do not affect 3952 * connection seriously. This doesn't look nice, but alas, PAWS is really 3953 * buggy extension. 3954 * 3955 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3956 * states that events when retransmit arrives after original data are rare. 3957 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3958 * the biggest problem on large power networks even with minor reordering. 3959 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3960 * up to bandwidth of 18Gigabit/sec. 8) ] 3961 */ 3962 3963 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3964 { 3965 const struct tcp_sock *tp = tcp_sk(sk); 3966 const struct tcphdr *th = tcp_hdr(skb); 3967 u32 seq = TCP_SKB_CB(skb)->seq; 3968 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3969 3970 return (/* 1. Pure ACK with correct sequence number. */ 3971 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3972 3973 /* 2. ... and duplicate ACK. */ 3974 ack == tp->snd_una && 3975 3976 /* 3. ... and does not update window. */ 3977 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3978 3979 /* 4. ... and sits in replay window. */ 3980 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3981 } 3982 3983 static inline bool tcp_paws_discard(const struct sock *sk, 3984 const struct sk_buff *skb) 3985 { 3986 const struct tcp_sock *tp = tcp_sk(sk); 3987 3988 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3989 !tcp_disordered_ack(sk, skb); 3990 } 3991 3992 /* Check segment sequence number for validity. 3993 * 3994 * Segment controls are considered valid, if the segment 3995 * fits to the window after truncation to the window. Acceptability 3996 * of data (and SYN, FIN, of course) is checked separately. 3997 * See tcp_data_queue(), for example. 3998 * 3999 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4000 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4001 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4002 * (borrowed from freebsd) 4003 */ 4004 4005 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4006 { 4007 return !before(end_seq, tp->rcv_wup) && 4008 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4009 } 4010 4011 /* When we get a reset we do this. */ 4012 void tcp_reset(struct sock *sk) 4013 { 4014 /* We want the right error as BSD sees it (and indeed as we do). */ 4015 switch (sk->sk_state) { 4016 case TCP_SYN_SENT: 4017 sk->sk_err = ECONNREFUSED; 4018 break; 4019 case TCP_CLOSE_WAIT: 4020 sk->sk_err = EPIPE; 4021 break; 4022 case TCP_CLOSE: 4023 return; 4024 default: 4025 sk->sk_err = ECONNRESET; 4026 } 4027 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4028 smp_wmb(); 4029 4030 if (!sock_flag(sk, SOCK_DEAD)) 4031 sk->sk_error_report(sk); 4032 4033 tcp_done(sk); 4034 } 4035 4036 /* 4037 * Process the FIN bit. This now behaves as it is supposed to work 4038 * and the FIN takes effect when it is validly part of sequence 4039 * space. Not before when we get holes. 4040 * 4041 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4042 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4043 * TIME-WAIT) 4044 * 4045 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4046 * close and we go into CLOSING (and later onto TIME-WAIT) 4047 * 4048 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4049 */ 4050 void tcp_fin(struct sock *sk) 4051 { 4052 struct tcp_sock *tp = tcp_sk(sk); 4053 4054 inet_csk_schedule_ack(sk); 4055 4056 sk->sk_shutdown |= RCV_SHUTDOWN; 4057 sock_set_flag(sk, SOCK_DONE); 4058 4059 switch (sk->sk_state) { 4060 case TCP_SYN_RECV: 4061 case TCP_ESTABLISHED: 4062 /* Move to CLOSE_WAIT */ 4063 tcp_set_state(sk, TCP_CLOSE_WAIT); 4064 inet_csk(sk)->icsk_ack.pingpong = 1; 4065 break; 4066 4067 case TCP_CLOSE_WAIT: 4068 case TCP_CLOSING: 4069 /* Received a retransmission of the FIN, do 4070 * nothing. 4071 */ 4072 break; 4073 case TCP_LAST_ACK: 4074 /* RFC793: Remain in the LAST-ACK state. */ 4075 break; 4076 4077 case TCP_FIN_WAIT1: 4078 /* This case occurs when a simultaneous close 4079 * happens, we must ack the received FIN and 4080 * enter the CLOSING state. 4081 */ 4082 tcp_send_ack(sk); 4083 tcp_set_state(sk, TCP_CLOSING); 4084 break; 4085 case TCP_FIN_WAIT2: 4086 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4087 tcp_send_ack(sk); 4088 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4089 break; 4090 default: 4091 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4092 * cases we should never reach this piece of code. 4093 */ 4094 pr_err("%s: Impossible, sk->sk_state=%d\n", 4095 __func__, sk->sk_state); 4096 break; 4097 } 4098 4099 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4100 * Probably, we should reset in this case. For now drop them. 4101 */ 4102 skb_rbtree_purge(&tp->out_of_order_queue); 4103 if (tcp_is_sack(tp)) 4104 tcp_sack_reset(&tp->rx_opt); 4105 sk_mem_reclaim(sk); 4106 4107 if (!sock_flag(sk, SOCK_DEAD)) { 4108 sk->sk_state_change(sk); 4109 4110 /* Do not send POLL_HUP for half duplex close. */ 4111 if (sk->sk_shutdown == SHUTDOWN_MASK || 4112 sk->sk_state == TCP_CLOSE) 4113 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4114 else 4115 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4116 } 4117 } 4118 4119 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4120 u32 end_seq) 4121 { 4122 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4123 if (before(seq, sp->start_seq)) 4124 sp->start_seq = seq; 4125 if (after(end_seq, sp->end_seq)) 4126 sp->end_seq = end_seq; 4127 return true; 4128 } 4129 return false; 4130 } 4131 4132 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4133 { 4134 struct tcp_sock *tp = tcp_sk(sk); 4135 4136 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4137 int mib_idx; 4138 4139 if (before(seq, tp->rcv_nxt)) 4140 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4141 else 4142 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4143 4144 NET_INC_STATS(sock_net(sk), mib_idx); 4145 4146 tp->rx_opt.dsack = 1; 4147 tp->duplicate_sack[0].start_seq = seq; 4148 tp->duplicate_sack[0].end_seq = end_seq; 4149 } 4150 } 4151 4152 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4153 { 4154 struct tcp_sock *tp = tcp_sk(sk); 4155 4156 if (!tp->rx_opt.dsack) 4157 tcp_dsack_set(sk, seq, end_seq); 4158 else 4159 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4160 } 4161 4162 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4163 { 4164 struct tcp_sock *tp = tcp_sk(sk); 4165 4166 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4167 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4168 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4169 tcp_enter_quickack_mode(sk); 4170 4171 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4172 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4173 4174 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4175 end_seq = tp->rcv_nxt; 4176 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4177 } 4178 } 4179 4180 tcp_send_ack(sk); 4181 } 4182 4183 /* These routines update the SACK block as out-of-order packets arrive or 4184 * in-order packets close up the sequence space. 4185 */ 4186 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4187 { 4188 int this_sack; 4189 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4190 struct tcp_sack_block *swalk = sp + 1; 4191 4192 /* See if the recent change to the first SACK eats into 4193 * or hits the sequence space of other SACK blocks, if so coalesce. 4194 */ 4195 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4196 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4197 int i; 4198 4199 /* Zap SWALK, by moving every further SACK up by one slot. 4200 * Decrease num_sacks. 4201 */ 4202 tp->rx_opt.num_sacks--; 4203 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4204 sp[i] = sp[i + 1]; 4205 continue; 4206 } 4207 this_sack++, swalk++; 4208 } 4209 } 4210 4211 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4212 { 4213 struct tcp_sock *tp = tcp_sk(sk); 4214 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4215 int cur_sacks = tp->rx_opt.num_sacks; 4216 int this_sack; 4217 4218 if (!cur_sacks) 4219 goto new_sack; 4220 4221 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4222 if (tcp_sack_extend(sp, seq, end_seq)) { 4223 /* Rotate this_sack to the first one. */ 4224 for (; this_sack > 0; this_sack--, sp--) 4225 swap(*sp, *(sp - 1)); 4226 if (cur_sacks > 1) 4227 tcp_sack_maybe_coalesce(tp); 4228 return; 4229 } 4230 } 4231 4232 /* Could not find an adjacent existing SACK, build a new one, 4233 * put it at the front, and shift everyone else down. We 4234 * always know there is at least one SACK present already here. 4235 * 4236 * If the sack array is full, forget about the last one. 4237 */ 4238 if (this_sack >= TCP_NUM_SACKS) { 4239 this_sack--; 4240 tp->rx_opt.num_sacks--; 4241 sp--; 4242 } 4243 for (; this_sack > 0; this_sack--, sp--) 4244 *sp = *(sp - 1); 4245 4246 new_sack: 4247 /* Build the new head SACK, and we're done. */ 4248 sp->start_seq = seq; 4249 sp->end_seq = end_seq; 4250 tp->rx_opt.num_sacks++; 4251 } 4252 4253 /* RCV.NXT advances, some SACKs should be eaten. */ 4254 4255 static void tcp_sack_remove(struct tcp_sock *tp) 4256 { 4257 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4258 int num_sacks = tp->rx_opt.num_sacks; 4259 int this_sack; 4260 4261 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4262 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4263 tp->rx_opt.num_sacks = 0; 4264 return; 4265 } 4266 4267 for (this_sack = 0; this_sack < num_sacks;) { 4268 /* Check if the start of the sack is covered by RCV.NXT. */ 4269 if (!before(tp->rcv_nxt, sp->start_seq)) { 4270 int i; 4271 4272 /* RCV.NXT must cover all the block! */ 4273 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4274 4275 /* Zap this SACK, by moving forward any other SACKS. */ 4276 for (i = this_sack+1; i < num_sacks; i++) 4277 tp->selective_acks[i-1] = tp->selective_acks[i]; 4278 num_sacks--; 4279 continue; 4280 } 4281 this_sack++; 4282 sp++; 4283 } 4284 tp->rx_opt.num_sacks = num_sacks; 4285 } 4286 4287 /** 4288 * tcp_try_coalesce - try to merge skb to prior one 4289 * @sk: socket 4290 * @to: prior buffer 4291 * @from: buffer to add in queue 4292 * @fragstolen: pointer to boolean 4293 * 4294 * Before queueing skb @from after @to, try to merge them 4295 * to reduce overall memory use and queue lengths, if cost is small. 4296 * Packets in ofo or receive queues can stay a long time. 4297 * Better try to coalesce them right now to avoid future collapses. 4298 * Returns true if caller should free @from instead of queueing it 4299 */ 4300 static bool tcp_try_coalesce(struct sock *sk, 4301 struct sk_buff *to, 4302 struct sk_buff *from, 4303 bool *fragstolen) 4304 { 4305 int delta; 4306 4307 *fragstolen = false; 4308 4309 /* Its possible this segment overlaps with prior segment in queue */ 4310 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4311 return false; 4312 4313 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4314 return false; 4315 4316 atomic_add(delta, &sk->sk_rmem_alloc); 4317 sk_mem_charge(sk, delta); 4318 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4319 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4320 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4321 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4322 return true; 4323 } 4324 4325 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4326 { 4327 sk_drops_add(sk, skb); 4328 __kfree_skb(skb); 4329 } 4330 4331 /* This one checks to see if we can put data from the 4332 * out_of_order queue into the receive_queue. 4333 */ 4334 static void tcp_ofo_queue(struct sock *sk) 4335 { 4336 struct tcp_sock *tp = tcp_sk(sk); 4337 __u32 dsack_high = tp->rcv_nxt; 4338 bool fin, fragstolen, eaten; 4339 struct sk_buff *skb, *tail; 4340 struct rb_node *p; 4341 4342 p = rb_first(&tp->out_of_order_queue); 4343 while (p) { 4344 skb = rb_entry(p, struct sk_buff, rbnode); 4345 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4346 break; 4347 4348 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4349 __u32 dsack = dsack_high; 4350 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4351 dsack_high = TCP_SKB_CB(skb)->end_seq; 4352 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4353 } 4354 p = rb_next(p); 4355 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4356 4357 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4358 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4359 tcp_drop(sk, skb); 4360 continue; 4361 } 4362 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4363 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4364 TCP_SKB_CB(skb)->end_seq); 4365 4366 tail = skb_peek_tail(&sk->sk_receive_queue); 4367 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4368 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4369 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4370 if (!eaten) 4371 __skb_queue_tail(&sk->sk_receive_queue, skb); 4372 else 4373 kfree_skb_partial(skb, fragstolen); 4374 4375 if (unlikely(fin)) { 4376 tcp_fin(sk); 4377 /* tcp_fin() purges tp->out_of_order_queue, 4378 * so we must end this loop right now. 4379 */ 4380 break; 4381 } 4382 } 4383 } 4384 4385 static bool tcp_prune_ofo_queue(struct sock *sk); 4386 static int tcp_prune_queue(struct sock *sk); 4387 4388 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4389 unsigned int size) 4390 { 4391 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4392 !sk_rmem_schedule(sk, skb, size)) { 4393 4394 if (tcp_prune_queue(sk) < 0) 4395 return -1; 4396 4397 while (!sk_rmem_schedule(sk, skb, size)) { 4398 if (!tcp_prune_ofo_queue(sk)) 4399 return -1; 4400 } 4401 } 4402 return 0; 4403 } 4404 4405 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4406 { 4407 struct tcp_sock *tp = tcp_sk(sk); 4408 struct rb_node **p, *q, *parent; 4409 struct sk_buff *skb1; 4410 u32 seq, end_seq; 4411 bool fragstolen; 4412 4413 tcp_ecn_check_ce(tp, skb); 4414 4415 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4416 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4417 tcp_drop(sk, skb); 4418 return; 4419 } 4420 4421 /* Disable header prediction. */ 4422 tp->pred_flags = 0; 4423 inet_csk_schedule_ack(sk); 4424 4425 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4426 seq = TCP_SKB_CB(skb)->seq; 4427 end_seq = TCP_SKB_CB(skb)->end_seq; 4428 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4429 tp->rcv_nxt, seq, end_seq); 4430 4431 p = &tp->out_of_order_queue.rb_node; 4432 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4433 /* Initial out of order segment, build 1 SACK. */ 4434 if (tcp_is_sack(tp)) { 4435 tp->rx_opt.num_sacks = 1; 4436 tp->selective_acks[0].start_seq = seq; 4437 tp->selective_acks[0].end_seq = end_seq; 4438 } 4439 rb_link_node(&skb->rbnode, NULL, p); 4440 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4441 tp->ooo_last_skb = skb; 4442 goto end; 4443 } 4444 4445 /* In the typical case, we are adding an skb to the end of the list. 4446 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4447 */ 4448 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4449 coalesce_done: 4450 tcp_grow_window(sk, skb); 4451 kfree_skb_partial(skb, fragstolen); 4452 skb = NULL; 4453 goto add_sack; 4454 } 4455 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4456 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4457 parent = &tp->ooo_last_skb->rbnode; 4458 p = &parent->rb_right; 4459 goto insert; 4460 } 4461 4462 /* Find place to insert this segment. Handle overlaps on the way. */ 4463 parent = NULL; 4464 while (*p) { 4465 parent = *p; 4466 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4467 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4468 p = &parent->rb_left; 4469 continue; 4470 } 4471 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4472 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4473 /* All the bits are present. Drop. */ 4474 NET_INC_STATS(sock_net(sk), 4475 LINUX_MIB_TCPOFOMERGE); 4476 __kfree_skb(skb); 4477 skb = NULL; 4478 tcp_dsack_set(sk, seq, end_seq); 4479 goto add_sack; 4480 } 4481 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4482 /* Partial overlap. */ 4483 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4484 } else { 4485 /* skb's seq == skb1's seq and skb covers skb1. 4486 * Replace skb1 with skb. 4487 */ 4488 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4489 &tp->out_of_order_queue); 4490 tcp_dsack_extend(sk, 4491 TCP_SKB_CB(skb1)->seq, 4492 TCP_SKB_CB(skb1)->end_seq); 4493 NET_INC_STATS(sock_net(sk), 4494 LINUX_MIB_TCPOFOMERGE); 4495 __kfree_skb(skb1); 4496 goto merge_right; 4497 } 4498 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4499 goto coalesce_done; 4500 } 4501 p = &parent->rb_right; 4502 } 4503 insert: 4504 /* Insert segment into RB tree. */ 4505 rb_link_node(&skb->rbnode, parent, p); 4506 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4507 4508 merge_right: 4509 /* Remove other segments covered by skb. */ 4510 while ((q = rb_next(&skb->rbnode)) != NULL) { 4511 skb1 = rb_entry(q, struct sk_buff, rbnode); 4512 4513 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4514 break; 4515 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4516 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4517 end_seq); 4518 break; 4519 } 4520 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4521 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4522 TCP_SKB_CB(skb1)->end_seq); 4523 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4524 tcp_drop(sk, skb1); 4525 } 4526 /* If there is no skb after us, we are the last_skb ! */ 4527 if (!q) 4528 tp->ooo_last_skb = skb; 4529 4530 add_sack: 4531 if (tcp_is_sack(tp)) 4532 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4533 end: 4534 if (skb) { 4535 tcp_grow_window(sk, skb); 4536 skb_set_owner_r(skb, sk); 4537 } 4538 } 4539 4540 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4541 bool *fragstolen) 4542 { 4543 int eaten; 4544 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4545 4546 __skb_pull(skb, hdrlen); 4547 eaten = (tail && 4548 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4549 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4550 if (!eaten) { 4551 __skb_queue_tail(&sk->sk_receive_queue, skb); 4552 skb_set_owner_r(skb, sk); 4553 } 4554 return eaten; 4555 } 4556 4557 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4558 { 4559 struct sk_buff *skb; 4560 int err = -ENOMEM; 4561 int data_len = 0; 4562 bool fragstolen; 4563 4564 if (size == 0) 4565 return 0; 4566 4567 if (size > PAGE_SIZE) { 4568 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4569 4570 data_len = npages << PAGE_SHIFT; 4571 size = data_len + (size & ~PAGE_MASK); 4572 } 4573 skb = alloc_skb_with_frags(size - data_len, data_len, 4574 PAGE_ALLOC_COSTLY_ORDER, 4575 &err, sk->sk_allocation); 4576 if (!skb) 4577 goto err; 4578 4579 skb_put(skb, size - data_len); 4580 skb->data_len = data_len; 4581 skb->len = size; 4582 4583 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4584 goto err_free; 4585 4586 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4587 if (err) 4588 goto err_free; 4589 4590 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4591 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4592 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4593 4594 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4595 WARN_ON_ONCE(fragstolen); /* should not happen */ 4596 __kfree_skb(skb); 4597 } 4598 return size; 4599 4600 err_free: 4601 kfree_skb(skb); 4602 err: 4603 return err; 4604 4605 } 4606 4607 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4608 { 4609 struct tcp_sock *tp = tcp_sk(sk); 4610 bool fragstolen = false; 4611 int eaten = -1; 4612 4613 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4614 __kfree_skb(skb); 4615 return; 4616 } 4617 skb_dst_drop(skb); 4618 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4619 4620 tcp_ecn_accept_cwr(tp, skb); 4621 4622 tp->rx_opt.dsack = 0; 4623 4624 /* Queue data for delivery to the user. 4625 * Packets in sequence go to the receive queue. 4626 * Out of sequence packets to the out_of_order_queue. 4627 */ 4628 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4629 if (tcp_receive_window(tp) == 0) 4630 goto out_of_window; 4631 4632 /* Ok. In sequence. In window. */ 4633 if (tp->ucopy.task == current && 4634 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4635 sock_owned_by_user(sk) && !tp->urg_data) { 4636 int chunk = min_t(unsigned int, skb->len, 4637 tp->ucopy.len); 4638 4639 __set_current_state(TASK_RUNNING); 4640 4641 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4642 tp->ucopy.len -= chunk; 4643 tp->copied_seq += chunk; 4644 eaten = (chunk == skb->len); 4645 tcp_rcv_space_adjust(sk); 4646 } 4647 } 4648 4649 if (eaten <= 0) { 4650 queue_and_out: 4651 if (eaten < 0) { 4652 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4653 sk_forced_mem_schedule(sk, skb->truesize); 4654 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4655 goto drop; 4656 } 4657 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4658 } 4659 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4660 if (skb->len) 4661 tcp_event_data_recv(sk, skb); 4662 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4663 tcp_fin(sk); 4664 4665 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4666 tcp_ofo_queue(sk); 4667 4668 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4669 * gap in queue is filled. 4670 */ 4671 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4672 inet_csk(sk)->icsk_ack.pingpong = 0; 4673 } 4674 4675 if (tp->rx_opt.num_sacks) 4676 tcp_sack_remove(tp); 4677 4678 tcp_fast_path_check(sk); 4679 4680 if (eaten > 0) 4681 kfree_skb_partial(skb, fragstolen); 4682 if (!sock_flag(sk, SOCK_DEAD)) 4683 sk->sk_data_ready(sk); 4684 return; 4685 } 4686 4687 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4688 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4689 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4690 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4691 4692 out_of_window: 4693 tcp_enter_quickack_mode(sk); 4694 inet_csk_schedule_ack(sk); 4695 drop: 4696 tcp_drop(sk, skb); 4697 return; 4698 } 4699 4700 /* Out of window. F.e. zero window probe. */ 4701 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4702 goto out_of_window; 4703 4704 tcp_enter_quickack_mode(sk); 4705 4706 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4707 /* Partial packet, seq < rcv_next < end_seq */ 4708 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4709 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4710 TCP_SKB_CB(skb)->end_seq); 4711 4712 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4713 4714 /* If window is closed, drop tail of packet. But after 4715 * remembering D-SACK for its head made in previous line. 4716 */ 4717 if (!tcp_receive_window(tp)) 4718 goto out_of_window; 4719 goto queue_and_out; 4720 } 4721 4722 tcp_data_queue_ofo(sk, skb); 4723 } 4724 4725 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4726 { 4727 if (list) 4728 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4729 4730 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4731 } 4732 4733 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4734 struct sk_buff_head *list, 4735 struct rb_root *root) 4736 { 4737 struct sk_buff *next = tcp_skb_next(skb, list); 4738 4739 if (list) 4740 __skb_unlink(skb, list); 4741 else 4742 rb_erase(&skb->rbnode, root); 4743 4744 __kfree_skb(skb); 4745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4746 4747 return next; 4748 } 4749 4750 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4751 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4752 { 4753 struct rb_node **p = &root->rb_node; 4754 struct rb_node *parent = NULL; 4755 struct sk_buff *skb1; 4756 4757 while (*p) { 4758 parent = *p; 4759 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4760 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4761 p = &parent->rb_left; 4762 else 4763 p = &parent->rb_right; 4764 } 4765 rb_link_node(&skb->rbnode, parent, p); 4766 rb_insert_color(&skb->rbnode, root); 4767 } 4768 4769 /* Collapse contiguous sequence of skbs head..tail with 4770 * sequence numbers start..end. 4771 * 4772 * If tail is NULL, this means until the end of the queue. 4773 * 4774 * Segments with FIN/SYN are not collapsed (only because this 4775 * simplifies code) 4776 */ 4777 static void 4778 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4779 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4780 { 4781 struct sk_buff *skb = head, *n; 4782 struct sk_buff_head tmp; 4783 bool end_of_skbs; 4784 4785 /* First, check that queue is collapsible and find 4786 * the point where collapsing can be useful. 4787 */ 4788 restart: 4789 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4790 n = tcp_skb_next(skb, list); 4791 4792 /* No new bits? It is possible on ofo queue. */ 4793 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4794 skb = tcp_collapse_one(sk, skb, list, root); 4795 if (!skb) 4796 break; 4797 goto restart; 4798 } 4799 4800 /* The first skb to collapse is: 4801 * - not SYN/FIN and 4802 * - bloated or contains data before "start" or 4803 * overlaps to the next one. 4804 */ 4805 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4806 (tcp_win_from_space(skb->truesize) > skb->len || 4807 before(TCP_SKB_CB(skb)->seq, start))) { 4808 end_of_skbs = false; 4809 break; 4810 } 4811 4812 if (n && n != tail && 4813 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4814 end_of_skbs = false; 4815 break; 4816 } 4817 4818 /* Decided to skip this, advance start seq. */ 4819 start = TCP_SKB_CB(skb)->end_seq; 4820 } 4821 if (end_of_skbs || 4822 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4823 return; 4824 4825 __skb_queue_head_init(&tmp); 4826 4827 while (before(start, end)) { 4828 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4829 struct sk_buff *nskb; 4830 4831 nskb = alloc_skb(copy, GFP_ATOMIC); 4832 if (!nskb) 4833 break; 4834 4835 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4836 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4837 if (list) 4838 __skb_queue_before(list, skb, nskb); 4839 else 4840 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4841 skb_set_owner_r(nskb, sk); 4842 4843 /* Copy data, releasing collapsed skbs. */ 4844 while (copy > 0) { 4845 int offset = start - TCP_SKB_CB(skb)->seq; 4846 int size = TCP_SKB_CB(skb)->end_seq - start; 4847 4848 BUG_ON(offset < 0); 4849 if (size > 0) { 4850 size = min(copy, size); 4851 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4852 BUG(); 4853 TCP_SKB_CB(nskb)->end_seq += size; 4854 copy -= size; 4855 start += size; 4856 } 4857 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4858 skb = tcp_collapse_one(sk, skb, list, root); 4859 if (!skb || 4860 skb == tail || 4861 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4862 goto end; 4863 } 4864 } 4865 } 4866 end: 4867 skb_queue_walk_safe(&tmp, skb, n) 4868 tcp_rbtree_insert(root, skb); 4869 } 4870 4871 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4872 * and tcp_collapse() them until all the queue is collapsed. 4873 */ 4874 static void tcp_collapse_ofo_queue(struct sock *sk) 4875 { 4876 struct tcp_sock *tp = tcp_sk(sk); 4877 struct sk_buff *skb, *head; 4878 struct rb_node *p; 4879 u32 start, end; 4880 4881 p = rb_first(&tp->out_of_order_queue); 4882 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4883 new_range: 4884 if (!skb) { 4885 p = rb_last(&tp->out_of_order_queue); 4886 /* Note: This is possible p is NULL here. We do not 4887 * use rb_entry_safe(), as ooo_last_skb is valid only 4888 * if rbtree is not empty. 4889 */ 4890 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4891 return; 4892 } 4893 start = TCP_SKB_CB(skb)->seq; 4894 end = TCP_SKB_CB(skb)->end_seq; 4895 4896 for (head = skb;;) { 4897 skb = tcp_skb_next(skb, NULL); 4898 4899 /* Range is terminated when we see a gap or when 4900 * we are at the queue end. 4901 */ 4902 if (!skb || 4903 after(TCP_SKB_CB(skb)->seq, end) || 4904 before(TCP_SKB_CB(skb)->end_seq, start)) { 4905 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4906 head, skb, start, end); 4907 goto new_range; 4908 } 4909 4910 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4911 start = TCP_SKB_CB(skb)->seq; 4912 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4913 end = TCP_SKB_CB(skb)->end_seq; 4914 } 4915 } 4916 4917 /* 4918 * Clean the out-of-order queue to make room. 4919 * We drop high sequences packets to : 4920 * 1) Let a chance for holes to be filled. 4921 * 2) not add too big latencies if thousands of packets sit there. 4922 * (But if application shrinks SO_RCVBUF, we could still end up 4923 * freeing whole queue here) 4924 * 4925 * Return true if queue has shrunk. 4926 */ 4927 static bool tcp_prune_ofo_queue(struct sock *sk) 4928 { 4929 struct tcp_sock *tp = tcp_sk(sk); 4930 struct rb_node *node, *prev; 4931 4932 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4933 return false; 4934 4935 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4936 node = &tp->ooo_last_skb->rbnode; 4937 do { 4938 prev = rb_prev(node); 4939 rb_erase(node, &tp->out_of_order_queue); 4940 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4941 sk_mem_reclaim(sk); 4942 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4943 !tcp_under_memory_pressure(sk)) 4944 break; 4945 node = prev; 4946 } while (node); 4947 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4948 4949 /* Reset SACK state. A conforming SACK implementation will 4950 * do the same at a timeout based retransmit. When a connection 4951 * is in a sad state like this, we care only about integrity 4952 * of the connection not performance. 4953 */ 4954 if (tp->rx_opt.sack_ok) 4955 tcp_sack_reset(&tp->rx_opt); 4956 return true; 4957 } 4958 4959 /* Reduce allocated memory if we can, trying to get 4960 * the socket within its memory limits again. 4961 * 4962 * Return less than zero if we should start dropping frames 4963 * until the socket owning process reads some of the data 4964 * to stabilize the situation. 4965 */ 4966 static int tcp_prune_queue(struct sock *sk) 4967 { 4968 struct tcp_sock *tp = tcp_sk(sk); 4969 4970 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4971 4972 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4973 4974 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4975 tcp_clamp_window(sk); 4976 else if (tcp_under_memory_pressure(sk)) 4977 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4978 4979 tcp_collapse_ofo_queue(sk); 4980 if (!skb_queue_empty(&sk->sk_receive_queue)) 4981 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4982 skb_peek(&sk->sk_receive_queue), 4983 NULL, 4984 tp->copied_seq, tp->rcv_nxt); 4985 sk_mem_reclaim(sk); 4986 4987 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4988 return 0; 4989 4990 /* Collapsing did not help, destructive actions follow. 4991 * This must not ever occur. */ 4992 4993 tcp_prune_ofo_queue(sk); 4994 4995 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4996 return 0; 4997 4998 /* If we are really being abused, tell the caller to silently 4999 * drop receive data on the floor. It will get retransmitted 5000 * and hopefully then we'll have sufficient space. 5001 */ 5002 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5003 5004 /* Massive buffer overcommit. */ 5005 tp->pred_flags = 0; 5006 return -1; 5007 } 5008 5009 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5010 { 5011 const struct tcp_sock *tp = tcp_sk(sk); 5012 5013 /* If the user specified a specific send buffer setting, do 5014 * not modify it. 5015 */ 5016 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5017 return false; 5018 5019 /* If we are under global TCP memory pressure, do not expand. */ 5020 if (tcp_under_memory_pressure(sk)) 5021 return false; 5022 5023 /* If we are under soft global TCP memory pressure, do not expand. */ 5024 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5025 return false; 5026 5027 /* If we filled the congestion window, do not expand. */ 5028 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5029 return false; 5030 5031 return true; 5032 } 5033 5034 /* When incoming ACK allowed to free some skb from write_queue, 5035 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5036 * on the exit from tcp input handler. 5037 * 5038 * PROBLEM: sndbuf expansion does not work well with largesend. 5039 */ 5040 static void tcp_new_space(struct sock *sk) 5041 { 5042 struct tcp_sock *tp = tcp_sk(sk); 5043 5044 if (tcp_should_expand_sndbuf(sk)) { 5045 tcp_sndbuf_expand(sk); 5046 tp->snd_cwnd_stamp = tcp_time_stamp; 5047 } 5048 5049 sk->sk_write_space(sk); 5050 } 5051 5052 static void tcp_check_space(struct sock *sk) 5053 { 5054 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5055 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5056 /* pairs with tcp_poll() */ 5057 smp_mb__after_atomic(); 5058 if (sk->sk_socket && 5059 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5060 tcp_new_space(sk); 5061 } 5062 } 5063 5064 static inline void tcp_data_snd_check(struct sock *sk) 5065 { 5066 tcp_push_pending_frames(sk); 5067 tcp_check_space(sk); 5068 } 5069 5070 /* 5071 * Check if sending an ack is needed. 5072 */ 5073 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5074 { 5075 struct tcp_sock *tp = tcp_sk(sk); 5076 5077 /* More than one full frame received... */ 5078 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5079 /* ... and right edge of window advances far enough. 5080 * (tcp_recvmsg() will send ACK otherwise). Or... 5081 */ 5082 __tcp_select_window(sk) >= tp->rcv_wnd) || 5083 /* We ACK each frame or... */ 5084 tcp_in_quickack_mode(sk) || 5085 /* We have out of order data. */ 5086 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5087 /* Then ack it now */ 5088 tcp_send_ack(sk); 5089 } else { 5090 /* Else, send delayed ack. */ 5091 tcp_send_delayed_ack(sk); 5092 } 5093 } 5094 5095 static inline void tcp_ack_snd_check(struct sock *sk) 5096 { 5097 if (!inet_csk_ack_scheduled(sk)) { 5098 /* We sent a data segment already. */ 5099 return; 5100 } 5101 __tcp_ack_snd_check(sk, 1); 5102 } 5103 5104 /* 5105 * This routine is only called when we have urgent data 5106 * signaled. Its the 'slow' part of tcp_urg. It could be 5107 * moved inline now as tcp_urg is only called from one 5108 * place. We handle URGent data wrong. We have to - as 5109 * BSD still doesn't use the correction from RFC961. 5110 * For 1003.1g we should support a new option TCP_STDURG to permit 5111 * either form (or just set the sysctl tcp_stdurg). 5112 */ 5113 5114 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5115 { 5116 struct tcp_sock *tp = tcp_sk(sk); 5117 u32 ptr = ntohs(th->urg_ptr); 5118 5119 if (ptr && !sysctl_tcp_stdurg) 5120 ptr--; 5121 ptr += ntohl(th->seq); 5122 5123 /* Ignore urgent data that we've already seen and read. */ 5124 if (after(tp->copied_seq, ptr)) 5125 return; 5126 5127 /* Do not replay urg ptr. 5128 * 5129 * NOTE: interesting situation not covered by specs. 5130 * Misbehaving sender may send urg ptr, pointing to segment, 5131 * which we already have in ofo queue. We are not able to fetch 5132 * such data and will stay in TCP_URG_NOTYET until will be eaten 5133 * by recvmsg(). Seems, we are not obliged to handle such wicked 5134 * situations. But it is worth to think about possibility of some 5135 * DoSes using some hypothetical application level deadlock. 5136 */ 5137 if (before(ptr, tp->rcv_nxt)) 5138 return; 5139 5140 /* Do we already have a newer (or duplicate) urgent pointer? */ 5141 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5142 return; 5143 5144 /* Tell the world about our new urgent pointer. */ 5145 sk_send_sigurg(sk); 5146 5147 /* We may be adding urgent data when the last byte read was 5148 * urgent. To do this requires some care. We cannot just ignore 5149 * tp->copied_seq since we would read the last urgent byte again 5150 * as data, nor can we alter copied_seq until this data arrives 5151 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5152 * 5153 * NOTE. Double Dutch. Rendering to plain English: author of comment 5154 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5155 * and expect that both A and B disappear from stream. This is _wrong_. 5156 * Though this happens in BSD with high probability, this is occasional. 5157 * Any application relying on this is buggy. Note also, that fix "works" 5158 * only in this artificial test. Insert some normal data between A and B and we will 5159 * decline of BSD again. Verdict: it is better to remove to trap 5160 * buggy users. 5161 */ 5162 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5163 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5164 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5165 tp->copied_seq++; 5166 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5167 __skb_unlink(skb, &sk->sk_receive_queue); 5168 __kfree_skb(skb); 5169 } 5170 } 5171 5172 tp->urg_data = TCP_URG_NOTYET; 5173 tp->urg_seq = ptr; 5174 5175 /* Disable header prediction. */ 5176 tp->pred_flags = 0; 5177 } 5178 5179 /* This is the 'fast' part of urgent handling. */ 5180 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5181 { 5182 struct tcp_sock *tp = tcp_sk(sk); 5183 5184 /* Check if we get a new urgent pointer - normally not. */ 5185 if (th->urg) 5186 tcp_check_urg(sk, th); 5187 5188 /* Do we wait for any urgent data? - normally not... */ 5189 if (tp->urg_data == TCP_URG_NOTYET) { 5190 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5191 th->syn; 5192 5193 /* Is the urgent pointer pointing into this packet? */ 5194 if (ptr < skb->len) { 5195 u8 tmp; 5196 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5197 BUG(); 5198 tp->urg_data = TCP_URG_VALID | tmp; 5199 if (!sock_flag(sk, SOCK_DEAD)) 5200 sk->sk_data_ready(sk); 5201 } 5202 } 5203 } 5204 5205 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5206 { 5207 struct tcp_sock *tp = tcp_sk(sk); 5208 int chunk = skb->len - hlen; 5209 int err; 5210 5211 if (skb_csum_unnecessary(skb)) 5212 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5213 else 5214 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5215 5216 if (!err) { 5217 tp->ucopy.len -= chunk; 5218 tp->copied_seq += chunk; 5219 tcp_rcv_space_adjust(sk); 5220 } 5221 5222 return err; 5223 } 5224 5225 /* Does PAWS and seqno based validation of an incoming segment, flags will 5226 * play significant role here. 5227 */ 5228 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5229 const struct tcphdr *th, int syn_inerr) 5230 { 5231 struct tcp_sock *tp = tcp_sk(sk); 5232 bool rst_seq_match = false; 5233 5234 /* RFC1323: H1. Apply PAWS check first. */ 5235 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5236 tcp_paws_discard(sk, skb)) { 5237 if (!th->rst) { 5238 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5239 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5240 LINUX_MIB_TCPACKSKIPPEDPAWS, 5241 &tp->last_oow_ack_time)) 5242 tcp_send_dupack(sk, skb); 5243 goto discard; 5244 } 5245 /* Reset is accepted even if it did not pass PAWS. */ 5246 } 5247 5248 /* Step 1: check sequence number */ 5249 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5250 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5251 * (RST) segments are validated by checking their SEQ-fields." 5252 * And page 69: "If an incoming segment is not acceptable, 5253 * an acknowledgment should be sent in reply (unless the RST 5254 * bit is set, if so drop the segment and return)". 5255 */ 5256 if (!th->rst) { 5257 if (th->syn) 5258 goto syn_challenge; 5259 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5260 LINUX_MIB_TCPACKSKIPPEDSEQ, 5261 &tp->last_oow_ack_time)) 5262 tcp_send_dupack(sk, skb); 5263 } 5264 goto discard; 5265 } 5266 5267 /* Step 2: check RST bit */ 5268 if (th->rst) { 5269 /* RFC 5961 3.2 (extend to match against SACK too if available): 5270 * If seq num matches RCV.NXT or the right-most SACK block, 5271 * then 5272 * RESET the connection 5273 * else 5274 * Send a challenge ACK 5275 */ 5276 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5277 rst_seq_match = true; 5278 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5279 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5280 int max_sack = sp[0].end_seq; 5281 int this_sack; 5282 5283 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5284 ++this_sack) { 5285 max_sack = after(sp[this_sack].end_seq, 5286 max_sack) ? 5287 sp[this_sack].end_seq : max_sack; 5288 } 5289 5290 if (TCP_SKB_CB(skb)->seq == max_sack) 5291 rst_seq_match = true; 5292 } 5293 5294 if (rst_seq_match) 5295 tcp_reset(sk); 5296 else 5297 tcp_send_challenge_ack(sk, skb); 5298 goto discard; 5299 } 5300 5301 /* step 3: check security and precedence [ignored] */ 5302 5303 /* step 4: Check for a SYN 5304 * RFC 5961 4.2 : Send a challenge ack 5305 */ 5306 if (th->syn) { 5307 syn_challenge: 5308 if (syn_inerr) 5309 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5311 tcp_send_challenge_ack(sk, skb); 5312 goto discard; 5313 } 5314 5315 return true; 5316 5317 discard: 5318 tcp_drop(sk, skb); 5319 return false; 5320 } 5321 5322 /* 5323 * TCP receive function for the ESTABLISHED state. 5324 * 5325 * It is split into a fast path and a slow path. The fast path is 5326 * disabled when: 5327 * - A zero window was announced from us - zero window probing 5328 * is only handled properly in the slow path. 5329 * - Out of order segments arrived. 5330 * - Urgent data is expected. 5331 * - There is no buffer space left 5332 * - Unexpected TCP flags/window values/header lengths are received 5333 * (detected by checking the TCP header against pred_flags) 5334 * - Data is sent in both directions. Fast path only supports pure senders 5335 * or pure receivers (this means either the sequence number or the ack 5336 * value must stay constant) 5337 * - Unexpected TCP option. 5338 * 5339 * When these conditions are not satisfied it drops into a standard 5340 * receive procedure patterned after RFC793 to handle all cases. 5341 * The first three cases are guaranteed by proper pred_flags setting, 5342 * the rest is checked inline. Fast processing is turned on in 5343 * tcp_data_queue when everything is OK. 5344 */ 5345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5346 const struct tcphdr *th, unsigned int len) 5347 { 5348 struct tcp_sock *tp = tcp_sk(sk); 5349 5350 if (unlikely(!sk->sk_rx_dst)) 5351 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5352 /* 5353 * Header prediction. 5354 * The code loosely follows the one in the famous 5355 * "30 instruction TCP receive" Van Jacobson mail. 5356 * 5357 * Van's trick is to deposit buffers into socket queue 5358 * on a device interrupt, to call tcp_recv function 5359 * on the receive process context and checksum and copy 5360 * the buffer to user space. smart... 5361 * 5362 * Our current scheme is not silly either but we take the 5363 * extra cost of the net_bh soft interrupt processing... 5364 * We do checksum and copy also but from device to kernel. 5365 */ 5366 5367 tp->rx_opt.saw_tstamp = 0; 5368 5369 /* pred_flags is 0xS?10 << 16 + snd_wnd 5370 * if header_prediction is to be made 5371 * 'S' will always be tp->tcp_header_len >> 2 5372 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5373 * turn it off (when there are holes in the receive 5374 * space for instance) 5375 * PSH flag is ignored. 5376 */ 5377 5378 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5379 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5380 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5381 int tcp_header_len = tp->tcp_header_len; 5382 5383 /* Timestamp header prediction: tcp_header_len 5384 * is automatically equal to th->doff*4 due to pred_flags 5385 * match. 5386 */ 5387 5388 /* Check timestamp */ 5389 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5390 /* No? Slow path! */ 5391 if (!tcp_parse_aligned_timestamp(tp, th)) 5392 goto slow_path; 5393 5394 /* If PAWS failed, check it more carefully in slow path */ 5395 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5396 goto slow_path; 5397 5398 /* DO NOT update ts_recent here, if checksum fails 5399 * and timestamp was corrupted part, it will result 5400 * in a hung connection since we will drop all 5401 * future packets due to the PAWS test. 5402 */ 5403 } 5404 5405 if (len <= tcp_header_len) { 5406 /* Bulk data transfer: sender */ 5407 if (len == tcp_header_len) { 5408 /* Predicted packet is in window by definition. 5409 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5410 * Hence, check seq<=rcv_wup reduces to: 5411 */ 5412 if (tcp_header_len == 5413 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5414 tp->rcv_nxt == tp->rcv_wup) 5415 tcp_store_ts_recent(tp); 5416 5417 /* We know that such packets are checksummed 5418 * on entry. 5419 */ 5420 tcp_ack(sk, skb, 0); 5421 __kfree_skb(skb); 5422 tcp_data_snd_check(sk); 5423 return; 5424 } else { /* Header too small */ 5425 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5426 goto discard; 5427 } 5428 } else { 5429 int eaten = 0; 5430 bool fragstolen = false; 5431 5432 if (tp->ucopy.task == current && 5433 tp->copied_seq == tp->rcv_nxt && 5434 len - tcp_header_len <= tp->ucopy.len && 5435 sock_owned_by_user(sk)) { 5436 __set_current_state(TASK_RUNNING); 5437 5438 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5439 /* Predicted packet is in window by definition. 5440 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5441 * Hence, check seq<=rcv_wup reduces to: 5442 */ 5443 if (tcp_header_len == 5444 (sizeof(struct tcphdr) + 5445 TCPOLEN_TSTAMP_ALIGNED) && 5446 tp->rcv_nxt == tp->rcv_wup) 5447 tcp_store_ts_recent(tp); 5448 5449 tcp_rcv_rtt_measure_ts(sk, skb); 5450 5451 __skb_pull(skb, tcp_header_len); 5452 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5453 NET_INC_STATS(sock_net(sk), 5454 LINUX_MIB_TCPHPHITSTOUSER); 5455 eaten = 1; 5456 } 5457 } 5458 if (!eaten) { 5459 if (tcp_checksum_complete(skb)) 5460 goto csum_error; 5461 5462 if ((int)skb->truesize > sk->sk_forward_alloc) 5463 goto step5; 5464 5465 /* Predicted packet is in window by definition. 5466 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5467 * Hence, check seq<=rcv_wup reduces to: 5468 */ 5469 if (tcp_header_len == 5470 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5471 tp->rcv_nxt == tp->rcv_wup) 5472 tcp_store_ts_recent(tp); 5473 5474 tcp_rcv_rtt_measure_ts(sk, skb); 5475 5476 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5477 5478 /* Bulk data transfer: receiver */ 5479 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5480 &fragstolen); 5481 } 5482 5483 tcp_event_data_recv(sk, skb); 5484 5485 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5486 /* Well, only one small jumplet in fast path... */ 5487 tcp_ack(sk, skb, FLAG_DATA); 5488 tcp_data_snd_check(sk); 5489 if (!inet_csk_ack_scheduled(sk)) 5490 goto no_ack; 5491 } 5492 5493 __tcp_ack_snd_check(sk, 0); 5494 no_ack: 5495 if (eaten) 5496 kfree_skb_partial(skb, fragstolen); 5497 sk->sk_data_ready(sk); 5498 return; 5499 } 5500 } 5501 5502 slow_path: 5503 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5504 goto csum_error; 5505 5506 if (!th->ack && !th->rst && !th->syn) 5507 goto discard; 5508 5509 /* 5510 * Standard slow path. 5511 */ 5512 5513 if (!tcp_validate_incoming(sk, skb, th, 1)) 5514 return; 5515 5516 step5: 5517 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5518 goto discard; 5519 5520 tcp_rcv_rtt_measure_ts(sk, skb); 5521 5522 /* Process urgent data. */ 5523 tcp_urg(sk, skb, th); 5524 5525 /* step 7: process the segment text */ 5526 tcp_data_queue(sk, skb); 5527 5528 tcp_data_snd_check(sk); 5529 tcp_ack_snd_check(sk); 5530 return; 5531 5532 csum_error: 5533 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5534 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5535 5536 discard: 5537 tcp_drop(sk, skb); 5538 } 5539 EXPORT_SYMBOL(tcp_rcv_established); 5540 5541 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5542 { 5543 struct tcp_sock *tp = tcp_sk(sk); 5544 struct inet_connection_sock *icsk = inet_csk(sk); 5545 5546 tcp_set_state(sk, TCP_ESTABLISHED); 5547 5548 if (skb) { 5549 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5550 security_inet_conn_established(sk, skb); 5551 } 5552 5553 /* Make sure socket is routed, for correct metrics. */ 5554 icsk->icsk_af_ops->rebuild_header(sk); 5555 5556 tcp_init_metrics(sk); 5557 5558 tcp_init_congestion_control(sk); 5559 5560 /* Prevent spurious tcp_cwnd_restart() on first data 5561 * packet. 5562 */ 5563 tp->lsndtime = tcp_time_stamp; 5564 5565 tcp_init_buffer_space(sk); 5566 5567 if (sock_flag(sk, SOCK_KEEPOPEN)) 5568 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5569 5570 if (!tp->rx_opt.snd_wscale) 5571 __tcp_fast_path_on(tp, tp->snd_wnd); 5572 else 5573 tp->pred_flags = 0; 5574 5575 if (!sock_flag(sk, SOCK_DEAD)) { 5576 sk->sk_state_change(sk); 5577 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5578 } 5579 } 5580 5581 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5582 struct tcp_fastopen_cookie *cookie) 5583 { 5584 struct tcp_sock *tp = tcp_sk(sk); 5585 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5586 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5587 bool syn_drop = false; 5588 5589 if (mss == tp->rx_opt.user_mss) { 5590 struct tcp_options_received opt; 5591 5592 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5593 tcp_clear_options(&opt); 5594 opt.user_mss = opt.mss_clamp = 0; 5595 tcp_parse_options(synack, &opt, 0, NULL); 5596 mss = opt.mss_clamp; 5597 } 5598 5599 if (!tp->syn_fastopen) { 5600 /* Ignore an unsolicited cookie */ 5601 cookie->len = -1; 5602 } else if (tp->total_retrans) { 5603 /* SYN timed out and the SYN-ACK neither has a cookie nor 5604 * acknowledges data. Presumably the remote received only 5605 * the retransmitted (regular) SYNs: either the original 5606 * SYN-data or the corresponding SYN-ACK was dropped. 5607 */ 5608 syn_drop = (cookie->len < 0 && data); 5609 } else if (cookie->len < 0 && !tp->syn_data) { 5610 /* We requested a cookie but didn't get it. If we did not use 5611 * the (old) exp opt format then try so next time (try_exp=1). 5612 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5613 */ 5614 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5615 } 5616 5617 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5618 5619 if (data) { /* Retransmit unacked data in SYN */ 5620 tcp_for_write_queue_from(data, sk) { 5621 if (data == tcp_send_head(sk) || 5622 __tcp_retransmit_skb(sk, data, 1)) 5623 break; 5624 } 5625 tcp_rearm_rto(sk); 5626 NET_INC_STATS(sock_net(sk), 5627 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5628 return true; 5629 } 5630 tp->syn_data_acked = tp->syn_data; 5631 if (tp->syn_data_acked) 5632 NET_INC_STATS(sock_net(sk), 5633 LINUX_MIB_TCPFASTOPENACTIVE); 5634 5635 tcp_fastopen_add_skb(sk, synack); 5636 5637 return false; 5638 } 5639 5640 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5641 const struct tcphdr *th) 5642 { 5643 struct inet_connection_sock *icsk = inet_csk(sk); 5644 struct tcp_sock *tp = tcp_sk(sk); 5645 struct tcp_fastopen_cookie foc = { .len = -1 }; 5646 int saved_clamp = tp->rx_opt.mss_clamp; 5647 5648 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5649 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5650 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5651 5652 if (th->ack) { 5653 /* rfc793: 5654 * "If the state is SYN-SENT then 5655 * first check the ACK bit 5656 * If the ACK bit is set 5657 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5658 * a reset (unless the RST bit is set, if so drop 5659 * the segment and return)" 5660 */ 5661 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5662 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5663 goto reset_and_undo; 5664 5665 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5666 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5667 tcp_time_stamp)) { 5668 NET_INC_STATS(sock_net(sk), 5669 LINUX_MIB_PAWSACTIVEREJECTED); 5670 goto reset_and_undo; 5671 } 5672 5673 /* Now ACK is acceptable. 5674 * 5675 * "If the RST bit is set 5676 * If the ACK was acceptable then signal the user "error: 5677 * connection reset", drop the segment, enter CLOSED state, 5678 * delete TCB, and return." 5679 */ 5680 5681 if (th->rst) { 5682 tcp_reset(sk); 5683 goto discard; 5684 } 5685 5686 /* rfc793: 5687 * "fifth, if neither of the SYN or RST bits is set then 5688 * drop the segment and return." 5689 * 5690 * See note below! 5691 * --ANK(990513) 5692 */ 5693 if (!th->syn) 5694 goto discard_and_undo; 5695 5696 /* rfc793: 5697 * "If the SYN bit is on ... 5698 * are acceptable then ... 5699 * (our SYN has been ACKed), change the connection 5700 * state to ESTABLISHED..." 5701 */ 5702 5703 tcp_ecn_rcv_synack(tp, th); 5704 5705 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5706 tcp_ack(sk, skb, FLAG_SLOWPATH); 5707 5708 /* Ok.. it's good. Set up sequence numbers and 5709 * move to established. 5710 */ 5711 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5712 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5713 5714 /* RFC1323: The window in SYN & SYN/ACK segments is 5715 * never scaled. 5716 */ 5717 tp->snd_wnd = ntohs(th->window); 5718 5719 if (!tp->rx_opt.wscale_ok) { 5720 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5721 tp->window_clamp = min(tp->window_clamp, 65535U); 5722 } 5723 5724 if (tp->rx_opt.saw_tstamp) { 5725 tp->rx_opt.tstamp_ok = 1; 5726 tp->tcp_header_len = 5727 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5728 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5729 tcp_store_ts_recent(tp); 5730 } else { 5731 tp->tcp_header_len = sizeof(struct tcphdr); 5732 } 5733 5734 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5735 tcp_enable_fack(tp); 5736 5737 tcp_mtup_init(sk); 5738 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5739 tcp_initialize_rcv_mss(sk); 5740 5741 /* Remember, tcp_poll() does not lock socket! 5742 * Change state from SYN-SENT only after copied_seq 5743 * is initialized. */ 5744 tp->copied_seq = tp->rcv_nxt; 5745 5746 smp_mb(); 5747 5748 tcp_finish_connect(sk, skb); 5749 5750 if ((tp->syn_fastopen || tp->syn_data) && 5751 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5752 return -1; 5753 5754 if (sk->sk_write_pending || 5755 icsk->icsk_accept_queue.rskq_defer_accept || 5756 icsk->icsk_ack.pingpong) { 5757 /* Save one ACK. Data will be ready after 5758 * several ticks, if write_pending is set. 5759 * 5760 * It may be deleted, but with this feature tcpdumps 5761 * look so _wonderfully_ clever, that I was not able 5762 * to stand against the temptation 8) --ANK 5763 */ 5764 inet_csk_schedule_ack(sk); 5765 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5766 tcp_enter_quickack_mode(sk); 5767 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5768 TCP_DELACK_MAX, TCP_RTO_MAX); 5769 5770 discard: 5771 tcp_drop(sk, skb); 5772 return 0; 5773 } else { 5774 tcp_send_ack(sk); 5775 } 5776 return -1; 5777 } 5778 5779 /* No ACK in the segment */ 5780 5781 if (th->rst) { 5782 /* rfc793: 5783 * "If the RST bit is set 5784 * 5785 * Otherwise (no ACK) drop the segment and return." 5786 */ 5787 5788 goto discard_and_undo; 5789 } 5790 5791 /* PAWS check. */ 5792 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5793 tcp_paws_reject(&tp->rx_opt, 0)) 5794 goto discard_and_undo; 5795 5796 if (th->syn) { 5797 /* We see SYN without ACK. It is attempt of 5798 * simultaneous connect with crossed SYNs. 5799 * Particularly, it can be connect to self. 5800 */ 5801 tcp_set_state(sk, TCP_SYN_RECV); 5802 5803 if (tp->rx_opt.saw_tstamp) { 5804 tp->rx_opt.tstamp_ok = 1; 5805 tcp_store_ts_recent(tp); 5806 tp->tcp_header_len = 5807 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5808 } else { 5809 tp->tcp_header_len = sizeof(struct tcphdr); 5810 } 5811 5812 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5813 tp->copied_seq = tp->rcv_nxt; 5814 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5815 5816 /* RFC1323: The window in SYN & SYN/ACK segments is 5817 * never scaled. 5818 */ 5819 tp->snd_wnd = ntohs(th->window); 5820 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5821 tp->max_window = tp->snd_wnd; 5822 5823 tcp_ecn_rcv_syn(tp, th); 5824 5825 tcp_mtup_init(sk); 5826 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5827 tcp_initialize_rcv_mss(sk); 5828 5829 tcp_send_synack(sk); 5830 #if 0 5831 /* Note, we could accept data and URG from this segment. 5832 * There are no obstacles to make this (except that we must 5833 * either change tcp_recvmsg() to prevent it from returning data 5834 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5835 * 5836 * However, if we ignore data in ACKless segments sometimes, 5837 * we have no reasons to accept it sometimes. 5838 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5839 * is not flawless. So, discard packet for sanity. 5840 * Uncomment this return to process the data. 5841 */ 5842 return -1; 5843 #else 5844 goto discard; 5845 #endif 5846 } 5847 /* "fifth, if neither of the SYN or RST bits is set then 5848 * drop the segment and return." 5849 */ 5850 5851 discard_and_undo: 5852 tcp_clear_options(&tp->rx_opt); 5853 tp->rx_opt.mss_clamp = saved_clamp; 5854 goto discard; 5855 5856 reset_and_undo: 5857 tcp_clear_options(&tp->rx_opt); 5858 tp->rx_opt.mss_clamp = saved_clamp; 5859 return 1; 5860 } 5861 5862 /* 5863 * This function implements the receiving procedure of RFC 793 for 5864 * all states except ESTABLISHED and TIME_WAIT. 5865 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5866 * address independent. 5867 */ 5868 5869 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5870 { 5871 struct tcp_sock *tp = tcp_sk(sk); 5872 struct inet_connection_sock *icsk = inet_csk(sk); 5873 const struct tcphdr *th = tcp_hdr(skb); 5874 struct request_sock *req; 5875 int queued = 0; 5876 bool acceptable; 5877 5878 switch (sk->sk_state) { 5879 case TCP_CLOSE: 5880 goto discard; 5881 5882 case TCP_LISTEN: 5883 if (th->ack) 5884 return 1; 5885 5886 if (th->rst) 5887 goto discard; 5888 5889 if (th->syn) { 5890 if (th->fin) 5891 goto discard; 5892 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5893 return 1; 5894 5895 consume_skb(skb); 5896 return 0; 5897 } 5898 goto discard; 5899 5900 case TCP_SYN_SENT: 5901 tp->rx_opt.saw_tstamp = 0; 5902 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5903 if (queued >= 0) 5904 return queued; 5905 5906 /* Do step6 onward by hand. */ 5907 tcp_urg(sk, skb, th); 5908 __kfree_skb(skb); 5909 tcp_data_snd_check(sk); 5910 return 0; 5911 } 5912 5913 tp->rx_opt.saw_tstamp = 0; 5914 req = tp->fastopen_rsk; 5915 if (req) { 5916 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5917 sk->sk_state != TCP_FIN_WAIT1); 5918 5919 if (!tcp_check_req(sk, skb, req, true)) 5920 goto discard; 5921 } 5922 5923 if (!th->ack && !th->rst && !th->syn) 5924 goto discard; 5925 5926 if (!tcp_validate_incoming(sk, skb, th, 0)) 5927 return 0; 5928 5929 /* step 5: check the ACK field */ 5930 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5931 FLAG_UPDATE_TS_RECENT) > 0; 5932 5933 switch (sk->sk_state) { 5934 case TCP_SYN_RECV: 5935 if (!acceptable) 5936 return 1; 5937 5938 if (!tp->srtt_us) 5939 tcp_synack_rtt_meas(sk, req); 5940 5941 /* Once we leave TCP_SYN_RECV, we no longer need req 5942 * so release it. 5943 */ 5944 if (req) { 5945 inet_csk(sk)->icsk_retransmits = 0; 5946 reqsk_fastopen_remove(sk, req, false); 5947 } else { 5948 /* Make sure socket is routed, for correct metrics. */ 5949 icsk->icsk_af_ops->rebuild_header(sk); 5950 tcp_init_congestion_control(sk); 5951 5952 tcp_mtup_init(sk); 5953 tp->copied_seq = tp->rcv_nxt; 5954 tcp_init_buffer_space(sk); 5955 } 5956 smp_mb(); 5957 tcp_set_state(sk, TCP_ESTABLISHED); 5958 sk->sk_state_change(sk); 5959 5960 /* Note, that this wakeup is only for marginal crossed SYN case. 5961 * Passively open sockets are not waked up, because 5962 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5963 */ 5964 if (sk->sk_socket) 5965 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5966 5967 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5968 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5969 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5970 5971 if (tp->rx_opt.tstamp_ok) 5972 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5973 5974 if (req) { 5975 /* Re-arm the timer because data may have been sent out. 5976 * This is similar to the regular data transmission case 5977 * when new data has just been ack'ed. 5978 * 5979 * (TFO) - we could try to be more aggressive and 5980 * retransmitting any data sooner based on when they 5981 * are sent out. 5982 */ 5983 tcp_rearm_rto(sk); 5984 } else 5985 tcp_init_metrics(sk); 5986 5987 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5988 tcp_update_pacing_rate(sk); 5989 5990 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5991 tp->lsndtime = tcp_time_stamp; 5992 5993 tcp_initialize_rcv_mss(sk); 5994 tcp_fast_path_on(tp); 5995 break; 5996 5997 case TCP_FIN_WAIT1: { 5998 struct dst_entry *dst; 5999 int tmo; 6000 6001 /* If we enter the TCP_FIN_WAIT1 state and we are a 6002 * Fast Open socket and this is the first acceptable 6003 * ACK we have received, this would have acknowledged 6004 * our SYNACK so stop the SYNACK timer. 6005 */ 6006 if (req) { 6007 /* Return RST if ack_seq is invalid. 6008 * Note that RFC793 only says to generate a 6009 * DUPACK for it but for TCP Fast Open it seems 6010 * better to treat this case like TCP_SYN_RECV 6011 * above. 6012 */ 6013 if (!acceptable) 6014 return 1; 6015 /* We no longer need the request sock. */ 6016 reqsk_fastopen_remove(sk, req, false); 6017 tcp_rearm_rto(sk); 6018 } 6019 if (tp->snd_una != tp->write_seq) 6020 break; 6021 6022 tcp_set_state(sk, TCP_FIN_WAIT2); 6023 sk->sk_shutdown |= SEND_SHUTDOWN; 6024 6025 dst = __sk_dst_get(sk); 6026 if (dst) 6027 dst_confirm(dst); 6028 6029 if (!sock_flag(sk, SOCK_DEAD)) { 6030 /* Wake up lingering close() */ 6031 sk->sk_state_change(sk); 6032 break; 6033 } 6034 6035 if (tp->linger2 < 0 || 6036 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6037 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 6038 tcp_done(sk); 6039 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6040 return 1; 6041 } 6042 6043 tmo = tcp_fin_time(sk); 6044 if (tmo > TCP_TIMEWAIT_LEN) { 6045 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6046 } else if (th->fin || sock_owned_by_user(sk)) { 6047 /* Bad case. We could lose such FIN otherwise. 6048 * It is not a big problem, but it looks confusing 6049 * and not so rare event. We still can lose it now, 6050 * if it spins in bh_lock_sock(), but it is really 6051 * marginal case. 6052 */ 6053 inet_csk_reset_keepalive_timer(sk, tmo); 6054 } else { 6055 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6056 goto discard; 6057 } 6058 break; 6059 } 6060 6061 case TCP_CLOSING: 6062 if (tp->snd_una == tp->write_seq) { 6063 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6064 goto discard; 6065 } 6066 break; 6067 6068 case TCP_LAST_ACK: 6069 if (tp->snd_una == tp->write_seq) { 6070 tcp_update_metrics(sk); 6071 tcp_done(sk); 6072 goto discard; 6073 } 6074 break; 6075 } 6076 6077 /* step 6: check the URG bit */ 6078 tcp_urg(sk, skb, th); 6079 6080 /* step 7: process the segment text */ 6081 switch (sk->sk_state) { 6082 case TCP_CLOSE_WAIT: 6083 case TCP_CLOSING: 6084 case TCP_LAST_ACK: 6085 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6086 break; 6087 case TCP_FIN_WAIT1: 6088 case TCP_FIN_WAIT2: 6089 /* RFC 793 says to queue data in these states, 6090 * RFC 1122 says we MUST send a reset. 6091 * BSD 4.4 also does reset. 6092 */ 6093 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6094 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6095 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6096 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6097 tcp_reset(sk); 6098 return 1; 6099 } 6100 } 6101 /* Fall through */ 6102 case TCP_ESTABLISHED: 6103 tcp_data_queue(sk, skb); 6104 queued = 1; 6105 break; 6106 } 6107 6108 /* tcp_data could move socket to TIME-WAIT */ 6109 if (sk->sk_state != TCP_CLOSE) { 6110 tcp_data_snd_check(sk); 6111 tcp_ack_snd_check(sk); 6112 } 6113 6114 if (!queued) { 6115 discard: 6116 tcp_drop(sk, skb); 6117 } 6118 return 0; 6119 } 6120 EXPORT_SYMBOL(tcp_rcv_state_process); 6121 6122 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6123 { 6124 struct inet_request_sock *ireq = inet_rsk(req); 6125 6126 if (family == AF_INET) 6127 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6128 &ireq->ir_rmt_addr, port); 6129 #if IS_ENABLED(CONFIG_IPV6) 6130 else if (family == AF_INET6) 6131 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6132 &ireq->ir_v6_rmt_addr, port); 6133 #endif 6134 } 6135 6136 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6137 * 6138 * If we receive a SYN packet with these bits set, it means a 6139 * network is playing bad games with TOS bits. In order to 6140 * avoid possible false congestion notifications, we disable 6141 * TCP ECN negotiation. 6142 * 6143 * Exception: tcp_ca wants ECN. This is required for DCTCP 6144 * congestion control: Linux DCTCP asserts ECT on all packets, 6145 * including SYN, which is most optimal solution; however, 6146 * others, such as FreeBSD do not. 6147 */ 6148 static void tcp_ecn_create_request(struct request_sock *req, 6149 const struct sk_buff *skb, 6150 const struct sock *listen_sk, 6151 const struct dst_entry *dst) 6152 { 6153 const struct tcphdr *th = tcp_hdr(skb); 6154 const struct net *net = sock_net(listen_sk); 6155 bool th_ecn = th->ece && th->cwr; 6156 bool ect, ecn_ok; 6157 u32 ecn_ok_dst; 6158 6159 if (!th_ecn) 6160 return; 6161 6162 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6163 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6164 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6165 6166 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6167 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6168 inet_rsk(req)->ecn_ok = 1; 6169 } 6170 6171 static void tcp_openreq_init(struct request_sock *req, 6172 const struct tcp_options_received *rx_opt, 6173 struct sk_buff *skb, const struct sock *sk) 6174 { 6175 struct inet_request_sock *ireq = inet_rsk(req); 6176 6177 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6178 req->cookie_ts = 0; 6179 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6180 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6181 skb_mstamp_get(&tcp_rsk(req)->snt_synack); 6182 tcp_rsk(req)->last_oow_ack_time = 0; 6183 req->mss = rx_opt->mss_clamp; 6184 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6185 ireq->tstamp_ok = rx_opt->tstamp_ok; 6186 ireq->sack_ok = rx_opt->sack_ok; 6187 ireq->snd_wscale = rx_opt->snd_wscale; 6188 ireq->wscale_ok = rx_opt->wscale_ok; 6189 ireq->acked = 0; 6190 ireq->ecn_ok = 0; 6191 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6192 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6193 ireq->ir_mark = inet_request_mark(sk, skb); 6194 } 6195 6196 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6197 struct sock *sk_listener, 6198 bool attach_listener) 6199 { 6200 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6201 attach_listener); 6202 6203 if (req) { 6204 struct inet_request_sock *ireq = inet_rsk(req); 6205 6206 kmemcheck_annotate_bitfield(ireq, flags); 6207 ireq->opt = NULL; 6208 #if IS_ENABLED(CONFIG_IPV6) 6209 ireq->pktopts = NULL; 6210 #endif 6211 atomic64_set(&ireq->ir_cookie, 0); 6212 ireq->ireq_state = TCP_NEW_SYN_RECV; 6213 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6214 ireq->ireq_family = sk_listener->sk_family; 6215 } 6216 6217 return req; 6218 } 6219 EXPORT_SYMBOL(inet_reqsk_alloc); 6220 6221 /* 6222 * Return true if a syncookie should be sent 6223 */ 6224 static bool tcp_syn_flood_action(const struct sock *sk, 6225 const struct sk_buff *skb, 6226 const char *proto) 6227 { 6228 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6229 const char *msg = "Dropping request"; 6230 bool want_cookie = false; 6231 struct net *net = sock_net(sk); 6232 6233 #ifdef CONFIG_SYN_COOKIES 6234 if (net->ipv4.sysctl_tcp_syncookies) { 6235 msg = "Sending cookies"; 6236 want_cookie = true; 6237 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6238 } else 6239 #endif 6240 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6241 6242 if (!queue->synflood_warned && 6243 net->ipv4.sysctl_tcp_syncookies != 2 && 6244 xchg(&queue->synflood_warned, 1) == 0) 6245 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6246 proto, ntohs(tcp_hdr(skb)->dest), msg); 6247 6248 return want_cookie; 6249 } 6250 6251 static void tcp_reqsk_record_syn(const struct sock *sk, 6252 struct request_sock *req, 6253 const struct sk_buff *skb) 6254 { 6255 if (tcp_sk(sk)->save_syn) { 6256 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6257 u32 *copy; 6258 6259 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6260 if (copy) { 6261 copy[0] = len; 6262 memcpy(©[1], skb_network_header(skb), len); 6263 req->saved_syn = copy; 6264 } 6265 } 6266 } 6267 6268 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6269 const struct tcp_request_sock_ops *af_ops, 6270 struct sock *sk, struct sk_buff *skb) 6271 { 6272 struct tcp_fastopen_cookie foc = { .len = -1 }; 6273 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6274 struct tcp_options_received tmp_opt; 6275 struct tcp_sock *tp = tcp_sk(sk); 6276 struct net *net = sock_net(sk); 6277 struct sock *fastopen_sk = NULL; 6278 struct dst_entry *dst = NULL; 6279 struct request_sock *req; 6280 bool want_cookie = false; 6281 struct flowi fl; 6282 6283 /* TW buckets are converted to open requests without 6284 * limitations, they conserve resources and peer is 6285 * evidently real one. 6286 */ 6287 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6288 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6289 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6290 if (!want_cookie) 6291 goto drop; 6292 } 6293 6294 if (sk_acceptq_is_full(sk)) { 6295 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6296 goto drop; 6297 } 6298 6299 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6300 if (!req) 6301 goto drop; 6302 6303 tcp_rsk(req)->af_specific = af_ops; 6304 6305 tcp_clear_options(&tmp_opt); 6306 tmp_opt.mss_clamp = af_ops->mss_clamp; 6307 tmp_opt.user_mss = tp->rx_opt.user_mss; 6308 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6309 6310 if (want_cookie && !tmp_opt.saw_tstamp) 6311 tcp_clear_options(&tmp_opt); 6312 6313 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6314 tcp_openreq_init(req, &tmp_opt, skb, sk); 6315 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6316 6317 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6318 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6319 6320 af_ops->init_req(req, sk, skb); 6321 6322 if (security_inet_conn_request(sk, skb, req)) 6323 goto drop_and_free; 6324 6325 if (!want_cookie && !isn) { 6326 /* VJ's idea. We save last timestamp seen 6327 * from the destination in peer table, when entering 6328 * state TIME-WAIT, and check against it before 6329 * accepting new connection request. 6330 * 6331 * If "isn" is not zero, this request hit alive 6332 * timewait bucket, so that all the necessary checks 6333 * are made in the function processing timewait state. 6334 */ 6335 if (tcp_death_row.sysctl_tw_recycle) { 6336 bool strict; 6337 6338 dst = af_ops->route_req(sk, &fl, req, &strict); 6339 6340 if (dst && strict && 6341 !tcp_peer_is_proven(req, dst, true, 6342 tmp_opt.saw_tstamp)) { 6343 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6344 goto drop_and_release; 6345 } 6346 } 6347 /* Kill the following clause, if you dislike this way. */ 6348 else if (!net->ipv4.sysctl_tcp_syncookies && 6349 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6350 (sysctl_max_syn_backlog >> 2)) && 6351 !tcp_peer_is_proven(req, dst, false, 6352 tmp_opt.saw_tstamp)) { 6353 /* Without syncookies last quarter of 6354 * backlog is filled with destinations, 6355 * proven to be alive. 6356 * It means that we continue to communicate 6357 * to destinations, already remembered 6358 * to the moment of synflood. 6359 */ 6360 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6361 rsk_ops->family); 6362 goto drop_and_release; 6363 } 6364 6365 isn = af_ops->init_seq(skb); 6366 } 6367 if (!dst) { 6368 dst = af_ops->route_req(sk, &fl, req, NULL); 6369 if (!dst) 6370 goto drop_and_free; 6371 } 6372 6373 tcp_ecn_create_request(req, skb, sk, dst); 6374 6375 if (want_cookie) { 6376 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6377 req->cookie_ts = tmp_opt.tstamp_ok; 6378 if (!tmp_opt.tstamp_ok) 6379 inet_rsk(req)->ecn_ok = 0; 6380 } 6381 6382 tcp_rsk(req)->snt_isn = isn; 6383 tcp_rsk(req)->txhash = net_tx_rndhash(); 6384 tcp_openreq_init_rwin(req, sk, dst); 6385 if (!want_cookie) { 6386 tcp_reqsk_record_syn(sk, req, skb); 6387 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6388 } 6389 if (fastopen_sk) { 6390 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6391 &foc, TCP_SYNACK_FASTOPEN); 6392 /* Add the child socket directly into the accept queue */ 6393 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6394 sk->sk_data_ready(sk); 6395 bh_unlock_sock(fastopen_sk); 6396 sock_put(fastopen_sk); 6397 } else { 6398 tcp_rsk(req)->tfo_listener = false; 6399 if (!want_cookie) 6400 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6401 af_ops->send_synack(sk, dst, &fl, req, &foc, 6402 !want_cookie ? TCP_SYNACK_NORMAL : 6403 TCP_SYNACK_COOKIE); 6404 if (want_cookie) { 6405 reqsk_free(req); 6406 return 0; 6407 } 6408 } 6409 reqsk_put(req); 6410 return 0; 6411 6412 drop_and_release: 6413 dst_release(dst); 6414 drop_and_free: 6415 reqsk_free(req); 6416 drop: 6417 tcp_listendrop(sk); 6418 return 0; 6419 } 6420 EXPORT_SYMBOL(tcp_conn_request); 6421