xref: /linux/net/ipv4/tcp_input.c (revision 18808564aa3bc9ae3309fd8a5c0a93f7f9a23f9a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 					       tcp_sk(sk)->advmss);
242 		/* Account for possibly-removed options */
243 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 				   MAX_TCP_OPTION_SPACE))
245 			tcp_gro_dev_warn(sk, skb, len);
246 	} else {
247 		/* Otherwise, we make more careful check taking into account,
248 		 * that SACKs block is variable.
249 		 *
250 		 * "len" is invariant segment length, including TCP header.
251 		 */
252 		len += skb->data - skb_transport_header(skb);
253 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 		    /* If PSH is not set, packet should be
255 		     * full sized, provided peer TCP is not badly broken.
256 		     * This observation (if it is correct 8)) allows
257 		     * to handle super-low mtu links fairly.
258 		     */
259 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 			/* Subtract also invariant (if peer is RFC compliant),
262 			 * tcp header plus fixed timestamp option length.
263 			 * Resulting "len" is MSS free of SACK jitter.
264 			 */
265 			len -= tcp_sk(sk)->tcp_header_len;
266 			icsk->icsk_ack.last_seg_size = len;
267 			if (len == lss) {
268 				icsk->icsk_ack.rcv_mss = len;
269 				return;
270 			}
271 		}
272 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 	}
276 }
277 
278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 	struct inet_connection_sock *icsk = inet_csk(sk);
281 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282 
283 	if (quickacks == 0)
284 		quickacks = 2;
285 	quickacks = min(quickacks, max_quickacks);
286 	if (quickacks > icsk->icsk_ack.quick)
287 		icsk->icsk_ack.quick = quickacks;
288 }
289 
290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 	struct inet_connection_sock *icsk = inet_csk(sk);
293 
294 	tcp_incr_quickack(sk, max_quickacks);
295 	inet_csk_exit_pingpong_mode(sk);
296 	icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299 
300 /* Send ACKs quickly, if "quick" count is not exhausted
301  * and the session is not interactive.
302  */
303 
304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 	const struct inet_connection_sock *icsk = inet_csk(sk);
307 	const struct dst_entry *dst = __sk_dst_get(sk);
308 
309 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312 
313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 	if (tp->ecn_flags & TCP_ECN_OK)
316 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318 
319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 	if (tcp_hdr(skb)->cwr) {
322 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323 
324 		/* If the sender is telling us it has entered CWR, then its
325 		 * cwnd may be very low (even just 1 packet), so we should ACK
326 		 * immediately.
327 		 */
328 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 	}
331 }
332 
333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337 
338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 	case INET_ECN_NOT_ECT:
344 		/* Funny extension: if ECT is not set on a segment,
345 		 * and we already seen ECT on a previous segment,
346 		 * it is probably a retransmit.
347 		 */
348 		if (tp->ecn_flags & TCP_ECN_SEEN)
349 			tcp_enter_quickack_mode(sk, 2);
350 		break;
351 	case INET_ECN_CE:
352 		if (tcp_ca_needs_ecn(sk))
353 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354 
355 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 			/* Better not delay acks, sender can have a very low cwnd */
357 			tcp_enter_quickack_mode(sk, 2);
358 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 		}
360 		tp->ecn_flags |= TCP_ECN_SEEN;
361 		break;
362 	default:
363 		if (tcp_ca_needs_ecn(sk))
364 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 		tp->ecn_flags |= TCP_ECN_SEEN;
366 		break;
367 	}
368 }
369 
370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 		__tcp_ecn_check_ce(sk, skb);
374 }
375 
376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 		tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381 
382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 		tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387 
388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 		return true;
392 	return false;
393 }
394 
395 /* Buffer size and advertised window tuning.
396  *
397  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398  */
399 
400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 	const struct tcp_sock *tp = tcp_sk(sk);
403 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 	int sndmem, per_mss;
405 	u32 nr_segs;
406 
407 	/* Worst case is non GSO/TSO : each frame consumes one skb
408 	 * and skb->head is kmalloced using power of two area of memory
409 	 */
410 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 		  MAX_TCP_HEADER +
412 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413 
414 	per_mss = roundup_pow_of_two(per_mss) +
415 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
416 
417 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
418 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419 
420 	/* Fast Recovery (RFC 5681 3.2) :
421 	 * Cubic needs 1.7 factor, rounded to 2 to include
422 	 * extra cushion (application might react slowly to EPOLLOUT)
423 	 */
424 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 	sndmem *= nr_segs * per_mss;
426 
427 	if (sk->sk_sndbuf < sndmem)
428 		WRITE_ONCE(sk->sk_sndbuf,
429 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
430 }
431 
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433  *
434  * All tcp_full_space() is split to two parts: "network" buffer, allocated
435  * forward and advertised in receiver window (tp->rcv_wnd) and
436  * "application buffer", required to isolate scheduling/application
437  * latencies from network.
438  * window_clamp is maximal advertised window. It can be less than
439  * tcp_full_space(), in this case tcp_full_space() - window_clamp
440  * is reserved for "application" buffer. The less window_clamp is
441  * the smoother our behaviour from viewpoint of network, but the lower
442  * throughput and the higher sensitivity of the connection to losses. 8)
443  *
444  * rcv_ssthresh is more strict window_clamp used at "slow start"
445  * phase to predict further behaviour of this connection.
446  * It is used for two goals:
447  * - to enforce header prediction at sender, even when application
448  *   requires some significant "application buffer". It is check #1.
449  * - to prevent pruning of receive queue because of misprediction
450  *   of receiver window. Check #2.
451  *
452  * The scheme does not work when sender sends good segments opening
453  * window and then starts to feed us spaghetti. But it should work
454  * in common situations. Otherwise, we have to rely on queue collapsing.
455  */
456 
457 /* Slow part of check#2. */
458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 			     unsigned int skbtruesize)
460 {
461 	struct tcp_sock *tp = tcp_sk(sk);
462 	/* Optimize this! */
463 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
465 
466 	while (tp->rcv_ssthresh <= window) {
467 		if (truesize <= skb->len)
468 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469 
470 		truesize >>= 1;
471 		window >>= 1;
472 	}
473 	return 0;
474 }
475 
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477  * can play nice with us, as sk_buff and skb->head might be either
478  * freed or shared with up to MAX_SKB_FRAGS segments.
479  * Only give a boost to drivers using page frag(s) to hold the frame(s),
480  * and if no payload was pulled in skb->head before reaching us.
481  */
482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 	u32 truesize = skb->truesize;
485 
486 	if (adjust && !skb_headlen(skb)) {
487 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 		/* paranoid check, some drivers might be buggy */
489 		if (unlikely((int)truesize < (int)skb->len))
490 			truesize = skb->truesize;
491 	}
492 	return truesize;
493 }
494 
495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 			    bool adjust)
497 {
498 	struct tcp_sock *tp = tcp_sk(sk);
499 	int room;
500 
501 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502 
503 	if (room <= 0)
504 		return;
505 
506 	/* Check #1 */
507 	if (!tcp_under_memory_pressure(sk)) {
508 		unsigned int truesize = truesize_adjust(adjust, skb);
509 		int incr;
510 
511 		/* Check #2. Increase window, if skb with such overhead
512 		 * will fit to rcvbuf in future.
513 		 */
514 		if (tcp_win_from_space(sk, truesize) <= skb->len)
515 			incr = 2 * tp->advmss;
516 		else
517 			incr = __tcp_grow_window(sk, skb, truesize);
518 
519 		if (incr) {
520 			incr = max_t(int, incr, 2 * skb->len);
521 			tp->rcv_ssthresh += min(room, incr);
522 			inet_csk(sk)->icsk_ack.quick |= 1;
523 		}
524 	} else {
525 		/* Under pressure:
526 		 * Adjust rcv_ssthresh according to reserved mem
527 		 */
528 		tcp_adjust_rcv_ssthresh(sk);
529 	}
530 }
531 
532 /* 3. Try to fixup all. It is made immediately after connection enters
533  *    established state.
534  */
535 static void tcp_init_buffer_space(struct sock *sk)
536 {
537 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	int maxwin;
540 
541 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
542 		tcp_sndbuf_expand(sk);
543 
544 	tcp_mstamp_refresh(tp);
545 	tp->rcvq_space.time = tp->tcp_mstamp;
546 	tp->rcvq_space.seq = tp->copied_seq;
547 
548 	maxwin = tcp_full_space(sk);
549 
550 	if (tp->window_clamp >= maxwin) {
551 		tp->window_clamp = maxwin;
552 
553 		if (tcp_app_win && maxwin > 4 * tp->advmss)
554 			tp->window_clamp = max(maxwin -
555 					       (maxwin >> tcp_app_win),
556 					       4 * tp->advmss);
557 	}
558 
559 	/* Force reservation of one segment. */
560 	if (tcp_app_win &&
561 	    tp->window_clamp > 2 * tp->advmss &&
562 	    tp->window_clamp + tp->advmss > maxwin)
563 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
564 
565 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
566 	tp->snd_cwnd_stamp = tcp_jiffies32;
567 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
568 				    (u32)TCP_INIT_CWND * tp->advmss);
569 }
570 
571 /* 4. Recalculate window clamp after socket hit its memory bounds. */
572 static void tcp_clamp_window(struct sock *sk)
573 {
574 	struct tcp_sock *tp = tcp_sk(sk);
575 	struct inet_connection_sock *icsk = inet_csk(sk);
576 	struct net *net = sock_net(sk);
577 	int rmem2;
578 
579 	icsk->icsk_ack.quick = 0;
580 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
581 
582 	if (sk->sk_rcvbuf < rmem2 &&
583 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
584 	    !tcp_under_memory_pressure(sk) &&
585 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
586 		WRITE_ONCE(sk->sk_rcvbuf,
587 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
588 	}
589 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
590 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
591 }
592 
593 /* Initialize RCV_MSS value.
594  * RCV_MSS is an our guess about MSS used by the peer.
595  * We haven't any direct information about the MSS.
596  * It's better to underestimate the RCV_MSS rather than overestimate.
597  * Overestimations make us ACKing less frequently than needed.
598  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
599  */
600 void tcp_initialize_rcv_mss(struct sock *sk)
601 {
602 	const struct tcp_sock *tp = tcp_sk(sk);
603 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
604 
605 	hint = min(hint, tp->rcv_wnd / 2);
606 	hint = min(hint, TCP_MSS_DEFAULT);
607 	hint = max(hint, TCP_MIN_MSS);
608 
609 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
610 }
611 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
612 
613 /* Receiver "autotuning" code.
614  *
615  * The algorithm for RTT estimation w/o timestamps is based on
616  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
617  * <https://public.lanl.gov/radiant/pubs.html#DRS>
618  *
619  * More detail on this code can be found at
620  * <http://staff.psc.edu/jheffner/>,
621  * though this reference is out of date.  A new paper
622  * is pending.
623  */
624 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
625 {
626 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
627 	long m = sample;
628 
629 	if (new_sample != 0) {
630 		/* If we sample in larger samples in the non-timestamp
631 		 * case, we could grossly overestimate the RTT especially
632 		 * with chatty applications or bulk transfer apps which
633 		 * are stalled on filesystem I/O.
634 		 *
635 		 * Also, since we are only going for a minimum in the
636 		 * non-timestamp case, we do not smooth things out
637 		 * else with timestamps disabled convergence takes too
638 		 * long.
639 		 */
640 		if (!win_dep) {
641 			m -= (new_sample >> 3);
642 			new_sample += m;
643 		} else {
644 			m <<= 3;
645 			if (m < new_sample)
646 				new_sample = m;
647 		}
648 	} else {
649 		/* No previous measure. */
650 		new_sample = m << 3;
651 	}
652 
653 	tp->rcv_rtt_est.rtt_us = new_sample;
654 }
655 
656 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
657 {
658 	u32 delta_us;
659 
660 	if (tp->rcv_rtt_est.time == 0)
661 		goto new_measure;
662 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
663 		return;
664 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
665 	if (!delta_us)
666 		delta_us = 1;
667 	tcp_rcv_rtt_update(tp, delta_us, 1);
668 
669 new_measure:
670 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
671 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
672 }
673 
674 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
675 					  const struct sk_buff *skb)
676 {
677 	struct tcp_sock *tp = tcp_sk(sk);
678 
679 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
680 		return;
681 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
682 
683 	if (TCP_SKB_CB(skb)->end_seq -
684 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
685 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
686 		u32 delta_us;
687 
688 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
689 			if (!delta)
690 				delta = 1;
691 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
692 			tcp_rcv_rtt_update(tp, delta_us, 0);
693 		}
694 	}
695 }
696 
697 /*
698  * This function should be called every time data is copied to user space.
699  * It calculates the appropriate TCP receive buffer space.
700  */
701 void tcp_rcv_space_adjust(struct sock *sk)
702 {
703 	struct tcp_sock *tp = tcp_sk(sk);
704 	u32 copied;
705 	int time;
706 
707 	trace_tcp_rcv_space_adjust(sk);
708 
709 	tcp_mstamp_refresh(tp);
710 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
711 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
712 		return;
713 
714 	/* Number of bytes copied to user in last RTT */
715 	copied = tp->copied_seq - tp->rcvq_space.seq;
716 	if (copied <= tp->rcvq_space.space)
717 		goto new_measure;
718 
719 	/* A bit of theory :
720 	 * copied = bytes received in previous RTT, our base window
721 	 * To cope with packet losses, we need a 2x factor
722 	 * To cope with slow start, and sender growing its cwin by 100 %
723 	 * every RTT, we need a 4x factor, because the ACK we are sending
724 	 * now is for the next RTT, not the current one :
725 	 * <prev RTT . ><current RTT .. ><next RTT .... >
726 	 */
727 
728 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
729 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
730 		int rcvmem, rcvbuf;
731 		u64 rcvwin, grow;
732 
733 		/* minimal window to cope with packet losses, assuming
734 		 * steady state. Add some cushion because of small variations.
735 		 */
736 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
737 
738 		/* Accommodate for sender rate increase (eg. slow start) */
739 		grow = rcvwin * (copied - tp->rcvq_space.space);
740 		do_div(grow, tp->rcvq_space.space);
741 		rcvwin += (grow << 1);
742 
743 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
744 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
745 			rcvmem += 128;
746 
747 		do_div(rcvwin, tp->advmss);
748 		rcvbuf = min_t(u64, rcvwin * rcvmem,
749 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
750 		if (rcvbuf > sk->sk_rcvbuf) {
751 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
752 
753 			/* Make the window clamp follow along.  */
754 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
755 		}
756 	}
757 	tp->rcvq_space.space = copied;
758 
759 new_measure:
760 	tp->rcvq_space.seq = tp->copied_seq;
761 	tp->rcvq_space.time = tp->tcp_mstamp;
762 }
763 
764 /* There is something which you must keep in mind when you analyze the
765  * behavior of the tp->ato delayed ack timeout interval.  When a
766  * connection starts up, we want to ack as quickly as possible.  The
767  * problem is that "good" TCP's do slow start at the beginning of data
768  * transmission.  The means that until we send the first few ACK's the
769  * sender will sit on his end and only queue most of his data, because
770  * he can only send snd_cwnd unacked packets at any given time.  For
771  * each ACK we send, he increments snd_cwnd and transmits more of his
772  * queue.  -DaveM
773  */
774 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
775 {
776 	struct tcp_sock *tp = tcp_sk(sk);
777 	struct inet_connection_sock *icsk = inet_csk(sk);
778 	u32 now;
779 
780 	inet_csk_schedule_ack(sk);
781 
782 	tcp_measure_rcv_mss(sk, skb);
783 
784 	tcp_rcv_rtt_measure(tp);
785 
786 	now = tcp_jiffies32;
787 
788 	if (!icsk->icsk_ack.ato) {
789 		/* The _first_ data packet received, initialize
790 		 * delayed ACK engine.
791 		 */
792 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
793 		icsk->icsk_ack.ato = TCP_ATO_MIN;
794 	} else {
795 		int m = now - icsk->icsk_ack.lrcvtime;
796 
797 		if (m <= TCP_ATO_MIN / 2) {
798 			/* The fastest case is the first. */
799 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
800 		} else if (m < icsk->icsk_ack.ato) {
801 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
802 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
803 				icsk->icsk_ack.ato = icsk->icsk_rto;
804 		} else if (m > icsk->icsk_rto) {
805 			/* Too long gap. Apparently sender failed to
806 			 * restart window, so that we send ACKs quickly.
807 			 */
808 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
809 			sk_mem_reclaim(sk);
810 		}
811 	}
812 	icsk->icsk_ack.lrcvtime = now;
813 
814 	tcp_ecn_check_ce(sk, skb);
815 
816 	if (skb->len >= 128)
817 		tcp_grow_window(sk, skb, true);
818 }
819 
820 /* Called to compute a smoothed rtt estimate. The data fed to this
821  * routine either comes from timestamps, or from segments that were
822  * known _not_ to have been retransmitted [see Karn/Partridge
823  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
824  * piece by Van Jacobson.
825  * NOTE: the next three routines used to be one big routine.
826  * To save cycles in the RFC 1323 implementation it was better to break
827  * it up into three procedures. -- erics
828  */
829 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
830 {
831 	struct tcp_sock *tp = tcp_sk(sk);
832 	long m = mrtt_us; /* RTT */
833 	u32 srtt = tp->srtt_us;
834 
835 	/*	The following amusing code comes from Jacobson's
836 	 *	article in SIGCOMM '88.  Note that rtt and mdev
837 	 *	are scaled versions of rtt and mean deviation.
838 	 *	This is designed to be as fast as possible
839 	 *	m stands for "measurement".
840 	 *
841 	 *	On a 1990 paper the rto value is changed to:
842 	 *	RTO = rtt + 4 * mdev
843 	 *
844 	 * Funny. This algorithm seems to be very broken.
845 	 * These formulae increase RTO, when it should be decreased, increase
846 	 * too slowly, when it should be increased quickly, decrease too quickly
847 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
848 	 * does not matter how to _calculate_ it. Seems, it was trap
849 	 * that VJ failed to avoid. 8)
850 	 */
851 	if (srtt != 0) {
852 		m -= (srtt >> 3);	/* m is now error in rtt est */
853 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
854 		if (m < 0) {
855 			m = -m;		/* m is now abs(error) */
856 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
857 			/* This is similar to one of Eifel findings.
858 			 * Eifel blocks mdev updates when rtt decreases.
859 			 * This solution is a bit different: we use finer gain
860 			 * for mdev in this case (alpha*beta).
861 			 * Like Eifel it also prevents growth of rto,
862 			 * but also it limits too fast rto decreases,
863 			 * happening in pure Eifel.
864 			 */
865 			if (m > 0)
866 				m >>= 3;
867 		} else {
868 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
869 		}
870 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
871 		if (tp->mdev_us > tp->mdev_max_us) {
872 			tp->mdev_max_us = tp->mdev_us;
873 			if (tp->mdev_max_us > tp->rttvar_us)
874 				tp->rttvar_us = tp->mdev_max_us;
875 		}
876 		if (after(tp->snd_una, tp->rtt_seq)) {
877 			if (tp->mdev_max_us < tp->rttvar_us)
878 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
879 			tp->rtt_seq = tp->snd_nxt;
880 			tp->mdev_max_us = tcp_rto_min_us(sk);
881 
882 			tcp_bpf_rtt(sk);
883 		}
884 	} else {
885 		/* no previous measure. */
886 		srtt = m << 3;		/* take the measured time to be rtt */
887 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
888 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
889 		tp->mdev_max_us = tp->rttvar_us;
890 		tp->rtt_seq = tp->snd_nxt;
891 
892 		tcp_bpf_rtt(sk);
893 	}
894 	tp->srtt_us = max(1U, srtt);
895 }
896 
897 static void tcp_update_pacing_rate(struct sock *sk)
898 {
899 	const struct tcp_sock *tp = tcp_sk(sk);
900 	u64 rate;
901 
902 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
903 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
904 
905 	/* current rate is (cwnd * mss) / srtt
906 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
907 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
908 	 *
909 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
910 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
911 	 *	 end of slow start and should slow down.
912 	 */
913 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
914 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
915 	else
916 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
917 
918 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
919 
920 	if (likely(tp->srtt_us))
921 		do_div(rate, tp->srtt_us);
922 
923 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
924 	 * without any lock. We want to make sure compiler wont store
925 	 * intermediate values in this location.
926 	 */
927 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
928 					     sk->sk_max_pacing_rate));
929 }
930 
931 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
932  * routine referred to above.
933  */
934 static void tcp_set_rto(struct sock *sk)
935 {
936 	const struct tcp_sock *tp = tcp_sk(sk);
937 	/* Old crap is replaced with new one. 8)
938 	 *
939 	 * More seriously:
940 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
941 	 *    It cannot be less due to utterly erratic ACK generation made
942 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
943 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
944 	 *    is invisible. Actually, Linux-2.4 also generates erratic
945 	 *    ACKs in some circumstances.
946 	 */
947 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
948 
949 	/* 2. Fixups made earlier cannot be right.
950 	 *    If we do not estimate RTO correctly without them,
951 	 *    all the algo is pure shit and should be replaced
952 	 *    with correct one. It is exactly, which we pretend to do.
953 	 */
954 
955 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
956 	 * guarantees that rto is higher.
957 	 */
958 	tcp_bound_rto(sk);
959 }
960 
961 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
962 {
963 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
964 
965 	if (!cwnd)
966 		cwnd = TCP_INIT_CWND;
967 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
968 }
969 
970 struct tcp_sacktag_state {
971 	/* Timestamps for earliest and latest never-retransmitted segment
972 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
973 	 * but congestion control should still get an accurate delay signal.
974 	 */
975 	u64	first_sackt;
976 	u64	last_sackt;
977 	u32	reord;
978 	u32	sack_delivered;
979 	int	flag;
980 	unsigned int mss_now;
981 	struct rate_sample *rate;
982 };
983 
984 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
985  * and spurious retransmission information if this DSACK is unlikely caused by
986  * sender's action:
987  * - DSACKed sequence range is larger than maximum receiver's window.
988  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
989  */
990 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
991 			  u32 end_seq, struct tcp_sacktag_state *state)
992 {
993 	u32 seq_len, dup_segs = 1;
994 
995 	if (!before(start_seq, end_seq))
996 		return 0;
997 
998 	seq_len = end_seq - start_seq;
999 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1000 	if (seq_len > tp->max_window)
1001 		return 0;
1002 	if (seq_len > tp->mss_cache)
1003 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1004 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1005 		state->flag |= FLAG_DSACK_TLP;
1006 
1007 	tp->dsack_dups += dup_segs;
1008 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1009 	if (tp->dsack_dups > tp->total_retrans)
1010 		return 0;
1011 
1012 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1013 	/* We increase the RACK ordering window in rounds where we receive
1014 	 * DSACKs that may have been due to reordering causing RACK to trigger
1015 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1016 	 * without having seen reordering, or that match TLP probes (TLP
1017 	 * is timer-driven, not triggered by RACK).
1018 	 */
1019 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1020 		tp->rack.dsack_seen = 1;
1021 
1022 	state->flag |= FLAG_DSACKING_ACK;
1023 	/* A spurious retransmission is delivered */
1024 	state->sack_delivered += dup_segs;
1025 
1026 	return dup_segs;
1027 }
1028 
1029 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1030  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1031  * distance is approximated in full-mss packet distance ("reordering").
1032  */
1033 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1034 				      const int ts)
1035 {
1036 	struct tcp_sock *tp = tcp_sk(sk);
1037 	const u32 mss = tp->mss_cache;
1038 	u32 fack, metric;
1039 
1040 	fack = tcp_highest_sack_seq(tp);
1041 	if (!before(low_seq, fack))
1042 		return;
1043 
1044 	metric = fack - low_seq;
1045 	if ((metric > tp->reordering * mss) && mss) {
1046 #if FASTRETRANS_DEBUG > 1
1047 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1048 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1049 			 tp->reordering,
1050 			 0,
1051 			 tp->sacked_out,
1052 			 tp->undo_marker ? tp->undo_retrans : 0);
1053 #endif
1054 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1055 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1056 	}
1057 
1058 	/* This exciting event is worth to be remembered. 8) */
1059 	tp->reord_seen++;
1060 	NET_INC_STATS(sock_net(sk),
1061 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1062 }
1063 
1064  /* This must be called before lost_out or retrans_out are updated
1065   * on a new loss, because we want to know if all skbs previously
1066   * known to be lost have already been retransmitted, indicating
1067   * that this newly lost skb is our next skb to retransmit.
1068   */
1069 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1070 {
1071 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1072 	    (tp->retransmit_skb_hint &&
1073 	     before(TCP_SKB_CB(skb)->seq,
1074 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1075 		tp->retransmit_skb_hint = skb;
1076 }
1077 
1078 /* Sum the number of packets on the wire we have marked as lost, and
1079  * notify the congestion control module that the given skb was marked lost.
1080  */
1081 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1082 {
1083 	tp->lost += tcp_skb_pcount(skb);
1084 }
1085 
1086 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1087 {
1088 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1089 	struct tcp_sock *tp = tcp_sk(sk);
1090 
1091 	if (sacked & TCPCB_SACKED_ACKED)
1092 		return;
1093 
1094 	tcp_verify_retransmit_hint(tp, skb);
1095 	if (sacked & TCPCB_LOST) {
1096 		if (sacked & TCPCB_SACKED_RETRANS) {
1097 			/* Account for retransmits that are lost again */
1098 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1099 			tp->retrans_out -= tcp_skb_pcount(skb);
1100 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1101 				      tcp_skb_pcount(skb));
1102 			tcp_notify_skb_loss_event(tp, skb);
1103 		}
1104 	} else {
1105 		tp->lost_out += tcp_skb_pcount(skb);
1106 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1107 		tcp_notify_skb_loss_event(tp, skb);
1108 	}
1109 }
1110 
1111 /* Updates the delivered and delivered_ce counts */
1112 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1113 				bool ece_ack)
1114 {
1115 	tp->delivered += delivered;
1116 	if (ece_ack)
1117 		tp->delivered_ce += delivered;
1118 }
1119 
1120 /* This procedure tags the retransmission queue when SACKs arrive.
1121  *
1122  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1123  * Packets in queue with these bits set are counted in variables
1124  * sacked_out, retrans_out and lost_out, correspondingly.
1125  *
1126  * Valid combinations are:
1127  * Tag  InFlight	Description
1128  * 0	1		- orig segment is in flight.
1129  * S	0		- nothing flies, orig reached receiver.
1130  * L	0		- nothing flies, orig lost by net.
1131  * R	2		- both orig and retransmit are in flight.
1132  * L|R	1		- orig is lost, retransmit is in flight.
1133  * S|R  1		- orig reached receiver, retrans is still in flight.
1134  * (L|S|R is logically valid, it could occur when L|R is sacked,
1135  *  but it is equivalent to plain S and code short-curcuits it to S.
1136  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1137  *
1138  * These 6 states form finite state machine, controlled by the following events:
1139  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1140  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1141  * 3. Loss detection event of two flavors:
1142  *	A. Scoreboard estimator decided the packet is lost.
1143  *	   A'. Reno "three dupacks" marks head of queue lost.
1144  *	B. SACK arrives sacking SND.NXT at the moment, when the
1145  *	   segment was retransmitted.
1146  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1147  *
1148  * It is pleasant to note, that state diagram turns out to be commutative,
1149  * so that we are allowed not to be bothered by order of our actions,
1150  * when multiple events arrive simultaneously. (see the function below).
1151  *
1152  * Reordering detection.
1153  * --------------------
1154  * Reordering metric is maximal distance, which a packet can be displaced
1155  * in packet stream. With SACKs we can estimate it:
1156  *
1157  * 1. SACK fills old hole and the corresponding segment was not
1158  *    ever retransmitted -> reordering. Alas, we cannot use it
1159  *    when segment was retransmitted.
1160  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1161  *    for retransmitted and already SACKed segment -> reordering..
1162  * Both of these heuristics are not used in Loss state, when we cannot
1163  * account for retransmits accurately.
1164  *
1165  * SACK block validation.
1166  * ----------------------
1167  *
1168  * SACK block range validation checks that the received SACK block fits to
1169  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1170  * Note that SND.UNA is not included to the range though being valid because
1171  * it means that the receiver is rather inconsistent with itself reporting
1172  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1173  * perfectly valid, however, in light of RFC2018 which explicitly states
1174  * that "SACK block MUST reflect the newest segment.  Even if the newest
1175  * segment is going to be discarded ...", not that it looks very clever
1176  * in case of head skb. Due to potentional receiver driven attacks, we
1177  * choose to avoid immediate execution of a walk in write queue due to
1178  * reneging and defer head skb's loss recovery to standard loss recovery
1179  * procedure that will eventually trigger (nothing forbids us doing this).
1180  *
1181  * Implements also blockage to start_seq wrap-around. Problem lies in the
1182  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1183  * there's no guarantee that it will be before snd_nxt (n). The problem
1184  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1185  * wrap (s_w):
1186  *
1187  *         <- outs wnd ->                          <- wrapzone ->
1188  *         u     e      n                         u_w   e_w  s n_w
1189  *         |     |      |                          |     |   |  |
1190  * |<------------+------+----- TCP seqno space --------------+---------->|
1191  * ...-- <2^31 ->|                                           |<--------...
1192  * ...---- >2^31 ------>|                                    |<--------...
1193  *
1194  * Current code wouldn't be vulnerable but it's better still to discard such
1195  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1196  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1197  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1198  * equal to the ideal case (infinite seqno space without wrap caused issues).
1199  *
1200  * With D-SACK the lower bound is extended to cover sequence space below
1201  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1202  * again, D-SACK block must not to go across snd_una (for the same reason as
1203  * for the normal SACK blocks, explained above). But there all simplicity
1204  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1205  * fully below undo_marker they do not affect behavior in anyway and can
1206  * therefore be safely ignored. In rare cases (which are more or less
1207  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1208  * fragmentation and packet reordering past skb's retransmission. To consider
1209  * them correctly, the acceptable range must be extended even more though
1210  * the exact amount is rather hard to quantify. However, tp->max_window can
1211  * be used as an exaggerated estimate.
1212  */
1213 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1214 				   u32 start_seq, u32 end_seq)
1215 {
1216 	/* Too far in future, or reversed (interpretation is ambiguous) */
1217 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1218 		return false;
1219 
1220 	/* Nasty start_seq wrap-around check (see comments above) */
1221 	if (!before(start_seq, tp->snd_nxt))
1222 		return false;
1223 
1224 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1225 	 * start_seq == snd_una is non-sensical (see comments above)
1226 	 */
1227 	if (after(start_seq, tp->snd_una))
1228 		return true;
1229 
1230 	if (!is_dsack || !tp->undo_marker)
1231 		return false;
1232 
1233 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1234 	if (after(end_seq, tp->snd_una))
1235 		return false;
1236 
1237 	if (!before(start_seq, tp->undo_marker))
1238 		return true;
1239 
1240 	/* Too old */
1241 	if (!after(end_seq, tp->undo_marker))
1242 		return false;
1243 
1244 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1245 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1246 	 */
1247 	return !before(start_seq, end_seq - tp->max_window);
1248 }
1249 
1250 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1251 			    struct tcp_sack_block_wire *sp, int num_sacks,
1252 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1253 {
1254 	struct tcp_sock *tp = tcp_sk(sk);
1255 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1256 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1257 	u32 dup_segs;
1258 
1259 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1260 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1261 	} else if (num_sacks > 1) {
1262 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1263 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1264 
1265 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1266 			return false;
1267 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1268 	} else {
1269 		return false;
1270 	}
1271 
1272 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1273 	if (!dup_segs) {	/* Skip dubious DSACK */
1274 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1275 		return false;
1276 	}
1277 
1278 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1279 
1280 	/* D-SACK for already forgotten data... Do dumb counting. */
1281 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1282 	    !after(end_seq_0, prior_snd_una) &&
1283 	    after(end_seq_0, tp->undo_marker))
1284 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1285 
1286 	return true;
1287 }
1288 
1289 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1290  * the incoming SACK may not exactly match but we can find smaller MSS
1291  * aligned portion of it that matches. Therefore we might need to fragment
1292  * which may fail and creates some hassle (caller must handle error case
1293  * returns).
1294  *
1295  * FIXME: this could be merged to shift decision code
1296  */
1297 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1298 				  u32 start_seq, u32 end_seq)
1299 {
1300 	int err;
1301 	bool in_sack;
1302 	unsigned int pkt_len;
1303 	unsigned int mss;
1304 
1305 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1306 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1307 
1308 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1309 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1310 		mss = tcp_skb_mss(skb);
1311 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1312 
1313 		if (!in_sack) {
1314 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1315 			if (pkt_len < mss)
1316 				pkt_len = mss;
1317 		} else {
1318 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1319 			if (pkt_len < mss)
1320 				return -EINVAL;
1321 		}
1322 
1323 		/* Round if necessary so that SACKs cover only full MSSes
1324 		 * and/or the remaining small portion (if present)
1325 		 */
1326 		if (pkt_len > mss) {
1327 			unsigned int new_len = (pkt_len / mss) * mss;
1328 			if (!in_sack && new_len < pkt_len)
1329 				new_len += mss;
1330 			pkt_len = new_len;
1331 		}
1332 
1333 		if (pkt_len >= skb->len && !in_sack)
1334 			return 0;
1335 
1336 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1337 				   pkt_len, mss, GFP_ATOMIC);
1338 		if (err < 0)
1339 			return err;
1340 	}
1341 
1342 	return in_sack;
1343 }
1344 
1345 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1346 static u8 tcp_sacktag_one(struct sock *sk,
1347 			  struct tcp_sacktag_state *state, u8 sacked,
1348 			  u32 start_seq, u32 end_seq,
1349 			  int dup_sack, int pcount,
1350 			  u64 xmit_time)
1351 {
1352 	struct tcp_sock *tp = tcp_sk(sk);
1353 
1354 	/* Account D-SACK for retransmitted packet. */
1355 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1356 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1357 		    after(end_seq, tp->undo_marker))
1358 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1359 		if ((sacked & TCPCB_SACKED_ACKED) &&
1360 		    before(start_seq, state->reord))
1361 				state->reord = start_seq;
1362 	}
1363 
1364 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1365 	if (!after(end_seq, tp->snd_una))
1366 		return sacked;
1367 
1368 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1369 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1370 
1371 		if (sacked & TCPCB_SACKED_RETRANS) {
1372 			/* If the segment is not tagged as lost,
1373 			 * we do not clear RETRANS, believing
1374 			 * that retransmission is still in flight.
1375 			 */
1376 			if (sacked & TCPCB_LOST) {
1377 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1378 				tp->lost_out -= pcount;
1379 				tp->retrans_out -= pcount;
1380 			}
1381 		} else {
1382 			if (!(sacked & TCPCB_RETRANS)) {
1383 				/* New sack for not retransmitted frame,
1384 				 * which was in hole. It is reordering.
1385 				 */
1386 				if (before(start_seq,
1387 					   tcp_highest_sack_seq(tp)) &&
1388 				    before(start_seq, state->reord))
1389 					state->reord = start_seq;
1390 
1391 				if (!after(end_seq, tp->high_seq))
1392 					state->flag |= FLAG_ORIG_SACK_ACKED;
1393 				if (state->first_sackt == 0)
1394 					state->first_sackt = xmit_time;
1395 				state->last_sackt = xmit_time;
1396 			}
1397 
1398 			if (sacked & TCPCB_LOST) {
1399 				sacked &= ~TCPCB_LOST;
1400 				tp->lost_out -= pcount;
1401 			}
1402 		}
1403 
1404 		sacked |= TCPCB_SACKED_ACKED;
1405 		state->flag |= FLAG_DATA_SACKED;
1406 		tp->sacked_out += pcount;
1407 		/* Out-of-order packets delivered */
1408 		state->sack_delivered += pcount;
1409 
1410 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1411 		if (tp->lost_skb_hint &&
1412 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1413 			tp->lost_cnt_hint += pcount;
1414 	}
1415 
1416 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1417 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1418 	 * are accounted above as well.
1419 	 */
1420 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1421 		sacked &= ~TCPCB_SACKED_RETRANS;
1422 		tp->retrans_out -= pcount;
1423 	}
1424 
1425 	return sacked;
1426 }
1427 
1428 /* Shift newly-SACKed bytes from this skb to the immediately previous
1429  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1430  */
1431 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1432 			    struct sk_buff *skb,
1433 			    struct tcp_sacktag_state *state,
1434 			    unsigned int pcount, int shifted, int mss,
1435 			    bool dup_sack)
1436 {
1437 	struct tcp_sock *tp = tcp_sk(sk);
1438 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1439 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1440 
1441 	BUG_ON(!pcount);
1442 
1443 	/* Adjust counters and hints for the newly sacked sequence
1444 	 * range but discard the return value since prev is already
1445 	 * marked. We must tag the range first because the seq
1446 	 * advancement below implicitly advances
1447 	 * tcp_highest_sack_seq() when skb is highest_sack.
1448 	 */
1449 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1450 			start_seq, end_seq, dup_sack, pcount,
1451 			tcp_skb_timestamp_us(skb));
1452 	tcp_rate_skb_delivered(sk, skb, state->rate);
1453 
1454 	if (skb == tp->lost_skb_hint)
1455 		tp->lost_cnt_hint += pcount;
1456 
1457 	TCP_SKB_CB(prev)->end_seq += shifted;
1458 	TCP_SKB_CB(skb)->seq += shifted;
1459 
1460 	tcp_skb_pcount_add(prev, pcount);
1461 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1462 	tcp_skb_pcount_add(skb, -pcount);
1463 
1464 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1465 	 * in theory this shouldn't be necessary but as long as DSACK
1466 	 * code can come after this skb later on it's better to keep
1467 	 * setting gso_size to something.
1468 	 */
1469 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1470 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1471 
1472 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1473 	if (tcp_skb_pcount(skb) <= 1)
1474 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1475 
1476 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1477 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1478 
1479 	if (skb->len > 0) {
1480 		BUG_ON(!tcp_skb_pcount(skb));
1481 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1482 		return false;
1483 	}
1484 
1485 	/* Whole SKB was eaten :-) */
1486 
1487 	if (skb == tp->retransmit_skb_hint)
1488 		tp->retransmit_skb_hint = prev;
1489 	if (skb == tp->lost_skb_hint) {
1490 		tp->lost_skb_hint = prev;
1491 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1492 	}
1493 
1494 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1495 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1496 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1497 		TCP_SKB_CB(prev)->end_seq++;
1498 
1499 	if (skb == tcp_highest_sack(sk))
1500 		tcp_advance_highest_sack(sk, skb);
1501 
1502 	tcp_skb_collapse_tstamp(prev, skb);
1503 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1504 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1505 
1506 	tcp_rtx_queue_unlink_and_free(skb, sk);
1507 
1508 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1509 
1510 	return true;
1511 }
1512 
1513 /* I wish gso_size would have a bit more sane initialization than
1514  * something-or-zero which complicates things
1515  */
1516 static int tcp_skb_seglen(const struct sk_buff *skb)
1517 {
1518 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1519 }
1520 
1521 /* Shifting pages past head area doesn't work */
1522 static int skb_can_shift(const struct sk_buff *skb)
1523 {
1524 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1525 }
1526 
1527 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1528 		  int pcount, int shiftlen)
1529 {
1530 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1531 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1532 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1533 	 * even if current MSS is bigger.
1534 	 */
1535 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1536 		return 0;
1537 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1538 		return 0;
1539 	return skb_shift(to, from, shiftlen);
1540 }
1541 
1542 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1543  * skb.
1544  */
1545 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1546 					  struct tcp_sacktag_state *state,
1547 					  u32 start_seq, u32 end_seq,
1548 					  bool dup_sack)
1549 {
1550 	struct tcp_sock *tp = tcp_sk(sk);
1551 	struct sk_buff *prev;
1552 	int mss;
1553 	int pcount = 0;
1554 	int len;
1555 	int in_sack;
1556 
1557 	/* Normally R but no L won't result in plain S */
1558 	if (!dup_sack &&
1559 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1560 		goto fallback;
1561 	if (!skb_can_shift(skb))
1562 		goto fallback;
1563 	/* This frame is about to be dropped (was ACKed). */
1564 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1565 		goto fallback;
1566 
1567 	/* Can only happen with delayed DSACK + discard craziness */
1568 	prev = skb_rb_prev(skb);
1569 	if (!prev)
1570 		goto fallback;
1571 
1572 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1573 		goto fallback;
1574 
1575 	if (!tcp_skb_can_collapse(prev, skb))
1576 		goto fallback;
1577 
1578 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1579 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1580 
1581 	if (in_sack) {
1582 		len = skb->len;
1583 		pcount = tcp_skb_pcount(skb);
1584 		mss = tcp_skb_seglen(skb);
1585 
1586 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1587 		 * drop this restriction as unnecessary
1588 		 */
1589 		if (mss != tcp_skb_seglen(prev))
1590 			goto fallback;
1591 	} else {
1592 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1593 			goto noop;
1594 		/* CHECKME: This is non-MSS split case only?, this will
1595 		 * cause skipped skbs due to advancing loop btw, original
1596 		 * has that feature too
1597 		 */
1598 		if (tcp_skb_pcount(skb) <= 1)
1599 			goto noop;
1600 
1601 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1602 		if (!in_sack) {
1603 			/* TODO: head merge to next could be attempted here
1604 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1605 			 * though it might not be worth of the additional hassle
1606 			 *
1607 			 * ...we can probably just fallback to what was done
1608 			 * previously. We could try merging non-SACKed ones
1609 			 * as well but it probably isn't going to buy off
1610 			 * because later SACKs might again split them, and
1611 			 * it would make skb timestamp tracking considerably
1612 			 * harder problem.
1613 			 */
1614 			goto fallback;
1615 		}
1616 
1617 		len = end_seq - TCP_SKB_CB(skb)->seq;
1618 		BUG_ON(len < 0);
1619 		BUG_ON(len > skb->len);
1620 
1621 		/* MSS boundaries should be honoured or else pcount will
1622 		 * severely break even though it makes things bit trickier.
1623 		 * Optimize common case to avoid most of the divides
1624 		 */
1625 		mss = tcp_skb_mss(skb);
1626 
1627 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1628 		 * drop this restriction as unnecessary
1629 		 */
1630 		if (mss != tcp_skb_seglen(prev))
1631 			goto fallback;
1632 
1633 		if (len == mss) {
1634 			pcount = 1;
1635 		} else if (len < mss) {
1636 			goto noop;
1637 		} else {
1638 			pcount = len / mss;
1639 			len = pcount * mss;
1640 		}
1641 	}
1642 
1643 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1644 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1645 		goto fallback;
1646 
1647 	if (!tcp_skb_shift(prev, skb, pcount, len))
1648 		goto fallback;
1649 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1650 		goto out;
1651 
1652 	/* Hole filled allows collapsing with the next as well, this is very
1653 	 * useful when hole on every nth skb pattern happens
1654 	 */
1655 	skb = skb_rb_next(prev);
1656 	if (!skb)
1657 		goto out;
1658 
1659 	if (!skb_can_shift(skb) ||
1660 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1661 	    (mss != tcp_skb_seglen(skb)))
1662 		goto out;
1663 
1664 	if (!tcp_skb_can_collapse(prev, skb))
1665 		goto out;
1666 	len = skb->len;
1667 	pcount = tcp_skb_pcount(skb);
1668 	if (tcp_skb_shift(prev, skb, pcount, len))
1669 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1670 				len, mss, 0);
1671 
1672 out:
1673 	return prev;
1674 
1675 noop:
1676 	return skb;
1677 
1678 fallback:
1679 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1680 	return NULL;
1681 }
1682 
1683 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1684 					struct tcp_sack_block *next_dup,
1685 					struct tcp_sacktag_state *state,
1686 					u32 start_seq, u32 end_seq,
1687 					bool dup_sack_in)
1688 {
1689 	struct tcp_sock *tp = tcp_sk(sk);
1690 	struct sk_buff *tmp;
1691 
1692 	skb_rbtree_walk_from(skb) {
1693 		int in_sack = 0;
1694 		bool dup_sack = dup_sack_in;
1695 
1696 		/* queue is in-order => we can short-circuit the walk early */
1697 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1698 			break;
1699 
1700 		if (next_dup  &&
1701 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1702 			in_sack = tcp_match_skb_to_sack(sk, skb,
1703 							next_dup->start_seq,
1704 							next_dup->end_seq);
1705 			if (in_sack > 0)
1706 				dup_sack = true;
1707 		}
1708 
1709 		/* skb reference here is a bit tricky to get right, since
1710 		 * shifting can eat and free both this skb and the next,
1711 		 * so not even _safe variant of the loop is enough.
1712 		 */
1713 		if (in_sack <= 0) {
1714 			tmp = tcp_shift_skb_data(sk, skb, state,
1715 						 start_seq, end_seq, dup_sack);
1716 			if (tmp) {
1717 				if (tmp != skb) {
1718 					skb = tmp;
1719 					continue;
1720 				}
1721 
1722 				in_sack = 0;
1723 			} else {
1724 				in_sack = tcp_match_skb_to_sack(sk, skb,
1725 								start_seq,
1726 								end_seq);
1727 			}
1728 		}
1729 
1730 		if (unlikely(in_sack < 0))
1731 			break;
1732 
1733 		if (in_sack) {
1734 			TCP_SKB_CB(skb)->sacked =
1735 				tcp_sacktag_one(sk,
1736 						state,
1737 						TCP_SKB_CB(skb)->sacked,
1738 						TCP_SKB_CB(skb)->seq,
1739 						TCP_SKB_CB(skb)->end_seq,
1740 						dup_sack,
1741 						tcp_skb_pcount(skb),
1742 						tcp_skb_timestamp_us(skb));
1743 			tcp_rate_skb_delivered(sk, skb, state->rate);
1744 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1745 				list_del_init(&skb->tcp_tsorted_anchor);
1746 
1747 			if (!before(TCP_SKB_CB(skb)->seq,
1748 				    tcp_highest_sack_seq(tp)))
1749 				tcp_advance_highest_sack(sk, skb);
1750 		}
1751 	}
1752 	return skb;
1753 }
1754 
1755 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1756 {
1757 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1758 	struct sk_buff *skb;
1759 
1760 	while (*p) {
1761 		parent = *p;
1762 		skb = rb_to_skb(parent);
1763 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1764 			p = &parent->rb_left;
1765 			continue;
1766 		}
1767 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1768 			p = &parent->rb_right;
1769 			continue;
1770 		}
1771 		return skb;
1772 	}
1773 	return NULL;
1774 }
1775 
1776 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1777 					u32 skip_to_seq)
1778 {
1779 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1780 		return skb;
1781 
1782 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1783 }
1784 
1785 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1786 						struct sock *sk,
1787 						struct tcp_sack_block *next_dup,
1788 						struct tcp_sacktag_state *state,
1789 						u32 skip_to_seq)
1790 {
1791 	if (!next_dup)
1792 		return skb;
1793 
1794 	if (before(next_dup->start_seq, skip_to_seq)) {
1795 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1796 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1797 				       next_dup->start_seq, next_dup->end_seq,
1798 				       1);
1799 	}
1800 
1801 	return skb;
1802 }
1803 
1804 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1805 {
1806 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1807 }
1808 
1809 static int
1810 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1811 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1812 {
1813 	struct tcp_sock *tp = tcp_sk(sk);
1814 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1815 				    TCP_SKB_CB(ack_skb)->sacked);
1816 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1817 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1818 	struct tcp_sack_block *cache;
1819 	struct sk_buff *skb;
1820 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1821 	int used_sacks;
1822 	bool found_dup_sack = false;
1823 	int i, j;
1824 	int first_sack_index;
1825 
1826 	state->flag = 0;
1827 	state->reord = tp->snd_nxt;
1828 
1829 	if (!tp->sacked_out)
1830 		tcp_highest_sack_reset(sk);
1831 
1832 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1833 					 num_sacks, prior_snd_una, state);
1834 
1835 	/* Eliminate too old ACKs, but take into
1836 	 * account more or less fresh ones, they can
1837 	 * contain valid SACK info.
1838 	 */
1839 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1840 		return 0;
1841 
1842 	if (!tp->packets_out)
1843 		goto out;
1844 
1845 	used_sacks = 0;
1846 	first_sack_index = 0;
1847 	for (i = 0; i < num_sacks; i++) {
1848 		bool dup_sack = !i && found_dup_sack;
1849 
1850 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1851 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1852 
1853 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1854 					    sp[used_sacks].start_seq,
1855 					    sp[used_sacks].end_seq)) {
1856 			int mib_idx;
1857 
1858 			if (dup_sack) {
1859 				if (!tp->undo_marker)
1860 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1861 				else
1862 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1863 			} else {
1864 				/* Don't count olds caused by ACK reordering */
1865 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1866 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1867 					continue;
1868 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1869 			}
1870 
1871 			NET_INC_STATS(sock_net(sk), mib_idx);
1872 			if (i == 0)
1873 				first_sack_index = -1;
1874 			continue;
1875 		}
1876 
1877 		/* Ignore very old stuff early */
1878 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1879 			if (i == 0)
1880 				first_sack_index = -1;
1881 			continue;
1882 		}
1883 
1884 		used_sacks++;
1885 	}
1886 
1887 	/* order SACK blocks to allow in order walk of the retrans queue */
1888 	for (i = used_sacks - 1; i > 0; i--) {
1889 		for (j = 0; j < i; j++) {
1890 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1891 				swap(sp[j], sp[j + 1]);
1892 
1893 				/* Track where the first SACK block goes to */
1894 				if (j == first_sack_index)
1895 					first_sack_index = j + 1;
1896 			}
1897 		}
1898 	}
1899 
1900 	state->mss_now = tcp_current_mss(sk);
1901 	skb = NULL;
1902 	i = 0;
1903 
1904 	if (!tp->sacked_out) {
1905 		/* It's already past, so skip checking against it */
1906 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1907 	} else {
1908 		cache = tp->recv_sack_cache;
1909 		/* Skip empty blocks in at head of the cache */
1910 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1911 		       !cache->end_seq)
1912 			cache++;
1913 	}
1914 
1915 	while (i < used_sacks) {
1916 		u32 start_seq = sp[i].start_seq;
1917 		u32 end_seq = sp[i].end_seq;
1918 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1919 		struct tcp_sack_block *next_dup = NULL;
1920 
1921 		if (found_dup_sack && ((i + 1) == first_sack_index))
1922 			next_dup = &sp[i + 1];
1923 
1924 		/* Skip too early cached blocks */
1925 		while (tcp_sack_cache_ok(tp, cache) &&
1926 		       !before(start_seq, cache->end_seq))
1927 			cache++;
1928 
1929 		/* Can skip some work by looking recv_sack_cache? */
1930 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1931 		    after(end_seq, cache->start_seq)) {
1932 
1933 			/* Head todo? */
1934 			if (before(start_seq, cache->start_seq)) {
1935 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1936 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1937 						       state,
1938 						       start_seq,
1939 						       cache->start_seq,
1940 						       dup_sack);
1941 			}
1942 
1943 			/* Rest of the block already fully processed? */
1944 			if (!after(end_seq, cache->end_seq))
1945 				goto advance_sp;
1946 
1947 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1948 						       state,
1949 						       cache->end_seq);
1950 
1951 			/* ...tail remains todo... */
1952 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1953 				/* ...but better entrypoint exists! */
1954 				skb = tcp_highest_sack(sk);
1955 				if (!skb)
1956 					break;
1957 				cache++;
1958 				goto walk;
1959 			}
1960 
1961 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1962 			/* Check overlap against next cached too (past this one already) */
1963 			cache++;
1964 			continue;
1965 		}
1966 
1967 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1968 			skb = tcp_highest_sack(sk);
1969 			if (!skb)
1970 				break;
1971 		}
1972 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1973 
1974 walk:
1975 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1976 				       start_seq, end_seq, dup_sack);
1977 
1978 advance_sp:
1979 		i++;
1980 	}
1981 
1982 	/* Clear the head of the cache sack blocks so we can skip it next time */
1983 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1984 		tp->recv_sack_cache[i].start_seq = 0;
1985 		tp->recv_sack_cache[i].end_seq = 0;
1986 	}
1987 	for (j = 0; j < used_sacks; j++)
1988 		tp->recv_sack_cache[i++] = sp[j];
1989 
1990 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1991 		tcp_check_sack_reordering(sk, state->reord, 0);
1992 
1993 	tcp_verify_left_out(tp);
1994 out:
1995 
1996 #if FASTRETRANS_DEBUG > 0
1997 	WARN_ON((int)tp->sacked_out < 0);
1998 	WARN_ON((int)tp->lost_out < 0);
1999 	WARN_ON((int)tp->retrans_out < 0);
2000 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2001 #endif
2002 	return state->flag;
2003 }
2004 
2005 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2006  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2007  */
2008 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2009 {
2010 	u32 holes;
2011 
2012 	holes = max(tp->lost_out, 1U);
2013 	holes = min(holes, tp->packets_out);
2014 
2015 	if ((tp->sacked_out + holes) > tp->packets_out) {
2016 		tp->sacked_out = tp->packets_out - holes;
2017 		return true;
2018 	}
2019 	return false;
2020 }
2021 
2022 /* If we receive more dupacks than we expected counting segments
2023  * in assumption of absent reordering, interpret this as reordering.
2024  * The only another reason could be bug in receiver TCP.
2025  */
2026 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2027 {
2028 	struct tcp_sock *tp = tcp_sk(sk);
2029 
2030 	if (!tcp_limit_reno_sacked(tp))
2031 		return;
2032 
2033 	tp->reordering = min_t(u32, tp->packets_out + addend,
2034 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2035 	tp->reord_seen++;
2036 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2037 }
2038 
2039 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2040 
2041 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2042 {
2043 	if (num_dupack) {
2044 		struct tcp_sock *tp = tcp_sk(sk);
2045 		u32 prior_sacked = tp->sacked_out;
2046 		s32 delivered;
2047 
2048 		tp->sacked_out += num_dupack;
2049 		tcp_check_reno_reordering(sk, 0);
2050 		delivered = tp->sacked_out - prior_sacked;
2051 		if (delivered > 0)
2052 			tcp_count_delivered(tp, delivered, ece_ack);
2053 		tcp_verify_left_out(tp);
2054 	}
2055 }
2056 
2057 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2058 
2059 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2060 {
2061 	struct tcp_sock *tp = tcp_sk(sk);
2062 
2063 	if (acked > 0) {
2064 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2065 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2066 				    ece_ack);
2067 		if (acked - 1 >= tp->sacked_out)
2068 			tp->sacked_out = 0;
2069 		else
2070 			tp->sacked_out -= acked - 1;
2071 	}
2072 	tcp_check_reno_reordering(sk, acked);
2073 	tcp_verify_left_out(tp);
2074 }
2075 
2076 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2077 {
2078 	tp->sacked_out = 0;
2079 }
2080 
2081 void tcp_clear_retrans(struct tcp_sock *tp)
2082 {
2083 	tp->retrans_out = 0;
2084 	tp->lost_out = 0;
2085 	tp->undo_marker = 0;
2086 	tp->undo_retrans = -1;
2087 	tp->sacked_out = 0;
2088 }
2089 
2090 static inline void tcp_init_undo(struct tcp_sock *tp)
2091 {
2092 	tp->undo_marker = tp->snd_una;
2093 	/* Retransmission still in flight may cause DSACKs later. */
2094 	tp->undo_retrans = tp->retrans_out ? : -1;
2095 }
2096 
2097 static bool tcp_is_rack(const struct sock *sk)
2098 {
2099 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2100 		TCP_RACK_LOSS_DETECTION;
2101 }
2102 
2103 /* If we detect SACK reneging, forget all SACK information
2104  * and reset tags completely, otherwise preserve SACKs. If receiver
2105  * dropped its ofo queue, we will know this due to reneging detection.
2106  */
2107 static void tcp_timeout_mark_lost(struct sock *sk)
2108 {
2109 	struct tcp_sock *tp = tcp_sk(sk);
2110 	struct sk_buff *skb, *head;
2111 	bool is_reneg;			/* is receiver reneging on SACKs? */
2112 
2113 	head = tcp_rtx_queue_head(sk);
2114 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2115 	if (is_reneg) {
2116 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2117 		tp->sacked_out = 0;
2118 		/* Mark SACK reneging until we recover from this loss event. */
2119 		tp->is_sack_reneg = 1;
2120 	} else if (tcp_is_reno(tp)) {
2121 		tcp_reset_reno_sack(tp);
2122 	}
2123 
2124 	skb = head;
2125 	skb_rbtree_walk_from(skb) {
2126 		if (is_reneg)
2127 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2128 		else if (tcp_is_rack(sk) && skb != head &&
2129 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2130 			continue; /* Don't mark recently sent ones lost yet */
2131 		tcp_mark_skb_lost(sk, skb);
2132 	}
2133 	tcp_verify_left_out(tp);
2134 	tcp_clear_all_retrans_hints(tp);
2135 }
2136 
2137 /* Enter Loss state. */
2138 void tcp_enter_loss(struct sock *sk)
2139 {
2140 	const struct inet_connection_sock *icsk = inet_csk(sk);
2141 	struct tcp_sock *tp = tcp_sk(sk);
2142 	struct net *net = sock_net(sk);
2143 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2144 	u8 reordering;
2145 
2146 	tcp_timeout_mark_lost(sk);
2147 
2148 	/* Reduce ssthresh if it has not yet been made inside this window. */
2149 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2150 	    !after(tp->high_seq, tp->snd_una) ||
2151 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2152 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2153 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2154 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2155 		tcp_ca_event(sk, CA_EVENT_LOSS);
2156 		tcp_init_undo(tp);
2157 	}
2158 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2159 	tp->snd_cwnd_cnt   = 0;
2160 	tp->snd_cwnd_stamp = tcp_jiffies32;
2161 
2162 	/* Timeout in disordered state after receiving substantial DUPACKs
2163 	 * suggests that the degree of reordering is over-estimated.
2164 	 */
2165 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2166 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2167 	    tp->sacked_out >= reordering)
2168 		tp->reordering = min_t(unsigned int, tp->reordering,
2169 				       reordering);
2170 
2171 	tcp_set_ca_state(sk, TCP_CA_Loss);
2172 	tp->high_seq = tp->snd_nxt;
2173 	tcp_ecn_queue_cwr(tp);
2174 
2175 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2176 	 * loss recovery is underway except recurring timeout(s) on
2177 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2178 	 */
2179 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2180 		   (new_recovery || icsk->icsk_retransmits) &&
2181 		   !inet_csk(sk)->icsk_mtup.probe_size;
2182 }
2183 
2184 /* If ACK arrived pointing to a remembered SACK, it means that our
2185  * remembered SACKs do not reflect real state of receiver i.e.
2186  * receiver _host_ is heavily congested (or buggy).
2187  *
2188  * To avoid big spurious retransmission bursts due to transient SACK
2189  * scoreboard oddities that look like reneging, we give the receiver a
2190  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2191  * restore sanity to the SACK scoreboard. If the apparent reneging
2192  * persists until this RTO then we'll clear the SACK scoreboard.
2193  */
2194 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2195 {
2196 	if (flag & FLAG_SACK_RENEGING) {
2197 		struct tcp_sock *tp = tcp_sk(sk);
2198 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2199 					  msecs_to_jiffies(10));
2200 
2201 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2202 					  delay, TCP_RTO_MAX);
2203 		return true;
2204 	}
2205 	return false;
2206 }
2207 
2208 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2209  * counter when SACK is enabled (without SACK, sacked_out is used for
2210  * that purpose).
2211  *
2212  * With reordering, holes may still be in flight, so RFC3517 recovery
2213  * uses pure sacked_out (total number of SACKed segments) even though
2214  * it violates the RFC that uses duplicate ACKs, often these are equal
2215  * but when e.g. out-of-window ACKs or packet duplication occurs,
2216  * they differ. Since neither occurs due to loss, TCP should really
2217  * ignore them.
2218  */
2219 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2220 {
2221 	return tp->sacked_out + 1;
2222 }
2223 
2224 /* Linux NewReno/SACK/ECN state machine.
2225  * --------------------------------------
2226  *
2227  * "Open"	Normal state, no dubious events, fast path.
2228  * "Disorder"   In all the respects it is "Open",
2229  *		but requires a bit more attention. It is entered when
2230  *		we see some SACKs or dupacks. It is split of "Open"
2231  *		mainly to move some processing from fast path to slow one.
2232  * "CWR"	CWND was reduced due to some Congestion Notification event.
2233  *		It can be ECN, ICMP source quench, local device congestion.
2234  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2235  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2236  *
2237  * tcp_fastretrans_alert() is entered:
2238  * - each incoming ACK, if state is not "Open"
2239  * - when arrived ACK is unusual, namely:
2240  *	* SACK
2241  *	* Duplicate ACK.
2242  *	* ECN ECE.
2243  *
2244  * Counting packets in flight is pretty simple.
2245  *
2246  *	in_flight = packets_out - left_out + retrans_out
2247  *
2248  *	packets_out is SND.NXT-SND.UNA counted in packets.
2249  *
2250  *	retrans_out is number of retransmitted segments.
2251  *
2252  *	left_out is number of segments left network, but not ACKed yet.
2253  *
2254  *		left_out = sacked_out + lost_out
2255  *
2256  *     sacked_out: Packets, which arrived to receiver out of order
2257  *		   and hence not ACKed. With SACKs this number is simply
2258  *		   amount of SACKed data. Even without SACKs
2259  *		   it is easy to give pretty reliable estimate of this number,
2260  *		   counting duplicate ACKs.
2261  *
2262  *       lost_out: Packets lost by network. TCP has no explicit
2263  *		   "loss notification" feedback from network (for now).
2264  *		   It means that this number can be only _guessed_.
2265  *		   Actually, it is the heuristics to predict lossage that
2266  *		   distinguishes different algorithms.
2267  *
2268  *	F.e. after RTO, when all the queue is considered as lost,
2269  *	lost_out = packets_out and in_flight = retrans_out.
2270  *
2271  *		Essentially, we have now a few algorithms detecting
2272  *		lost packets.
2273  *
2274  *		If the receiver supports SACK:
2275  *
2276  *		RFC6675/3517: It is the conventional algorithm. A packet is
2277  *		considered lost if the number of higher sequence packets
2278  *		SACKed is greater than or equal the DUPACK thoreshold
2279  *		(reordering). This is implemented in tcp_mark_head_lost and
2280  *		tcp_update_scoreboard.
2281  *
2282  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2283  *		(2017-) that checks timing instead of counting DUPACKs.
2284  *		Essentially a packet is considered lost if it's not S/ACKed
2285  *		after RTT + reordering_window, where both metrics are
2286  *		dynamically measured and adjusted. This is implemented in
2287  *		tcp_rack_mark_lost.
2288  *
2289  *		If the receiver does not support SACK:
2290  *
2291  *		NewReno (RFC6582): in Recovery we assume that one segment
2292  *		is lost (classic Reno). While we are in Recovery and
2293  *		a partial ACK arrives, we assume that one more packet
2294  *		is lost (NewReno). This heuristics are the same in NewReno
2295  *		and SACK.
2296  *
2297  * Really tricky (and requiring careful tuning) part of algorithm
2298  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2299  * The first determines the moment _when_ we should reduce CWND and,
2300  * hence, slow down forward transmission. In fact, it determines the moment
2301  * when we decide that hole is caused by loss, rather than by a reorder.
2302  *
2303  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2304  * holes, caused by lost packets.
2305  *
2306  * And the most logically complicated part of algorithm is undo
2307  * heuristics. We detect false retransmits due to both too early
2308  * fast retransmit (reordering) and underestimated RTO, analyzing
2309  * timestamps and D-SACKs. When we detect that some segments were
2310  * retransmitted by mistake and CWND reduction was wrong, we undo
2311  * window reduction and abort recovery phase. This logic is hidden
2312  * inside several functions named tcp_try_undo_<something>.
2313  */
2314 
2315 /* This function decides, when we should leave Disordered state
2316  * and enter Recovery phase, reducing congestion window.
2317  *
2318  * Main question: may we further continue forward transmission
2319  * with the same cwnd?
2320  */
2321 static bool tcp_time_to_recover(struct sock *sk, int flag)
2322 {
2323 	struct tcp_sock *tp = tcp_sk(sk);
2324 
2325 	/* Trick#1: The loss is proven. */
2326 	if (tp->lost_out)
2327 		return true;
2328 
2329 	/* Not-A-Trick#2 : Classic rule... */
2330 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2331 		return true;
2332 
2333 	return false;
2334 }
2335 
2336 /* Detect loss in event "A" above by marking head of queue up as lost.
2337  * For RFC3517 SACK, a segment is considered lost if it
2338  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2339  * the maximum SACKed segments to pass before reaching this limit.
2340  */
2341 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2342 {
2343 	struct tcp_sock *tp = tcp_sk(sk);
2344 	struct sk_buff *skb;
2345 	int cnt;
2346 	/* Use SACK to deduce losses of new sequences sent during recovery */
2347 	const u32 loss_high = tp->snd_nxt;
2348 
2349 	WARN_ON(packets > tp->packets_out);
2350 	skb = tp->lost_skb_hint;
2351 	if (skb) {
2352 		/* Head already handled? */
2353 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2354 			return;
2355 		cnt = tp->lost_cnt_hint;
2356 	} else {
2357 		skb = tcp_rtx_queue_head(sk);
2358 		cnt = 0;
2359 	}
2360 
2361 	skb_rbtree_walk_from(skb) {
2362 		/* TODO: do this better */
2363 		/* this is not the most efficient way to do this... */
2364 		tp->lost_skb_hint = skb;
2365 		tp->lost_cnt_hint = cnt;
2366 
2367 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2368 			break;
2369 
2370 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2371 			cnt += tcp_skb_pcount(skb);
2372 
2373 		if (cnt > packets)
2374 			break;
2375 
2376 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2377 			tcp_mark_skb_lost(sk, skb);
2378 
2379 		if (mark_head)
2380 			break;
2381 	}
2382 	tcp_verify_left_out(tp);
2383 }
2384 
2385 /* Account newly detected lost packet(s) */
2386 
2387 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2388 {
2389 	struct tcp_sock *tp = tcp_sk(sk);
2390 
2391 	if (tcp_is_sack(tp)) {
2392 		int sacked_upto = tp->sacked_out - tp->reordering;
2393 		if (sacked_upto >= 0)
2394 			tcp_mark_head_lost(sk, sacked_upto, 0);
2395 		else if (fast_rexmit)
2396 			tcp_mark_head_lost(sk, 1, 1);
2397 	}
2398 }
2399 
2400 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2401 {
2402 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2403 	       before(tp->rx_opt.rcv_tsecr, when);
2404 }
2405 
2406 /* skb is spurious retransmitted if the returned timestamp echo
2407  * reply is prior to the skb transmission time
2408  */
2409 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2410 				     const struct sk_buff *skb)
2411 {
2412 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2413 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2414 }
2415 
2416 /* Nothing was retransmitted or returned timestamp is less
2417  * than timestamp of the first retransmission.
2418  */
2419 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2420 {
2421 	return tp->retrans_stamp &&
2422 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2423 }
2424 
2425 /* Undo procedures. */
2426 
2427 /* We can clear retrans_stamp when there are no retransmissions in the
2428  * window. It would seem that it is trivially available for us in
2429  * tp->retrans_out, however, that kind of assumptions doesn't consider
2430  * what will happen if errors occur when sending retransmission for the
2431  * second time. ...It could the that such segment has only
2432  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2433  * the head skb is enough except for some reneging corner cases that
2434  * are not worth the effort.
2435  *
2436  * Main reason for all this complexity is the fact that connection dying
2437  * time now depends on the validity of the retrans_stamp, in particular,
2438  * that successive retransmissions of a segment must not advance
2439  * retrans_stamp under any conditions.
2440  */
2441 static bool tcp_any_retrans_done(const struct sock *sk)
2442 {
2443 	const struct tcp_sock *tp = tcp_sk(sk);
2444 	struct sk_buff *skb;
2445 
2446 	if (tp->retrans_out)
2447 		return true;
2448 
2449 	skb = tcp_rtx_queue_head(sk);
2450 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2451 		return true;
2452 
2453 	return false;
2454 }
2455 
2456 static void DBGUNDO(struct sock *sk, const char *msg)
2457 {
2458 #if FASTRETRANS_DEBUG > 1
2459 	struct tcp_sock *tp = tcp_sk(sk);
2460 	struct inet_sock *inet = inet_sk(sk);
2461 
2462 	if (sk->sk_family == AF_INET) {
2463 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2464 			 msg,
2465 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2466 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2467 			 tp->snd_ssthresh, tp->prior_ssthresh,
2468 			 tp->packets_out);
2469 	}
2470 #if IS_ENABLED(CONFIG_IPV6)
2471 	else if (sk->sk_family == AF_INET6) {
2472 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2473 			 msg,
2474 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2475 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2476 			 tp->snd_ssthresh, tp->prior_ssthresh,
2477 			 tp->packets_out);
2478 	}
2479 #endif
2480 #endif
2481 }
2482 
2483 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2484 {
2485 	struct tcp_sock *tp = tcp_sk(sk);
2486 
2487 	if (unmark_loss) {
2488 		struct sk_buff *skb;
2489 
2490 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2491 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2492 		}
2493 		tp->lost_out = 0;
2494 		tcp_clear_all_retrans_hints(tp);
2495 	}
2496 
2497 	if (tp->prior_ssthresh) {
2498 		const struct inet_connection_sock *icsk = inet_csk(sk);
2499 
2500 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2501 
2502 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2503 			tp->snd_ssthresh = tp->prior_ssthresh;
2504 			tcp_ecn_withdraw_cwr(tp);
2505 		}
2506 	}
2507 	tp->snd_cwnd_stamp = tcp_jiffies32;
2508 	tp->undo_marker = 0;
2509 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2510 }
2511 
2512 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2513 {
2514 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2515 }
2516 
2517 /* People celebrate: "We love our President!" */
2518 static bool tcp_try_undo_recovery(struct sock *sk)
2519 {
2520 	struct tcp_sock *tp = tcp_sk(sk);
2521 
2522 	if (tcp_may_undo(tp)) {
2523 		int mib_idx;
2524 
2525 		/* Happy end! We did not retransmit anything
2526 		 * or our original transmission succeeded.
2527 		 */
2528 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2529 		tcp_undo_cwnd_reduction(sk, false);
2530 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2531 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2532 		else
2533 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2534 
2535 		NET_INC_STATS(sock_net(sk), mib_idx);
2536 	} else if (tp->rack.reo_wnd_persist) {
2537 		tp->rack.reo_wnd_persist--;
2538 	}
2539 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2540 		/* Hold old state until something *above* high_seq
2541 		 * is ACKed. For Reno it is MUST to prevent false
2542 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2543 		if (!tcp_any_retrans_done(sk))
2544 			tp->retrans_stamp = 0;
2545 		return true;
2546 	}
2547 	tcp_set_ca_state(sk, TCP_CA_Open);
2548 	tp->is_sack_reneg = 0;
2549 	return false;
2550 }
2551 
2552 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2553 static bool tcp_try_undo_dsack(struct sock *sk)
2554 {
2555 	struct tcp_sock *tp = tcp_sk(sk);
2556 
2557 	if (tp->undo_marker && !tp->undo_retrans) {
2558 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2559 					       tp->rack.reo_wnd_persist + 1);
2560 		DBGUNDO(sk, "D-SACK");
2561 		tcp_undo_cwnd_reduction(sk, false);
2562 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2563 		return true;
2564 	}
2565 	return false;
2566 }
2567 
2568 /* Undo during loss recovery after partial ACK or using F-RTO. */
2569 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2570 {
2571 	struct tcp_sock *tp = tcp_sk(sk);
2572 
2573 	if (frto_undo || tcp_may_undo(tp)) {
2574 		tcp_undo_cwnd_reduction(sk, true);
2575 
2576 		DBGUNDO(sk, "partial loss");
2577 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2578 		if (frto_undo)
2579 			NET_INC_STATS(sock_net(sk),
2580 					LINUX_MIB_TCPSPURIOUSRTOS);
2581 		inet_csk(sk)->icsk_retransmits = 0;
2582 		if (frto_undo || tcp_is_sack(tp)) {
2583 			tcp_set_ca_state(sk, TCP_CA_Open);
2584 			tp->is_sack_reneg = 0;
2585 		}
2586 		return true;
2587 	}
2588 	return false;
2589 }
2590 
2591 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2592  * It computes the number of packets to send (sndcnt) based on packets newly
2593  * delivered:
2594  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2595  *	cwnd reductions across a full RTT.
2596  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2597  *      But when SND_UNA is acked without further losses,
2598  *      slow starts cwnd up to ssthresh to speed up the recovery.
2599  */
2600 static void tcp_init_cwnd_reduction(struct sock *sk)
2601 {
2602 	struct tcp_sock *tp = tcp_sk(sk);
2603 
2604 	tp->high_seq = tp->snd_nxt;
2605 	tp->tlp_high_seq = 0;
2606 	tp->snd_cwnd_cnt = 0;
2607 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2608 	tp->prr_delivered = 0;
2609 	tp->prr_out = 0;
2610 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2611 	tcp_ecn_queue_cwr(tp);
2612 }
2613 
2614 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2615 {
2616 	struct tcp_sock *tp = tcp_sk(sk);
2617 	int sndcnt = 0;
2618 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2619 
2620 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2621 		return;
2622 
2623 	tp->prr_delivered += newly_acked_sacked;
2624 	if (delta < 0) {
2625 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2626 			       tp->prior_cwnd - 1;
2627 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2628 	} else {
2629 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2630 			       newly_acked_sacked);
2631 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2632 			sndcnt++;
2633 		sndcnt = min(delta, sndcnt);
2634 	}
2635 	/* Force a fast retransmit upon entering fast recovery */
2636 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2637 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2638 }
2639 
2640 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2641 {
2642 	struct tcp_sock *tp = tcp_sk(sk);
2643 
2644 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2645 		return;
2646 
2647 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2648 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2649 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2650 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2651 		tp->snd_cwnd_stamp = tcp_jiffies32;
2652 	}
2653 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2654 }
2655 
2656 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2657 void tcp_enter_cwr(struct sock *sk)
2658 {
2659 	struct tcp_sock *tp = tcp_sk(sk);
2660 
2661 	tp->prior_ssthresh = 0;
2662 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2663 		tp->undo_marker = 0;
2664 		tcp_init_cwnd_reduction(sk);
2665 		tcp_set_ca_state(sk, TCP_CA_CWR);
2666 	}
2667 }
2668 EXPORT_SYMBOL(tcp_enter_cwr);
2669 
2670 static void tcp_try_keep_open(struct sock *sk)
2671 {
2672 	struct tcp_sock *tp = tcp_sk(sk);
2673 	int state = TCP_CA_Open;
2674 
2675 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2676 		state = TCP_CA_Disorder;
2677 
2678 	if (inet_csk(sk)->icsk_ca_state != state) {
2679 		tcp_set_ca_state(sk, state);
2680 		tp->high_seq = tp->snd_nxt;
2681 	}
2682 }
2683 
2684 static void tcp_try_to_open(struct sock *sk, int flag)
2685 {
2686 	struct tcp_sock *tp = tcp_sk(sk);
2687 
2688 	tcp_verify_left_out(tp);
2689 
2690 	if (!tcp_any_retrans_done(sk))
2691 		tp->retrans_stamp = 0;
2692 
2693 	if (flag & FLAG_ECE)
2694 		tcp_enter_cwr(sk);
2695 
2696 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2697 		tcp_try_keep_open(sk);
2698 	}
2699 }
2700 
2701 static void tcp_mtup_probe_failed(struct sock *sk)
2702 {
2703 	struct inet_connection_sock *icsk = inet_csk(sk);
2704 
2705 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2706 	icsk->icsk_mtup.probe_size = 0;
2707 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2708 }
2709 
2710 static void tcp_mtup_probe_success(struct sock *sk)
2711 {
2712 	struct tcp_sock *tp = tcp_sk(sk);
2713 	struct inet_connection_sock *icsk = inet_csk(sk);
2714 	u64 val;
2715 
2716 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2717 
2718 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2719 	do_div(val, icsk->icsk_mtup.probe_size);
2720 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2721 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2722 
2723 	tp->snd_cwnd_cnt = 0;
2724 	tp->snd_cwnd_stamp = tcp_jiffies32;
2725 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2726 
2727 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2728 	icsk->icsk_mtup.probe_size = 0;
2729 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2730 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2731 }
2732 
2733 /* Do a simple retransmit without using the backoff mechanisms in
2734  * tcp_timer. This is used for path mtu discovery.
2735  * The socket is already locked here.
2736  */
2737 void tcp_simple_retransmit(struct sock *sk)
2738 {
2739 	const struct inet_connection_sock *icsk = inet_csk(sk);
2740 	struct tcp_sock *tp = tcp_sk(sk);
2741 	struct sk_buff *skb;
2742 	int mss;
2743 
2744 	/* A fastopen SYN request is stored as two separate packets within
2745 	 * the retransmit queue, this is done by tcp_send_syn_data().
2746 	 * As a result simply checking the MSS of the frames in the queue
2747 	 * will not work for the SYN packet.
2748 	 *
2749 	 * Us being here is an indication of a path MTU issue so we can
2750 	 * assume that the fastopen SYN was lost and just mark all the
2751 	 * frames in the retransmit queue as lost. We will use an MSS of
2752 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2753 	 */
2754 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2755 		mss = -1;
2756 	else
2757 		mss = tcp_current_mss(sk);
2758 
2759 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2760 		if (tcp_skb_seglen(skb) > mss)
2761 			tcp_mark_skb_lost(sk, skb);
2762 	}
2763 
2764 	tcp_clear_retrans_hints_partial(tp);
2765 
2766 	if (!tp->lost_out)
2767 		return;
2768 
2769 	if (tcp_is_reno(tp))
2770 		tcp_limit_reno_sacked(tp);
2771 
2772 	tcp_verify_left_out(tp);
2773 
2774 	/* Don't muck with the congestion window here.
2775 	 * Reason is that we do not increase amount of _data_
2776 	 * in network, but units changed and effective
2777 	 * cwnd/ssthresh really reduced now.
2778 	 */
2779 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2780 		tp->high_seq = tp->snd_nxt;
2781 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2782 		tp->prior_ssthresh = 0;
2783 		tp->undo_marker = 0;
2784 		tcp_set_ca_state(sk, TCP_CA_Loss);
2785 	}
2786 	tcp_xmit_retransmit_queue(sk);
2787 }
2788 EXPORT_SYMBOL(tcp_simple_retransmit);
2789 
2790 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2791 {
2792 	struct tcp_sock *tp = tcp_sk(sk);
2793 	int mib_idx;
2794 
2795 	if (tcp_is_reno(tp))
2796 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2797 	else
2798 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2799 
2800 	NET_INC_STATS(sock_net(sk), mib_idx);
2801 
2802 	tp->prior_ssthresh = 0;
2803 	tcp_init_undo(tp);
2804 
2805 	if (!tcp_in_cwnd_reduction(sk)) {
2806 		if (!ece_ack)
2807 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2808 		tcp_init_cwnd_reduction(sk);
2809 	}
2810 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2811 }
2812 
2813 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2814  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2815  */
2816 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2817 			     int *rexmit)
2818 {
2819 	struct tcp_sock *tp = tcp_sk(sk);
2820 	bool recovered = !before(tp->snd_una, tp->high_seq);
2821 
2822 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2823 	    tcp_try_undo_loss(sk, false))
2824 		return;
2825 
2826 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2827 		/* Step 3.b. A timeout is spurious if not all data are
2828 		 * lost, i.e., never-retransmitted data are (s)acked.
2829 		 */
2830 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2831 		    tcp_try_undo_loss(sk, true))
2832 			return;
2833 
2834 		if (after(tp->snd_nxt, tp->high_seq)) {
2835 			if (flag & FLAG_DATA_SACKED || num_dupack)
2836 				tp->frto = 0; /* Step 3.a. loss was real */
2837 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2838 			tp->high_seq = tp->snd_nxt;
2839 			/* Step 2.b. Try send new data (but deferred until cwnd
2840 			 * is updated in tcp_ack()). Otherwise fall back to
2841 			 * the conventional recovery.
2842 			 */
2843 			if (!tcp_write_queue_empty(sk) &&
2844 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2845 				*rexmit = REXMIT_NEW;
2846 				return;
2847 			}
2848 			tp->frto = 0;
2849 		}
2850 	}
2851 
2852 	if (recovered) {
2853 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2854 		tcp_try_undo_recovery(sk);
2855 		return;
2856 	}
2857 	if (tcp_is_reno(tp)) {
2858 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2859 		 * delivered. Lower inflight to clock out (re)tranmissions.
2860 		 */
2861 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2862 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2863 		else if (flag & FLAG_SND_UNA_ADVANCED)
2864 			tcp_reset_reno_sack(tp);
2865 	}
2866 	*rexmit = REXMIT_LOST;
2867 }
2868 
2869 static bool tcp_force_fast_retransmit(struct sock *sk)
2870 {
2871 	struct tcp_sock *tp = tcp_sk(sk);
2872 
2873 	return after(tcp_highest_sack_seq(tp),
2874 		     tp->snd_una + tp->reordering * tp->mss_cache);
2875 }
2876 
2877 /* Undo during fast recovery after partial ACK. */
2878 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2879 				 bool *do_lost)
2880 {
2881 	struct tcp_sock *tp = tcp_sk(sk);
2882 
2883 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2884 		/* Plain luck! Hole if filled with delayed
2885 		 * packet, rather than with a retransmit. Check reordering.
2886 		 */
2887 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2888 
2889 		/* We are getting evidence that the reordering degree is higher
2890 		 * than we realized. If there are no retransmits out then we
2891 		 * can undo. Otherwise we clock out new packets but do not
2892 		 * mark more packets lost or retransmit more.
2893 		 */
2894 		if (tp->retrans_out)
2895 			return true;
2896 
2897 		if (!tcp_any_retrans_done(sk))
2898 			tp->retrans_stamp = 0;
2899 
2900 		DBGUNDO(sk, "partial recovery");
2901 		tcp_undo_cwnd_reduction(sk, true);
2902 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2903 		tcp_try_keep_open(sk);
2904 	} else {
2905 		/* Partial ACK arrived. Force fast retransmit. */
2906 		*do_lost = tcp_force_fast_retransmit(sk);
2907 	}
2908 	return false;
2909 }
2910 
2911 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2912 {
2913 	struct tcp_sock *tp = tcp_sk(sk);
2914 
2915 	if (tcp_rtx_queue_empty(sk))
2916 		return;
2917 
2918 	if (unlikely(tcp_is_reno(tp))) {
2919 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2920 	} else if (tcp_is_rack(sk)) {
2921 		u32 prior_retrans = tp->retrans_out;
2922 
2923 		if (tcp_rack_mark_lost(sk))
2924 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2925 		if (prior_retrans > tp->retrans_out)
2926 			*ack_flag |= FLAG_LOST_RETRANS;
2927 	}
2928 }
2929 
2930 /* Process an event, which can update packets-in-flight not trivially.
2931  * Main goal of this function is to calculate new estimate for left_out,
2932  * taking into account both packets sitting in receiver's buffer and
2933  * packets lost by network.
2934  *
2935  * Besides that it updates the congestion state when packet loss or ECN
2936  * is detected. But it does not reduce the cwnd, it is done by the
2937  * congestion control later.
2938  *
2939  * It does _not_ decide what to send, it is made in function
2940  * tcp_xmit_retransmit_queue().
2941  */
2942 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2943 				  int num_dupack, int *ack_flag, int *rexmit)
2944 {
2945 	struct inet_connection_sock *icsk = inet_csk(sk);
2946 	struct tcp_sock *tp = tcp_sk(sk);
2947 	int fast_rexmit = 0, flag = *ack_flag;
2948 	bool ece_ack = flag & FLAG_ECE;
2949 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2950 				      tcp_force_fast_retransmit(sk));
2951 
2952 	if (!tp->packets_out && tp->sacked_out)
2953 		tp->sacked_out = 0;
2954 
2955 	/* Now state machine starts.
2956 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2957 	if (ece_ack)
2958 		tp->prior_ssthresh = 0;
2959 
2960 	/* B. In all the states check for reneging SACKs. */
2961 	if (tcp_check_sack_reneging(sk, flag))
2962 		return;
2963 
2964 	/* C. Check consistency of the current state. */
2965 	tcp_verify_left_out(tp);
2966 
2967 	/* D. Check state exit conditions. State can be terminated
2968 	 *    when high_seq is ACKed. */
2969 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2970 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2971 		tp->retrans_stamp = 0;
2972 	} else if (!before(tp->snd_una, tp->high_seq)) {
2973 		switch (icsk->icsk_ca_state) {
2974 		case TCP_CA_CWR:
2975 			/* CWR is to be held something *above* high_seq
2976 			 * is ACKed for CWR bit to reach receiver. */
2977 			if (tp->snd_una != tp->high_seq) {
2978 				tcp_end_cwnd_reduction(sk);
2979 				tcp_set_ca_state(sk, TCP_CA_Open);
2980 			}
2981 			break;
2982 
2983 		case TCP_CA_Recovery:
2984 			if (tcp_is_reno(tp))
2985 				tcp_reset_reno_sack(tp);
2986 			if (tcp_try_undo_recovery(sk))
2987 				return;
2988 			tcp_end_cwnd_reduction(sk);
2989 			break;
2990 		}
2991 	}
2992 
2993 	/* E. Process state. */
2994 	switch (icsk->icsk_ca_state) {
2995 	case TCP_CA_Recovery:
2996 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2997 			if (tcp_is_reno(tp))
2998 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2999 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3000 			return;
3001 
3002 		if (tcp_try_undo_dsack(sk))
3003 			tcp_try_keep_open(sk);
3004 
3005 		tcp_identify_packet_loss(sk, ack_flag);
3006 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3007 			if (!tcp_time_to_recover(sk, flag))
3008 				return;
3009 			/* Undo reverts the recovery state. If loss is evident,
3010 			 * starts a new recovery (e.g. reordering then loss);
3011 			 */
3012 			tcp_enter_recovery(sk, ece_ack);
3013 		}
3014 		break;
3015 	case TCP_CA_Loss:
3016 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3017 		tcp_identify_packet_loss(sk, ack_flag);
3018 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3019 		      (*ack_flag & FLAG_LOST_RETRANS)))
3020 			return;
3021 		/* Change state if cwnd is undone or retransmits are lost */
3022 		fallthrough;
3023 	default:
3024 		if (tcp_is_reno(tp)) {
3025 			if (flag & FLAG_SND_UNA_ADVANCED)
3026 				tcp_reset_reno_sack(tp);
3027 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3028 		}
3029 
3030 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3031 			tcp_try_undo_dsack(sk);
3032 
3033 		tcp_identify_packet_loss(sk, ack_flag);
3034 		if (!tcp_time_to_recover(sk, flag)) {
3035 			tcp_try_to_open(sk, flag);
3036 			return;
3037 		}
3038 
3039 		/* MTU probe failure: don't reduce cwnd */
3040 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3041 		    icsk->icsk_mtup.probe_size &&
3042 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3043 			tcp_mtup_probe_failed(sk);
3044 			/* Restores the reduction we did in tcp_mtup_probe() */
3045 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3046 			tcp_simple_retransmit(sk);
3047 			return;
3048 		}
3049 
3050 		/* Otherwise enter Recovery state */
3051 		tcp_enter_recovery(sk, ece_ack);
3052 		fast_rexmit = 1;
3053 	}
3054 
3055 	if (!tcp_is_rack(sk) && do_lost)
3056 		tcp_update_scoreboard(sk, fast_rexmit);
3057 	*rexmit = REXMIT_LOST;
3058 }
3059 
3060 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3061 {
3062 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3063 	struct tcp_sock *tp = tcp_sk(sk);
3064 
3065 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3066 		/* If the remote keeps returning delayed ACKs, eventually
3067 		 * the min filter would pick it up and overestimate the
3068 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3069 		 */
3070 		return;
3071 	}
3072 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3073 			   rtt_us ? : jiffies_to_usecs(1));
3074 }
3075 
3076 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3077 			       long seq_rtt_us, long sack_rtt_us,
3078 			       long ca_rtt_us, struct rate_sample *rs)
3079 {
3080 	const struct tcp_sock *tp = tcp_sk(sk);
3081 
3082 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3083 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3084 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3085 	 * is acked (RFC6298).
3086 	 */
3087 	if (seq_rtt_us < 0)
3088 		seq_rtt_us = sack_rtt_us;
3089 
3090 	/* RTTM Rule: A TSecr value received in a segment is used to
3091 	 * update the averaged RTT measurement only if the segment
3092 	 * acknowledges some new data, i.e., only if it advances the
3093 	 * left edge of the send window.
3094 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3095 	 */
3096 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3097 	    flag & FLAG_ACKED) {
3098 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3099 
3100 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3101 			if (!delta)
3102 				delta = 1;
3103 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3104 			ca_rtt_us = seq_rtt_us;
3105 		}
3106 	}
3107 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3108 	if (seq_rtt_us < 0)
3109 		return false;
3110 
3111 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3112 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3113 	 * values will be skipped with the seq_rtt_us < 0 check above.
3114 	 */
3115 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3116 	tcp_rtt_estimator(sk, seq_rtt_us);
3117 	tcp_set_rto(sk);
3118 
3119 	/* RFC6298: only reset backoff on valid RTT measurement. */
3120 	inet_csk(sk)->icsk_backoff = 0;
3121 	return true;
3122 }
3123 
3124 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3125 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3126 {
3127 	struct rate_sample rs;
3128 	long rtt_us = -1L;
3129 
3130 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3131 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3132 
3133 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3134 }
3135 
3136 
3137 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3138 {
3139 	const struct inet_connection_sock *icsk = inet_csk(sk);
3140 
3141 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3142 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3143 }
3144 
3145 /* Restart timer after forward progress on connection.
3146  * RFC2988 recommends to restart timer to now+rto.
3147  */
3148 void tcp_rearm_rto(struct sock *sk)
3149 {
3150 	const struct inet_connection_sock *icsk = inet_csk(sk);
3151 	struct tcp_sock *tp = tcp_sk(sk);
3152 
3153 	/* If the retrans timer is currently being used by Fast Open
3154 	 * for SYN-ACK retrans purpose, stay put.
3155 	 */
3156 	if (rcu_access_pointer(tp->fastopen_rsk))
3157 		return;
3158 
3159 	if (!tp->packets_out) {
3160 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3161 	} else {
3162 		u32 rto = inet_csk(sk)->icsk_rto;
3163 		/* Offset the time elapsed after installing regular RTO */
3164 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3165 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3166 			s64 delta_us = tcp_rto_delta_us(sk);
3167 			/* delta_us may not be positive if the socket is locked
3168 			 * when the retrans timer fires and is rescheduled.
3169 			 */
3170 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3171 		}
3172 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3173 				     TCP_RTO_MAX);
3174 	}
3175 }
3176 
3177 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3178 static void tcp_set_xmit_timer(struct sock *sk)
3179 {
3180 	if (!tcp_schedule_loss_probe(sk, true))
3181 		tcp_rearm_rto(sk);
3182 }
3183 
3184 /* If we get here, the whole TSO packet has not been acked. */
3185 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3186 {
3187 	struct tcp_sock *tp = tcp_sk(sk);
3188 	u32 packets_acked;
3189 
3190 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3191 
3192 	packets_acked = tcp_skb_pcount(skb);
3193 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3194 		return 0;
3195 	packets_acked -= tcp_skb_pcount(skb);
3196 
3197 	if (packets_acked) {
3198 		BUG_ON(tcp_skb_pcount(skb) == 0);
3199 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3200 	}
3201 
3202 	return packets_acked;
3203 }
3204 
3205 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3206 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3207 {
3208 	const struct skb_shared_info *shinfo;
3209 
3210 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3211 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3212 		return;
3213 
3214 	shinfo = skb_shinfo(skb);
3215 	if (!before(shinfo->tskey, prior_snd_una) &&
3216 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3217 		tcp_skb_tsorted_save(skb) {
3218 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3219 		} tcp_skb_tsorted_restore(skb);
3220 	}
3221 }
3222 
3223 /* Remove acknowledged frames from the retransmission queue. If our packet
3224  * is before the ack sequence we can discard it as it's confirmed to have
3225  * arrived at the other end.
3226  */
3227 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3228 			       u32 prior_fack, u32 prior_snd_una,
3229 			       struct tcp_sacktag_state *sack, bool ece_ack)
3230 {
3231 	const struct inet_connection_sock *icsk = inet_csk(sk);
3232 	u64 first_ackt, last_ackt;
3233 	struct tcp_sock *tp = tcp_sk(sk);
3234 	u32 prior_sacked = tp->sacked_out;
3235 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3236 	struct sk_buff *skb, *next;
3237 	bool fully_acked = true;
3238 	long sack_rtt_us = -1L;
3239 	long seq_rtt_us = -1L;
3240 	long ca_rtt_us = -1L;
3241 	u32 pkts_acked = 0;
3242 	bool rtt_update;
3243 	int flag = 0;
3244 
3245 	first_ackt = 0;
3246 
3247 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3248 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3249 		const u32 start_seq = scb->seq;
3250 		u8 sacked = scb->sacked;
3251 		u32 acked_pcount;
3252 
3253 		/* Determine how many packets and what bytes were acked, tso and else */
3254 		if (after(scb->end_seq, tp->snd_una)) {
3255 			if (tcp_skb_pcount(skb) == 1 ||
3256 			    !after(tp->snd_una, scb->seq))
3257 				break;
3258 
3259 			acked_pcount = tcp_tso_acked(sk, skb);
3260 			if (!acked_pcount)
3261 				break;
3262 			fully_acked = false;
3263 		} else {
3264 			acked_pcount = tcp_skb_pcount(skb);
3265 		}
3266 
3267 		if (unlikely(sacked & TCPCB_RETRANS)) {
3268 			if (sacked & TCPCB_SACKED_RETRANS)
3269 				tp->retrans_out -= acked_pcount;
3270 			flag |= FLAG_RETRANS_DATA_ACKED;
3271 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3272 			last_ackt = tcp_skb_timestamp_us(skb);
3273 			WARN_ON_ONCE(last_ackt == 0);
3274 			if (!first_ackt)
3275 				first_ackt = last_ackt;
3276 
3277 			if (before(start_seq, reord))
3278 				reord = start_seq;
3279 			if (!after(scb->end_seq, tp->high_seq))
3280 				flag |= FLAG_ORIG_SACK_ACKED;
3281 		}
3282 
3283 		if (sacked & TCPCB_SACKED_ACKED) {
3284 			tp->sacked_out -= acked_pcount;
3285 		} else if (tcp_is_sack(tp)) {
3286 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3287 			if (!tcp_skb_spurious_retrans(tp, skb))
3288 				tcp_rack_advance(tp, sacked, scb->end_seq,
3289 						 tcp_skb_timestamp_us(skb));
3290 		}
3291 		if (sacked & TCPCB_LOST)
3292 			tp->lost_out -= acked_pcount;
3293 
3294 		tp->packets_out -= acked_pcount;
3295 		pkts_acked += acked_pcount;
3296 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3297 
3298 		/* Initial outgoing SYN's get put onto the write_queue
3299 		 * just like anything else we transmit.  It is not
3300 		 * true data, and if we misinform our callers that
3301 		 * this ACK acks real data, we will erroneously exit
3302 		 * connection startup slow start one packet too
3303 		 * quickly.  This is severely frowned upon behavior.
3304 		 */
3305 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3306 			flag |= FLAG_DATA_ACKED;
3307 		} else {
3308 			flag |= FLAG_SYN_ACKED;
3309 			tp->retrans_stamp = 0;
3310 		}
3311 
3312 		if (!fully_acked)
3313 			break;
3314 
3315 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3316 
3317 		next = skb_rb_next(skb);
3318 		if (unlikely(skb == tp->retransmit_skb_hint))
3319 			tp->retransmit_skb_hint = NULL;
3320 		if (unlikely(skb == tp->lost_skb_hint))
3321 			tp->lost_skb_hint = NULL;
3322 		tcp_highest_sack_replace(sk, skb, next);
3323 		tcp_rtx_queue_unlink_and_free(skb, sk);
3324 	}
3325 
3326 	if (!skb)
3327 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3328 
3329 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3330 		tp->snd_up = tp->snd_una;
3331 
3332 	if (skb) {
3333 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3334 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3335 			flag |= FLAG_SACK_RENEGING;
3336 	}
3337 
3338 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3339 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3340 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3341 
3342 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3343 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3344 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3345 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3346 			/* Conservatively mark a delayed ACK. It's typically
3347 			 * from a lone runt packet over the round trip to
3348 			 * a receiver w/o out-of-order or CE events.
3349 			 */
3350 			flag |= FLAG_ACK_MAYBE_DELAYED;
3351 		}
3352 	}
3353 	if (sack->first_sackt) {
3354 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3355 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3356 	}
3357 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3358 					ca_rtt_us, sack->rate);
3359 
3360 	if (flag & FLAG_ACKED) {
3361 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3362 		if (unlikely(icsk->icsk_mtup.probe_size &&
3363 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3364 			tcp_mtup_probe_success(sk);
3365 		}
3366 
3367 		if (tcp_is_reno(tp)) {
3368 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3369 
3370 			/* If any of the cumulatively ACKed segments was
3371 			 * retransmitted, non-SACK case cannot confirm that
3372 			 * progress was due to original transmission due to
3373 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3374 			 * the packets may have been never retransmitted.
3375 			 */
3376 			if (flag & FLAG_RETRANS_DATA_ACKED)
3377 				flag &= ~FLAG_ORIG_SACK_ACKED;
3378 		} else {
3379 			int delta;
3380 
3381 			/* Non-retransmitted hole got filled? That's reordering */
3382 			if (before(reord, prior_fack))
3383 				tcp_check_sack_reordering(sk, reord, 0);
3384 
3385 			delta = prior_sacked - tp->sacked_out;
3386 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3387 		}
3388 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3389 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3390 						    tcp_skb_timestamp_us(skb))) {
3391 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3392 		 * after when the head was last (re)transmitted. Otherwise the
3393 		 * timeout may continue to extend in loss recovery.
3394 		 */
3395 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3396 	}
3397 
3398 	if (icsk->icsk_ca_ops->pkts_acked) {
3399 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3400 					     .rtt_us = sack->rate->rtt_us };
3401 
3402 		sample.in_flight = tp->mss_cache *
3403 			(tp->delivered - sack->rate->prior_delivered);
3404 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3405 	}
3406 
3407 #if FASTRETRANS_DEBUG > 0
3408 	WARN_ON((int)tp->sacked_out < 0);
3409 	WARN_ON((int)tp->lost_out < 0);
3410 	WARN_ON((int)tp->retrans_out < 0);
3411 	if (!tp->packets_out && tcp_is_sack(tp)) {
3412 		icsk = inet_csk(sk);
3413 		if (tp->lost_out) {
3414 			pr_debug("Leak l=%u %d\n",
3415 				 tp->lost_out, icsk->icsk_ca_state);
3416 			tp->lost_out = 0;
3417 		}
3418 		if (tp->sacked_out) {
3419 			pr_debug("Leak s=%u %d\n",
3420 				 tp->sacked_out, icsk->icsk_ca_state);
3421 			tp->sacked_out = 0;
3422 		}
3423 		if (tp->retrans_out) {
3424 			pr_debug("Leak r=%u %d\n",
3425 				 tp->retrans_out, icsk->icsk_ca_state);
3426 			tp->retrans_out = 0;
3427 		}
3428 	}
3429 #endif
3430 	return flag;
3431 }
3432 
3433 static void tcp_ack_probe(struct sock *sk)
3434 {
3435 	struct inet_connection_sock *icsk = inet_csk(sk);
3436 	struct sk_buff *head = tcp_send_head(sk);
3437 	const struct tcp_sock *tp = tcp_sk(sk);
3438 
3439 	/* Was it a usable window open? */
3440 	if (!head)
3441 		return;
3442 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3443 		icsk->icsk_backoff = 0;
3444 		icsk->icsk_probes_tstamp = 0;
3445 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3446 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3447 		 * This function is not for random using!
3448 		 */
3449 	} else {
3450 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3451 
3452 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3453 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3454 	}
3455 }
3456 
3457 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3458 {
3459 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3460 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3461 }
3462 
3463 /* Decide wheather to run the increase function of congestion control. */
3464 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3465 {
3466 	/* If reordering is high then always grow cwnd whenever data is
3467 	 * delivered regardless of its ordering. Otherwise stay conservative
3468 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3469 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3470 	 * cwnd in tcp_fastretrans_alert() based on more states.
3471 	 */
3472 	if (tcp_sk(sk)->reordering >
3473 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3474 		return flag & FLAG_FORWARD_PROGRESS;
3475 
3476 	return flag & FLAG_DATA_ACKED;
3477 }
3478 
3479 /* The "ultimate" congestion control function that aims to replace the rigid
3480  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3481  * It's called toward the end of processing an ACK with precise rate
3482  * information. All transmission or retransmission are delayed afterwards.
3483  */
3484 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3485 			     int flag, const struct rate_sample *rs)
3486 {
3487 	const struct inet_connection_sock *icsk = inet_csk(sk);
3488 
3489 	if (icsk->icsk_ca_ops->cong_control) {
3490 		icsk->icsk_ca_ops->cong_control(sk, rs);
3491 		return;
3492 	}
3493 
3494 	if (tcp_in_cwnd_reduction(sk)) {
3495 		/* Reduce cwnd if state mandates */
3496 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3497 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3498 		/* Advance cwnd if state allows */
3499 		tcp_cong_avoid(sk, ack, acked_sacked);
3500 	}
3501 	tcp_update_pacing_rate(sk);
3502 }
3503 
3504 /* Check that window update is acceptable.
3505  * The function assumes that snd_una<=ack<=snd_next.
3506  */
3507 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3508 					const u32 ack, const u32 ack_seq,
3509 					const u32 nwin)
3510 {
3511 	return	after(ack, tp->snd_una) ||
3512 		after(ack_seq, tp->snd_wl1) ||
3513 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3514 }
3515 
3516 /* If we update tp->snd_una, also update tp->bytes_acked */
3517 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3518 {
3519 	u32 delta = ack - tp->snd_una;
3520 
3521 	sock_owned_by_me((struct sock *)tp);
3522 	tp->bytes_acked += delta;
3523 	tp->snd_una = ack;
3524 }
3525 
3526 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3527 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3528 {
3529 	u32 delta = seq - tp->rcv_nxt;
3530 
3531 	sock_owned_by_me((struct sock *)tp);
3532 	tp->bytes_received += delta;
3533 	WRITE_ONCE(tp->rcv_nxt, seq);
3534 }
3535 
3536 /* Update our send window.
3537  *
3538  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3539  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3540  */
3541 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3542 				 u32 ack_seq)
3543 {
3544 	struct tcp_sock *tp = tcp_sk(sk);
3545 	int flag = 0;
3546 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3547 
3548 	if (likely(!tcp_hdr(skb)->syn))
3549 		nwin <<= tp->rx_opt.snd_wscale;
3550 
3551 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3552 		flag |= FLAG_WIN_UPDATE;
3553 		tcp_update_wl(tp, ack_seq);
3554 
3555 		if (tp->snd_wnd != nwin) {
3556 			tp->snd_wnd = nwin;
3557 
3558 			/* Note, it is the only place, where
3559 			 * fast path is recovered for sending TCP.
3560 			 */
3561 			tp->pred_flags = 0;
3562 			tcp_fast_path_check(sk);
3563 
3564 			if (!tcp_write_queue_empty(sk))
3565 				tcp_slow_start_after_idle_check(sk);
3566 
3567 			if (nwin > tp->max_window) {
3568 				tp->max_window = nwin;
3569 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3570 			}
3571 		}
3572 	}
3573 
3574 	tcp_snd_una_update(tp, ack);
3575 
3576 	return flag;
3577 }
3578 
3579 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3580 				   u32 *last_oow_ack_time)
3581 {
3582 	if (*last_oow_ack_time) {
3583 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3584 
3585 		if (0 <= elapsed &&
3586 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3587 			NET_INC_STATS(net, mib_idx);
3588 			return true;	/* rate-limited: don't send yet! */
3589 		}
3590 	}
3591 
3592 	*last_oow_ack_time = tcp_jiffies32;
3593 
3594 	return false;	/* not rate-limited: go ahead, send dupack now! */
3595 }
3596 
3597 /* Return true if we're currently rate-limiting out-of-window ACKs and
3598  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3599  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3600  * attacks that send repeated SYNs or ACKs for the same connection. To
3601  * do this, we do not send a duplicate SYNACK or ACK if the remote
3602  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3603  */
3604 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3605 			  int mib_idx, u32 *last_oow_ack_time)
3606 {
3607 	/* Data packets without SYNs are not likely part of an ACK loop. */
3608 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3609 	    !tcp_hdr(skb)->syn)
3610 		return false;
3611 
3612 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3613 }
3614 
3615 /* RFC 5961 7 [ACK Throttling] */
3616 static void tcp_send_challenge_ack(struct sock *sk)
3617 {
3618 	/* unprotected vars, we dont care of overwrites */
3619 	static u32 challenge_timestamp;
3620 	static unsigned int challenge_count;
3621 	struct tcp_sock *tp = tcp_sk(sk);
3622 	struct net *net = sock_net(sk);
3623 	u32 count, now;
3624 
3625 	/* First check our per-socket dupack rate limit. */
3626 	if (__tcp_oow_rate_limited(net,
3627 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3628 				   &tp->last_oow_ack_time))
3629 		return;
3630 
3631 	/* Then check host-wide RFC 5961 rate limit. */
3632 	now = jiffies / HZ;
3633 	if (now != challenge_timestamp) {
3634 		u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3635 		u32 half = (ack_limit + 1) >> 1;
3636 
3637 		challenge_timestamp = now;
3638 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3639 	}
3640 	count = READ_ONCE(challenge_count);
3641 	if (count > 0) {
3642 		WRITE_ONCE(challenge_count, count - 1);
3643 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3644 		tcp_send_ack(sk);
3645 	}
3646 }
3647 
3648 static void tcp_store_ts_recent(struct tcp_sock *tp)
3649 {
3650 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3651 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3652 }
3653 
3654 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3655 {
3656 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3657 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3658 		 * extra check below makes sure this can only happen
3659 		 * for pure ACK frames.  -DaveM
3660 		 *
3661 		 * Not only, also it occurs for expired timestamps.
3662 		 */
3663 
3664 		if (tcp_paws_check(&tp->rx_opt, 0))
3665 			tcp_store_ts_recent(tp);
3666 	}
3667 }
3668 
3669 /* This routine deals with acks during a TLP episode and ends an episode by
3670  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3671  */
3672 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3673 {
3674 	struct tcp_sock *tp = tcp_sk(sk);
3675 
3676 	if (before(ack, tp->tlp_high_seq))
3677 		return;
3678 
3679 	if (!tp->tlp_retrans) {
3680 		/* TLP of new data has been acknowledged */
3681 		tp->tlp_high_seq = 0;
3682 	} else if (flag & FLAG_DSACK_TLP) {
3683 		/* This DSACK means original and TLP probe arrived; no loss */
3684 		tp->tlp_high_seq = 0;
3685 	} else if (after(ack, tp->tlp_high_seq)) {
3686 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3687 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3688 		 */
3689 		tcp_init_cwnd_reduction(sk);
3690 		tcp_set_ca_state(sk, TCP_CA_CWR);
3691 		tcp_end_cwnd_reduction(sk);
3692 		tcp_try_keep_open(sk);
3693 		NET_INC_STATS(sock_net(sk),
3694 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3695 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3696 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3697 		/* Pure dupack: original and TLP probe arrived; no loss */
3698 		tp->tlp_high_seq = 0;
3699 	}
3700 }
3701 
3702 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3703 {
3704 	const struct inet_connection_sock *icsk = inet_csk(sk);
3705 
3706 	if (icsk->icsk_ca_ops->in_ack_event)
3707 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3708 }
3709 
3710 /* Congestion control has updated the cwnd already. So if we're in
3711  * loss recovery then now we do any new sends (for FRTO) or
3712  * retransmits (for CA_Loss or CA_recovery) that make sense.
3713  */
3714 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3715 {
3716 	struct tcp_sock *tp = tcp_sk(sk);
3717 
3718 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3719 		return;
3720 
3721 	if (unlikely(rexmit == REXMIT_NEW)) {
3722 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3723 					  TCP_NAGLE_OFF);
3724 		if (after(tp->snd_nxt, tp->high_seq))
3725 			return;
3726 		tp->frto = 0;
3727 	}
3728 	tcp_xmit_retransmit_queue(sk);
3729 }
3730 
3731 /* Returns the number of packets newly acked or sacked by the current ACK */
3732 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3733 {
3734 	const struct net *net = sock_net(sk);
3735 	struct tcp_sock *tp = tcp_sk(sk);
3736 	u32 delivered;
3737 
3738 	delivered = tp->delivered - prior_delivered;
3739 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3740 	if (flag & FLAG_ECE)
3741 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3742 
3743 	return delivered;
3744 }
3745 
3746 /* This routine deals with incoming acks, but not outgoing ones. */
3747 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3748 {
3749 	struct inet_connection_sock *icsk = inet_csk(sk);
3750 	struct tcp_sock *tp = tcp_sk(sk);
3751 	struct tcp_sacktag_state sack_state;
3752 	struct rate_sample rs = { .prior_delivered = 0 };
3753 	u32 prior_snd_una = tp->snd_una;
3754 	bool is_sack_reneg = tp->is_sack_reneg;
3755 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3756 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3757 	int num_dupack = 0;
3758 	int prior_packets = tp->packets_out;
3759 	u32 delivered = tp->delivered;
3760 	u32 lost = tp->lost;
3761 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3762 	u32 prior_fack;
3763 
3764 	sack_state.first_sackt = 0;
3765 	sack_state.rate = &rs;
3766 	sack_state.sack_delivered = 0;
3767 
3768 	/* We very likely will need to access rtx queue. */
3769 	prefetch(sk->tcp_rtx_queue.rb_node);
3770 
3771 	/* If the ack is older than previous acks
3772 	 * then we can probably ignore it.
3773 	 */
3774 	if (before(ack, prior_snd_una)) {
3775 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3776 		if (before(ack, prior_snd_una - tp->max_window)) {
3777 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3778 				tcp_send_challenge_ack(sk);
3779 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3780 		}
3781 		goto old_ack;
3782 	}
3783 
3784 	/* If the ack includes data we haven't sent yet, discard
3785 	 * this segment (RFC793 Section 3.9).
3786 	 */
3787 	if (after(ack, tp->snd_nxt))
3788 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3789 
3790 	if (after(ack, prior_snd_una)) {
3791 		flag |= FLAG_SND_UNA_ADVANCED;
3792 		icsk->icsk_retransmits = 0;
3793 
3794 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3795 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3796 			if (icsk->icsk_clean_acked)
3797 				icsk->icsk_clean_acked(sk, ack);
3798 #endif
3799 	}
3800 
3801 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3802 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3803 
3804 	/* ts_recent update must be made after we are sure that the packet
3805 	 * is in window.
3806 	 */
3807 	if (flag & FLAG_UPDATE_TS_RECENT)
3808 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3809 
3810 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3811 	    FLAG_SND_UNA_ADVANCED) {
3812 		/* Window is constant, pure forward advance.
3813 		 * No more checks are required.
3814 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3815 		 */
3816 		tcp_update_wl(tp, ack_seq);
3817 		tcp_snd_una_update(tp, ack);
3818 		flag |= FLAG_WIN_UPDATE;
3819 
3820 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3821 
3822 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3823 	} else {
3824 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3825 
3826 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3827 			flag |= FLAG_DATA;
3828 		else
3829 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3830 
3831 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3832 
3833 		if (TCP_SKB_CB(skb)->sacked)
3834 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3835 							&sack_state);
3836 
3837 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3838 			flag |= FLAG_ECE;
3839 			ack_ev_flags |= CA_ACK_ECE;
3840 		}
3841 
3842 		if (sack_state.sack_delivered)
3843 			tcp_count_delivered(tp, sack_state.sack_delivered,
3844 					    flag & FLAG_ECE);
3845 
3846 		if (flag & FLAG_WIN_UPDATE)
3847 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3848 
3849 		tcp_in_ack_event(sk, ack_ev_flags);
3850 	}
3851 
3852 	/* This is a deviation from RFC3168 since it states that:
3853 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3854 	 * the congestion window, it SHOULD set the CWR bit only on the first
3855 	 * new data packet that it transmits."
3856 	 * We accept CWR on pure ACKs to be more robust
3857 	 * with widely-deployed TCP implementations that do this.
3858 	 */
3859 	tcp_ecn_accept_cwr(sk, skb);
3860 
3861 	/* We passed data and got it acked, remove any soft error
3862 	 * log. Something worked...
3863 	 */
3864 	sk->sk_err_soft = 0;
3865 	icsk->icsk_probes_out = 0;
3866 	tp->rcv_tstamp = tcp_jiffies32;
3867 	if (!prior_packets)
3868 		goto no_queue;
3869 
3870 	/* See if we can take anything off of the retransmit queue. */
3871 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3872 				    &sack_state, flag & FLAG_ECE);
3873 
3874 	tcp_rack_update_reo_wnd(sk, &rs);
3875 
3876 	if (tp->tlp_high_seq)
3877 		tcp_process_tlp_ack(sk, ack, flag);
3878 
3879 	if (tcp_ack_is_dubious(sk, flag)) {
3880 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3881 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3882 			num_dupack = 1;
3883 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3884 			if (!(flag & FLAG_DATA))
3885 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3886 		}
3887 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3888 				      &rexmit);
3889 	}
3890 
3891 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3892 	if (flag & FLAG_SET_XMIT_TIMER)
3893 		tcp_set_xmit_timer(sk);
3894 
3895 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3896 		sk_dst_confirm(sk);
3897 
3898 	delivered = tcp_newly_delivered(sk, delivered, flag);
3899 	lost = tp->lost - lost;			/* freshly marked lost */
3900 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3901 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3902 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3903 	tcp_xmit_recovery(sk, rexmit);
3904 	return 1;
3905 
3906 no_queue:
3907 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3908 	if (flag & FLAG_DSACKING_ACK) {
3909 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3910 				      &rexmit);
3911 		tcp_newly_delivered(sk, delivered, flag);
3912 	}
3913 	/* If this ack opens up a zero window, clear backoff.  It was
3914 	 * being used to time the probes, and is probably far higher than
3915 	 * it needs to be for normal retransmission.
3916 	 */
3917 	tcp_ack_probe(sk);
3918 
3919 	if (tp->tlp_high_seq)
3920 		tcp_process_tlp_ack(sk, ack, flag);
3921 	return 1;
3922 
3923 old_ack:
3924 	/* If data was SACKed, tag it and see if we should send more data.
3925 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3926 	 */
3927 	if (TCP_SKB_CB(skb)->sacked) {
3928 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3929 						&sack_state);
3930 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3931 				      &rexmit);
3932 		tcp_newly_delivered(sk, delivered, flag);
3933 		tcp_xmit_recovery(sk, rexmit);
3934 	}
3935 
3936 	return 0;
3937 }
3938 
3939 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3940 				      bool syn, struct tcp_fastopen_cookie *foc,
3941 				      bool exp_opt)
3942 {
3943 	/* Valid only in SYN or SYN-ACK with an even length.  */
3944 	if (!foc || !syn || len < 0 || (len & 1))
3945 		return;
3946 
3947 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3948 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3949 		memcpy(foc->val, cookie, len);
3950 	else if (len != 0)
3951 		len = -1;
3952 	foc->len = len;
3953 	foc->exp = exp_opt;
3954 }
3955 
3956 static bool smc_parse_options(const struct tcphdr *th,
3957 			      struct tcp_options_received *opt_rx,
3958 			      const unsigned char *ptr,
3959 			      int opsize)
3960 {
3961 #if IS_ENABLED(CONFIG_SMC)
3962 	if (static_branch_unlikely(&tcp_have_smc)) {
3963 		if (th->syn && !(opsize & 1) &&
3964 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3965 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3966 			opt_rx->smc_ok = 1;
3967 			return true;
3968 		}
3969 	}
3970 #endif
3971 	return false;
3972 }
3973 
3974 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3975  * value on success.
3976  */
3977 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3978 {
3979 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3980 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3981 	u16 mss = 0;
3982 
3983 	while (length > 0) {
3984 		int opcode = *ptr++;
3985 		int opsize;
3986 
3987 		switch (opcode) {
3988 		case TCPOPT_EOL:
3989 			return mss;
3990 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3991 			length--;
3992 			continue;
3993 		default:
3994 			if (length < 2)
3995 				return mss;
3996 			opsize = *ptr++;
3997 			if (opsize < 2) /* "silly options" */
3998 				return mss;
3999 			if (opsize > length)
4000 				return mss;	/* fail on partial options */
4001 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4002 				u16 in_mss = get_unaligned_be16(ptr);
4003 
4004 				if (in_mss) {
4005 					if (user_mss && user_mss < in_mss)
4006 						in_mss = user_mss;
4007 					mss = in_mss;
4008 				}
4009 			}
4010 			ptr += opsize - 2;
4011 			length -= opsize;
4012 		}
4013 	}
4014 	return mss;
4015 }
4016 
4017 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4018  * But, this can also be called on packets in the established flow when
4019  * the fast version below fails.
4020  */
4021 void tcp_parse_options(const struct net *net,
4022 		       const struct sk_buff *skb,
4023 		       struct tcp_options_received *opt_rx, int estab,
4024 		       struct tcp_fastopen_cookie *foc)
4025 {
4026 	const unsigned char *ptr;
4027 	const struct tcphdr *th = tcp_hdr(skb);
4028 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4029 
4030 	ptr = (const unsigned char *)(th + 1);
4031 	opt_rx->saw_tstamp = 0;
4032 	opt_rx->saw_unknown = 0;
4033 
4034 	while (length > 0) {
4035 		int opcode = *ptr++;
4036 		int opsize;
4037 
4038 		switch (opcode) {
4039 		case TCPOPT_EOL:
4040 			return;
4041 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4042 			length--;
4043 			continue;
4044 		default:
4045 			if (length < 2)
4046 				return;
4047 			opsize = *ptr++;
4048 			if (opsize < 2) /* "silly options" */
4049 				return;
4050 			if (opsize > length)
4051 				return;	/* don't parse partial options */
4052 			switch (opcode) {
4053 			case TCPOPT_MSS:
4054 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4055 					u16 in_mss = get_unaligned_be16(ptr);
4056 					if (in_mss) {
4057 						if (opt_rx->user_mss &&
4058 						    opt_rx->user_mss < in_mss)
4059 							in_mss = opt_rx->user_mss;
4060 						opt_rx->mss_clamp = in_mss;
4061 					}
4062 				}
4063 				break;
4064 			case TCPOPT_WINDOW:
4065 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4066 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4067 					__u8 snd_wscale = *(__u8 *)ptr;
4068 					opt_rx->wscale_ok = 1;
4069 					if (snd_wscale > TCP_MAX_WSCALE) {
4070 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4071 								     __func__,
4072 								     snd_wscale,
4073 								     TCP_MAX_WSCALE);
4074 						snd_wscale = TCP_MAX_WSCALE;
4075 					}
4076 					opt_rx->snd_wscale = snd_wscale;
4077 				}
4078 				break;
4079 			case TCPOPT_TIMESTAMP:
4080 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4081 				    ((estab && opt_rx->tstamp_ok) ||
4082 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4083 					opt_rx->saw_tstamp = 1;
4084 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4085 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4086 				}
4087 				break;
4088 			case TCPOPT_SACK_PERM:
4089 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4090 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4091 					opt_rx->sack_ok = TCP_SACK_SEEN;
4092 					tcp_sack_reset(opt_rx);
4093 				}
4094 				break;
4095 
4096 			case TCPOPT_SACK:
4097 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4098 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4099 				   opt_rx->sack_ok) {
4100 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4101 				}
4102 				break;
4103 #ifdef CONFIG_TCP_MD5SIG
4104 			case TCPOPT_MD5SIG:
4105 				/*
4106 				 * The MD5 Hash has already been
4107 				 * checked (see tcp_v{4,6}_do_rcv()).
4108 				 */
4109 				break;
4110 #endif
4111 			case TCPOPT_FASTOPEN:
4112 				tcp_parse_fastopen_option(
4113 					opsize - TCPOLEN_FASTOPEN_BASE,
4114 					ptr, th->syn, foc, false);
4115 				break;
4116 
4117 			case TCPOPT_EXP:
4118 				/* Fast Open option shares code 254 using a
4119 				 * 16 bits magic number.
4120 				 */
4121 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4122 				    get_unaligned_be16(ptr) ==
4123 				    TCPOPT_FASTOPEN_MAGIC) {
4124 					tcp_parse_fastopen_option(opsize -
4125 						TCPOLEN_EXP_FASTOPEN_BASE,
4126 						ptr + 2, th->syn, foc, true);
4127 					break;
4128 				}
4129 
4130 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4131 					break;
4132 
4133 				opt_rx->saw_unknown = 1;
4134 				break;
4135 
4136 			default:
4137 				opt_rx->saw_unknown = 1;
4138 			}
4139 			ptr += opsize-2;
4140 			length -= opsize;
4141 		}
4142 	}
4143 }
4144 EXPORT_SYMBOL(tcp_parse_options);
4145 
4146 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4147 {
4148 	const __be32 *ptr = (const __be32 *)(th + 1);
4149 
4150 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4151 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4152 		tp->rx_opt.saw_tstamp = 1;
4153 		++ptr;
4154 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4155 		++ptr;
4156 		if (*ptr)
4157 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4158 		else
4159 			tp->rx_opt.rcv_tsecr = 0;
4160 		return true;
4161 	}
4162 	return false;
4163 }
4164 
4165 /* Fast parse options. This hopes to only see timestamps.
4166  * If it is wrong it falls back on tcp_parse_options().
4167  */
4168 static bool tcp_fast_parse_options(const struct net *net,
4169 				   const struct sk_buff *skb,
4170 				   const struct tcphdr *th, struct tcp_sock *tp)
4171 {
4172 	/* In the spirit of fast parsing, compare doff directly to constant
4173 	 * values.  Because equality is used, short doff can be ignored here.
4174 	 */
4175 	if (th->doff == (sizeof(*th) / 4)) {
4176 		tp->rx_opt.saw_tstamp = 0;
4177 		return false;
4178 	} else if (tp->rx_opt.tstamp_ok &&
4179 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4180 		if (tcp_parse_aligned_timestamp(tp, th))
4181 			return true;
4182 	}
4183 
4184 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4185 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4186 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4187 
4188 	return true;
4189 }
4190 
4191 #ifdef CONFIG_TCP_MD5SIG
4192 /*
4193  * Parse MD5 Signature option
4194  */
4195 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4196 {
4197 	int length = (th->doff << 2) - sizeof(*th);
4198 	const u8 *ptr = (const u8 *)(th + 1);
4199 
4200 	/* If not enough data remaining, we can short cut */
4201 	while (length >= TCPOLEN_MD5SIG) {
4202 		int opcode = *ptr++;
4203 		int opsize;
4204 
4205 		switch (opcode) {
4206 		case TCPOPT_EOL:
4207 			return NULL;
4208 		case TCPOPT_NOP:
4209 			length--;
4210 			continue;
4211 		default:
4212 			opsize = *ptr++;
4213 			if (opsize < 2 || opsize > length)
4214 				return NULL;
4215 			if (opcode == TCPOPT_MD5SIG)
4216 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4217 		}
4218 		ptr += opsize - 2;
4219 		length -= opsize;
4220 	}
4221 	return NULL;
4222 }
4223 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4224 #endif
4225 
4226 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4227  *
4228  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4229  * it can pass through stack. So, the following predicate verifies that
4230  * this segment is not used for anything but congestion avoidance or
4231  * fast retransmit. Moreover, we even are able to eliminate most of such
4232  * second order effects, if we apply some small "replay" window (~RTO)
4233  * to timestamp space.
4234  *
4235  * All these measures still do not guarantee that we reject wrapped ACKs
4236  * on networks with high bandwidth, when sequence space is recycled fastly,
4237  * but it guarantees that such events will be very rare and do not affect
4238  * connection seriously. This doesn't look nice, but alas, PAWS is really
4239  * buggy extension.
4240  *
4241  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4242  * states that events when retransmit arrives after original data are rare.
4243  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4244  * the biggest problem on large power networks even with minor reordering.
4245  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4246  * up to bandwidth of 18Gigabit/sec. 8) ]
4247  */
4248 
4249 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4250 {
4251 	const struct tcp_sock *tp = tcp_sk(sk);
4252 	const struct tcphdr *th = tcp_hdr(skb);
4253 	u32 seq = TCP_SKB_CB(skb)->seq;
4254 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4255 
4256 	return (/* 1. Pure ACK with correct sequence number. */
4257 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4258 
4259 		/* 2. ... and duplicate ACK. */
4260 		ack == tp->snd_una &&
4261 
4262 		/* 3. ... and does not update window. */
4263 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4264 
4265 		/* 4. ... and sits in replay window. */
4266 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4267 }
4268 
4269 static inline bool tcp_paws_discard(const struct sock *sk,
4270 				   const struct sk_buff *skb)
4271 {
4272 	const struct tcp_sock *tp = tcp_sk(sk);
4273 
4274 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4275 	       !tcp_disordered_ack(sk, skb);
4276 }
4277 
4278 /* Check segment sequence number for validity.
4279  *
4280  * Segment controls are considered valid, if the segment
4281  * fits to the window after truncation to the window. Acceptability
4282  * of data (and SYN, FIN, of course) is checked separately.
4283  * See tcp_data_queue(), for example.
4284  *
4285  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4286  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4287  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4288  * (borrowed from freebsd)
4289  */
4290 
4291 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4292 {
4293 	return	!before(end_seq, tp->rcv_wup) &&
4294 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4295 }
4296 
4297 /* When we get a reset we do this. */
4298 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4299 {
4300 	trace_tcp_receive_reset(sk);
4301 
4302 	/* mptcp can't tell us to ignore reset pkts,
4303 	 * so just ignore the return value of mptcp_incoming_options().
4304 	 */
4305 	if (sk_is_mptcp(sk))
4306 		mptcp_incoming_options(sk, skb);
4307 
4308 	/* We want the right error as BSD sees it (and indeed as we do). */
4309 	switch (sk->sk_state) {
4310 	case TCP_SYN_SENT:
4311 		sk->sk_err = ECONNREFUSED;
4312 		break;
4313 	case TCP_CLOSE_WAIT:
4314 		sk->sk_err = EPIPE;
4315 		break;
4316 	case TCP_CLOSE:
4317 		return;
4318 	default:
4319 		sk->sk_err = ECONNRESET;
4320 	}
4321 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4322 	smp_wmb();
4323 
4324 	tcp_write_queue_purge(sk);
4325 	tcp_done(sk);
4326 
4327 	if (!sock_flag(sk, SOCK_DEAD))
4328 		sk_error_report(sk);
4329 }
4330 
4331 /*
4332  * 	Process the FIN bit. This now behaves as it is supposed to work
4333  *	and the FIN takes effect when it is validly part of sequence
4334  *	space. Not before when we get holes.
4335  *
4336  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4337  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4338  *	TIME-WAIT)
4339  *
4340  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4341  *	close and we go into CLOSING (and later onto TIME-WAIT)
4342  *
4343  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4344  */
4345 void tcp_fin(struct sock *sk)
4346 {
4347 	struct tcp_sock *tp = tcp_sk(sk);
4348 
4349 	inet_csk_schedule_ack(sk);
4350 
4351 	sk->sk_shutdown |= RCV_SHUTDOWN;
4352 	sock_set_flag(sk, SOCK_DONE);
4353 
4354 	switch (sk->sk_state) {
4355 	case TCP_SYN_RECV:
4356 	case TCP_ESTABLISHED:
4357 		/* Move to CLOSE_WAIT */
4358 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4359 		inet_csk_enter_pingpong_mode(sk);
4360 		break;
4361 
4362 	case TCP_CLOSE_WAIT:
4363 	case TCP_CLOSING:
4364 		/* Received a retransmission of the FIN, do
4365 		 * nothing.
4366 		 */
4367 		break;
4368 	case TCP_LAST_ACK:
4369 		/* RFC793: Remain in the LAST-ACK state. */
4370 		break;
4371 
4372 	case TCP_FIN_WAIT1:
4373 		/* This case occurs when a simultaneous close
4374 		 * happens, we must ack the received FIN and
4375 		 * enter the CLOSING state.
4376 		 */
4377 		tcp_send_ack(sk);
4378 		tcp_set_state(sk, TCP_CLOSING);
4379 		break;
4380 	case TCP_FIN_WAIT2:
4381 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4382 		tcp_send_ack(sk);
4383 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4384 		break;
4385 	default:
4386 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4387 		 * cases we should never reach this piece of code.
4388 		 */
4389 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4390 		       __func__, sk->sk_state);
4391 		break;
4392 	}
4393 
4394 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4395 	 * Probably, we should reset in this case. For now drop them.
4396 	 */
4397 	skb_rbtree_purge(&tp->out_of_order_queue);
4398 	if (tcp_is_sack(tp))
4399 		tcp_sack_reset(&tp->rx_opt);
4400 	sk_mem_reclaim(sk);
4401 
4402 	if (!sock_flag(sk, SOCK_DEAD)) {
4403 		sk->sk_state_change(sk);
4404 
4405 		/* Do not send POLL_HUP for half duplex close. */
4406 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4407 		    sk->sk_state == TCP_CLOSE)
4408 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4409 		else
4410 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4411 	}
4412 }
4413 
4414 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4415 				  u32 end_seq)
4416 {
4417 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4418 		if (before(seq, sp->start_seq))
4419 			sp->start_seq = seq;
4420 		if (after(end_seq, sp->end_seq))
4421 			sp->end_seq = end_seq;
4422 		return true;
4423 	}
4424 	return false;
4425 }
4426 
4427 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4428 {
4429 	struct tcp_sock *tp = tcp_sk(sk);
4430 
4431 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4432 		int mib_idx;
4433 
4434 		if (before(seq, tp->rcv_nxt))
4435 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4436 		else
4437 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4438 
4439 		NET_INC_STATS(sock_net(sk), mib_idx);
4440 
4441 		tp->rx_opt.dsack = 1;
4442 		tp->duplicate_sack[0].start_seq = seq;
4443 		tp->duplicate_sack[0].end_seq = end_seq;
4444 	}
4445 }
4446 
4447 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4448 {
4449 	struct tcp_sock *tp = tcp_sk(sk);
4450 
4451 	if (!tp->rx_opt.dsack)
4452 		tcp_dsack_set(sk, seq, end_seq);
4453 	else
4454 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4455 }
4456 
4457 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4458 {
4459 	/* When the ACK path fails or drops most ACKs, the sender would
4460 	 * timeout and spuriously retransmit the same segment repeatedly.
4461 	 * The receiver remembers and reflects via DSACKs. Leverage the
4462 	 * DSACK state and change the txhash to re-route speculatively.
4463 	 */
4464 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4465 	    sk_rethink_txhash(sk))
4466 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4467 }
4468 
4469 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4470 {
4471 	struct tcp_sock *tp = tcp_sk(sk);
4472 
4473 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4474 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4475 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4476 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4477 
4478 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4479 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4480 
4481 			tcp_rcv_spurious_retrans(sk, skb);
4482 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4483 				end_seq = tp->rcv_nxt;
4484 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4485 		}
4486 	}
4487 
4488 	tcp_send_ack(sk);
4489 }
4490 
4491 /* These routines update the SACK block as out-of-order packets arrive or
4492  * in-order packets close up the sequence space.
4493  */
4494 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4495 {
4496 	int this_sack;
4497 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4498 	struct tcp_sack_block *swalk = sp + 1;
4499 
4500 	/* See if the recent change to the first SACK eats into
4501 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4502 	 */
4503 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4504 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4505 			int i;
4506 
4507 			/* Zap SWALK, by moving every further SACK up by one slot.
4508 			 * Decrease num_sacks.
4509 			 */
4510 			tp->rx_opt.num_sacks--;
4511 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4512 				sp[i] = sp[i + 1];
4513 			continue;
4514 		}
4515 		this_sack++;
4516 		swalk++;
4517 	}
4518 }
4519 
4520 static void tcp_sack_compress_send_ack(struct sock *sk)
4521 {
4522 	struct tcp_sock *tp = tcp_sk(sk);
4523 
4524 	if (!tp->compressed_ack)
4525 		return;
4526 
4527 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4528 		__sock_put(sk);
4529 
4530 	/* Since we have to send one ack finally,
4531 	 * substract one from tp->compressed_ack to keep
4532 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4533 	 */
4534 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4535 		      tp->compressed_ack - 1);
4536 
4537 	tp->compressed_ack = 0;
4538 	tcp_send_ack(sk);
4539 }
4540 
4541 /* Reasonable amount of sack blocks included in TCP SACK option
4542  * The max is 4, but this becomes 3 if TCP timestamps are there.
4543  * Given that SACK packets might be lost, be conservative and use 2.
4544  */
4545 #define TCP_SACK_BLOCKS_EXPECTED 2
4546 
4547 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4548 {
4549 	struct tcp_sock *tp = tcp_sk(sk);
4550 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4551 	int cur_sacks = tp->rx_opt.num_sacks;
4552 	int this_sack;
4553 
4554 	if (!cur_sacks)
4555 		goto new_sack;
4556 
4557 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4558 		if (tcp_sack_extend(sp, seq, end_seq)) {
4559 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4560 				tcp_sack_compress_send_ack(sk);
4561 			/* Rotate this_sack to the first one. */
4562 			for (; this_sack > 0; this_sack--, sp--)
4563 				swap(*sp, *(sp - 1));
4564 			if (cur_sacks > 1)
4565 				tcp_sack_maybe_coalesce(tp);
4566 			return;
4567 		}
4568 	}
4569 
4570 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4571 		tcp_sack_compress_send_ack(sk);
4572 
4573 	/* Could not find an adjacent existing SACK, build a new one,
4574 	 * put it at the front, and shift everyone else down.  We
4575 	 * always know there is at least one SACK present already here.
4576 	 *
4577 	 * If the sack array is full, forget about the last one.
4578 	 */
4579 	if (this_sack >= TCP_NUM_SACKS) {
4580 		this_sack--;
4581 		tp->rx_opt.num_sacks--;
4582 		sp--;
4583 	}
4584 	for (; this_sack > 0; this_sack--, sp--)
4585 		*sp = *(sp - 1);
4586 
4587 new_sack:
4588 	/* Build the new head SACK, and we're done. */
4589 	sp->start_seq = seq;
4590 	sp->end_seq = end_seq;
4591 	tp->rx_opt.num_sacks++;
4592 }
4593 
4594 /* RCV.NXT advances, some SACKs should be eaten. */
4595 
4596 static void tcp_sack_remove(struct tcp_sock *tp)
4597 {
4598 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4599 	int num_sacks = tp->rx_opt.num_sacks;
4600 	int this_sack;
4601 
4602 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4603 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4604 		tp->rx_opt.num_sacks = 0;
4605 		return;
4606 	}
4607 
4608 	for (this_sack = 0; this_sack < num_sacks;) {
4609 		/* Check if the start of the sack is covered by RCV.NXT. */
4610 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4611 			int i;
4612 
4613 			/* RCV.NXT must cover all the block! */
4614 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4615 
4616 			/* Zap this SACK, by moving forward any other SACKS. */
4617 			for (i = this_sack+1; i < num_sacks; i++)
4618 				tp->selective_acks[i-1] = tp->selective_acks[i];
4619 			num_sacks--;
4620 			continue;
4621 		}
4622 		this_sack++;
4623 		sp++;
4624 	}
4625 	tp->rx_opt.num_sacks = num_sacks;
4626 }
4627 
4628 /**
4629  * tcp_try_coalesce - try to merge skb to prior one
4630  * @sk: socket
4631  * @to: prior buffer
4632  * @from: buffer to add in queue
4633  * @fragstolen: pointer to boolean
4634  *
4635  * Before queueing skb @from after @to, try to merge them
4636  * to reduce overall memory use and queue lengths, if cost is small.
4637  * Packets in ofo or receive queues can stay a long time.
4638  * Better try to coalesce them right now to avoid future collapses.
4639  * Returns true if caller should free @from instead of queueing it
4640  */
4641 static bool tcp_try_coalesce(struct sock *sk,
4642 			     struct sk_buff *to,
4643 			     struct sk_buff *from,
4644 			     bool *fragstolen)
4645 {
4646 	int delta;
4647 
4648 	*fragstolen = false;
4649 
4650 	/* Its possible this segment overlaps with prior segment in queue */
4651 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4652 		return false;
4653 
4654 	if (!mptcp_skb_can_collapse(to, from))
4655 		return false;
4656 
4657 #ifdef CONFIG_TLS_DEVICE
4658 	if (from->decrypted != to->decrypted)
4659 		return false;
4660 #endif
4661 
4662 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4663 		return false;
4664 
4665 	atomic_add(delta, &sk->sk_rmem_alloc);
4666 	sk_mem_charge(sk, delta);
4667 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4668 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4669 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4670 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4671 
4672 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4673 		TCP_SKB_CB(to)->has_rxtstamp = true;
4674 		to->tstamp = from->tstamp;
4675 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4676 	}
4677 
4678 	return true;
4679 }
4680 
4681 static bool tcp_ooo_try_coalesce(struct sock *sk,
4682 			     struct sk_buff *to,
4683 			     struct sk_buff *from,
4684 			     bool *fragstolen)
4685 {
4686 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4687 
4688 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4689 	if (res) {
4690 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4691 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4692 
4693 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4694 	}
4695 	return res;
4696 }
4697 
4698 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4699 			    enum skb_drop_reason reason)
4700 {
4701 	sk_drops_add(sk, skb);
4702 	kfree_skb_reason(skb, reason);
4703 }
4704 
4705 /* This one checks to see if we can put data from the
4706  * out_of_order queue into the receive_queue.
4707  */
4708 static void tcp_ofo_queue(struct sock *sk)
4709 {
4710 	struct tcp_sock *tp = tcp_sk(sk);
4711 	__u32 dsack_high = tp->rcv_nxt;
4712 	bool fin, fragstolen, eaten;
4713 	struct sk_buff *skb, *tail;
4714 	struct rb_node *p;
4715 
4716 	p = rb_first(&tp->out_of_order_queue);
4717 	while (p) {
4718 		skb = rb_to_skb(p);
4719 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4720 			break;
4721 
4722 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4723 			__u32 dsack = dsack_high;
4724 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4725 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4726 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4727 		}
4728 		p = rb_next(p);
4729 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4730 
4731 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4732 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4733 			continue;
4734 		}
4735 
4736 		tail = skb_peek_tail(&sk->sk_receive_queue);
4737 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4738 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4739 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4740 		if (!eaten)
4741 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4742 		else
4743 			kfree_skb_partial(skb, fragstolen);
4744 
4745 		if (unlikely(fin)) {
4746 			tcp_fin(sk);
4747 			/* tcp_fin() purges tp->out_of_order_queue,
4748 			 * so we must end this loop right now.
4749 			 */
4750 			break;
4751 		}
4752 	}
4753 }
4754 
4755 static bool tcp_prune_ofo_queue(struct sock *sk);
4756 static int tcp_prune_queue(struct sock *sk);
4757 
4758 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4759 				 unsigned int size)
4760 {
4761 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4762 	    !sk_rmem_schedule(sk, skb, size)) {
4763 
4764 		if (tcp_prune_queue(sk) < 0)
4765 			return -1;
4766 
4767 		while (!sk_rmem_schedule(sk, skb, size)) {
4768 			if (!tcp_prune_ofo_queue(sk))
4769 				return -1;
4770 		}
4771 	}
4772 	return 0;
4773 }
4774 
4775 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4776 {
4777 	struct tcp_sock *tp = tcp_sk(sk);
4778 	struct rb_node **p, *parent;
4779 	struct sk_buff *skb1;
4780 	u32 seq, end_seq;
4781 	bool fragstolen;
4782 
4783 	tcp_ecn_check_ce(sk, skb);
4784 
4785 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4786 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4787 		sk->sk_data_ready(sk);
4788 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4789 		return;
4790 	}
4791 
4792 	/* Disable header prediction. */
4793 	tp->pred_flags = 0;
4794 	inet_csk_schedule_ack(sk);
4795 
4796 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4797 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4798 	seq = TCP_SKB_CB(skb)->seq;
4799 	end_seq = TCP_SKB_CB(skb)->end_seq;
4800 
4801 	p = &tp->out_of_order_queue.rb_node;
4802 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4803 		/* Initial out of order segment, build 1 SACK. */
4804 		if (tcp_is_sack(tp)) {
4805 			tp->rx_opt.num_sacks = 1;
4806 			tp->selective_acks[0].start_seq = seq;
4807 			tp->selective_acks[0].end_seq = end_seq;
4808 		}
4809 		rb_link_node(&skb->rbnode, NULL, p);
4810 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4811 		tp->ooo_last_skb = skb;
4812 		goto end;
4813 	}
4814 
4815 	/* In the typical case, we are adding an skb to the end of the list.
4816 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4817 	 */
4818 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4819 				 skb, &fragstolen)) {
4820 coalesce_done:
4821 		/* For non sack flows, do not grow window to force DUPACK
4822 		 * and trigger fast retransmit.
4823 		 */
4824 		if (tcp_is_sack(tp))
4825 			tcp_grow_window(sk, skb, true);
4826 		kfree_skb_partial(skb, fragstolen);
4827 		skb = NULL;
4828 		goto add_sack;
4829 	}
4830 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4831 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4832 		parent = &tp->ooo_last_skb->rbnode;
4833 		p = &parent->rb_right;
4834 		goto insert;
4835 	}
4836 
4837 	/* Find place to insert this segment. Handle overlaps on the way. */
4838 	parent = NULL;
4839 	while (*p) {
4840 		parent = *p;
4841 		skb1 = rb_to_skb(parent);
4842 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4843 			p = &parent->rb_left;
4844 			continue;
4845 		}
4846 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4847 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4848 				/* All the bits are present. Drop. */
4849 				NET_INC_STATS(sock_net(sk),
4850 					      LINUX_MIB_TCPOFOMERGE);
4851 				tcp_drop_reason(sk, skb,
4852 						SKB_DROP_REASON_TCP_OFOMERGE);
4853 				skb = NULL;
4854 				tcp_dsack_set(sk, seq, end_seq);
4855 				goto add_sack;
4856 			}
4857 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4858 				/* Partial overlap. */
4859 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4860 			} else {
4861 				/* skb's seq == skb1's seq and skb covers skb1.
4862 				 * Replace skb1 with skb.
4863 				 */
4864 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4865 						&tp->out_of_order_queue);
4866 				tcp_dsack_extend(sk,
4867 						 TCP_SKB_CB(skb1)->seq,
4868 						 TCP_SKB_CB(skb1)->end_seq);
4869 				NET_INC_STATS(sock_net(sk),
4870 					      LINUX_MIB_TCPOFOMERGE);
4871 				tcp_drop_reason(sk, skb1,
4872 						SKB_DROP_REASON_TCP_OFOMERGE);
4873 				goto merge_right;
4874 			}
4875 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4876 						skb, &fragstolen)) {
4877 			goto coalesce_done;
4878 		}
4879 		p = &parent->rb_right;
4880 	}
4881 insert:
4882 	/* Insert segment into RB tree. */
4883 	rb_link_node(&skb->rbnode, parent, p);
4884 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4885 
4886 merge_right:
4887 	/* Remove other segments covered by skb. */
4888 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4889 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4890 			break;
4891 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4892 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4893 					 end_seq);
4894 			break;
4895 		}
4896 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4897 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4898 				 TCP_SKB_CB(skb1)->end_seq);
4899 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4900 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4901 	}
4902 	/* If there is no skb after us, we are the last_skb ! */
4903 	if (!skb1)
4904 		tp->ooo_last_skb = skb;
4905 
4906 add_sack:
4907 	if (tcp_is_sack(tp))
4908 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4909 end:
4910 	if (skb) {
4911 		/* For non sack flows, do not grow window to force DUPACK
4912 		 * and trigger fast retransmit.
4913 		 */
4914 		if (tcp_is_sack(tp))
4915 			tcp_grow_window(sk, skb, false);
4916 		skb_condense(skb);
4917 		skb_set_owner_r(skb, sk);
4918 	}
4919 }
4920 
4921 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4922 				      bool *fragstolen)
4923 {
4924 	int eaten;
4925 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4926 
4927 	eaten = (tail &&
4928 		 tcp_try_coalesce(sk, tail,
4929 				  skb, fragstolen)) ? 1 : 0;
4930 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4931 	if (!eaten) {
4932 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4933 		skb_set_owner_r(skb, sk);
4934 	}
4935 	return eaten;
4936 }
4937 
4938 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4939 {
4940 	struct sk_buff *skb;
4941 	int err = -ENOMEM;
4942 	int data_len = 0;
4943 	bool fragstolen;
4944 
4945 	if (size == 0)
4946 		return 0;
4947 
4948 	if (size > PAGE_SIZE) {
4949 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4950 
4951 		data_len = npages << PAGE_SHIFT;
4952 		size = data_len + (size & ~PAGE_MASK);
4953 	}
4954 	skb = alloc_skb_with_frags(size - data_len, data_len,
4955 				   PAGE_ALLOC_COSTLY_ORDER,
4956 				   &err, sk->sk_allocation);
4957 	if (!skb)
4958 		goto err;
4959 
4960 	skb_put(skb, size - data_len);
4961 	skb->data_len = data_len;
4962 	skb->len = size;
4963 
4964 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4965 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4966 		goto err_free;
4967 	}
4968 
4969 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4970 	if (err)
4971 		goto err_free;
4972 
4973 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4974 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4975 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4976 
4977 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4978 		WARN_ON_ONCE(fragstolen); /* should not happen */
4979 		__kfree_skb(skb);
4980 	}
4981 	return size;
4982 
4983 err_free:
4984 	kfree_skb(skb);
4985 err:
4986 	return err;
4987 
4988 }
4989 
4990 void tcp_data_ready(struct sock *sk)
4991 {
4992 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4993 		sk->sk_data_ready(sk);
4994 }
4995 
4996 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4997 {
4998 	struct tcp_sock *tp = tcp_sk(sk);
4999 	enum skb_drop_reason reason;
5000 	bool fragstolen;
5001 	int eaten;
5002 
5003 	/* If a subflow has been reset, the packet should not continue
5004 	 * to be processed, drop the packet.
5005 	 */
5006 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5007 		__kfree_skb(skb);
5008 		return;
5009 	}
5010 
5011 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5012 		__kfree_skb(skb);
5013 		return;
5014 	}
5015 	skb_dst_drop(skb);
5016 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5017 
5018 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5019 	tp->rx_opt.dsack = 0;
5020 
5021 	/*  Queue data for delivery to the user.
5022 	 *  Packets in sequence go to the receive queue.
5023 	 *  Out of sequence packets to the out_of_order_queue.
5024 	 */
5025 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5026 		if (tcp_receive_window(tp) == 0) {
5027 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5028 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5029 			goto out_of_window;
5030 		}
5031 
5032 		/* Ok. In sequence. In window. */
5033 queue_and_out:
5034 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5035 			sk_forced_mem_schedule(sk, skb->truesize);
5036 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5037 			reason = SKB_DROP_REASON_PROTO_MEM;
5038 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5039 			sk->sk_data_ready(sk);
5040 			goto drop;
5041 		}
5042 
5043 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5044 		if (skb->len)
5045 			tcp_event_data_recv(sk, skb);
5046 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5047 			tcp_fin(sk);
5048 
5049 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5050 			tcp_ofo_queue(sk);
5051 
5052 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5053 			 * gap in queue is filled.
5054 			 */
5055 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5056 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5057 		}
5058 
5059 		if (tp->rx_opt.num_sacks)
5060 			tcp_sack_remove(tp);
5061 
5062 		tcp_fast_path_check(sk);
5063 
5064 		if (eaten > 0)
5065 			kfree_skb_partial(skb, fragstolen);
5066 		if (!sock_flag(sk, SOCK_DEAD))
5067 			tcp_data_ready(sk);
5068 		return;
5069 	}
5070 
5071 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5072 		tcp_rcv_spurious_retrans(sk, skb);
5073 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5074 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5075 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5076 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5077 
5078 out_of_window:
5079 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5080 		inet_csk_schedule_ack(sk);
5081 drop:
5082 		tcp_drop_reason(sk, skb, reason);
5083 		return;
5084 	}
5085 
5086 	/* Out of window. F.e. zero window probe. */
5087 	if (!before(TCP_SKB_CB(skb)->seq,
5088 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5089 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5090 		goto out_of_window;
5091 	}
5092 
5093 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5094 		/* Partial packet, seq < rcv_next < end_seq */
5095 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5096 
5097 		/* If window is closed, drop tail of packet. But after
5098 		 * remembering D-SACK for its head made in previous line.
5099 		 */
5100 		if (!tcp_receive_window(tp)) {
5101 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5102 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5103 			goto out_of_window;
5104 		}
5105 		goto queue_and_out;
5106 	}
5107 
5108 	tcp_data_queue_ofo(sk, skb);
5109 }
5110 
5111 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5112 {
5113 	if (list)
5114 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5115 
5116 	return skb_rb_next(skb);
5117 }
5118 
5119 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5120 					struct sk_buff_head *list,
5121 					struct rb_root *root)
5122 {
5123 	struct sk_buff *next = tcp_skb_next(skb, list);
5124 
5125 	if (list)
5126 		__skb_unlink(skb, list);
5127 	else
5128 		rb_erase(&skb->rbnode, root);
5129 
5130 	__kfree_skb(skb);
5131 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5132 
5133 	return next;
5134 }
5135 
5136 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5137 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5138 {
5139 	struct rb_node **p = &root->rb_node;
5140 	struct rb_node *parent = NULL;
5141 	struct sk_buff *skb1;
5142 
5143 	while (*p) {
5144 		parent = *p;
5145 		skb1 = rb_to_skb(parent);
5146 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5147 			p = &parent->rb_left;
5148 		else
5149 			p = &parent->rb_right;
5150 	}
5151 	rb_link_node(&skb->rbnode, parent, p);
5152 	rb_insert_color(&skb->rbnode, root);
5153 }
5154 
5155 /* Collapse contiguous sequence of skbs head..tail with
5156  * sequence numbers start..end.
5157  *
5158  * If tail is NULL, this means until the end of the queue.
5159  *
5160  * Segments with FIN/SYN are not collapsed (only because this
5161  * simplifies code)
5162  */
5163 static void
5164 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5165 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5166 {
5167 	struct sk_buff *skb = head, *n;
5168 	struct sk_buff_head tmp;
5169 	bool end_of_skbs;
5170 
5171 	/* First, check that queue is collapsible and find
5172 	 * the point where collapsing can be useful.
5173 	 */
5174 restart:
5175 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5176 		n = tcp_skb_next(skb, list);
5177 
5178 		/* No new bits? It is possible on ofo queue. */
5179 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5180 			skb = tcp_collapse_one(sk, skb, list, root);
5181 			if (!skb)
5182 				break;
5183 			goto restart;
5184 		}
5185 
5186 		/* The first skb to collapse is:
5187 		 * - not SYN/FIN and
5188 		 * - bloated or contains data before "start" or
5189 		 *   overlaps to the next one and mptcp allow collapsing.
5190 		 */
5191 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5192 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5193 		     before(TCP_SKB_CB(skb)->seq, start))) {
5194 			end_of_skbs = false;
5195 			break;
5196 		}
5197 
5198 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5199 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5200 			end_of_skbs = false;
5201 			break;
5202 		}
5203 
5204 		/* Decided to skip this, advance start seq. */
5205 		start = TCP_SKB_CB(skb)->end_seq;
5206 	}
5207 	if (end_of_skbs ||
5208 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5209 		return;
5210 
5211 	__skb_queue_head_init(&tmp);
5212 
5213 	while (before(start, end)) {
5214 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5215 		struct sk_buff *nskb;
5216 
5217 		nskb = alloc_skb(copy, GFP_ATOMIC);
5218 		if (!nskb)
5219 			break;
5220 
5221 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5222 #ifdef CONFIG_TLS_DEVICE
5223 		nskb->decrypted = skb->decrypted;
5224 #endif
5225 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5226 		if (list)
5227 			__skb_queue_before(list, skb, nskb);
5228 		else
5229 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5230 		skb_set_owner_r(nskb, sk);
5231 		mptcp_skb_ext_move(nskb, skb);
5232 
5233 		/* Copy data, releasing collapsed skbs. */
5234 		while (copy > 0) {
5235 			int offset = start - TCP_SKB_CB(skb)->seq;
5236 			int size = TCP_SKB_CB(skb)->end_seq - start;
5237 
5238 			BUG_ON(offset < 0);
5239 			if (size > 0) {
5240 				size = min(copy, size);
5241 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5242 					BUG();
5243 				TCP_SKB_CB(nskb)->end_seq += size;
5244 				copy -= size;
5245 				start += size;
5246 			}
5247 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5248 				skb = tcp_collapse_one(sk, skb, list, root);
5249 				if (!skb ||
5250 				    skb == tail ||
5251 				    !mptcp_skb_can_collapse(nskb, skb) ||
5252 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5253 					goto end;
5254 #ifdef CONFIG_TLS_DEVICE
5255 				if (skb->decrypted != nskb->decrypted)
5256 					goto end;
5257 #endif
5258 			}
5259 		}
5260 	}
5261 end:
5262 	skb_queue_walk_safe(&tmp, skb, n)
5263 		tcp_rbtree_insert(root, skb);
5264 }
5265 
5266 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5267  * and tcp_collapse() them until all the queue is collapsed.
5268  */
5269 static void tcp_collapse_ofo_queue(struct sock *sk)
5270 {
5271 	struct tcp_sock *tp = tcp_sk(sk);
5272 	u32 range_truesize, sum_tiny = 0;
5273 	struct sk_buff *skb, *head;
5274 	u32 start, end;
5275 
5276 	skb = skb_rb_first(&tp->out_of_order_queue);
5277 new_range:
5278 	if (!skb) {
5279 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5280 		return;
5281 	}
5282 	start = TCP_SKB_CB(skb)->seq;
5283 	end = TCP_SKB_CB(skb)->end_seq;
5284 	range_truesize = skb->truesize;
5285 
5286 	for (head = skb;;) {
5287 		skb = skb_rb_next(skb);
5288 
5289 		/* Range is terminated when we see a gap or when
5290 		 * we are at the queue end.
5291 		 */
5292 		if (!skb ||
5293 		    after(TCP_SKB_CB(skb)->seq, end) ||
5294 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5295 			/* Do not attempt collapsing tiny skbs */
5296 			if (range_truesize != head->truesize ||
5297 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5298 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5299 					     head, skb, start, end);
5300 			} else {
5301 				sum_tiny += range_truesize;
5302 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5303 					return;
5304 			}
5305 			goto new_range;
5306 		}
5307 
5308 		range_truesize += skb->truesize;
5309 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5310 			start = TCP_SKB_CB(skb)->seq;
5311 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5312 			end = TCP_SKB_CB(skb)->end_seq;
5313 	}
5314 }
5315 
5316 /*
5317  * Clean the out-of-order queue to make room.
5318  * We drop high sequences packets to :
5319  * 1) Let a chance for holes to be filled.
5320  * 2) not add too big latencies if thousands of packets sit there.
5321  *    (But if application shrinks SO_RCVBUF, we could still end up
5322  *     freeing whole queue here)
5323  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5324  *
5325  * Return true if queue has shrunk.
5326  */
5327 static bool tcp_prune_ofo_queue(struct sock *sk)
5328 {
5329 	struct tcp_sock *tp = tcp_sk(sk);
5330 	struct rb_node *node, *prev;
5331 	int goal;
5332 
5333 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5334 		return false;
5335 
5336 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5337 	goal = sk->sk_rcvbuf >> 3;
5338 	node = &tp->ooo_last_skb->rbnode;
5339 	do {
5340 		prev = rb_prev(node);
5341 		rb_erase(node, &tp->out_of_order_queue);
5342 		goal -= rb_to_skb(node)->truesize;
5343 		tcp_drop_reason(sk, rb_to_skb(node),
5344 				SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5345 		if (!prev || goal <= 0) {
5346 			sk_mem_reclaim(sk);
5347 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5348 			    !tcp_under_memory_pressure(sk))
5349 				break;
5350 			goal = sk->sk_rcvbuf >> 3;
5351 		}
5352 		node = prev;
5353 	} while (node);
5354 	tp->ooo_last_skb = rb_to_skb(prev);
5355 
5356 	/* Reset SACK state.  A conforming SACK implementation will
5357 	 * do the same at a timeout based retransmit.  When a connection
5358 	 * is in a sad state like this, we care only about integrity
5359 	 * of the connection not performance.
5360 	 */
5361 	if (tp->rx_opt.sack_ok)
5362 		tcp_sack_reset(&tp->rx_opt);
5363 	return true;
5364 }
5365 
5366 /* Reduce allocated memory if we can, trying to get
5367  * the socket within its memory limits again.
5368  *
5369  * Return less than zero if we should start dropping frames
5370  * until the socket owning process reads some of the data
5371  * to stabilize the situation.
5372  */
5373 static int tcp_prune_queue(struct sock *sk)
5374 {
5375 	struct tcp_sock *tp = tcp_sk(sk);
5376 
5377 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5378 
5379 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5380 		tcp_clamp_window(sk);
5381 	else if (tcp_under_memory_pressure(sk))
5382 		tcp_adjust_rcv_ssthresh(sk);
5383 
5384 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5385 		return 0;
5386 
5387 	tcp_collapse_ofo_queue(sk);
5388 	if (!skb_queue_empty(&sk->sk_receive_queue))
5389 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5390 			     skb_peek(&sk->sk_receive_queue),
5391 			     NULL,
5392 			     tp->copied_seq, tp->rcv_nxt);
5393 	sk_mem_reclaim(sk);
5394 
5395 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5396 		return 0;
5397 
5398 	/* Collapsing did not help, destructive actions follow.
5399 	 * This must not ever occur. */
5400 
5401 	tcp_prune_ofo_queue(sk);
5402 
5403 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5404 		return 0;
5405 
5406 	/* If we are really being abused, tell the caller to silently
5407 	 * drop receive data on the floor.  It will get retransmitted
5408 	 * and hopefully then we'll have sufficient space.
5409 	 */
5410 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5411 
5412 	/* Massive buffer overcommit. */
5413 	tp->pred_flags = 0;
5414 	return -1;
5415 }
5416 
5417 static bool tcp_should_expand_sndbuf(struct sock *sk)
5418 {
5419 	const struct tcp_sock *tp = tcp_sk(sk);
5420 
5421 	/* If the user specified a specific send buffer setting, do
5422 	 * not modify it.
5423 	 */
5424 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5425 		return false;
5426 
5427 	/* If we are under global TCP memory pressure, do not expand.  */
5428 	if (tcp_under_memory_pressure(sk)) {
5429 		int unused_mem = sk_unused_reserved_mem(sk);
5430 
5431 		/* Adjust sndbuf according to reserved mem. But make sure
5432 		 * it never goes below SOCK_MIN_SNDBUF.
5433 		 * See sk_stream_moderate_sndbuf() for more details.
5434 		 */
5435 		if (unused_mem > SOCK_MIN_SNDBUF)
5436 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5437 
5438 		return false;
5439 	}
5440 
5441 	/* If we are under soft global TCP memory pressure, do not expand.  */
5442 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5443 		return false;
5444 
5445 	/* If we filled the congestion window, do not expand.  */
5446 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5447 		return false;
5448 
5449 	return true;
5450 }
5451 
5452 static void tcp_new_space(struct sock *sk)
5453 {
5454 	struct tcp_sock *tp = tcp_sk(sk);
5455 
5456 	if (tcp_should_expand_sndbuf(sk)) {
5457 		tcp_sndbuf_expand(sk);
5458 		tp->snd_cwnd_stamp = tcp_jiffies32;
5459 	}
5460 
5461 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5462 }
5463 
5464 /* Caller made space either from:
5465  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5466  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5467  *
5468  * We might be able to generate EPOLLOUT to the application if:
5469  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5470  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5471  *    small enough that tcp_stream_memory_free() decides it
5472  *    is time to generate EPOLLOUT.
5473  */
5474 void tcp_check_space(struct sock *sk)
5475 {
5476 	/* pairs with tcp_poll() */
5477 	smp_mb();
5478 	if (sk->sk_socket &&
5479 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5480 		tcp_new_space(sk);
5481 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5482 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5483 	}
5484 }
5485 
5486 static inline void tcp_data_snd_check(struct sock *sk)
5487 {
5488 	tcp_push_pending_frames(sk);
5489 	tcp_check_space(sk);
5490 }
5491 
5492 /*
5493  * Check if sending an ack is needed.
5494  */
5495 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5496 {
5497 	struct tcp_sock *tp = tcp_sk(sk);
5498 	unsigned long rtt, delay;
5499 
5500 	    /* More than one full frame received... */
5501 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5502 	     /* ... and right edge of window advances far enough.
5503 	      * (tcp_recvmsg() will send ACK otherwise).
5504 	      * If application uses SO_RCVLOWAT, we want send ack now if
5505 	      * we have not received enough bytes to satisfy the condition.
5506 	      */
5507 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5508 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5509 	    /* We ACK each frame or... */
5510 	    tcp_in_quickack_mode(sk) ||
5511 	    /* Protocol state mandates a one-time immediate ACK */
5512 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5513 send_now:
5514 		tcp_send_ack(sk);
5515 		return;
5516 	}
5517 
5518 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5519 		tcp_send_delayed_ack(sk);
5520 		return;
5521 	}
5522 
5523 	if (!tcp_is_sack(tp) ||
5524 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5525 		goto send_now;
5526 
5527 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5528 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5529 		tp->dup_ack_counter = 0;
5530 	}
5531 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5532 		tp->dup_ack_counter++;
5533 		goto send_now;
5534 	}
5535 	tp->compressed_ack++;
5536 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5537 		return;
5538 
5539 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5540 
5541 	rtt = tp->rcv_rtt_est.rtt_us;
5542 	if (tp->srtt_us && tp->srtt_us < rtt)
5543 		rtt = tp->srtt_us;
5544 
5545 	delay = min_t(unsigned long,
5546 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5547 		      rtt * (NSEC_PER_USEC >> 3)/20);
5548 	sock_hold(sk);
5549 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5550 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5551 			       HRTIMER_MODE_REL_PINNED_SOFT);
5552 }
5553 
5554 static inline void tcp_ack_snd_check(struct sock *sk)
5555 {
5556 	if (!inet_csk_ack_scheduled(sk)) {
5557 		/* We sent a data segment already. */
5558 		return;
5559 	}
5560 	__tcp_ack_snd_check(sk, 1);
5561 }
5562 
5563 /*
5564  *	This routine is only called when we have urgent data
5565  *	signaled. Its the 'slow' part of tcp_urg. It could be
5566  *	moved inline now as tcp_urg is only called from one
5567  *	place. We handle URGent data wrong. We have to - as
5568  *	BSD still doesn't use the correction from RFC961.
5569  *	For 1003.1g we should support a new option TCP_STDURG to permit
5570  *	either form (or just set the sysctl tcp_stdurg).
5571  */
5572 
5573 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5574 {
5575 	struct tcp_sock *tp = tcp_sk(sk);
5576 	u32 ptr = ntohs(th->urg_ptr);
5577 
5578 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5579 		ptr--;
5580 	ptr += ntohl(th->seq);
5581 
5582 	/* Ignore urgent data that we've already seen and read. */
5583 	if (after(tp->copied_seq, ptr))
5584 		return;
5585 
5586 	/* Do not replay urg ptr.
5587 	 *
5588 	 * NOTE: interesting situation not covered by specs.
5589 	 * Misbehaving sender may send urg ptr, pointing to segment,
5590 	 * which we already have in ofo queue. We are not able to fetch
5591 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5592 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5593 	 * situations. But it is worth to think about possibility of some
5594 	 * DoSes using some hypothetical application level deadlock.
5595 	 */
5596 	if (before(ptr, tp->rcv_nxt))
5597 		return;
5598 
5599 	/* Do we already have a newer (or duplicate) urgent pointer? */
5600 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5601 		return;
5602 
5603 	/* Tell the world about our new urgent pointer. */
5604 	sk_send_sigurg(sk);
5605 
5606 	/* We may be adding urgent data when the last byte read was
5607 	 * urgent. To do this requires some care. We cannot just ignore
5608 	 * tp->copied_seq since we would read the last urgent byte again
5609 	 * as data, nor can we alter copied_seq until this data arrives
5610 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5611 	 *
5612 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5613 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5614 	 * and expect that both A and B disappear from stream. This is _wrong_.
5615 	 * Though this happens in BSD with high probability, this is occasional.
5616 	 * Any application relying on this is buggy. Note also, that fix "works"
5617 	 * only in this artificial test. Insert some normal data between A and B and we will
5618 	 * decline of BSD again. Verdict: it is better to remove to trap
5619 	 * buggy users.
5620 	 */
5621 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5622 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5623 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5624 		tp->copied_seq++;
5625 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5626 			__skb_unlink(skb, &sk->sk_receive_queue);
5627 			__kfree_skb(skb);
5628 		}
5629 	}
5630 
5631 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5632 	WRITE_ONCE(tp->urg_seq, ptr);
5633 
5634 	/* Disable header prediction. */
5635 	tp->pred_flags = 0;
5636 }
5637 
5638 /* This is the 'fast' part of urgent handling. */
5639 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5640 {
5641 	struct tcp_sock *tp = tcp_sk(sk);
5642 
5643 	/* Check if we get a new urgent pointer - normally not. */
5644 	if (unlikely(th->urg))
5645 		tcp_check_urg(sk, th);
5646 
5647 	/* Do we wait for any urgent data? - normally not... */
5648 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5649 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5650 			  th->syn;
5651 
5652 		/* Is the urgent pointer pointing into this packet? */
5653 		if (ptr < skb->len) {
5654 			u8 tmp;
5655 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5656 				BUG();
5657 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5658 			if (!sock_flag(sk, SOCK_DEAD))
5659 				sk->sk_data_ready(sk);
5660 		}
5661 	}
5662 }
5663 
5664 /* Accept RST for rcv_nxt - 1 after a FIN.
5665  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5666  * FIN is sent followed by a RST packet. The RST is sent with the same
5667  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5668  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5669  * ACKs on the closed socket. In addition middleboxes can drop either the
5670  * challenge ACK or a subsequent RST.
5671  */
5672 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5673 {
5674 	struct tcp_sock *tp = tcp_sk(sk);
5675 
5676 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5677 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5678 					       TCPF_CLOSING));
5679 }
5680 
5681 /* Does PAWS and seqno based validation of an incoming segment, flags will
5682  * play significant role here.
5683  */
5684 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5685 				  const struct tcphdr *th, int syn_inerr)
5686 {
5687 	struct tcp_sock *tp = tcp_sk(sk);
5688 	SKB_DR(reason);
5689 
5690 	/* RFC1323: H1. Apply PAWS check first. */
5691 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5692 	    tp->rx_opt.saw_tstamp &&
5693 	    tcp_paws_discard(sk, skb)) {
5694 		if (!th->rst) {
5695 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5696 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5697 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5698 						  &tp->last_oow_ack_time))
5699 				tcp_send_dupack(sk, skb);
5700 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5701 			goto discard;
5702 		}
5703 		/* Reset is accepted even if it did not pass PAWS. */
5704 	}
5705 
5706 	/* Step 1: check sequence number */
5707 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5708 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5709 		 * (RST) segments are validated by checking their SEQ-fields."
5710 		 * And page 69: "If an incoming segment is not acceptable,
5711 		 * an acknowledgment should be sent in reply (unless the RST
5712 		 * bit is set, if so drop the segment and return)".
5713 		 */
5714 		if (!th->rst) {
5715 			if (th->syn)
5716 				goto syn_challenge;
5717 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5718 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5719 						  &tp->last_oow_ack_time))
5720 				tcp_send_dupack(sk, skb);
5721 		} else if (tcp_reset_check(sk, skb)) {
5722 			goto reset;
5723 		}
5724 		SKB_DR_SET(reason, TCP_INVALID_SEQUENCE);
5725 		goto discard;
5726 	}
5727 
5728 	/* Step 2: check RST bit */
5729 	if (th->rst) {
5730 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5731 		 * FIN and SACK too if available):
5732 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5733 		 * the right-most SACK block,
5734 		 * then
5735 		 *     RESET the connection
5736 		 * else
5737 		 *     Send a challenge ACK
5738 		 */
5739 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5740 		    tcp_reset_check(sk, skb))
5741 			goto reset;
5742 
5743 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5744 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5745 			int max_sack = sp[0].end_seq;
5746 			int this_sack;
5747 
5748 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5749 			     ++this_sack) {
5750 				max_sack = after(sp[this_sack].end_seq,
5751 						 max_sack) ?
5752 					sp[this_sack].end_seq : max_sack;
5753 			}
5754 
5755 			if (TCP_SKB_CB(skb)->seq == max_sack)
5756 				goto reset;
5757 		}
5758 
5759 		/* Disable TFO if RST is out-of-order
5760 		 * and no data has been received
5761 		 * for current active TFO socket
5762 		 */
5763 		if (tp->syn_fastopen && !tp->data_segs_in &&
5764 		    sk->sk_state == TCP_ESTABLISHED)
5765 			tcp_fastopen_active_disable(sk);
5766 		tcp_send_challenge_ack(sk);
5767 		SKB_DR_SET(reason, TCP_RESET);
5768 		goto discard;
5769 	}
5770 
5771 	/* step 3: check security and precedence [ignored] */
5772 
5773 	/* step 4: Check for a SYN
5774 	 * RFC 5961 4.2 : Send a challenge ack
5775 	 */
5776 	if (th->syn) {
5777 syn_challenge:
5778 		if (syn_inerr)
5779 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5780 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5781 		tcp_send_challenge_ack(sk);
5782 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5783 		goto discard;
5784 	}
5785 
5786 	bpf_skops_parse_hdr(sk, skb);
5787 
5788 	return true;
5789 
5790 discard:
5791 	tcp_drop_reason(sk, skb, reason);
5792 	return false;
5793 
5794 reset:
5795 	tcp_reset(sk, skb);
5796 	__kfree_skb(skb);
5797 	return false;
5798 }
5799 
5800 /*
5801  *	TCP receive function for the ESTABLISHED state.
5802  *
5803  *	It is split into a fast path and a slow path. The fast path is
5804  * 	disabled when:
5805  *	- A zero window was announced from us - zero window probing
5806  *        is only handled properly in the slow path.
5807  *	- Out of order segments arrived.
5808  *	- Urgent data is expected.
5809  *	- There is no buffer space left
5810  *	- Unexpected TCP flags/window values/header lengths are received
5811  *	  (detected by checking the TCP header against pred_flags)
5812  *	- Data is sent in both directions. Fast path only supports pure senders
5813  *	  or pure receivers (this means either the sequence number or the ack
5814  *	  value must stay constant)
5815  *	- Unexpected TCP option.
5816  *
5817  *	When these conditions are not satisfied it drops into a standard
5818  *	receive procedure patterned after RFC793 to handle all cases.
5819  *	The first three cases are guaranteed by proper pred_flags setting,
5820  *	the rest is checked inline. Fast processing is turned on in
5821  *	tcp_data_queue when everything is OK.
5822  */
5823 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5824 {
5825 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5826 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5827 	struct tcp_sock *tp = tcp_sk(sk);
5828 	unsigned int len = skb->len;
5829 
5830 	/* TCP congestion window tracking */
5831 	trace_tcp_probe(sk, skb);
5832 
5833 	tcp_mstamp_refresh(tp);
5834 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5835 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5836 	/*
5837 	 *	Header prediction.
5838 	 *	The code loosely follows the one in the famous
5839 	 *	"30 instruction TCP receive" Van Jacobson mail.
5840 	 *
5841 	 *	Van's trick is to deposit buffers into socket queue
5842 	 *	on a device interrupt, to call tcp_recv function
5843 	 *	on the receive process context and checksum and copy
5844 	 *	the buffer to user space. smart...
5845 	 *
5846 	 *	Our current scheme is not silly either but we take the
5847 	 *	extra cost of the net_bh soft interrupt processing...
5848 	 *	We do checksum and copy also but from device to kernel.
5849 	 */
5850 
5851 	tp->rx_opt.saw_tstamp = 0;
5852 
5853 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5854 	 *	if header_prediction is to be made
5855 	 *	'S' will always be tp->tcp_header_len >> 2
5856 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5857 	 *  turn it off	(when there are holes in the receive
5858 	 *	 space for instance)
5859 	 *	PSH flag is ignored.
5860 	 */
5861 
5862 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5863 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5864 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5865 		int tcp_header_len = tp->tcp_header_len;
5866 
5867 		/* Timestamp header prediction: tcp_header_len
5868 		 * is automatically equal to th->doff*4 due to pred_flags
5869 		 * match.
5870 		 */
5871 
5872 		/* Check timestamp */
5873 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5874 			/* No? Slow path! */
5875 			if (!tcp_parse_aligned_timestamp(tp, th))
5876 				goto slow_path;
5877 
5878 			/* If PAWS failed, check it more carefully in slow path */
5879 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5880 				goto slow_path;
5881 
5882 			/* DO NOT update ts_recent here, if checksum fails
5883 			 * and timestamp was corrupted part, it will result
5884 			 * in a hung connection since we will drop all
5885 			 * future packets due to the PAWS test.
5886 			 */
5887 		}
5888 
5889 		if (len <= tcp_header_len) {
5890 			/* Bulk data transfer: sender */
5891 			if (len == tcp_header_len) {
5892 				/* Predicted packet is in window by definition.
5893 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5894 				 * Hence, check seq<=rcv_wup reduces to:
5895 				 */
5896 				if (tcp_header_len ==
5897 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5898 				    tp->rcv_nxt == tp->rcv_wup)
5899 					tcp_store_ts_recent(tp);
5900 
5901 				/* We know that such packets are checksummed
5902 				 * on entry.
5903 				 */
5904 				tcp_ack(sk, skb, 0);
5905 				__kfree_skb(skb);
5906 				tcp_data_snd_check(sk);
5907 				/* When receiving pure ack in fast path, update
5908 				 * last ts ecr directly instead of calling
5909 				 * tcp_rcv_rtt_measure_ts()
5910 				 */
5911 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5912 				return;
5913 			} else { /* Header too small */
5914 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5915 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5916 				goto discard;
5917 			}
5918 		} else {
5919 			int eaten = 0;
5920 			bool fragstolen = false;
5921 
5922 			if (tcp_checksum_complete(skb))
5923 				goto csum_error;
5924 
5925 			if ((int)skb->truesize > sk->sk_forward_alloc)
5926 				goto step5;
5927 
5928 			/* Predicted packet is in window by definition.
5929 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5930 			 * Hence, check seq<=rcv_wup reduces to:
5931 			 */
5932 			if (tcp_header_len ==
5933 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5934 			    tp->rcv_nxt == tp->rcv_wup)
5935 				tcp_store_ts_recent(tp);
5936 
5937 			tcp_rcv_rtt_measure_ts(sk, skb);
5938 
5939 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5940 
5941 			/* Bulk data transfer: receiver */
5942 			skb_dst_drop(skb);
5943 			__skb_pull(skb, tcp_header_len);
5944 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5945 
5946 			tcp_event_data_recv(sk, skb);
5947 
5948 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5949 				/* Well, only one small jumplet in fast path... */
5950 				tcp_ack(sk, skb, FLAG_DATA);
5951 				tcp_data_snd_check(sk);
5952 				if (!inet_csk_ack_scheduled(sk))
5953 					goto no_ack;
5954 			} else {
5955 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5956 			}
5957 
5958 			__tcp_ack_snd_check(sk, 0);
5959 no_ack:
5960 			if (eaten)
5961 				kfree_skb_partial(skb, fragstolen);
5962 			tcp_data_ready(sk);
5963 			return;
5964 		}
5965 	}
5966 
5967 slow_path:
5968 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5969 		goto csum_error;
5970 
5971 	if (!th->ack && !th->rst && !th->syn) {
5972 		reason = SKB_DROP_REASON_TCP_FLAGS;
5973 		goto discard;
5974 	}
5975 
5976 	/*
5977 	 *	Standard slow path.
5978 	 */
5979 
5980 	if (!tcp_validate_incoming(sk, skb, th, 1))
5981 		return;
5982 
5983 step5:
5984 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
5985 	if ((int)reason < 0) {
5986 		reason = -reason;
5987 		goto discard;
5988 	}
5989 	tcp_rcv_rtt_measure_ts(sk, skb);
5990 
5991 	/* Process urgent data. */
5992 	tcp_urg(sk, skb, th);
5993 
5994 	/* step 7: process the segment text */
5995 	tcp_data_queue(sk, skb);
5996 
5997 	tcp_data_snd_check(sk);
5998 	tcp_ack_snd_check(sk);
5999 	return;
6000 
6001 csum_error:
6002 	reason = SKB_DROP_REASON_TCP_CSUM;
6003 	trace_tcp_bad_csum(skb);
6004 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6005 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6006 
6007 discard:
6008 	tcp_drop_reason(sk, skb, reason);
6009 }
6010 EXPORT_SYMBOL(tcp_rcv_established);
6011 
6012 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6013 {
6014 	struct inet_connection_sock *icsk = inet_csk(sk);
6015 	struct tcp_sock *tp = tcp_sk(sk);
6016 
6017 	tcp_mtup_init(sk);
6018 	icsk->icsk_af_ops->rebuild_header(sk);
6019 	tcp_init_metrics(sk);
6020 
6021 	/* Initialize the congestion window to start the transfer.
6022 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6023 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6024 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6025 	 * retransmission has occurred.
6026 	 */
6027 	if (tp->total_retrans > 1 && tp->undo_marker)
6028 		tcp_snd_cwnd_set(tp, 1);
6029 	else
6030 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6031 	tp->snd_cwnd_stamp = tcp_jiffies32;
6032 
6033 	bpf_skops_established(sk, bpf_op, skb);
6034 	/* Initialize congestion control unless BPF initialized it already: */
6035 	if (!icsk->icsk_ca_initialized)
6036 		tcp_init_congestion_control(sk);
6037 	tcp_init_buffer_space(sk);
6038 }
6039 
6040 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6041 {
6042 	struct tcp_sock *tp = tcp_sk(sk);
6043 	struct inet_connection_sock *icsk = inet_csk(sk);
6044 
6045 	tcp_set_state(sk, TCP_ESTABLISHED);
6046 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6047 
6048 	if (skb) {
6049 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6050 		security_inet_conn_established(sk, skb);
6051 		sk_mark_napi_id(sk, skb);
6052 	}
6053 
6054 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6055 
6056 	/* Prevent spurious tcp_cwnd_restart() on first data
6057 	 * packet.
6058 	 */
6059 	tp->lsndtime = tcp_jiffies32;
6060 
6061 	if (sock_flag(sk, SOCK_KEEPOPEN))
6062 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6063 
6064 	if (!tp->rx_opt.snd_wscale)
6065 		__tcp_fast_path_on(tp, tp->snd_wnd);
6066 	else
6067 		tp->pred_flags = 0;
6068 }
6069 
6070 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6071 				    struct tcp_fastopen_cookie *cookie)
6072 {
6073 	struct tcp_sock *tp = tcp_sk(sk);
6074 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6075 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6076 	bool syn_drop = false;
6077 
6078 	if (mss == tp->rx_opt.user_mss) {
6079 		struct tcp_options_received opt;
6080 
6081 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6082 		tcp_clear_options(&opt);
6083 		opt.user_mss = opt.mss_clamp = 0;
6084 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6085 		mss = opt.mss_clamp;
6086 	}
6087 
6088 	if (!tp->syn_fastopen) {
6089 		/* Ignore an unsolicited cookie */
6090 		cookie->len = -1;
6091 	} else if (tp->total_retrans) {
6092 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6093 		 * acknowledges data. Presumably the remote received only
6094 		 * the retransmitted (regular) SYNs: either the original
6095 		 * SYN-data or the corresponding SYN-ACK was dropped.
6096 		 */
6097 		syn_drop = (cookie->len < 0 && data);
6098 	} else if (cookie->len < 0 && !tp->syn_data) {
6099 		/* We requested a cookie but didn't get it. If we did not use
6100 		 * the (old) exp opt format then try so next time (try_exp=1).
6101 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6102 		 */
6103 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6104 	}
6105 
6106 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6107 
6108 	if (data) { /* Retransmit unacked data in SYN */
6109 		if (tp->total_retrans)
6110 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6111 		else
6112 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6113 		skb_rbtree_walk_from(data)
6114 			 tcp_mark_skb_lost(sk, data);
6115 		tcp_xmit_retransmit_queue(sk);
6116 		NET_INC_STATS(sock_net(sk),
6117 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6118 		return true;
6119 	}
6120 	tp->syn_data_acked = tp->syn_data;
6121 	if (tp->syn_data_acked) {
6122 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6123 		/* SYN-data is counted as two separate packets in tcp_ack() */
6124 		if (tp->delivered > 1)
6125 			--tp->delivered;
6126 	}
6127 
6128 	tcp_fastopen_add_skb(sk, synack);
6129 
6130 	return false;
6131 }
6132 
6133 static void smc_check_reset_syn(struct tcp_sock *tp)
6134 {
6135 #if IS_ENABLED(CONFIG_SMC)
6136 	if (static_branch_unlikely(&tcp_have_smc)) {
6137 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6138 			tp->syn_smc = 0;
6139 	}
6140 #endif
6141 }
6142 
6143 static void tcp_try_undo_spurious_syn(struct sock *sk)
6144 {
6145 	struct tcp_sock *tp = tcp_sk(sk);
6146 	u32 syn_stamp;
6147 
6148 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6149 	 * spurious if the ACK's timestamp option echo value matches the
6150 	 * original SYN timestamp.
6151 	 */
6152 	syn_stamp = tp->retrans_stamp;
6153 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6154 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6155 		tp->undo_marker = 0;
6156 }
6157 
6158 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6159 					 const struct tcphdr *th)
6160 {
6161 	struct inet_connection_sock *icsk = inet_csk(sk);
6162 	struct tcp_sock *tp = tcp_sk(sk);
6163 	struct tcp_fastopen_cookie foc = { .len = -1 };
6164 	int saved_clamp = tp->rx_opt.mss_clamp;
6165 	bool fastopen_fail;
6166 	SKB_DR(reason);
6167 
6168 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6169 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6170 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6171 
6172 	if (th->ack) {
6173 		/* rfc793:
6174 		 * "If the state is SYN-SENT then
6175 		 *    first check the ACK bit
6176 		 *      If the ACK bit is set
6177 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6178 		 *        a reset (unless the RST bit is set, if so drop
6179 		 *        the segment and return)"
6180 		 */
6181 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6182 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6183 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6184 			if (icsk->icsk_retransmits == 0)
6185 				inet_csk_reset_xmit_timer(sk,
6186 						ICSK_TIME_RETRANS,
6187 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6188 			goto reset_and_undo;
6189 		}
6190 
6191 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6192 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6193 			     tcp_time_stamp(tp))) {
6194 			NET_INC_STATS(sock_net(sk),
6195 					LINUX_MIB_PAWSACTIVEREJECTED);
6196 			goto reset_and_undo;
6197 		}
6198 
6199 		/* Now ACK is acceptable.
6200 		 *
6201 		 * "If the RST bit is set
6202 		 *    If the ACK was acceptable then signal the user "error:
6203 		 *    connection reset", drop the segment, enter CLOSED state,
6204 		 *    delete TCB, and return."
6205 		 */
6206 
6207 		if (th->rst) {
6208 			tcp_reset(sk, skb);
6209 consume:
6210 			__kfree_skb(skb);
6211 			return 0;
6212 		}
6213 
6214 		/* rfc793:
6215 		 *   "fifth, if neither of the SYN or RST bits is set then
6216 		 *    drop the segment and return."
6217 		 *
6218 		 *    See note below!
6219 		 *                                        --ANK(990513)
6220 		 */
6221 		if (!th->syn) {
6222 			SKB_DR_SET(reason, TCP_FLAGS);
6223 			goto discard_and_undo;
6224 		}
6225 		/* rfc793:
6226 		 *   "If the SYN bit is on ...
6227 		 *    are acceptable then ...
6228 		 *    (our SYN has been ACKed), change the connection
6229 		 *    state to ESTABLISHED..."
6230 		 */
6231 
6232 		tcp_ecn_rcv_synack(tp, th);
6233 
6234 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6235 		tcp_try_undo_spurious_syn(sk);
6236 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6237 
6238 		/* Ok.. it's good. Set up sequence numbers and
6239 		 * move to established.
6240 		 */
6241 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6242 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6243 
6244 		/* RFC1323: The window in SYN & SYN/ACK segments is
6245 		 * never scaled.
6246 		 */
6247 		tp->snd_wnd = ntohs(th->window);
6248 
6249 		if (!tp->rx_opt.wscale_ok) {
6250 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6251 			tp->window_clamp = min(tp->window_clamp, 65535U);
6252 		}
6253 
6254 		if (tp->rx_opt.saw_tstamp) {
6255 			tp->rx_opt.tstamp_ok	   = 1;
6256 			tp->tcp_header_len =
6257 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6258 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6259 			tcp_store_ts_recent(tp);
6260 		} else {
6261 			tp->tcp_header_len = sizeof(struct tcphdr);
6262 		}
6263 
6264 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6265 		tcp_initialize_rcv_mss(sk);
6266 
6267 		/* Remember, tcp_poll() does not lock socket!
6268 		 * Change state from SYN-SENT only after copied_seq
6269 		 * is initialized. */
6270 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6271 
6272 		smc_check_reset_syn(tp);
6273 
6274 		smp_mb();
6275 
6276 		tcp_finish_connect(sk, skb);
6277 
6278 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6279 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6280 
6281 		if (!sock_flag(sk, SOCK_DEAD)) {
6282 			sk->sk_state_change(sk);
6283 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6284 		}
6285 		if (fastopen_fail)
6286 			return -1;
6287 		if (sk->sk_write_pending ||
6288 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6289 		    inet_csk_in_pingpong_mode(sk)) {
6290 			/* Save one ACK. Data will be ready after
6291 			 * several ticks, if write_pending is set.
6292 			 *
6293 			 * It may be deleted, but with this feature tcpdumps
6294 			 * look so _wonderfully_ clever, that I was not able
6295 			 * to stand against the temptation 8)     --ANK
6296 			 */
6297 			inet_csk_schedule_ack(sk);
6298 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6299 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6300 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6301 			goto consume;
6302 		}
6303 		tcp_send_ack(sk);
6304 		return -1;
6305 	}
6306 
6307 	/* No ACK in the segment */
6308 
6309 	if (th->rst) {
6310 		/* rfc793:
6311 		 * "If the RST bit is set
6312 		 *
6313 		 *      Otherwise (no ACK) drop the segment and return."
6314 		 */
6315 		SKB_DR_SET(reason, TCP_RESET);
6316 		goto discard_and_undo;
6317 	}
6318 
6319 	/* PAWS check. */
6320 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6321 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6322 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6323 		goto discard_and_undo;
6324 	}
6325 	if (th->syn) {
6326 		/* We see SYN without ACK. It is attempt of
6327 		 * simultaneous connect with crossed SYNs.
6328 		 * Particularly, it can be connect to self.
6329 		 */
6330 		tcp_set_state(sk, TCP_SYN_RECV);
6331 
6332 		if (tp->rx_opt.saw_tstamp) {
6333 			tp->rx_opt.tstamp_ok = 1;
6334 			tcp_store_ts_recent(tp);
6335 			tp->tcp_header_len =
6336 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6337 		} else {
6338 			tp->tcp_header_len = sizeof(struct tcphdr);
6339 		}
6340 
6341 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6342 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6343 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6344 
6345 		/* RFC1323: The window in SYN & SYN/ACK segments is
6346 		 * never scaled.
6347 		 */
6348 		tp->snd_wnd    = ntohs(th->window);
6349 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6350 		tp->max_window = tp->snd_wnd;
6351 
6352 		tcp_ecn_rcv_syn(tp, th);
6353 
6354 		tcp_mtup_init(sk);
6355 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6356 		tcp_initialize_rcv_mss(sk);
6357 
6358 		tcp_send_synack(sk);
6359 #if 0
6360 		/* Note, we could accept data and URG from this segment.
6361 		 * There are no obstacles to make this (except that we must
6362 		 * either change tcp_recvmsg() to prevent it from returning data
6363 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6364 		 *
6365 		 * However, if we ignore data in ACKless segments sometimes,
6366 		 * we have no reasons to accept it sometimes.
6367 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6368 		 * is not flawless. So, discard packet for sanity.
6369 		 * Uncomment this return to process the data.
6370 		 */
6371 		return -1;
6372 #else
6373 		goto consume;
6374 #endif
6375 	}
6376 	/* "fifth, if neither of the SYN or RST bits is set then
6377 	 * drop the segment and return."
6378 	 */
6379 
6380 discard_and_undo:
6381 	tcp_clear_options(&tp->rx_opt);
6382 	tp->rx_opt.mss_clamp = saved_clamp;
6383 	tcp_drop_reason(sk, skb, reason);
6384 	return 0;
6385 
6386 reset_and_undo:
6387 	tcp_clear_options(&tp->rx_opt);
6388 	tp->rx_opt.mss_clamp = saved_clamp;
6389 	return 1;
6390 }
6391 
6392 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6393 {
6394 	struct request_sock *req;
6395 
6396 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6397 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6398 	 */
6399 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6400 		tcp_try_undo_loss(sk, false);
6401 
6402 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6403 	tcp_sk(sk)->retrans_stamp = 0;
6404 	inet_csk(sk)->icsk_retransmits = 0;
6405 
6406 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6407 	 * we no longer need req so release it.
6408 	 */
6409 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6410 					lockdep_sock_is_held(sk));
6411 	reqsk_fastopen_remove(sk, req, false);
6412 
6413 	/* Re-arm the timer because data may have been sent out.
6414 	 * This is similar to the regular data transmission case
6415 	 * when new data has just been ack'ed.
6416 	 *
6417 	 * (TFO) - we could try to be more aggressive and
6418 	 * retransmitting any data sooner based on when they
6419 	 * are sent out.
6420 	 */
6421 	tcp_rearm_rto(sk);
6422 }
6423 
6424 /*
6425  *	This function implements the receiving procedure of RFC 793 for
6426  *	all states except ESTABLISHED and TIME_WAIT.
6427  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6428  *	address independent.
6429  */
6430 
6431 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6432 {
6433 	struct tcp_sock *tp = tcp_sk(sk);
6434 	struct inet_connection_sock *icsk = inet_csk(sk);
6435 	const struct tcphdr *th = tcp_hdr(skb);
6436 	struct request_sock *req;
6437 	int queued = 0;
6438 	bool acceptable;
6439 	SKB_DR(reason);
6440 
6441 	switch (sk->sk_state) {
6442 	case TCP_CLOSE:
6443 		SKB_DR_SET(reason, TCP_CLOSE);
6444 		goto discard;
6445 
6446 	case TCP_LISTEN:
6447 		if (th->ack)
6448 			return 1;
6449 
6450 		if (th->rst) {
6451 			SKB_DR_SET(reason, TCP_RESET);
6452 			goto discard;
6453 		}
6454 		if (th->syn) {
6455 			if (th->fin) {
6456 				SKB_DR_SET(reason, TCP_FLAGS);
6457 				goto discard;
6458 			}
6459 			/* It is possible that we process SYN packets from backlog,
6460 			 * so we need to make sure to disable BH and RCU right there.
6461 			 */
6462 			rcu_read_lock();
6463 			local_bh_disable();
6464 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6465 			local_bh_enable();
6466 			rcu_read_unlock();
6467 
6468 			if (!acceptable)
6469 				return 1;
6470 			consume_skb(skb);
6471 			return 0;
6472 		}
6473 		SKB_DR_SET(reason, TCP_FLAGS);
6474 		goto discard;
6475 
6476 	case TCP_SYN_SENT:
6477 		tp->rx_opt.saw_tstamp = 0;
6478 		tcp_mstamp_refresh(tp);
6479 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6480 		if (queued >= 0)
6481 			return queued;
6482 
6483 		/* Do step6 onward by hand. */
6484 		tcp_urg(sk, skb, th);
6485 		__kfree_skb(skb);
6486 		tcp_data_snd_check(sk);
6487 		return 0;
6488 	}
6489 
6490 	tcp_mstamp_refresh(tp);
6491 	tp->rx_opt.saw_tstamp = 0;
6492 	req = rcu_dereference_protected(tp->fastopen_rsk,
6493 					lockdep_sock_is_held(sk));
6494 	if (req) {
6495 		bool req_stolen;
6496 
6497 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6498 		    sk->sk_state != TCP_FIN_WAIT1);
6499 
6500 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6501 			SKB_DR_SET(reason, TCP_FASTOPEN);
6502 			goto discard;
6503 		}
6504 	}
6505 
6506 	if (!th->ack && !th->rst && !th->syn) {
6507 		SKB_DR_SET(reason, TCP_FLAGS);
6508 		goto discard;
6509 	}
6510 	if (!tcp_validate_incoming(sk, skb, th, 0))
6511 		return 0;
6512 
6513 	/* step 5: check the ACK field */
6514 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6515 				      FLAG_UPDATE_TS_RECENT |
6516 				      FLAG_NO_CHALLENGE_ACK) > 0;
6517 
6518 	if (!acceptable) {
6519 		if (sk->sk_state == TCP_SYN_RECV)
6520 			return 1;	/* send one RST */
6521 		tcp_send_challenge_ack(sk);
6522 		SKB_DR_SET(reason, TCP_OLD_ACK);
6523 		goto discard;
6524 	}
6525 	switch (sk->sk_state) {
6526 	case TCP_SYN_RECV:
6527 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6528 		if (!tp->srtt_us)
6529 			tcp_synack_rtt_meas(sk, req);
6530 
6531 		if (req) {
6532 			tcp_rcv_synrecv_state_fastopen(sk);
6533 		} else {
6534 			tcp_try_undo_spurious_syn(sk);
6535 			tp->retrans_stamp = 0;
6536 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6537 					  skb);
6538 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6539 		}
6540 		smp_mb();
6541 		tcp_set_state(sk, TCP_ESTABLISHED);
6542 		sk->sk_state_change(sk);
6543 
6544 		/* Note, that this wakeup is only for marginal crossed SYN case.
6545 		 * Passively open sockets are not waked up, because
6546 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6547 		 */
6548 		if (sk->sk_socket)
6549 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6550 
6551 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6552 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6553 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6554 
6555 		if (tp->rx_opt.tstamp_ok)
6556 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6557 
6558 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6559 			tcp_update_pacing_rate(sk);
6560 
6561 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6562 		tp->lsndtime = tcp_jiffies32;
6563 
6564 		tcp_initialize_rcv_mss(sk);
6565 		tcp_fast_path_on(tp);
6566 		break;
6567 
6568 	case TCP_FIN_WAIT1: {
6569 		int tmo;
6570 
6571 		if (req)
6572 			tcp_rcv_synrecv_state_fastopen(sk);
6573 
6574 		if (tp->snd_una != tp->write_seq)
6575 			break;
6576 
6577 		tcp_set_state(sk, TCP_FIN_WAIT2);
6578 		sk->sk_shutdown |= SEND_SHUTDOWN;
6579 
6580 		sk_dst_confirm(sk);
6581 
6582 		if (!sock_flag(sk, SOCK_DEAD)) {
6583 			/* Wake up lingering close() */
6584 			sk->sk_state_change(sk);
6585 			break;
6586 		}
6587 
6588 		if (tp->linger2 < 0) {
6589 			tcp_done(sk);
6590 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6591 			return 1;
6592 		}
6593 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6594 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6595 			/* Receive out of order FIN after close() */
6596 			if (tp->syn_fastopen && th->fin)
6597 				tcp_fastopen_active_disable(sk);
6598 			tcp_done(sk);
6599 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6600 			return 1;
6601 		}
6602 
6603 		tmo = tcp_fin_time(sk);
6604 		if (tmo > TCP_TIMEWAIT_LEN) {
6605 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6606 		} else if (th->fin || sock_owned_by_user(sk)) {
6607 			/* Bad case. We could lose such FIN otherwise.
6608 			 * It is not a big problem, but it looks confusing
6609 			 * and not so rare event. We still can lose it now,
6610 			 * if it spins in bh_lock_sock(), but it is really
6611 			 * marginal case.
6612 			 */
6613 			inet_csk_reset_keepalive_timer(sk, tmo);
6614 		} else {
6615 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6616 			goto consume;
6617 		}
6618 		break;
6619 	}
6620 
6621 	case TCP_CLOSING:
6622 		if (tp->snd_una == tp->write_seq) {
6623 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6624 			goto consume;
6625 		}
6626 		break;
6627 
6628 	case TCP_LAST_ACK:
6629 		if (tp->snd_una == tp->write_seq) {
6630 			tcp_update_metrics(sk);
6631 			tcp_done(sk);
6632 			goto consume;
6633 		}
6634 		break;
6635 	}
6636 
6637 	/* step 6: check the URG bit */
6638 	tcp_urg(sk, skb, th);
6639 
6640 	/* step 7: process the segment text */
6641 	switch (sk->sk_state) {
6642 	case TCP_CLOSE_WAIT:
6643 	case TCP_CLOSING:
6644 	case TCP_LAST_ACK:
6645 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6646 			/* If a subflow has been reset, the packet should not
6647 			 * continue to be processed, drop the packet.
6648 			 */
6649 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6650 				goto discard;
6651 			break;
6652 		}
6653 		fallthrough;
6654 	case TCP_FIN_WAIT1:
6655 	case TCP_FIN_WAIT2:
6656 		/* RFC 793 says to queue data in these states,
6657 		 * RFC 1122 says we MUST send a reset.
6658 		 * BSD 4.4 also does reset.
6659 		 */
6660 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6661 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6662 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6663 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6664 				tcp_reset(sk, skb);
6665 				return 1;
6666 			}
6667 		}
6668 		fallthrough;
6669 	case TCP_ESTABLISHED:
6670 		tcp_data_queue(sk, skb);
6671 		queued = 1;
6672 		break;
6673 	}
6674 
6675 	/* tcp_data could move socket to TIME-WAIT */
6676 	if (sk->sk_state != TCP_CLOSE) {
6677 		tcp_data_snd_check(sk);
6678 		tcp_ack_snd_check(sk);
6679 	}
6680 
6681 	if (!queued) {
6682 discard:
6683 		tcp_drop_reason(sk, skb, reason);
6684 	}
6685 	return 0;
6686 
6687 consume:
6688 	__kfree_skb(skb);
6689 	return 0;
6690 }
6691 EXPORT_SYMBOL(tcp_rcv_state_process);
6692 
6693 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6694 {
6695 	struct inet_request_sock *ireq = inet_rsk(req);
6696 
6697 	if (family == AF_INET)
6698 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6699 				    &ireq->ir_rmt_addr, port);
6700 #if IS_ENABLED(CONFIG_IPV6)
6701 	else if (family == AF_INET6)
6702 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6703 				    &ireq->ir_v6_rmt_addr, port);
6704 #endif
6705 }
6706 
6707 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6708  *
6709  * If we receive a SYN packet with these bits set, it means a
6710  * network is playing bad games with TOS bits. In order to
6711  * avoid possible false congestion notifications, we disable
6712  * TCP ECN negotiation.
6713  *
6714  * Exception: tcp_ca wants ECN. This is required for DCTCP
6715  * congestion control: Linux DCTCP asserts ECT on all packets,
6716  * including SYN, which is most optimal solution; however,
6717  * others, such as FreeBSD do not.
6718  *
6719  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6720  * set, indicating the use of a future TCP extension (such as AccECN). See
6721  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6722  * extensions.
6723  */
6724 static void tcp_ecn_create_request(struct request_sock *req,
6725 				   const struct sk_buff *skb,
6726 				   const struct sock *listen_sk,
6727 				   const struct dst_entry *dst)
6728 {
6729 	const struct tcphdr *th = tcp_hdr(skb);
6730 	const struct net *net = sock_net(listen_sk);
6731 	bool th_ecn = th->ece && th->cwr;
6732 	bool ect, ecn_ok;
6733 	u32 ecn_ok_dst;
6734 
6735 	if (!th_ecn)
6736 		return;
6737 
6738 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6739 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6740 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6741 
6742 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6743 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6744 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6745 		inet_rsk(req)->ecn_ok = 1;
6746 }
6747 
6748 static void tcp_openreq_init(struct request_sock *req,
6749 			     const struct tcp_options_received *rx_opt,
6750 			     struct sk_buff *skb, const struct sock *sk)
6751 {
6752 	struct inet_request_sock *ireq = inet_rsk(req);
6753 
6754 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6755 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6756 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6757 	tcp_rsk(req)->snt_synack = 0;
6758 	tcp_rsk(req)->last_oow_ack_time = 0;
6759 	req->mss = rx_opt->mss_clamp;
6760 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6761 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6762 	ireq->sack_ok = rx_opt->sack_ok;
6763 	ireq->snd_wscale = rx_opt->snd_wscale;
6764 	ireq->wscale_ok = rx_opt->wscale_ok;
6765 	ireq->acked = 0;
6766 	ireq->ecn_ok = 0;
6767 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6768 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6769 	ireq->ir_mark = inet_request_mark(sk, skb);
6770 #if IS_ENABLED(CONFIG_SMC)
6771 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6772 			tcp_sk(sk)->smc_hs_congested(sk));
6773 #endif
6774 }
6775 
6776 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6777 				      struct sock *sk_listener,
6778 				      bool attach_listener)
6779 {
6780 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6781 					       attach_listener);
6782 
6783 	if (req) {
6784 		struct inet_request_sock *ireq = inet_rsk(req);
6785 
6786 		ireq->ireq_opt = NULL;
6787 #if IS_ENABLED(CONFIG_IPV6)
6788 		ireq->pktopts = NULL;
6789 #endif
6790 		atomic64_set(&ireq->ir_cookie, 0);
6791 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6792 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6793 		ireq->ireq_family = sk_listener->sk_family;
6794 		req->timeout = TCP_TIMEOUT_INIT;
6795 	}
6796 
6797 	return req;
6798 }
6799 EXPORT_SYMBOL(inet_reqsk_alloc);
6800 
6801 /*
6802  * Return true if a syncookie should be sent
6803  */
6804 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6805 {
6806 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6807 	const char *msg = "Dropping request";
6808 	struct net *net = sock_net(sk);
6809 	bool want_cookie = false;
6810 	u8 syncookies;
6811 
6812 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6813 
6814 #ifdef CONFIG_SYN_COOKIES
6815 	if (syncookies) {
6816 		msg = "Sending cookies";
6817 		want_cookie = true;
6818 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6819 	} else
6820 #endif
6821 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6822 
6823 	if (!queue->synflood_warned && syncookies != 2 &&
6824 	    xchg(&queue->synflood_warned, 1) == 0)
6825 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6826 				     proto, sk->sk_num, msg);
6827 
6828 	return want_cookie;
6829 }
6830 
6831 static void tcp_reqsk_record_syn(const struct sock *sk,
6832 				 struct request_sock *req,
6833 				 const struct sk_buff *skb)
6834 {
6835 	if (tcp_sk(sk)->save_syn) {
6836 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6837 		struct saved_syn *saved_syn;
6838 		u32 mac_hdrlen;
6839 		void *base;
6840 
6841 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6842 			base = skb_mac_header(skb);
6843 			mac_hdrlen = skb_mac_header_len(skb);
6844 			len += mac_hdrlen;
6845 		} else {
6846 			base = skb_network_header(skb);
6847 			mac_hdrlen = 0;
6848 		}
6849 
6850 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6851 				    GFP_ATOMIC);
6852 		if (saved_syn) {
6853 			saved_syn->mac_hdrlen = mac_hdrlen;
6854 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6855 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6856 			memcpy(saved_syn->data, base, len);
6857 			req->saved_syn = saved_syn;
6858 		}
6859 	}
6860 }
6861 
6862 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6863  * used for SYN cookie generation.
6864  */
6865 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6866 			  const struct tcp_request_sock_ops *af_ops,
6867 			  struct sock *sk, struct tcphdr *th)
6868 {
6869 	struct tcp_sock *tp = tcp_sk(sk);
6870 	u16 mss;
6871 
6872 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6873 	    !inet_csk_reqsk_queue_is_full(sk))
6874 		return 0;
6875 
6876 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6877 		return 0;
6878 
6879 	if (sk_acceptq_is_full(sk)) {
6880 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6881 		return 0;
6882 	}
6883 
6884 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6885 	if (!mss)
6886 		mss = af_ops->mss_clamp;
6887 
6888 	return mss;
6889 }
6890 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6891 
6892 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6893 		     const struct tcp_request_sock_ops *af_ops,
6894 		     struct sock *sk, struct sk_buff *skb)
6895 {
6896 	struct tcp_fastopen_cookie foc = { .len = -1 };
6897 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6898 	struct tcp_options_received tmp_opt;
6899 	struct tcp_sock *tp = tcp_sk(sk);
6900 	struct net *net = sock_net(sk);
6901 	struct sock *fastopen_sk = NULL;
6902 	struct request_sock *req;
6903 	bool want_cookie = false;
6904 	struct dst_entry *dst;
6905 	struct flowi fl;
6906 	u8 syncookies;
6907 
6908 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6909 
6910 	/* TW buckets are converted to open requests without
6911 	 * limitations, they conserve resources and peer is
6912 	 * evidently real one.
6913 	 */
6914 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6915 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6916 		if (!want_cookie)
6917 			goto drop;
6918 	}
6919 
6920 	if (sk_acceptq_is_full(sk)) {
6921 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6922 		goto drop;
6923 	}
6924 
6925 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6926 	if (!req)
6927 		goto drop;
6928 
6929 	req->syncookie = want_cookie;
6930 	tcp_rsk(req)->af_specific = af_ops;
6931 	tcp_rsk(req)->ts_off = 0;
6932 #if IS_ENABLED(CONFIG_MPTCP)
6933 	tcp_rsk(req)->is_mptcp = 0;
6934 #endif
6935 
6936 	tcp_clear_options(&tmp_opt);
6937 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6938 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6939 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6940 			  want_cookie ? NULL : &foc);
6941 
6942 	if (want_cookie && !tmp_opt.saw_tstamp)
6943 		tcp_clear_options(&tmp_opt);
6944 
6945 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6946 		tmp_opt.smc_ok = 0;
6947 
6948 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6949 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6950 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6951 
6952 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6953 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6954 
6955 	dst = af_ops->route_req(sk, skb, &fl, req);
6956 	if (!dst)
6957 		goto drop_and_free;
6958 
6959 	if (tmp_opt.tstamp_ok)
6960 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6961 
6962 	if (!want_cookie && !isn) {
6963 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6964 
6965 		/* Kill the following clause, if you dislike this way. */
6966 		if (!syncookies &&
6967 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6968 		     (max_syn_backlog >> 2)) &&
6969 		    !tcp_peer_is_proven(req, dst)) {
6970 			/* Without syncookies last quarter of
6971 			 * backlog is filled with destinations,
6972 			 * proven to be alive.
6973 			 * It means that we continue to communicate
6974 			 * to destinations, already remembered
6975 			 * to the moment of synflood.
6976 			 */
6977 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6978 				    rsk_ops->family);
6979 			goto drop_and_release;
6980 		}
6981 
6982 		isn = af_ops->init_seq(skb);
6983 	}
6984 
6985 	tcp_ecn_create_request(req, skb, sk, dst);
6986 
6987 	if (want_cookie) {
6988 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6989 		if (!tmp_opt.tstamp_ok)
6990 			inet_rsk(req)->ecn_ok = 0;
6991 	}
6992 
6993 	tcp_rsk(req)->snt_isn = isn;
6994 	tcp_rsk(req)->txhash = net_tx_rndhash();
6995 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6996 	tcp_openreq_init_rwin(req, sk, dst);
6997 	sk_rx_queue_set(req_to_sk(req), skb);
6998 	if (!want_cookie) {
6999 		tcp_reqsk_record_syn(sk, req, skb);
7000 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7001 	}
7002 	if (fastopen_sk) {
7003 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7004 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7005 		/* Add the child socket directly into the accept queue */
7006 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7007 			reqsk_fastopen_remove(fastopen_sk, req, false);
7008 			bh_unlock_sock(fastopen_sk);
7009 			sock_put(fastopen_sk);
7010 			goto drop_and_free;
7011 		}
7012 		sk->sk_data_ready(sk);
7013 		bh_unlock_sock(fastopen_sk);
7014 		sock_put(fastopen_sk);
7015 	} else {
7016 		tcp_rsk(req)->tfo_listener = false;
7017 		if (!want_cookie) {
7018 			req->timeout = tcp_timeout_init((struct sock *)req);
7019 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7020 		}
7021 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7022 				    !want_cookie ? TCP_SYNACK_NORMAL :
7023 						   TCP_SYNACK_COOKIE,
7024 				    skb);
7025 		if (want_cookie) {
7026 			reqsk_free(req);
7027 			return 0;
7028 		}
7029 	}
7030 	reqsk_put(req);
7031 	return 0;
7032 
7033 drop_and_release:
7034 	dst_release(dst);
7035 drop_and_free:
7036 	__reqsk_free(req);
7037 drop:
7038 	tcp_listendrop(sk);
7039 	return 0;
7040 }
7041 EXPORT_SYMBOL(tcp_conn_request);
7042