1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 241 tcp_sk(sk)->advmss); 242 /* Account for possibly-removed options */ 243 if (unlikely(len > icsk->icsk_ack.rcv_mss + 244 MAX_TCP_OPTION_SPACE)) 245 tcp_gro_dev_warn(sk, skb, len); 246 } else { 247 /* Otherwise, we make more careful check taking into account, 248 * that SACKs block is variable. 249 * 250 * "len" is invariant segment length, including TCP header. 251 */ 252 len += skb->data - skb_transport_header(skb); 253 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 254 /* If PSH is not set, packet should be 255 * full sized, provided peer TCP is not badly broken. 256 * This observation (if it is correct 8)) allows 257 * to handle super-low mtu links fairly. 258 */ 259 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 260 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 261 /* Subtract also invariant (if peer is RFC compliant), 262 * tcp header plus fixed timestamp option length. 263 * Resulting "len" is MSS free of SACK jitter. 264 */ 265 len -= tcp_sk(sk)->tcp_header_len; 266 icsk->icsk_ack.last_seg_size = len; 267 if (len == lss) { 268 icsk->icsk_ack.rcv_mss = len; 269 return; 270 } 271 } 272 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 275 } 276 } 277 278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 279 { 280 struct inet_connection_sock *icsk = inet_csk(sk); 281 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 282 283 if (quickacks == 0) 284 quickacks = 2; 285 quickacks = min(quickacks, max_quickacks); 286 if (quickacks > icsk->icsk_ack.quick) 287 icsk->icsk_ack.quick = quickacks; 288 } 289 290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 291 { 292 struct inet_connection_sock *icsk = inet_csk(sk); 293 294 tcp_incr_quickack(sk, max_quickacks); 295 inet_csk_exit_pingpong_mode(sk); 296 icsk->icsk_ack.ato = TCP_ATO_MIN; 297 } 298 EXPORT_SYMBOL(tcp_enter_quickack_mode); 299 300 /* Send ACKs quickly, if "quick" count is not exhausted 301 * and the session is not interactive. 302 */ 303 304 static bool tcp_in_quickack_mode(struct sock *sk) 305 { 306 const struct inet_connection_sock *icsk = inet_csk(sk); 307 const struct dst_entry *dst = __sk_dst_get(sk); 308 309 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 310 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 311 } 312 313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 314 { 315 if (tp->ecn_flags & TCP_ECN_OK) 316 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 317 } 318 319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 320 { 321 if (tcp_hdr(skb)->cwr) { 322 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 323 324 /* If the sender is telling us it has entered CWR, then its 325 * cwnd may be very low (even just 1 packet), so we should ACK 326 * immediately. 327 */ 328 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 330 } 331 } 332 333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 334 { 335 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 336 } 337 338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 343 case INET_ECN_NOT_ECT: 344 /* Funny extension: if ECT is not set on a segment, 345 * and we already seen ECT on a previous segment, 346 * it is probably a retransmit. 347 */ 348 if (tp->ecn_flags & TCP_ECN_SEEN) 349 tcp_enter_quickack_mode(sk, 2); 350 break; 351 case INET_ECN_CE: 352 if (tcp_ca_needs_ecn(sk)) 353 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 354 355 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 356 /* Better not delay acks, sender can have a very low cwnd */ 357 tcp_enter_quickack_mode(sk, 2); 358 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 359 } 360 tp->ecn_flags |= TCP_ECN_SEEN; 361 break; 362 default: 363 if (tcp_ca_needs_ecn(sk)) 364 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 365 tp->ecn_flags |= TCP_ECN_SEEN; 366 break; 367 } 368 } 369 370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 371 { 372 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 373 __tcp_ecn_check_ce(sk, skb); 374 } 375 376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 377 { 378 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 379 tp->ecn_flags &= ~TCP_ECN_OK; 380 } 381 382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 383 { 384 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 385 tp->ecn_flags &= ~TCP_ECN_OK; 386 } 387 388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 389 { 390 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 391 return true; 392 return false; 393 } 394 395 /* Buffer size and advertised window tuning. 396 * 397 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 398 */ 399 400 static void tcp_sndbuf_expand(struct sock *sk) 401 { 402 const struct tcp_sock *tp = tcp_sk(sk); 403 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 404 int sndmem, per_mss; 405 u32 nr_segs; 406 407 /* Worst case is non GSO/TSO : each frame consumes one skb 408 * and skb->head is kmalloced using power of two area of memory 409 */ 410 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 411 MAX_TCP_HEADER + 412 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 413 414 per_mss = roundup_pow_of_two(per_mss) + 415 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 416 417 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 418 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 419 420 /* Fast Recovery (RFC 5681 3.2) : 421 * Cubic needs 1.7 factor, rounded to 2 to include 422 * extra cushion (application might react slowly to EPOLLOUT) 423 */ 424 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 425 sndmem *= nr_segs * per_mss; 426 427 if (sk->sk_sndbuf < sndmem) 428 WRITE_ONCE(sk->sk_sndbuf, 429 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 430 } 431 432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 433 * 434 * All tcp_full_space() is split to two parts: "network" buffer, allocated 435 * forward and advertised in receiver window (tp->rcv_wnd) and 436 * "application buffer", required to isolate scheduling/application 437 * latencies from network. 438 * window_clamp is maximal advertised window. It can be less than 439 * tcp_full_space(), in this case tcp_full_space() - window_clamp 440 * is reserved for "application" buffer. The less window_clamp is 441 * the smoother our behaviour from viewpoint of network, but the lower 442 * throughput and the higher sensitivity of the connection to losses. 8) 443 * 444 * rcv_ssthresh is more strict window_clamp used at "slow start" 445 * phase to predict further behaviour of this connection. 446 * It is used for two goals: 447 * - to enforce header prediction at sender, even when application 448 * requires some significant "application buffer". It is check #1. 449 * - to prevent pruning of receive queue because of misprediction 450 * of receiver window. Check #2. 451 * 452 * The scheme does not work when sender sends good segments opening 453 * window and then starts to feed us spaghetti. But it should work 454 * in common situations. Otherwise, we have to rely on queue collapsing. 455 */ 456 457 /* Slow part of check#2. */ 458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 459 unsigned int skbtruesize) 460 { 461 struct tcp_sock *tp = tcp_sk(sk); 462 /* Optimize this! */ 463 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 464 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 465 466 while (tp->rcv_ssthresh <= window) { 467 if (truesize <= skb->len) 468 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 469 470 truesize >>= 1; 471 window >>= 1; 472 } 473 return 0; 474 } 475 476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 477 * can play nice with us, as sk_buff and skb->head might be either 478 * freed or shared with up to MAX_SKB_FRAGS segments. 479 * Only give a boost to drivers using page frag(s) to hold the frame(s), 480 * and if no payload was pulled in skb->head before reaching us. 481 */ 482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 483 { 484 u32 truesize = skb->truesize; 485 486 if (adjust && !skb_headlen(skb)) { 487 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 488 /* paranoid check, some drivers might be buggy */ 489 if (unlikely((int)truesize < (int)skb->len)) 490 truesize = skb->truesize; 491 } 492 return truesize; 493 } 494 495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 496 bool adjust) 497 { 498 struct tcp_sock *tp = tcp_sk(sk); 499 int room; 500 501 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 502 503 if (room <= 0) 504 return; 505 506 /* Check #1 */ 507 if (!tcp_under_memory_pressure(sk)) { 508 unsigned int truesize = truesize_adjust(adjust, skb); 509 int incr; 510 511 /* Check #2. Increase window, if skb with such overhead 512 * will fit to rcvbuf in future. 513 */ 514 if (tcp_win_from_space(sk, truesize) <= skb->len) 515 incr = 2 * tp->advmss; 516 else 517 incr = __tcp_grow_window(sk, skb, truesize); 518 519 if (incr) { 520 incr = max_t(int, incr, 2 * skb->len); 521 tp->rcv_ssthresh += min(room, incr); 522 inet_csk(sk)->icsk_ack.quick |= 1; 523 } 524 } else { 525 /* Under pressure: 526 * Adjust rcv_ssthresh according to reserved mem 527 */ 528 tcp_adjust_rcv_ssthresh(sk); 529 } 530 } 531 532 /* 3. Try to fixup all. It is made immediately after connection enters 533 * established state. 534 */ 535 static void tcp_init_buffer_space(struct sock *sk) 536 { 537 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 538 struct tcp_sock *tp = tcp_sk(sk); 539 int maxwin; 540 541 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 542 tcp_sndbuf_expand(sk); 543 544 tcp_mstamp_refresh(tp); 545 tp->rcvq_space.time = tp->tcp_mstamp; 546 tp->rcvq_space.seq = tp->copied_seq; 547 548 maxwin = tcp_full_space(sk); 549 550 if (tp->window_clamp >= maxwin) { 551 tp->window_clamp = maxwin; 552 553 if (tcp_app_win && maxwin > 4 * tp->advmss) 554 tp->window_clamp = max(maxwin - 555 (maxwin >> tcp_app_win), 556 4 * tp->advmss); 557 } 558 559 /* Force reservation of one segment. */ 560 if (tcp_app_win && 561 tp->window_clamp > 2 * tp->advmss && 562 tp->window_clamp + tp->advmss > maxwin) 563 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 564 565 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 566 tp->snd_cwnd_stamp = tcp_jiffies32; 567 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 568 (u32)TCP_INIT_CWND * tp->advmss); 569 } 570 571 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 572 static void tcp_clamp_window(struct sock *sk) 573 { 574 struct tcp_sock *tp = tcp_sk(sk); 575 struct inet_connection_sock *icsk = inet_csk(sk); 576 struct net *net = sock_net(sk); 577 int rmem2; 578 579 icsk->icsk_ack.quick = 0; 580 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 581 582 if (sk->sk_rcvbuf < rmem2 && 583 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 584 !tcp_under_memory_pressure(sk) && 585 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 586 WRITE_ONCE(sk->sk_rcvbuf, 587 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 588 } 589 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 590 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 591 } 592 593 /* Initialize RCV_MSS value. 594 * RCV_MSS is an our guess about MSS used by the peer. 595 * We haven't any direct information about the MSS. 596 * It's better to underestimate the RCV_MSS rather than overestimate. 597 * Overestimations make us ACKing less frequently than needed. 598 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 599 */ 600 void tcp_initialize_rcv_mss(struct sock *sk) 601 { 602 const struct tcp_sock *tp = tcp_sk(sk); 603 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 604 605 hint = min(hint, tp->rcv_wnd / 2); 606 hint = min(hint, TCP_MSS_DEFAULT); 607 hint = max(hint, TCP_MIN_MSS); 608 609 inet_csk(sk)->icsk_ack.rcv_mss = hint; 610 } 611 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 612 613 /* Receiver "autotuning" code. 614 * 615 * The algorithm for RTT estimation w/o timestamps is based on 616 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 617 * <https://public.lanl.gov/radiant/pubs.html#DRS> 618 * 619 * More detail on this code can be found at 620 * <http://staff.psc.edu/jheffner/>, 621 * though this reference is out of date. A new paper 622 * is pending. 623 */ 624 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 625 { 626 u32 new_sample = tp->rcv_rtt_est.rtt_us; 627 long m = sample; 628 629 if (new_sample != 0) { 630 /* If we sample in larger samples in the non-timestamp 631 * case, we could grossly overestimate the RTT especially 632 * with chatty applications or bulk transfer apps which 633 * are stalled on filesystem I/O. 634 * 635 * Also, since we are only going for a minimum in the 636 * non-timestamp case, we do not smooth things out 637 * else with timestamps disabled convergence takes too 638 * long. 639 */ 640 if (!win_dep) { 641 m -= (new_sample >> 3); 642 new_sample += m; 643 } else { 644 m <<= 3; 645 if (m < new_sample) 646 new_sample = m; 647 } 648 } else { 649 /* No previous measure. */ 650 new_sample = m << 3; 651 } 652 653 tp->rcv_rtt_est.rtt_us = new_sample; 654 } 655 656 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 657 { 658 u32 delta_us; 659 660 if (tp->rcv_rtt_est.time == 0) 661 goto new_measure; 662 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 663 return; 664 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 665 if (!delta_us) 666 delta_us = 1; 667 tcp_rcv_rtt_update(tp, delta_us, 1); 668 669 new_measure: 670 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 671 tp->rcv_rtt_est.time = tp->tcp_mstamp; 672 } 673 674 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 675 const struct sk_buff *skb) 676 { 677 struct tcp_sock *tp = tcp_sk(sk); 678 679 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 680 return; 681 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 682 683 if (TCP_SKB_CB(skb)->end_seq - 684 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 685 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 686 u32 delta_us; 687 688 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 689 if (!delta) 690 delta = 1; 691 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 692 tcp_rcv_rtt_update(tp, delta_us, 0); 693 } 694 } 695 } 696 697 /* 698 * This function should be called every time data is copied to user space. 699 * It calculates the appropriate TCP receive buffer space. 700 */ 701 void tcp_rcv_space_adjust(struct sock *sk) 702 { 703 struct tcp_sock *tp = tcp_sk(sk); 704 u32 copied; 705 int time; 706 707 trace_tcp_rcv_space_adjust(sk); 708 709 tcp_mstamp_refresh(tp); 710 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 711 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 712 return; 713 714 /* Number of bytes copied to user in last RTT */ 715 copied = tp->copied_seq - tp->rcvq_space.seq; 716 if (copied <= tp->rcvq_space.space) 717 goto new_measure; 718 719 /* A bit of theory : 720 * copied = bytes received in previous RTT, our base window 721 * To cope with packet losses, we need a 2x factor 722 * To cope with slow start, and sender growing its cwin by 100 % 723 * every RTT, we need a 4x factor, because the ACK we are sending 724 * now is for the next RTT, not the current one : 725 * <prev RTT . ><current RTT .. ><next RTT .... > 726 */ 727 728 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 729 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 730 int rcvmem, rcvbuf; 731 u64 rcvwin, grow; 732 733 /* minimal window to cope with packet losses, assuming 734 * steady state. Add some cushion because of small variations. 735 */ 736 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 737 738 /* Accommodate for sender rate increase (eg. slow start) */ 739 grow = rcvwin * (copied - tp->rcvq_space.space); 740 do_div(grow, tp->rcvq_space.space); 741 rcvwin += (grow << 1); 742 743 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 744 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 745 rcvmem += 128; 746 747 do_div(rcvwin, tp->advmss); 748 rcvbuf = min_t(u64, rcvwin * rcvmem, 749 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 750 if (rcvbuf > sk->sk_rcvbuf) { 751 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 752 753 /* Make the window clamp follow along. */ 754 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 755 } 756 } 757 tp->rcvq_space.space = copied; 758 759 new_measure: 760 tp->rcvq_space.seq = tp->copied_seq; 761 tp->rcvq_space.time = tp->tcp_mstamp; 762 } 763 764 /* There is something which you must keep in mind when you analyze the 765 * behavior of the tp->ato delayed ack timeout interval. When a 766 * connection starts up, we want to ack as quickly as possible. The 767 * problem is that "good" TCP's do slow start at the beginning of data 768 * transmission. The means that until we send the first few ACK's the 769 * sender will sit on his end and only queue most of his data, because 770 * he can only send snd_cwnd unacked packets at any given time. For 771 * each ACK we send, he increments snd_cwnd and transmits more of his 772 * queue. -DaveM 773 */ 774 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 775 { 776 struct tcp_sock *tp = tcp_sk(sk); 777 struct inet_connection_sock *icsk = inet_csk(sk); 778 u32 now; 779 780 inet_csk_schedule_ack(sk); 781 782 tcp_measure_rcv_mss(sk, skb); 783 784 tcp_rcv_rtt_measure(tp); 785 786 now = tcp_jiffies32; 787 788 if (!icsk->icsk_ack.ato) { 789 /* The _first_ data packet received, initialize 790 * delayed ACK engine. 791 */ 792 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 793 icsk->icsk_ack.ato = TCP_ATO_MIN; 794 } else { 795 int m = now - icsk->icsk_ack.lrcvtime; 796 797 if (m <= TCP_ATO_MIN / 2) { 798 /* The fastest case is the first. */ 799 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 800 } else if (m < icsk->icsk_ack.ato) { 801 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 802 if (icsk->icsk_ack.ato > icsk->icsk_rto) 803 icsk->icsk_ack.ato = icsk->icsk_rto; 804 } else if (m > icsk->icsk_rto) { 805 /* Too long gap. Apparently sender failed to 806 * restart window, so that we send ACKs quickly. 807 */ 808 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 809 sk_mem_reclaim(sk); 810 } 811 } 812 icsk->icsk_ack.lrcvtime = now; 813 814 tcp_ecn_check_ce(sk, skb); 815 816 if (skb->len >= 128) 817 tcp_grow_window(sk, skb, true); 818 } 819 820 /* Called to compute a smoothed rtt estimate. The data fed to this 821 * routine either comes from timestamps, or from segments that were 822 * known _not_ to have been retransmitted [see Karn/Partridge 823 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 824 * piece by Van Jacobson. 825 * NOTE: the next three routines used to be one big routine. 826 * To save cycles in the RFC 1323 implementation it was better to break 827 * it up into three procedures. -- erics 828 */ 829 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 830 { 831 struct tcp_sock *tp = tcp_sk(sk); 832 long m = mrtt_us; /* RTT */ 833 u32 srtt = tp->srtt_us; 834 835 /* The following amusing code comes from Jacobson's 836 * article in SIGCOMM '88. Note that rtt and mdev 837 * are scaled versions of rtt and mean deviation. 838 * This is designed to be as fast as possible 839 * m stands for "measurement". 840 * 841 * On a 1990 paper the rto value is changed to: 842 * RTO = rtt + 4 * mdev 843 * 844 * Funny. This algorithm seems to be very broken. 845 * These formulae increase RTO, when it should be decreased, increase 846 * too slowly, when it should be increased quickly, decrease too quickly 847 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 848 * does not matter how to _calculate_ it. Seems, it was trap 849 * that VJ failed to avoid. 8) 850 */ 851 if (srtt != 0) { 852 m -= (srtt >> 3); /* m is now error in rtt est */ 853 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 854 if (m < 0) { 855 m = -m; /* m is now abs(error) */ 856 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 857 /* This is similar to one of Eifel findings. 858 * Eifel blocks mdev updates when rtt decreases. 859 * This solution is a bit different: we use finer gain 860 * for mdev in this case (alpha*beta). 861 * Like Eifel it also prevents growth of rto, 862 * but also it limits too fast rto decreases, 863 * happening in pure Eifel. 864 */ 865 if (m > 0) 866 m >>= 3; 867 } else { 868 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 869 } 870 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 871 if (tp->mdev_us > tp->mdev_max_us) { 872 tp->mdev_max_us = tp->mdev_us; 873 if (tp->mdev_max_us > tp->rttvar_us) 874 tp->rttvar_us = tp->mdev_max_us; 875 } 876 if (after(tp->snd_una, tp->rtt_seq)) { 877 if (tp->mdev_max_us < tp->rttvar_us) 878 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 879 tp->rtt_seq = tp->snd_nxt; 880 tp->mdev_max_us = tcp_rto_min_us(sk); 881 882 tcp_bpf_rtt(sk); 883 } 884 } else { 885 /* no previous measure. */ 886 srtt = m << 3; /* take the measured time to be rtt */ 887 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 888 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 889 tp->mdev_max_us = tp->rttvar_us; 890 tp->rtt_seq = tp->snd_nxt; 891 892 tcp_bpf_rtt(sk); 893 } 894 tp->srtt_us = max(1U, srtt); 895 } 896 897 static void tcp_update_pacing_rate(struct sock *sk) 898 { 899 const struct tcp_sock *tp = tcp_sk(sk); 900 u64 rate; 901 902 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 903 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 904 905 /* current rate is (cwnd * mss) / srtt 906 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 907 * In Congestion Avoidance phase, set it to 120 % the current rate. 908 * 909 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 910 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 911 * end of slow start and should slow down. 912 */ 913 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 914 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 915 else 916 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 917 918 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 919 920 if (likely(tp->srtt_us)) 921 do_div(rate, tp->srtt_us); 922 923 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 924 * without any lock. We want to make sure compiler wont store 925 * intermediate values in this location. 926 */ 927 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 928 sk->sk_max_pacing_rate)); 929 } 930 931 /* Calculate rto without backoff. This is the second half of Van Jacobson's 932 * routine referred to above. 933 */ 934 static void tcp_set_rto(struct sock *sk) 935 { 936 const struct tcp_sock *tp = tcp_sk(sk); 937 /* Old crap is replaced with new one. 8) 938 * 939 * More seriously: 940 * 1. If rtt variance happened to be less 50msec, it is hallucination. 941 * It cannot be less due to utterly erratic ACK generation made 942 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 943 * to do with delayed acks, because at cwnd>2 true delack timeout 944 * is invisible. Actually, Linux-2.4 also generates erratic 945 * ACKs in some circumstances. 946 */ 947 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 948 949 /* 2. Fixups made earlier cannot be right. 950 * If we do not estimate RTO correctly without them, 951 * all the algo is pure shit and should be replaced 952 * with correct one. It is exactly, which we pretend to do. 953 */ 954 955 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 956 * guarantees that rto is higher. 957 */ 958 tcp_bound_rto(sk); 959 } 960 961 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 962 { 963 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 964 965 if (!cwnd) 966 cwnd = TCP_INIT_CWND; 967 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 968 } 969 970 struct tcp_sacktag_state { 971 /* Timestamps for earliest and latest never-retransmitted segment 972 * that was SACKed. RTO needs the earliest RTT to stay conservative, 973 * but congestion control should still get an accurate delay signal. 974 */ 975 u64 first_sackt; 976 u64 last_sackt; 977 u32 reord; 978 u32 sack_delivered; 979 int flag; 980 unsigned int mss_now; 981 struct rate_sample *rate; 982 }; 983 984 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 985 * and spurious retransmission information if this DSACK is unlikely caused by 986 * sender's action: 987 * - DSACKed sequence range is larger than maximum receiver's window. 988 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 989 */ 990 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 991 u32 end_seq, struct tcp_sacktag_state *state) 992 { 993 u32 seq_len, dup_segs = 1; 994 995 if (!before(start_seq, end_seq)) 996 return 0; 997 998 seq_len = end_seq - start_seq; 999 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1000 if (seq_len > tp->max_window) 1001 return 0; 1002 if (seq_len > tp->mss_cache) 1003 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1004 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1005 state->flag |= FLAG_DSACK_TLP; 1006 1007 tp->dsack_dups += dup_segs; 1008 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1009 if (tp->dsack_dups > tp->total_retrans) 1010 return 0; 1011 1012 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1013 /* We increase the RACK ordering window in rounds where we receive 1014 * DSACKs that may have been due to reordering causing RACK to trigger 1015 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1016 * without having seen reordering, or that match TLP probes (TLP 1017 * is timer-driven, not triggered by RACK). 1018 */ 1019 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1020 tp->rack.dsack_seen = 1; 1021 1022 state->flag |= FLAG_DSACKING_ACK; 1023 /* A spurious retransmission is delivered */ 1024 state->sack_delivered += dup_segs; 1025 1026 return dup_segs; 1027 } 1028 1029 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1030 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1031 * distance is approximated in full-mss packet distance ("reordering"). 1032 */ 1033 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1034 const int ts) 1035 { 1036 struct tcp_sock *tp = tcp_sk(sk); 1037 const u32 mss = tp->mss_cache; 1038 u32 fack, metric; 1039 1040 fack = tcp_highest_sack_seq(tp); 1041 if (!before(low_seq, fack)) 1042 return; 1043 1044 metric = fack - low_seq; 1045 if ((metric > tp->reordering * mss) && mss) { 1046 #if FASTRETRANS_DEBUG > 1 1047 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1048 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1049 tp->reordering, 1050 0, 1051 tp->sacked_out, 1052 tp->undo_marker ? tp->undo_retrans : 0); 1053 #endif 1054 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1055 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1056 } 1057 1058 /* This exciting event is worth to be remembered. 8) */ 1059 tp->reord_seen++; 1060 NET_INC_STATS(sock_net(sk), 1061 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1062 } 1063 1064 /* This must be called before lost_out or retrans_out are updated 1065 * on a new loss, because we want to know if all skbs previously 1066 * known to be lost have already been retransmitted, indicating 1067 * that this newly lost skb is our next skb to retransmit. 1068 */ 1069 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1070 { 1071 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1072 (tp->retransmit_skb_hint && 1073 before(TCP_SKB_CB(skb)->seq, 1074 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1075 tp->retransmit_skb_hint = skb; 1076 } 1077 1078 /* Sum the number of packets on the wire we have marked as lost, and 1079 * notify the congestion control module that the given skb was marked lost. 1080 */ 1081 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1082 { 1083 tp->lost += tcp_skb_pcount(skb); 1084 } 1085 1086 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1087 { 1088 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1089 struct tcp_sock *tp = tcp_sk(sk); 1090 1091 if (sacked & TCPCB_SACKED_ACKED) 1092 return; 1093 1094 tcp_verify_retransmit_hint(tp, skb); 1095 if (sacked & TCPCB_LOST) { 1096 if (sacked & TCPCB_SACKED_RETRANS) { 1097 /* Account for retransmits that are lost again */ 1098 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1099 tp->retrans_out -= tcp_skb_pcount(skb); 1100 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1101 tcp_skb_pcount(skb)); 1102 tcp_notify_skb_loss_event(tp, skb); 1103 } 1104 } else { 1105 tp->lost_out += tcp_skb_pcount(skb); 1106 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1107 tcp_notify_skb_loss_event(tp, skb); 1108 } 1109 } 1110 1111 /* Updates the delivered and delivered_ce counts */ 1112 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1113 bool ece_ack) 1114 { 1115 tp->delivered += delivered; 1116 if (ece_ack) 1117 tp->delivered_ce += delivered; 1118 } 1119 1120 /* This procedure tags the retransmission queue when SACKs arrive. 1121 * 1122 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1123 * Packets in queue with these bits set are counted in variables 1124 * sacked_out, retrans_out and lost_out, correspondingly. 1125 * 1126 * Valid combinations are: 1127 * Tag InFlight Description 1128 * 0 1 - orig segment is in flight. 1129 * S 0 - nothing flies, orig reached receiver. 1130 * L 0 - nothing flies, orig lost by net. 1131 * R 2 - both orig and retransmit are in flight. 1132 * L|R 1 - orig is lost, retransmit is in flight. 1133 * S|R 1 - orig reached receiver, retrans is still in flight. 1134 * (L|S|R is logically valid, it could occur when L|R is sacked, 1135 * but it is equivalent to plain S and code short-curcuits it to S. 1136 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1137 * 1138 * These 6 states form finite state machine, controlled by the following events: 1139 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1140 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1141 * 3. Loss detection event of two flavors: 1142 * A. Scoreboard estimator decided the packet is lost. 1143 * A'. Reno "three dupacks" marks head of queue lost. 1144 * B. SACK arrives sacking SND.NXT at the moment, when the 1145 * segment was retransmitted. 1146 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1147 * 1148 * It is pleasant to note, that state diagram turns out to be commutative, 1149 * so that we are allowed not to be bothered by order of our actions, 1150 * when multiple events arrive simultaneously. (see the function below). 1151 * 1152 * Reordering detection. 1153 * -------------------- 1154 * Reordering metric is maximal distance, which a packet can be displaced 1155 * in packet stream. With SACKs we can estimate it: 1156 * 1157 * 1. SACK fills old hole and the corresponding segment was not 1158 * ever retransmitted -> reordering. Alas, we cannot use it 1159 * when segment was retransmitted. 1160 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1161 * for retransmitted and already SACKed segment -> reordering.. 1162 * Both of these heuristics are not used in Loss state, when we cannot 1163 * account for retransmits accurately. 1164 * 1165 * SACK block validation. 1166 * ---------------------- 1167 * 1168 * SACK block range validation checks that the received SACK block fits to 1169 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1170 * Note that SND.UNA is not included to the range though being valid because 1171 * it means that the receiver is rather inconsistent with itself reporting 1172 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1173 * perfectly valid, however, in light of RFC2018 which explicitly states 1174 * that "SACK block MUST reflect the newest segment. Even if the newest 1175 * segment is going to be discarded ...", not that it looks very clever 1176 * in case of head skb. Due to potentional receiver driven attacks, we 1177 * choose to avoid immediate execution of a walk in write queue due to 1178 * reneging and defer head skb's loss recovery to standard loss recovery 1179 * procedure that will eventually trigger (nothing forbids us doing this). 1180 * 1181 * Implements also blockage to start_seq wrap-around. Problem lies in the 1182 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1183 * there's no guarantee that it will be before snd_nxt (n). The problem 1184 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1185 * wrap (s_w): 1186 * 1187 * <- outs wnd -> <- wrapzone -> 1188 * u e n u_w e_w s n_w 1189 * | | | | | | | 1190 * |<------------+------+----- TCP seqno space --------------+---------->| 1191 * ...-- <2^31 ->| |<--------... 1192 * ...---- >2^31 ------>| |<--------... 1193 * 1194 * Current code wouldn't be vulnerable but it's better still to discard such 1195 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1196 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1197 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1198 * equal to the ideal case (infinite seqno space without wrap caused issues). 1199 * 1200 * With D-SACK the lower bound is extended to cover sequence space below 1201 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1202 * again, D-SACK block must not to go across snd_una (for the same reason as 1203 * for the normal SACK blocks, explained above). But there all simplicity 1204 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1205 * fully below undo_marker they do not affect behavior in anyway and can 1206 * therefore be safely ignored. In rare cases (which are more or less 1207 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1208 * fragmentation and packet reordering past skb's retransmission. To consider 1209 * them correctly, the acceptable range must be extended even more though 1210 * the exact amount is rather hard to quantify. However, tp->max_window can 1211 * be used as an exaggerated estimate. 1212 */ 1213 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1214 u32 start_seq, u32 end_seq) 1215 { 1216 /* Too far in future, or reversed (interpretation is ambiguous) */ 1217 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1218 return false; 1219 1220 /* Nasty start_seq wrap-around check (see comments above) */ 1221 if (!before(start_seq, tp->snd_nxt)) 1222 return false; 1223 1224 /* In outstanding window? ...This is valid exit for D-SACKs too. 1225 * start_seq == snd_una is non-sensical (see comments above) 1226 */ 1227 if (after(start_seq, tp->snd_una)) 1228 return true; 1229 1230 if (!is_dsack || !tp->undo_marker) 1231 return false; 1232 1233 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1234 if (after(end_seq, tp->snd_una)) 1235 return false; 1236 1237 if (!before(start_seq, tp->undo_marker)) 1238 return true; 1239 1240 /* Too old */ 1241 if (!after(end_seq, tp->undo_marker)) 1242 return false; 1243 1244 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1245 * start_seq < undo_marker and end_seq >= undo_marker. 1246 */ 1247 return !before(start_seq, end_seq - tp->max_window); 1248 } 1249 1250 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1251 struct tcp_sack_block_wire *sp, int num_sacks, 1252 u32 prior_snd_una, struct tcp_sacktag_state *state) 1253 { 1254 struct tcp_sock *tp = tcp_sk(sk); 1255 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1256 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1257 u32 dup_segs; 1258 1259 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1260 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1261 } else if (num_sacks > 1) { 1262 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1263 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1264 1265 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1266 return false; 1267 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1268 } else { 1269 return false; 1270 } 1271 1272 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1273 if (!dup_segs) { /* Skip dubious DSACK */ 1274 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1275 return false; 1276 } 1277 1278 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1279 1280 /* D-SACK for already forgotten data... Do dumb counting. */ 1281 if (tp->undo_marker && tp->undo_retrans > 0 && 1282 !after(end_seq_0, prior_snd_una) && 1283 after(end_seq_0, tp->undo_marker)) 1284 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1285 1286 return true; 1287 } 1288 1289 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1290 * the incoming SACK may not exactly match but we can find smaller MSS 1291 * aligned portion of it that matches. Therefore we might need to fragment 1292 * which may fail and creates some hassle (caller must handle error case 1293 * returns). 1294 * 1295 * FIXME: this could be merged to shift decision code 1296 */ 1297 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1298 u32 start_seq, u32 end_seq) 1299 { 1300 int err; 1301 bool in_sack; 1302 unsigned int pkt_len; 1303 unsigned int mss; 1304 1305 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1306 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1307 1308 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1309 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1310 mss = tcp_skb_mss(skb); 1311 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1312 1313 if (!in_sack) { 1314 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1315 if (pkt_len < mss) 1316 pkt_len = mss; 1317 } else { 1318 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1319 if (pkt_len < mss) 1320 return -EINVAL; 1321 } 1322 1323 /* Round if necessary so that SACKs cover only full MSSes 1324 * and/or the remaining small portion (if present) 1325 */ 1326 if (pkt_len > mss) { 1327 unsigned int new_len = (pkt_len / mss) * mss; 1328 if (!in_sack && new_len < pkt_len) 1329 new_len += mss; 1330 pkt_len = new_len; 1331 } 1332 1333 if (pkt_len >= skb->len && !in_sack) 1334 return 0; 1335 1336 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1337 pkt_len, mss, GFP_ATOMIC); 1338 if (err < 0) 1339 return err; 1340 } 1341 1342 return in_sack; 1343 } 1344 1345 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1346 static u8 tcp_sacktag_one(struct sock *sk, 1347 struct tcp_sacktag_state *state, u8 sacked, 1348 u32 start_seq, u32 end_seq, 1349 int dup_sack, int pcount, 1350 u64 xmit_time) 1351 { 1352 struct tcp_sock *tp = tcp_sk(sk); 1353 1354 /* Account D-SACK for retransmitted packet. */ 1355 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1356 if (tp->undo_marker && tp->undo_retrans > 0 && 1357 after(end_seq, tp->undo_marker)) 1358 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1359 if ((sacked & TCPCB_SACKED_ACKED) && 1360 before(start_seq, state->reord)) 1361 state->reord = start_seq; 1362 } 1363 1364 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1365 if (!after(end_seq, tp->snd_una)) 1366 return sacked; 1367 1368 if (!(sacked & TCPCB_SACKED_ACKED)) { 1369 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1370 1371 if (sacked & TCPCB_SACKED_RETRANS) { 1372 /* If the segment is not tagged as lost, 1373 * we do not clear RETRANS, believing 1374 * that retransmission is still in flight. 1375 */ 1376 if (sacked & TCPCB_LOST) { 1377 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1378 tp->lost_out -= pcount; 1379 tp->retrans_out -= pcount; 1380 } 1381 } else { 1382 if (!(sacked & TCPCB_RETRANS)) { 1383 /* New sack for not retransmitted frame, 1384 * which was in hole. It is reordering. 1385 */ 1386 if (before(start_seq, 1387 tcp_highest_sack_seq(tp)) && 1388 before(start_seq, state->reord)) 1389 state->reord = start_seq; 1390 1391 if (!after(end_seq, tp->high_seq)) 1392 state->flag |= FLAG_ORIG_SACK_ACKED; 1393 if (state->first_sackt == 0) 1394 state->first_sackt = xmit_time; 1395 state->last_sackt = xmit_time; 1396 } 1397 1398 if (sacked & TCPCB_LOST) { 1399 sacked &= ~TCPCB_LOST; 1400 tp->lost_out -= pcount; 1401 } 1402 } 1403 1404 sacked |= TCPCB_SACKED_ACKED; 1405 state->flag |= FLAG_DATA_SACKED; 1406 tp->sacked_out += pcount; 1407 /* Out-of-order packets delivered */ 1408 state->sack_delivered += pcount; 1409 1410 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1411 if (tp->lost_skb_hint && 1412 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1413 tp->lost_cnt_hint += pcount; 1414 } 1415 1416 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1417 * frames and clear it. undo_retrans is decreased above, L|R frames 1418 * are accounted above as well. 1419 */ 1420 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1421 sacked &= ~TCPCB_SACKED_RETRANS; 1422 tp->retrans_out -= pcount; 1423 } 1424 1425 return sacked; 1426 } 1427 1428 /* Shift newly-SACKed bytes from this skb to the immediately previous 1429 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1430 */ 1431 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1432 struct sk_buff *skb, 1433 struct tcp_sacktag_state *state, 1434 unsigned int pcount, int shifted, int mss, 1435 bool dup_sack) 1436 { 1437 struct tcp_sock *tp = tcp_sk(sk); 1438 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1439 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1440 1441 BUG_ON(!pcount); 1442 1443 /* Adjust counters and hints for the newly sacked sequence 1444 * range but discard the return value since prev is already 1445 * marked. We must tag the range first because the seq 1446 * advancement below implicitly advances 1447 * tcp_highest_sack_seq() when skb is highest_sack. 1448 */ 1449 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1450 start_seq, end_seq, dup_sack, pcount, 1451 tcp_skb_timestamp_us(skb)); 1452 tcp_rate_skb_delivered(sk, skb, state->rate); 1453 1454 if (skb == tp->lost_skb_hint) 1455 tp->lost_cnt_hint += pcount; 1456 1457 TCP_SKB_CB(prev)->end_seq += shifted; 1458 TCP_SKB_CB(skb)->seq += shifted; 1459 1460 tcp_skb_pcount_add(prev, pcount); 1461 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1462 tcp_skb_pcount_add(skb, -pcount); 1463 1464 /* When we're adding to gso_segs == 1, gso_size will be zero, 1465 * in theory this shouldn't be necessary but as long as DSACK 1466 * code can come after this skb later on it's better to keep 1467 * setting gso_size to something. 1468 */ 1469 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1470 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1471 1472 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1473 if (tcp_skb_pcount(skb) <= 1) 1474 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1475 1476 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1477 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1478 1479 if (skb->len > 0) { 1480 BUG_ON(!tcp_skb_pcount(skb)); 1481 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1482 return false; 1483 } 1484 1485 /* Whole SKB was eaten :-) */ 1486 1487 if (skb == tp->retransmit_skb_hint) 1488 tp->retransmit_skb_hint = prev; 1489 if (skb == tp->lost_skb_hint) { 1490 tp->lost_skb_hint = prev; 1491 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1492 } 1493 1494 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1495 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1496 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1497 TCP_SKB_CB(prev)->end_seq++; 1498 1499 if (skb == tcp_highest_sack(sk)) 1500 tcp_advance_highest_sack(sk, skb); 1501 1502 tcp_skb_collapse_tstamp(prev, skb); 1503 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1504 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1505 1506 tcp_rtx_queue_unlink_and_free(skb, sk); 1507 1508 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1509 1510 return true; 1511 } 1512 1513 /* I wish gso_size would have a bit more sane initialization than 1514 * something-or-zero which complicates things 1515 */ 1516 static int tcp_skb_seglen(const struct sk_buff *skb) 1517 { 1518 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1519 } 1520 1521 /* Shifting pages past head area doesn't work */ 1522 static int skb_can_shift(const struct sk_buff *skb) 1523 { 1524 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1525 } 1526 1527 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1528 int pcount, int shiftlen) 1529 { 1530 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1531 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1532 * to make sure not storing more than 65535 * 8 bytes per skb, 1533 * even if current MSS is bigger. 1534 */ 1535 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1536 return 0; 1537 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1538 return 0; 1539 return skb_shift(to, from, shiftlen); 1540 } 1541 1542 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1543 * skb. 1544 */ 1545 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1546 struct tcp_sacktag_state *state, 1547 u32 start_seq, u32 end_seq, 1548 bool dup_sack) 1549 { 1550 struct tcp_sock *tp = tcp_sk(sk); 1551 struct sk_buff *prev; 1552 int mss; 1553 int pcount = 0; 1554 int len; 1555 int in_sack; 1556 1557 /* Normally R but no L won't result in plain S */ 1558 if (!dup_sack && 1559 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1560 goto fallback; 1561 if (!skb_can_shift(skb)) 1562 goto fallback; 1563 /* This frame is about to be dropped (was ACKed). */ 1564 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1565 goto fallback; 1566 1567 /* Can only happen with delayed DSACK + discard craziness */ 1568 prev = skb_rb_prev(skb); 1569 if (!prev) 1570 goto fallback; 1571 1572 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1573 goto fallback; 1574 1575 if (!tcp_skb_can_collapse(prev, skb)) 1576 goto fallback; 1577 1578 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1579 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1580 1581 if (in_sack) { 1582 len = skb->len; 1583 pcount = tcp_skb_pcount(skb); 1584 mss = tcp_skb_seglen(skb); 1585 1586 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1587 * drop this restriction as unnecessary 1588 */ 1589 if (mss != tcp_skb_seglen(prev)) 1590 goto fallback; 1591 } else { 1592 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1593 goto noop; 1594 /* CHECKME: This is non-MSS split case only?, this will 1595 * cause skipped skbs due to advancing loop btw, original 1596 * has that feature too 1597 */ 1598 if (tcp_skb_pcount(skb) <= 1) 1599 goto noop; 1600 1601 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1602 if (!in_sack) { 1603 /* TODO: head merge to next could be attempted here 1604 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1605 * though it might not be worth of the additional hassle 1606 * 1607 * ...we can probably just fallback to what was done 1608 * previously. We could try merging non-SACKed ones 1609 * as well but it probably isn't going to buy off 1610 * because later SACKs might again split them, and 1611 * it would make skb timestamp tracking considerably 1612 * harder problem. 1613 */ 1614 goto fallback; 1615 } 1616 1617 len = end_seq - TCP_SKB_CB(skb)->seq; 1618 BUG_ON(len < 0); 1619 BUG_ON(len > skb->len); 1620 1621 /* MSS boundaries should be honoured or else pcount will 1622 * severely break even though it makes things bit trickier. 1623 * Optimize common case to avoid most of the divides 1624 */ 1625 mss = tcp_skb_mss(skb); 1626 1627 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1628 * drop this restriction as unnecessary 1629 */ 1630 if (mss != tcp_skb_seglen(prev)) 1631 goto fallback; 1632 1633 if (len == mss) { 1634 pcount = 1; 1635 } else if (len < mss) { 1636 goto noop; 1637 } else { 1638 pcount = len / mss; 1639 len = pcount * mss; 1640 } 1641 } 1642 1643 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1644 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1645 goto fallback; 1646 1647 if (!tcp_skb_shift(prev, skb, pcount, len)) 1648 goto fallback; 1649 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1650 goto out; 1651 1652 /* Hole filled allows collapsing with the next as well, this is very 1653 * useful when hole on every nth skb pattern happens 1654 */ 1655 skb = skb_rb_next(prev); 1656 if (!skb) 1657 goto out; 1658 1659 if (!skb_can_shift(skb) || 1660 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1661 (mss != tcp_skb_seglen(skb))) 1662 goto out; 1663 1664 if (!tcp_skb_can_collapse(prev, skb)) 1665 goto out; 1666 len = skb->len; 1667 pcount = tcp_skb_pcount(skb); 1668 if (tcp_skb_shift(prev, skb, pcount, len)) 1669 tcp_shifted_skb(sk, prev, skb, state, pcount, 1670 len, mss, 0); 1671 1672 out: 1673 return prev; 1674 1675 noop: 1676 return skb; 1677 1678 fallback: 1679 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1680 return NULL; 1681 } 1682 1683 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1684 struct tcp_sack_block *next_dup, 1685 struct tcp_sacktag_state *state, 1686 u32 start_seq, u32 end_seq, 1687 bool dup_sack_in) 1688 { 1689 struct tcp_sock *tp = tcp_sk(sk); 1690 struct sk_buff *tmp; 1691 1692 skb_rbtree_walk_from(skb) { 1693 int in_sack = 0; 1694 bool dup_sack = dup_sack_in; 1695 1696 /* queue is in-order => we can short-circuit the walk early */ 1697 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1698 break; 1699 1700 if (next_dup && 1701 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1702 in_sack = tcp_match_skb_to_sack(sk, skb, 1703 next_dup->start_seq, 1704 next_dup->end_seq); 1705 if (in_sack > 0) 1706 dup_sack = true; 1707 } 1708 1709 /* skb reference here is a bit tricky to get right, since 1710 * shifting can eat and free both this skb and the next, 1711 * so not even _safe variant of the loop is enough. 1712 */ 1713 if (in_sack <= 0) { 1714 tmp = tcp_shift_skb_data(sk, skb, state, 1715 start_seq, end_seq, dup_sack); 1716 if (tmp) { 1717 if (tmp != skb) { 1718 skb = tmp; 1719 continue; 1720 } 1721 1722 in_sack = 0; 1723 } else { 1724 in_sack = tcp_match_skb_to_sack(sk, skb, 1725 start_seq, 1726 end_seq); 1727 } 1728 } 1729 1730 if (unlikely(in_sack < 0)) 1731 break; 1732 1733 if (in_sack) { 1734 TCP_SKB_CB(skb)->sacked = 1735 tcp_sacktag_one(sk, 1736 state, 1737 TCP_SKB_CB(skb)->sacked, 1738 TCP_SKB_CB(skb)->seq, 1739 TCP_SKB_CB(skb)->end_seq, 1740 dup_sack, 1741 tcp_skb_pcount(skb), 1742 tcp_skb_timestamp_us(skb)); 1743 tcp_rate_skb_delivered(sk, skb, state->rate); 1744 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1745 list_del_init(&skb->tcp_tsorted_anchor); 1746 1747 if (!before(TCP_SKB_CB(skb)->seq, 1748 tcp_highest_sack_seq(tp))) 1749 tcp_advance_highest_sack(sk, skb); 1750 } 1751 } 1752 return skb; 1753 } 1754 1755 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1756 { 1757 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1758 struct sk_buff *skb; 1759 1760 while (*p) { 1761 parent = *p; 1762 skb = rb_to_skb(parent); 1763 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1764 p = &parent->rb_left; 1765 continue; 1766 } 1767 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1768 p = &parent->rb_right; 1769 continue; 1770 } 1771 return skb; 1772 } 1773 return NULL; 1774 } 1775 1776 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1777 u32 skip_to_seq) 1778 { 1779 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1780 return skb; 1781 1782 return tcp_sacktag_bsearch(sk, skip_to_seq); 1783 } 1784 1785 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1786 struct sock *sk, 1787 struct tcp_sack_block *next_dup, 1788 struct tcp_sacktag_state *state, 1789 u32 skip_to_seq) 1790 { 1791 if (!next_dup) 1792 return skb; 1793 1794 if (before(next_dup->start_seq, skip_to_seq)) { 1795 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1796 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1797 next_dup->start_seq, next_dup->end_seq, 1798 1); 1799 } 1800 1801 return skb; 1802 } 1803 1804 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1805 { 1806 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1807 } 1808 1809 static int 1810 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1811 u32 prior_snd_una, struct tcp_sacktag_state *state) 1812 { 1813 struct tcp_sock *tp = tcp_sk(sk); 1814 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1815 TCP_SKB_CB(ack_skb)->sacked); 1816 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1817 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1818 struct tcp_sack_block *cache; 1819 struct sk_buff *skb; 1820 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1821 int used_sacks; 1822 bool found_dup_sack = false; 1823 int i, j; 1824 int first_sack_index; 1825 1826 state->flag = 0; 1827 state->reord = tp->snd_nxt; 1828 1829 if (!tp->sacked_out) 1830 tcp_highest_sack_reset(sk); 1831 1832 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1833 num_sacks, prior_snd_una, state); 1834 1835 /* Eliminate too old ACKs, but take into 1836 * account more or less fresh ones, they can 1837 * contain valid SACK info. 1838 */ 1839 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1840 return 0; 1841 1842 if (!tp->packets_out) 1843 goto out; 1844 1845 used_sacks = 0; 1846 first_sack_index = 0; 1847 for (i = 0; i < num_sacks; i++) { 1848 bool dup_sack = !i && found_dup_sack; 1849 1850 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1851 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1852 1853 if (!tcp_is_sackblock_valid(tp, dup_sack, 1854 sp[used_sacks].start_seq, 1855 sp[used_sacks].end_seq)) { 1856 int mib_idx; 1857 1858 if (dup_sack) { 1859 if (!tp->undo_marker) 1860 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1861 else 1862 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1863 } else { 1864 /* Don't count olds caused by ACK reordering */ 1865 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1866 !after(sp[used_sacks].end_seq, tp->snd_una)) 1867 continue; 1868 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1869 } 1870 1871 NET_INC_STATS(sock_net(sk), mib_idx); 1872 if (i == 0) 1873 first_sack_index = -1; 1874 continue; 1875 } 1876 1877 /* Ignore very old stuff early */ 1878 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1879 if (i == 0) 1880 first_sack_index = -1; 1881 continue; 1882 } 1883 1884 used_sacks++; 1885 } 1886 1887 /* order SACK blocks to allow in order walk of the retrans queue */ 1888 for (i = used_sacks - 1; i > 0; i--) { 1889 for (j = 0; j < i; j++) { 1890 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1891 swap(sp[j], sp[j + 1]); 1892 1893 /* Track where the first SACK block goes to */ 1894 if (j == first_sack_index) 1895 first_sack_index = j + 1; 1896 } 1897 } 1898 } 1899 1900 state->mss_now = tcp_current_mss(sk); 1901 skb = NULL; 1902 i = 0; 1903 1904 if (!tp->sacked_out) { 1905 /* It's already past, so skip checking against it */ 1906 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1907 } else { 1908 cache = tp->recv_sack_cache; 1909 /* Skip empty blocks in at head of the cache */ 1910 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1911 !cache->end_seq) 1912 cache++; 1913 } 1914 1915 while (i < used_sacks) { 1916 u32 start_seq = sp[i].start_seq; 1917 u32 end_seq = sp[i].end_seq; 1918 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1919 struct tcp_sack_block *next_dup = NULL; 1920 1921 if (found_dup_sack && ((i + 1) == first_sack_index)) 1922 next_dup = &sp[i + 1]; 1923 1924 /* Skip too early cached blocks */ 1925 while (tcp_sack_cache_ok(tp, cache) && 1926 !before(start_seq, cache->end_seq)) 1927 cache++; 1928 1929 /* Can skip some work by looking recv_sack_cache? */ 1930 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1931 after(end_seq, cache->start_seq)) { 1932 1933 /* Head todo? */ 1934 if (before(start_seq, cache->start_seq)) { 1935 skb = tcp_sacktag_skip(skb, sk, start_seq); 1936 skb = tcp_sacktag_walk(skb, sk, next_dup, 1937 state, 1938 start_seq, 1939 cache->start_seq, 1940 dup_sack); 1941 } 1942 1943 /* Rest of the block already fully processed? */ 1944 if (!after(end_seq, cache->end_seq)) 1945 goto advance_sp; 1946 1947 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1948 state, 1949 cache->end_seq); 1950 1951 /* ...tail remains todo... */ 1952 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1953 /* ...but better entrypoint exists! */ 1954 skb = tcp_highest_sack(sk); 1955 if (!skb) 1956 break; 1957 cache++; 1958 goto walk; 1959 } 1960 1961 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1962 /* Check overlap against next cached too (past this one already) */ 1963 cache++; 1964 continue; 1965 } 1966 1967 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1968 skb = tcp_highest_sack(sk); 1969 if (!skb) 1970 break; 1971 } 1972 skb = tcp_sacktag_skip(skb, sk, start_seq); 1973 1974 walk: 1975 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1976 start_seq, end_seq, dup_sack); 1977 1978 advance_sp: 1979 i++; 1980 } 1981 1982 /* Clear the head of the cache sack blocks so we can skip it next time */ 1983 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1984 tp->recv_sack_cache[i].start_seq = 0; 1985 tp->recv_sack_cache[i].end_seq = 0; 1986 } 1987 for (j = 0; j < used_sacks; j++) 1988 tp->recv_sack_cache[i++] = sp[j]; 1989 1990 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1991 tcp_check_sack_reordering(sk, state->reord, 0); 1992 1993 tcp_verify_left_out(tp); 1994 out: 1995 1996 #if FASTRETRANS_DEBUG > 0 1997 WARN_ON((int)tp->sacked_out < 0); 1998 WARN_ON((int)tp->lost_out < 0); 1999 WARN_ON((int)tp->retrans_out < 0); 2000 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2001 #endif 2002 return state->flag; 2003 } 2004 2005 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2006 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2007 */ 2008 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2009 { 2010 u32 holes; 2011 2012 holes = max(tp->lost_out, 1U); 2013 holes = min(holes, tp->packets_out); 2014 2015 if ((tp->sacked_out + holes) > tp->packets_out) { 2016 tp->sacked_out = tp->packets_out - holes; 2017 return true; 2018 } 2019 return false; 2020 } 2021 2022 /* If we receive more dupacks than we expected counting segments 2023 * in assumption of absent reordering, interpret this as reordering. 2024 * The only another reason could be bug in receiver TCP. 2025 */ 2026 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2027 { 2028 struct tcp_sock *tp = tcp_sk(sk); 2029 2030 if (!tcp_limit_reno_sacked(tp)) 2031 return; 2032 2033 tp->reordering = min_t(u32, tp->packets_out + addend, 2034 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2035 tp->reord_seen++; 2036 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2037 } 2038 2039 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2040 2041 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2042 { 2043 if (num_dupack) { 2044 struct tcp_sock *tp = tcp_sk(sk); 2045 u32 prior_sacked = tp->sacked_out; 2046 s32 delivered; 2047 2048 tp->sacked_out += num_dupack; 2049 tcp_check_reno_reordering(sk, 0); 2050 delivered = tp->sacked_out - prior_sacked; 2051 if (delivered > 0) 2052 tcp_count_delivered(tp, delivered, ece_ack); 2053 tcp_verify_left_out(tp); 2054 } 2055 } 2056 2057 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2058 2059 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2060 { 2061 struct tcp_sock *tp = tcp_sk(sk); 2062 2063 if (acked > 0) { 2064 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2065 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2066 ece_ack); 2067 if (acked - 1 >= tp->sacked_out) 2068 tp->sacked_out = 0; 2069 else 2070 tp->sacked_out -= acked - 1; 2071 } 2072 tcp_check_reno_reordering(sk, acked); 2073 tcp_verify_left_out(tp); 2074 } 2075 2076 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2077 { 2078 tp->sacked_out = 0; 2079 } 2080 2081 void tcp_clear_retrans(struct tcp_sock *tp) 2082 { 2083 tp->retrans_out = 0; 2084 tp->lost_out = 0; 2085 tp->undo_marker = 0; 2086 tp->undo_retrans = -1; 2087 tp->sacked_out = 0; 2088 } 2089 2090 static inline void tcp_init_undo(struct tcp_sock *tp) 2091 { 2092 tp->undo_marker = tp->snd_una; 2093 /* Retransmission still in flight may cause DSACKs later. */ 2094 tp->undo_retrans = tp->retrans_out ? : -1; 2095 } 2096 2097 static bool tcp_is_rack(const struct sock *sk) 2098 { 2099 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2100 TCP_RACK_LOSS_DETECTION; 2101 } 2102 2103 /* If we detect SACK reneging, forget all SACK information 2104 * and reset tags completely, otherwise preserve SACKs. If receiver 2105 * dropped its ofo queue, we will know this due to reneging detection. 2106 */ 2107 static void tcp_timeout_mark_lost(struct sock *sk) 2108 { 2109 struct tcp_sock *tp = tcp_sk(sk); 2110 struct sk_buff *skb, *head; 2111 bool is_reneg; /* is receiver reneging on SACKs? */ 2112 2113 head = tcp_rtx_queue_head(sk); 2114 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2115 if (is_reneg) { 2116 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2117 tp->sacked_out = 0; 2118 /* Mark SACK reneging until we recover from this loss event. */ 2119 tp->is_sack_reneg = 1; 2120 } else if (tcp_is_reno(tp)) { 2121 tcp_reset_reno_sack(tp); 2122 } 2123 2124 skb = head; 2125 skb_rbtree_walk_from(skb) { 2126 if (is_reneg) 2127 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2128 else if (tcp_is_rack(sk) && skb != head && 2129 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2130 continue; /* Don't mark recently sent ones lost yet */ 2131 tcp_mark_skb_lost(sk, skb); 2132 } 2133 tcp_verify_left_out(tp); 2134 tcp_clear_all_retrans_hints(tp); 2135 } 2136 2137 /* Enter Loss state. */ 2138 void tcp_enter_loss(struct sock *sk) 2139 { 2140 const struct inet_connection_sock *icsk = inet_csk(sk); 2141 struct tcp_sock *tp = tcp_sk(sk); 2142 struct net *net = sock_net(sk); 2143 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2144 u8 reordering; 2145 2146 tcp_timeout_mark_lost(sk); 2147 2148 /* Reduce ssthresh if it has not yet been made inside this window. */ 2149 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2150 !after(tp->high_seq, tp->snd_una) || 2151 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2152 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2153 tp->prior_cwnd = tcp_snd_cwnd(tp); 2154 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2155 tcp_ca_event(sk, CA_EVENT_LOSS); 2156 tcp_init_undo(tp); 2157 } 2158 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2159 tp->snd_cwnd_cnt = 0; 2160 tp->snd_cwnd_stamp = tcp_jiffies32; 2161 2162 /* Timeout in disordered state after receiving substantial DUPACKs 2163 * suggests that the degree of reordering is over-estimated. 2164 */ 2165 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2166 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2167 tp->sacked_out >= reordering) 2168 tp->reordering = min_t(unsigned int, tp->reordering, 2169 reordering); 2170 2171 tcp_set_ca_state(sk, TCP_CA_Loss); 2172 tp->high_seq = tp->snd_nxt; 2173 tcp_ecn_queue_cwr(tp); 2174 2175 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2176 * loss recovery is underway except recurring timeout(s) on 2177 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2178 */ 2179 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2180 (new_recovery || icsk->icsk_retransmits) && 2181 !inet_csk(sk)->icsk_mtup.probe_size; 2182 } 2183 2184 /* If ACK arrived pointing to a remembered SACK, it means that our 2185 * remembered SACKs do not reflect real state of receiver i.e. 2186 * receiver _host_ is heavily congested (or buggy). 2187 * 2188 * To avoid big spurious retransmission bursts due to transient SACK 2189 * scoreboard oddities that look like reneging, we give the receiver a 2190 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2191 * restore sanity to the SACK scoreboard. If the apparent reneging 2192 * persists until this RTO then we'll clear the SACK scoreboard. 2193 */ 2194 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2195 { 2196 if (flag & FLAG_SACK_RENEGING) { 2197 struct tcp_sock *tp = tcp_sk(sk); 2198 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2199 msecs_to_jiffies(10)); 2200 2201 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2202 delay, TCP_RTO_MAX); 2203 return true; 2204 } 2205 return false; 2206 } 2207 2208 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2209 * counter when SACK is enabled (without SACK, sacked_out is used for 2210 * that purpose). 2211 * 2212 * With reordering, holes may still be in flight, so RFC3517 recovery 2213 * uses pure sacked_out (total number of SACKed segments) even though 2214 * it violates the RFC that uses duplicate ACKs, often these are equal 2215 * but when e.g. out-of-window ACKs or packet duplication occurs, 2216 * they differ. Since neither occurs due to loss, TCP should really 2217 * ignore them. 2218 */ 2219 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2220 { 2221 return tp->sacked_out + 1; 2222 } 2223 2224 /* Linux NewReno/SACK/ECN state machine. 2225 * -------------------------------------- 2226 * 2227 * "Open" Normal state, no dubious events, fast path. 2228 * "Disorder" In all the respects it is "Open", 2229 * but requires a bit more attention. It is entered when 2230 * we see some SACKs or dupacks. It is split of "Open" 2231 * mainly to move some processing from fast path to slow one. 2232 * "CWR" CWND was reduced due to some Congestion Notification event. 2233 * It can be ECN, ICMP source quench, local device congestion. 2234 * "Recovery" CWND was reduced, we are fast-retransmitting. 2235 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2236 * 2237 * tcp_fastretrans_alert() is entered: 2238 * - each incoming ACK, if state is not "Open" 2239 * - when arrived ACK is unusual, namely: 2240 * * SACK 2241 * * Duplicate ACK. 2242 * * ECN ECE. 2243 * 2244 * Counting packets in flight is pretty simple. 2245 * 2246 * in_flight = packets_out - left_out + retrans_out 2247 * 2248 * packets_out is SND.NXT-SND.UNA counted in packets. 2249 * 2250 * retrans_out is number of retransmitted segments. 2251 * 2252 * left_out is number of segments left network, but not ACKed yet. 2253 * 2254 * left_out = sacked_out + lost_out 2255 * 2256 * sacked_out: Packets, which arrived to receiver out of order 2257 * and hence not ACKed. With SACKs this number is simply 2258 * amount of SACKed data. Even without SACKs 2259 * it is easy to give pretty reliable estimate of this number, 2260 * counting duplicate ACKs. 2261 * 2262 * lost_out: Packets lost by network. TCP has no explicit 2263 * "loss notification" feedback from network (for now). 2264 * It means that this number can be only _guessed_. 2265 * Actually, it is the heuristics to predict lossage that 2266 * distinguishes different algorithms. 2267 * 2268 * F.e. after RTO, when all the queue is considered as lost, 2269 * lost_out = packets_out and in_flight = retrans_out. 2270 * 2271 * Essentially, we have now a few algorithms detecting 2272 * lost packets. 2273 * 2274 * If the receiver supports SACK: 2275 * 2276 * RFC6675/3517: It is the conventional algorithm. A packet is 2277 * considered lost if the number of higher sequence packets 2278 * SACKed is greater than or equal the DUPACK thoreshold 2279 * (reordering). This is implemented in tcp_mark_head_lost and 2280 * tcp_update_scoreboard. 2281 * 2282 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2283 * (2017-) that checks timing instead of counting DUPACKs. 2284 * Essentially a packet is considered lost if it's not S/ACKed 2285 * after RTT + reordering_window, where both metrics are 2286 * dynamically measured and adjusted. This is implemented in 2287 * tcp_rack_mark_lost. 2288 * 2289 * If the receiver does not support SACK: 2290 * 2291 * NewReno (RFC6582): in Recovery we assume that one segment 2292 * is lost (classic Reno). While we are in Recovery and 2293 * a partial ACK arrives, we assume that one more packet 2294 * is lost (NewReno). This heuristics are the same in NewReno 2295 * and SACK. 2296 * 2297 * Really tricky (and requiring careful tuning) part of algorithm 2298 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2299 * The first determines the moment _when_ we should reduce CWND and, 2300 * hence, slow down forward transmission. In fact, it determines the moment 2301 * when we decide that hole is caused by loss, rather than by a reorder. 2302 * 2303 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2304 * holes, caused by lost packets. 2305 * 2306 * And the most logically complicated part of algorithm is undo 2307 * heuristics. We detect false retransmits due to both too early 2308 * fast retransmit (reordering) and underestimated RTO, analyzing 2309 * timestamps and D-SACKs. When we detect that some segments were 2310 * retransmitted by mistake and CWND reduction was wrong, we undo 2311 * window reduction and abort recovery phase. This logic is hidden 2312 * inside several functions named tcp_try_undo_<something>. 2313 */ 2314 2315 /* This function decides, when we should leave Disordered state 2316 * and enter Recovery phase, reducing congestion window. 2317 * 2318 * Main question: may we further continue forward transmission 2319 * with the same cwnd? 2320 */ 2321 static bool tcp_time_to_recover(struct sock *sk, int flag) 2322 { 2323 struct tcp_sock *tp = tcp_sk(sk); 2324 2325 /* Trick#1: The loss is proven. */ 2326 if (tp->lost_out) 2327 return true; 2328 2329 /* Not-A-Trick#2 : Classic rule... */ 2330 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2331 return true; 2332 2333 return false; 2334 } 2335 2336 /* Detect loss in event "A" above by marking head of queue up as lost. 2337 * For RFC3517 SACK, a segment is considered lost if it 2338 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2339 * the maximum SACKed segments to pass before reaching this limit. 2340 */ 2341 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2342 { 2343 struct tcp_sock *tp = tcp_sk(sk); 2344 struct sk_buff *skb; 2345 int cnt; 2346 /* Use SACK to deduce losses of new sequences sent during recovery */ 2347 const u32 loss_high = tp->snd_nxt; 2348 2349 WARN_ON(packets > tp->packets_out); 2350 skb = tp->lost_skb_hint; 2351 if (skb) { 2352 /* Head already handled? */ 2353 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2354 return; 2355 cnt = tp->lost_cnt_hint; 2356 } else { 2357 skb = tcp_rtx_queue_head(sk); 2358 cnt = 0; 2359 } 2360 2361 skb_rbtree_walk_from(skb) { 2362 /* TODO: do this better */ 2363 /* this is not the most efficient way to do this... */ 2364 tp->lost_skb_hint = skb; 2365 tp->lost_cnt_hint = cnt; 2366 2367 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2368 break; 2369 2370 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2371 cnt += tcp_skb_pcount(skb); 2372 2373 if (cnt > packets) 2374 break; 2375 2376 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2377 tcp_mark_skb_lost(sk, skb); 2378 2379 if (mark_head) 2380 break; 2381 } 2382 tcp_verify_left_out(tp); 2383 } 2384 2385 /* Account newly detected lost packet(s) */ 2386 2387 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2388 { 2389 struct tcp_sock *tp = tcp_sk(sk); 2390 2391 if (tcp_is_sack(tp)) { 2392 int sacked_upto = tp->sacked_out - tp->reordering; 2393 if (sacked_upto >= 0) 2394 tcp_mark_head_lost(sk, sacked_upto, 0); 2395 else if (fast_rexmit) 2396 tcp_mark_head_lost(sk, 1, 1); 2397 } 2398 } 2399 2400 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2401 { 2402 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2403 before(tp->rx_opt.rcv_tsecr, when); 2404 } 2405 2406 /* skb is spurious retransmitted if the returned timestamp echo 2407 * reply is prior to the skb transmission time 2408 */ 2409 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2410 const struct sk_buff *skb) 2411 { 2412 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2413 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2414 } 2415 2416 /* Nothing was retransmitted or returned timestamp is less 2417 * than timestamp of the first retransmission. 2418 */ 2419 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2420 { 2421 return tp->retrans_stamp && 2422 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2423 } 2424 2425 /* Undo procedures. */ 2426 2427 /* We can clear retrans_stamp when there are no retransmissions in the 2428 * window. It would seem that it is trivially available for us in 2429 * tp->retrans_out, however, that kind of assumptions doesn't consider 2430 * what will happen if errors occur when sending retransmission for the 2431 * second time. ...It could the that such segment has only 2432 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2433 * the head skb is enough except for some reneging corner cases that 2434 * are not worth the effort. 2435 * 2436 * Main reason for all this complexity is the fact that connection dying 2437 * time now depends on the validity of the retrans_stamp, in particular, 2438 * that successive retransmissions of a segment must not advance 2439 * retrans_stamp under any conditions. 2440 */ 2441 static bool tcp_any_retrans_done(const struct sock *sk) 2442 { 2443 const struct tcp_sock *tp = tcp_sk(sk); 2444 struct sk_buff *skb; 2445 2446 if (tp->retrans_out) 2447 return true; 2448 2449 skb = tcp_rtx_queue_head(sk); 2450 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2451 return true; 2452 2453 return false; 2454 } 2455 2456 static void DBGUNDO(struct sock *sk, const char *msg) 2457 { 2458 #if FASTRETRANS_DEBUG > 1 2459 struct tcp_sock *tp = tcp_sk(sk); 2460 struct inet_sock *inet = inet_sk(sk); 2461 2462 if (sk->sk_family == AF_INET) { 2463 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2464 msg, 2465 &inet->inet_daddr, ntohs(inet->inet_dport), 2466 tcp_snd_cwnd(tp), tcp_left_out(tp), 2467 tp->snd_ssthresh, tp->prior_ssthresh, 2468 tp->packets_out); 2469 } 2470 #if IS_ENABLED(CONFIG_IPV6) 2471 else if (sk->sk_family == AF_INET6) { 2472 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2473 msg, 2474 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2475 tcp_snd_cwnd(tp), tcp_left_out(tp), 2476 tp->snd_ssthresh, tp->prior_ssthresh, 2477 tp->packets_out); 2478 } 2479 #endif 2480 #endif 2481 } 2482 2483 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2484 { 2485 struct tcp_sock *tp = tcp_sk(sk); 2486 2487 if (unmark_loss) { 2488 struct sk_buff *skb; 2489 2490 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2491 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2492 } 2493 tp->lost_out = 0; 2494 tcp_clear_all_retrans_hints(tp); 2495 } 2496 2497 if (tp->prior_ssthresh) { 2498 const struct inet_connection_sock *icsk = inet_csk(sk); 2499 2500 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2501 2502 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2503 tp->snd_ssthresh = tp->prior_ssthresh; 2504 tcp_ecn_withdraw_cwr(tp); 2505 } 2506 } 2507 tp->snd_cwnd_stamp = tcp_jiffies32; 2508 tp->undo_marker = 0; 2509 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2510 } 2511 2512 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2513 { 2514 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2515 } 2516 2517 /* People celebrate: "We love our President!" */ 2518 static bool tcp_try_undo_recovery(struct sock *sk) 2519 { 2520 struct tcp_sock *tp = tcp_sk(sk); 2521 2522 if (tcp_may_undo(tp)) { 2523 int mib_idx; 2524 2525 /* Happy end! We did not retransmit anything 2526 * or our original transmission succeeded. 2527 */ 2528 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2529 tcp_undo_cwnd_reduction(sk, false); 2530 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2531 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2532 else 2533 mib_idx = LINUX_MIB_TCPFULLUNDO; 2534 2535 NET_INC_STATS(sock_net(sk), mib_idx); 2536 } else if (tp->rack.reo_wnd_persist) { 2537 tp->rack.reo_wnd_persist--; 2538 } 2539 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2540 /* Hold old state until something *above* high_seq 2541 * is ACKed. For Reno it is MUST to prevent false 2542 * fast retransmits (RFC2582). SACK TCP is safe. */ 2543 if (!tcp_any_retrans_done(sk)) 2544 tp->retrans_stamp = 0; 2545 return true; 2546 } 2547 tcp_set_ca_state(sk, TCP_CA_Open); 2548 tp->is_sack_reneg = 0; 2549 return false; 2550 } 2551 2552 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2553 static bool tcp_try_undo_dsack(struct sock *sk) 2554 { 2555 struct tcp_sock *tp = tcp_sk(sk); 2556 2557 if (tp->undo_marker && !tp->undo_retrans) { 2558 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2559 tp->rack.reo_wnd_persist + 1); 2560 DBGUNDO(sk, "D-SACK"); 2561 tcp_undo_cwnd_reduction(sk, false); 2562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2563 return true; 2564 } 2565 return false; 2566 } 2567 2568 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2569 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2570 { 2571 struct tcp_sock *tp = tcp_sk(sk); 2572 2573 if (frto_undo || tcp_may_undo(tp)) { 2574 tcp_undo_cwnd_reduction(sk, true); 2575 2576 DBGUNDO(sk, "partial loss"); 2577 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2578 if (frto_undo) 2579 NET_INC_STATS(sock_net(sk), 2580 LINUX_MIB_TCPSPURIOUSRTOS); 2581 inet_csk(sk)->icsk_retransmits = 0; 2582 if (frto_undo || tcp_is_sack(tp)) { 2583 tcp_set_ca_state(sk, TCP_CA_Open); 2584 tp->is_sack_reneg = 0; 2585 } 2586 return true; 2587 } 2588 return false; 2589 } 2590 2591 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2592 * It computes the number of packets to send (sndcnt) based on packets newly 2593 * delivered: 2594 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2595 * cwnd reductions across a full RTT. 2596 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2597 * But when SND_UNA is acked without further losses, 2598 * slow starts cwnd up to ssthresh to speed up the recovery. 2599 */ 2600 static void tcp_init_cwnd_reduction(struct sock *sk) 2601 { 2602 struct tcp_sock *tp = tcp_sk(sk); 2603 2604 tp->high_seq = tp->snd_nxt; 2605 tp->tlp_high_seq = 0; 2606 tp->snd_cwnd_cnt = 0; 2607 tp->prior_cwnd = tcp_snd_cwnd(tp); 2608 tp->prr_delivered = 0; 2609 tp->prr_out = 0; 2610 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2611 tcp_ecn_queue_cwr(tp); 2612 } 2613 2614 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2615 { 2616 struct tcp_sock *tp = tcp_sk(sk); 2617 int sndcnt = 0; 2618 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2619 2620 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2621 return; 2622 2623 tp->prr_delivered += newly_acked_sacked; 2624 if (delta < 0) { 2625 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2626 tp->prior_cwnd - 1; 2627 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2628 } else { 2629 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2630 newly_acked_sacked); 2631 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2632 sndcnt++; 2633 sndcnt = min(delta, sndcnt); 2634 } 2635 /* Force a fast retransmit upon entering fast recovery */ 2636 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2637 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2638 } 2639 2640 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2641 { 2642 struct tcp_sock *tp = tcp_sk(sk); 2643 2644 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2645 return; 2646 2647 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2648 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2649 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2650 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2651 tp->snd_cwnd_stamp = tcp_jiffies32; 2652 } 2653 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2654 } 2655 2656 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2657 void tcp_enter_cwr(struct sock *sk) 2658 { 2659 struct tcp_sock *tp = tcp_sk(sk); 2660 2661 tp->prior_ssthresh = 0; 2662 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2663 tp->undo_marker = 0; 2664 tcp_init_cwnd_reduction(sk); 2665 tcp_set_ca_state(sk, TCP_CA_CWR); 2666 } 2667 } 2668 EXPORT_SYMBOL(tcp_enter_cwr); 2669 2670 static void tcp_try_keep_open(struct sock *sk) 2671 { 2672 struct tcp_sock *tp = tcp_sk(sk); 2673 int state = TCP_CA_Open; 2674 2675 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2676 state = TCP_CA_Disorder; 2677 2678 if (inet_csk(sk)->icsk_ca_state != state) { 2679 tcp_set_ca_state(sk, state); 2680 tp->high_seq = tp->snd_nxt; 2681 } 2682 } 2683 2684 static void tcp_try_to_open(struct sock *sk, int flag) 2685 { 2686 struct tcp_sock *tp = tcp_sk(sk); 2687 2688 tcp_verify_left_out(tp); 2689 2690 if (!tcp_any_retrans_done(sk)) 2691 tp->retrans_stamp = 0; 2692 2693 if (flag & FLAG_ECE) 2694 tcp_enter_cwr(sk); 2695 2696 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2697 tcp_try_keep_open(sk); 2698 } 2699 } 2700 2701 static void tcp_mtup_probe_failed(struct sock *sk) 2702 { 2703 struct inet_connection_sock *icsk = inet_csk(sk); 2704 2705 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2706 icsk->icsk_mtup.probe_size = 0; 2707 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2708 } 2709 2710 static void tcp_mtup_probe_success(struct sock *sk) 2711 { 2712 struct tcp_sock *tp = tcp_sk(sk); 2713 struct inet_connection_sock *icsk = inet_csk(sk); 2714 u64 val; 2715 2716 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2717 2718 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2719 do_div(val, icsk->icsk_mtup.probe_size); 2720 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2721 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2722 2723 tp->snd_cwnd_cnt = 0; 2724 tp->snd_cwnd_stamp = tcp_jiffies32; 2725 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2726 2727 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2728 icsk->icsk_mtup.probe_size = 0; 2729 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2730 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2731 } 2732 2733 /* Do a simple retransmit without using the backoff mechanisms in 2734 * tcp_timer. This is used for path mtu discovery. 2735 * The socket is already locked here. 2736 */ 2737 void tcp_simple_retransmit(struct sock *sk) 2738 { 2739 const struct inet_connection_sock *icsk = inet_csk(sk); 2740 struct tcp_sock *tp = tcp_sk(sk); 2741 struct sk_buff *skb; 2742 int mss; 2743 2744 /* A fastopen SYN request is stored as two separate packets within 2745 * the retransmit queue, this is done by tcp_send_syn_data(). 2746 * As a result simply checking the MSS of the frames in the queue 2747 * will not work for the SYN packet. 2748 * 2749 * Us being here is an indication of a path MTU issue so we can 2750 * assume that the fastopen SYN was lost and just mark all the 2751 * frames in the retransmit queue as lost. We will use an MSS of 2752 * -1 to mark all frames as lost, otherwise compute the current MSS. 2753 */ 2754 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2755 mss = -1; 2756 else 2757 mss = tcp_current_mss(sk); 2758 2759 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2760 if (tcp_skb_seglen(skb) > mss) 2761 tcp_mark_skb_lost(sk, skb); 2762 } 2763 2764 tcp_clear_retrans_hints_partial(tp); 2765 2766 if (!tp->lost_out) 2767 return; 2768 2769 if (tcp_is_reno(tp)) 2770 tcp_limit_reno_sacked(tp); 2771 2772 tcp_verify_left_out(tp); 2773 2774 /* Don't muck with the congestion window here. 2775 * Reason is that we do not increase amount of _data_ 2776 * in network, but units changed and effective 2777 * cwnd/ssthresh really reduced now. 2778 */ 2779 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2780 tp->high_seq = tp->snd_nxt; 2781 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2782 tp->prior_ssthresh = 0; 2783 tp->undo_marker = 0; 2784 tcp_set_ca_state(sk, TCP_CA_Loss); 2785 } 2786 tcp_xmit_retransmit_queue(sk); 2787 } 2788 EXPORT_SYMBOL(tcp_simple_retransmit); 2789 2790 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2791 { 2792 struct tcp_sock *tp = tcp_sk(sk); 2793 int mib_idx; 2794 2795 if (tcp_is_reno(tp)) 2796 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2797 else 2798 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2799 2800 NET_INC_STATS(sock_net(sk), mib_idx); 2801 2802 tp->prior_ssthresh = 0; 2803 tcp_init_undo(tp); 2804 2805 if (!tcp_in_cwnd_reduction(sk)) { 2806 if (!ece_ack) 2807 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2808 tcp_init_cwnd_reduction(sk); 2809 } 2810 tcp_set_ca_state(sk, TCP_CA_Recovery); 2811 } 2812 2813 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2814 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2815 */ 2816 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2817 int *rexmit) 2818 { 2819 struct tcp_sock *tp = tcp_sk(sk); 2820 bool recovered = !before(tp->snd_una, tp->high_seq); 2821 2822 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2823 tcp_try_undo_loss(sk, false)) 2824 return; 2825 2826 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2827 /* Step 3.b. A timeout is spurious if not all data are 2828 * lost, i.e., never-retransmitted data are (s)acked. 2829 */ 2830 if ((flag & FLAG_ORIG_SACK_ACKED) && 2831 tcp_try_undo_loss(sk, true)) 2832 return; 2833 2834 if (after(tp->snd_nxt, tp->high_seq)) { 2835 if (flag & FLAG_DATA_SACKED || num_dupack) 2836 tp->frto = 0; /* Step 3.a. loss was real */ 2837 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2838 tp->high_seq = tp->snd_nxt; 2839 /* Step 2.b. Try send new data (but deferred until cwnd 2840 * is updated in tcp_ack()). Otherwise fall back to 2841 * the conventional recovery. 2842 */ 2843 if (!tcp_write_queue_empty(sk) && 2844 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2845 *rexmit = REXMIT_NEW; 2846 return; 2847 } 2848 tp->frto = 0; 2849 } 2850 } 2851 2852 if (recovered) { 2853 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2854 tcp_try_undo_recovery(sk); 2855 return; 2856 } 2857 if (tcp_is_reno(tp)) { 2858 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2859 * delivered. Lower inflight to clock out (re)tranmissions. 2860 */ 2861 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2862 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2863 else if (flag & FLAG_SND_UNA_ADVANCED) 2864 tcp_reset_reno_sack(tp); 2865 } 2866 *rexmit = REXMIT_LOST; 2867 } 2868 2869 static bool tcp_force_fast_retransmit(struct sock *sk) 2870 { 2871 struct tcp_sock *tp = tcp_sk(sk); 2872 2873 return after(tcp_highest_sack_seq(tp), 2874 tp->snd_una + tp->reordering * tp->mss_cache); 2875 } 2876 2877 /* Undo during fast recovery after partial ACK. */ 2878 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2879 bool *do_lost) 2880 { 2881 struct tcp_sock *tp = tcp_sk(sk); 2882 2883 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2884 /* Plain luck! Hole if filled with delayed 2885 * packet, rather than with a retransmit. Check reordering. 2886 */ 2887 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2888 2889 /* We are getting evidence that the reordering degree is higher 2890 * than we realized. If there are no retransmits out then we 2891 * can undo. Otherwise we clock out new packets but do not 2892 * mark more packets lost or retransmit more. 2893 */ 2894 if (tp->retrans_out) 2895 return true; 2896 2897 if (!tcp_any_retrans_done(sk)) 2898 tp->retrans_stamp = 0; 2899 2900 DBGUNDO(sk, "partial recovery"); 2901 tcp_undo_cwnd_reduction(sk, true); 2902 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2903 tcp_try_keep_open(sk); 2904 } else { 2905 /* Partial ACK arrived. Force fast retransmit. */ 2906 *do_lost = tcp_force_fast_retransmit(sk); 2907 } 2908 return false; 2909 } 2910 2911 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2912 { 2913 struct tcp_sock *tp = tcp_sk(sk); 2914 2915 if (tcp_rtx_queue_empty(sk)) 2916 return; 2917 2918 if (unlikely(tcp_is_reno(tp))) { 2919 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2920 } else if (tcp_is_rack(sk)) { 2921 u32 prior_retrans = tp->retrans_out; 2922 2923 if (tcp_rack_mark_lost(sk)) 2924 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2925 if (prior_retrans > tp->retrans_out) 2926 *ack_flag |= FLAG_LOST_RETRANS; 2927 } 2928 } 2929 2930 /* Process an event, which can update packets-in-flight not trivially. 2931 * Main goal of this function is to calculate new estimate for left_out, 2932 * taking into account both packets sitting in receiver's buffer and 2933 * packets lost by network. 2934 * 2935 * Besides that it updates the congestion state when packet loss or ECN 2936 * is detected. But it does not reduce the cwnd, it is done by the 2937 * congestion control later. 2938 * 2939 * It does _not_ decide what to send, it is made in function 2940 * tcp_xmit_retransmit_queue(). 2941 */ 2942 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2943 int num_dupack, int *ack_flag, int *rexmit) 2944 { 2945 struct inet_connection_sock *icsk = inet_csk(sk); 2946 struct tcp_sock *tp = tcp_sk(sk); 2947 int fast_rexmit = 0, flag = *ack_flag; 2948 bool ece_ack = flag & FLAG_ECE; 2949 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2950 tcp_force_fast_retransmit(sk)); 2951 2952 if (!tp->packets_out && tp->sacked_out) 2953 tp->sacked_out = 0; 2954 2955 /* Now state machine starts. 2956 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2957 if (ece_ack) 2958 tp->prior_ssthresh = 0; 2959 2960 /* B. In all the states check for reneging SACKs. */ 2961 if (tcp_check_sack_reneging(sk, flag)) 2962 return; 2963 2964 /* C. Check consistency of the current state. */ 2965 tcp_verify_left_out(tp); 2966 2967 /* D. Check state exit conditions. State can be terminated 2968 * when high_seq is ACKed. */ 2969 if (icsk->icsk_ca_state == TCP_CA_Open) { 2970 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2971 tp->retrans_stamp = 0; 2972 } else if (!before(tp->snd_una, tp->high_seq)) { 2973 switch (icsk->icsk_ca_state) { 2974 case TCP_CA_CWR: 2975 /* CWR is to be held something *above* high_seq 2976 * is ACKed for CWR bit to reach receiver. */ 2977 if (tp->snd_una != tp->high_seq) { 2978 tcp_end_cwnd_reduction(sk); 2979 tcp_set_ca_state(sk, TCP_CA_Open); 2980 } 2981 break; 2982 2983 case TCP_CA_Recovery: 2984 if (tcp_is_reno(tp)) 2985 tcp_reset_reno_sack(tp); 2986 if (tcp_try_undo_recovery(sk)) 2987 return; 2988 tcp_end_cwnd_reduction(sk); 2989 break; 2990 } 2991 } 2992 2993 /* E. Process state. */ 2994 switch (icsk->icsk_ca_state) { 2995 case TCP_CA_Recovery: 2996 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2997 if (tcp_is_reno(tp)) 2998 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2999 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3000 return; 3001 3002 if (tcp_try_undo_dsack(sk)) 3003 tcp_try_keep_open(sk); 3004 3005 tcp_identify_packet_loss(sk, ack_flag); 3006 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3007 if (!tcp_time_to_recover(sk, flag)) 3008 return; 3009 /* Undo reverts the recovery state. If loss is evident, 3010 * starts a new recovery (e.g. reordering then loss); 3011 */ 3012 tcp_enter_recovery(sk, ece_ack); 3013 } 3014 break; 3015 case TCP_CA_Loss: 3016 tcp_process_loss(sk, flag, num_dupack, rexmit); 3017 tcp_identify_packet_loss(sk, ack_flag); 3018 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3019 (*ack_flag & FLAG_LOST_RETRANS))) 3020 return; 3021 /* Change state if cwnd is undone or retransmits are lost */ 3022 fallthrough; 3023 default: 3024 if (tcp_is_reno(tp)) { 3025 if (flag & FLAG_SND_UNA_ADVANCED) 3026 tcp_reset_reno_sack(tp); 3027 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3028 } 3029 3030 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3031 tcp_try_undo_dsack(sk); 3032 3033 tcp_identify_packet_loss(sk, ack_flag); 3034 if (!tcp_time_to_recover(sk, flag)) { 3035 tcp_try_to_open(sk, flag); 3036 return; 3037 } 3038 3039 /* MTU probe failure: don't reduce cwnd */ 3040 if (icsk->icsk_ca_state < TCP_CA_CWR && 3041 icsk->icsk_mtup.probe_size && 3042 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3043 tcp_mtup_probe_failed(sk); 3044 /* Restores the reduction we did in tcp_mtup_probe() */ 3045 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3046 tcp_simple_retransmit(sk); 3047 return; 3048 } 3049 3050 /* Otherwise enter Recovery state */ 3051 tcp_enter_recovery(sk, ece_ack); 3052 fast_rexmit = 1; 3053 } 3054 3055 if (!tcp_is_rack(sk) && do_lost) 3056 tcp_update_scoreboard(sk, fast_rexmit); 3057 *rexmit = REXMIT_LOST; 3058 } 3059 3060 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3061 { 3062 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3063 struct tcp_sock *tp = tcp_sk(sk); 3064 3065 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3066 /* If the remote keeps returning delayed ACKs, eventually 3067 * the min filter would pick it up and overestimate the 3068 * prop. delay when it expires. Skip suspected delayed ACKs. 3069 */ 3070 return; 3071 } 3072 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3073 rtt_us ? : jiffies_to_usecs(1)); 3074 } 3075 3076 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3077 long seq_rtt_us, long sack_rtt_us, 3078 long ca_rtt_us, struct rate_sample *rs) 3079 { 3080 const struct tcp_sock *tp = tcp_sk(sk); 3081 3082 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3083 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3084 * Karn's algorithm forbids taking RTT if some retransmitted data 3085 * is acked (RFC6298). 3086 */ 3087 if (seq_rtt_us < 0) 3088 seq_rtt_us = sack_rtt_us; 3089 3090 /* RTTM Rule: A TSecr value received in a segment is used to 3091 * update the averaged RTT measurement only if the segment 3092 * acknowledges some new data, i.e., only if it advances the 3093 * left edge of the send window. 3094 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3095 */ 3096 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3097 flag & FLAG_ACKED) { 3098 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3099 3100 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3101 if (!delta) 3102 delta = 1; 3103 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3104 ca_rtt_us = seq_rtt_us; 3105 } 3106 } 3107 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3108 if (seq_rtt_us < 0) 3109 return false; 3110 3111 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3112 * always taken together with ACK, SACK, or TS-opts. Any negative 3113 * values will be skipped with the seq_rtt_us < 0 check above. 3114 */ 3115 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3116 tcp_rtt_estimator(sk, seq_rtt_us); 3117 tcp_set_rto(sk); 3118 3119 /* RFC6298: only reset backoff on valid RTT measurement. */ 3120 inet_csk(sk)->icsk_backoff = 0; 3121 return true; 3122 } 3123 3124 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3125 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3126 { 3127 struct rate_sample rs; 3128 long rtt_us = -1L; 3129 3130 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3131 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3132 3133 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3134 } 3135 3136 3137 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3138 { 3139 const struct inet_connection_sock *icsk = inet_csk(sk); 3140 3141 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3142 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3143 } 3144 3145 /* Restart timer after forward progress on connection. 3146 * RFC2988 recommends to restart timer to now+rto. 3147 */ 3148 void tcp_rearm_rto(struct sock *sk) 3149 { 3150 const struct inet_connection_sock *icsk = inet_csk(sk); 3151 struct tcp_sock *tp = tcp_sk(sk); 3152 3153 /* If the retrans timer is currently being used by Fast Open 3154 * for SYN-ACK retrans purpose, stay put. 3155 */ 3156 if (rcu_access_pointer(tp->fastopen_rsk)) 3157 return; 3158 3159 if (!tp->packets_out) { 3160 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3161 } else { 3162 u32 rto = inet_csk(sk)->icsk_rto; 3163 /* Offset the time elapsed after installing regular RTO */ 3164 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3165 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3166 s64 delta_us = tcp_rto_delta_us(sk); 3167 /* delta_us may not be positive if the socket is locked 3168 * when the retrans timer fires and is rescheduled. 3169 */ 3170 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3171 } 3172 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3173 TCP_RTO_MAX); 3174 } 3175 } 3176 3177 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3178 static void tcp_set_xmit_timer(struct sock *sk) 3179 { 3180 if (!tcp_schedule_loss_probe(sk, true)) 3181 tcp_rearm_rto(sk); 3182 } 3183 3184 /* If we get here, the whole TSO packet has not been acked. */ 3185 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3186 { 3187 struct tcp_sock *tp = tcp_sk(sk); 3188 u32 packets_acked; 3189 3190 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3191 3192 packets_acked = tcp_skb_pcount(skb); 3193 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3194 return 0; 3195 packets_acked -= tcp_skb_pcount(skb); 3196 3197 if (packets_acked) { 3198 BUG_ON(tcp_skb_pcount(skb) == 0); 3199 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3200 } 3201 3202 return packets_acked; 3203 } 3204 3205 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3206 const struct sk_buff *ack_skb, u32 prior_snd_una) 3207 { 3208 const struct skb_shared_info *shinfo; 3209 3210 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3211 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3212 return; 3213 3214 shinfo = skb_shinfo(skb); 3215 if (!before(shinfo->tskey, prior_snd_una) && 3216 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3217 tcp_skb_tsorted_save(skb) { 3218 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3219 } tcp_skb_tsorted_restore(skb); 3220 } 3221 } 3222 3223 /* Remove acknowledged frames from the retransmission queue. If our packet 3224 * is before the ack sequence we can discard it as it's confirmed to have 3225 * arrived at the other end. 3226 */ 3227 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3228 u32 prior_fack, u32 prior_snd_una, 3229 struct tcp_sacktag_state *sack, bool ece_ack) 3230 { 3231 const struct inet_connection_sock *icsk = inet_csk(sk); 3232 u64 first_ackt, last_ackt; 3233 struct tcp_sock *tp = tcp_sk(sk); 3234 u32 prior_sacked = tp->sacked_out; 3235 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3236 struct sk_buff *skb, *next; 3237 bool fully_acked = true; 3238 long sack_rtt_us = -1L; 3239 long seq_rtt_us = -1L; 3240 long ca_rtt_us = -1L; 3241 u32 pkts_acked = 0; 3242 bool rtt_update; 3243 int flag = 0; 3244 3245 first_ackt = 0; 3246 3247 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3248 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3249 const u32 start_seq = scb->seq; 3250 u8 sacked = scb->sacked; 3251 u32 acked_pcount; 3252 3253 /* Determine how many packets and what bytes were acked, tso and else */ 3254 if (after(scb->end_seq, tp->snd_una)) { 3255 if (tcp_skb_pcount(skb) == 1 || 3256 !after(tp->snd_una, scb->seq)) 3257 break; 3258 3259 acked_pcount = tcp_tso_acked(sk, skb); 3260 if (!acked_pcount) 3261 break; 3262 fully_acked = false; 3263 } else { 3264 acked_pcount = tcp_skb_pcount(skb); 3265 } 3266 3267 if (unlikely(sacked & TCPCB_RETRANS)) { 3268 if (sacked & TCPCB_SACKED_RETRANS) 3269 tp->retrans_out -= acked_pcount; 3270 flag |= FLAG_RETRANS_DATA_ACKED; 3271 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3272 last_ackt = tcp_skb_timestamp_us(skb); 3273 WARN_ON_ONCE(last_ackt == 0); 3274 if (!first_ackt) 3275 first_ackt = last_ackt; 3276 3277 if (before(start_seq, reord)) 3278 reord = start_seq; 3279 if (!after(scb->end_seq, tp->high_seq)) 3280 flag |= FLAG_ORIG_SACK_ACKED; 3281 } 3282 3283 if (sacked & TCPCB_SACKED_ACKED) { 3284 tp->sacked_out -= acked_pcount; 3285 } else if (tcp_is_sack(tp)) { 3286 tcp_count_delivered(tp, acked_pcount, ece_ack); 3287 if (!tcp_skb_spurious_retrans(tp, skb)) 3288 tcp_rack_advance(tp, sacked, scb->end_seq, 3289 tcp_skb_timestamp_us(skb)); 3290 } 3291 if (sacked & TCPCB_LOST) 3292 tp->lost_out -= acked_pcount; 3293 3294 tp->packets_out -= acked_pcount; 3295 pkts_acked += acked_pcount; 3296 tcp_rate_skb_delivered(sk, skb, sack->rate); 3297 3298 /* Initial outgoing SYN's get put onto the write_queue 3299 * just like anything else we transmit. It is not 3300 * true data, and if we misinform our callers that 3301 * this ACK acks real data, we will erroneously exit 3302 * connection startup slow start one packet too 3303 * quickly. This is severely frowned upon behavior. 3304 */ 3305 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3306 flag |= FLAG_DATA_ACKED; 3307 } else { 3308 flag |= FLAG_SYN_ACKED; 3309 tp->retrans_stamp = 0; 3310 } 3311 3312 if (!fully_acked) 3313 break; 3314 3315 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3316 3317 next = skb_rb_next(skb); 3318 if (unlikely(skb == tp->retransmit_skb_hint)) 3319 tp->retransmit_skb_hint = NULL; 3320 if (unlikely(skb == tp->lost_skb_hint)) 3321 tp->lost_skb_hint = NULL; 3322 tcp_highest_sack_replace(sk, skb, next); 3323 tcp_rtx_queue_unlink_and_free(skb, sk); 3324 } 3325 3326 if (!skb) 3327 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3328 3329 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3330 tp->snd_up = tp->snd_una; 3331 3332 if (skb) { 3333 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3334 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3335 flag |= FLAG_SACK_RENEGING; 3336 } 3337 3338 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3339 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3340 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3341 3342 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3343 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3344 sack->rate->prior_delivered + 1 == tp->delivered && 3345 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3346 /* Conservatively mark a delayed ACK. It's typically 3347 * from a lone runt packet over the round trip to 3348 * a receiver w/o out-of-order or CE events. 3349 */ 3350 flag |= FLAG_ACK_MAYBE_DELAYED; 3351 } 3352 } 3353 if (sack->first_sackt) { 3354 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3355 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3356 } 3357 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3358 ca_rtt_us, sack->rate); 3359 3360 if (flag & FLAG_ACKED) { 3361 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3362 if (unlikely(icsk->icsk_mtup.probe_size && 3363 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3364 tcp_mtup_probe_success(sk); 3365 } 3366 3367 if (tcp_is_reno(tp)) { 3368 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3369 3370 /* If any of the cumulatively ACKed segments was 3371 * retransmitted, non-SACK case cannot confirm that 3372 * progress was due to original transmission due to 3373 * lack of TCPCB_SACKED_ACKED bits even if some of 3374 * the packets may have been never retransmitted. 3375 */ 3376 if (flag & FLAG_RETRANS_DATA_ACKED) 3377 flag &= ~FLAG_ORIG_SACK_ACKED; 3378 } else { 3379 int delta; 3380 3381 /* Non-retransmitted hole got filled? That's reordering */ 3382 if (before(reord, prior_fack)) 3383 tcp_check_sack_reordering(sk, reord, 0); 3384 3385 delta = prior_sacked - tp->sacked_out; 3386 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3387 } 3388 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3389 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3390 tcp_skb_timestamp_us(skb))) { 3391 /* Do not re-arm RTO if the sack RTT is measured from data sent 3392 * after when the head was last (re)transmitted. Otherwise the 3393 * timeout may continue to extend in loss recovery. 3394 */ 3395 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3396 } 3397 3398 if (icsk->icsk_ca_ops->pkts_acked) { 3399 struct ack_sample sample = { .pkts_acked = pkts_acked, 3400 .rtt_us = sack->rate->rtt_us }; 3401 3402 sample.in_flight = tp->mss_cache * 3403 (tp->delivered - sack->rate->prior_delivered); 3404 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3405 } 3406 3407 #if FASTRETRANS_DEBUG > 0 3408 WARN_ON((int)tp->sacked_out < 0); 3409 WARN_ON((int)tp->lost_out < 0); 3410 WARN_ON((int)tp->retrans_out < 0); 3411 if (!tp->packets_out && tcp_is_sack(tp)) { 3412 icsk = inet_csk(sk); 3413 if (tp->lost_out) { 3414 pr_debug("Leak l=%u %d\n", 3415 tp->lost_out, icsk->icsk_ca_state); 3416 tp->lost_out = 0; 3417 } 3418 if (tp->sacked_out) { 3419 pr_debug("Leak s=%u %d\n", 3420 tp->sacked_out, icsk->icsk_ca_state); 3421 tp->sacked_out = 0; 3422 } 3423 if (tp->retrans_out) { 3424 pr_debug("Leak r=%u %d\n", 3425 tp->retrans_out, icsk->icsk_ca_state); 3426 tp->retrans_out = 0; 3427 } 3428 } 3429 #endif 3430 return flag; 3431 } 3432 3433 static void tcp_ack_probe(struct sock *sk) 3434 { 3435 struct inet_connection_sock *icsk = inet_csk(sk); 3436 struct sk_buff *head = tcp_send_head(sk); 3437 const struct tcp_sock *tp = tcp_sk(sk); 3438 3439 /* Was it a usable window open? */ 3440 if (!head) 3441 return; 3442 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3443 icsk->icsk_backoff = 0; 3444 icsk->icsk_probes_tstamp = 0; 3445 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3446 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3447 * This function is not for random using! 3448 */ 3449 } else { 3450 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3451 3452 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3453 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3454 } 3455 } 3456 3457 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3458 { 3459 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3460 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3461 } 3462 3463 /* Decide wheather to run the increase function of congestion control. */ 3464 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3465 { 3466 /* If reordering is high then always grow cwnd whenever data is 3467 * delivered regardless of its ordering. Otherwise stay conservative 3468 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3469 * new SACK or ECE mark may first advance cwnd here and later reduce 3470 * cwnd in tcp_fastretrans_alert() based on more states. 3471 */ 3472 if (tcp_sk(sk)->reordering > 3473 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3474 return flag & FLAG_FORWARD_PROGRESS; 3475 3476 return flag & FLAG_DATA_ACKED; 3477 } 3478 3479 /* The "ultimate" congestion control function that aims to replace the rigid 3480 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3481 * It's called toward the end of processing an ACK with precise rate 3482 * information. All transmission or retransmission are delayed afterwards. 3483 */ 3484 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3485 int flag, const struct rate_sample *rs) 3486 { 3487 const struct inet_connection_sock *icsk = inet_csk(sk); 3488 3489 if (icsk->icsk_ca_ops->cong_control) { 3490 icsk->icsk_ca_ops->cong_control(sk, rs); 3491 return; 3492 } 3493 3494 if (tcp_in_cwnd_reduction(sk)) { 3495 /* Reduce cwnd if state mandates */ 3496 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3497 } else if (tcp_may_raise_cwnd(sk, flag)) { 3498 /* Advance cwnd if state allows */ 3499 tcp_cong_avoid(sk, ack, acked_sacked); 3500 } 3501 tcp_update_pacing_rate(sk); 3502 } 3503 3504 /* Check that window update is acceptable. 3505 * The function assumes that snd_una<=ack<=snd_next. 3506 */ 3507 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3508 const u32 ack, const u32 ack_seq, 3509 const u32 nwin) 3510 { 3511 return after(ack, tp->snd_una) || 3512 after(ack_seq, tp->snd_wl1) || 3513 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3514 } 3515 3516 /* If we update tp->snd_una, also update tp->bytes_acked */ 3517 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3518 { 3519 u32 delta = ack - tp->snd_una; 3520 3521 sock_owned_by_me((struct sock *)tp); 3522 tp->bytes_acked += delta; 3523 tp->snd_una = ack; 3524 } 3525 3526 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3527 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3528 { 3529 u32 delta = seq - tp->rcv_nxt; 3530 3531 sock_owned_by_me((struct sock *)tp); 3532 tp->bytes_received += delta; 3533 WRITE_ONCE(tp->rcv_nxt, seq); 3534 } 3535 3536 /* Update our send window. 3537 * 3538 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3539 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3540 */ 3541 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3542 u32 ack_seq) 3543 { 3544 struct tcp_sock *tp = tcp_sk(sk); 3545 int flag = 0; 3546 u32 nwin = ntohs(tcp_hdr(skb)->window); 3547 3548 if (likely(!tcp_hdr(skb)->syn)) 3549 nwin <<= tp->rx_opt.snd_wscale; 3550 3551 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3552 flag |= FLAG_WIN_UPDATE; 3553 tcp_update_wl(tp, ack_seq); 3554 3555 if (tp->snd_wnd != nwin) { 3556 tp->snd_wnd = nwin; 3557 3558 /* Note, it is the only place, where 3559 * fast path is recovered for sending TCP. 3560 */ 3561 tp->pred_flags = 0; 3562 tcp_fast_path_check(sk); 3563 3564 if (!tcp_write_queue_empty(sk)) 3565 tcp_slow_start_after_idle_check(sk); 3566 3567 if (nwin > tp->max_window) { 3568 tp->max_window = nwin; 3569 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3570 } 3571 } 3572 } 3573 3574 tcp_snd_una_update(tp, ack); 3575 3576 return flag; 3577 } 3578 3579 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3580 u32 *last_oow_ack_time) 3581 { 3582 if (*last_oow_ack_time) { 3583 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3584 3585 if (0 <= elapsed && 3586 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3587 NET_INC_STATS(net, mib_idx); 3588 return true; /* rate-limited: don't send yet! */ 3589 } 3590 } 3591 3592 *last_oow_ack_time = tcp_jiffies32; 3593 3594 return false; /* not rate-limited: go ahead, send dupack now! */ 3595 } 3596 3597 /* Return true if we're currently rate-limiting out-of-window ACKs and 3598 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3599 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3600 * attacks that send repeated SYNs or ACKs for the same connection. To 3601 * do this, we do not send a duplicate SYNACK or ACK if the remote 3602 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3603 */ 3604 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3605 int mib_idx, u32 *last_oow_ack_time) 3606 { 3607 /* Data packets without SYNs are not likely part of an ACK loop. */ 3608 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3609 !tcp_hdr(skb)->syn) 3610 return false; 3611 3612 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3613 } 3614 3615 /* RFC 5961 7 [ACK Throttling] */ 3616 static void tcp_send_challenge_ack(struct sock *sk) 3617 { 3618 /* unprotected vars, we dont care of overwrites */ 3619 static u32 challenge_timestamp; 3620 static unsigned int challenge_count; 3621 struct tcp_sock *tp = tcp_sk(sk); 3622 struct net *net = sock_net(sk); 3623 u32 count, now; 3624 3625 /* First check our per-socket dupack rate limit. */ 3626 if (__tcp_oow_rate_limited(net, 3627 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3628 &tp->last_oow_ack_time)) 3629 return; 3630 3631 /* Then check host-wide RFC 5961 rate limit. */ 3632 now = jiffies / HZ; 3633 if (now != challenge_timestamp) { 3634 u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3635 u32 half = (ack_limit + 1) >> 1; 3636 3637 challenge_timestamp = now; 3638 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3639 } 3640 count = READ_ONCE(challenge_count); 3641 if (count > 0) { 3642 WRITE_ONCE(challenge_count, count - 1); 3643 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3644 tcp_send_ack(sk); 3645 } 3646 } 3647 3648 static void tcp_store_ts_recent(struct tcp_sock *tp) 3649 { 3650 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3651 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3652 } 3653 3654 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3655 { 3656 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3657 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3658 * extra check below makes sure this can only happen 3659 * for pure ACK frames. -DaveM 3660 * 3661 * Not only, also it occurs for expired timestamps. 3662 */ 3663 3664 if (tcp_paws_check(&tp->rx_opt, 0)) 3665 tcp_store_ts_recent(tp); 3666 } 3667 } 3668 3669 /* This routine deals with acks during a TLP episode and ends an episode by 3670 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3671 */ 3672 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3673 { 3674 struct tcp_sock *tp = tcp_sk(sk); 3675 3676 if (before(ack, tp->tlp_high_seq)) 3677 return; 3678 3679 if (!tp->tlp_retrans) { 3680 /* TLP of new data has been acknowledged */ 3681 tp->tlp_high_seq = 0; 3682 } else if (flag & FLAG_DSACK_TLP) { 3683 /* This DSACK means original and TLP probe arrived; no loss */ 3684 tp->tlp_high_seq = 0; 3685 } else if (after(ack, tp->tlp_high_seq)) { 3686 /* ACK advances: there was a loss, so reduce cwnd. Reset 3687 * tlp_high_seq in tcp_init_cwnd_reduction() 3688 */ 3689 tcp_init_cwnd_reduction(sk); 3690 tcp_set_ca_state(sk, TCP_CA_CWR); 3691 tcp_end_cwnd_reduction(sk); 3692 tcp_try_keep_open(sk); 3693 NET_INC_STATS(sock_net(sk), 3694 LINUX_MIB_TCPLOSSPROBERECOVERY); 3695 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3696 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3697 /* Pure dupack: original and TLP probe arrived; no loss */ 3698 tp->tlp_high_seq = 0; 3699 } 3700 } 3701 3702 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3703 { 3704 const struct inet_connection_sock *icsk = inet_csk(sk); 3705 3706 if (icsk->icsk_ca_ops->in_ack_event) 3707 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3708 } 3709 3710 /* Congestion control has updated the cwnd already. So if we're in 3711 * loss recovery then now we do any new sends (for FRTO) or 3712 * retransmits (for CA_Loss or CA_recovery) that make sense. 3713 */ 3714 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3715 { 3716 struct tcp_sock *tp = tcp_sk(sk); 3717 3718 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3719 return; 3720 3721 if (unlikely(rexmit == REXMIT_NEW)) { 3722 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3723 TCP_NAGLE_OFF); 3724 if (after(tp->snd_nxt, tp->high_seq)) 3725 return; 3726 tp->frto = 0; 3727 } 3728 tcp_xmit_retransmit_queue(sk); 3729 } 3730 3731 /* Returns the number of packets newly acked or sacked by the current ACK */ 3732 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3733 { 3734 const struct net *net = sock_net(sk); 3735 struct tcp_sock *tp = tcp_sk(sk); 3736 u32 delivered; 3737 3738 delivered = tp->delivered - prior_delivered; 3739 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3740 if (flag & FLAG_ECE) 3741 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3742 3743 return delivered; 3744 } 3745 3746 /* This routine deals with incoming acks, but not outgoing ones. */ 3747 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3748 { 3749 struct inet_connection_sock *icsk = inet_csk(sk); 3750 struct tcp_sock *tp = tcp_sk(sk); 3751 struct tcp_sacktag_state sack_state; 3752 struct rate_sample rs = { .prior_delivered = 0 }; 3753 u32 prior_snd_una = tp->snd_una; 3754 bool is_sack_reneg = tp->is_sack_reneg; 3755 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3756 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3757 int num_dupack = 0; 3758 int prior_packets = tp->packets_out; 3759 u32 delivered = tp->delivered; 3760 u32 lost = tp->lost; 3761 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3762 u32 prior_fack; 3763 3764 sack_state.first_sackt = 0; 3765 sack_state.rate = &rs; 3766 sack_state.sack_delivered = 0; 3767 3768 /* We very likely will need to access rtx queue. */ 3769 prefetch(sk->tcp_rtx_queue.rb_node); 3770 3771 /* If the ack is older than previous acks 3772 * then we can probably ignore it. 3773 */ 3774 if (before(ack, prior_snd_una)) { 3775 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3776 if (before(ack, prior_snd_una - tp->max_window)) { 3777 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3778 tcp_send_challenge_ack(sk); 3779 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3780 } 3781 goto old_ack; 3782 } 3783 3784 /* If the ack includes data we haven't sent yet, discard 3785 * this segment (RFC793 Section 3.9). 3786 */ 3787 if (after(ack, tp->snd_nxt)) 3788 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3789 3790 if (after(ack, prior_snd_una)) { 3791 flag |= FLAG_SND_UNA_ADVANCED; 3792 icsk->icsk_retransmits = 0; 3793 3794 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3795 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3796 if (icsk->icsk_clean_acked) 3797 icsk->icsk_clean_acked(sk, ack); 3798 #endif 3799 } 3800 3801 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3802 rs.prior_in_flight = tcp_packets_in_flight(tp); 3803 3804 /* ts_recent update must be made after we are sure that the packet 3805 * is in window. 3806 */ 3807 if (flag & FLAG_UPDATE_TS_RECENT) 3808 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3809 3810 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3811 FLAG_SND_UNA_ADVANCED) { 3812 /* Window is constant, pure forward advance. 3813 * No more checks are required. 3814 * Note, we use the fact that SND.UNA>=SND.WL2. 3815 */ 3816 tcp_update_wl(tp, ack_seq); 3817 tcp_snd_una_update(tp, ack); 3818 flag |= FLAG_WIN_UPDATE; 3819 3820 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3821 3822 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3823 } else { 3824 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3825 3826 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3827 flag |= FLAG_DATA; 3828 else 3829 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3830 3831 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3832 3833 if (TCP_SKB_CB(skb)->sacked) 3834 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3835 &sack_state); 3836 3837 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3838 flag |= FLAG_ECE; 3839 ack_ev_flags |= CA_ACK_ECE; 3840 } 3841 3842 if (sack_state.sack_delivered) 3843 tcp_count_delivered(tp, sack_state.sack_delivered, 3844 flag & FLAG_ECE); 3845 3846 if (flag & FLAG_WIN_UPDATE) 3847 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3848 3849 tcp_in_ack_event(sk, ack_ev_flags); 3850 } 3851 3852 /* This is a deviation from RFC3168 since it states that: 3853 * "When the TCP data sender is ready to set the CWR bit after reducing 3854 * the congestion window, it SHOULD set the CWR bit only on the first 3855 * new data packet that it transmits." 3856 * We accept CWR on pure ACKs to be more robust 3857 * with widely-deployed TCP implementations that do this. 3858 */ 3859 tcp_ecn_accept_cwr(sk, skb); 3860 3861 /* We passed data and got it acked, remove any soft error 3862 * log. Something worked... 3863 */ 3864 sk->sk_err_soft = 0; 3865 icsk->icsk_probes_out = 0; 3866 tp->rcv_tstamp = tcp_jiffies32; 3867 if (!prior_packets) 3868 goto no_queue; 3869 3870 /* See if we can take anything off of the retransmit queue. */ 3871 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3872 &sack_state, flag & FLAG_ECE); 3873 3874 tcp_rack_update_reo_wnd(sk, &rs); 3875 3876 if (tp->tlp_high_seq) 3877 tcp_process_tlp_ack(sk, ack, flag); 3878 3879 if (tcp_ack_is_dubious(sk, flag)) { 3880 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3881 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3882 num_dupack = 1; 3883 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3884 if (!(flag & FLAG_DATA)) 3885 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3886 } 3887 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3888 &rexmit); 3889 } 3890 3891 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3892 if (flag & FLAG_SET_XMIT_TIMER) 3893 tcp_set_xmit_timer(sk); 3894 3895 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3896 sk_dst_confirm(sk); 3897 3898 delivered = tcp_newly_delivered(sk, delivered, flag); 3899 lost = tp->lost - lost; /* freshly marked lost */ 3900 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3901 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3902 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3903 tcp_xmit_recovery(sk, rexmit); 3904 return 1; 3905 3906 no_queue: 3907 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3908 if (flag & FLAG_DSACKING_ACK) { 3909 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3910 &rexmit); 3911 tcp_newly_delivered(sk, delivered, flag); 3912 } 3913 /* If this ack opens up a zero window, clear backoff. It was 3914 * being used to time the probes, and is probably far higher than 3915 * it needs to be for normal retransmission. 3916 */ 3917 tcp_ack_probe(sk); 3918 3919 if (tp->tlp_high_seq) 3920 tcp_process_tlp_ack(sk, ack, flag); 3921 return 1; 3922 3923 old_ack: 3924 /* If data was SACKed, tag it and see if we should send more data. 3925 * If data was DSACKed, see if we can undo a cwnd reduction. 3926 */ 3927 if (TCP_SKB_CB(skb)->sacked) { 3928 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3929 &sack_state); 3930 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3931 &rexmit); 3932 tcp_newly_delivered(sk, delivered, flag); 3933 tcp_xmit_recovery(sk, rexmit); 3934 } 3935 3936 return 0; 3937 } 3938 3939 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3940 bool syn, struct tcp_fastopen_cookie *foc, 3941 bool exp_opt) 3942 { 3943 /* Valid only in SYN or SYN-ACK with an even length. */ 3944 if (!foc || !syn || len < 0 || (len & 1)) 3945 return; 3946 3947 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3948 len <= TCP_FASTOPEN_COOKIE_MAX) 3949 memcpy(foc->val, cookie, len); 3950 else if (len != 0) 3951 len = -1; 3952 foc->len = len; 3953 foc->exp = exp_opt; 3954 } 3955 3956 static bool smc_parse_options(const struct tcphdr *th, 3957 struct tcp_options_received *opt_rx, 3958 const unsigned char *ptr, 3959 int opsize) 3960 { 3961 #if IS_ENABLED(CONFIG_SMC) 3962 if (static_branch_unlikely(&tcp_have_smc)) { 3963 if (th->syn && !(opsize & 1) && 3964 opsize >= TCPOLEN_EXP_SMC_BASE && 3965 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 3966 opt_rx->smc_ok = 1; 3967 return true; 3968 } 3969 } 3970 #endif 3971 return false; 3972 } 3973 3974 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3975 * value on success. 3976 */ 3977 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3978 { 3979 const unsigned char *ptr = (const unsigned char *)(th + 1); 3980 int length = (th->doff * 4) - sizeof(struct tcphdr); 3981 u16 mss = 0; 3982 3983 while (length > 0) { 3984 int opcode = *ptr++; 3985 int opsize; 3986 3987 switch (opcode) { 3988 case TCPOPT_EOL: 3989 return mss; 3990 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3991 length--; 3992 continue; 3993 default: 3994 if (length < 2) 3995 return mss; 3996 opsize = *ptr++; 3997 if (opsize < 2) /* "silly options" */ 3998 return mss; 3999 if (opsize > length) 4000 return mss; /* fail on partial options */ 4001 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4002 u16 in_mss = get_unaligned_be16(ptr); 4003 4004 if (in_mss) { 4005 if (user_mss && user_mss < in_mss) 4006 in_mss = user_mss; 4007 mss = in_mss; 4008 } 4009 } 4010 ptr += opsize - 2; 4011 length -= opsize; 4012 } 4013 } 4014 return mss; 4015 } 4016 4017 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4018 * But, this can also be called on packets in the established flow when 4019 * the fast version below fails. 4020 */ 4021 void tcp_parse_options(const struct net *net, 4022 const struct sk_buff *skb, 4023 struct tcp_options_received *opt_rx, int estab, 4024 struct tcp_fastopen_cookie *foc) 4025 { 4026 const unsigned char *ptr; 4027 const struct tcphdr *th = tcp_hdr(skb); 4028 int length = (th->doff * 4) - sizeof(struct tcphdr); 4029 4030 ptr = (const unsigned char *)(th + 1); 4031 opt_rx->saw_tstamp = 0; 4032 opt_rx->saw_unknown = 0; 4033 4034 while (length > 0) { 4035 int opcode = *ptr++; 4036 int opsize; 4037 4038 switch (opcode) { 4039 case TCPOPT_EOL: 4040 return; 4041 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4042 length--; 4043 continue; 4044 default: 4045 if (length < 2) 4046 return; 4047 opsize = *ptr++; 4048 if (opsize < 2) /* "silly options" */ 4049 return; 4050 if (opsize > length) 4051 return; /* don't parse partial options */ 4052 switch (opcode) { 4053 case TCPOPT_MSS: 4054 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4055 u16 in_mss = get_unaligned_be16(ptr); 4056 if (in_mss) { 4057 if (opt_rx->user_mss && 4058 opt_rx->user_mss < in_mss) 4059 in_mss = opt_rx->user_mss; 4060 opt_rx->mss_clamp = in_mss; 4061 } 4062 } 4063 break; 4064 case TCPOPT_WINDOW: 4065 if (opsize == TCPOLEN_WINDOW && th->syn && 4066 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4067 __u8 snd_wscale = *(__u8 *)ptr; 4068 opt_rx->wscale_ok = 1; 4069 if (snd_wscale > TCP_MAX_WSCALE) { 4070 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4071 __func__, 4072 snd_wscale, 4073 TCP_MAX_WSCALE); 4074 snd_wscale = TCP_MAX_WSCALE; 4075 } 4076 opt_rx->snd_wscale = snd_wscale; 4077 } 4078 break; 4079 case TCPOPT_TIMESTAMP: 4080 if ((opsize == TCPOLEN_TIMESTAMP) && 4081 ((estab && opt_rx->tstamp_ok) || 4082 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4083 opt_rx->saw_tstamp = 1; 4084 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4085 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4086 } 4087 break; 4088 case TCPOPT_SACK_PERM: 4089 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4090 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4091 opt_rx->sack_ok = TCP_SACK_SEEN; 4092 tcp_sack_reset(opt_rx); 4093 } 4094 break; 4095 4096 case TCPOPT_SACK: 4097 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4098 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4099 opt_rx->sack_ok) { 4100 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4101 } 4102 break; 4103 #ifdef CONFIG_TCP_MD5SIG 4104 case TCPOPT_MD5SIG: 4105 /* 4106 * The MD5 Hash has already been 4107 * checked (see tcp_v{4,6}_do_rcv()). 4108 */ 4109 break; 4110 #endif 4111 case TCPOPT_FASTOPEN: 4112 tcp_parse_fastopen_option( 4113 opsize - TCPOLEN_FASTOPEN_BASE, 4114 ptr, th->syn, foc, false); 4115 break; 4116 4117 case TCPOPT_EXP: 4118 /* Fast Open option shares code 254 using a 4119 * 16 bits magic number. 4120 */ 4121 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4122 get_unaligned_be16(ptr) == 4123 TCPOPT_FASTOPEN_MAGIC) { 4124 tcp_parse_fastopen_option(opsize - 4125 TCPOLEN_EXP_FASTOPEN_BASE, 4126 ptr + 2, th->syn, foc, true); 4127 break; 4128 } 4129 4130 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4131 break; 4132 4133 opt_rx->saw_unknown = 1; 4134 break; 4135 4136 default: 4137 opt_rx->saw_unknown = 1; 4138 } 4139 ptr += opsize-2; 4140 length -= opsize; 4141 } 4142 } 4143 } 4144 EXPORT_SYMBOL(tcp_parse_options); 4145 4146 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4147 { 4148 const __be32 *ptr = (const __be32 *)(th + 1); 4149 4150 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4151 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4152 tp->rx_opt.saw_tstamp = 1; 4153 ++ptr; 4154 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4155 ++ptr; 4156 if (*ptr) 4157 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4158 else 4159 tp->rx_opt.rcv_tsecr = 0; 4160 return true; 4161 } 4162 return false; 4163 } 4164 4165 /* Fast parse options. This hopes to only see timestamps. 4166 * If it is wrong it falls back on tcp_parse_options(). 4167 */ 4168 static bool tcp_fast_parse_options(const struct net *net, 4169 const struct sk_buff *skb, 4170 const struct tcphdr *th, struct tcp_sock *tp) 4171 { 4172 /* In the spirit of fast parsing, compare doff directly to constant 4173 * values. Because equality is used, short doff can be ignored here. 4174 */ 4175 if (th->doff == (sizeof(*th) / 4)) { 4176 tp->rx_opt.saw_tstamp = 0; 4177 return false; 4178 } else if (tp->rx_opt.tstamp_ok && 4179 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4180 if (tcp_parse_aligned_timestamp(tp, th)) 4181 return true; 4182 } 4183 4184 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4185 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4186 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4187 4188 return true; 4189 } 4190 4191 #ifdef CONFIG_TCP_MD5SIG 4192 /* 4193 * Parse MD5 Signature option 4194 */ 4195 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4196 { 4197 int length = (th->doff << 2) - sizeof(*th); 4198 const u8 *ptr = (const u8 *)(th + 1); 4199 4200 /* If not enough data remaining, we can short cut */ 4201 while (length >= TCPOLEN_MD5SIG) { 4202 int opcode = *ptr++; 4203 int opsize; 4204 4205 switch (opcode) { 4206 case TCPOPT_EOL: 4207 return NULL; 4208 case TCPOPT_NOP: 4209 length--; 4210 continue; 4211 default: 4212 opsize = *ptr++; 4213 if (opsize < 2 || opsize > length) 4214 return NULL; 4215 if (opcode == TCPOPT_MD5SIG) 4216 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4217 } 4218 ptr += opsize - 2; 4219 length -= opsize; 4220 } 4221 return NULL; 4222 } 4223 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4224 #endif 4225 4226 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4227 * 4228 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4229 * it can pass through stack. So, the following predicate verifies that 4230 * this segment is not used for anything but congestion avoidance or 4231 * fast retransmit. Moreover, we even are able to eliminate most of such 4232 * second order effects, if we apply some small "replay" window (~RTO) 4233 * to timestamp space. 4234 * 4235 * All these measures still do not guarantee that we reject wrapped ACKs 4236 * on networks with high bandwidth, when sequence space is recycled fastly, 4237 * but it guarantees that such events will be very rare and do not affect 4238 * connection seriously. This doesn't look nice, but alas, PAWS is really 4239 * buggy extension. 4240 * 4241 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4242 * states that events when retransmit arrives after original data are rare. 4243 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4244 * the biggest problem on large power networks even with minor reordering. 4245 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4246 * up to bandwidth of 18Gigabit/sec. 8) ] 4247 */ 4248 4249 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4250 { 4251 const struct tcp_sock *tp = tcp_sk(sk); 4252 const struct tcphdr *th = tcp_hdr(skb); 4253 u32 seq = TCP_SKB_CB(skb)->seq; 4254 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4255 4256 return (/* 1. Pure ACK with correct sequence number. */ 4257 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4258 4259 /* 2. ... and duplicate ACK. */ 4260 ack == tp->snd_una && 4261 4262 /* 3. ... and does not update window. */ 4263 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4264 4265 /* 4. ... and sits in replay window. */ 4266 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4267 } 4268 4269 static inline bool tcp_paws_discard(const struct sock *sk, 4270 const struct sk_buff *skb) 4271 { 4272 const struct tcp_sock *tp = tcp_sk(sk); 4273 4274 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4275 !tcp_disordered_ack(sk, skb); 4276 } 4277 4278 /* Check segment sequence number for validity. 4279 * 4280 * Segment controls are considered valid, if the segment 4281 * fits to the window after truncation to the window. Acceptability 4282 * of data (and SYN, FIN, of course) is checked separately. 4283 * See tcp_data_queue(), for example. 4284 * 4285 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4286 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4287 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4288 * (borrowed from freebsd) 4289 */ 4290 4291 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4292 { 4293 return !before(end_seq, tp->rcv_wup) && 4294 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4295 } 4296 4297 /* When we get a reset we do this. */ 4298 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4299 { 4300 trace_tcp_receive_reset(sk); 4301 4302 /* mptcp can't tell us to ignore reset pkts, 4303 * so just ignore the return value of mptcp_incoming_options(). 4304 */ 4305 if (sk_is_mptcp(sk)) 4306 mptcp_incoming_options(sk, skb); 4307 4308 /* We want the right error as BSD sees it (and indeed as we do). */ 4309 switch (sk->sk_state) { 4310 case TCP_SYN_SENT: 4311 sk->sk_err = ECONNREFUSED; 4312 break; 4313 case TCP_CLOSE_WAIT: 4314 sk->sk_err = EPIPE; 4315 break; 4316 case TCP_CLOSE: 4317 return; 4318 default: 4319 sk->sk_err = ECONNRESET; 4320 } 4321 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4322 smp_wmb(); 4323 4324 tcp_write_queue_purge(sk); 4325 tcp_done(sk); 4326 4327 if (!sock_flag(sk, SOCK_DEAD)) 4328 sk_error_report(sk); 4329 } 4330 4331 /* 4332 * Process the FIN bit. This now behaves as it is supposed to work 4333 * and the FIN takes effect when it is validly part of sequence 4334 * space. Not before when we get holes. 4335 * 4336 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4337 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4338 * TIME-WAIT) 4339 * 4340 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4341 * close and we go into CLOSING (and later onto TIME-WAIT) 4342 * 4343 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4344 */ 4345 void tcp_fin(struct sock *sk) 4346 { 4347 struct tcp_sock *tp = tcp_sk(sk); 4348 4349 inet_csk_schedule_ack(sk); 4350 4351 sk->sk_shutdown |= RCV_SHUTDOWN; 4352 sock_set_flag(sk, SOCK_DONE); 4353 4354 switch (sk->sk_state) { 4355 case TCP_SYN_RECV: 4356 case TCP_ESTABLISHED: 4357 /* Move to CLOSE_WAIT */ 4358 tcp_set_state(sk, TCP_CLOSE_WAIT); 4359 inet_csk_enter_pingpong_mode(sk); 4360 break; 4361 4362 case TCP_CLOSE_WAIT: 4363 case TCP_CLOSING: 4364 /* Received a retransmission of the FIN, do 4365 * nothing. 4366 */ 4367 break; 4368 case TCP_LAST_ACK: 4369 /* RFC793: Remain in the LAST-ACK state. */ 4370 break; 4371 4372 case TCP_FIN_WAIT1: 4373 /* This case occurs when a simultaneous close 4374 * happens, we must ack the received FIN and 4375 * enter the CLOSING state. 4376 */ 4377 tcp_send_ack(sk); 4378 tcp_set_state(sk, TCP_CLOSING); 4379 break; 4380 case TCP_FIN_WAIT2: 4381 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4382 tcp_send_ack(sk); 4383 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4384 break; 4385 default: 4386 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4387 * cases we should never reach this piece of code. 4388 */ 4389 pr_err("%s: Impossible, sk->sk_state=%d\n", 4390 __func__, sk->sk_state); 4391 break; 4392 } 4393 4394 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4395 * Probably, we should reset in this case. For now drop them. 4396 */ 4397 skb_rbtree_purge(&tp->out_of_order_queue); 4398 if (tcp_is_sack(tp)) 4399 tcp_sack_reset(&tp->rx_opt); 4400 sk_mem_reclaim(sk); 4401 4402 if (!sock_flag(sk, SOCK_DEAD)) { 4403 sk->sk_state_change(sk); 4404 4405 /* Do not send POLL_HUP for half duplex close. */ 4406 if (sk->sk_shutdown == SHUTDOWN_MASK || 4407 sk->sk_state == TCP_CLOSE) 4408 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4409 else 4410 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4411 } 4412 } 4413 4414 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4415 u32 end_seq) 4416 { 4417 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4418 if (before(seq, sp->start_seq)) 4419 sp->start_seq = seq; 4420 if (after(end_seq, sp->end_seq)) 4421 sp->end_seq = end_seq; 4422 return true; 4423 } 4424 return false; 4425 } 4426 4427 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4428 { 4429 struct tcp_sock *tp = tcp_sk(sk); 4430 4431 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4432 int mib_idx; 4433 4434 if (before(seq, tp->rcv_nxt)) 4435 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4436 else 4437 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4438 4439 NET_INC_STATS(sock_net(sk), mib_idx); 4440 4441 tp->rx_opt.dsack = 1; 4442 tp->duplicate_sack[0].start_seq = seq; 4443 tp->duplicate_sack[0].end_seq = end_seq; 4444 } 4445 } 4446 4447 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4448 { 4449 struct tcp_sock *tp = tcp_sk(sk); 4450 4451 if (!tp->rx_opt.dsack) 4452 tcp_dsack_set(sk, seq, end_seq); 4453 else 4454 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4455 } 4456 4457 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4458 { 4459 /* When the ACK path fails or drops most ACKs, the sender would 4460 * timeout and spuriously retransmit the same segment repeatedly. 4461 * The receiver remembers and reflects via DSACKs. Leverage the 4462 * DSACK state and change the txhash to re-route speculatively. 4463 */ 4464 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4465 sk_rethink_txhash(sk)) 4466 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4467 } 4468 4469 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4470 { 4471 struct tcp_sock *tp = tcp_sk(sk); 4472 4473 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4474 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4475 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4476 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4477 4478 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4479 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4480 4481 tcp_rcv_spurious_retrans(sk, skb); 4482 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4483 end_seq = tp->rcv_nxt; 4484 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4485 } 4486 } 4487 4488 tcp_send_ack(sk); 4489 } 4490 4491 /* These routines update the SACK block as out-of-order packets arrive or 4492 * in-order packets close up the sequence space. 4493 */ 4494 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4495 { 4496 int this_sack; 4497 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4498 struct tcp_sack_block *swalk = sp + 1; 4499 4500 /* See if the recent change to the first SACK eats into 4501 * or hits the sequence space of other SACK blocks, if so coalesce. 4502 */ 4503 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4504 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4505 int i; 4506 4507 /* Zap SWALK, by moving every further SACK up by one slot. 4508 * Decrease num_sacks. 4509 */ 4510 tp->rx_opt.num_sacks--; 4511 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4512 sp[i] = sp[i + 1]; 4513 continue; 4514 } 4515 this_sack++; 4516 swalk++; 4517 } 4518 } 4519 4520 static void tcp_sack_compress_send_ack(struct sock *sk) 4521 { 4522 struct tcp_sock *tp = tcp_sk(sk); 4523 4524 if (!tp->compressed_ack) 4525 return; 4526 4527 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4528 __sock_put(sk); 4529 4530 /* Since we have to send one ack finally, 4531 * substract one from tp->compressed_ack to keep 4532 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4533 */ 4534 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4535 tp->compressed_ack - 1); 4536 4537 tp->compressed_ack = 0; 4538 tcp_send_ack(sk); 4539 } 4540 4541 /* Reasonable amount of sack blocks included in TCP SACK option 4542 * The max is 4, but this becomes 3 if TCP timestamps are there. 4543 * Given that SACK packets might be lost, be conservative and use 2. 4544 */ 4545 #define TCP_SACK_BLOCKS_EXPECTED 2 4546 4547 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4548 { 4549 struct tcp_sock *tp = tcp_sk(sk); 4550 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4551 int cur_sacks = tp->rx_opt.num_sacks; 4552 int this_sack; 4553 4554 if (!cur_sacks) 4555 goto new_sack; 4556 4557 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4558 if (tcp_sack_extend(sp, seq, end_seq)) { 4559 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4560 tcp_sack_compress_send_ack(sk); 4561 /* Rotate this_sack to the first one. */ 4562 for (; this_sack > 0; this_sack--, sp--) 4563 swap(*sp, *(sp - 1)); 4564 if (cur_sacks > 1) 4565 tcp_sack_maybe_coalesce(tp); 4566 return; 4567 } 4568 } 4569 4570 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4571 tcp_sack_compress_send_ack(sk); 4572 4573 /* Could not find an adjacent existing SACK, build a new one, 4574 * put it at the front, and shift everyone else down. We 4575 * always know there is at least one SACK present already here. 4576 * 4577 * If the sack array is full, forget about the last one. 4578 */ 4579 if (this_sack >= TCP_NUM_SACKS) { 4580 this_sack--; 4581 tp->rx_opt.num_sacks--; 4582 sp--; 4583 } 4584 for (; this_sack > 0; this_sack--, sp--) 4585 *sp = *(sp - 1); 4586 4587 new_sack: 4588 /* Build the new head SACK, and we're done. */ 4589 sp->start_seq = seq; 4590 sp->end_seq = end_seq; 4591 tp->rx_opt.num_sacks++; 4592 } 4593 4594 /* RCV.NXT advances, some SACKs should be eaten. */ 4595 4596 static void tcp_sack_remove(struct tcp_sock *tp) 4597 { 4598 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4599 int num_sacks = tp->rx_opt.num_sacks; 4600 int this_sack; 4601 4602 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4603 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4604 tp->rx_opt.num_sacks = 0; 4605 return; 4606 } 4607 4608 for (this_sack = 0; this_sack < num_sacks;) { 4609 /* Check if the start of the sack is covered by RCV.NXT. */ 4610 if (!before(tp->rcv_nxt, sp->start_seq)) { 4611 int i; 4612 4613 /* RCV.NXT must cover all the block! */ 4614 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4615 4616 /* Zap this SACK, by moving forward any other SACKS. */ 4617 for (i = this_sack+1; i < num_sacks; i++) 4618 tp->selective_acks[i-1] = tp->selective_acks[i]; 4619 num_sacks--; 4620 continue; 4621 } 4622 this_sack++; 4623 sp++; 4624 } 4625 tp->rx_opt.num_sacks = num_sacks; 4626 } 4627 4628 /** 4629 * tcp_try_coalesce - try to merge skb to prior one 4630 * @sk: socket 4631 * @to: prior buffer 4632 * @from: buffer to add in queue 4633 * @fragstolen: pointer to boolean 4634 * 4635 * Before queueing skb @from after @to, try to merge them 4636 * to reduce overall memory use and queue lengths, if cost is small. 4637 * Packets in ofo or receive queues can stay a long time. 4638 * Better try to coalesce them right now to avoid future collapses. 4639 * Returns true if caller should free @from instead of queueing it 4640 */ 4641 static bool tcp_try_coalesce(struct sock *sk, 4642 struct sk_buff *to, 4643 struct sk_buff *from, 4644 bool *fragstolen) 4645 { 4646 int delta; 4647 4648 *fragstolen = false; 4649 4650 /* Its possible this segment overlaps with prior segment in queue */ 4651 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4652 return false; 4653 4654 if (!mptcp_skb_can_collapse(to, from)) 4655 return false; 4656 4657 #ifdef CONFIG_TLS_DEVICE 4658 if (from->decrypted != to->decrypted) 4659 return false; 4660 #endif 4661 4662 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4663 return false; 4664 4665 atomic_add(delta, &sk->sk_rmem_alloc); 4666 sk_mem_charge(sk, delta); 4667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4668 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4669 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4670 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4671 4672 if (TCP_SKB_CB(from)->has_rxtstamp) { 4673 TCP_SKB_CB(to)->has_rxtstamp = true; 4674 to->tstamp = from->tstamp; 4675 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4676 } 4677 4678 return true; 4679 } 4680 4681 static bool tcp_ooo_try_coalesce(struct sock *sk, 4682 struct sk_buff *to, 4683 struct sk_buff *from, 4684 bool *fragstolen) 4685 { 4686 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4687 4688 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4689 if (res) { 4690 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4691 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4692 4693 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4694 } 4695 return res; 4696 } 4697 4698 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4699 enum skb_drop_reason reason) 4700 { 4701 sk_drops_add(sk, skb); 4702 kfree_skb_reason(skb, reason); 4703 } 4704 4705 /* This one checks to see if we can put data from the 4706 * out_of_order queue into the receive_queue. 4707 */ 4708 static void tcp_ofo_queue(struct sock *sk) 4709 { 4710 struct tcp_sock *tp = tcp_sk(sk); 4711 __u32 dsack_high = tp->rcv_nxt; 4712 bool fin, fragstolen, eaten; 4713 struct sk_buff *skb, *tail; 4714 struct rb_node *p; 4715 4716 p = rb_first(&tp->out_of_order_queue); 4717 while (p) { 4718 skb = rb_to_skb(p); 4719 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4720 break; 4721 4722 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4723 __u32 dsack = dsack_high; 4724 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4725 dsack_high = TCP_SKB_CB(skb)->end_seq; 4726 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4727 } 4728 p = rb_next(p); 4729 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4730 4731 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4732 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4733 continue; 4734 } 4735 4736 tail = skb_peek_tail(&sk->sk_receive_queue); 4737 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4738 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4739 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4740 if (!eaten) 4741 __skb_queue_tail(&sk->sk_receive_queue, skb); 4742 else 4743 kfree_skb_partial(skb, fragstolen); 4744 4745 if (unlikely(fin)) { 4746 tcp_fin(sk); 4747 /* tcp_fin() purges tp->out_of_order_queue, 4748 * so we must end this loop right now. 4749 */ 4750 break; 4751 } 4752 } 4753 } 4754 4755 static bool tcp_prune_ofo_queue(struct sock *sk); 4756 static int tcp_prune_queue(struct sock *sk); 4757 4758 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4759 unsigned int size) 4760 { 4761 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4762 !sk_rmem_schedule(sk, skb, size)) { 4763 4764 if (tcp_prune_queue(sk) < 0) 4765 return -1; 4766 4767 while (!sk_rmem_schedule(sk, skb, size)) { 4768 if (!tcp_prune_ofo_queue(sk)) 4769 return -1; 4770 } 4771 } 4772 return 0; 4773 } 4774 4775 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4776 { 4777 struct tcp_sock *tp = tcp_sk(sk); 4778 struct rb_node **p, *parent; 4779 struct sk_buff *skb1; 4780 u32 seq, end_seq; 4781 bool fragstolen; 4782 4783 tcp_ecn_check_ce(sk, skb); 4784 4785 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4786 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4787 sk->sk_data_ready(sk); 4788 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4789 return; 4790 } 4791 4792 /* Disable header prediction. */ 4793 tp->pred_flags = 0; 4794 inet_csk_schedule_ack(sk); 4795 4796 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4797 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4798 seq = TCP_SKB_CB(skb)->seq; 4799 end_seq = TCP_SKB_CB(skb)->end_seq; 4800 4801 p = &tp->out_of_order_queue.rb_node; 4802 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4803 /* Initial out of order segment, build 1 SACK. */ 4804 if (tcp_is_sack(tp)) { 4805 tp->rx_opt.num_sacks = 1; 4806 tp->selective_acks[0].start_seq = seq; 4807 tp->selective_acks[0].end_seq = end_seq; 4808 } 4809 rb_link_node(&skb->rbnode, NULL, p); 4810 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4811 tp->ooo_last_skb = skb; 4812 goto end; 4813 } 4814 4815 /* In the typical case, we are adding an skb to the end of the list. 4816 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4817 */ 4818 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4819 skb, &fragstolen)) { 4820 coalesce_done: 4821 /* For non sack flows, do not grow window to force DUPACK 4822 * and trigger fast retransmit. 4823 */ 4824 if (tcp_is_sack(tp)) 4825 tcp_grow_window(sk, skb, true); 4826 kfree_skb_partial(skb, fragstolen); 4827 skb = NULL; 4828 goto add_sack; 4829 } 4830 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4831 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4832 parent = &tp->ooo_last_skb->rbnode; 4833 p = &parent->rb_right; 4834 goto insert; 4835 } 4836 4837 /* Find place to insert this segment. Handle overlaps on the way. */ 4838 parent = NULL; 4839 while (*p) { 4840 parent = *p; 4841 skb1 = rb_to_skb(parent); 4842 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4843 p = &parent->rb_left; 4844 continue; 4845 } 4846 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4847 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4848 /* All the bits are present. Drop. */ 4849 NET_INC_STATS(sock_net(sk), 4850 LINUX_MIB_TCPOFOMERGE); 4851 tcp_drop_reason(sk, skb, 4852 SKB_DROP_REASON_TCP_OFOMERGE); 4853 skb = NULL; 4854 tcp_dsack_set(sk, seq, end_seq); 4855 goto add_sack; 4856 } 4857 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4858 /* Partial overlap. */ 4859 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4860 } else { 4861 /* skb's seq == skb1's seq and skb covers skb1. 4862 * Replace skb1 with skb. 4863 */ 4864 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4865 &tp->out_of_order_queue); 4866 tcp_dsack_extend(sk, 4867 TCP_SKB_CB(skb1)->seq, 4868 TCP_SKB_CB(skb1)->end_seq); 4869 NET_INC_STATS(sock_net(sk), 4870 LINUX_MIB_TCPOFOMERGE); 4871 tcp_drop_reason(sk, skb1, 4872 SKB_DROP_REASON_TCP_OFOMERGE); 4873 goto merge_right; 4874 } 4875 } else if (tcp_ooo_try_coalesce(sk, skb1, 4876 skb, &fragstolen)) { 4877 goto coalesce_done; 4878 } 4879 p = &parent->rb_right; 4880 } 4881 insert: 4882 /* Insert segment into RB tree. */ 4883 rb_link_node(&skb->rbnode, parent, p); 4884 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4885 4886 merge_right: 4887 /* Remove other segments covered by skb. */ 4888 while ((skb1 = skb_rb_next(skb)) != NULL) { 4889 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4890 break; 4891 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4892 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4893 end_seq); 4894 break; 4895 } 4896 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4897 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4898 TCP_SKB_CB(skb1)->end_seq); 4899 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4900 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 4901 } 4902 /* If there is no skb after us, we are the last_skb ! */ 4903 if (!skb1) 4904 tp->ooo_last_skb = skb; 4905 4906 add_sack: 4907 if (tcp_is_sack(tp)) 4908 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4909 end: 4910 if (skb) { 4911 /* For non sack flows, do not grow window to force DUPACK 4912 * and trigger fast retransmit. 4913 */ 4914 if (tcp_is_sack(tp)) 4915 tcp_grow_window(sk, skb, false); 4916 skb_condense(skb); 4917 skb_set_owner_r(skb, sk); 4918 } 4919 } 4920 4921 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4922 bool *fragstolen) 4923 { 4924 int eaten; 4925 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4926 4927 eaten = (tail && 4928 tcp_try_coalesce(sk, tail, 4929 skb, fragstolen)) ? 1 : 0; 4930 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4931 if (!eaten) { 4932 __skb_queue_tail(&sk->sk_receive_queue, skb); 4933 skb_set_owner_r(skb, sk); 4934 } 4935 return eaten; 4936 } 4937 4938 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4939 { 4940 struct sk_buff *skb; 4941 int err = -ENOMEM; 4942 int data_len = 0; 4943 bool fragstolen; 4944 4945 if (size == 0) 4946 return 0; 4947 4948 if (size > PAGE_SIZE) { 4949 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4950 4951 data_len = npages << PAGE_SHIFT; 4952 size = data_len + (size & ~PAGE_MASK); 4953 } 4954 skb = alloc_skb_with_frags(size - data_len, data_len, 4955 PAGE_ALLOC_COSTLY_ORDER, 4956 &err, sk->sk_allocation); 4957 if (!skb) 4958 goto err; 4959 4960 skb_put(skb, size - data_len); 4961 skb->data_len = data_len; 4962 skb->len = size; 4963 4964 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4965 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4966 goto err_free; 4967 } 4968 4969 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4970 if (err) 4971 goto err_free; 4972 4973 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4974 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4975 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4976 4977 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4978 WARN_ON_ONCE(fragstolen); /* should not happen */ 4979 __kfree_skb(skb); 4980 } 4981 return size; 4982 4983 err_free: 4984 kfree_skb(skb); 4985 err: 4986 return err; 4987 4988 } 4989 4990 void tcp_data_ready(struct sock *sk) 4991 { 4992 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 4993 sk->sk_data_ready(sk); 4994 } 4995 4996 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4997 { 4998 struct tcp_sock *tp = tcp_sk(sk); 4999 enum skb_drop_reason reason; 5000 bool fragstolen; 5001 int eaten; 5002 5003 /* If a subflow has been reset, the packet should not continue 5004 * to be processed, drop the packet. 5005 */ 5006 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5007 __kfree_skb(skb); 5008 return; 5009 } 5010 5011 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5012 __kfree_skb(skb); 5013 return; 5014 } 5015 skb_dst_drop(skb); 5016 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5017 5018 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5019 tp->rx_opt.dsack = 0; 5020 5021 /* Queue data for delivery to the user. 5022 * Packets in sequence go to the receive queue. 5023 * Out of sequence packets to the out_of_order_queue. 5024 */ 5025 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5026 if (tcp_receive_window(tp) == 0) { 5027 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5028 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5029 goto out_of_window; 5030 } 5031 5032 /* Ok. In sequence. In window. */ 5033 queue_and_out: 5034 if (skb_queue_len(&sk->sk_receive_queue) == 0) 5035 sk_forced_mem_schedule(sk, skb->truesize); 5036 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5037 reason = SKB_DROP_REASON_PROTO_MEM; 5038 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5039 sk->sk_data_ready(sk); 5040 goto drop; 5041 } 5042 5043 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5044 if (skb->len) 5045 tcp_event_data_recv(sk, skb); 5046 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5047 tcp_fin(sk); 5048 5049 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5050 tcp_ofo_queue(sk); 5051 5052 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5053 * gap in queue is filled. 5054 */ 5055 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5056 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5057 } 5058 5059 if (tp->rx_opt.num_sacks) 5060 tcp_sack_remove(tp); 5061 5062 tcp_fast_path_check(sk); 5063 5064 if (eaten > 0) 5065 kfree_skb_partial(skb, fragstolen); 5066 if (!sock_flag(sk, SOCK_DEAD)) 5067 tcp_data_ready(sk); 5068 return; 5069 } 5070 5071 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5072 tcp_rcv_spurious_retrans(sk, skb); 5073 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5074 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5075 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5076 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5077 5078 out_of_window: 5079 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5080 inet_csk_schedule_ack(sk); 5081 drop: 5082 tcp_drop_reason(sk, skb, reason); 5083 return; 5084 } 5085 5086 /* Out of window. F.e. zero window probe. */ 5087 if (!before(TCP_SKB_CB(skb)->seq, 5088 tp->rcv_nxt + tcp_receive_window(tp))) { 5089 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5090 goto out_of_window; 5091 } 5092 5093 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5094 /* Partial packet, seq < rcv_next < end_seq */ 5095 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5096 5097 /* If window is closed, drop tail of packet. But after 5098 * remembering D-SACK for its head made in previous line. 5099 */ 5100 if (!tcp_receive_window(tp)) { 5101 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5102 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5103 goto out_of_window; 5104 } 5105 goto queue_and_out; 5106 } 5107 5108 tcp_data_queue_ofo(sk, skb); 5109 } 5110 5111 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5112 { 5113 if (list) 5114 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5115 5116 return skb_rb_next(skb); 5117 } 5118 5119 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5120 struct sk_buff_head *list, 5121 struct rb_root *root) 5122 { 5123 struct sk_buff *next = tcp_skb_next(skb, list); 5124 5125 if (list) 5126 __skb_unlink(skb, list); 5127 else 5128 rb_erase(&skb->rbnode, root); 5129 5130 __kfree_skb(skb); 5131 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5132 5133 return next; 5134 } 5135 5136 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5137 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5138 { 5139 struct rb_node **p = &root->rb_node; 5140 struct rb_node *parent = NULL; 5141 struct sk_buff *skb1; 5142 5143 while (*p) { 5144 parent = *p; 5145 skb1 = rb_to_skb(parent); 5146 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5147 p = &parent->rb_left; 5148 else 5149 p = &parent->rb_right; 5150 } 5151 rb_link_node(&skb->rbnode, parent, p); 5152 rb_insert_color(&skb->rbnode, root); 5153 } 5154 5155 /* Collapse contiguous sequence of skbs head..tail with 5156 * sequence numbers start..end. 5157 * 5158 * If tail is NULL, this means until the end of the queue. 5159 * 5160 * Segments with FIN/SYN are not collapsed (only because this 5161 * simplifies code) 5162 */ 5163 static void 5164 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5165 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5166 { 5167 struct sk_buff *skb = head, *n; 5168 struct sk_buff_head tmp; 5169 bool end_of_skbs; 5170 5171 /* First, check that queue is collapsible and find 5172 * the point where collapsing can be useful. 5173 */ 5174 restart: 5175 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5176 n = tcp_skb_next(skb, list); 5177 5178 /* No new bits? It is possible on ofo queue. */ 5179 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5180 skb = tcp_collapse_one(sk, skb, list, root); 5181 if (!skb) 5182 break; 5183 goto restart; 5184 } 5185 5186 /* The first skb to collapse is: 5187 * - not SYN/FIN and 5188 * - bloated or contains data before "start" or 5189 * overlaps to the next one and mptcp allow collapsing. 5190 */ 5191 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5192 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5193 before(TCP_SKB_CB(skb)->seq, start))) { 5194 end_of_skbs = false; 5195 break; 5196 } 5197 5198 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5199 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5200 end_of_skbs = false; 5201 break; 5202 } 5203 5204 /* Decided to skip this, advance start seq. */ 5205 start = TCP_SKB_CB(skb)->end_seq; 5206 } 5207 if (end_of_skbs || 5208 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5209 return; 5210 5211 __skb_queue_head_init(&tmp); 5212 5213 while (before(start, end)) { 5214 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5215 struct sk_buff *nskb; 5216 5217 nskb = alloc_skb(copy, GFP_ATOMIC); 5218 if (!nskb) 5219 break; 5220 5221 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5222 #ifdef CONFIG_TLS_DEVICE 5223 nskb->decrypted = skb->decrypted; 5224 #endif 5225 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5226 if (list) 5227 __skb_queue_before(list, skb, nskb); 5228 else 5229 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5230 skb_set_owner_r(nskb, sk); 5231 mptcp_skb_ext_move(nskb, skb); 5232 5233 /* Copy data, releasing collapsed skbs. */ 5234 while (copy > 0) { 5235 int offset = start - TCP_SKB_CB(skb)->seq; 5236 int size = TCP_SKB_CB(skb)->end_seq - start; 5237 5238 BUG_ON(offset < 0); 5239 if (size > 0) { 5240 size = min(copy, size); 5241 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5242 BUG(); 5243 TCP_SKB_CB(nskb)->end_seq += size; 5244 copy -= size; 5245 start += size; 5246 } 5247 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5248 skb = tcp_collapse_one(sk, skb, list, root); 5249 if (!skb || 5250 skb == tail || 5251 !mptcp_skb_can_collapse(nskb, skb) || 5252 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5253 goto end; 5254 #ifdef CONFIG_TLS_DEVICE 5255 if (skb->decrypted != nskb->decrypted) 5256 goto end; 5257 #endif 5258 } 5259 } 5260 } 5261 end: 5262 skb_queue_walk_safe(&tmp, skb, n) 5263 tcp_rbtree_insert(root, skb); 5264 } 5265 5266 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5267 * and tcp_collapse() them until all the queue is collapsed. 5268 */ 5269 static void tcp_collapse_ofo_queue(struct sock *sk) 5270 { 5271 struct tcp_sock *tp = tcp_sk(sk); 5272 u32 range_truesize, sum_tiny = 0; 5273 struct sk_buff *skb, *head; 5274 u32 start, end; 5275 5276 skb = skb_rb_first(&tp->out_of_order_queue); 5277 new_range: 5278 if (!skb) { 5279 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5280 return; 5281 } 5282 start = TCP_SKB_CB(skb)->seq; 5283 end = TCP_SKB_CB(skb)->end_seq; 5284 range_truesize = skb->truesize; 5285 5286 for (head = skb;;) { 5287 skb = skb_rb_next(skb); 5288 5289 /* Range is terminated when we see a gap or when 5290 * we are at the queue end. 5291 */ 5292 if (!skb || 5293 after(TCP_SKB_CB(skb)->seq, end) || 5294 before(TCP_SKB_CB(skb)->end_seq, start)) { 5295 /* Do not attempt collapsing tiny skbs */ 5296 if (range_truesize != head->truesize || 5297 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5298 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5299 head, skb, start, end); 5300 } else { 5301 sum_tiny += range_truesize; 5302 if (sum_tiny > sk->sk_rcvbuf >> 3) 5303 return; 5304 } 5305 goto new_range; 5306 } 5307 5308 range_truesize += skb->truesize; 5309 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5310 start = TCP_SKB_CB(skb)->seq; 5311 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5312 end = TCP_SKB_CB(skb)->end_seq; 5313 } 5314 } 5315 5316 /* 5317 * Clean the out-of-order queue to make room. 5318 * We drop high sequences packets to : 5319 * 1) Let a chance for holes to be filled. 5320 * 2) not add too big latencies if thousands of packets sit there. 5321 * (But if application shrinks SO_RCVBUF, we could still end up 5322 * freeing whole queue here) 5323 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5324 * 5325 * Return true if queue has shrunk. 5326 */ 5327 static bool tcp_prune_ofo_queue(struct sock *sk) 5328 { 5329 struct tcp_sock *tp = tcp_sk(sk); 5330 struct rb_node *node, *prev; 5331 int goal; 5332 5333 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5334 return false; 5335 5336 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5337 goal = sk->sk_rcvbuf >> 3; 5338 node = &tp->ooo_last_skb->rbnode; 5339 do { 5340 prev = rb_prev(node); 5341 rb_erase(node, &tp->out_of_order_queue); 5342 goal -= rb_to_skb(node)->truesize; 5343 tcp_drop_reason(sk, rb_to_skb(node), 5344 SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5345 if (!prev || goal <= 0) { 5346 sk_mem_reclaim(sk); 5347 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5348 !tcp_under_memory_pressure(sk)) 5349 break; 5350 goal = sk->sk_rcvbuf >> 3; 5351 } 5352 node = prev; 5353 } while (node); 5354 tp->ooo_last_skb = rb_to_skb(prev); 5355 5356 /* Reset SACK state. A conforming SACK implementation will 5357 * do the same at a timeout based retransmit. When a connection 5358 * is in a sad state like this, we care only about integrity 5359 * of the connection not performance. 5360 */ 5361 if (tp->rx_opt.sack_ok) 5362 tcp_sack_reset(&tp->rx_opt); 5363 return true; 5364 } 5365 5366 /* Reduce allocated memory if we can, trying to get 5367 * the socket within its memory limits again. 5368 * 5369 * Return less than zero if we should start dropping frames 5370 * until the socket owning process reads some of the data 5371 * to stabilize the situation. 5372 */ 5373 static int tcp_prune_queue(struct sock *sk) 5374 { 5375 struct tcp_sock *tp = tcp_sk(sk); 5376 5377 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5378 5379 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5380 tcp_clamp_window(sk); 5381 else if (tcp_under_memory_pressure(sk)) 5382 tcp_adjust_rcv_ssthresh(sk); 5383 5384 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5385 return 0; 5386 5387 tcp_collapse_ofo_queue(sk); 5388 if (!skb_queue_empty(&sk->sk_receive_queue)) 5389 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5390 skb_peek(&sk->sk_receive_queue), 5391 NULL, 5392 tp->copied_seq, tp->rcv_nxt); 5393 sk_mem_reclaim(sk); 5394 5395 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5396 return 0; 5397 5398 /* Collapsing did not help, destructive actions follow. 5399 * This must not ever occur. */ 5400 5401 tcp_prune_ofo_queue(sk); 5402 5403 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5404 return 0; 5405 5406 /* If we are really being abused, tell the caller to silently 5407 * drop receive data on the floor. It will get retransmitted 5408 * and hopefully then we'll have sufficient space. 5409 */ 5410 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5411 5412 /* Massive buffer overcommit. */ 5413 tp->pred_flags = 0; 5414 return -1; 5415 } 5416 5417 static bool tcp_should_expand_sndbuf(struct sock *sk) 5418 { 5419 const struct tcp_sock *tp = tcp_sk(sk); 5420 5421 /* If the user specified a specific send buffer setting, do 5422 * not modify it. 5423 */ 5424 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5425 return false; 5426 5427 /* If we are under global TCP memory pressure, do not expand. */ 5428 if (tcp_under_memory_pressure(sk)) { 5429 int unused_mem = sk_unused_reserved_mem(sk); 5430 5431 /* Adjust sndbuf according to reserved mem. But make sure 5432 * it never goes below SOCK_MIN_SNDBUF. 5433 * See sk_stream_moderate_sndbuf() for more details. 5434 */ 5435 if (unused_mem > SOCK_MIN_SNDBUF) 5436 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5437 5438 return false; 5439 } 5440 5441 /* If we are under soft global TCP memory pressure, do not expand. */ 5442 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5443 return false; 5444 5445 /* If we filled the congestion window, do not expand. */ 5446 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5447 return false; 5448 5449 return true; 5450 } 5451 5452 static void tcp_new_space(struct sock *sk) 5453 { 5454 struct tcp_sock *tp = tcp_sk(sk); 5455 5456 if (tcp_should_expand_sndbuf(sk)) { 5457 tcp_sndbuf_expand(sk); 5458 tp->snd_cwnd_stamp = tcp_jiffies32; 5459 } 5460 5461 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5462 } 5463 5464 /* Caller made space either from: 5465 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5466 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5467 * 5468 * We might be able to generate EPOLLOUT to the application if: 5469 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5470 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5471 * small enough that tcp_stream_memory_free() decides it 5472 * is time to generate EPOLLOUT. 5473 */ 5474 void tcp_check_space(struct sock *sk) 5475 { 5476 /* pairs with tcp_poll() */ 5477 smp_mb(); 5478 if (sk->sk_socket && 5479 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5480 tcp_new_space(sk); 5481 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5482 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5483 } 5484 } 5485 5486 static inline void tcp_data_snd_check(struct sock *sk) 5487 { 5488 tcp_push_pending_frames(sk); 5489 tcp_check_space(sk); 5490 } 5491 5492 /* 5493 * Check if sending an ack is needed. 5494 */ 5495 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5496 { 5497 struct tcp_sock *tp = tcp_sk(sk); 5498 unsigned long rtt, delay; 5499 5500 /* More than one full frame received... */ 5501 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5502 /* ... and right edge of window advances far enough. 5503 * (tcp_recvmsg() will send ACK otherwise). 5504 * If application uses SO_RCVLOWAT, we want send ack now if 5505 * we have not received enough bytes to satisfy the condition. 5506 */ 5507 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5508 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5509 /* We ACK each frame or... */ 5510 tcp_in_quickack_mode(sk) || 5511 /* Protocol state mandates a one-time immediate ACK */ 5512 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5513 send_now: 5514 tcp_send_ack(sk); 5515 return; 5516 } 5517 5518 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5519 tcp_send_delayed_ack(sk); 5520 return; 5521 } 5522 5523 if (!tcp_is_sack(tp) || 5524 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5525 goto send_now; 5526 5527 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5528 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5529 tp->dup_ack_counter = 0; 5530 } 5531 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5532 tp->dup_ack_counter++; 5533 goto send_now; 5534 } 5535 tp->compressed_ack++; 5536 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5537 return; 5538 5539 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5540 5541 rtt = tp->rcv_rtt_est.rtt_us; 5542 if (tp->srtt_us && tp->srtt_us < rtt) 5543 rtt = tp->srtt_us; 5544 5545 delay = min_t(unsigned long, 5546 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5547 rtt * (NSEC_PER_USEC >> 3)/20); 5548 sock_hold(sk); 5549 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5550 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5551 HRTIMER_MODE_REL_PINNED_SOFT); 5552 } 5553 5554 static inline void tcp_ack_snd_check(struct sock *sk) 5555 { 5556 if (!inet_csk_ack_scheduled(sk)) { 5557 /* We sent a data segment already. */ 5558 return; 5559 } 5560 __tcp_ack_snd_check(sk, 1); 5561 } 5562 5563 /* 5564 * This routine is only called when we have urgent data 5565 * signaled. Its the 'slow' part of tcp_urg. It could be 5566 * moved inline now as tcp_urg is only called from one 5567 * place. We handle URGent data wrong. We have to - as 5568 * BSD still doesn't use the correction from RFC961. 5569 * For 1003.1g we should support a new option TCP_STDURG to permit 5570 * either form (or just set the sysctl tcp_stdurg). 5571 */ 5572 5573 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5574 { 5575 struct tcp_sock *tp = tcp_sk(sk); 5576 u32 ptr = ntohs(th->urg_ptr); 5577 5578 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5579 ptr--; 5580 ptr += ntohl(th->seq); 5581 5582 /* Ignore urgent data that we've already seen and read. */ 5583 if (after(tp->copied_seq, ptr)) 5584 return; 5585 5586 /* Do not replay urg ptr. 5587 * 5588 * NOTE: interesting situation not covered by specs. 5589 * Misbehaving sender may send urg ptr, pointing to segment, 5590 * which we already have in ofo queue. We are not able to fetch 5591 * such data and will stay in TCP_URG_NOTYET until will be eaten 5592 * by recvmsg(). Seems, we are not obliged to handle such wicked 5593 * situations. But it is worth to think about possibility of some 5594 * DoSes using some hypothetical application level deadlock. 5595 */ 5596 if (before(ptr, tp->rcv_nxt)) 5597 return; 5598 5599 /* Do we already have a newer (or duplicate) urgent pointer? */ 5600 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5601 return; 5602 5603 /* Tell the world about our new urgent pointer. */ 5604 sk_send_sigurg(sk); 5605 5606 /* We may be adding urgent data when the last byte read was 5607 * urgent. To do this requires some care. We cannot just ignore 5608 * tp->copied_seq since we would read the last urgent byte again 5609 * as data, nor can we alter copied_seq until this data arrives 5610 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5611 * 5612 * NOTE. Double Dutch. Rendering to plain English: author of comment 5613 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5614 * and expect that both A and B disappear from stream. This is _wrong_. 5615 * Though this happens in BSD with high probability, this is occasional. 5616 * Any application relying on this is buggy. Note also, that fix "works" 5617 * only in this artificial test. Insert some normal data between A and B and we will 5618 * decline of BSD again. Verdict: it is better to remove to trap 5619 * buggy users. 5620 */ 5621 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5622 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5623 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5624 tp->copied_seq++; 5625 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5626 __skb_unlink(skb, &sk->sk_receive_queue); 5627 __kfree_skb(skb); 5628 } 5629 } 5630 5631 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5632 WRITE_ONCE(tp->urg_seq, ptr); 5633 5634 /* Disable header prediction. */ 5635 tp->pred_flags = 0; 5636 } 5637 5638 /* This is the 'fast' part of urgent handling. */ 5639 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5640 { 5641 struct tcp_sock *tp = tcp_sk(sk); 5642 5643 /* Check if we get a new urgent pointer - normally not. */ 5644 if (unlikely(th->urg)) 5645 tcp_check_urg(sk, th); 5646 5647 /* Do we wait for any urgent data? - normally not... */ 5648 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5649 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5650 th->syn; 5651 5652 /* Is the urgent pointer pointing into this packet? */ 5653 if (ptr < skb->len) { 5654 u8 tmp; 5655 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5656 BUG(); 5657 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5658 if (!sock_flag(sk, SOCK_DEAD)) 5659 sk->sk_data_ready(sk); 5660 } 5661 } 5662 } 5663 5664 /* Accept RST for rcv_nxt - 1 after a FIN. 5665 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5666 * FIN is sent followed by a RST packet. The RST is sent with the same 5667 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5668 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5669 * ACKs on the closed socket. In addition middleboxes can drop either the 5670 * challenge ACK or a subsequent RST. 5671 */ 5672 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5673 { 5674 struct tcp_sock *tp = tcp_sk(sk); 5675 5676 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5677 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5678 TCPF_CLOSING)); 5679 } 5680 5681 /* Does PAWS and seqno based validation of an incoming segment, flags will 5682 * play significant role here. 5683 */ 5684 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5685 const struct tcphdr *th, int syn_inerr) 5686 { 5687 struct tcp_sock *tp = tcp_sk(sk); 5688 SKB_DR(reason); 5689 5690 /* RFC1323: H1. Apply PAWS check first. */ 5691 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5692 tp->rx_opt.saw_tstamp && 5693 tcp_paws_discard(sk, skb)) { 5694 if (!th->rst) { 5695 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5696 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5697 LINUX_MIB_TCPACKSKIPPEDPAWS, 5698 &tp->last_oow_ack_time)) 5699 tcp_send_dupack(sk, skb); 5700 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5701 goto discard; 5702 } 5703 /* Reset is accepted even if it did not pass PAWS. */ 5704 } 5705 5706 /* Step 1: check sequence number */ 5707 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5708 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5709 * (RST) segments are validated by checking their SEQ-fields." 5710 * And page 69: "If an incoming segment is not acceptable, 5711 * an acknowledgment should be sent in reply (unless the RST 5712 * bit is set, if so drop the segment and return)". 5713 */ 5714 if (!th->rst) { 5715 if (th->syn) 5716 goto syn_challenge; 5717 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5718 LINUX_MIB_TCPACKSKIPPEDSEQ, 5719 &tp->last_oow_ack_time)) 5720 tcp_send_dupack(sk, skb); 5721 } else if (tcp_reset_check(sk, skb)) { 5722 goto reset; 5723 } 5724 SKB_DR_SET(reason, TCP_INVALID_SEQUENCE); 5725 goto discard; 5726 } 5727 5728 /* Step 2: check RST bit */ 5729 if (th->rst) { 5730 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5731 * FIN and SACK too if available): 5732 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5733 * the right-most SACK block, 5734 * then 5735 * RESET the connection 5736 * else 5737 * Send a challenge ACK 5738 */ 5739 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5740 tcp_reset_check(sk, skb)) 5741 goto reset; 5742 5743 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5744 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5745 int max_sack = sp[0].end_seq; 5746 int this_sack; 5747 5748 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5749 ++this_sack) { 5750 max_sack = after(sp[this_sack].end_seq, 5751 max_sack) ? 5752 sp[this_sack].end_seq : max_sack; 5753 } 5754 5755 if (TCP_SKB_CB(skb)->seq == max_sack) 5756 goto reset; 5757 } 5758 5759 /* Disable TFO if RST is out-of-order 5760 * and no data has been received 5761 * for current active TFO socket 5762 */ 5763 if (tp->syn_fastopen && !tp->data_segs_in && 5764 sk->sk_state == TCP_ESTABLISHED) 5765 tcp_fastopen_active_disable(sk); 5766 tcp_send_challenge_ack(sk); 5767 SKB_DR_SET(reason, TCP_RESET); 5768 goto discard; 5769 } 5770 5771 /* step 3: check security and precedence [ignored] */ 5772 5773 /* step 4: Check for a SYN 5774 * RFC 5961 4.2 : Send a challenge ack 5775 */ 5776 if (th->syn) { 5777 syn_challenge: 5778 if (syn_inerr) 5779 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5780 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5781 tcp_send_challenge_ack(sk); 5782 SKB_DR_SET(reason, TCP_INVALID_SYN); 5783 goto discard; 5784 } 5785 5786 bpf_skops_parse_hdr(sk, skb); 5787 5788 return true; 5789 5790 discard: 5791 tcp_drop_reason(sk, skb, reason); 5792 return false; 5793 5794 reset: 5795 tcp_reset(sk, skb); 5796 __kfree_skb(skb); 5797 return false; 5798 } 5799 5800 /* 5801 * TCP receive function for the ESTABLISHED state. 5802 * 5803 * It is split into a fast path and a slow path. The fast path is 5804 * disabled when: 5805 * - A zero window was announced from us - zero window probing 5806 * is only handled properly in the slow path. 5807 * - Out of order segments arrived. 5808 * - Urgent data is expected. 5809 * - There is no buffer space left 5810 * - Unexpected TCP flags/window values/header lengths are received 5811 * (detected by checking the TCP header against pred_flags) 5812 * - Data is sent in both directions. Fast path only supports pure senders 5813 * or pure receivers (this means either the sequence number or the ack 5814 * value must stay constant) 5815 * - Unexpected TCP option. 5816 * 5817 * When these conditions are not satisfied it drops into a standard 5818 * receive procedure patterned after RFC793 to handle all cases. 5819 * The first three cases are guaranteed by proper pred_flags setting, 5820 * the rest is checked inline. Fast processing is turned on in 5821 * tcp_data_queue when everything is OK. 5822 */ 5823 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5824 { 5825 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5826 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5827 struct tcp_sock *tp = tcp_sk(sk); 5828 unsigned int len = skb->len; 5829 5830 /* TCP congestion window tracking */ 5831 trace_tcp_probe(sk, skb); 5832 5833 tcp_mstamp_refresh(tp); 5834 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5835 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5836 /* 5837 * Header prediction. 5838 * The code loosely follows the one in the famous 5839 * "30 instruction TCP receive" Van Jacobson mail. 5840 * 5841 * Van's trick is to deposit buffers into socket queue 5842 * on a device interrupt, to call tcp_recv function 5843 * on the receive process context and checksum and copy 5844 * the buffer to user space. smart... 5845 * 5846 * Our current scheme is not silly either but we take the 5847 * extra cost of the net_bh soft interrupt processing... 5848 * We do checksum and copy also but from device to kernel. 5849 */ 5850 5851 tp->rx_opt.saw_tstamp = 0; 5852 5853 /* pred_flags is 0xS?10 << 16 + snd_wnd 5854 * if header_prediction is to be made 5855 * 'S' will always be tp->tcp_header_len >> 2 5856 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5857 * turn it off (when there are holes in the receive 5858 * space for instance) 5859 * PSH flag is ignored. 5860 */ 5861 5862 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5863 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5864 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5865 int tcp_header_len = tp->tcp_header_len; 5866 5867 /* Timestamp header prediction: tcp_header_len 5868 * is automatically equal to th->doff*4 due to pred_flags 5869 * match. 5870 */ 5871 5872 /* Check timestamp */ 5873 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5874 /* No? Slow path! */ 5875 if (!tcp_parse_aligned_timestamp(tp, th)) 5876 goto slow_path; 5877 5878 /* If PAWS failed, check it more carefully in slow path */ 5879 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5880 goto slow_path; 5881 5882 /* DO NOT update ts_recent here, if checksum fails 5883 * and timestamp was corrupted part, it will result 5884 * in a hung connection since we will drop all 5885 * future packets due to the PAWS test. 5886 */ 5887 } 5888 5889 if (len <= tcp_header_len) { 5890 /* Bulk data transfer: sender */ 5891 if (len == tcp_header_len) { 5892 /* Predicted packet is in window by definition. 5893 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5894 * Hence, check seq<=rcv_wup reduces to: 5895 */ 5896 if (tcp_header_len == 5897 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5898 tp->rcv_nxt == tp->rcv_wup) 5899 tcp_store_ts_recent(tp); 5900 5901 /* We know that such packets are checksummed 5902 * on entry. 5903 */ 5904 tcp_ack(sk, skb, 0); 5905 __kfree_skb(skb); 5906 tcp_data_snd_check(sk); 5907 /* When receiving pure ack in fast path, update 5908 * last ts ecr directly instead of calling 5909 * tcp_rcv_rtt_measure_ts() 5910 */ 5911 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5912 return; 5913 } else { /* Header too small */ 5914 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 5915 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5916 goto discard; 5917 } 5918 } else { 5919 int eaten = 0; 5920 bool fragstolen = false; 5921 5922 if (tcp_checksum_complete(skb)) 5923 goto csum_error; 5924 5925 if ((int)skb->truesize > sk->sk_forward_alloc) 5926 goto step5; 5927 5928 /* Predicted packet is in window by definition. 5929 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5930 * Hence, check seq<=rcv_wup reduces to: 5931 */ 5932 if (tcp_header_len == 5933 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5934 tp->rcv_nxt == tp->rcv_wup) 5935 tcp_store_ts_recent(tp); 5936 5937 tcp_rcv_rtt_measure_ts(sk, skb); 5938 5939 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5940 5941 /* Bulk data transfer: receiver */ 5942 skb_dst_drop(skb); 5943 __skb_pull(skb, tcp_header_len); 5944 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5945 5946 tcp_event_data_recv(sk, skb); 5947 5948 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5949 /* Well, only one small jumplet in fast path... */ 5950 tcp_ack(sk, skb, FLAG_DATA); 5951 tcp_data_snd_check(sk); 5952 if (!inet_csk_ack_scheduled(sk)) 5953 goto no_ack; 5954 } else { 5955 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 5956 } 5957 5958 __tcp_ack_snd_check(sk, 0); 5959 no_ack: 5960 if (eaten) 5961 kfree_skb_partial(skb, fragstolen); 5962 tcp_data_ready(sk); 5963 return; 5964 } 5965 } 5966 5967 slow_path: 5968 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5969 goto csum_error; 5970 5971 if (!th->ack && !th->rst && !th->syn) { 5972 reason = SKB_DROP_REASON_TCP_FLAGS; 5973 goto discard; 5974 } 5975 5976 /* 5977 * Standard slow path. 5978 */ 5979 5980 if (!tcp_validate_incoming(sk, skb, th, 1)) 5981 return; 5982 5983 step5: 5984 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 5985 if ((int)reason < 0) { 5986 reason = -reason; 5987 goto discard; 5988 } 5989 tcp_rcv_rtt_measure_ts(sk, skb); 5990 5991 /* Process urgent data. */ 5992 tcp_urg(sk, skb, th); 5993 5994 /* step 7: process the segment text */ 5995 tcp_data_queue(sk, skb); 5996 5997 tcp_data_snd_check(sk); 5998 tcp_ack_snd_check(sk); 5999 return; 6000 6001 csum_error: 6002 reason = SKB_DROP_REASON_TCP_CSUM; 6003 trace_tcp_bad_csum(skb); 6004 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6005 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6006 6007 discard: 6008 tcp_drop_reason(sk, skb, reason); 6009 } 6010 EXPORT_SYMBOL(tcp_rcv_established); 6011 6012 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6013 { 6014 struct inet_connection_sock *icsk = inet_csk(sk); 6015 struct tcp_sock *tp = tcp_sk(sk); 6016 6017 tcp_mtup_init(sk); 6018 icsk->icsk_af_ops->rebuild_header(sk); 6019 tcp_init_metrics(sk); 6020 6021 /* Initialize the congestion window to start the transfer. 6022 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6023 * retransmitted. In light of RFC6298 more aggressive 1sec 6024 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6025 * retransmission has occurred. 6026 */ 6027 if (tp->total_retrans > 1 && tp->undo_marker) 6028 tcp_snd_cwnd_set(tp, 1); 6029 else 6030 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6031 tp->snd_cwnd_stamp = tcp_jiffies32; 6032 6033 bpf_skops_established(sk, bpf_op, skb); 6034 /* Initialize congestion control unless BPF initialized it already: */ 6035 if (!icsk->icsk_ca_initialized) 6036 tcp_init_congestion_control(sk); 6037 tcp_init_buffer_space(sk); 6038 } 6039 6040 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6041 { 6042 struct tcp_sock *tp = tcp_sk(sk); 6043 struct inet_connection_sock *icsk = inet_csk(sk); 6044 6045 tcp_set_state(sk, TCP_ESTABLISHED); 6046 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6047 6048 if (skb) { 6049 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6050 security_inet_conn_established(sk, skb); 6051 sk_mark_napi_id(sk, skb); 6052 } 6053 6054 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6055 6056 /* Prevent spurious tcp_cwnd_restart() on first data 6057 * packet. 6058 */ 6059 tp->lsndtime = tcp_jiffies32; 6060 6061 if (sock_flag(sk, SOCK_KEEPOPEN)) 6062 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6063 6064 if (!tp->rx_opt.snd_wscale) 6065 __tcp_fast_path_on(tp, tp->snd_wnd); 6066 else 6067 tp->pred_flags = 0; 6068 } 6069 6070 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6071 struct tcp_fastopen_cookie *cookie) 6072 { 6073 struct tcp_sock *tp = tcp_sk(sk); 6074 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6075 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6076 bool syn_drop = false; 6077 6078 if (mss == tp->rx_opt.user_mss) { 6079 struct tcp_options_received opt; 6080 6081 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6082 tcp_clear_options(&opt); 6083 opt.user_mss = opt.mss_clamp = 0; 6084 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6085 mss = opt.mss_clamp; 6086 } 6087 6088 if (!tp->syn_fastopen) { 6089 /* Ignore an unsolicited cookie */ 6090 cookie->len = -1; 6091 } else if (tp->total_retrans) { 6092 /* SYN timed out and the SYN-ACK neither has a cookie nor 6093 * acknowledges data. Presumably the remote received only 6094 * the retransmitted (regular) SYNs: either the original 6095 * SYN-data or the corresponding SYN-ACK was dropped. 6096 */ 6097 syn_drop = (cookie->len < 0 && data); 6098 } else if (cookie->len < 0 && !tp->syn_data) { 6099 /* We requested a cookie but didn't get it. If we did not use 6100 * the (old) exp opt format then try so next time (try_exp=1). 6101 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6102 */ 6103 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6104 } 6105 6106 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6107 6108 if (data) { /* Retransmit unacked data in SYN */ 6109 if (tp->total_retrans) 6110 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6111 else 6112 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6113 skb_rbtree_walk_from(data) 6114 tcp_mark_skb_lost(sk, data); 6115 tcp_xmit_retransmit_queue(sk); 6116 NET_INC_STATS(sock_net(sk), 6117 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6118 return true; 6119 } 6120 tp->syn_data_acked = tp->syn_data; 6121 if (tp->syn_data_acked) { 6122 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6123 /* SYN-data is counted as two separate packets in tcp_ack() */ 6124 if (tp->delivered > 1) 6125 --tp->delivered; 6126 } 6127 6128 tcp_fastopen_add_skb(sk, synack); 6129 6130 return false; 6131 } 6132 6133 static void smc_check_reset_syn(struct tcp_sock *tp) 6134 { 6135 #if IS_ENABLED(CONFIG_SMC) 6136 if (static_branch_unlikely(&tcp_have_smc)) { 6137 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6138 tp->syn_smc = 0; 6139 } 6140 #endif 6141 } 6142 6143 static void tcp_try_undo_spurious_syn(struct sock *sk) 6144 { 6145 struct tcp_sock *tp = tcp_sk(sk); 6146 u32 syn_stamp; 6147 6148 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6149 * spurious if the ACK's timestamp option echo value matches the 6150 * original SYN timestamp. 6151 */ 6152 syn_stamp = tp->retrans_stamp; 6153 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6154 syn_stamp == tp->rx_opt.rcv_tsecr) 6155 tp->undo_marker = 0; 6156 } 6157 6158 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6159 const struct tcphdr *th) 6160 { 6161 struct inet_connection_sock *icsk = inet_csk(sk); 6162 struct tcp_sock *tp = tcp_sk(sk); 6163 struct tcp_fastopen_cookie foc = { .len = -1 }; 6164 int saved_clamp = tp->rx_opt.mss_clamp; 6165 bool fastopen_fail; 6166 SKB_DR(reason); 6167 6168 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6169 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6170 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6171 6172 if (th->ack) { 6173 /* rfc793: 6174 * "If the state is SYN-SENT then 6175 * first check the ACK bit 6176 * If the ACK bit is set 6177 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6178 * a reset (unless the RST bit is set, if so drop 6179 * the segment and return)" 6180 */ 6181 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6182 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6183 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6184 if (icsk->icsk_retransmits == 0) 6185 inet_csk_reset_xmit_timer(sk, 6186 ICSK_TIME_RETRANS, 6187 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6188 goto reset_and_undo; 6189 } 6190 6191 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6192 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6193 tcp_time_stamp(tp))) { 6194 NET_INC_STATS(sock_net(sk), 6195 LINUX_MIB_PAWSACTIVEREJECTED); 6196 goto reset_and_undo; 6197 } 6198 6199 /* Now ACK is acceptable. 6200 * 6201 * "If the RST bit is set 6202 * If the ACK was acceptable then signal the user "error: 6203 * connection reset", drop the segment, enter CLOSED state, 6204 * delete TCB, and return." 6205 */ 6206 6207 if (th->rst) { 6208 tcp_reset(sk, skb); 6209 consume: 6210 __kfree_skb(skb); 6211 return 0; 6212 } 6213 6214 /* rfc793: 6215 * "fifth, if neither of the SYN or RST bits is set then 6216 * drop the segment and return." 6217 * 6218 * See note below! 6219 * --ANK(990513) 6220 */ 6221 if (!th->syn) { 6222 SKB_DR_SET(reason, TCP_FLAGS); 6223 goto discard_and_undo; 6224 } 6225 /* rfc793: 6226 * "If the SYN bit is on ... 6227 * are acceptable then ... 6228 * (our SYN has been ACKed), change the connection 6229 * state to ESTABLISHED..." 6230 */ 6231 6232 tcp_ecn_rcv_synack(tp, th); 6233 6234 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6235 tcp_try_undo_spurious_syn(sk); 6236 tcp_ack(sk, skb, FLAG_SLOWPATH); 6237 6238 /* Ok.. it's good. Set up sequence numbers and 6239 * move to established. 6240 */ 6241 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6242 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6243 6244 /* RFC1323: The window in SYN & SYN/ACK segments is 6245 * never scaled. 6246 */ 6247 tp->snd_wnd = ntohs(th->window); 6248 6249 if (!tp->rx_opt.wscale_ok) { 6250 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6251 tp->window_clamp = min(tp->window_clamp, 65535U); 6252 } 6253 6254 if (tp->rx_opt.saw_tstamp) { 6255 tp->rx_opt.tstamp_ok = 1; 6256 tp->tcp_header_len = 6257 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6258 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6259 tcp_store_ts_recent(tp); 6260 } else { 6261 tp->tcp_header_len = sizeof(struct tcphdr); 6262 } 6263 6264 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6265 tcp_initialize_rcv_mss(sk); 6266 6267 /* Remember, tcp_poll() does not lock socket! 6268 * Change state from SYN-SENT only after copied_seq 6269 * is initialized. */ 6270 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6271 6272 smc_check_reset_syn(tp); 6273 6274 smp_mb(); 6275 6276 tcp_finish_connect(sk, skb); 6277 6278 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6279 tcp_rcv_fastopen_synack(sk, skb, &foc); 6280 6281 if (!sock_flag(sk, SOCK_DEAD)) { 6282 sk->sk_state_change(sk); 6283 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6284 } 6285 if (fastopen_fail) 6286 return -1; 6287 if (sk->sk_write_pending || 6288 icsk->icsk_accept_queue.rskq_defer_accept || 6289 inet_csk_in_pingpong_mode(sk)) { 6290 /* Save one ACK. Data will be ready after 6291 * several ticks, if write_pending is set. 6292 * 6293 * It may be deleted, but with this feature tcpdumps 6294 * look so _wonderfully_ clever, that I was not able 6295 * to stand against the temptation 8) --ANK 6296 */ 6297 inet_csk_schedule_ack(sk); 6298 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6299 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6300 TCP_DELACK_MAX, TCP_RTO_MAX); 6301 goto consume; 6302 } 6303 tcp_send_ack(sk); 6304 return -1; 6305 } 6306 6307 /* No ACK in the segment */ 6308 6309 if (th->rst) { 6310 /* rfc793: 6311 * "If the RST bit is set 6312 * 6313 * Otherwise (no ACK) drop the segment and return." 6314 */ 6315 SKB_DR_SET(reason, TCP_RESET); 6316 goto discard_and_undo; 6317 } 6318 6319 /* PAWS check. */ 6320 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6321 tcp_paws_reject(&tp->rx_opt, 0)) { 6322 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6323 goto discard_and_undo; 6324 } 6325 if (th->syn) { 6326 /* We see SYN without ACK. It is attempt of 6327 * simultaneous connect with crossed SYNs. 6328 * Particularly, it can be connect to self. 6329 */ 6330 tcp_set_state(sk, TCP_SYN_RECV); 6331 6332 if (tp->rx_opt.saw_tstamp) { 6333 tp->rx_opt.tstamp_ok = 1; 6334 tcp_store_ts_recent(tp); 6335 tp->tcp_header_len = 6336 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6337 } else { 6338 tp->tcp_header_len = sizeof(struct tcphdr); 6339 } 6340 6341 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6342 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6343 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6344 6345 /* RFC1323: The window in SYN & SYN/ACK segments is 6346 * never scaled. 6347 */ 6348 tp->snd_wnd = ntohs(th->window); 6349 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6350 tp->max_window = tp->snd_wnd; 6351 6352 tcp_ecn_rcv_syn(tp, th); 6353 6354 tcp_mtup_init(sk); 6355 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6356 tcp_initialize_rcv_mss(sk); 6357 6358 tcp_send_synack(sk); 6359 #if 0 6360 /* Note, we could accept data and URG from this segment. 6361 * There are no obstacles to make this (except that we must 6362 * either change tcp_recvmsg() to prevent it from returning data 6363 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6364 * 6365 * However, if we ignore data in ACKless segments sometimes, 6366 * we have no reasons to accept it sometimes. 6367 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6368 * is not flawless. So, discard packet for sanity. 6369 * Uncomment this return to process the data. 6370 */ 6371 return -1; 6372 #else 6373 goto consume; 6374 #endif 6375 } 6376 /* "fifth, if neither of the SYN or RST bits is set then 6377 * drop the segment and return." 6378 */ 6379 6380 discard_and_undo: 6381 tcp_clear_options(&tp->rx_opt); 6382 tp->rx_opt.mss_clamp = saved_clamp; 6383 tcp_drop_reason(sk, skb, reason); 6384 return 0; 6385 6386 reset_and_undo: 6387 tcp_clear_options(&tp->rx_opt); 6388 tp->rx_opt.mss_clamp = saved_clamp; 6389 return 1; 6390 } 6391 6392 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6393 { 6394 struct request_sock *req; 6395 6396 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6397 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6398 */ 6399 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6400 tcp_try_undo_loss(sk, false); 6401 6402 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6403 tcp_sk(sk)->retrans_stamp = 0; 6404 inet_csk(sk)->icsk_retransmits = 0; 6405 6406 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6407 * we no longer need req so release it. 6408 */ 6409 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6410 lockdep_sock_is_held(sk)); 6411 reqsk_fastopen_remove(sk, req, false); 6412 6413 /* Re-arm the timer because data may have been sent out. 6414 * This is similar to the regular data transmission case 6415 * when new data has just been ack'ed. 6416 * 6417 * (TFO) - we could try to be more aggressive and 6418 * retransmitting any data sooner based on when they 6419 * are sent out. 6420 */ 6421 tcp_rearm_rto(sk); 6422 } 6423 6424 /* 6425 * This function implements the receiving procedure of RFC 793 for 6426 * all states except ESTABLISHED and TIME_WAIT. 6427 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6428 * address independent. 6429 */ 6430 6431 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6432 { 6433 struct tcp_sock *tp = tcp_sk(sk); 6434 struct inet_connection_sock *icsk = inet_csk(sk); 6435 const struct tcphdr *th = tcp_hdr(skb); 6436 struct request_sock *req; 6437 int queued = 0; 6438 bool acceptable; 6439 SKB_DR(reason); 6440 6441 switch (sk->sk_state) { 6442 case TCP_CLOSE: 6443 SKB_DR_SET(reason, TCP_CLOSE); 6444 goto discard; 6445 6446 case TCP_LISTEN: 6447 if (th->ack) 6448 return 1; 6449 6450 if (th->rst) { 6451 SKB_DR_SET(reason, TCP_RESET); 6452 goto discard; 6453 } 6454 if (th->syn) { 6455 if (th->fin) { 6456 SKB_DR_SET(reason, TCP_FLAGS); 6457 goto discard; 6458 } 6459 /* It is possible that we process SYN packets from backlog, 6460 * so we need to make sure to disable BH and RCU right there. 6461 */ 6462 rcu_read_lock(); 6463 local_bh_disable(); 6464 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6465 local_bh_enable(); 6466 rcu_read_unlock(); 6467 6468 if (!acceptable) 6469 return 1; 6470 consume_skb(skb); 6471 return 0; 6472 } 6473 SKB_DR_SET(reason, TCP_FLAGS); 6474 goto discard; 6475 6476 case TCP_SYN_SENT: 6477 tp->rx_opt.saw_tstamp = 0; 6478 tcp_mstamp_refresh(tp); 6479 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6480 if (queued >= 0) 6481 return queued; 6482 6483 /* Do step6 onward by hand. */ 6484 tcp_urg(sk, skb, th); 6485 __kfree_skb(skb); 6486 tcp_data_snd_check(sk); 6487 return 0; 6488 } 6489 6490 tcp_mstamp_refresh(tp); 6491 tp->rx_opt.saw_tstamp = 0; 6492 req = rcu_dereference_protected(tp->fastopen_rsk, 6493 lockdep_sock_is_held(sk)); 6494 if (req) { 6495 bool req_stolen; 6496 6497 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6498 sk->sk_state != TCP_FIN_WAIT1); 6499 6500 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6501 SKB_DR_SET(reason, TCP_FASTOPEN); 6502 goto discard; 6503 } 6504 } 6505 6506 if (!th->ack && !th->rst && !th->syn) { 6507 SKB_DR_SET(reason, TCP_FLAGS); 6508 goto discard; 6509 } 6510 if (!tcp_validate_incoming(sk, skb, th, 0)) 6511 return 0; 6512 6513 /* step 5: check the ACK field */ 6514 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6515 FLAG_UPDATE_TS_RECENT | 6516 FLAG_NO_CHALLENGE_ACK) > 0; 6517 6518 if (!acceptable) { 6519 if (sk->sk_state == TCP_SYN_RECV) 6520 return 1; /* send one RST */ 6521 tcp_send_challenge_ack(sk); 6522 SKB_DR_SET(reason, TCP_OLD_ACK); 6523 goto discard; 6524 } 6525 switch (sk->sk_state) { 6526 case TCP_SYN_RECV: 6527 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6528 if (!tp->srtt_us) 6529 tcp_synack_rtt_meas(sk, req); 6530 6531 if (req) { 6532 tcp_rcv_synrecv_state_fastopen(sk); 6533 } else { 6534 tcp_try_undo_spurious_syn(sk); 6535 tp->retrans_stamp = 0; 6536 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6537 skb); 6538 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6539 } 6540 smp_mb(); 6541 tcp_set_state(sk, TCP_ESTABLISHED); 6542 sk->sk_state_change(sk); 6543 6544 /* Note, that this wakeup is only for marginal crossed SYN case. 6545 * Passively open sockets are not waked up, because 6546 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6547 */ 6548 if (sk->sk_socket) 6549 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6550 6551 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6552 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6553 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6554 6555 if (tp->rx_opt.tstamp_ok) 6556 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6557 6558 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6559 tcp_update_pacing_rate(sk); 6560 6561 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6562 tp->lsndtime = tcp_jiffies32; 6563 6564 tcp_initialize_rcv_mss(sk); 6565 tcp_fast_path_on(tp); 6566 break; 6567 6568 case TCP_FIN_WAIT1: { 6569 int tmo; 6570 6571 if (req) 6572 tcp_rcv_synrecv_state_fastopen(sk); 6573 6574 if (tp->snd_una != tp->write_seq) 6575 break; 6576 6577 tcp_set_state(sk, TCP_FIN_WAIT2); 6578 sk->sk_shutdown |= SEND_SHUTDOWN; 6579 6580 sk_dst_confirm(sk); 6581 6582 if (!sock_flag(sk, SOCK_DEAD)) { 6583 /* Wake up lingering close() */ 6584 sk->sk_state_change(sk); 6585 break; 6586 } 6587 6588 if (tp->linger2 < 0) { 6589 tcp_done(sk); 6590 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6591 return 1; 6592 } 6593 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6594 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6595 /* Receive out of order FIN after close() */ 6596 if (tp->syn_fastopen && th->fin) 6597 tcp_fastopen_active_disable(sk); 6598 tcp_done(sk); 6599 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6600 return 1; 6601 } 6602 6603 tmo = tcp_fin_time(sk); 6604 if (tmo > TCP_TIMEWAIT_LEN) { 6605 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6606 } else if (th->fin || sock_owned_by_user(sk)) { 6607 /* Bad case. We could lose such FIN otherwise. 6608 * It is not a big problem, but it looks confusing 6609 * and not so rare event. We still can lose it now, 6610 * if it spins in bh_lock_sock(), but it is really 6611 * marginal case. 6612 */ 6613 inet_csk_reset_keepalive_timer(sk, tmo); 6614 } else { 6615 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6616 goto consume; 6617 } 6618 break; 6619 } 6620 6621 case TCP_CLOSING: 6622 if (tp->snd_una == tp->write_seq) { 6623 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6624 goto consume; 6625 } 6626 break; 6627 6628 case TCP_LAST_ACK: 6629 if (tp->snd_una == tp->write_seq) { 6630 tcp_update_metrics(sk); 6631 tcp_done(sk); 6632 goto consume; 6633 } 6634 break; 6635 } 6636 6637 /* step 6: check the URG bit */ 6638 tcp_urg(sk, skb, th); 6639 6640 /* step 7: process the segment text */ 6641 switch (sk->sk_state) { 6642 case TCP_CLOSE_WAIT: 6643 case TCP_CLOSING: 6644 case TCP_LAST_ACK: 6645 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6646 /* If a subflow has been reset, the packet should not 6647 * continue to be processed, drop the packet. 6648 */ 6649 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6650 goto discard; 6651 break; 6652 } 6653 fallthrough; 6654 case TCP_FIN_WAIT1: 6655 case TCP_FIN_WAIT2: 6656 /* RFC 793 says to queue data in these states, 6657 * RFC 1122 says we MUST send a reset. 6658 * BSD 4.4 also does reset. 6659 */ 6660 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6661 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6662 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6663 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6664 tcp_reset(sk, skb); 6665 return 1; 6666 } 6667 } 6668 fallthrough; 6669 case TCP_ESTABLISHED: 6670 tcp_data_queue(sk, skb); 6671 queued = 1; 6672 break; 6673 } 6674 6675 /* tcp_data could move socket to TIME-WAIT */ 6676 if (sk->sk_state != TCP_CLOSE) { 6677 tcp_data_snd_check(sk); 6678 tcp_ack_snd_check(sk); 6679 } 6680 6681 if (!queued) { 6682 discard: 6683 tcp_drop_reason(sk, skb, reason); 6684 } 6685 return 0; 6686 6687 consume: 6688 __kfree_skb(skb); 6689 return 0; 6690 } 6691 EXPORT_SYMBOL(tcp_rcv_state_process); 6692 6693 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6694 { 6695 struct inet_request_sock *ireq = inet_rsk(req); 6696 6697 if (family == AF_INET) 6698 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6699 &ireq->ir_rmt_addr, port); 6700 #if IS_ENABLED(CONFIG_IPV6) 6701 else if (family == AF_INET6) 6702 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6703 &ireq->ir_v6_rmt_addr, port); 6704 #endif 6705 } 6706 6707 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6708 * 6709 * If we receive a SYN packet with these bits set, it means a 6710 * network is playing bad games with TOS bits. In order to 6711 * avoid possible false congestion notifications, we disable 6712 * TCP ECN negotiation. 6713 * 6714 * Exception: tcp_ca wants ECN. This is required for DCTCP 6715 * congestion control: Linux DCTCP asserts ECT on all packets, 6716 * including SYN, which is most optimal solution; however, 6717 * others, such as FreeBSD do not. 6718 * 6719 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6720 * set, indicating the use of a future TCP extension (such as AccECN). See 6721 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6722 * extensions. 6723 */ 6724 static void tcp_ecn_create_request(struct request_sock *req, 6725 const struct sk_buff *skb, 6726 const struct sock *listen_sk, 6727 const struct dst_entry *dst) 6728 { 6729 const struct tcphdr *th = tcp_hdr(skb); 6730 const struct net *net = sock_net(listen_sk); 6731 bool th_ecn = th->ece && th->cwr; 6732 bool ect, ecn_ok; 6733 u32 ecn_ok_dst; 6734 6735 if (!th_ecn) 6736 return; 6737 6738 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6739 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6740 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6741 6742 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6743 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6744 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6745 inet_rsk(req)->ecn_ok = 1; 6746 } 6747 6748 static void tcp_openreq_init(struct request_sock *req, 6749 const struct tcp_options_received *rx_opt, 6750 struct sk_buff *skb, const struct sock *sk) 6751 { 6752 struct inet_request_sock *ireq = inet_rsk(req); 6753 6754 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6755 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6756 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6757 tcp_rsk(req)->snt_synack = 0; 6758 tcp_rsk(req)->last_oow_ack_time = 0; 6759 req->mss = rx_opt->mss_clamp; 6760 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6761 ireq->tstamp_ok = rx_opt->tstamp_ok; 6762 ireq->sack_ok = rx_opt->sack_ok; 6763 ireq->snd_wscale = rx_opt->snd_wscale; 6764 ireq->wscale_ok = rx_opt->wscale_ok; 6765 ireq->acked = 0; 6766 ireq->ecn_ok = 0; 6767 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6768 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6769 ireq->ir_mark = inet_request_mark(sk, skb); 6770 #if IS_ENABLED(CONFIG_SMC) 6771 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6772 tcp_sk(sk)->smc_hs_congested(sk)); 6773 #endif 6774 } 6775 6776 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6777 struct sock *sk_listener, 6778 bool attach_listener) 6779 { 6780 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6781 attach_listener); 6782 6783 if (req) { 6784 struct inet_request_sock *ireq = inet_rsk(req); 6785 6786 ireq->ireq_opt = NULL; 6787 #if IS_ENABLED(CONFIG_IPV6) 6788 ireq->pktopts = NULL; 6789 #endif 6790 atomic64_set(&ireq->ir_cookie, 0); 6791 ireq->ireq_state = TCP_NEW_SYN_RECV; 6792 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6793 ireq->ireq_family = sk_listener->sk_family; 6794 req->timeout = TCP_TIMEOUT_INIT; 6795 } 6796 6797 return req; 6798 } 6799 EXPORT_SYMBOL(inet_reqsk_alloc); 6800 6801 /* 6802 * Return true if a syncookie should be sent 6803 */ 6804 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6805 { 6806 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6807 const char *msg = "Dropping request"; 6808 struct net *net = sock_net(sk); 6809 bool want_cookie = false; 6810 u8 syncookies; 6811 6812 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6813 6814 #ifdef CONFIG_SYN_COOKIES 6815 if (syncookies) { 6816 msg = "Sending cookies"; 6817 want_cookie = true; 6818 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6819 } else 6820 #endif 6821 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6822 6823 if (!queue->synflood_warned && syncookies != 2 && 6824 xchg(&queue->synflood_warned, 1) == 0) 6825 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6826 proto, sk->sk_num, msg); 6827 6828 return want_cookie; 6829 } 6830 6831 static void tcp_reqsk_record_syn(const struct sock *sk, 6832 struct request_sock *req, 6833 const struct sk_buff *skb) 6834 { 6835 if (tcp_sk(sk)->save_syn) { 6836 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6837 struct saved_syn *saved_syn; 6838 u32 mac_hdrlen; 6839 void *base; 6840 6841 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6842 base = skb_mac_header(skb); 6843 mac_hdrlen = skb_mac_header_len(skb); 6844 len += mac_hdrlen; 6845 } else { 6846 base = skb_network_header(skb); 6847 mac_hdrlen = 0; 6848 } 6849 6850 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6851 GFP_ATOMIC); 6852 if (saved_syn) { 6853 saved_syn->mac_hdrlen = mac_hdrlen; 6854 saved_syn->network_hdrlen = skb_network_header_len(skb); 6855 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6856 memcpy(saved_syn->data, base, len); 6857 req->saved_syn = saved_syn; 6858 } 6859 } 6860 } 6861 6862 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6863 * used for SYN cookie generation. 6864 */ 6865 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6866 const struct tcp_request_sock_ops *af_ops, 6867 struct sock *sk, struct tcphdr *th) 6868 { 6869 struct tcp_sock *tp = tcp_sk(sk); 6870 u16 mss; 6871 6872 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 6873 !inet_csk_reqsk_queue_is_full(sk)) 6874 return 0; 6875 6876 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6877 return 0; 6878 6879 if (sk_acceptq_is_full(sk)) { 6880 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6881 return 0; 6882 } 6883 6884 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6885 if (!mss) 6886 mss = af_ops->mss_clamp; 6887 6888 return mss; 6889 } 6890 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6891 6892 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6893 const struct tcp_request_sock_ops *af_ops, 6894 struct sock *sk, struct sk_buff *skb) 6895 { 6896 struct tcp_fastopen_cookie foc = { .len = -1 }; 6897 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6898 struct tcp_options_received tmp_opt; 6899 struct tcp_sock *tp = tcp_sk(sk); 6900 struct net *net = sock_net(sk); 6901 struct sock *fastopen_sk = NULL; 6902 struct request_sock *req; 6903 bool want_cookie = false; 6904 struct dst_entry *dst; 6905 struct flowi fl; 6906 u8 syncookies; 6907 6908 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6909 6910 /* TW buckets are converted to open requests without 6911 * limitations, they conserve resources and peer is 6912 * evidently real one. 6913 */ 6914 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6915 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6916 if (!want_cookie) 6917 goto drop; 6918 } 6919 6920 if (sk_acceptq_is_full(sk)) { 6921 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6922 goto drop; 6923 } 6924 6925 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6926 if (!req) 6927 goto drop; 6928 6929 req->syncookie = want_cookie; 6930 tcp_rsk(req)->af_specific = af_ops; 6931 tcp_rsk(req)->ts_off = 0; 6932 #if IS_ENABLED(CONFIG_MPTCP) 6933 tcp_rsk(req)->is_mptcp = 0; 6934 #endif 6935 6936 tcp_clear_options(&tmp_opt); 6937 tmp_opt.mss_clamp = af_ops->mss_clamp; 6938 tmp_opt.user_mss = tp->rx_opt.user_mss; 6939 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6940 want_cookie ? NULL : &foc); 6941 6942 if (want_cookie && !tmp_opt.saw_tstamp) 6943 tcp_clear_options(&tmp_opt); 6944 6945 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6946 tmp_opt.smc_ok = 0; 6947 6948 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6949 tcp_openreq_init(req, &tmp_opt, skb, sk); 6950 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6951 6952 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6953 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6954 6955 dst = af_ops->route_req(sk, skb, &fl, req); 6956 if (!dst) 6957 goto drop_and_free; 6958 6959 if (tmp_opt.tstamp_ok) 6960 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6961 6962 if (!want_cookie && !isn) { 6963 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 6964 6965 /* Kill the following clause, if you dislike this way. */ 6966 if (!syncookies && 6967 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6968 (max_syn_backlog >> 2)) && 6969 !tcp_peer_is_proven(req, dst)) { 6970 /* Without syncookies last quarter of 6971 * backlog is filled with destinations, 6972 * proven to be alive. 6973 * It means that we continue to communicate 6974 * to destinations, already remembered 6975 * to the moment of synflood. 6976 */ 6977 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6978 rsk_ops->family); 6979 goto drop_and_release; 6980 } 6981 6982 isn = af_ops->init_seq(skb); 6983 } 6984 6985 tcp_ecn_create_request(req, skb, sk, dst); 6986 6987 if (want_cookie) { 6988 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6989 if (!tmp_opt.tstamp_ok) 6990 inet_rsk(req)->ecn_ok = 0; 6991 } 6992 6993 tcp_rsk(req)->snt_isn = isn; 6994 tcp_rsk(req)->txhash = net_tx_rndhash(); 6995 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 6996 tcp_openreq_init_rwin(req, sk, dst); 6997 sk_rx_queue_set(req_to_sk(req), skb); 6998 if (!want_cookie) { 6999 tcp_reqsk_record_syn(sk, req, skb); 7000 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7001 } 7002 if (fastopen_sk) { 7003 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7004 &foc, TCP_SYNACK_FASTOPEN, skb); 7005 /* Add the child socket directly into the accept queue */ 7006 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7007 reqsk_fastopen_remove(fastopen_sk, req, false); 7008 bh_unlock_sock(fastopen_sk); 7009 sock_put(fastopen_sk); 7010 goto drop_and_free; 7011 } 7012 sk->sk_data_ready(sk); 7013 bh_unlock_sock(fastopen_sk); 7014 sock_put(fastopen_sk); 7015 } else { 7016 tcp_rsk(req)->tfo_listener = false; 7017 if (!want_cookie) { 7018 req->timeout = tcp_timeout_init((struct sock *)req); 7019 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 7020 } 7021 af_ops->send_synack(sk, dst, &fl, req, &foc, 7022 !want_cookie ? TCP_SYNACK_NORMAL : 7023 TCP_SYNACK_COOKIE, 7024 skb); 7025 if (want_cookie) { 7026 reqsk_free(req); 7027 return 0; 7028 } 7029 } 7030 reqsk_put(req); 7031 return 0; 7032 7033 drop_and_release: 7034 dst_release(dst); 7035 drop_and_free: 7036 __reqsk_free(req); 7037 drop: 7038 tcp_listendrop(sk); 7039 return 0; 7040 } 7041 EXPORT_SYMBOL(tcp_conn_request); 7042