xref: /linux/net/ipv4/tcp_input.c (revision 19b3b13c932fc8d613e50e3e92c1944f9fcc02c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 					       tcp_sk(sk)->advmss);
242 		/* Account for possibly-removed options */
243 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 				   MAX_TCP_OPTION_SPACE))
245 			tcp_gro_dev_warn(sk, skb, len);
246 	} else {
247 		/* Otherwise, we make more careful check taking into account,
248 		 * that SACKs block is variable.
249 		 *
250 		 * "len" is invariant segment length, including TCP header.
251 		 */
252 		len += skb->data - skb_transport_header(skb);
253 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 		    /* If PSH is not set, packet should be
255 		     * full sized, provided peer TCP is not badly broken.
256 		     * This observation (if it is correct 8)) allows
257 		     * to handle super-low mtu links fairly.
258 		     */
259 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 			/* Subtract also invariant (if peer is RFC compliant),
262 			 * tcp header plus fixed timestamp option length.
263 			 * Resulting "len" is MSS free of SACK jitter.
264 			 */
265 			len -= tcp_sk(sk)->tcp_header_len;
266 			icsk->icsk_ack.last_seg_size = len;
267 			if (len == lss) {
268 				icsk->icsk_ack.rcv_mss = len;
269 				return;
270 			}
271 		}
272 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 	}
276 }
277 
278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 	struct inet_connection_sock *icsk = inet_csk(sk);
281 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282 
283 	if (quickacks == 0)
284 		quickacks = 2;
285 	quickacks = min(quickacks, max_quickacks);
286 	if (quickacks > icsk->icsk_ack.quick)
287 		icsk->icsk_ack.quick = quickacks;
288 }
289 
290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 	struct inet_connection_sock *icsk = inet_csk(sk);
293 
294 	tcp_incr_quickack(sk, max_quickacks);
295 	inet_csk_exit_pingpong_mode(sk);
296 	icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299 
300 /* Send ACKs quickly, if "quick" count is not exhausted
301  * and the session is not interactive.
302  */
303 
304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 	const struct inet_connection_sock *icsk = inet_csk(sk);
307 	const struct dst_entry *dst = __sk_dst_get(sk);
308 
309 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312 
313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 	if (tp->ecn_flags & TCP_ECN_OK)
316 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318 
319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 	if (tcp_hdr(skb)->cwr) {
322 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323 
324 		/* If the sender is telling us it has entered CWR, then its
325 		 * cwnd may be very low (even just 1 packet), so we should ACK
326 		 * immediately.
327 		 */
328 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 	}
331 }
332 
333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337 
338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 	case INET_ECN_NOT_ECT:
344 		/* Funny extension: if ECT is not set on a segment,
345 		 * and we already seen ECT on a previous segment,
346 		 * it is probably a retransmit.
347 		 */
348 		if (tp->ecn_flags & TCP_ECN_SEEN)
349 			tcp_enter_quickack_mode(sk, 2);
350 		break;
351 	case INET_ECN_CE:
352 		if (tcp_ca_needs_ecn(sk))
353 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354 
355 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 			/* Better not delay acks, sender can have a very low cwnd */
357 			tcp_enter_quickack_mode(sk, 2);
358 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 		}
360 		tp->ecn_flags |= TCP_ECN_SEEN;
361 		break;
362 	default:
363 		if (tcp_ca_needs_ecn(sk))
364 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 		tp->ecn_flags |= TCP_ECN_SEEN;
366 		break;
367 	}
368 }
369 
370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 		__tcp_ecn_check_ce(sk, skb);
374 }
375 
376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 		tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381 
382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 		tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387 
388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 		return true;
392 	return false;
393 }
394 
395 /* Buffer size and advertised window tuning.
396  *
397  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398  */
399 
400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 	const struct tcp_sock *tp = tcp_sk(sk);
403 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 	int sndmem, per_mss;
405 	u32 nr_segs;
406 
407 	/* Worst case is non GSO/TSO : each frame consumes one skb
408 	 * and skb->head is kmalloced using power of two area of memory
409 	 */
410 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 		  MAX_TCP_HEADER +
412 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413 
414 	per_mss = roundup_pow_of_two(per_mss) +
415 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
416 
417 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
418 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419 
420 	/* Fast Recovery (RFC 5681 3.2) :
421 	 * Cubic needs 1.7 factor, rounded to 2 to include
422 	 * extra cushion (application might react slowly to EPOLLOUT)
423 	 */
424 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 	sndmem *= nr_segs * per_mss;
426 
427 	if (sk->sk_sndbuf < sndmem)
428 		WRITE_ONCE(sk->sk_sndbuf,
429 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
430 }
431 
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433  *
434  * All tcp_full_space() is split to two parts: "network" buffer, allocated
435  * forward and advertised in receiver window (tp->rcv_wnd) and
436  * "application buffer", required to isolate scheduling/application
437  * latencies from network.
438  * window_clamp is maximal advertised window. It can be less than
439  * tcp_full_space(), in this case tcp_full_space() - window_clamp
440  * is reserved for "application" buffer. The less window_clamp is
441  * the smoother our behaviour from viewpoint of network, but the lower
442  * throughput and the higher sensitivity of the connection to losses. 8)
443  *
444  * rcv_ssthresh is more strict window_clamp used at "slow start"
445  * phase to predict further behaviour of this connection.
446  * It is used for two goals:
447  * - to enforce header prediction at sender, even when application
448  *   requires some significant "application buffer". It is check #1.
449  * - to prevent pruning of receive queue because of misprediction
450  *   of receiver window. Check #2.
451  *
452  * The scheme does not work when sender sends good segments opening
453  * window and then starts to feed us spaghetti. But it should work
454  * in common situations. Otherwise, we have to rely on queue collapsing.
455  */
456 
457 /* Slow part of check#2. */
458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 			     unsigned int skbtruesize)
460 {
461 	struct tcp_sock *tp = tcp_sk(sk);
462 	/* Optimize this! */
463 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
465 
466 	while (tp->rcv_ssthresh <= window) {
467 		if (truesize <= skb->len)
468 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469 
470 		truesize >>= 1;
471 		window >>= 1;
472 	}
473 	return 0;
474 }
475 
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477  * can play nice with us, as sk_buff and skb->head might be either
478  * freed or shared with up to MAX_SKB_FRAGS segments.
479  * Only give a boost to drivers using page frag(s) to hold the frame(s),
480  * and if no payload was pulled in skb->head before reaching us.
481  */
482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 	u32 truesize = skb->truesize;
485 
486 	if (adjust && !skb_headlen(skb)) {
487 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 		/* paranoid check, some drivers might be buggy */
489 		if (unlikely((int)truesize < (int)skb->len))
490 			truesize = skb->truesize;
491 	}
492 	return truesize;
493 }
494 
495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 			    bool adjust)
497 {
498 	struct tcp_sock *tp = tcp_sk(sk);
499 	int room;
500 
501 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502 
503 	if (room <= 0)
504 		return;
505 
506 	/* Check #1 */
507 	if (!tcp_under_memory_pressure(sk)) {
508 		unsigned int truesize = truesize_adjust(adjust, skb);
509 		int incr;
510 
511 		/* Check #2. Increase window, if skb with such overhead
512 		 * will fit to rcvbuf in future.
513 		 */
514 		if (tcp_win_from_space(sk, truesize) <= skb->len)
515 			incr = 2 * tp->advmss;
516 		else
517 			incr = __tcp_grow_window(sk, skb, truesize);
518 
519 		if (incr) {
520 			incr = max_t(int, incr, 2 * skb->len);
521 			tp->rcv_ssthresh += min(room, incr);
522 			inet_csk(sk)->icsk_ack.quick |= 1;
523 		}
524 	} else {
525 		/* Under pressure:
526 		 * Adjust rcv_ssthresh according to reserved mem
527 		 */
528 		tcp_adjust_rcv_ssthresh(sk);
529 	}
530 }
531 
532 /* 3. Try to fixup all. It is made immediately after connection enters
533  *    established state.
534  */
535 static void tcp_init_buffer_space(struct sock *sk)
536 {
537 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	int maxwin;
540 
541 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
542 		tcp_sndbuf_expand(sk);
543 
544 	tcp_mstamp_refresh(tp);
545 	tp->rcvq_space.time = tp->tcp_mstamp;
546 	tp->rcvq_space.seq = tp->copied_seq;
547 
548 	maxwin = tcp_full_space(sk);
549 
550 	if (tp->window_clamp >= maxwin) {
551 		tp->window_clamp = maxwin;
552 
553 		if (tcp_app_win && maxwin > 4 * tp->advmss)
554 			tp->window_clamp = max(maxwin -
555 					       (maxwin >> tcp_app_win),
556 					       4 * tp->advmss);
557 	}
558 
559 	/* Force reservation of one segment. */
560 	if (tcp_app_win &&
561 	    tp->window_clamp > 2 * tp->advmss &&
562 	    tp->window_clamp + tp->advmss > maxwin)
563 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
564 
565 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
566 	tp->snd_cwnd_stamp = tcp_jiffies32;
567 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
568 				    (u32)TCP_INIT_CWND * tp->advmss);
569 }
570 
571 /* 4. Recalculate window clamp after socket hit its memory bounds. */
572 static void tcp_clamp_window(struct sock *sk)
573 {
574 	struct tcp_sock *tp = tcp_sk(sk);
575 	struct inet_connection_sock *icsk = inet_csk(sk);
576 	struct net *net = sock_net(sk);
577 
578 	icsk->icsk_ack.quick = 0;
579 
580 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
581 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
582 	    !tcp_under_memory_pressure(sk) &&
583 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
584 		WRITE_ONCE(sk->sk_rcvbuf,
585 			   min(atomic_read(&sk->sk_rmem_alloc),
586 			       net->ipv4.sysctl_tcp_rmem[2]));
587 	}
588 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
589 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
590 }
591 
592 /* Initialize RCV_MSS value.
593  * RCV_MSS is an our guess about MSS used by the peer.
594  * We haven't any direct information about the MSS.
595  * It's better to underestimate the RCV_MSS rather than overestimate.
596  * Overestimations make us ACKing less frequently than needed.
597  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
598  */
599 void tcp_initialize_rcv_mss(struct sock *sk)
600 {
601 	const struct tcp_sock *tp = tcp_sk(sk);
602 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
603 
604 	hint = min(hint, tp->rcv_wnd / 2);
605 	hint = min(hint, TCP_MSS_DEFAULT);
606 	hint = max(hint, TCP_MIN_MSS);
607 
608 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
609 }
610 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
611 
612 /* Receiver "autotuning" code.
613  *
614  * The algorithm for RTT estimation w/o timestamps is based on
615  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
616  * <https://public.lanl.gov/radiant/pubs.html#DRS>
617  *
618  * More detail on this code can be found at
619  * <http://staff.psc.edu/jheffner/>,
620  * though this reference is out of date.  A new paper
621  * is pending.
622  */
623 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
624 {
625 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
626 	long m = sample;
627 
628 	if (new_sample != 0) {
629 		/* If we sample in larger samples in the non-timestamp
630 		 * case, we could grossly overestimate the RTT especially
631 		 * with chatty applications or bulk transfer apps which
632 		 * are stalled on filesystem I/O.
633 		 *
634 		 * Also, since we are only going for a minimum in the
635 		 * non-timestamp case, we do not smooth things out
636 		 * else with timestamps disabled convergence takes too
637 		 * long.
638 		 */
639 		if (!win_dep) {
640 			m -= (new_sample >> 3);
641 			new_sample += m;
642 		} else {
643 			m <<= 3;
644 			if (m < new_sample)
645 				new_sample = m;
646 		}
647 	} else {
648 		/* No previous measure. */
649 		new_sample = m << 3;
650 	}
651 
652 	tp->rcv_rtt_est.rtt_us = new_sample;
653 }
654 
655 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
656 {
657 	u32 delta_us;
658 
659 	if (tp->rcv_rtt_est.time == 0)
660 		goto new_measure;
661 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
662 		return;
663 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
664 	if (!delta_us)
665 		delta_us = 1;
666 	tcp_rcv_rtt_update(tp, delta_us, 1);
667 
668 new_measure:
669 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
670 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
671 }
672 
673 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
674 					  const struct sk_buff *skb)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 
678 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
679 		return;
680 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
681 
682 	if (TCP_SKB_CB(skb)->end_seq -
683 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
684 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
685 		u32 delta_us;
686 
687 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
688 			if (!delta)
689 				delta = 1;
690 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
691 			tcp_rcv_rtt_update(tp, delta_us, 0);
692 		}
693 	}
694 }
695 
696 /*
697  * This function should be called every time data is copied to user space.
698  * It calculates the appropriate TCP receive buffer space.
699  */
700 void tcp_rcv_space_adjust(struct sock *sk)
701 {
702 	struct tcp_sock *tp = tcp_sk(sk);
703 	u32 copied;
704 	int time;
705 
706 	trace_tcp_rcv_space_adjust(sk);
707 
708 	tcp_mstamp_refresh(tp);
709 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
710 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
711 		return;
712 
713 	/* Number of bytes copied to user in last RTT */
714 	copied = tp->copied_seq - tp->rcvq_space.seq;
715 	if (copied <= tp->rcvq_space.space)
716 		goto new_measure;
717 
718 	/* A bit of theory :
719 	 * copied = bytes received in previous RTT, our base window
720 	 * To cope with packet losses, we need a 2x factor
721 	 * To cope with slow start, and sender growing its cwin by 100 %
722 	 * every RTT, we need a 4x factor, because the ACK we are sending
723 	 * now is for the next RTT, not the current one :
724 	 * <prev RTT . ><current RTT .. ><next RTT .... >
725 	 */
726 
727 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
728 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
729 		int rcvmem, rcvbuf;
730 		u64 rcvwin, grow;
731 
732 		/* minimal window to cope with packet losses, assuming
733 		 * steady state. Add some cushion because of small variations.
734 		 */
735 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
736 
737 		/* Accommodate for sender rate increase (eg. slow start) */
738 		grow = rcvwin * (copied - tp->rcvq_space.space);
739 		do_div(grow, tp->rcvq_space.space);
740 		rcvwin += (grow << 1);
741 
742 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
743 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
744 			rcvmem += 128;
745 
746 		do_div(rcvwin, tp->advmss);
747 		rcvbuf = min_t(u64, rcvwin * rcvmem,
748 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
749 		if (rcvbuf > sk->sk_rcvbuf) {
750 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
751 
752 			/* Make the window clamp follow along.  */
753 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
754 		}
755 	}
756 	tp->rcvq_space.space = copied;
757 
758 new_measure:
759 	tp->rcvq_space.seq = tp->copied_seq;
760 	tp->rcvq_space.time = tp->tcp_mstamp;
761 }
762 
763 /* There is something which you must keep in mind when you analyze the
764  * behavior of the tp->ato delayed ack timeout interval.  When a
765  * connection starts up, we want to ack as quickly as possible.  The
766  * problem is that "good" TCP's do slow start at the beginning of data
767  * transmission.  The means that until we send the first few ACK's the
768  * sender will sit on his end and only queue most of his data, because
769  * he can only send snd_cwnd unacked packets at any given time.  For
770  * each ACK we send, he increments snd_cwnd and transmits more of his
771  * queue.  -DaveM
772  */
773 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
774 {
775 	struct tcp_sock *tp = tcp_sk(sk);
776 	struct inet_connection_sock *icsk = inet_csk(sk);
777 	u32 now;
778 
779 	inet_csk_schedule_ack(sk);
780 
781 	tcp_measure_rcv_mss(sk, skb);
782 
783 	tcp_rcv_rtt_measure(tp);
784 
785 	now = tcp_jiffies32;
786 
787 	if (!icsk->icsk_ack.ato) {
788 		/* The _first_ data packet received, initialize
789 		 * delayed ACK engine.
790 		 */
791 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
792 		icsk->icsk_ack.ato = TCP_ATO_MIN;
793 	} else {
794 		int m = now - icsk->icsk_ack.lrcvtime;
795 
796 		if (m <= TCP_ATO_MIN / 2) {
797 			/* The fastest case is the first. */
798 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
799 		} else if (m < icsk->icsk_ack.ato) {
800 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
801 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
802 				icsk->icsk_ack.ato = icsk->icsk_rto;
803 		} else if (m > icsk->icsk_rto) {
804 			/* Too long gap. Apparently sender failed to
805 			 * restart window, so that we send ACKs quickly.
806 			 */
807 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
808 			sk_mem_reclaim(sk);
809 		}
810 	}
811 	icsk->icsk_ack.lrcvtime = now;
812 
813 	tcp_ecn_check_ce(sk, skb);
814 
815 	if (skb->len >= 128)
816 		tcp_grow_window(sk, skb, true);
817 }
818 
819 /* Called to compute a smoothed rtt estimate. The data fed to this
820  * routine either comes from timestamps, or from segments that were
821  * known _not_ to have been retransmitted [see Karn/Partridge
822  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
823  * piece by Van Jacobson.
824  * NOTE: the next three routines used to be one big routine.
825  * To save cycles in the RFC 1323 implementation it was better to break
826  * it up into three procedures. -- erics
827  */
828 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
829 {
830 	struct tcp_sock *tp = tcp_sk(sk);
831 	long m = mrtt_us; /* RTT */
832 	u32 srtt = tp->srtt_us;
833 
834 	/*	The following amusing code comes from Jacobson's
835 	 *	article in SIGCOMM '88.  Note that rtt and mdev
836 	 *	are scaled versions of rtt and mean deviation.
837 	 *	This is designed to be as fast as possible
838 	 *	m stands for "measurement".
839 	 *
840 	 *	On a 1990 paper the rto value is changed to:
841 	 *	RTO = rtt + 4 * mdev
842 	 *
843 	 * Funny. This algorithm seems to be very broken.
844 	 * These formulae increase RTO, when it should be decreased, increase
845 	 * too slowly, when it should be increased quickly, decrease too quickly
846 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
847 	 * does not matter how to _calculate_ it. Seems, it was trap
848 	 * that VJ failed to avoid. 8)
849 	 */
850 	if (srtt != 0) {
851 		m -= (srtt >> 3);	/* m is now error in rtt est */
852 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
853 		if (m < 0) {
854 			m = -m;		/* m is now abs(error) */
855 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
856 			/* This is similar to one of Eifel findings.
857 			 * Eifel blocks mdev updates when rtt decreases.
858 			 * This solution is a bit different: we use finer gain
859 			 * for mdev in this case (alpha*beta).
860 			 * Like Eifel it also prevents growth of rto,
861 			 * but also it limits too fast rto decreases,
862 			 * happening in pure Eifel.
863 			 */
864 			if (m > 0)
865 				m >>= 3;
866 		} else {
867 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
868 		}
869 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
870 		if (tp->mdev_us > tp->mdev_max_us) {
871 			tp->mdev_max_us = tp->mdev_us;
872 			if (tp->mdev_max_us > tp->rttvar_us)
873 				tp->rttvar_us = tp->mdev_max_us;
874 		}
875 		if (after(tp->snd_una, tp->rtt_seq)) {
876 			if (tp->mdev_max_us < tp->rttvar_us)
877 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
878 			tp->rtt_seq = tp->snd_nxt;
879 			tp->mdev_max_us = tcp_rto_min_us(sk);
880 
881 			tcp_bpf_rtt(sk);
882 		}
883 	} else {
884 		/* no previous measure. */
885 		srtt = m << 3;		/* take the measured time to be rtt */
886 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
887 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
888 		tp->mdev_max_us = tp->rttvar_us;
889 		tp->rtt_seq = tp->snd_nxt;
890 
891 		tcp_bpf_rtt(sk);
892 	}
893 	tp->srtt_us = max(1U, srtt);
894 }
895 
896 static void tcp_update_pacing_rate(struct sock *sk)
897 {
898 	const struct tcp_sock *tp = tcp_sk(sk);
899 	u64 rate;
900 
901 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
902 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
903 
904 	/* current rate is (cwnd * mss) / srtt
905 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
906 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
907 	 *
908 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
909 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
910 	 *	 end of slow start and should slow down.
911 	 */
912 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
913 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
914 	else
915 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
916 
917 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
918 
919 	if (likely(tp->srtt_us))
920 		do_div(rate, tp->srtt_us);
921 
922 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
923 	 * without any lock. We want to make sure compiler wont store
924 	 * intermediate values in this location.
925 	 */
926 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
927 					     sk->sk_max_pacing_rate));
928 }
929 
930 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
931  * routine referred to above.
932  */
933 static void tcp_set_rto(struct sock *sk)
934 {
935 	const struct tcp_sock *tp = tcp_sk(sk);
936 	/* Old crap is replaced with new one. 8)
937 	 *
938 	 * More seriously:
939 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
940 	 *    It cannot be less due to utterly erratic ACK generation made
941 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
942 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
943 	 *    is invisible. Actually, Linux-2.4 also generates erratic
944 	 *    ACKs in some circumstances.
945 	 */
946 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
947 
948 	/* 2. Fixups made earlier cannot be right.
949 	 *    If we do not estimate RTO correctly without them,
950 	 *    all the algo is pure shit and should be replaced
951 	 *    with correct one. It is exactly, which we pretend to do.
952 	 */
953 
954 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
955 	 * guarantees that rto is higher.
956 	 */
957 	tcp_bound_rto(sk);
958 }
959 
960 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
961 {
962 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
963 
964 	if (!cwnd)
965 		cwnd = TCP_INIT_CWND;
966 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
967 }
968 
969 struct tcp_sacktag_state {
970 	/* Timestamps for earliest and latest never-retransmitted segment
971 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
972 	 * but congestion control should still get an accurate delay signal.
973 	 */
974 	u64	first_sackt;
975 	u64	last_sackt;
976 	u32	reord;
977 	u32	sack_delivered;
978 	int	flag;
979 	unsigned int mss_now;
980 	struct rate_sample *rate;
981 };
982 
983 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
984  * and spurious retransmission information if this DSACK is unlikely caused by
985  * sender's action:
986  * - DSACKed sequence range is larger than maximum receiver's window.
987  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
988  */
989 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
990 			  u32 end_seq, struct tcp_sacktag_state *state)
991 {
992 	u32 seq_len, dup_segs = 1;
993 
994 	if (!before(start_seq, end_seq))
995 		return 0;
996 
997 	seq_len = end_seq - start_seq;
998 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
999 	if (seq_len > tp->max_window)
1000 		return 0;
1001 	if (seq_len > tp->mss_cache)
1002 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1003 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1004 		state->flag |= FLAG_DSACK_TLP;
1005 
1006 	tp->dsack_dups += dup_segs;
1007 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1008 	if (tp->dsack_dups > tp->total_retrans)
1009 		return 0;
1010 
1011 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1012 	/* We increase the RACK ordering window in rounds where we receive
1013 	 * DSACKs that may have been due to reordering causing RACK to trigger
1014 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1015 	 * without having seen reordering, or that match TLP probes (TLP
1016 	 * is timer-driven, not triggered by RACK).
1017 	 */
1018 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1019 		tp->rack.dsack_seen = 1;
1020 
1021 	state->flag |= FLAG_DSACKING_ACK;
1022 	/* A spurious retransmission is delivered */
1023 	state->sack_delivered += dup_segs;
1024 
1025 	return dup_segs;
1026 }
1027 
1028 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1029  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1030  * distance is approximated in full-mss packet distance ("reordering").
1031  */
1032 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1033 				      const int ts)
1034 {
1035 	struct tcp_sock *tp = tcp_sk(sk);
1036 	const u32 mss = tp->mss_cache;
1037 	u32 fack, metric;
1038 
1039 	fack = tcp_highest_sack_seq(tp);
1040 	if (!before(low_seq, fack))
1041 		return;
1042 
1043 	metric = fack - low_seq;
1044 	if ((metric > tp->reordering * mss) && mss) {
1045 #if FASTRETRANS_DEBUG > 1
1046 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1047 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1048 			 tp->reordering,
1049 			 0,
1050 			 tp->sacked_out,
1051 			 tp->undo_marker ? tp->undo_retrans : 0);
1052 #endif
1053 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1054 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1055 	}
1056 
1057 	/* This exciting event is worth to be remembered. 8) */
1058 	tp->reord_seen++;
1059 	NET_INC_STATS(sock_net(sk),
1060 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1061 }
1062 
1063  /* This must be called before lost_out or retrans_out are updated
1064   * on a new loss, because we want to know if all skbs previously
1065   * known to be lost have already been retransmitted, indicating
1066   * that this newly lost skb is our next skb to retransmit.
1067   */
1068 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1069 {
1070 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1071 	    (tp->retransmit_skb_hint &&
1072 	     before(TCP_SKB_CB(skb)->seq,
1073 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1074 		tp->retransmit_skb_hint = skb;
1075 }
1076 
1077 /* Sum the number of packets on the wire we have marked as lost, and
1078  * notify the congestion control module that the given skb was marked lost.
1079  */
1080 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1081 {
1082 	tp->lost += tcp_skb_pcount(skb);
1083 }
1084 
1085 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1086 {
1087 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1088 	struct tcp_sock *tp = tcp_sk(sk);
1089 
1090 	if (sacked & TCPCB_SACKED_ACKED)
1091 		return;
1092 
1093 	tcp_verify_retransmit_hint(tp, skb);
1094 	if (sacked & TCPCB_LOST) {
1095 		if (sacked & TCPCB_SACKED_RETRANS) {
1096 			/* Account for retransmits that are lost again */
1097 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1098 			tp->retrans_out -= tcp_skb_pcount(skb);
1099 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1100 				      tcp_skb_pcount(skb));
1101 			tcp_notify_skb_loss_event(tp, skb);
1102 		}
1103 	} else {
1104 		tp->lost_out += tcp_skb_pcount(skb);
1105 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1106 		tcp_notify_skb_loss_event(tp, skb);
1107 	}
1108 }
1109 
1110 /* Updates the delivered and delivered_ce counts */
1111 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1112 				bool ece_ack)
1113 {
1114 	tp->delivered += delivered;
1115 	if (ece_ack)
1116 		tp->delivered_ce += delivered;
1117 }
1118 
1119 /* This procedure tags the retransmission queue when SACKs arrive.
1120  *
1121  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1122  * Packets in queue with these bits set are counted in variables
1123  * sacked_out, retrans_out and lost_out, correspondingly.
1124  *
1125  * Valid combinations are:
1126  * Tag  InFlight	Description
1127  * 0	1		- orig segment is in flight.
1128  * S	0		- nothing flies, orig reached receiver.
1129  * L	0		- nothing flies, orig lost by net.
1130  * R	2		- both orig and retransmit are in flight.
1131  * L|R	1		- orig is lost, retransmit is in flight.
1132  * S|R  1		- orig reached receiver, retrans is still in flight.
1133  * (L|S|R is logically valid, it could occur when L|R is sacked,
1134  *  but it is equivalent to plain S and code short-curcuits it to S.
1135  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1136  *
1137  * These 6 states form finite state machine, controlled by the following events:
1138  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1139  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1140  * 3. Loss detection event of two flavors:
1141  *	A. Scoreboard estimator decided the packet is lost.
1142  *	   A'. Reno "three dupacks" marks head of queue lost.
1143  *	B. SACK arrives sacking SND.NXT at the moment, when the
1144  *	   segment was retransmitted.
1145  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1146  *
1147  * It is pleasant to note, that state diagram turns out to be commutative,
1148  * so that we are allowed not to be bothered by order of our actions,
1149  * when multiple events arrive simultaneously. (see the function below).
1150  *
1151  * Reordering detection.
1152  * --------------------
1153  * Reordering metric is maximal distance, which a packet can be displaced
1154  * in packet stream. With SACKs we can estimate it:
1155  *
1156  * 1. SACK fills old hole and the corresponding segment was not
1157  *    ever retransmitted -> reordering. Alas, we cannot use it
1158  *    when segment was retransmitted.
1159  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1160  *    for retransmitted and already SACKed segment -> reordering..
1161  * Both of these heuristics are not used in Loss state, when we cannot
1162  * account for retransmits accurately.
1163  *
1164  * SACK block validation.
1165  * ----------------------
1166  *
1167  * SACK block range validation checks that the received SACK block fits to
1168  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1169  * Note that SND.UNA is not included to the range though being valid because
1170  * it means that the receiver is rather inconsistent with itself reporting
1171  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1172  * perfectly valid, however, in light of RFC2018 which explicitly states
1173  * that "SACK block MUST reflect the newest segment.  Even if the newest
1174  * segment is going to be discarded ...", not that it looks very clever
1175  * in case of head skb. Due to potentional receiver driven attacks, we
1176  * choose to avoid immediate execution of a walk in write queue due to
1177  * reneging and defer head skb's loss recovery to standard loss recovery
1178  * procedure that will eventually trigger (nothing forbids us doing this).
1179  *
1180  * Implements also blockage to start_seq wrap-around. Problem lies in the
1181  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1182  * there's no guarantee that it will be before snd_nxt (n). The problem
1183  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1184  * wrap (s_w):
1185  *
1186  *         <- outs wnd ->                          <- wrapzone ->
1187  *         u     e      n                         u_w   e_w  s n_w
1188  *         |     |      |                          |     |   |  |
1189  * |<------------+------+----- TCP seqno space --------------+---------->|
1190  * ...-- <2^31 ->|                                           |<--------...
1191  * ...---- >2^31 ------>|                                    |<--------...
1192  *
1193  * Current code wouldn't be vulnerable but it's better still to discard such
1194  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1195  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1196  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1197  * equal to the ideal case (infinite seqno space without wrap caused issues).
1198  *
1199  * With D-SACK the lower bound is extended to cover sequence space below
1200  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1201  * again, D-SACK block must not to go across snd_una (for the same reason as
1202  * for the normal SACK blocks, explained above). But there all simplicity
1203  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1204  * fully below undo_marker they do not affect behavior in anyway and can
1205  * therefore be safely ignored. In rare cases (which are more or less
1206  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1207  * fragmentation and packet reordering past skb's retransmission. To consider
1208  * them correctly, the acceptable range must be extended even more though
1209  * the exact amount is rather hard to quantify. However, tp->max_window can
1210  * be used as an exaggerated estimate.
1211  */
1212 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1213 				   u32 start_seq, u32 end_seq)
1214 {
1215 	/* Too far in future, or reversed (interpretation is ambiguous) */
1216 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1217 		return false;
1218 
1219 	/* Nasty start_seq wrap-around check (see comments above) */
1220 	if (!before(start_seq, tp->snd_nxt))
1221 		return false;
1222 
1223 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1224 	 * start_seq == snd_una is non-sensical (see comments above)
1225 	 */
1226 	if (after(start_seq, tp->snd_una))
1227 		return true;
1228 
1229 	if (!is_dsack || !tp->undo_marker)
1230 		return false;
1231 
1232 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1233 	if (after(end_seq, tp->snd_una))
1234 		return false;
1235 
1236 	if (!before(start_seq, tp->undo_marker))
1237 		return true;
1238 
1239 	/* Too old */
1240 	if (!after(end_seq, tp->undo_marker))
1241 		return false;
1242 
1243 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1244 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1245 	 */
1246 	return !before(start_seq, end_seq - tp->max_window);
1247 }
1248 
1249 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1250 			    struct tcp_sack_block_wire *sp, int num_sacks,
1251 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1252 {
1253 	struct tcp_sock *tp = tcp_sk(sk);
1254 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1255 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1256 	u32 dup_segs;
1257 
1258 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1259 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1260 	} else if (num_sacks > 1) {
1261 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1262 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1263 
1264 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1265 			return false;
1266 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1267 	} else {
1268 		return false;
1269 	}
1270 
1271 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1272 	if (!dup_segs) {	/* Skip dubious DSACK */
1273 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1274 		return false;
1275 	}
1276 
1277 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1278 
1279 	/* D-SACK for already forgotten data... Do dumb counting. */
1280 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1281 	    !after(end_seq_0, prior_snd_una) &&
1282 	    after(end_seq_0, tp->undo_marker))
1283 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1284 
1285 	return true;
1286 }
1287 
1288 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1289  * the incoming SACK may not exactly match but we can find smaller MSS
1290  * aligned portion of it that matches. Therefore we might need to fragment
1291  * which may fail and creates some hassle (caller must handle error case
1292  * returns).
1293  *
1294  * FIXME: this could be merged to shift decision code
1295  */
1296 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1297 				  u32 start_seq, u32 end_seq)
1298 {
1299 	int err;
1300 	bool in_sack;
1301 	unsigned int pkt_len;
1302 	unsigned int mss;
1303 
1304 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1305 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1306 
1307 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1308 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1309 		mss = tcp_skb_mss(skb);
1310 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1311 
1312 		if (!in_sack) {
1313 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1314 			if (pkt_len < mss)
1315 				pkt_len = mss;
1316 		} else {
1317 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1318 			if (pkt_len < mss)
1319 				return -EINVAL;
1320 		}
1321 
1322 		/* Round if necessary so that SACKs cover only full MSSes
1323 		 * and/or the remaining small portion (if present)
1324 		 */
1325 		if (pkt_len > mss) {
1326 			unsigned int new_len = (pkt_len / mss) * mss;
1327 			if (!in_sack && new_len < pkt_len)
1328 				new_len += mss;
1329 			pkt_len = new_len;
1330 		}
1331 
1332 		if (pkt_len >= skb->len && !in_sack)
1333 			return 0;
1334 
1335 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1336 				   pkt_len, mss, GFP_ATOMIC);
1337 		if (err < 0)
1338 			return err;
1339 	}
1340 
1341 	return in_sack;
1342 }
1343 
1344 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1345 static u8 tcp_sacktag_one(struct sock *sk,
1346 			  struct tcp_sacktag_state *state, u8 sacked,
1347 			  u32 start_seq, u32 end_seq,
1348 			  int dup_sack, int pcount,
1349 			  u64 xmit_time)
1350 {
1351 	struct tcp_sock *tp = tcp_sk(sk);
1352 
1353 	/* Account D-SACK for retransmitted packet. */
1354 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1355 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1356 		    after(end_seq, tp->undo_marker))
1357 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1358 		if ((sacked & TCPCB_SACKED_ACKED) &&
1359 		    before(start_seq, state->reord))
1360 				state->reord = start_seq;
1361 	}
1362 
1363 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1364 	if (!after(end_seq, tp->snd_una))
1365 		return sacked;
1366 
1367 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1368 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1369 
1370 		if (sacked & TCPCB_SACKED_RETRANS) {
1371 			/* If the segment is not tagged as lost,
1372 			 * we do not clear RETRANS, believing
1373 			 * that retransmission is still in flight.
1374 			 */
1375 			if (sacked & TCPCB_LOST) {
1376 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1377 				tp->lost_out -= pcount;
1378 				tp->retrans_out -= pcount;
1379 			}
1380 		} else {
1381 			if (!(sacked & TCPCB_RETRANS)) {
1382 				/* New sack for not retransmitted frame,
1383 				 * which was in hole. It is reordering.
1384 				 */
1385 				if (before(start_seq,
1386 					   tcp_highest_sack_seq(tp)) &&
1387 				    before(start_seq, state->reord))
1388 					state->reord = start_seq;
1389 
1390 				if (!after(end_seq, tp->high_seq))
1391 					state->flag |= FLAG_ORIG_SACK_ACKED;
1392 				if (state->first_sackt == 0)
1393 					state->first_sackt = xmit_time;
1394 				state->last_sackt = xmit_time;
1395 			}
1396 
1397 			if (sacked & TCPCB_LOST) {
1398 				sacked &= ~TCPCB_LOST;
1399 				tp->lost_out -= pcount;
1400 			}
1401 		}
1402 
1403 		sacked |= TCPCB_SACKED_ACKED;
1404 		state->flag |= FLAG_DATA_SACKED;
1405 		tp->sacked_out += pcount;
1406 		/* Out-of-order packets delivered */
1407 		state->sack_delivered += pcount;
1408 
1409 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1410 		if (tp->lost_skb_hint &&
1411 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1412 			tp->lost_cnt_hint += pcount;
1413 	}
1414 
1415 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1416 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1417 	 * are accounted above as well.
1418 	 */
1419 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1420 		sacked &= ~TCPCB_SACKED_RETRANS;
1421 		tp->retrans_out -= pcount;
1422 	}
1423 
1424 	return sacked;
1425 }
1426 
1427 /* Shift newly-SACKed bytes from this skb to the immediately previous
1428  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1429  */
1430 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1431 			    struct sk_buff *skb,
1432 			    struct tcp_sacktag_state *state,
1433 			    unsigned int pcount, int shifted, int mss,
1434 			    bool dup_sack)
1435 {
1436 	struct tcp_sock *tp = tcp_sk(sk);
1437 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1438 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1439 
1440 	BUG_ON(!pcount);
1441 
1442 	/* Adjust counters and hints for the newly sacked sequence
1443 	 * range but discard the return value since prev is already
1444 	 * marked. We must tag the range first because the seq
1445 	 * advancement below implicitly advances
1446 	 * tcp_highest_sack_seq() when skb is highest_sack.
1447 	 */
1448 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1449 			start_seq, end_seq, dup_sack, pcount,
1450 			tcp_skb_timestamp_us(skb));
1451 	tcp_rate_skb_delivered(sk, skb, state->rate);
1452 
1453 	if (skb == tp->lost_skb_hint)
1454 		tp->lost_cnt_hint += pcount;
1455 
1456 	TCP_SKB_CB(prev)->end_seq += shifted;
1457 	TCP_SKB_CB(skb)->seq += shifted;
1458 
1459 	tcp_skb_pcount_add(prev, pcount);
1460 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1461 	tcp_skb_pcount_add(skb, -pcount);
1462 
1463 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1464 	 * in theory this shouldn't be necessary but as long as DSACK
1465 	 * code can come after this skb later on it's better to keep
1466 	 * setting gso_size to something.
1467 	 */
1468 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1469 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1470 
1471 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1472 	if (tcp_skb_pcount(skb) <= 1)
1473 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1474 
1475 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1476 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1477 
1478 	if (skb->len > 0) {
1479 		BUG_ON(!tcp_skb_pcount(skb));
1480 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1481 		return false;
1482 	}
1483 
1484 	/* Whole SKB was eaten :-) */
1485 
1486 	if (skb == tp->retransmit_skb_hint)
1487 		tp->retransmit_skb_hint = prev;
1488 	if (skb == tp->lost_skb_hint) {
1489 		tp->lost_skb_hint = prev;
1490 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1491 	}
1492 
1493 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1494 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1495 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1496 		TCP_SKB_CB(prev)->end_seq++;
1497 
1498 	if (skb == tcp_highest_sack(sk))
1499 		tcp_advance_highest_sack(sk, skb);
1500 
1501 	tcp_skb_collapse_tstamp(prev, skb);
1502 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1503 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1504 
1505 	tcp_rtx_queue_unlink_and_free(skb, sk);
1506 
1507 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1508 
1509 	return true;
1510 }
1511 
1512 /* I wish gso_size would have a bit more sane initialization than
1513  * something-or-zero which complicates things
1514  */
1515 static int tcp_skb_seglen(const struct sk_buff *skb)
1516 {
1517 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1518 }
1519 
1520 /* Shifting pages past head area doesn't work */
1521 static int skb_can_shift(const struct sk_buff *skb)
1522 {
1523 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1524 }
1525 
1526 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1527 		  int pcount, int shiftlen)
1528 {
1529 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1530 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1531 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1532 	 * even if current MSS is bigger.
1533 	 */
1534 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1535 		return 0;
1536 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1537 		return 0;
1538 	return skb_shift(to, from, shiftlen);
1539 }
1540 
1541 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1542  * skb.
1543  */
1544 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1545 					  struct tcp_sacktag_state *state,
1546 					  u32 start_seq, u32 end_seq,
1547 					  bool dup_sack)
1548 {
1549 	struct tcp_sock *tp = tcp_sk(sk);
1550 	struct sk_buff *prev;
1551 	int mss;
1552 	int pcount = 0;
1553 	int len;
1554 	int in_sack;
1555 
1556 	/* Normally R but no L won't result in plain S */
1557 	if (!dup_sack &&
1558 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1559 		goto fallback;
1560 	if (!skb_can_shift(skb))
1561 		goto fallback;
1562 	/* This frame is about to be dropped (was ACKed). */
1563 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1564 		goto fallback;
1565 
1566 	/* Can only happen with delayed DSACK + discard craziness */
1567 	prev = skb_rb_prev(skb);
1568 	if (!prev)
1569 		goto fallback;
1570 
1571 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1572 		goto fallback;
1573 
1574 	if (!tcp_skb_can_collapse(prev, skb))
1575 		goto fallback;
1576 
1577 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1578 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1579 
1580 	if (in_sack) {
1581 		len = skb->len;
1582 		pcount = tcp_skb_pcount(skb);
1583 		mss = tcp_skb_seglen(skb);
1584 
1585 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 		 * drop this restriction as unnecessary
1587 		 */
1588 		if (mss != tcp_skb_seglen(prev))
1589 			goto fallback;
1590 	} else {
1591 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1592 			goto noop;
1593 		/* CHECKME: This is non-MSS split case only?, this will
1594 		 * cause skipped skbs due to advancing loop btw, original
1595 		 * has that feature too
1596 		 */
1597 		if (tcp_skb_pcount(skb) <= 1)
1598 			goto noop;
1599 
1600 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1601 		if (!in_sack) {
1602 			/* TODO: head merge to next could be attempted here
1603 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1604 			 * though it might not be worth of the additional hassle
1605 			 *
1606 			 * ...we can probably just fallback to what was done
1607 			 * previously. We could try merging non-SACKed ones
1608 			 * as well but it probably isn't going to buy off
1609 			 * because later SACKs might again split them, and
1610 			 * it would make skb timestamp tracking considerably
1611 			 * harder problem.
1612 			 */
1613 			goto fallback;
1614 		}
1615 
1616 		len = end_seq - TCP_SKB_CB(skb)->seq;
1617 		BUG_ON(len < 0);
1618 		BUG_ON(len > skb->len);
1619 
1620 		/* MSS boundaries should be honoured or else pcount will
1621 		 * severely break even though it makes things bit trickier.
1622 		 * Optimize common case to avoid most of the divides
1623 		 */
1624 		mss = tcp_skb_mss(skb);
1625 
1626 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1627 		 * drop this restriction as unnecessary
1628 		 */
1629 		if (mss != tcp_skb_seglen(prev))
1630 			goto fallback;
1631 
1632 		if (len == mss) {
1633 			pcount = 1;
1634 		} else if (len < mss) {
1635 			goto noop;
1636 		} else {
1637 			pcount = len / mss;
1638 			len = pcount * mss;
1639 		}
1640 	}
1641 
1642 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1643 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1644 		goto fallback;
1645 
1646 	if (!tcp_skb_shift(prev, skb, pcount, len))
1647 		goto fallback;
1648 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1649 		goto out;
1650 
1651 	/* Hole filled allows collapsing with the next as well, this is very
1652 	 * useful when hole on every nth skb pattern happens
1653 	 */
1654 	skb = skb_rb_next(prev);
1655 	if (!skb)
1656 		goto out;
1657 
1658 	if (!skb_can_shift(skb) ||
1659 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1660 	    (mss != tcp_skb_seglen(skb)))
1661 		goto out;
1662 
1663 	if (!tcp_skb_can_collapse(prev, skb))
1664 		goto out;
1665 	len = skb->len;
1666 	pcount = tcp_skb_pcount(skb);
1667 	if (tcp_skb_shift(prev, skb, pcount, len))
1668 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1669 				len, mss, 0);
1670 
1671 out:
1672 	return prev;
1673 
1674 noop:
1675 	return skb;
1676 
1677 fallback:
1678 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1679 	return NULL;
1680 }
1681 
1682 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1683 					struct tcp_sack_block *next_dup,
1684 					struct tcp_sacktag_state *state,
1685 					u32 start_seq, u32 end_seq,
1686 					bool dup_sack_in)
1687 {
1688 	struct tcp_sock *tp = tcp_sk(sk);
1689 	struct sk_buff *tmp;
1690 
1691 	skb_rbtree_walk_from(skb) {
1692 		int in_sack = 0;
1693 		bool dup_sack = dup_sack_in;
1694 
1695 		/* queue is in-order => we can short-circuit the walk early */
1696 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1697 			break;
1698 
1699 		if (next_dup  &&
1700 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1701 			in_sack = tcp_match_skb_to_sack(sk, skb,
1702 							next_dup->start_seq,
1703 							next_dup->end_seq);
1704 			if (in_sack > 0)
1705 				dup_sack = true;
1706 		}
1707 
1708 		/* skb reference here is a bit tricky to get right, since
1709 		 * shifting can eat and free both this skb and the next,
1710 		 * so not even _safe variant of the loop is enough.
1711 		 */
1712 		if (in_sack <= 0) {
1713 			tmp = tcp_shift_skb_data(sk, skb, state,
1714 						 start_seq, end_seq, dup_sack);
1715 			if (tmp) {
1716 				if (tmp != skb) {
1717 					skb = tmp;
1718 					continue;
1719 				}
1720 
1721 				in_sack = 0;
1722 			} else {
1723 				in_sack = tcp_match_skb_to_sack(sk, skb,
1724 								start_seq,
1725 								end_seq);
1726 			}
1727 		}
1728 
1729 		if (unlikely(in_sack < 0))
1730 			break;
1731 
1732 		if (in_sack) {
1733 			TCP_SKB_CB(skb)->sacked =
1734 				tcp_sacktag_one(sk,
1735 						state,
1736 						TCP_SKB_CB(skb)->sacked,
1737 						TCP_SKB_CB(skb)->seq,
1738 						TCP_SKB_CB(skb)->end_seq,
1739 						dup_sack,
1740 						tcp_skb_pcount(skb),
1741 						tcp_skb_timestamp_us(skb));
1742 			tcp_rate_skb_delivered(sk, skb, state->rate);
1743 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1744 				list_del_init(&skb->tcp_tsorted_anchor);
1745 
1746 			if (!before(TCP_SKB_CB(skb)->seq,
1747 				    tcp_highest_sack_seq(tp)))
1748 				tcp_advance_highest_sack(sk, skb);
1749 		}
1750 	}
1751 	return skb;
1752 }
1753 
1754 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1755 {
1756 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1757 	struct sk_buff *skb;
1758 
1759 	while (*p) {
1760 		parent = *p;
1761 		skb = rb_to_skb(parent);
1762 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1763 			p = &parent->rb_left;
1764 			continue;
1765 		}
1766 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1767 			p = &parent->rb_right;
1768 			continue;
1769 		}
1770 		return skb;
1771 	}
1772 	return NULL;
1773 }
1774 
1775 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1776 					u32 skip_to_seq)
1777 {
1778 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1779 		return skb;
1780 
1781 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1782 }
1783 
1784 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1785 						struct sock *sk,
1786 						struct tcp_sack_block *next_dup,
1787 						struct tcp_sacktag_state *state,
1788 						u32 skip_to_seq)
1789 {
1790 	if (!next_dup)
1791 		return skb;
1792 
1793 	if (before(next_dup->start_seq, skip_to_seq)) {
1794 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1795 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1796 				       next_dup->start_seq, next_dup->end_seq,
1797 				       1);
1798 	}
1799 
1800 	return skb;
1801 }
1802 
1803 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1804 {
1805 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1806 }
1807 
1808 static int
1809 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1810 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1811 {
1812 	struct tcp_sock *tp = tcp_sk(sk);
1813 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1814 				    TCP_SKB_CB(ack_skb)->sacked);
1815 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1816 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1817 	struct tcp_sack_block *cache;
1818 	struct sk_buff *skb;
1819 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1820 	int used_sacks;
1821 	bool found_dup_sack = false;
1822 	int i, j;
1823 	int first_sack_index;
1824 
1825 	state->flag = 0;
1826 	state->reord = tp->snd_nxt;
1827 
1828 	if (!tp->sacked_out)
1829 		tcp_highest_sack_reset(sk);
1830 
1831 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1832 					 num_sacks, prior_snd_una, state);
1833 
1834 	/* Eliminate too old ACKs, but take into
1835 	 * account more or less fresh ones, they can
1836 	 * contain valid SACK info.
1837 	 */
1838 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1839 		return 0;
1840 
1841 	if (!tp->packets_out)
1842 		goto out;
1843 
1844 	used_sacks = 0;
1845 	first_sack_index = 0;
1846 	for (i = 0; i < num_sacks; i++) {
1847 		bool dup_sack = !i && found_dup_sack;
1848 
1849 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1850 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1851 
1852 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1853 					    sp[used_sacks].start_seq,
1854 					    sp[used_sacks].end_seq)) {
1855 			int mib_idx;
1856 
1857 			if (dup_sack) {
1858 				if (!tp->undo_marker)
1859 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1860 				else
1861 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1862 			} else {
1863 				/* Don't count olds caused by ACK reordering */
1864 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1865 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1866 					continue;
1867 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1868 			}
1869 
1870 			NET_INC_STATS(sock_net(sk), mib_idx);
1871 			if (i == 0)
1872 				first_sack_index = -1;
1873 			continue;
1874 		}
1875 
1876 		/* Ignore very old stuff early */
1877 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1878 			if (i == 0)
1879 				first_sack_index = -1;
1880 			continue;
1881 		}
1882 
1883 		used_sacks++;
1884 	}
1885 
1886 	/* order SACK blocks to allow in order walk of the retrans queue */
1887 	for (i = used_sacks - 1; i > 0; i--) {
1888 		for (j = 0; j < i; j++) {
1889 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1890 				swap(sp[j], sp[j + 1]);
1891 
1892 				/* Track where the first SACK block goes to */
1893 				if (j == first_sack_index)
1894 					first_sack_index = j + 1;
1895 			}
1896 		}
1897 	}
1898 
1899 	state->mss_now = tcp_current_mss(sk);
1900 	skb = NULL;
1901 	i = 0;
1902 
1903 	if (!tp->sacked_out) {
1904 		/* It's already past, so skip checking against it */
1905 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1906 	} else {
1907 		cache = tp->recv_sack_cache;
1908 		/* Skip empty blocks in at head of the cache */
1909 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1910 		       !cache->end_seq)
1911 			cache++;
1912 	}
1913 
1914 	while (i < used_sacks) {
1915 		u32 start_seq = sp[i].start_seq;
1916 		u32 end_seq = sp[i].end_seq;
1917 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1918 		struct tcp_sack_block *next_dup = NULL;
1919 
1920 		if (found_dup_sack && ((i + 1) == first_sack_index))
1921 			next_dup = &sp[i + 1];
1922 
1923 		/* Skip too early cached blocks */
1924 		while (tcp_sack_cache_ok(tp, cache) &&
1925 		       !before(start_seq, cache->end_seq))
1926 			cache++;
1927 
1928 		/* Can skip some work by looking recv_sack_cache? */
1929 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1930 		    after(end_seq, cache->start_seq)) {
1931 
1932 			/* Head todo? */
1933 			if (before(start_seq, cache->start_seq)) {
1934 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1935 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1936 						       state,
1937 						       start_seq,
1938 						       cache->start_seq,
1939 						       dup_sack);
1940 			}
1941 
1942 			/* Rest of the block already fully processed? */
1943 			if (!after(end_seq, cache->end_seq))
1944 				goto advance_sp;
1945 
1946 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1947 						       state,
1948 						       cache->end_seq);
1949 
1950 			/* ...tail remains todo... */
1951 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1952 				/* ...but better entrypoint exists! */
1953 				skb = tcp_highest_sack(sk);
1954 				if (!skb)
1955 					break;
1956 				cache++;
1957 				goto walk;
1958 			}
1959 
1960 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1961 			/* Check overlap against next cached too (past this one already) */
1962 			cache++;
1963 			continue;
1964 		}
1965 
1966 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1967 			skb = tcp_highest_sack(sk);
1968 			if (!skb)
1969 				break;
1970 		}
1971 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1972 
1973 walk:
1974 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1975 				       start_seq, end_seq, dup_sack);
1976 
1977 advance_sp:
1978 		i++;
1979 	}
1980 
1981 	/* Clear the head of the cache sack blocks so we can skip it next time */
1982 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1983 		tp->recv_sack_cache[i].start_seq = 0;
1984 		tp->recv_sack_cache[i].end_seq = 0;
1985 	}
1986 	for (j = 0; j < used_sacks; j++)
1987 		tp->recv_sack_cache[i++] = sp[j];
1988 
1989 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1990 		tcp_check_sack_reordering(sk, state->reord, 0);
1991 
1992 	tcp_verify_left_out(tp);
1993 out:
1994 
1995 #if FASTRETRANS_DEBUG > 0
1996 	WARN_ON((int)tp->sacked_out < 0);
1997 	WARN_ON((int)tp->lost_out < 0);
1998 	WARN_ON((int)tp->retrans_out < 0);
1999 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2000 #endif
2001 	return state->flag;
2002 }
2003 
2004 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2005  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2006  */
2007 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2008 {
2009 	u32 holes;
2010 
2011 	holes = max(tp->lost_out, 1U);
2012 	holes = min(holes, tp->packets_out);
2013 
2014 	if ((tp->sacked_out + holes) > tp->packets_out) {
2015 		tp->sacked_out = tp->packets_out - holes;
2016 		return true;
2017 	}
2018 	return false;
2019 }
2020 
2021 /* If we receive more dupacks than we expected counting segments
2022  * in assumption of absent reordering, interpret this as reordering.
2023  * The only another reason could be bug in receiver TCP.
2024  */
2025 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2026 {
2027 	struct tcp_sock *tp = tcp_sk(sk);
2028 
2029 	if (!tcp_limit_reno_sacked(tp))
2030 		return;
2031 
2032 	tp->reordering = min_t(u32, tp->packets_out + addend,
2033 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
2034 	tp->reord_seen++;
2035 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2036 }
2037 
2038 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2039 
2040 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2041 {
2042 	if (num_dupack) {
2043 		struct tcp_sock *tp = tcp_sk(sk);
2044 		u32 prior_sacked = tp->sacked_out;
2045 		s32 delivered;
2046 
2047 		tp->sacked_out += num_dupack;
2048 		tcp_check_reno_reordering(sk, 0);
2049 		delivered = tp->sacked_out - prior_sacked;
2050 		if (delivered > 0)
2051 			tcp_count_delivered(tp, delivered, ece_ack);
2052 		tcp_verify_left_out(tp);
2053 	}
2054 }
2055 
2056 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2057 
2058 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2059 {
2060 	struct tcp_sock *tp = tcp_sk(sk);
2061 
2062 	if (acked > 0) {
2063 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2064 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2065 				    ece_ack);
2066 		if (acked - 1 >= tp->sacked_out)
2067 			tp->sacked_out = 0;
2068 		else
2069 			tp->sacked_out -= acked - 1;
2070 	}
2071 	tcp_check_reno_reordering(sk, acked);
2072 	tcp_verify_left_out(tp);
2073 }
2074 
2075 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2076 {
2077 	tp->sacked_out = 0;
2078 }
2079 
2080 void tcp_clear_retrans(struct tcp_sock *tp)
2081 {
2082 	tp->retrans_out = 0;
2083 	tp->lost_out = 0;
2084 	tp->undo_marker = 0;
2085 	tp->undo_retrans = -1;
2086 	tp->sacked_out = 0;
2087 }
2088 
2089 static inline void tcp_init_undo(struct tcp_sock *tp)
2090 {
2091 	tp->undo_marker = tp->snd_una;
2092 	/* Retransmission still in flight may cause DSACKs later. */
2093 	tp->undo_retrans = tp->retrans_out ? : -1;
2094 }
2095 
2096 static bool tcp_is_rack(const struct sock *sk)
2097 {
2098 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2099 }
2100 
2101 /* If we detect SACK reneging, forget all SACK information
2102  * and reset tags completely, otherwise preserve SACKs. If receiver
2103  * dropped its ofo queue, we will know this due to reneging detection.
2104  */
2105 static void tcp_timeout_mark_lost(struct sock *sk)
2106 {
2107 	struct tcp_sock *tp = tcp_sk(sk);
2108 	struct sk_buff *skb, *head;
2109 	bool is_reneg;			/* is receiver reneging on SACKs? */
2110 
2111 	head = tcp_rtx_queue_head(sk);
2112 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2113 	if (is_reneg) {
2114 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2115 		tp->sacked_out = 0;
2116 		/* Mark SACK reneging until we recover from this loss event. */
2117 		tp->is_sack_reneg = 1;
2118 	} else if (tcp_is_reno(tp)) {
2119 		tcp_reset_reno_sack(tp);
2120 	}
2121 
2122 	skb = head;
2123 	skb_rbtree_walk_from(skb) {
2124 		if (is_reneg)
2125 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2126 		else if (tcp_is_rack(sk) && skb != head &&
2127 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2128 			continue; /* Don't mark recently sent ones lost yet */
2129 		tcp_mark_skb_lost(sk, skb);
2130 	}
2131 	tcp_verify_left_out(tp);
2132 	tcp_clear_all_retrans_hints(tp);
2133 }
2134 
2135 /* Enter Loss state. */
2136 void tcp_enter_loss(struct sock *sk)
2137 {
2138 	const struct inet_connection_sock *icsk = inet_csk(sk);
2139 	struct tcp_sock *tp = tcp_sk(sk);
2140 	struct net *net = sock_net(sk);
2141 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2142 	u8 reordering;
2143 
2144 	tcp_timeout_mark_lost(sk);
2145 
2146 	/* Reduce ssthresh if it has not yet been made inside this window. */
2147 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2148 	    !after(tp->high_seq, tp->snd_una) ||
2149 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2150 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2151 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2152 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2153 		tcp_ca_event(sk, CA_EVENT_LOSS);
2154 		tcp_init_undo(tp);
2155 	}
2156 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2157 	tp->snd_cwnd_cnt   = 0;
2158 	tp->snd_cwnd_stamp = tcp_jiffies32;
2159 
2160 	/* Timeout in disordered state after receiving substantial DUPACKs
2161 	 * suggests that the degree of reordering is over-estimated.
2162 	 */
2163 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2164 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2165 	    tp->sacked_out >= reordering)
2166 		tp->reordering = min_t(unsigned int, tp->reordering,
2167 				       reordering);
2168 
2169 	tcp_set_ca_state(sk, TCP_CA_Loss);
2170 	tp->high_seq = tp->snd_nxt;
2171 	tcp_ecn_queue_cwr(tp);
2172 
2173 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2174 	 * loss recovery is underway except recurring timeout(s) on
2175 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2176 	 */
2177 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2178 		   (new_recovery || icsk->icsk_retransmits) &&
2179 		   !inet_csk(sk)->icsk_mtup.probe_size;
2180 }
2181 
2182 /* If ACK arrived pointing to a remembered SACK, it means that our
2183  * remembered SACKs do not reflect real state of receiver i.e.
2184  * receiver _host_ is heavily congested (or buggy).
2185  *
2186  * To avoid big spurious retransmission bursts due to transient SACK
2187  * scoreboard oddities that look like reneging, we give the receiver a
2188  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2189  * restore sanity to the SACK scoreboard. If the apparent reneging
2190  * persists until this RTO then we'll clear the SACK scoreboard.
2191  */
2192 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2193 {
2194 	if (flag & FLAG_SACK_RENEGING) {
2195 		struct tcp_sock *tp = tcp_sk(sk);
2196 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2197 					  msecs_to_jiffies(10));
2198 
2199 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2200 					  delay, TCP_RTO_MAX);
2201 		return true;
2202 	}
2203 	return false;
2204 }
2205 
2206 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2207  * counter when SACK is enabled (without SACK, sacked_out is used for
2208  * that purpose).
2209  *
2210  * With reordering, holes may still be in flight, so RFC3517 recovery
2211  * uses pure sacked_out (total number of SACKed segments) even though
2212  * it violates the RFC that uses duplicate ACKs, often these are equal
2213  * but when e.g. out-of-window ACKs or packet duplication occurs,
2214  * they differ. Since neither occurs due to loss, TCP should really
2215  * ignore them.
2216  */
2217 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2218 {
2219 	return tp->sacked_out + 1;
2220 }
2221 
2222 /* Linux NewReno/SACK/ECN state machine.
2223  * --------------------------------------
2224  *
2225  * "Open"	Normal state, no dubious events, fast path.
2226  * "Disorder"   In all the respects it is "Open",
2227  *		but requires a bit more attention. It is entered when
2228  *		we see some SACKs or dupacks. It is split of "Open"
2229  *		mainly to move some processing from fast path to slow one.
2230  * "CWR"	CWND was reduced due to some Congestion Notification event.
2231  *		It can be ECN, ICMP source quench, local device congestion.
2232  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2233  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2234  *
2235  * tcp_fastretrans_alert() is entered:
2236  * - each incoming ACK, if state is not "Open"
2237  * - when arrived ACK is unusual, namely:
2238  *	* SACK
2239  *	* Duplicate ACK.
2240  *	* ECN ECE.
2241  *
2242  * Counting packets in flight is pretty simple.
2243  *
2244  *	in_flight = packets_out - left_out + retrans_out
2245  *
2246  *	packets_out is SND.NXT-SND.UNA counted in packets.
2247  *
2248  *	retrans_out is number of retransmitted segments.
2249  *
2250  *	left_out is number of segments left network, but not ACKed yet.
2251  *
2252  *		left_out = sacked_out + lost_out
2253  *
2254  *     sacked_out: Packets, which arrived to receiver out of order
2255  *		   and hence not ACKed. With SACKs this number is simply
2256  *		   amount of SACKed data. Even without SACKs
2257  *		   it is easy to give pretty reliable estimate of this number,
2258  *		   counting duplicate ACKs.
2259  *
2260  *       lost_out: Packets lost by network. TCP has no explicit
2261  *		   "loss notification" feedback from network (for now).
2262  *		   It means that this number can be only _guessed_.
2263  *		   Actually, it is the heuristics to predict lossage that
2264  *		   distinguishes different algorithms.
2265  *
2266  *	F.e. after RTO, when all the queue is considered as lost,
2267  *	lost_out = packets_out and in_flight = retrans_out.
2268  *
2269  *		Essentially, we have now a few algorithms detecting
2270  *		lost packets.
2271  *
2272  *		If the receiver supports SACK:
2273  *
2274  *		RFC6675/3517: It is the conventional algorithm. A packet is
2275  *		considered lost if the number of higher sequence packets
2276  *		SACKed is greater than or equal the DUPACK thoreshold
2277  *		(reordering). This is implemented in tcp_mark_head_lost and
2278  *		tcp_update_scoreboard.
2279  *
2280  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2281  *		(2017-) that checks timing instead of counting DUPACKs.
2282  *		Essentially a packet is considered lost if it's not S/ACKed
2283  *		after RTT + reordering_window, where both metrics are
2284  *		dynamically measured and adjusted. This is implemented in
2285  *		tcp_rack_mark_lost.
2286  *
2287  *		If the receiver does not support SACK:
2288  *
2289  *		NewReno (RFC6582): in Recovery we assume that one segment
2290  *		is lost (classic Reno). While we are in Recovery and
2291  *		a partial ACK arrives, we assume that one more packet
2292  *		is lost (NewReno). This heuristics are the same in NewReno
2293  *		and SACK.
2294  *
2295  * Really tricky (and requiring careful tuning) part of algorithm
2296  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2297  * The first determines the moment _when_ we should reduce CWND and,
2298  * hence, slow down forward transmission. In fact, it determines the moment
2299  * when we decide that hole is caused by loss, rather than by a reorder.
2300  *
2301  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2302  * holes, caused by lost packets.
2303  *
2304  * And the most logically complicated part of algorithm is undo
2305  * heuristics. We detect false retransmits due to both too early
2306  * fast retransmit (reordering) and underestimated RTO, analyzing
2307  * timestamps and D-SACKs. When we detect that some segments were
2308  * retransmitted by mistake and CWND reduction was wrong, we undo
2309  * window reduction and abort recovery phase. This logic is hidden
2310  * inside several functions named tcp_try_undo_<something>.
2311  */
2312 
2313 /* This function decides, when we should leave Disordered state
2314  * and enter Recovery phase, reducing congestion window.
2315  *
2316  * Main question: may we further continue forward transmission
2317  * with the same cwnd?
2318  */
2319 static bool tcp_time_to_recover(struct sock *sk, int flag)
2320 {
2321 	struct tcp_sock *tp = tcp_sk(sk);
2322 
2323 	/* Trick#1: The loss is proven. */
2324 	if (tp->lost_out)
2325 		return true;
2326 
2327 	/* Not-A-Trick#2 : Classic rule... */
2328 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2329 		return true;
2330 
2331 	return false;
2332 }
2333 
2334 /* Detect loss in event "A" above by marking head of queue up as lost.
2335  * For RFC3517 SACK, a segment is considered lost if it
2336  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2337  * the maximum SACKed segments to pass before reaching this limit.
2338  */
2339 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2340 {
2341 	struct tcp_sock *tp = tcp_sk(sk);
2342 	struct sk_buff *skb;
2343 	int cnt;
2344 	/* Use SACK to deduce losses of new sequences sent during recovery */
2345 	const u32 loss_high = tp->snd_nxt;
2346 
2347 	WARN_ON(packets > tp->packets_out);
2348 	skb = tp->lost_skb_hint;
2349 	if (skb) {
2350 		/* Head already handled? */
2351 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2352 			return;
2353 		cnt = tp->lost_cnt_hint;
2354 	} else {
2355 		skb = tcp_rtx_queue_head(sk);
2356 		cnt = 0;
2357 	}
2358 
2359 	skb_rbtree_walk_from(skb) {
2360 		/* TODO: do this better */
2361 		/* this is not the most efficient way to do this... */
2362 		tp->lost_skb_hint = skb;
2363 		tp->lost_cnt_hint = cnt;
2364 
2365 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2366 			break;
2367 
2368 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2369 			cnt += tcp_skb_pcount(skb);
2370 
2371 		if (cnt > packets)
2372 			break;
2373 
2374 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2375 			tcp_mark_skb_lost(sk, skb);
2376 
2377 		if (mark_head)
2378 			break;
2379 	}
2380 	tcp_verify_left_out(tp);
2381 }
2382 
2383 /* Account newly detected lost packet(s) */
2384 
2385 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2386 {
2387 	struct tcp_sock *tp = tcp_sk(sk);
2388 
2389 	if (tcp_is_sack(tp)) {
2390 		int sacked_upto = tp->sacked_out - tp->reordering;
2391 		if (sacked_upto >= 0)
2392 			tcp_mark_head_lost(sk, sacked_upto, 0);
2393 		else if (fast_rexmit)
2394 			tcp_mark_head_lost(sk, 1, 1);
2395 	}
2396 }
2397 
2398 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2399 {
2400 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2401 	       before(tp->rx_opt.rcv_tsecr, when);
2402 }
2403 
2404 /* skb is spurious retransmitted if the returned timestamp echo
2405  * reply is prior to the skb transmission time
2406  */
2407 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2408 				     const struct sk_buff *skb)
2409 {
2410 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2411 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2412 }
2413 
2414 /* Nothing was retransmitted or returned timestamp is less
2415  * than timestamp of the first retransmission.
2416  */
2417 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2418 {
2419 	return tp->retrans_stamp &&
2420 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2421 }
2422 
2423 /* Undo procedures. */
2424 
2425 /* We can clear retrans_stamp when there are no retransmissions in the
2426  * window. It would seem that it is trivially available for us in
2427  * tp->retrans_out, however, that kind of assumptions doesn't consider
2428  * what will happen if errors occur when sending retransmission for the
2429  * second time. ...It could the that such segment has only
2430  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2431  * the head skb is enough except for some reneging corner cases that
2432  * are not worth the effort.
2433  *
2434  * Main reason for all this complexity is the fact that connection dying
2435  * time now depends on the validity of the retrans_stamp, in particular,
2436  * that successive retransmissions of a segment must not advance
2437  * retrans_stamp under any conditions.
2438  */
2439 static bool tcp_any_retrans_done(const struct sock *sk)
2440 {
2441 	const struct tcp_sock *tp = tcp_sk(sk);
2442 	struct sk_buff *skb;
2443 
2444 	if (tp->retrans_out)
2445 		return true;
2446 
2447 	skb = tcp_rtx_queue_head(sk);
2448 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2449 		return true;
2450 
2451 	return false;
2452 }
2453 
2454 static void DBGUNDO(struct sock *sk, const char *msg)
2455 {
2456 #if FASTRETRANS_DEBUG > 1
2457 	struct tcp_sock *tp = tcp_sk(sk);
2458 	struct inet_sock *inet = inet_sk(sk);
2459 
2460 	if (sk->sk_family == AF_INET) {
2461 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2462 			 msg,
2463 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2464 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2465 			 tp->snd_ssthresh, tp->prior_ssthresh,
2466 			 tp->packets_out);
2467 	}
2468 #if IS_ENABLED(CONFIG_IPV6)
2469 	else if (sk->sk_family == AF_INET6) {
2470 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2471 			 msg,
2472 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2473 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2474 			 tp->snd_ssthresh, tp->prior_ssthresh,
2475 			 tp->packets_out);
2476 	}
2477 #endif
2478 #endif
2479 }
2480 
2481 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2482 {
2483 	struct tcp_sock *tp = tcp_sk(sk);
2484 
2485 	if (unmark_loss) {
2486 		struct sk_buff *skb;
2487 
2488 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2489 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2490 		}
2491 		tp->lost_out = 0;
2492 		tcp_clear_all_retrans_hints(tp);
2493 	}
2494 
2495 	if (tp->prior_ssthresh) {
2496 		const struct inet_connection_sock *icsk = inet_csk(sk);
2497 
2498 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2499 
2500 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2501 			tp->snd_ssthresh = tp->prior_ssthresh;
2502 			tcp_ecn_withdraw_cwr(tp);
2503 		}
2504 	}
2505 	tp->snd_cwnd_stamp = tcp_jiffies32;
2506 	tp->undo_marker = 0;
2507 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2508 }
2509 
2510 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2511 {
2512 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2513 }
2514 
2515 /* People celebrate: "We love our President!" */
2516 static bool tcp_try_undo_recovery(struct sock *sk)
2517 {
2518 	struct tcp_sock *tp = tcp_sk(sk);
2519 
2520 	if (tcp_may_undo(tp)) {
2521 		int mib_idx;
2522 
2523 		/* Happy end! We did not retransmit anything
2524 		 * or our original transmission succeeded.
2525 		 */
2526 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2527 		tcp_undo_cwnd_reduction(sk, false);
2528 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2529 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2530 		else
2531 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2532 
2533 		NET_INC_STATS(sock_net(sk), mib_idx);
2534 	} else if (tp->rack.reo_wnd_persist) {
2535 		tp->rack.reo_wnd_persist--;
2536 	}
2537 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2538 		/* Hold old state until something *above* high_seq
2539 		 * is ACKed. For Reno it is MUST to prevent false
2540 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2541 		if (!tcp_any_retrans_done(sk))
2542 			tp->retrans_stamp = 0;
2543 		return true;
2544 	}
2545 	tcp_set_ca_state(sk, TCP_CA_Open);
2546 	tp->is_sack_reneg = 0;
2547 	return false;
2548 }
2549 
2550 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2551 static bool tcp_try_undo_dsack(struct sock *sk)
2552 {
2553 	struct tcp_sock *tp = tcp_sk(sk);
2554 
2555 	if (tp->undo_marker && !tp->undo_retrans) {
2556 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2557 					       tp->rack.reo_wnd_persist + 1);
2558 		DBGUNDO(sk, "D-SACK");
2559 		tcp_undo_cwnd_reduction(sk, false);
2560 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2561 		return true;
2562 	}
2563 	return false;
2564 }
2565 
2566 /* Undo during loss recovery after partial ACK or using F-RTO. */
2567 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 
2571 	if (frto_undo || tcp_may_undo(tp)) {
2572 		tcp_undo_cwnd_reduction(sk, true);
2573 
2574 		DBGUNDO(sk, "partial loss");
2575 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2576 		if (frto_undo)
2577 			NET_INC_STATS(sock_net(sk),
2578 					LINUX_MIB_TCPSPURIOUSRTOS);
2579 		inet_csk(sk)->icsk_retransmits = 0;
2580 		if (frto_undo || tcp_is_sack(tp)) {
2581 			tcp_set_ca_state(sk, TCP_CA_Open);
2582 			tp->is_sack_reneg = 0;
2583 		}
2584 		return true;
2585 	}
2586 	return false;
2587 }
2588 
2589 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2590  * It computes the number of packets to send (sndcnt) based on packets newly
2591  * delivered:
2592  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2593  *	cwnd reductions across a full RTT.
2594  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2595  *      But when SND_UNA is acked without further losses,
2596  *      slow starts cwnd up to ssthresh to speed up the recovery.
2597  */
2598 static void tcp_init_cwnd_reduction(struct sock *sk)
2599 {
2600 	struct tcp_sock *tp = tcp_sk(sk);
2601 
2602 	tp->high_seq = tp->snd_nxt;
2603 	tp->tlp_high_seq = 0;
2604 	tp->snd_cwnd_cnt = 0;
2605 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2606 	tp->prr_delivered = 0;
2607 	tp->prr_out = 0;
2608 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2609 	tcp_ecn_queue_cwr(tp);
2610 }
2611 
2612 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2613 {
2614 	struct tcp_sock *tp = tcp_sk(sk);
2615 	int sndcnt = 0;
2616 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2617 
2618 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2619 		return;
2620 
2621 	tp->prr_delivered += newly_acked_sacked;
2622 	if (delta < 0) {
2623 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2624 			       tp->prior_cwnd - 1;
2625 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2626 	} else {
2627 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2628 			       newly_acked_sacked);
2629 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2630 			sndcnt++;
2631 		sndcnt = min(delta, sndcnt);
2632 	}
2633 	/* Force a fast retransmit upon entering fast recovery */
2634 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2635 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2636 }
2637 
2638 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2639 {
2640 	struct tcp_sock *tp = tcp_sk(sk);
2641 
2642 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2643 		return;
2644 
2645 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2646 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2647 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2648 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2649 		tp->snd_cwnd_stamp = tcp_jiffies32;
2650 	}
2651 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2652 }
2653 
2654 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2655 void tcp_enter_cwr(struct sock *sk)
2656 {
2657 	struct tcp_sock *tp = tcp_sk(sk);
2658 
2659 	tp->prior_ssthresh = 0;
2660 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2661 		tp->undo_marker = 0;
2662 		tcp_init_cwnd_reduction(sk);
2663 		tcp_set_ca_state(sk, TCP_CA_CWR);
2664 	}
2665 }
2666 EXPORT_SYMBOL(tcp_enter_cwr);
2667 
2668 static void tcp_try_keep_open(struct sock *sk)
2669 {
2670 	struct tcp_sock *tp = tcp_sk(sk);
2671 	int state = TCP_CA_Open;
2672 
2673 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2674 		state = TCP_CA_Disorder;
2675 
2676 	if (inet_csk(sk)->icsk_ca_state != state) {
2677 		tcp_set_ca_state(sk, state);
2678 		tp->high_seq = tp->snd_nxt;
2679 	}
2680 }
2681 
2682 static void tcp_try_to_open(struct sock *sk, int flag)
2683 {
2684 	struct tcp_sock *tp = tcp_sk(sk);
2685 
2686 	tcp_verify_left_out(tp);
2687 
2688 	if (!tcp_any_retrans_done(sk))
2689 		tp->retrans_stamp = 0;
2690 
2691 	if (flag & FLAG_ECE)
2692 		tcp_enter_cwr(sk);
2693 
2694 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2695 		tcp_try_keep_open(sk);
2696 	}
2697 }
2698 
2699 static void tcp_mtup_probe_failed(struct sock *sk)
2700 {
2701 	struct inet_connection_sock *icsk = inet_csk(sk);
2702 
2703 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2704 	icsk->icsk_mtup.probe_size = 0;
2705 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2706 }
2707 
2708 static void tcp_mtup_probe_success(struct sock *sk)
2709 {
2710 	struct tcp_sock *tp = tcp_sk(sk);
2711 	struct inet_connection_sock *icsk = inet_csk(sk);
2712 	u64 val;
2713 
2714 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2715 
2716 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2717 	do_div(val, icsk->icsk_mtup.probe_size);
2718 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2719 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2720 
2721 	tp->snd_cwnd_cnt = 0;
2722 	tp->snd_cwnd_stamp = tcp_jiffies32;
2723 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2724 
2725 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2726 	icsk->icsk_mtup.probe_size = 0;
2727 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2728 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2729 }
2730 
2731 /* Do a simple retransmit without using the backoff mechanisms in
2732  * tcp_timer. This is used for path mtu discovery.
2733  * The socket is already locked here.
2734  */
2735 void tcp_simple_retransmit(struct sock *sk)
2736 {
2737 	const struct inet_connection_sock *icsk = inet_csk(sk);
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 	struct sk_buff *skb;
2740 	int mss;
2741 
2742 	/* A fastopen SYN request is stored as two separate packets within
2743 	 * the retransmit queue, this is done by tcp_send_syn_data().
2744 	 * As a result simply checking the MSS of the frames in the queue
2745 	 * will not work for the SYN packet.
2746 	 *
2747 	 * Us being here is an indication of a path MTU issue so we can
2748 	 * assume that the fastopen SYN was lost and just mark all the
2749 	 * frames in the retransmit queue as lost. We will use an MSS of
2750 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2751 	 */
2752 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2753 		mss = -1;
2754 	else
2755 		mss = tcp_current_mss(sk);
2756 
2757 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2758 		if (tcp_skb_seglen(skb) > mss)
2759 			tcp_mark_skb_lost(sk, skb);
2760 	}
2761 
2762 	tcp_clear_retrans_hints_partial(tp);
2763 
2764 	if (!tp->lost_out)
2765 		return;
2766 
2767 	if (tcp_is_reno(tp))
2768 		tcp_limit_reno_sacked(tp);
2769 
2770 	tcp_verify_left_out(tp);
2771 
2772 	/* Don't muck with the congestion window here.
2773 	 * Reason is that we do not increase amount of _data_
2774 	 * in network, but units changed and effective
2775 	 * cwnd/ssthresh really reduced now.
2776 	 */
2777 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2778 		tp->high_seq = tp->snd_nxt;
2779 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2780 		tp->prior_ssthresh = 0;
2781 		tp->undo_marker = 0;
2782 		tcp_set_ca_state(sk, TCP_CA_Loss);
2783 	}
2784 	tcp_xmit_retransmit_queue(sk);
2785 }
2786 EXPORT_SYMBOL(tcp_simple_retransmit);
2787 
2788 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2789 {
2790 	struct tcp_sock *tp = tcp_sk(sk);
2791 	int mib_idx;
2792 
2793 	if (tcp_is_reno(tp))
2794 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2795 	else
2796 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2797 
2798 	NET_INC_STATS(sock_net(sk), mib_idx);
2799 
2800 	tp->prior_ssthresh = 0;
2801 	tcp_init_undo(tp);
2802 
2803 	if (!tcp_in_cwnd_reduction(sk)) {
2804 		if (!ece_ack)
2805 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2806 		tcp_init_cwnd_reduction(sk);
2807 	}
2808 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2809 }
2810 
2811 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2812  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2813  */
2814 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2815 			     int *rexmit)
2816 {
2817 	struct tcp_sock *tp = tcp_sk(sk);
2818 	bool recovered = !before(tp->snd_una, tp->high_seq);
2819 
2820 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2821 	    tcp_try_undo_loss(sk, false))
2822 		return;
2823 
2824 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2825 		/* Step 3.b. A timeout is spurious if not all data are
2826 		 * lost, i.e., never-retransmitted data are (s)acked.
2827 		 */
2828 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2829 		    tcp_try_undo_loss(sk, true))
2830 			return;
2831 
2832 		if (after(tp->snd_nxt, tp->high_seq)) {
2833 			if (flag & FLAG_DATA_SACKED || num_dupack)
2834 				tp->frto = 0; /* Step 3.a. loss was real */
2835 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2836 			tp->high_seq = tp->snd_nxt;
2837 			/* Step 2.b. Try send new data (but deferred until cwnd
2838 			 * is updated in tcp_ack()). Otherwise fall back to
2839 			 * the conventional recovery.
2840 			 */
2841 			if (!tcp_write_queue_empty(sk) &&
2842 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2843 				*rexmit = REXMIT_NEW;
2844 				return;
2845 			}
2846 			tp->frto = 0;
2847 		}
2848 	}
2849 
2850 	if (recovered) {
2851 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2852 		tcp_try_undo_recovery(sk);
2853 		return;
2854 	}
2855 	if (tcp_is_reno(tp)) {
2856 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2857 		 * delivered. Lower inflight to clock out (re)tranmissions.
2858 		 */
2859 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2860 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2861 		else if (flag & FLAG_SND_UNA_ADVANCED)
2862 			tcp_reset_reno_sack(tp);
2863 	}
2864 	*rexmit = REXMIT_LOST;
2865 }
2866 
2867 static bool tcp_force_fast_retransmit(struct sock *sk)
2868 {
2869 	struct tcp_sock *tp = tcp_sk(sk);
2870 
2871 	return after(tcp_highest_sack_seq(tp),
2872 		     tp->snd_una + tp->reordering * tp->mss_cache);
2873 }
2874 
2875 /* Undo during fast recovery after partial ACK. */
2876 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2877 				 bool *do_lost)
2878 {
2879 	struct tcp_sock *tp = tcp_sk(sk);
2880 
2881 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2882 		/* Plain luck! Hole if filled with delayed
2883 		 * packet, rather than with a retransmit. Check reordering.
2884 		 */
2885 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2886 
2887 		/* We are getting evidence that the reordering degree is higher
2888 		 * than we realized. If there are no retransmits out then we
2889 		 * can undo. Otherwise we clock out new packets but do not
2890 		 * mark more packets lost or retransmit more.
2891 		 */
2892 		if (tp->retrans_out)
2893 			return true;
2894 
2895 		if (!tcp_any_retrans_done(sk))
2896 			tp->retrans_stamp = 0;
2897 
2898 		DBGUNDO(sk, "partial recovery");
2899 		tcp_undo_cwnd_reduction(sk, true);
2900 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2901 		tcp_try_keep_open(sk);
2902 	} else {
2903 		/* Partial ACK arrived. Force fast retransmit. */
2904 		*do_lost = tcp_force_fast_retransmit(sk);
2905 	}
2906 	return false;
2907 }
2908 
2909 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2910 {
2911 	struct tcp_sock *tp = tcp_sk(sk);
2912 
2913 	if (tcp_rtx_queue_empty(sk))
2914 		return;
2915 
2916 	if (unlikely(tcp_is_reno(tp))) {
2917 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2918 	} else if (tcp_is_rack(sk)) {
2919 		u32 prior_retrans = tp->retrans_out;
2920 
2921 		if (tcp_rack_mark_lost(sk))
2922 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2923 		if (prior_retrans > tp->retrans_out)
2924 			*ack_flag |= FLAG_LOST_RETRANS;
2925 	}
2926 }
2927 
2928 /* Process an event, which can update packets-in-flight not trivially.
2929  * Main goal of this function is to calculate new estimate for left_out,
2930  * taking into account both packets sitting in receiver's buffer and
2931  * packets lost by network.
2932  *
2933  * Besides that it updates the congestion state when packet loss or ECN
2934  * is detected. But it does not reduce the cwnd, it is done by the
2935  * congestion control later.
2936  *
2937  * It does _not_ decide what to send, it is made in function
2938  * tcp_xmit_retransmit_queue().
2939  */
2940 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2941 				  int num_dupack, int *ack_flag, int *rexmit)
2942 {
2943 	struct inet_connection_sock *icsk = inet_csk(sk);
2944 	struct tcp_sock *tp = tcp_sk(sk);
2945 	int fast_rexmit = 0, flag = *ack_flag;
2946 	bool ece_ack = flag & FLAG_ECE;
2947 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2948 				      tcp_force_fast_retransmit(sk));
2949 
2950 	if (!tp->packets_out && tp->sacked_out)
2951 		tp->sacked_out = 0;
2952 
2953 	/* Now state machine starts.
2954 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2955 	if (ece_ack)
2956 		tp->prior_ssthresh = 0;
2957 
2958 	/* B. In all the states check for reneging SACKs. */
2959 	if (tcp_check_sack_reneging(sk, flag))
2960 		return;
2961 
2962 	/* C. Check consistency of the current state. */
2963 	tcp_verify_left_out(tp);
2964 
2965 	/* D. Check state exit conditions. State can be terminated
2966 	 *    when high_seq is ACKed. */
2967 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2968 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2969 		tp->retrans_stamp = 0;
2970 	} else if (!before(tp->snd_una, tp->high_seq)) {
2971 		switch (icsk->icsk_ca_state) {
2972 		case TCP_CA_CWR:
2973 			/* CWR is to be held something *above* high_seq
2974 			 * is ACKed for CWR bit to reach receiver. */
2975 			if (tp->snd_una != tp->high_seq) {
2976 				tcp_end_cwnd_reduction(sk);
2977 				tcp_set_ca_state(sk, TCP_CA_Open);
2978 			}
2979 			break;
2980 
2981 		case TCP_CA_Recovery:
2982 			if (tcp_is_reno(tp))
2983 				tcp_reset_reno_sack(tp);
2984 			if (tcp_try_undo_recovery(sk))
2985 				return;
2986 			tcp_end_cwnd_reduction(sk);
2987 			break;
2988 		}
2989 	}
2990 
2991 	/* E. Process state. */
2992 	switch (icsk->icsk_ca_state) {
2993 	case TCP_CA_Recovery:
2994 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2995 			if (tcp_is_reno(tp))
2996 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2997 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2998 			return;
2999 
3000 		if (tcp_try_undo_dsack(sk))
3001 			tcp_try_keep_open(sk);
3002 
3003 		tcp_identify_packet_loss(sk, ack_flag);
3004 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3005 			if (!tcp_time_to_recover(sk, flag))
3006 				return;
3007 			/* Undo reverts the recovery state. If loss is evident,
3008 			 * starts a new recovery (e.g. reordering then loss);
3009 			 */
3010 			tcp_enter_recovery(sk, ece_ack);
3011 		}
3012 		break;
3013 	case TCP_CA_Loss:
3014 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3015 		tcp_identify_packet_loss(sk, ack_flag);
3016 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3017 		      (*ack_flag & FLAG_LOST_RETRANS)))
3018 			return;
3019 		/* Change state if cwnd is undone or retransmits are lost */
3020 		fallthrough;
3021 	default:
3022 		if (tcp_is_reno(tp)) {
3023 			if (flag & FLAG_SND_UNA_ADVANCED)
3024 				tcp_reset_reno_sack(tp);
3025 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3026 		}
3027 
3028 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3029 			tcp_try_undo_dsack(sk);
3030 
3031 		tcp_identify_packet_loss(sk, ack_flag);
3032 		if (!tcp_time_to_recover(sk, flag)) {
3033 			tcp_try_to_open(sk, flag);
3034 			return;
3035 		}
3036 
3037 		/* MTU probe failure: don't reduce cwnd */
3038 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3039 		    icsk->icsk_mtup.probe_size &&
3040 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3041 			tcp_mtup_probe_failed(sk);
3042 			/* Restores the reduction we did in tcp_mtup_probe() */
3043 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3044 			tcp_simple_retransmit(sk);
3045 			return;
3046 		}
3047 
3048 		/* Otherwise enter Recovery state */
3049 		tcp_enter_recovery(sk, ece_ack);
3050 		fast_rexmit = 1;
3051 	}
3052 
3053 	if (!tcp_is_rack(sk) && do_lost)
3054 		tcp_update_scoreboard(sk, fast_rexmit);
3055 	*rexmit = REXMIT_LOST;
3056 }
3057 
3058 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3059 {
3060 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3061 	struct tcp_sock *tp = tcp_sk(sk);
3062 
3063 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3064 		/* If the remote keeps returning delayed ACKs, eventually
3065 		 * the min filter would pick it up and overestimate the
3066 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3067 		 */
3068 		return;
3069 	}
3070 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3071 			   rtt_us ? : jiffies_to_usecs(1));
3072 }
3073 
3074 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3075 			       long seq_rtt_us, long sack_rtt_us,
3076 			       long ca_rtt_us, struct rate_sample *rs)
3077 {
3078 	const struct tcp_sock *tp = tcp_sk(sk);
3079 
3080 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3081 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3082 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3083 	 * is acked (RFC6298).
3084 	 */
3085 	if (seq_rtt_us < 0)
3086 		seq_rtt_us = sack_rtt_us;
3087 
3088 	/* RTTM Rule: A TSecr value received in a segment is used to
3089 	 * update the averaged RTT measurement only if the segment
3090 	 * acknowledges some new data, i.e., only if it advances the
3091 	 * left edge of the send window.
3092 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3093 	 */
3094 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3095 	    flag & FLAG_ACKED) {
3096 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3097 
3098 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3099 			if (!delta)
3100 				delta = 1;
3101 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3102 			ca_rtt_us = seq_rtt_us;
3103 		}
3104 	}
3105 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3106 	if (seq_rtt_us < 0)
3107 		return false;
3108 
3109 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3110 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3111 	 * values will be skipped with the seq_rtt_us < 0 check above.
3112 	 */
3113 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3114 	tcp_rtt_estimator(sk, seq_rtt_us);
3115 	tcp_set_rto(sk);
3116 
3117 	/* RFC6298: only reset backoff on valid RTT measurement. */
3118 	inet_csk(sk)->icsk_backoff = 0;
3119 	return true;
3120 }
3121 
3122 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3123 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3124 {
3125 	struct rate_sample rs;
3126 	long rtt_us = -1L;
3127 
3128 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3129 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3130 
3131 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3132 }
3133 
3134 
3135 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3136 {
3137 	const struct inet_connection_sock *icsk = inet_csk(sk);
3138 
3139 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3140 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3141 }
3142 
3143 /* Restart timer after forward progress on connection.
3144  * RFC2988 recommends to restart timer to now+rto.
3145  */
3146 void tcp_rearm_rto(struct sock *sk)
3147 {
3148 	const struct inet_connection_sock *icsk = inet_csk(sk);
3149 	struct tcp_sock *tp = tcp_sk(sk);
3150 
3151 	/* If the retrans timer is currently being used by Fast Open
3152 	 * for SYN-ACK retrans purpose, stay put.
3153 	 */
3154 	if (rcu_access_pointer(tp->fastopen_rsk))
3155 		return;
3156 
3157 	if (!tp->packets_out) {
3158 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3159 	} else {
3160 		u32 rto = inet_csk(sk)->icsk_rto;
3161 		/* Offset the time elapsed after installing regular RTO */
3162 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3163 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3164 			s64 delta_us = tcp_rto_delta_us(sk);
3165 			/* delta_us may not be positive if the socket is locked
3166 			 * when the retrans timer fires and is rescheduled.
3167 			 */
3168 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3169 		}
3170 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3171 				     TCP_RTO_MAX);
3172 	}
3173 }
3174 
3175 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3176 static void tcp_set_xmit_timer(struct sock *sk)
3177 {
3178 	if (!tcp_schedule_loss_probe(sk, true))
3179 		tcp_rearm_rto(sk);
3180 }
3181 
3182 /* If we get here, the whole TSO packet has not been acked. */
3183 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3184 {
3185 	struct tcp_sock *tp = tcp_sk(sk);
3186 	u32 packets_acked;
3187 
3188 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3189 
3190 	packets_acked = tcp_skb_pcount(skb);
3191 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3192 		return 0;
3193 	packets_acked -= tcp_skb_pcount(skb);
3194 
3195 	if (packets_acked) {
3196 		BUG_ON(tcp_skb_pcount(skb) == 0);
3197 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3198 	}
3199 
3200 	return packets_acked;
3201 }
3202 
3203 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3204 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3205 {
3206 	const struct skb_shared_info *shinfo;
3207 
3208 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3209 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3210 		return;
3211 
3212 	shinfo = skb_shinfo(skb);
3213 	if (!before(shinfo->tskey, prior_snd_una) &&
3214 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3215 		tcp_skb_tsorted_save(skb) {
3216 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3217 		} tcp_skb_tsorted_restore(skb);
3218 	}
3219 }
3220 
3221 /* Remove acknowledged frames from the retransmission queue. If our packet
3222  * is before the ack sequence we can discard it as it's confirmed to have
3223  * arrived at the other end.
3224  */
3225 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3226 			       u32 prior_fack, u32 prior_snd_una,
3227 			       struct tcp_sacktag_state *sack, bool ece_ack)
3228 {
3229 	const struct inet_connection_sock *icsk = inet_csk(sk);
3230 	u64 first_ackt, last_ackt;
3231 	struct tcp_sock *tp = tcp_sk(sk);
3232 	u32 prior_sacked = tp->sacked_out;
3233 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3234 	struct sk_buff *skb, *next;
3235 	bool fully_acked = true;
3236 	long sack_rtt_us = -1L;
3237 	long seq_rtt_us = -1L;
3238 	long ca_rtt_us = -1L;
3239 	u32 pkts_acked = 0;
3240 	bool rtt_update;
3241 	int flag = 0;
3242 
3243 	first_ackt = 0;
3244 
3245 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3246 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3247 		const u32 start_seq = scb->seq;
3248 		u8 sacked = scb->sacked;
3249 		u32 acked_pcount;
3250 
3251 		/* Determine how many packets and what bytes were acked, tso and else */
3252 		if (after(scb->end_seq, tp->snd_una)) {
3253 			if (tcp_skb_pcount(skb) == 1 ||
3254 			    !after(tp->snd_una, scb->seq))
3255 				break;
3256 
3257 			acked_pcount = tcp_tso_acked(sk, skb);
3258 			if (!acked_pcount)
3259 				break;
3260 			fully_acked = false;
3261 		} else {
3262 			acked_pcount = tcp_skb_pcount(skb);
3263 		}
3264 
3265 		if (unlikely(sacked & TCPCB_RETRANS)) {
3266 			if (sacked & TCPCB_SACKED_RETRANS)
3267 				tp->retrans_out -= acked_pcount;
3268 			flag |= FLAG_RETRANS_DATA_ACKED;
3269 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3270 			last_ackt = tcp_skb_timestamp_us(skb);
3271 			WARN_ON_ONCE(last_ackt == 0);
3272 			if (!first_ackt)
3273 				first_ackt = last_ackt;
3274 
3275 			if (before(start_seq, reord))
3276 				reord = start_seq;
3277 			if (!after(scb->end_seq, tp->high_seq))
3278 				flag |= FLAG_ORIG_SACK_ACKED;
3279 		}
3280 
3281 		if (sacked & TCPCB_SACKED_ACKED) {
3282 			tp->sacked_out -= acked_pcount;
3283 		} else if (tcp_is_sack(tp)) {
3284 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3285 			if (!tcp_skb_spurious_retrans(tp, skb))
3286 				tcp_rack_advance(tp, sacked, scb->end_seq,
3287 						 tcp_skb_timestamp_us(skb));
3288 		}
3289 		if (sacked & TCPCB_LOST)
3290 			tp->lost_out -= acked_pcount;
3291 
3292 		tp->packets_out -= acked_pcount;
3293 		pkts_acked += acked_pcount;
3294 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3295 
3296 		/* Initial outgoing SYN's get put onto the write_queue
3297 		 * just like anything else we transmit.  It is not
3298 		 * true data, and if we misinform our callers that
3299 		 * this ACK acks real data, we will erroneously exit
3300 		 * connection startup slow start one packet too
3301 		 * quickly.  This is severely frowned upon behavior.
3302 		 */
3303 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3304 			flag |= FLAG_DATA_ACKED;
3305 		} else {
3306 			flag |= FLAG_SYN_ACKED;
3307 			tp->retrans_stamp = 0;
3308 		}
3309 
3310 		if (!fully_acked)
3311 			break;
3312 
3313 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3314 
3315 		next = skb_rb_next(skb);
3316 		if (unlikely(skb == tp->retransmit_skb_hint))
3317 			tp->retransmit_skb_hint = NULL;
3318 		if (unlikely(skb == tp->lost_skb_hint))
3319 			tp->lost_skb_hint = NULL;
3320 		tcp_highest_sack_replace(sk, skb, next);
3321 		tcp_rtx_queue_unlink_and_free(skb, sk);
3322 	}
3323 
3324 	if (!skb)
3325 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3326 
3327 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3328 		tp->snd_up = tp->snd_una;
3329 
3330 	if (skb) {
3331 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3332 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3333 			flag |= FLAG_SACK_RENEGING;
3334 	}
3335 
3336 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3337 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3338 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3339 
3340 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3341 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3342 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3343 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3344 			/* Conservatively mark a delayed ACK. It's typically
3345 			 * from a lone runt packet over the round trip to
3346 			 * a receiver w/o out-of-order or CE events.
3347 			 */
3348 			flag |= FLAG_ACK_MAYBE_DELAYED;
3349 		}
3350 	}
3351 	if (sack->first_sackt) {
3352 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3353 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3354 	}
3355 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3356 					ca_rtt_us, sack->rate);
3357 
3358 	if (flag & FLAG_ACKED) {
3359 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3360 		if (unlikely(icsk->icsk_mtup.probe_size &&
3361 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3362 			tcp_mtup_probe_success(sk);
3363 		}
3364 
3365 		if (tcp_is_reno(tp)) {
3366 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3367 
3368 			/* If any of the cumulatively ACKed segments was
3369 			 * retransmitted, non-SACK case cannot confirm that
3370 			 * progress was due to original transmission due to
3371 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3372 			 * the packets may have been never retransmitted.
3373 			 */
3374 			if (flag & FLAG_RETRANS_DATA_ACKED)
3375 				flag &= ~FLAG_ORIG_SACK_ACKED;
3376 		} else {
3377 			int delta;
3378 
3379 			/* Non-retransmitted hole got filled? That's reordering */
3380 			if (before(reord, prior_fack))
3381 				tcp_check_sack_reordering(sk, reord, 0);
3382 
3383 			delta = prior_sacked - tp->sacked_out;
3384 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3385 		}
3386 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3387 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3388 						    tcp_skb_timestamp_us(skb))) {
3389 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3390 		 * after when the head was last (re)transmitted. Otherwise the
3391 		 * timeout may continue to extend in loss recovery.
3392 		 */
3393 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3394 	}
3395 
3396 	if (icsk->icsk_ca_ops->pkts_acked) {
3397 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3398 					     .rtt_us = sack->rate->rtt_us };
3399 
3400 		sample.in_flight = tp->mss_cache *
3401 			(tp->delivered - sack->rate->prior_delivered);
3402 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3403 	}
3404 
3405 #if FASTRETRANS_DEBUG > 0
3406 	WARN_ON((int)tp->sacked_out < 0);
3407 	WARN_ON((int)tp->lost_out < 0);
3408 	WARN_ON((int)tp->retrans_out < 0);
3409 	if (!tp->packets_out && tcp_is_sack(tp)) {
3410 		icsk = inet_csk(sk);
3411 		if (tp->lost_out) {
3412 			pr_debug("Leak l=%u %d\n",
3413 				 tp->lost_out, icsk->icsk_ca_state);
3414 			tp->lost_out = 0;
3415 		}
3416 		if (tp->sacked_out) {
3417 			pr_debug("Leak s=%u %d\n",
3418 				 tp->sacked_out, icsk->icsk_ca_state);
3419 			tp->sacked_out = 0;
3420 		}
3421 		if (tp->retrans_out) {
3422 			pr_debug("Leak r=%u %d\n",
3423 				 tp->retrans_out, icsk->icsk_ca_state);
3424 			tp->retrans_out = 0;
3425 		}
3426 	}
3427 #endif
3428 	return flag;
3429 }
3430 
3431 static void tcp_ack_probe(struct sock *sk)
3432 {
3433 	struct inet_connection_sock *icsk = inet_csk(sk);
3434 	struct sk_buff *head = tcp_send_head(sk);
3435 	const struct tcp_sock *tp = tcp_sk(sk);
3436 
3437 	/* Was it a usable window open? */
3438 	if (!head)
3439 		return;
3440 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3441 		icsk->icsk_backoff = 0;
3442 		icsk->icsk_probes_tstamp = 0;
3443 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3444 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3445 		 * This function is not for random using!
3446 		 */
3447 	} else {
3448 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3449 
3450 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3451 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3452 	}
3453 }
3454 
3455 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3456 {
3457 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3458 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3459 }
3460 
3461 /* Decide wheather to run the increase function of congestion control. */
3462 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3463 {
3464 	/* If reordering is high then always grow cwnd whenever data is
3465 	 * delivered regardless of its ordering. Otherwise stay conservative
3466 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3467 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3468 	 * cwnd in tcp_fastretrans_alert() based on more states.
3469 	 */
3470 	if (tcp_sk(sk)->reordering >
3471 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3472 		return flag & FLAG_FORWARD_PROGRESS;
3473 
3474 	return flag & FLAG_DATA_ACKED;
3475 }
3476 
3477 /* The "ultimate" congestion control function that aims to replace the rigid
3478  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3479  * It's called toward the end of processing an ACK with precise rate
3480  * information. All transmission or retransmission are delayed afterwards.
3481  */
3482 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3483 			     int flag, const struct rate_sample *rs)
3484 {
3485 	const struct inet_connection_sock *icsk = inet_csk(sk);
3486 
3487 	if (icsk->icsk_ca_ops->cong_control) {
3488 		icsk->icsk_ca_ops->cong_control(sk, rs);
3489 		return;
3490 	}
3491 
3492 	if (tcp_in_cwnd_reduction(sk)) {
3493 		/* Reduce cwnd if state mandates */
3494 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3495 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3496 		/* Advance cwnd if state allows */
3497 		tcp_cong_avoid(sk, ack, acked_sacked);
3498 	}
3499 	tcp_update_pacing_rate(sk);
3500 }
3501 
3502 /* Check that window update is acceptable.
3503  * The function assumes that snd_una<=ack<=snd_next.
3504  */
3505 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3506 					const u32 ack, const u32 ack_seq,
3507 					const u32 nwin)
3508 {
3509 	return	after(ack, tp->snd_una) ||
3510 		after(ack_seq, tp->snd_wl1) ||
3511 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3512 }
3513 
3514 /* If we update tp->snd_una, also update tp->bytes_acked */
3515 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3516 {
3517 	u32 delta = ack - tp->snd_una;
3518 
3519 	sock_owned_by_me((struct sock *)tp);
3520 	tp->bytes_acked += delta;
3521 	tp->snd_una = ack;
3522 }
3523 
3524 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3525 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3526 {
3527 	u32 delta = seq - tp->rcv_nxt;
3528 
3529 	sock_owned_by_me((struct sock *)tp);
3530 	tp->bytes_received += delta;
3531 	WRITE_ONCE(tp->rcv_nxt, seq);
3532 }
3533 
3534 /* Update our send window.
3535  *
3536  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3537  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3538  */
3539 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3540 				 u32 ack_seq)
3541 {
3542 	struct tcp_sock *tp = tcp_sk(sk);
3543 	int flag = 0;
3544 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3545 
3546 	if (likely(!tcp_hdr(skb)->syn))
3547 		nwin <<= tp->rx_opt.snd_wscale;
3548 
3549 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3550 		flag |= FLAG_WIN_UPDATE;
3551 		tcp_update_wl(tp, ack_seq);
3552 
3553 		if (tp->snd_wnd != nwin) {
3554 			tp->snd_wnd = nwin;
3555 
3556 			/* Note, it is the only place, where
3557 			 * fast path is recovered for sending TCP.
3558 			 */
3559 			tp->pred_flags = 0;
3560 			tcp_fast_path_check(sk);
3561 
3562 			if (!tcp_write_queue_empty(sk))
3563 				tcp_slow_start_after_idle_check(sk);
3564 
3565 			if (nwin > tp->max_window) {
3566 				tp->max_window = nwin;
3567 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3568 			}
3569 		}
3570 	}
3571 
3572 	tcp_snd_una_update(tp, ack);
3573 
3574 	return flag;
3575 }
3576 
3577 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3578 				   u32 *last_oow_ack_time)
3579 {
3580 	if (*last_oow_ack_time) {
3581 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3582 
3583 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3584 			NET_INC_STATS(net, mib_idx);
3585 			return true;	/* rate-limited: don't send yet! */
3586 		}
3587 	}
3588 
3589 	*last_oow_ack_time = tcp_jiffies32;
3590 
3591 	return false;	/* not rate-limited: go ahead, send dupack now! */
3592 }
3593 
3594 /* Return true if we're currently rate-limiting out-of-window ACKs and
3595  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3596  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3597  * attacks that send repeated SYNs or ACKs for the same connection. To
3598  * do this, we do not send a duplicate SYNACK or ACK if the remote
3599  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3600  */
3601 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3602 			  int mib_idx, u32 *last_oow_ack_time)
3603 {
3604 	/* Data packets without SYNs are not likely part of an ACK loop. */
3605 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3606 	    !tcp_hdr(skb)->syn)
3607 		return false;
3608 
3609 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3610 }
3611 
3612 /* RFC 5961 7 [ACK Throttling] */
3613 static void tcp_send_challenge_ack(struct sock *sk)
3614 {
3615 	/* unprotected vars, we dont care of overwrites */
3616 	static u32 challenge_timestamp;
3617 	static unsigned int challenge_count;
3618 	struct tcp_sock *tp = tcp_sk(sk);
3619 	struct net *net = sock_net(sk);
3620 	u32 count, now;
3621 
3622 	/* First check our per-socket dupack rate limit. */
3623 	if (__tcp_oow_rate_limited(net,
3624 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3625 				   &tp->last_oow_ack_time))
3626 		return;
3627 
3628 	/* Then check host-wide RFC 5961 rate limit. */
3629 	now = jiffies / HZ;
3630 	if (now != challenge_timestamp) {
3631 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3632 		u32 half = (ack_limit + 1) >> 1;
3633 
3634 		challenge_timestamp = now;
3635 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3636 	}
3637 	count = READ_ONCE(challenge_count);
3638 	if (count > 0) {
3639 		WRITE_ONCE(challenge_count, count - 1);
3640 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3641 		tcp_send_ack(sk);
3642 	}
3643 }
3644 
3645 static void tcp_store_ts_recent(struct tcp_sock *tp)
3646 {
3647 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3648 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3649 }
3650 
3651 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3652 {
3653 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3654 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3655 		 * extra check below makes sure this can only happen
3656 		 * for pure ACK frames.  -DaveM
3657 		 *
3658 		 * Not only, also it occurs for expired timestamps.
3659 		 */
3660 
3661 		if (tcp_paws_check(&tp->rx_opt, 0))
3662 			tcp_store_ts_recent(tp);
3663 	}
3664 }
3665 
3666 /* This routine deals with acks during a TLP episode and ends an episode by
3667  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3668  */
3669 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3670 {
3671 	struct tcp_sock *tp = tcp_sk(sk);
3672 
3673 	if (before(ack, tp->tlp_high_seq))
3674 		return;
3675 
3676 	if (!tp->tlp_retrans) {
3677 		/* TLP of new data has been acknowledged */
3678 		tp->tlp_high_seq = 0;
3679 	} else if (flag & FLAG_DSACK_TLP) {
3680 		/* This DSACK means original and TLP probe arrived; no loss */
3681 		tp->tlp_high_seq = 0;
3682 	} else if (after(ack, tp->tlp_high_seq)) {
3683 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3684 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3685 		 */
3686 		tcp_init_cwnd_reduction(sk);
3687 		tcp_set_ca_state(sk, TCP_CA_CWR);
3688 		tcp_end_cwnd_reduction(sk);
3689 		tcp_try_keep_open(sk);
3690 		NET_INC_STATS(sock_net(sk),
3691 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3692 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3693 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3694 		/* Pure dupack: original and TLP probe arrived; no loss */
3695 		tp->tlp_high_seq = 0;
3696 	}
3697 }
3698 
3699 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3700 {
3701 	const struct inet_connection_sock *icsk = inet_csk(sk);
3702 
3703 	if (icsk->icsk_ca_ops->in_ack_event)
3704 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3705 }
3706 
3707 /* Congestion control has updated the cwnd already. So if we're in
3708  * loss recovery then now we do any new sends (for FRTO) or
3709  * retransmits (for CA_Loss or CA_recovery) that make sense.
3710  */
3711 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3712 {
3713 	struct tcp_sock *tp = tcp_sk(sk);
3714 
3715 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3716 		return;
3717 
3718 	if (unlikely(rexmit == REXMIT_NEW)) {
3719 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3720 					  TCP_NAGLE_OFF);
3721 		if (after(tp->snd_nxt, tp->high_seq))
3722 			return;
3723 		tp->frto = 0;
3724 	}
3725 	tcp_xmit_retransmit_queue(sk);
3726 }
3727 
3728 /* Returns the number of packets newly acked or sacked by the current ACK */
3729 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3730 {
3731 	const struct net *net = sock_net(sk);
3732 	struct tcp_sock *tp = tcp_sk(sk);
3733 	u32 delivered;
3734 
3735 	delivered = tp->delivered - prior_delivered;
3736 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3737 	if (flag & FLAG_ECE)
3738 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3739 
3740 	return delivered;
3741 }
3742 
3743 /* This routine deals with incoming acks, but not outgoing ones. */
3744 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3745 {
3746 	struct inet_connection_sock *icsk = inet_csk(sk);
3747 	struct tcp_sock *tp = tcp_sk(sk);
3748 	struct tcp_sacktag_state sack_state;
3749 	struct rate_sample rs = { .prior_delivered = 0 };
3750 	u32 prior_snd_una = tp->snd_una;
3751 	bool is_sack_reneg = tp->is_sack_reneg;
3752 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3753 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3754 	int num_dupack = 0;
3755 	int prior_packets = tp->packets_out;
3756 	u32 delivered = tp->delivered;
3757 	u32 lost = tp->lost;
3758 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3759 	u32 prior_fack;
3760 
3761 	sack_state.first_sackt = 0;
3762 	sack_state.rate = &rs;
3763 	sack_state.sack_delivered = 0;
3764 
3765 	/* We very likely will need to access rtx queue. */
3766 	prefetch(sk->tcp_rtx_queue.rb_node);
3767 
3768 	/* If the ack is older than previous acks
3769 	 * then we can probably ignore it.
3770 	 */
3771 	if (before(ack, prior_snd_una)) {
3772 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3773 		if (before(ack, prior_snd_una - tp->max_window)) {
3774 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3775 				tcp_send_challenge_ack(sk);
3776 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3777 		}
3778 		goto old_ack;
3779 	}
3780 
3781 	/* If the ack includes data we haven't sent yet, discard
3782 	 * this segment (RFC793 Section 3.9).
3783 	 */
3784 	if (after(ack, tp->snd_nxt))
3785 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3786 
3787 	if (after(ack, prior_snd_una)) {
3788 		flag |= FLAG_SND_UNA_ADVANCED;
3789 		icsk->icsk_retransmits = 0;
3790 
3791 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3792 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3793 			if (icsk->icsk_clean_acked)
3794 				icsk->icsk_clean_acked(sk, ack);
3795 #endif
3796 	}
3797 
3798 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3799 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3800 
3801 	/* ts_recent update must be made after we are sure that the packet
3802 	 * is in window.
3803 	 */
3804 	if (flag & FLAG_UPDATE_TS_RECENT)
3805 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3806 
3807 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3808 	    FLAG_SND_UNA_ADVANCED) {
3809 		/* Window is constant, pure forward advance.
3810 		 * No more checks are required.
3811 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3812 		 */
3813 		tcp_update_wl(tp, ack_seq);
3814 		tcp_snd_una_update(tp, ack);
3815 		flag |= FLAG_WIN_UPDATE;
3816 
3817 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3818 
3819 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3820 	} else {
3821 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3822 
3823 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3824 			flag |= FLAG_DATA;
3825 		else
3826 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3827 
3828 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3829 
3830 		if (TCP_SKB_CB(skb)->sacked)
3831 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3832 							&sack_state);
3833 
3834 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3835 			flag |= FLAG_ECE;
3836 			ack_ev_flags |= CA_ACK_ECE;
3837 		}
3838 
3839 		if (sack_state.sack_delivered)
3840 			tcp_count_delivered(tp, sack_state.sack_delivered,
3841 					    flag & FLAG_ECE);
3842 
3843 		if (flag & FLAG_WIN_UPDATE)
3844 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3845 
3846 		tcp_in_ack_event(sk, ack_ev_flags);
3847 	}
3848 
3849 	/* This is a deviation from RFC3168 since it states that:
3850 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3851 	 * the congestion window, it SHOULD set the CWR bit only on the first
3852 	 * new data packet that it transmits."
3853 	 * We accept CWR on pure ACKs to be more robust
3854 	 * with widely-deployed TCP implementations that do this.
3855 	 */
3856 	tcp_ecn_accept_cwr(sk, skb);
3857 
3858 	/* We passed data and got it acked, remove any soft error
3859 	 * log. Something worked...
3860 	 */
3861 	sk->sk_err_soft = 0;
3862 	icsk->icsk_probes_out = 0;
3863 	tp->rcv_tstamp = tcp_jiffies32;
3864 	if (!prior_packets)
3865 		goto no_queue;
3866 
3867 	/* See if we can take anything off of the retransmit queue. */
3868 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3869 				    &sack_state, flag & FLAG_ECE);
3870 
3871 	tcp_rack_update_reo_wnd(sk, &rs);
3872 
3873 	if (tp->tlp_high_seq)
3874 		tcp_process_tlp_ack(sk, ack, flag);
3875 
3876 	if (tcp_ack_is_dubious(sk, flag)) {
3877 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3878 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3879 			num_dupack = 1;
3880 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3881 			if (!(flag & FLAG_DATA))
3882 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3883 		}
3884 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3885 				      &rexmit);
3886 	}
3887 
3888 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3889 	if (flag & FLAG_SET_XMIT_TIMER)
3890 		tcp_set_xmit_timer(sk);
3891 
3892 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3893 		sk_dst_confirm(sk);
3894 
3895 	delivered = tcp_newly_delivered(sk, delivered, flag);
3896 	lost = tp->lost - lost;			/* freshly marked lost */
3897 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3898 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3899 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3900 	tcp_xmit_recovery(sk, rexmit);
3901 	return 1;
3902 
3903 no_queue:
3904 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3905 	if (flag & FLAG_DSACKING_ACK) {
3906 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3907 				      &rexmit);
3908 		tcp_newly_delivered(sk, delivered, flag);
3909 	}
3910 	/* If this ack opens up a zero window, clear backoff.  It was
3911 	 * being used to time the probes, and is probably far higher than
3912 	 * it needs to be for normal retransmission.
3913 	 */
3914 	tcp_ack_probe(sk);
3915 
3916 	if (tp->tlp_high_seq)
3917 		tcp_process_tlp_ack(sk, ack, flag);
3918 	return 1;
3919 
3920 old_ack:
3921 	/* If data was SACKed, tag it and see if we should send more data.
3922 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3923 	 */
3924 	if (TCP_SKB_CB(skb)->sacked) {
3925 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3926 						&sack_state);
3927 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3928 				      &rexmit);
3929 		tcp_newly_delivered(sk, delivered, flag);
3930 		tcp_xmit_recovery(sk, rexmit);
3931 	}
3932 
3933 	return 0;
3934 }
3935 
3936 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3937 				      bool syn, struct tcp_fastopen_cookie *foc,
3938 				      bool exp_opt)
3939 {
3940 	/* Valid only in SYN or SYN-ACK with an even length.  */
3941 	if (!foc || !syn || len < 0 || (len & 1))
3942 		return;
3943 
3944 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3945 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3946 		memcpy(foc->val, cookie, len);
3947 	else if (len != 0)
3948 		len = -1;
3949 	foc->len = len;
3950 	foc->exp = exp_opt;
3951 }
3952 
3953 static bool smc_parse_options(const struct tcphdr *th,
3954 			      struct tcp_options_received *opt_rx,
3955 			      const unsigned char *ptr,
3956 			      int opsize)
3957 {
3958 #if IS_ENABLED(CONFIG_SMC)
3959 	if (static_branch_unlikely(&tcp_have_smc)) {
3960 		if (th->syn && !(opsize & 1) &&
3961 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3962 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3963 			opt_rx->smc_ok = 1;
3964 			return true;
3965 		}
3966 	}
3967 #endif
3968 	return false;
3969 }
3970 
3971 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3972  * value on success.
3973  */
3974 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3975 {
3976 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3977 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3978 	u16 mss = 0;
3979 
3980 	while (length > 0) {
3981 		int opcode = *ptr++;
3982 		int opsize;
3983 
3984 		switch (opcode) {
3985 		case TCPOPT_EOL:
3986 			return mss;
3987 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3988 			length--;
3989 			continue;
3990 		default:
3991 			if (length < 2)
3992 				return mss;
3993 			opsize = *ptr++;
3994 			if (opsize < 2) /* "silly options" */
3995 				return mss;
3996 			if (opsize > length)
3997 				return mss;	/* fail on partial options */
3998 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3999 				u16 in_mss = get_unaligned_be16(ptr);
4000 
4001 				if (in_mss) {
4002 					if (user_mss && user_mss < in_mss)
4003 						in_mss = user_mss;
4004 					mss = in_mss;
4005 				}
4006 			}
4007 			ptr += opsize - 2;
4008 			length -= opsize;
4009 		}
4010 	}
4011 	return mss;
4012 }
4013 
4014 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4015  * But, this can also be called on packets in the established flow when
4016  * the fast version below fails.
4017  */
4018 void tcp_parse_options(const struct net *net,
4019 		       const struct sk_buff *skb,
4020 		       struct tcp_options_received *opt_rx, int estab,
4021 		       struct tcp_fastopen_cookie *foc)
4022 {
4023 	const unsigned char *ptr;
4024 	const struct tcphdr *th = tcp_hdr(skb);
4025 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4026 
4027 	ptr = (const unsigned char *)(th + 1);
4028 	opt_rx->saw_tstamp = 0;
4029 	opt_rx->saw_unknown = 0;
4030 
4031 	while (length > 0) {
4032 		int opcode = *ptr++;
4033 		int opsize;
4034 
4035 		switch (opcode) {
4036 		case TCPOPT_EOL:
4037 			return;
4038 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4039 			length--;
4040 			continue;
4041 		default:
4042 			if (length < 2)
4043 				return;
4044 			opsize = *ptr++;
4045 			if (opsize < 2) /* "silly options" */
4046 				return;
4047 			if (opsize > length)
4048 				return;	/* don't parse partial options */
4049 			switch (opcode) {
4050 			case TCPOPT_MSS:
4051 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4052 					u16 in_mss = get_unaligned_be16(ptr);
4053 					if (in_mss) {
4054 						if (opt_rx->user_mss &&
4055 						    opt_rx->user_mss < in_mss)
4056 							in_mss = opt_rx->user_mss;
4057 						opt_rx->mss_clamp = in_mss;
4058 					}
4059 				}
4060 				break;
4061 			case TCPOPT_WINDOW:
4062 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4063 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
4064 					__u8 snd_wscale = *(__u8 *)ptr;
4065 					opt_rx->wscale_ok = 1;
4066 					if (snd_wscale > TCP_MAX_WSCALE) {
4067 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4068 								     __func__,
4069 								     snd_wscale,
4070 								     TCP_MAX_WSCALE);
4071 						snd_wscale = TCP_MAX_WSCALE;
4072 					}
4073 					opt_rx->snd_wscale = snd_wscale;
4074 				}
4075 				break;
4076 			case TCPOPT_TIMESTAMP:
4077 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4078 				    ((estab && opt_rx->tstamp_ok) ||
4079 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4080 					opt_rx->saw_tstamp = 1;
4081 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4082 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4083 				}
4084 				break;
4085 			case TCPOPT_SACK_PERM:
4086 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4087 				    !estab && net->ipv4.sysctl_tcp_sack) {
4088 					opt_rx->sack_ok = TCP_SACK_SEEN;
4089 					tcp_sack_reset(opt_rx);
4090 				}
4091 				break;
4092 
4093 			case TCPOPT_SACK:
4094 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4095 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4096 				   opt_rx->sack_ok) {
4097 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4098 				}
4099 				break;
4100 #ifdef CONFIG_TCP_MD5SIG
4101 			case TCPOPT_MD5SIG:
4102 				/*
4103 				 * The MD5 Hash has already been
4104 				 * checked (see tcp_v{4,6}_do_rcv()).
4105 				 */
4106 				break;
4107 #endif
4108 			case TCPOPT_FASTOPEN:
4109 				tcp_parse_fastopen_option(
4110 					opsize - TCPOLEN_FASTOPEN_BASE,
4111 					ptr, th->syn, foc, false);
4112 				break;
4113 
4114 			case TCPOPT_EXP:
4115 				/* Fast Open option shares code 254 using a
4116 				 * 16 bits magic number.
4117 				 */
4118 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4119 				    get_unaligned_be16(ptr) ==
4120 				    TCPOPT_FASTOPEN_MAGIC) {
4121 					tcp_parse_fastopen_option(opsize -
4122 						TCPOLEN_EXP_FASTOPEN_BASE,
4123 						ptr + 2, th->syn, foc, true);
4124 					break;
4125 				}
4126 
4127 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4128 					break;
4129 
4130 				opt_rx->saw_unknown = 1;
4131 				break;
4132 
4133 			default:
4134 				opt_rx->saw_unknown = 1;
4135 			}
4136 			ptr += opsize-2;
4137 			length -= opsize;
4138 		}
4139 	}
4140 }
4141 EXPORT_SYMBOL(tcp_parse_options);
4142 
4143 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4144 {
4145 	const __be32 *ptr = (const __be32 *)(th + 1);
4146 
4147 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4148 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4149 		tp->rx_opt.saw_tstamp = 1;
4150 		++ptr;
4151 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4152 		++ptr;
4153 		if (*ptr)
4154 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4155 		else
4156 			tp->rx_opt.rcv_tsecr = 0;
4157 		return true;
4158 	}
4159 	return false;
4160 }
4161 
4162 /* Fast parse options. This hopes to only see timestamps.
4163  * If it is wrong it falls back on tcp_parse_options().
4164  */
4165 static bool tcp_fast_parse_options(const struct net *net,
4166 				   const struct sk_buff *skb,
4167 				   const struct tcphdr *th, struct tcp_sock *tp)
4168 {
4169 	/* In the spirit of fast parsing, compare doff directly to constant
4170 	 * values.  Because equality is used, short doff can be ignored here.
4171 	 */
4172 	if (th->doff == (sizeof(*th) / 4)) {
4173 		tp->rx_opt.saw_tstamp = 0;
4174 		return false;
4175 	} else if (tp->rx_opt.tstamp_ok &&
4176 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4177 		if (tcp_parse_aligned_timestamp(tp, th))
4178 			return true;
4179 	}
4180 
4181 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4182 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4183 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4184 
4185 	return true;
4186 }
4187 
4188 #ifdef CONFIG_TCP_MD5SIG
4189 /*
4190  * Parse MD5 Signature option
4191  */
4192 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4193 {
4194 	int length = (th->doff << 2) - sizeof(*th);
4195 	const u8 *ptr = (const u8 *)(th + 1);
4196 
4197 	/* If not enough data remaining, we can short cut */
4198 	while (length >= TCPOLEN_MD5SIG) {
4199 		int opcode = *ptr++;
4200 		int opsize;
4201 
4202 		switch (opcode) {
4203 		case TCPOPT_EOL:
4204 			return NULL;
4205 		case TCPOPT_NOP:
4206 			length--;
4207 			continue;
4208 		default:
4209 			opsize = *ptr++;
4210 			if (opsize < 2 || opsize > length)
4211 				return NULL;
4212 			if (opcode == TCPOPT_MD5SIG)
4213 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4214 		}
4215 		ptr += opsize - 2;
4216 		length -= opsize;
4217 	}
4218 	return NULL;
4219 }
4220 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4221 #endif
4222 
4223 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4224  *
4225  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4226  * it can pass through stack. So, the following predicate verifies that
4227  * this segment is not used for anything but congestion avoidance or
4228  * fast retransmit. Moreover, we even are able to eliminate most of such
4229  * second order effects, if we apply some small "replay" window (~RTO)
4230  * to timestamp space.
4231  *
4232  * All these measures still do not guarantee that we reject wrapped ACKs
4233  * on networks with high bandwidth, when sequence space is recycled fastly,
4234  * but it guarantees that such events will be very rare and do not affect
4235  * connection seriously. This doesn't look nice, but alas, PAWS is really
4236  * buggy extension.
4237  *
4238  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4239  * states that events when retransmit arrives after original data are rare.
4240  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4241  * the biggest problem on large power networks even with minor reordering.
4242  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4243  * up to bandwidth of 18Gigabit/sec. 8) ]
4244  */
4245 
4246 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4247 {
4248 	const struct tcp_sock *tp = tcp_sk(sk);
4249 	const struct tcphdr *th = tcp_hdr(skb);
4250 	u32 seq = TCP_SKB_CB(skb)->seq;
4251 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4252 
4253 	return (/* 1. Pure ACK with correct sequence number. */
4254 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4255 
4256 		/* 2. ... and duplicate ACK. */
4257 		ack == tp->snd_una &&
4258 
4259 		/* 3. ... and does not update window. */
4260 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4261 
4262 		/* 4. ... and sits in replay window. */
4263 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4264 }
4265 
4266 static inline bool tcp_paws_discard(const struct sock *sk,
4267 				   const struct sk_buff *skb)
4268 {
4269 	const struct tcp_sock *tp = tcp_sk(sk);
4270 
4271 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4272 	       !tcp_disordered_ack(sk, skb);
4273 }
4274 
4275 /* Check segment sequence number for validity.
4276  *
4277  * Segment controls are considered valid, if the segment
4278  * fits to the window after truncation to the window. Acceptability
4279  * of data (and SYN, FIN, of course) is checked separately.
4280  * See tcp_data_queue(), for example.
4281  *
4282  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4283  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4284  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4285  * (borrowed from freebsd)
4286  */
4287 
4288 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4289 {
4290 	return	!before(end_seq, tp->rcv_wup) &&
4291 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4292 }
4293 
4294 /* When we get a reset we do this. */
4295 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4296 {
4297 	trace_tcp_receive_reset(sk);
4298 
4299 	/* mptcp can't tell us to ignore reset pkts,
4300 	 * so just ignore the return value of mptcp_incoming_options().
4301 	 */
4302 	if (sk_is_mptcp(sk))
4303 		mptcp_incoming_options(sk, skb);
4304 
4305 	/* We want the right error as BSD sees it (and indeed as we do). */
4306 	switch (sk->sk_state) {
4307 	case TCP_SYN_SENT:
4308 		sk->sk_err = ECONNREFUSED;
4309 		break;
4310 	case TCP_CLOSE_WAIT:
4311 		sk->sk_err = EPIPE;
4312 		break;
4313 	case TCP_CLOSE:
4314 		return;
4315 	default:
4316 		sk->sk_err = ECONNRESET;
4317 	}
4318 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4319 	smp_wmb();
4320 
4321 	tcp_write_queue_purge(sk);
4322 	tcp_done(sk);
4323 
4324 	if (!sock_flag(sk, SOCK_DEAD))
4325 		sk_error_report(sk);
4326 }
4327 
4328 /*
4329  * 	Process the FIN bit. This now behaves as it is supposed to work
4330  *	and the FIN takes effect when it is validly part of sequence
4331  *	space. Not before when we get holes.
4332  *
4333  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4334  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4335  *	TIME-WAIT)
4336  *
4337  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4338  *	close and we go into CLOSING (and later onto TIME-WAIT)
4339  *
4340  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4341  */
4342 void tcp_fin(struct sock *sk)
4343 {
4344 	struct tcp_sock *tp = tcp_sk(sk);
4345 
4346 	inet_csk_schedule_ack(sk);
4347 
4348 	sk->sk_shutdown |= RCV_SHUTDOWN;
4349 	sock_set_flag(sk, SOCK_DONE);
4350 
4351 	switch (sk->sk_state) {
4352 	case TCP_SYN_RECV:
4353 	case TCP_ESTABLISHED:
4354 		/* Move to CLOSE_WAIT */
4355 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4356 		inet_csk_enter_pingpong_mode(sk);
4357 		break;
4358 
4359 	case TCP_CLOSE_WAIT:
4360 	case TCP_CLOSING:
4361 		/* Received a retransmission of the FIN, do
4362 		 * nothing.
4363 		 */
4364 		break;
4365 	case TCP_LAST_ACK:
4366 		/* RFC793: Remain in the LAST-ACK state. */
4367 		break;
4368 
4369 	case TCP_FIN_WAIT1:
4370 		/* This case occurs when a simultaneous close
4371 		 * happens, we must ack the received FIN and
4372 		 * enter the CLOSING state.
4373 		 */
4374 		tcp_send_ack(sk);
4375 		tcp_set_state(sk, TCP_CLOSING);
4376 		break;
4377 	case TCP_FIN_WAIT2:
4378 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4379 		tcp_send_ack(sk);
4380 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4381 		break;
4382 	default:
4383 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4384 		 * cases we should never reach this piece of code.
4385 		 */
4386 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4387 		       __func__, sk->sk_state);
4388 		break;
4389 	}
4390 
4391 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4392 	 * Probably, we should reset in this case. For now drop them.
4393 	 */
4394 	skb_rbtree_purge(&tp->out_of_order_queue);
4395 	if (tcp_is_sack(tp))
4396 		tcp_sack_reset(&tp->rx_opt);
4397 	sk_mem_reclaim(sk);
4398 
4399 	if (!sock_flag(sk, SOCK_DEAD)) {
4400 		sk->sk_state_change(sk);
4401 
4402 		/* Do not send POLL_HUP for half duplex close. */
4403 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4404 		    sk->sk_state == TCP_CLOSE)
4405 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4406 		else
4407 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4408 	}
4409 }
4410 
4411 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4412 				  u32 end_seq)
4413 {
4414 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4415 		if (before(seq, sp->start_seq))
4416 			sp->start_seq = seq;
4417 		if (after(end_seq, sp->end_seq))
4418 			sp->end_seq = end_seq;
4419 		return true;
4420 	}
4421 	return false;
4422 }
4423 
4424 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4425 {
4426 	struct tcp_sock *tp = tcp_sk(sk);
4427 
4428 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4429 		int mib_idx;
4430 
4431 		if (before(seq, tp->rcv_nxt))
4432 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4433 		else
4434 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4435 
4436 		NET_INC_STATS(sock_net(sk), mib_idx);
4437 
4438 		tp->rx_opt.dsack = 1;
4439 		tp->duplicate_sack[0].start_seq = seq;
4440 		tp->duplicate_sack[0].end_seq = end_seq;
4441 	}
4442 }
4443 
4444 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4445 {
4446 	struct tcp_sock *tp = tcp_sk(sk);
4447 
4448 	if (!tp->rx_opt.dsack)
4449 		tcp_dsack_set(sk, seq, end_seq);
4450 	else
4451 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4452 }
4453 
4454 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4455 {
4456 	/* When the ACK path fails or drops most ACKs, the sender would
4457 	 * timeout and spuriously retransmit the same segment repeatedly.
4458 	 * The receiver remembers and reflects via DSACKs. Leverage the
4459 	 * DSACK state and change the txhash to re-route speculatively.
4460 	 */
4461 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4462 	    sk_rethink_txhash(sk))
4463 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4464 }
4465 
4466 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4467 {
4468 	struct tcp_sock *tp = tcp_sk(sk);
4469 
4470 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4471 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4472 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4473 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4474 
4475 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4476 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4477 
4478 			tcp_rcv_spurious_retrans(sk, skb);
4479 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4480 				end_seq = tp->rcv_nxt;
4481 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4482 		}
4483 	}
4484 
4485 	tcp_send_ack(sk);
4486 }
4487 
4488 /* These routines update the SACK block as out-of-order packets arrive or
4489  * in-order packets close up the sequence space.
4490  */
4491 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4492 {
4493 	int this_sack;
4494 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4495 	struct tcp_sack_block *swalk = sp + 1;
4496 
4497 	/* See if the recent change to the first SACK eats into
4498 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4499 	 */
4500 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4501 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4502 			int i;
4503 
4504 			/* Zap SWALK, by moving every further SACK up by one slot.
4505 			 * Decrease num_sacks.
4506 			 */
4507 			tp->rx_opt.num_sacks--;
4508 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4509 				sp[i] = sp[i + 1];
4510 			continue;
4511 		}
4512 		this_sack++;
4513 		swalk++;
4514 	}
4515 }
4516 
4517 static void tcp_sack_compress_send_ack(struct sock *sk)
4518 {
4519 	struct tcp_sock *tp = tcp_sk(sk);
4520 
4521 	if (!tp->compressed_ack)
4522 		return;
4523 
4524 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4525 		__sock_put(sk);
4526 
4527 	/* Since we have to send one ack finally,
4528 	 * substract one from tp->compressed_ack to keep
4529 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4530 	 */
4531 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4532 		      tp->compressed_ack - 1);
4533 
4534 	tp->compressed_ack = 0;
4535 	tcp_send_ack(sk);
4536 }
4537 
4538 /* Reasonable amount of sack blocks included in TCP SACK option
4539  * The max is 4, but this becomes 3 if TCP timestamps are there.
4540  * Given that SACK packets might be lost, be conservative and use 2.
4541  */
4542 #define TCP_SACK_BLOCKS_EXPECTED 2
4543 
4544 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4545 {
4546 	struct tcp_sock *tp = tcp_sk(sk);
4547 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4548 	int cur_sacks = tp->rx_opt.num_sacks;
4549 	int this_sack;
4550 
4551 	if (!cur_sacks)
4552 		goto new_sack;
4553 
4554 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4555 		if (tcp_sack_extend(sp, seq, end_seq)) {
4556 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4557 				tcp_sack_compress_send_ack(sk);
4558 			/* Rotate this_sack to the first one. */
4559 			for (; this_sack > 0; this_sack--, sp--)
4560 				swap(*sp, *(sp - 1));
4561 			if (cur_sacks > 1)
4562 				tcp_sack_maybe_coalesce(tp);
4563 			return;
4564 		}
4565 	}
4566 
4567 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4568 		tcp_sack_compress_send_ack(sk);
4569 
4570 	/* Could not find an adjacent existing SACK, build a new one,
4571 	 * put it at the front, and shift everyone else down.  We
4572 	 * always know there is at least one SACK present already here.
4573 	 *
4574 	 * If the sack array is full, forget about the last one.
4575 	 */
4576 	if (this_sack >= TCP_NUM_SACKS) {
4577 		this_sack--;
4578 		tp->rx_opt.num_sacks--;
4579 		sp--;
4580 	}
4581 	for (; this_sack > 0; this_sack--, sp--)
4582 		*sp = *(sp - 1);
4583 
4584 new_sack:
4585 	/* Build the new head SACK, and we're done. */
4586 	sp->start_seq = seq;
4587 	sp->end_seq = end_seq;
4588 	tp->rx_opt.num_sacks++;
4589 }
4590 
4591 /* RCV.NXT advances, some SACKs should be eaten. */
4592 
4593 static void tcp_sack_remove(struct tcp_sock *tp)
4594 {
4595 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4596 	int num_sacks = tp->rx_opt.num_sacks;
4597 	int this_sack;
4598 
4599 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4600 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4601 		tp->rx_opt.num_sacks = 0;
4602 		return;
4603 	}
4604 
4605 	for (this_sack = 0; this_sack < num_sacks;) {
4606 		/* Check if the start of the sack is covered by RCV.NXT. */
4607 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4608 			int i;
4609 
4610 			/* RCV.NXT must cover all the block! */
4611 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4612 
4613 			/* Zap this SACK, by moving forward any other SACKS. */
4614 			for (i = this_sack+1; i < num_sacks; i++)
4615 				tp->selective_acks[i-1] = tp->selective_acks[i];
4616 			num_sacks--;
4617 			continue;
4618 		}
4619 		this_sack++;
4620 		sp++;
4621 	}
4622 	tp->rx_opt.num_sacks = num_sacks;
4623 }
4624 
4625 /**
4626  * tcp_try_coalesce - try to merge skb to prior one
4627  * @sk: socket
4628  * @to: prior buffer
4629  * @from: buffer to add in queue
4630  * @fragstolen: pointer to boolean
4631  *
4632  * Before queueing skb @from after @to, try to merge them
4633  * to reduce overall memory use and queue lengths, if cost is small.
4634  * Packets in ofo or receive queues can stay a long time.
4635  * Better try to coalesce them right now to avoid future collapses.
4636  * Returns true if caller should free @from instead of queueing it
4637  */
4638 static bool tcp_try_coalesce(struct sock *sk,
4639 			     struct sk_buff *to,
4640 			     struct sk_buff *from,
4641 			     bool *fragstolen)
4642 {
4643 	int delta;
4644 
4645 	*fragstolen = false;
4646 
4647 	/* Its possible this segment overlaps with prior segment in queue */
4648 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4649 		return false;
4650 
4651 	if (!mptcp_skb_can_collapse(to, from))
4652 		return false;
4653 
4654 #ifdef CONFIG_TLS_DEVICE
4655 	if (from->decrypted != to->decrypted)
4656 		return false;
4657 #endif
4658 
4659 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4660 		return false;
4661 
4662 	atomic_add(delta, &sk->sk_rmem_alloc);
4663 	sk_mem_charge(sk, delta);
4664 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4665 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4666 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4667 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4668 
4669 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4670 		TCP_SKB_CB(to)->has_rxtstamp = true;
4671 		to->tstamp = from->tstamp;
4672 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4673 	}
4674 
4675 	return true;
4676 }
4677 
4678 static bool tcp_ooo_try_coalesce(struct sock *sk,
4679 			     struct sk_buff *to,
4680 			     struct sk_buff *from,
4681 			     bool *fragstolen)
4682 {
4683 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4684 
4685 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4686 	if (res) {
4687 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4688 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4689 
4690 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4691 	}
4692 	return res;
4693 }
4694 
4695 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4696 			    enum skb_drop_reason reason)
4697 {
4698 	sk_drops_add(sk, skb);
4699 	kfree_skb_reason(skb, reason);
4700 }
4701 
4702 /* This one checks to see if we can put data from the
4703  * out_of_order queue into the receive_queue.
4704  */
4705 static void tcp_ofo_queue(struct sock *sk)
4706 {
4707 	struct tcp_sock *tp = tcp_sk(sk);
4708 	__u32 dsack_high = tp->rcv_nxt;
4709 	bool fin, fragstolen, eaten;
4710 	struct sk_buff *skb, *tail;
4711 	struct rb_node *p;
4712 
4713 	p = rb_first(&tp->out_of_order_queue);
4714 	while (p) {
4715 		skb = rb_to_skb(p);
4716 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4717 			break;
4718 
4719 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4720 			__u32 dsack = dsack_high;
4721 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4722 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4723 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4724 		}
4725 		p = rb_next(p);
4726 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4727 
4728 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4729 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4730 			continue;
4731 		}
4732 
4733 		tail = skb_peek_tail(&sk->sk_receive_queue);
4734 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4735 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4736 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4737 		if (!eaten)
4738 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4739 		else
4740 			kfree_skb_partial(skb, fragstolen);
4741 
4742 		if (unlikely(fin)) {
4743 			tcp_fin(sk);
4744 			/* tcp_fin() purges tp->out_of_order_queue,
4745 			 * so we must end this loop right now.
4746 			 */
4747 			break;
4748 		}
4749 	}
4750 }
4751 
4752 static bool tcp_prune_ofo_queue(struct sock *sk);
4753 static int tcp_prune_queue(struct sock *sk);
4754 
4755 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4756 				 unsigned int size)
4757 {
4758 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4759 	    !sk_rmem_schedule(sk, skb, size)) {
4760 
4761 		if (tcp_prune_queue(sk) < 0)
4762 			return -1;
4763 
4764 		while (!sk_rmem_schedule(sk, skb, size)) {
4765 			if (!tcp_prune_ofo_queue(sk))
4766 				return -1;
4767 		}
4768 	}
4769 	return 0;
4770 }
4771 
4772 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4773 {
4774 	struct tcp_sock *tp = tcp_sk(sk);
4775 	struct rb_node **p, *parent;
4776 	struct sk_buff *skb1;
4777 	u32 seq, end_seq;
4778 	bool fragstolen;
4779 
4780 	tcp_ecn_check_ce(sk, skb);
4781 
4782 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4783 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4784 		sk->sk_data_ready(sk);
4785 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4786 		return;
4787 	}
4788 
4789 	/* Disable header prediction. */
4790 	tp->pred_flags = 0;
4791 	inet_csk_schedule_ack(sk);
4792 
4793 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4794 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4795 	seq = TCP_SKB_CB(skb)->seq;
4796 	end_seq = TCP_SKB_CB(skb)->end_seq;
4797 
4798 	p = &tp->out_of_order_queue.rb_node;
4799 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4800 		/* Initial out of order segment, build 1 SACK. */
4801 		if (tcp_is_sack(tp)) {
4802 			tp->rx_opt.num_sacks = 1;
4803 			tp->selective_acks[0].start_seq = seq;
4804 			tp->selective_acks[0].end_seq = end_seq;
4805 		}
4806 		rb_link_node(&skb->rbnode, NULL, p);
4807 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4808 		tp->ooo_last_skb = skb;
4809 		goto end;
4810 	}
4811 
4812 	/* In the typical case, we are adding an skb to the end of the list.
4813 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4814 	 */
4815 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4816 				 skb, &fragstolen)) {
4817 coalesce_done:
4818 		/* For non sack flows, do not grow window to force DUPACK
4819 		 * and trigger fast retransmit.
4820 		 */
4821 		if (tcp_is_sack(tp))
4822 			tcp_grow_window(sk, skb, true);
4823 		kfree_skb_partial(skb, fragstolen);
4824 		skb = NULL;
4825 		goto add_sack;
4826 	}
4827 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4828 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4829 		parent = &tp->ooo_last_skb->rbnode;
4830 		p = &parent->rb_right;
4831 		goto insert;
4832 	}
4833 
4834 	/* Find place to insert this segment. Handle overlaps on the way. */
4835 	parent = NULL;
4836 	while (*p) {
4837 		parent = *p;
4838 		skb1 = rb_to_skb(parent);
4839 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4840 			p = &parent->rb_left;
4841 			continue;
4842 		}
4843 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4844 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4845 				/* All the bits are present. Drop. */
4846 				NET_INC_STATS(sock_net(sk),
4847 					      LINUX_MIB_TCPOFOMERGE);
4848 				tcp_drop_reason(sk, skb,
4849 						SKB_DROP_REASON_TCP_OFOMERGE);
4850 				skb = NULL;
4851 				tcp_dsack_set(sk, seq, end_seq);
4852 				goto add_sack;
4853 			}
4854 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4855 				/* Partial overlap. */
4856 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4857 			} else {
4858 				/* skb's seq == skb1's seq and skb covers skb1.
4859 				 * Replace skb1 with skb.
4860 				 */
4861 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4862 						&tp->out_of_order_queue);
4863 				tcp_dsack_extend(sk,
4864 						 TCP_SKB_CB(skb1)->seq,
4865 						 TCP_SKB_CB(skb1)->end_seq);
4866 				NET_INC_STATS(sock_net(sk),
4867 					      LINUX_MIB_TCPOFOMERGE);
4868 				tcp_drop_reason(sk, skb1,
4869 						SKB_DROP_REASON_TCP_OFOMERGE);
4870 				goto merge_right;
4871 			}
4872 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4873 						skb, &fragstolen)) {
4874 			goto coalesce_done;
4875 		}
4876 		p = &parent->rb_right;
4877 	}
4878 insert:
4879 	/* Insert segment into RB tree. */
4880 	rb_link_node(&skb->rbnode, parent, p);
4881 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4882 
4883 merge_right:
4884 	/* Remove other segments covered by skb. */
4885 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4886 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4887 			break;
4888 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4889 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4890 					 end_seq);
4891 			break;
4892 		}
4893 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4894 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4895 				 TCP_SKB_CB(skb1)->end_seq);
4896 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4897 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4898 	}
4899 	/* If there is no skb after us, we are the last_skb ! */
4900 	if (!skb1)
4901 		tp->ooo_last_skb = skb;
4902 
4903 add_sack:
4904 	if (tcp_is_sack(tp))
4905 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4906 end:
4907 	if (skb) {
4908 		/* For non sack flows, do not grow window to force DUPACK
4909 		 * and trigger fast retransmit.
4910 		 */
4911 		if (tcp_is_sack(tp))
4912 			tcp_grow_window(sk, skb, false);
4913 		skb_condense(skb);
4914 		skb_set_owner_r(skb, sk);
4915 	}
4916 }
4917 
4918 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4919 				      bool *fragstolen)
4920 {
4921 	int eaten;
4922 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4923 
4924 	eaten = (tail &&
4925 		 tcp_try_coalesce(sk, tail,
4926 				  skb, fragstolen)) ? 1 : 0;
4927 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4928 	if (!eaten) {
4929 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4930 		skb_set_owner_r(skb, sk);
4931 	}
4932 	return eaten;
4933 }
4934 
4935 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4936 {
4937 	struct sk_buff *skb;
4938 	int err = -ENOMEM;
4939 	int data_len = 0;
4940 	bool fragstolen;
4941 
4942 	if (size == 0)
4943 		return 0;
4944 
4945 	if (size > PAGE_SIZE) {
4946 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4947 
4948 		data_len = npages << PAGE_SHIFT;
4949 		size = data_len + (size & ~PAGE_MASK);
4950 	}
4951 	skb = alloc_skb_with_frags(size - data_len, data_len,
4952 				   PAGE_ALLOC_COSTLY_ORDER,
4953 				   &err, sk->sk_allocation);
4954 	if (!skb)
4955 		goto err;
4956 
4957 	skb_put(skb, size - data_len);
4958 	skb->data_len = data_len;
4959 	skb->len = size;
4960 
4961 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4962 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4963 		goto err_free;
4964 	}
4965 
4966 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4967 	if (err)
4968 		goto err_free;
4969 
4970 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4971 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4972 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4973 
4974 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4975 		WARN_ON_ONCE(fragstolen); /* should not happen */
4976 		__kfree_skb(skb);
4977 	}
4978 	return size;
4979 
4980 err_free:
4981 	kfree_skb(skb);
4982 err:
4983 	return err;
4984 
4985 }
4986 
4987 void tcp_data_ready(struct sock *sk)
4988 {
4989 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4990 		sk->sk_data_ready(sk);
4991 }
4992 
4993 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4994 {
4995 	struct tcp_sock *tp = tcp_sk(sk);
4996 	enum skb_drop_reason reason;
4997 	bool fragstolen;
4998 	int eaten;
4999 
5000 	/* If a subflow has been reset, the packet should not continue
5001 	 * to be processed, drop the packet.
5002 	 */
5003 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5004 		__kfree_skb(skb);
5005 		return;
5006 	}
5007 
5008 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5009 		__kfree_skb(skb);
5010 		return;
5011 	}
5012 	skb_dst_drop(skb);
5013 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5014 
5015 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5016 	tp->rx_opt.dsack = 0;
5017 
5018 	/*  Queue data for delivery to the user.
5019 	 *  Packets in sequence go to the receive queue.
5020 	 *  Out of sequence packets to the out_of_order_queue.
5021 	 */
5022 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5023 		if (tcp_receive_window(tp) == 0) {
5024 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5025 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5026 			goto out_of_window;
5027 		}
5028 
5029 		/* Ok. In sequence. In window. */
5030 queue_and_out:
5031 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5032 			sk_forced_mem_schedule(sk, skb->truesize);
5033 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5034 			reason = SKB_DROP_REASON_PROTO_MEM;
5035 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5036 			sk->sk_data_ready(sk);
5037 			goto drop;
5038 		}
5039 
5040 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5041 		if (skb->len)
5042 			tcp_event_data_recv(sk, skb);
5043 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5044 			tcp_fin(sk);
5045 
5046 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5047 			tcp_ofo_queue(sk);
5048 
5049 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5050 			 * gap in queue is filled.
5051 			 */
5052 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5053 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5054 		}
5055 
5056 		if (tp->rx_opt.num_sacks)
5057 			tcp_sack_remove(tp);
5058 
5059 		tcp_fast_path_check(sk);
5060 
5061 		if (eaten > 0)
5062 			kfree_skb_partial(skb, fragstolen);
5063 		if (!sock_flag(sk, SOCK_DEAD))
5064 			tcp_data_ready(sk);
5065 		return;
5066 	}
5067 
5068 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5069 		tcp_rcv_spurious_retrans(sk, skb);
5070 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5071 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5072 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5073 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5074 
5075 out_of_window:
5076 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5077 		inet_csk_schedule_ack(sk);
5078 drop:
5079 		tcp_drop_reason(sk, skb, reason);
5080 		return;
5081 	}
5082 
5083 	/* Out of window. F.e. zero window probe. */
5084 	if (!before(TCP_SKB_CB(skb)->seq,
5085 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5086 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5087 		goto out_of_window;
5088 	}
5089 
5090 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5091 		/* Partial packet, seq < rcv_next < end_seq */
5092 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5093 
5094 		/* If window is closed, drop tail of packet. But after
5095 		 * remembering D-SACK for its head made in previous line.
5096 		 */
5097 		if (!tcp_receive_window(tp)) {
5098 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5099 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5100 			goto out_of_window;
5101 		}
5102 		goto queue_and_out;
5103 	}
5104 
5105 	tcp_data_queue_ofo(sk, skb);
5106 }
5107 
5108 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5109 {
5110 	if (list)
5111 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5112 
5113 	return skb_rb_next(skb);
5114 }
5115 
5116 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5117 					struct sk_buff_head *list,
5118 					struct rb_root *root)
5119 {
5120 	struct sk_buff *next = tcp_skb_next(skb, list);
5121 
5122 	if (list)
5123 		__skb_unlink(skb, list);
5124 	else
5125 		rb_erase(&skb->rbnode, root);
5126 
5127 	__kfree_skb(skb);
5128 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5129 
5130 	return next;
5131 }
5132 
5133 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5134 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5135 {
5136 	struct rb_node **p = &root->rb_node;
5137 	struct rb_node *parent = NULL;
5138 	struct sk_buff *skb1;
5139 
5140 	while (*p) {
5141 		parent = *p;
5142 		skb1 = rb_to_skb(parent);
5143 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5144 			p = &parent->rb_left;
5145 		else
5146 			p = &parent->rb_right;
5147 	}
5148 	rb_link_node(&skb->rbnode, parent, p);
5149 	rb_insert_color(&skb->rbnode, root);
5150 }
5151 
5152 /* Collapse contiguous sequence of skbs head..tail with
5153  * sequence numbers start..end.
5154  *
5155  * If tail is NULL, this means until the end of the queue.
5156  *
5157  * Segments with FIN/SYN are not collapsed (only because this
5158  * simplifies code)
5159  */
5160 static void
5161 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5162 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5163 {
5164 	struct sk_buff *skb = head, *n;
5165 	struct sk_buff_head tmp;
5166 	bool end_of_skbs;
5167 
5168 	/* First, check that queue is collapsible and find
5169 	 * the point where collapsing can be useful.
5170 	 */
5171 restart:
5172 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5173 		n = tcp_skb_next(skb, list);
5174 
5175 		/* No new bits? It is possible on ofo queue. */
5176 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5177 			skb = tcp_collapse_one(sk, skb, list, root);
5178 			if (!skb)
5179 				break;
5180 			goto restart;
5181 		}
5182 
5183 		/* The first skb to collapse is:
5184 		 * - not SYN/FIN and
5185 		 * - bloated or contains data before "start" or
5186 		 *   overlaps to the next one and mptcp allow collapsing.
5187 		 */
5188 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5189 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5190 		     before(TCP_SKB_CB(skb)->seq, start))) {
5191 			end_of_skbs = false;
5192 			break;
5193 		}
5194 
5195 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5196 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5197 			end_of_skbs = false;
5198 			break;
5199 		}
5200 
5201 		/* Decided to skip this, advance start seq. */
5202 		start = TCP_SKB_CB(skb)->end_seq;
5203 	}
5204 	if (end_of_skbs ||
5205 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5206 		return;
5207 
5208 	__skb_queue_head_init(&tmp);
5209 
5210 	while (before(start, end)) {
5211 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5212 		struct sk_buff *nskb;
5213 
5214 		nskb = alloc_skb(copy, GFP_ATOMIC);
5215 		if (!nskb)
5216 			break;
5217 
5218 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5219 #ifdef CONFIG_TLS_DEVICE
5220 		nskb->decrypted = skb->decrypted;
5221 #endif
5222 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5223 		if (list)
5224 			__skb_queue_before(list, skb, nskb);
5225 		else
5226 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5227 		skb_set_owner_r(nskb, sk);
5228 		mptcp_skb_ext_move(nskb, skb);
5229 
5230 		/* Copy data, releasing collapsed skbs. */
5231 		while (copy > 0) {
5232 			int offset = start - TCP_SKB_CB(skb)->seq;
5233 			int size = TCP_SKB_CB(skb)->end_seq - start;
5234 
5235 			BUG_ON(offset < 0);
5236 			if (size > 0) {
5237 				size = min(copy, size);
5238 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5239 					BUG();
5240 				TCP_SKB_CB(nskb)->end_seq += size;
5241 				copy -= size;
5242 				start += size;
5243 			}
5244 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5245 				skb = tcp_collapse_one(sk, skb, list, root);
5246 				if (!skb ||
5247 				    skb == tail ||
5248 				    !mptcp_skb_can_collapse(nskb, skb) ||
5249 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5250 					goto end;
5251 #ifdef CONFIG_TLS_DEVICE
5252 				if (skb->decrypted != nskb->decrypted)
5253 					goto end;
5254 #endif
5255 			}
5256 		}
5257 	}
5258 end:
5259 	skb_queue_walk_safe(&tmp, skb, n)
5260 		tcp_rbtree_insert(root, skb);
5261 }
5262 
5263 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5264  * and tcp_collapse() them until all the queue is collapsed.
5265  */
5266 static void tcp_collapse_ofo_queue(struct sock *sk)
5267 {
5268 	struct tcp_sock *tp = tcp_sk(sk);
5269 	u32 range_truesize, sum_tiny = 0;
5270 	struct sk_buff *skb, *head;
5271 	u32 start, end;
5272 
5273 	skb = skb_rb_first(&tp->out_of_order_queue);
5274 new_range:
5275 	if (!skb) {
5276 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5277 		return;
5278 	}
5279 	start = TCP_SKB_CB(skb)->seq;
5280 	end = TCP_SKB_CB(skb)->end_seq;
5281 	range_truesize = skb->truesize;
5282 
5283 	for (head = skb;;) {
5284 		skb = skb_rb_next(skb);
5285 
5286 		/* Range is terminated when we see a gap or when
5287 		 * we are at the queue end.
5288 		 */
5289 		if (!skb ||
5290 		    after(TCP_SKB_CB(skb)->seq, end) ||
5291 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5292 			/* Do not attempt collapsing tiny skbs */
5293 			if (range_truesize != head->truesize ||
5294 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5295 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5296 					     head, skb, start, end);
5297 			} else {
5298 				sum_tiny += range_truesize;
5299 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5300 					return;
5301 			}
5302 			goto new_range;
5303 		}
5304 
5305 		range_truesize += skb->truesize;
5306 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5307 			start = TCP_SKB_CB(skb)->seq;
5308 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5309 			end = TCP_SKB_CB(skb)->end_seq;
5310 	}
5311 }
5312 
5313 /*
5314  * Clean the out-of-order queue to make room.
5315  * We drop high sequences packets to :
5316  * 1) Let a chance for holes to be filled.
5317  * 2) not add too big latencies if thousands of packets sit there.
5318  *    (But if application shrinks SO_RCVBUF, we could still end up
5319  *     freeing whole queue here)
5320  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5321  *
5322  * Return true if queue has shrunk.
5323  */
5324 static bool tcp_prune_ofo_queue(struct sock *sk)
5325 {
5326 	struct tcp_sock *tp = tcp_sk(sk);
5327 	struct rb_node *node, *prev;
5328 	int goal;
5329 
5330 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5331 		return false;
5332 
5333 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5334 	goal = sk->sk_rcvbuf >> 3;
5335 	node = &tp->ooo_last_skb->rbnode;
5336 	do {
5337 		prev = rb_prev(node);
5338 		rb_erase(node, &tp->out_of_order_queue);
5339 		goal -= rb_to_skb(node)->truesize;
5340 		tcp_drop_reason(sk, rb_to_skb(node),
5341 				SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5342 		if (!prev || goal <= 0) {
5343 			sk_mem_reclaim(sk);
5344 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5345 			    !tcp_under_memory_pressure(sk))
5346 				break;
5347 			goal = sk->sk_rcvbuf >> 3;
5348 		}
5349 		node = prev;
5350 	} while (node);
5351 	tp->ooo_last_skb = rb_to_skb(prev);
5352 
5353 	/* Reset SACK state.  A conforming SACK implementation will
5354 	 * do the same at a timeout based retransmit.  When a connection
5355 	 * is in a sad state like this, we care only about integrity
5356 	 * of the connection not performance.
5357 	 */
5358 	if (tp->rx_opt.sack_ok)
5359 		tcp_sack_reset(&tp->rx_opt);
5360 	return true;
5361 }
5362 
5363 /* Reduce allocated memory if we can, trying to get
5364  * the socket within its memory limits again.
5365  *
5366  * Return less than zero if we should start dropping frames
5367  * until the socket owning process reads some of the data
5368  * to stabilize the situation.
5369  */
5370 static int tcp_prune_queue(struct sock *sk)
5371 {
5372 	struct tcp_sock *tp = tcp_sk(sk);
5373 
5374 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5375 
5376 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5377 		tcp_clamp_window(sk);
5378 	else if (tcp_under_memory_pressure(sk))
5379 		tcp_adjust_rcv_ssthresh(sk);
5380 
5381 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5382 		return 0;
5383 
5384 	tcp_collapse_ofo_queue(sk);
5385 	if (!skb_queue_empty(&sk->sk_receive_queue))
5386 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5387 			     skb_peek(&sk->sk_receive_queue),
5388 			     NULL,
5389 			     tp->copied_seq, tp->rcv_nxt);
5390 	sk_mem_reclaim(sk);
5391 
5392 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5393 		return 0;
5394 
5395 	/* Collapsing did not help, destructive actions follow.
5396 	 * This must not ever occur. */
5397 
5398 	tcp_prune_ofo_queue(sk);
5399 
5400 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5401 		return 0;
5402 
5403 	/* If we are really being abused, tell the caller to silently
5404 	 * drop receive data on the floor.  It will get retransmitted
5405 	 * and hopefully then we'll have sufficient space.
5406 	 */
5407 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5408 
5409 	/* Massive buffer overcommit. */
5410 	tp->pred_flags = 0;
5411 	return -1;
5412 }
5413 
5414 static bool tcp_should_expand_sndbuf(struct sock *sk)
5415 {
5416 	const struct tcp_sock *tp = tcp_sk(sk);
5417 
5418 	/* If the user specified a specific send buffer setting, do
5419 	 * not modify it.
5420 	 */
5421 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5422 		return false;
5423 
5424 	/* If we are under global TCP memory pressure, do not expand.  */
5425 	if (tcp_under_memory_pressure(sk)) {
5426 		int unused_mem = sk_unused_reserved_mem(sk);
5427 
5428 		/* Adjust sndbuf according to reserved mem. But make sure
5429 		 * it never goes below SOCK_MIN_SNDBUF.
5430 		 * See sk_stream_moderate_sndbuf() for more details.
5431 		 */
5432 		if (unused_mem > SOCK_MIN_SNDBUF)
5433 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5434 
5435 		return false;
5436 	}
5437 
5438 	/* If we are under soft global TCP memory pressure, do not expand.  */
5439 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5440 		return false;
5441 
5442 	/* If we filled the congestion window, do not expand.  */
5443 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5444 		return false;
5445 
5446 	return true;
5447 }
5448 
5449 static void tcp_new_space(struct sock *sk)
5450 {
5451 	struct tcp_sock *tp = tcp_sk(sk);
5452 
5453 	if (tcp_should_expand_sndbuf(sk)) {
5454 		tcp_sndbuf_expand(sk);
5455 		tp->snd_cwnd_stamp = tcp_jiffies32;
5456 	}
5457 
5458 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5459 }
5460 
5461 /* Caller made space either from:
5462  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5463  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5464  *
5465  * We might be able to generate EPOLLOUT to the application if:
5466  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5467  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5468  *    small enough that tcp_stream_memory_free() decides it
5469  *    is time to generate EPOLLOUT.
5470  */
5471 void tcp_check_space(struct sock *sk)
5472 {
5473 	/* pairs with tcp_poll() */
5474 	smp_mb();
5475 	if (sk->sk_socket &&
5476 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5477 		tcp_new_space(sk);
5478 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5479 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5480 	}
5481 }
5482 
5483 static inline void tcp_data_snd_check(struct sock *sk)
5484 {
5485 	tcp_push_pending_frames(sk);
5486 	tcp_check_space(sk);
5487 }
5488 
5489 /*
5490  * Check if sending an ack is needed.
5491  */
5492 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5493 {
5494 	struct tcp_sock *tp = tcp_sk(sk);
5495 	unsigned long rtt, delay;
5496 
5497 	    /* More than one full frame received... */
5498 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5499 	     /* ... and right edge of window advances far enough.
5500 	      * (tcp_recvmsg() will send ACK otherwise).
5501 	      * If application uses SO_RCVLOWAT, we want send ack now if
5502 	      * we have not received enough bytes to satisfy the condition.
5503 	      */
5504 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5505 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5506 	    /* We ACK each frame or... */
5507 	    tcp_in_quickack_mode(sk) ||
5508 	    /* Protocol state mandates a one-time immediate ACK */
5509 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5510 send_now:
5511 		tcp_send_ack(sk);
5512 		return;
5513 	}
5514 
5515 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5516 		tcp_send_delayed_ack(sk);
5517 		return;
5518 	}
5519 
5520 	if (!tcp_is_sack(tp) ||
5521 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5522 		goto send_now;
5523 
5524 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5525 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5526 		tp->dup_ack_counter = 0;
5527 	}
5528 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5529 		tp->dup_ack_counter++;
5530 		goto send_now;
5531 	}
5532 	tp->compressed_ack++;
5533 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5534 		return;
5535 
5536 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5537 
5538 	rtt = tp->rcv_rtt_est.rtt_us;
5539 	if (tp->srtt_us && tp->srtt_us < rtt)
5540 		rtt = tp->srtt_us;
5541 
5542 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5543 		      rtt * (NSEC_PER_USEC >> 3)/20);
5544 	sock_hold(sk);
5545 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5546 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5547 			       HRTIMER_MODE_REL_PINNED_SOFT);
5548 }
5549 
5550 static inline void tcp_ack_snd_check(struct sock *sk)
5551 {
5552 	if (!inet_csk_ack_scheduled(sk)) {
5553 		/* We sent a data segment already. */
5554 		return;
5555 	}
5556 	__tcp_ack_snd_check(sk, 1);
5557 }
5558 
5559 /*
5560  *	This routine is only called when we have urgent data
5561  *	signaled. Its the 'slow' part of tcp_urg. It could be
5562  *	moved inline now as tcp_urg is only called from one
5563  *	place. We handle URGent data wrong. We have to - as
5564  *	BSD still doesn't use the correction from RFC961.
5565  *	For 1003.1g we should support a new option TCP_STDURG to permit
5566  *	either form (or just set the sysctl tcp_stdurg).
5567  */
5568 
5569 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5570 {
5571 	struct tcp_sock *tp = tcp_sk(sk);
5572 	u32 ptr = ntohs(th->urg_ptr);
5573 
5574 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5575 		ptr--;
5576 	ptr += ntohl(th->seq);
5577 
5578 	/* Ignore urgent data that we've already seen and read. */
5579 	if (after(tp->copied_seq, ptr))
5580 		return;
5581 
5582 	/* Do not replay urg ptr.
5583 	 *
5584 	 * NOTE: interesting situation not covered by specs.
5585 	 * Misbehaving sender may send urg ptr, pointing to segment,
5586 	 * which we already have in ofo queue. We are not able to fetch
5587 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5588 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5589 	 * situations. But it is worth to think about possibility of some
5590 	 * DoSes using some hypothetical application level deadlock.
5591 	 */
5592 	if (before(ptr, tp->rcv_nxt))
5593 		return;
5594 
5595 	/* Do we already have a newer (or duplicate) urgent pointer? */
5596 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5597 		return;
5598 
5599 	/* Tell the world about our new urgent pointer. */
5600 	sk_send_sigurg(sk);
5601 
5602 	/* We may be adding urgent data when the last byte read was
5603 	 * urgent. To do this requires some care. We cannot just ignore
5604 	 * tp->copied_seq since we would read the last urgent byte again
5605 	 * as data, nor can we alter copied_seq until this data arrives
5606 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5607 	 *
5608 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5609 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5610 	 * and expect that both A and B disappear from stream. This is _wrong_.
5611 	 * Though this happens in BSD with high probability, this is occasional.
5612 	 * Any application relying on this is buggy. Note also, that fix "works"
5613 	 * only in this artificial test. Insert some normal data between A and B and we will
5614 	 * decline of BSD again. Verdict: it is better to remove to trap
5615 	 * buggy users.
5616 	 */
5617 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5618 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5619 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5620 		tp->copied_seq++;
5621 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5622 			__skb_unlink(skb, &sk->sk_receive_queue);
5623 			__kfree_skb(skb);
5624 		}
5625 	}
5626 
5627 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5628 	WRITE_ONCE(tp->urg_seq, ptr);
5629 
5630 	/* Disable header prediction. */
5631 	tp->pred_flags = 0;
5632 }
5633 
5634 /* This is the 'fast' part of urgent handling. */
5635 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5636 {
5637 	struct tcp_sock *tp = tcp_sk(sk);
5638 
5639 	/* Check if we get a new urgent pointer - normally not. */
5640 	if (unlikely(th->urg))
5641 		tcp_check_urg(sk, th);
5642 
5643 	/* Do we wait for any urgent data? - normally not... */
5644 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5645 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5646 			  th->syn;
5647 
5648 		/* Is the urgent pointer pointing into this packet? */
5649 		if (ptr < skb->len) {
5650 			u8 tmp;
5651 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5652 				BUG();
5653 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5654 			if (!sock_flag(sk, SOCK_DEAD))
5655 				sk->sk_data_ready(sk);
5656 		}
5657 	}
5658 }
5659 
5660 /* Accept RST for rcv_nxt - 1 after a FIN.
5661  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5662  * FIN is sent followed by a RST packet. The RST is sent with the same
5663  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5664  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5665  * ACKs on the closed socket. In addition middleboxes can drop either the
5666  * challenge ACK or a subsequent RST.
5667  */
5668 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5669 {
5670 	struct tcp_sock *tp = tcp_sk(sk);
5671 
5672 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5673 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5674 					       TCPF_CLOSING));
5675 }
5676 
5677 /* Does PAWS and seqno based validation of an incoming segment, flags will
5678  * play significant role here.
5679  */
5680 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5681 				  const struct tcphdr *th, int syn_inerr)
5682 {
5683 	struct tcp_sock *tp = tcp_sk(sk);
5684 	SKB_DR(reason);
5685 
5686 	/* RFC1323: H1. Apply PAWS check first. */
5687 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5688 	    tp->rx_opt.saw_tstamp &&
5689 	    tcp_paws_discard(sk, skb)) {
5690 		if (!th->rst) {
5691 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5692 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5693 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5694 						  &tp->last_oow_ack_time))
5695 				tcp_send_dupack(sk, skb);
5696 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5697 			goto discard;
5698 		}
5699 		/* Reset is accepted even if it did not pass PAWS. */
5700 	}
5701 
5702 	/* Step 1: check sequence number */
5703 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5704 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5705 		 * (RST) segments are validated by checking their SEQ-fields."
5706 		 * And page 69: "If an incoming segment is not acceptable,
5707 		 * an acknowledgment should be sent in reply (unless the RST
5708 		 * bit is set, if so drop the segment and return)".
5709 		 */
5710 		if (!th->rst) {
5711 			if (th->syn)
5712 				goto syn_challenge;
5713 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5714 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5715 						  &tp->last_oow_ack_time))
5716 				tcp_send_dupack(sk, skb);
5717 		} else if (tcp_reset_check(sk, skb)) {
5718 			goto reset;
5719 		}
5720 		SKB_DR_SET(reason, TCP_INVALID_SEQUENCE);
5721 		goto discard;
5722 	}
5723 
5724 	/* Step 2: check RST bit */
5725 	if (th->rst) {
5726 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5727 		 * FIN and SACK too if available):
5728 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5729 		 * the right-most SACK block,
5730 		 * then
5731 		 *     RESET the connection
5732 		 * else
5733 		 *     Send a challenge ACK
5734 		 */
5735 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5736 		    tcp_reset_check(sk, skb))
5737 			goto reset;
5738 
5739 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5740 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5741 			int max_sack = sp[0].end_seq;
5742 			int this_sack;
5743 
5744 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5745 			     ++this_sack) {
5746 				max_sack = after(sp[this_sack].end_seq,
5747 						 max_sack) ?
5748 					sp[this_sack].end_seq : max_sack;
5749 			}
5750 
5751 			if (TCP_SKB_CB(skb)->seq == max_sack)
5752 				goto reset;
5753 		}
5754 
5755 		/* Disable TFO if RST is out-of-order
5756 		 * and no data has been received
5757 		 * for current active TFO socket
5758 		 */
5759 		if (tp->syn_fastopen && !tp->data_segs_in &&
5760 		    sk->sk_state == TCP_ESTABLISHED)
5761 			tcp_fastopen_active_disable(sk);
5762 		tcp_send_challenge_ack(sk);
5763 		SKB_DR_SET(reason, TCP_RESET);
5764 		goto discard;
5765 	}
5766 
5767 	/* step 3: check security and precedence [ignored] */
5768 
5769 	/* step 4: Check for a SYN
5770 	 * RFC 5961 4.2 : Send a challenge ack
5771 	 */
5772 	if (th->syn) {
5773 syn_challenge:
5774 		if (syn_inerr)
5775 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5776 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5777 		tcp_send_challenge_ack(sk);
5778 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5779 		goto discard;
5780 	}
5781 
5782 	bpf_skops_parse_hdr(sk, skb);
5783 
5784 	return true;
5785 
5786 discard:
5787 	tcp_drop_reason(sk, skb, reason);
5788 	return false;
5789 
5790 reset:
5791 	tcp_reset(sk, skb);
5792 	__kfree_skb(skb);
5793 	return false;
5794 }
5795 
5796 /*
5797  *	TCP receive function for the ESTABLISHED state.
5798  *
5799  *	It is split into a fast path and a slow path. The fast path is
5800  * 	disabled when:
5801  *	- A zero window was announced from us - zero window probing
5802  *        is only handled properly in the slow path.
5803  *	- Out of order segments arrived.
5804  *	- Urgent data is expected.
5805  *	- There is no buffer space left
5806  *	- Unexpected TCP flags/window values/header lengths are received
5807  *	  (detected by checking the TCP header against pred_flags)
5808  *	- Data is sent in both directions. Fast path only supports pure senders
5809  *	  or pure receivers (this means either the sequence number or the ack
5810  *	  value must stay constant)
5811  *	- Unexpected TCP option.
5812  *
5813  *	When these conditions are not satisfied it drops into a standard
5814  *	receive procedure patterned after RFC793 to handle all cases.
5815  *	The first three cases are guaranteed by proper pred_flags setting,
5816  *	the rest is checked inline. Fast processing is turned on in
5817  *	tcp_data_queue when everything is OK.
5818  */
5819 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5820 {
5821 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5822 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5823 	struct tcp_sock *tp = tcp_sk(sk);
5824 	unsigned int len = skb->len;
5825 
5826 	/* TCP congestion window tracking */
5827 	trace_tcp_probe(sk, skb);
5828 
5829 	tcp_mstamp_refresh(tp);
5830 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5831 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5832 	/*
5833 	 *	Header prediction.
5834 	 *	The code loosely follows the one in the famous
5835 	 *	"30 instruction TCP receive" Van Jacobson mail.
5836 	 *
5837 	 *	Van's trick is to deposit buffers into socket queue
5838 	 *	on a device interrupt, to call tcp_recv function
5839 	 *	on the receive process context and checksum and copy
5840 	 *	the buffer to user space. smart...
5841 	 *
5842 	 *	Our current scheme is not silly either but we take the
5843 	 *	extra cost of the net_bh soft interrupt processing...
5844 	 *	We do checksum and copy also but from device to kernel.
5845 	 */
5846 
5847 	tp->rx_opt.saw_tstamp = 0;
5848 
5849 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5850 	 *	if header_prediction is to be made
5851 	 *	'S' will always be tp->tcp_header_len >> 2
5852 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5853 	 *  turn it off	(when there are holes in the receive
5854 	 *	 space for instance)
5855 	 *	PSH flag is ignored.
5856 	 */
5857 
5858 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5859 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5860 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5861 		int tcp_header_len = tp->tcp_header_len;
5862 
5863 		/* Timestamp header prediction: tcp_header_len
5864 		 * is automatically equal to th->doff*4 due to pred_flags
5865 		 * match.
5866 		 */
5867 
5868 		/* Check timestamp */
5869 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5870 			/* No? Slow path! */
5871 			if (!tcp_parse_aligned_timestamp(tp, th))
5872 				goto slow_path;
5873 
5874 			/* If PAWS failed, check it more carefully in slow path */
5875 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5876 				goto slow_path;
5877 
5878 			/* DO NOT update ts_recent here, if checksum fails
5879 			 * and timestamp was corrupted part, it will result
5880 			 * in a hung connection since we will drop all
5881 			 * future packets due to the PAWS test.
5882 			 */
5883 		}
5884 
5885 		if (len <= tcp_header_len) {
5886 			/* Bulk data transfer: sender */
5887 			if (len == tcp_header_len) {
5888 				/* Predicted packet is in window by definition.
5889 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5890 				 * Hence, check seq<=rcv_wup reduces to:
5891 				 */
5892 				if (tcp_header_len ==
5893 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5894 				    tp->rcv_nxt == tp->rcv_wup)
5895 					tcp_store_ts_recent(tp);
5896 
5897 				/* We know that such packets are checksummed
5898 				 * on entry.
5899 				 */
5900 				tcp_ack(sk, skb, 0);
5901 				__kfree_skb(skb);
5902 				tcp_data_snd_check(sk);
5903 				/* When receiving pure ack in fast path, update
5904 				 * last ts ecr directly instead of calling
5905 				 * tcp_rcv_rtt_measure_ts()
5906 				 */
5907 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5908 				return;
5909 			} else { /* Header too small */
5910 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5911 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5912 				goto discard;
5913 			}
5914 		} else {
5915 			int eaten = 0;
5916 			bool fragstolen = false;
5917 
5918 			if (tcp_checksum_complete(skb))
5919 				goto csum_error;
5920 
5921 			if ((int)skb->truesize > sk->sk_forward_alloc)
5922 				goto step5;
5923 
5924 			/* Predicted packet is in window by definition.
5925 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5926 			 * Hence, check seq<=rcv_wup reduces to:
5927 			 */
5928 			if (tcp_header_len ==
5929 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5930 			    tp->rcv_nxt == tp->rcv_wup)
5931 				tcp_store_ts_recent(tp);
5932 
5933 			tcp_rcv_rtt_measure_ts(sk, skb);
5934 
5935 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5936 
5937 			/* Bulk data transfer: receiver */
5938 			skb_dst_drop(skb);
5939 			__skb_pull(skb, tcp_header_len);
5940 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5941 
5942 			tcp_event_data_recv(sk, skb);
5943 
5944 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5945 				/* Well, only one small jumplet in fast path... */
5946 				tcp_ack(sk, skb, FLAG_DATA);
5947 				tcp_data_snd_check(sk);
5948 				if (!inet_csk_ack_scheduled(sk))
5949 					goto no_ack;
5950 			} else {
5951 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5952 			}
5953 
5954 			__tcp_ack_snd_check(sk, 0);
5955 no_ack:
5956 			if (eaten)
5957 				kfree_skb_partial(skb, fragstolen);
5958 			tcp_data_ready(sk);
5959 			return;
5960 		}
5961 	}
5962 
5963 slow_path:
5964 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5965 		goto csum_error;
5966 
5967 	if (!th->ack && !th->rst && !th->syn) {
5968 		reason = SKB_DROP_REASON_TCP_FLAGS;
5969 		goto discard;
5970 	}
5971 
5972 	/*
5973 	 *	Standard slow path.
5974 	 */
5975 
5976 	if (!tcp_validate_incoming(sk, skb, th, 1))
5977 		return;
5978 
5979 step5:
5980 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
5981 	if ((int)reason < 0) {
5982 		reason = -reason;
5983 		goto discard;
5984 	}
5985 	tcp_rcv_rtt_measure_ts(sk, skb);
5986 
5987 	/* Process urgent data. */
5988 	tcp_urg(sk, skb, th);
5989 
5990 	/* step 7: process the segment text */
5991 	tcp_data_queue(sk, skb);
5992 
5993 	tcp_data_snd_check(sk);
5994 	tcp_ack_snd_check(sk);
5995 	return;
5996 
5997 csum_error:
5998 	reason = SKB_DROP_REASON_TCP_CSUM;
5999 	trace_tcp_bad_csum(skb);
6000 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6001 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6002 
6003 discard:
6004 	tcp_drop_reason(sk, skb, reason);
6005 }
6006 EXPORT_SYMBOL(tcp_rcv_established);
6007 
6008 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6009 {
6010 	struct inet_connection_sock *icsk = inet_csk(sk);
6011 	struct tcp_sock *tp = tcp_sk(sk);
6012 
6013 	tcp_mtup_init(sk);
6014 	icsk->icsk_af_ops->rebuild_header(sk);
6015 	tcp_init_metrics(sk);
6016 
6017 	/* Initialize the congestion window to start the transfer.
6018 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6019 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6020 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6021 	 * retransmission has occurred.
6022 	 */
6023 	if (tp->total_retrans > 1 && tp->undo_marker)
6024 		tcp_snd_cwnd_set(tp, 1);
6025 	else
6026 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6027 	tp->snd_cwnd_stamp = tcp_jiffies32;
6028 
6029 	bpf_skops_established(sk, bpf_op, skb);
6030 	/* Initialize congestion control unless BPF initialized it already: */
6031 	if (!icsk->icsk_ca_initialized)
6032 		tcp_init_congestion_control(sk);
6033 	tcp_init_buffer_space(sk);
6034 }
6035 
6036 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6037 {
6038 	struct tcp_sock *tp = tcp_sk(sk);
6039 	struct inet_connection_sock *icsk = inet_csk(sk);
6040 
6041 	tcp_set_state(sk, TCP_ESTABLISHED);
6042 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6043 
6044 	if (skb) {
6045 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6046 		security_inet_conn_established(sk, skb);
6047 		sk_mark_napi_id(sk, skb);
6048 	}
6049 
6050 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6051 
6052 	/* Prevent spurious tcp_cwnd_restart() on first data
6053 	 * packet.
6054 	 */
6055 	tp->lsndtime = tcp_jiffies32;
6056 
6057 	if (sock_flag(sk, SOCK_KEEPOPEN))
6058 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6059 
6060 	if (!tp->rx_opt.snd_wscale)
6061 		__tcp_fast_path_on(tp, tp->snd_wnd);
6062 	else
6063 		tp->pred_flags = 0;
6064 }
6065 
6066 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6067 				    struct tcp_fastopen_cookie *cookie)
6068 {
6069 	struct tcp_sock *tp = tcp_sk(sk);
6070 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6071 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6072 	bool syn_drop = false;
6073 
6074 	if (mss == tp->rx_opt.user_mss) {
6075 		struct tcp_options_received opt;
6076 
6077 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6078 		tcp_clear_options(&opt);
6079 		opt.user_mss = opt.mss_clamp = 0;
6080 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6081 		mss = opt.mss_clamp;
6082 	}
6083 
6084 	if (!tp->syn_fastopen) {
6085 		/* Ignore an unsolicited cookie */
6086 		cookie->len = -1;
6087 	} else if (tp->total_retrans) {
6088 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6089 		 * acknowledges data. Presumably the remote received only
6090 		 * the retransmitted (regular) SYNs: either the original
6091 		 * SYN-data or the corresponding SYN-ACK was dropped.
6092 		 */
6093 		syn_drop = (cookie->len < 0 && data);
6094 	} else if (cookie->len < 0 && !tp->syn_data) {
6095 		/* We requested a cookie but didn't get it. If we did not use
6096 		 * the (old) exp opt format then try so next time (try_exp=1).
6097 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6098 		 */
6099 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6100 	}
6101 
6102 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6103 
6104 	if (data) { /* Retransmit unacked data in SYN */
6105 		if (tp->total_retrans)
6106 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6107 		else
6108 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6109 		skb_rbtree_walk_from(data)
6110 			 tcp_mark_skb_lost(sk, data);
6111 		tcp_xmit_retransmit_queue(sk);
6112 		NET_INC_STATS(sock_net(sk),
6113 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6114 		return true;
6115 	}
6116 	tp->syn_data_acked = tp->syn_data;
6117 	if (tp->syn_data_acked) {
6118 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6119 		/* SYN-data is counted as two separate packets in tcp_ack() */
6120 		if (tp->delivered > 1)
6121 			--tp->delivered;
6122 	}
6123 
6124 	tcp_fastopen_add_skb(sk, synack);
6125 
6126 	return false;
6127 }
6128 
6129 static void smc_check_reset_syn(struct tcp_sock *tp)
6130 {
6131 #if IS_ENABLED(CONFIG_SMC)
6132 	if (static_branch_unlikely(&tcp_have_smc)) {
6133 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6134 			tp->syn_smc = 0;
6135 	}
6136 #endif
6137 }
6138 
6139 static void tcp_try_undo_spurious_syn(struct sock *sk)
6140 {
6141 	struct tcp_sock *tp = tcp_sk(sk);
6142 	u32 syn_stamp;
6143 
6144 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6145 	 * spurious if the ACK's timestamp option echo value matches the
6146 	 * original SYN timestamp.
6147 	 */
6148 	syn_stamp = tp->retrans_stamp;
6149 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6150 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6151 		tp->undo_marker = 0;
6152 }
6153 
6154 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6155 					 const struct tcphdr *th)
6156 {
6157 	struct inet_connection_sock *icsk = inet_csk(sk);
6158 	struct tcp_sock *tp = tcp_sk(sk);
6159 	struct tcp_fastopen_cookie foc = { .len = -1 };
6160 	int saved_clamp = tp->rx_opt.mss_clamp;
6161 	bool fastopen_fail;
6162 	SKB_DR(reason);
6163 
6164 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6165 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6166 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6167 
6168 	if (th->ack) {
6169 		/* rfc793:
6170 		 * "If the state is SYN-SENT then
6171 		 *    first check the ACK bit
6172 		 *      If the ACK bit is set
6173 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6174 		 *        a reset (unless the RST bit is set, if so drop
6175 		 *        the segment and return)"
6176 		 */
6177 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6178 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6179 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6180 			if (icsk->icsk_retransmits == 0)
6181 				inet_csk_reset_xmit_timer(sk,
6182 						ICSK_TIME_RETRANS,
6183 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6184 			goto reset_and_undo;
6185 		}
6186 
6187 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6188 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6189 			     tcp_time_stamp(tp))) {
6190 			NET_INC_STATS(sock_net(sk),
6191 					LINUX_MIB_PAWSACTIVEREJECTED);
6192 			goto reset_and_undo;
6193 		}
6194 
6195 		/* Now ACK is acceptable.
6196 		 *
6197 		 * "If the RST bit is set
6198 		 *    If the ACK was acceptable then signal the user "error:
6199 		 *    connection reset", drop the segment, enter CLOSED state,
6200 		 *    delete TCB, and return."
6201 		 */
6202 
6203 		if (th->rst) {
6204 			tcp_reset(sk, skb);
6205 consume:
6206 			__kfree_skb(skb);
6207 			return 0;
6208 		}
6209 
6210 		/* rfc793:
6211 		 *   "fifth, if neither of the SYN or RST bits is set then
6212 		 *    drop the segment and return."
6213 		 *
6214 		 *    See note below!
6215 		 *                                        --ANK(990513)
6216 		 */
6217 		if (!th->syn) {
6218 			SKB_DR_SET(reason, TCP_FLAGS);
6219 			goto discard_and_undo;
6220 		}
6221 		/* rfc793:
6222 		 *   "If the SYN bit is on ...
6223 		 *    are acceptable then ...
6224 		 *    (our SYN has been ACKed), change the connection
6225 		 *    state to ESTABLISHED..."
6226 		 */
6227 
6228 		tcp_ecn_rcv_synack(tp, th);
6229 
6230 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6231 		tcp_try_undo_spurious_syn(sk);
6232 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6233 
6234 		/* Ok.. it's good. Set up sequence numbers and
6235 		 * move to established.
6236 		 */
6237 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6238 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6239 
6240 		/* RFC1323: The window in SYN & SYN/ACK segments is
6241 		 * never scaled.
6242 		 */
6243 		tp->snd_wnd = ntohs(th->window);
6244 
6245 		if (!tp->rx_opt.wscale_ok) {
6246 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6247 			tp->window_clamp = min(tp->window_clamp, 65535U);
6248 		}
6249 
6250 		if (tp->rx_opt.saw_tstamp) {
6251 			tp->rx_opt.tstamp_ok	   = 1;
6252 			tp->tcp_header_len =
6253 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6254 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6255 			tcp_store_ts_recent(tp);
6256 		} else {
6257 			tp->tcp_header_len = sizeof(struct tcphdr);
6258 		}
6259 
6260 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6261 		tcp_initialize_rcv_mss(sk);
6262 
6263 		/* Remember, tcp_poll() does not lock socket!
6264 		 * Change state from SYN-SENT only after copied_seq
6265 		 * is initialized. */
6266 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6267 
6268 		smc_check_reset_syn(tp);
6269 
6270 		smp_mb();
6271 
6272 		tcp_finish_connect(sk, skb);
6273 
6274 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6275 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6276 
6277 		if (!sock_flag(sk, SOCK_DEAD)) {
6278 			sk->sk_state_change(sk);
6279 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6280 		}
6281 		if (fastopen_fail)
6282 			return -1;
6283 		if (sk->sk_write_pending ||
6284 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6285 		    inet_csk_in_pingpong_mode(sk)) {
6286 			/* Save one ACK. Data will be ready after
6287 			 * several ticks, if write_pending is set.
6288 			 *
6289 			 * It may be deleted, but with this feature tcpdumps
6290 			 * look so _wonderfully_ clever, that I was not able
6291 			 * to stand against the temptation 8)     --ANK
6292 			 */
6293 			inet_csk_schedule_ack(sk);
6294 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6295 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6296 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6297 			goto consume;
6298 		}
6299 		tcp_send_ack(sk);
6300 		return -1;
6301 	}
6302 
6303 	/* No ACK in the segment */
6304 
6305 	if (th->rst) {
6306 		/* rfc793:
6307 		 * "If the RST bit is set
6308 		 *
6309 		 *      Otherwise (no ACK) drop the segment and return."
6310 		 */
6311 		SKB_DR_SET(reason, TCP_RESET);
6312 		goto discard_and_undo;
6313 	}
6314 
6315 	/* PAWS check. */
6316 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6317 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6318 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6319 		goto discard_and_undo;
6320 	}
6321 	if (th->syn) {
6322 		/* We see SYN without ACK. It is attempt of
6323 		 * simultaneous connect with crossed SYNs.
6324 		 * Particularly, it can be connect to self.
6325 		 */
6326 		tcp_set_state(sk, TCP_SYN_RECV);
6327 
6328 		if (tp->rx_opt.saw_tstamp) {
6329 			tp->rx_opt.tstamp_ok = 1;
6330 			tcp_store_ts_recent(tp);
6331 			tp->tcp_header_len =
6332 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6333 		} else {
6334 			tp->tcp_header_len = sizeof(struct tcphdr);
6335 		}
6336 
6337 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6338 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6339 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6340 
6341 		/* RFC1323: The window in SYN & SYN/ACK segments is
6342 		 * never scaled.
6343 		 */
6344 		tp->snd_wnd    = ntohs(th->window);
6345 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6346 		tp->max_window = tp->snd_wnd;
6347 
6348 		tcp_ecn_rcv_syn(tp, th);
6349 
6350 		tcp_mtup_init(sk);
6351 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6352 		tcp_initialize_rcv_mss(sk);
6353 
6354 		tcp_send_synack(sk);
6355 #if 0
6356 		/* Note, we could accept data and URG from this segment.
6357 		 * There are no obstacles to make this (except that we must
6358 		 * either change tcp_recvmsg() to prevent it from returning data
6359 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6360 		 *
6361 		 * However, if we ignore data in ACKless segments sometimes,
6362 		 * we have no reasons to accept it sometimes.
6363 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6364 		 * is not flawless. So, discard packet for sanity.
6365 		 * Uncomment this return to process the data.
6366 		 */
6367 		return -1;
6368 #else
6369 		goto consume;
6370 #endif
6371 	}
6372 	/* "fifth, if neither of the SYN or RST bits is set then
6373 	 * drop the segment and return."
6374 	 */
6375 
6376 discard_and_undo:
6377 	tcp_clear_options(&tp->rx_opt);
6378 	tp->rx_opt.mss_clamp = saved_clamp;
6379 	tcp_drop_reason(sk, skb, reason);
6380 	return 0;
6381 
6382 reset_and_undo:
6383 	tcp_clear_options(&tp->rx_opt);
6384 	tp->rx_opt.mss_clamp = saved_clamp;
6385 	return 1;
6386 }
6387 
6388 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6389 {
6390 	struct request_sock *req;
6391 
6392 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6393 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6394 	 */
6395 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6396 		tcp_try_undo_loss(sk, false);
6397 
6398 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6399 	tcp_sk(sk)->retrans_stamp = 0;
6400 	inet_csk(sk)->icsk_retransmits = 0;
6401 
6402 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6403 	 * we no longer need req so release it.
6404 	 */
6405 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6406 					lockdep_sock_is_held(sk));
6407 	reqsk_fastopen_remove(sk, req, false);
6408 
6409 	/* Re-arm the timer because data may have been sent out.
6410 	 * This is similar to the regular data transmission case
6411 	 * when new data has just been ack'ed.
6412 	 *
6413 	 * (TFO) - we could try to be more aggressive and
6414 	 * retransmitting any data sooner based on when they
6415 	 * are sent out.
6416 	 */
6417 	tcp_rearm_rto(sk);
6418 }
6419 
6420 /*
6421  *	This function implements the receiving procedure of RFC 793 for
6422  *	all states except ESTABLISHED and TIME_WAIT.
6423  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6424  *	address independent.
6425  */
6426 
6427 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6428 {
6429 	struct tcp_sock *tp = tcp_sk(sk);
6430 	struct inet_connection_sock *icsk = inet_csk(sk);
6431 	const struct tcphdr *th = tcp_hdr(skb);
6432 	struct request_sock *req;
6433 	int queued = 0;
6434 	bool acceptable;
6435 	SKB_DR(reason);
6436 
6437 	switch (sk->sk_state) {
6438 	case TCP_CLOSE:
6439 		SKB_DR_SET(reason, TCP_CLOSE);
6440 		goto discard;
6441 
6442 	case TCP_LISTEN:
6443 		if (th->ack)
6444 			return 1;
6445 
6446 		if (th->rst) {
6447 			SKB_DR_SET(reason, TCP_RESET);
6448 			goto discard;
6449 		}
6450 		if (th->syn) {
6451 			if (th->fin) {
6452 				SKB_DR_SET(reason, TCP_FLAGS);
6453 				goto discard;
6454 			}
6455 			/* It is possible that we process SYN packets from backlog,
6456 			 * so we need to make sure to disable BH and RCU right there.
6457 			 */
6458 			rcu_read_lock();
6459 			local_bh_disable();
6460 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6461 			local_bh_enable();
6462 			rcu_read_unlock();
6463 
6464 			if (!acceptable)
6465 				return 1;
6466 			consume_skb(skb);
6467 			return 0;
6468 		}
6469 		SKB_DR_SET(reason, TCP_FLAGS);
6470 		goto discard;
6471 
6472 	case TCP_SYN_SENT:
6473 		tp->rx_opt.saw_tstamp = 0;
6474 		tcp_mstamp_refresh(tp);
6475 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6476 		if (queued >= 0)
6477 			return queued;
6478 
6479 		/* Do step6 onward by hand. */
6480 		tcp_urg(sk, skb, th);
6481 		__kfree_skb(skb);
6482 		tcp_data_snd_check(sk);
6483 		return 0;
6484 	}
6485 
6486 	tcp_mstamp_refresh(tp);
6487 	tp->rx_opt.saw_tstamp = 0;
6488 	req = rcu_dereference_protected(tp->fastopen_rsk,
6489 					lockdep_sock_is_held(sk));
6490 	if (req) {
6491 		bool req_stolen;
6492 
6493 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6494 		    sk->sk_state != TCP_FIN_WAIT1);
6495 
6496 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6497 			SKB_DR_SET(reason, TCP_FASTOPEN);
6498 			goto discard;
6499 		}
6500 	}
6501 
6502 	if (!th->ack && !th->rst && !th->syn) {
6503 		SKB_DR_SET(reason, TCP_FLAGS);
6504 		goto discard;
6505 	}
6506 	if (!tcp_validate_incoming(sk, skb, th, 0))
6507 		return 0;
6508 
6509 	/* step 5: check the ACK field */
6510 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6511 				      FLAG_UPDATE_TS_RECENT |
6512 				      FLAG_NO_CHALLENGE_ACK) > 0;
6513 
6514 	if (!acceptable) {
6515 		if (sk->sk_state == TCP_SYN_RECV)
6516 			return 1;	/* send one RST */
6517 		tcp_send_challenge_ack(sk);
6518 		SKB_DR_SET(reason, TCP_OLD_ACK);
6519 		goto discard;
6520 	}
6521 	switch (sk->sk_state) {
6522 	case TCP_SYN_RECV:
6523 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6524 		if (!tp->srtt_us)
6525 			tcp_synack_rtt_meas(sk, req);
6526 
6527 		if (req) {
6528 			tcp_rcv_synrecv_state_fastopen(sk);
6529 		} else {
6530 			tcp_try_undo_spurious_syn(sk);
6531 			tp->retrans_stamp = 0;
6532 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6533 					  skb);
6534 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6535 		}
6536 		smp_mb();
6537 		tcp_set_state(sk, TCP_ESTABLISHED);
6538 		sk->sk_state_change(sk);
6539 
6540 		/* Note, that this wakeup is only for marginal crossed SYN case.
6541 		 * Passively open sockets are not waked up, because
6542 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6543 		 */
6544 		if (sk->sk_socket)
6545 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6546 
6547 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6548 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6549 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6550 
6551 		if (tp->rx_opt.tstamp_ok)
6552 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6553 
6554 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6555 			tcp_update_pacing_rate(sk);
6556 
6557 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6558 		tp->lsndtime = tcp_jiffies32;
6559 
6560 		tcp_initialize_rcv_mss(sk);
6561 		tcp_fast_path_on(tp);
6562 		break;
6563 
6564 	case TCP_FIN_WAIT1: {
6565 		int tmo;
6566 
6567 		if (req)
6568 			tcp_rcv_synrecv_state_fastopen(sk);
6569 
6570 		if (tp->snd_una != tp->write_seq)
6571 			break;
6572 
6573 		tcp_set_state(sk, TCP_FIN_WAIT2);
6574 		sk->sk_shutdown |= SEND_SHUTDOWN;
6575 
6576 		sk_dst_confirm(sk);
6577 
6578 		if (!sock_flag(sk, SOCK_DEAD)) {
6579 			/* Wake up lingering close() */
6580 			sk->sk_state_change(sk);
6581 			break;
6582 		}
6583 
6584 		if (tp->linger2 < 0) {
6585 			tcp_done(sk);
6586 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6587 			return 1;
6588 		}
6589 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6590 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6591 			/* Receive out of order FIN after close() */
6592 			if (tp->syn_fastopen && th->fin)
6593 				tcp_fastopen_active_disable(sk);
6594 			tcp_done(sk);
6595 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6596 			return 1;
6597 		}
6598 
6599 		tmo = tcp_fin_time(sk);
6600 		if (tmo > TCP_TIMEWAIT_LEN) {
6601 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6602 		} else if (th->fin || sock_owned_by_user(sk)) {
6603 			/* Bad case. We could lose such FIN otherwise.
6604 			 * It is not a big problem, but it looks confusing
6605 			 * and not so rare event. We still can lose it now,
6606 			 * if it spins in bh_lock_sock(), but it is really
6607 			 * marginal case.
6608 			 */
6609 			inet_csk_reset_keepalive_timer(sk, tmo);
6610 		} else {
6611 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6612 			goto consume;
6613 		}
6614 		break;
6615 	}
6616 
6617 	case TCP_CLOSING:
6618 		if (tp->snd_una == tp->write_seq) {
6619 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6620 			goto consume;
6621 		}
6622 		break;
6623 
6624 	case TCP_LAST_ACK:
6625 		if (tp->snd_una == tp->write_seq) {
6626 			tcp_update_metrics(sk);
6627 			tcp_done(sk);
6628 			goto consume;
6629 		}
6630 		break;
6631 	}
6632 
6633 	/* step 6: check the URG bit */
6634 	tcp_urg(sk, skb, th);
6635 
6636 	/* step 7: process the segment text */
6637 	switch (sk->sk_state) {
6638 	case TCP_CLOSE_WAIT:
6639 	case TCP_CLOSING:
6640 	case TCP_LAST_ACK:
6641 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6642 			/* If a subflow has been reset, the packet should not
6643 			 * continue to be processed, drop the packet.
6644 			 */
6645 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6646 				goto discard;
6647 			break;
6648 		}
6649 		fallthrough;
6650 	case TCP_FIN_WAIT1:
6651 	case TCP_FIN_WAIT2:
6652 		/* RFC 793 says to queue data in these states,
6653 		 * RFC 1122 says we MUST send a reset.
6654 		 * BSD 4.4 also does reset.
6655 		 */
6656 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6657 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6658 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6659 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6660 				tcp_reset(sk, skb);
6661 				return 1;
6662 			}
6663 		}
6664 		fallthrough;
6665 	case TCP_ESTABLISHED:
6666 		tcp_data_queue(sk, skb);
6667 		queued = 1;
6668 		break;
6669 	}
6670 
6671 	/* tcp_data could move socket to TIME-WAIT */
6672 	if (sk->sk_state != TCP_CLOSE) {
6673 		tcp_data_snd_check(sk);
6674 		tcp_ack_snd_check(sk);
6675 	}
6676 
6677 	if (!queued) {
6678 discard:
6679 		tcp_drop_reason(sk, skb, reason);
6680 	}
6681 	return 0;
6682 
6683 consume:
6684 	__kfree_skb(skb);
6685 	return 0;
6686 }
6687 EXPORT_SYMBOL(tcp_rcv_state_process);
6688 
6689 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6690 {
6691 	struct inet_request_sock *ireq = inet_rsk(req);
6692 
6693 	if (family == AF_INET)
6694 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6695 				    &ireq->ir_rmt_addr, port);
6696 #if IS_ENABLED(CONFIG_IPV6)
6697 	else if (family == AF_INET6)
6698 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6699 				    &ireq->ir_v6_rmt_addr, port);
6700 #endif
6701 }
6702 
6703 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6704  *
6705  * If we receive a SYN packet with these bits set, it means a
6706  * network is playing bad games with TOS bits. In order to
6707  * avoid possible false congestion notifications, we disable
6708  * TCP ECN negotiation.
6709  *
6710  * Exception: tcp_ca wants ECN. This is required for DCTCP
6711  * congestion control: Linux DCTCP asserts ECT on all packets,
6712  * including SYN, which is most optimal solution; however,
6713  * others, such as FreeBSD do not.
6714  *
6715  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6716  * set, indicating the use of a future TCP extension (such as AccECN). See
6717  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6718  * extensions.
6719  */
6720 static void tcp_ecn_create_request(struct request_sock *req,
6721 				   const struct sk_buff *skb,
6722 				   const struct sock *listen_sk,
6723 				   const struct dst_entry *dst)
6724 {
6725 	const struct tcphdr *th = tcp_hdr(skb);
6726 	const struct net *net = sock_net(listen_sk);
6727 	bool th_ecn = th->ece && th->cwr;
6728 	bool ect, ecn_ok;
6729 	u32 ecn_ok_dst;
6730 
6731 	if (!th_ecn)
6732 		return;
6733 
6734 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6735 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6736 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6737 
6738 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6739 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6740 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6741 		inet_rsk(req)->ecn_ok = 1;
6742 }
6743 
6744 static void tcp_openreq_init(struct request_sock *req,
6745 			     const struct tcp_options_received *rx_opt,
6746 			     struct sk_buff *skb, const struct sock *sk)
6747 {
6748 	struct inet_request_sock *ireq = inet_rsk(req);
6749 
6750 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6751 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6752 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6753 	tcp_rsk(req)->snt_synack = 0;
6754 	tcp_rsk(req)->last_oow_ack_time = 0;
6755 	req->mss = rx_opt->mss_clamp;
6756 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6757 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6758 	ireq->sack_ok = rx_opt->sack_ok;
6759 	ireq->snd_wscale = rx_opt->snd_wscale;
6760 	ireq->wscale_ok = rx_opt->wscale_ok;
6761 	ireq->acked = 0;
6762 	ireq->ecn_ok = 0;
6763 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6764 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6765 	ireq->ir_mark = inet_request_mark(sk, skb);
6766 #if IS_ENABLED(CONFIG_SMC)
6767 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6768 			tcp_sk(sk)->smc_hs_congested(sk));
6769 #endif
6770 }
6771 
6772 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6773 				      struct sock *sk_listener,
6774 				      bool attach_listener)
6775 {
6776 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6777 					       attach_listener);
6778 
6779 	if (req) {
6780 		struct inet_request_sock *ireq = inet_rsk(req);
6781 
6782 		ireq->ireq_opt = NULL;
6783 #if IS_ENABLED(CONFIG_IPV6)
6784 		ireq->pktopts = NULL;
6785 #endif
6786 		atomic64_set(&ireq->ir_cookie, 0);
6787 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6788 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6789 		ireq->ireq_family = sk_listener->sk_family;
6790 		req->timeout = TCP_TIMEOUT_INIT;
6791 	}
6792 
6793 	return req;
6794 }
6795 EXPORT_SYMBOL(inet_reqsk_alloc);
6796 
6797 /*
6798  * Return true if a syncookie should be sent
6799  */
6800 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6801 {
6802 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6803 	const char *msg = "Dropping request";
6804 	struct net *net = sock_net(sk);
6805 	bool want_cookie = false;
6806 	u8 syncookies;
6807 
6808 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6809 
6810 #ifdef CONFIG_SYN_COOKIES
6811 	if (syncookies) {
6812 		msg = "Sending cookies";
6813 		want_cookie = true;
6814 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6815 	} else
6816 #endif
6817 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6818 
6819 	if (!queue->synflood_warned && syncookies != 2 &&
6820 	    xchg(&queue->synflood_warned, 1) == 0)
6821 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6822 				     proto, sk->sk_num, msg);
6823 
6824 	return want_cookie;
6825 }
6826 
6827 static void tcp_reqsk_record_syn(const struct sock *sk,
6828 				 struct request_sock *req,
6829 				 const struct sk_buff *skb)
6830 {
6831 	if (tcp_sk(sk)->save_syn) {
6832 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6833 		struct saved_syn *saved_syn;
6834 		u32 mac_hdrlen;
6835 		void *base;
6836 
6837 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6838 			base = skb_mac_header(skb);
6839 			mac_hdrlen = skb_mac_header_len(skb);
6840 			len += mac_hdrlen;
6841 		} else {
6842 			base = skb_network_header(skb);
6843 			mac_hdrlen = 0;
6844 		}
6845 
6846 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6847 				    GFP_ATOMIC);
6848 		if (saved_syn) {
6849 			saved_syn->mac_hdrlen = mac_hdrlen;
6850 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6851 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6852 			memcpy(saved_syn->data, base, len);
6853 			req->saved_syn = saved_syn;
6854 		}
6855 	}
6856 }
6857 
6858 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6859  * used for SYN cookie generation.
6860  */
6861 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6862 			  const struct tcp_request_sock_ops *af_ops,
6863 			  struct sock *sk, struct tcphdr *th)
6864 {
6865 	struct tcp_sock *tp = tcp_sk(sk);
6866 	u16 mss;
6867 
6868 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6869 	    !inet_csk_reqsk_queue_is_full(sk))
6870 		return 0;
6871 
6872 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6873 		return 0;
6874 
6875 	if (sk_acceptq_is_full(sk)) {
6876 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6877 		return 0;
6878 	}
6879 
6880 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6881 	if (!mss)
6882 		mss = af_ops->mss_clamp;
6883 
6884 	return mss;
6885 }
6886 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6887 
6888 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6889 		     const struct tcp_request_sock_ops *af_ops,
6890 		     struct sock *sk, struct sk_buff *skb)
6891 {
6892 	struct tcp_fastopen_cookie foc = { .len = -1 };
6893 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6894 	struct tcp_options_received tmp_opt;
6895 	struct tcp_sock *tp = tcp_sk(sk);
6896 	struct net *net = sock_net(sk);
6897 	struct sock *fastopen_sk = NULL;
6898 	struct request_sock *req;
6899 	bool want_cookie = false;
6900 	struct dst_entry *dst;
6901 	struct flowi fl;
6902 	u8 syncookies;
6903 
6904 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6905 
6906 	/* TW buckets are converted to open requests without
6907 	 * limitations, they conserve resources and peer is
6908 	 * evidently real one.
6909 	 */
6910 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6911 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6912 		if (!want_cookie)
6913 			goto drop;
6914 	}
6915 
6916 	if (sk_acceptq_is_full(sk)) {
6917 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6918 		goto drop;
6919 	}
6920 
6921 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6922 	if (!req)
6923 		goto drop;
6924 
6925 	req->syncookie = want_cookie;
6926 	tcp_rsk(req)->af_specific = af_ops;
6927 	tcp_rsk(req)->ts_off = 0;
6928 #if IS_ENABLED(CONFIG_MPTCP)
6929 	tcp_rsk(req)->is_mptcp = 0;
6930 #endif
6931 
6932 	tcp_clear_options(&tmp_opt);
6933 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6934 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6935 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6936 			  want_cookie ? NULL : &foc);
6937 
6938 	if (want_cookie && !tmp_opt.saw_tstamp)
6939 		tcp_clear_options(&tmp_opt);
6940 
6941 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6942 		tmp_opt.smc_ok = 0;
6943 
6944 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6945 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6946 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6947 
6948 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6949 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6950 
6951 	dst = af_ops->route_req(sk, skb, &fl, req);
6952 	if (!dst)
6953 		goto drop_and_free;
6954 
6955 	if (tmp_opt.tstamp_ok)
6956 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6957 
6958 	if (!want_cookie && !isn) {
6959 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6960 
6961 		/* Kill the following clause, if you dislike this way. */
6962 		if (!syncookies &&
6963 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6964 		     (max_syn_backlog >> 2)) &&
6965 		    !tcp_peer_is_proven(req, dst)) {
6966 			/* Without syncookies last quarter of
6967 			 * backlog is filled with destinations,
6968 			 * proven to be alive.
6969 			 * It means that we continue to communicate
6970 			 * to destinations, already remembered
6971 			 * to the moment of synflood.
6972 			 */
6973 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6974 				    rsk_ops->family);
6975 			goto drop_and_release;
6976 		}
6977 
6978 		isn = af_ops->init_seq(skb);
6979 	}
6980 
6981 	tcp_ecn_create_request(req, skb, sk, dst);
6982 
6983 	if (want_cookie) {
6984 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6985 		if (!tmp_opt.tstamp_ok)
6986 			inet_rsk(req)->ecn_ok = 0;
6987 	}
6988 
6989 	tcp_rsk(req)->snt_isn = isn;
6990 	tcp_rsk(req)->txhash = net_tx_rndhash();
6991 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6992 	tcp_openreq_init_rwin(req, sk, dst);
6993 	sk_rx_queue_set(req_to_sk(req), skb);
6994 	if (!want_cookie) {
6995 		tcp_reqsk_record_syn(sk, req, skb);
6996 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6997 	}
6998 	if (fastopen_sk) {
6999 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7000 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7001 		/* Add the child socket directly into the accept queue */
7002 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7003 			reqsk_fastopen_remove(fastopen_sk, req, false);
7004 			bh_unlock_sock(fastopen_sk);
7005 			sock_put(fastopen_sk);
7006 			goto drop_and_free;
7007 		}
7008 		sk->sk_data_ready(sk);
7009 		bh_unlock_sock(fastopen_sk);
7010 		sock_put(fastopen_sk);
7011 	} else {
7012 		tcp_rsk(req)->tfo_listener = false;
7013 		if (!want_cookie) {
7014 			req->timeout = tcp_timeout_init((struct sock *)req);
7015 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7016 		}
7017 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7018 				    !want_cookie ? TCP_SYNACK_NORMAL :
7019 						   TCP_SYNACK_COOKIE,
7020 				    skb);
7021 		if (want_cookie) {
7022 			reqsk_free(req);
7023 			return 0;
7024 		}
7025 	}
7026 	reqsk_put(req);
7027 	return 0;
7028 
7029 drop_and_release:
7030 	dst_release(dst);
7031 drop_and_free:
7032 	__reqsk_free(req);
7033 drop:
7034 	tcp_listendrop(sk);
7035 	return 0;
7036 }
7037 EXPORT_SYMBOL(tcp_conn_request);
7038