1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 101 102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 106 107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 109 110 #define REXMIT_NONE 0 /* no loss recovery to do */ 111 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 113 114 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 115 unsigned int len) 116 { 117 static bool __once __read_mostly; 118 119 if (!__once) { 120 struct net_device *dev; 121 122 __once = true; 123 124 rcu_read_lock(); 125 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 126 if (!dev || len >= dev->mtu) 127 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 128 dev ? dev->name : "Unknown driver"); 129 rcu_read_unlock(); 130 } 131 } 132 133 /* Adapt the MSS value used to make delayed ack decision to the 134 * real world. 135 */ 136 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 137 { 138 struct inet_connection_sock *icsk = inet_csk(sk); 139 const unsigned int lss = icsk->icsk_ack.last_seg_size; 140 unsigned int len; 141 142 icsk->icsk_ack.last_seg_size = 0; 143 144 /* skb->len may jitter because of SACKs, even if peer 145 * sends good full-sized frames. 146 */ 147 len = skb_shinfo(skb)->gso_size ? : skb->len; 148 if (len >= icsk->icsk_ack.rcv_mss) { 149 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 150 tcp_sk(sk)->advmss); 151 /* Account for possibly-removed options */ 152 if (unlikely(len > icsk->icsk_ack.rcv_mss + 153 MAX_TCP_OPTION_SPACE)) 154 tcp_gro_dev_warn(sk, skb, len); 155 } else { 156 /* Otherwise, we make more careful check taking into account, 157 * that SACKs block is variable. 158 * 159 * "len" is invariant segment length, including TCP header. 160 */ 161 len += skb->data - skb_transport_header(skb); 162 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 163 /* If PSH is not set, packet should be 164 * full sized, provided peer TCP is not badly broken. 165 * This observation (if it is correct 8)) allows 166 * to handle super-low mtu links fairly. 167 */ 168 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 169 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 170 /* Subtract also invariant (if peer is RFC compliant), 171 * tcp header plus fixed timestamp option length. 172 * Resulting "len" is MSS free of SACK jitter. 173 */ 174 len -= tcp_sk(sk)->tcp_header_len; 175 icsk->icsk_ack.last_seg_size = len; 176 if (len == lss) { 177 icsk->icsk_ack.rcv_mss = len; 178 return; 179 } 180 } 181 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 183 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 184 } 185 } 186 187 static void tcp_incr_quickack(struct sock *sk) 188 { 189 struct inet_connection_sock *icsk = inet_csk(sk); 190 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 191 192 if (quickacks == 0) 193 quickacks = 2; 194 if (quickacks > icsk->icsk_ack.quick) 195 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 196 } 197 198 static void tcp_enter_quickack_mode(struct sock *sk) 199 { 200 struct inet_connection_sock *icsk = inet_csk(sk); 201 tcp_incr_quickack(sk); 202 icsk->icsk_ack.pingpong = 0; 203 icsk->icsk_ack.ato = TCP_ATO_MIN; 204 } 205 206 /* Send ACKs quickly, if "quick" count is not exhausted 207 * and the session is not interactive. 208 */ 209 210 static bool tcp_in_quickack_mode(struct sock *sk) 211 { 212 const struct inet_connection_sock *icsk = inet_csk(sk); 213 const struct dst_entry *dst = __sk_dst_get(sk); 214 215 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 216 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 217 } 218 219 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 220 { 221 if (tp->ecn_flags & TCP_ECN_OK) 222 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 223 } 224 225 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 226 { 227 if (tcp_hdr(skb)->cwr) 228 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 229 } 230 231 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 232 { 233 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 234 } 235 236 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 237 { 238 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 239 case INET_ECN_NOT_ECT: 240 /* Funny extension: if ECT is not set on a segment, 241 * and we already seen ECT on a previous segment, 242 * it is probably a retransmit. 243 */ 244 if (tp->ecn_flags & TCP_ECN_SEEN) 245 tcp_enter_quickack_mode((struct sock *)tp); 246 break; 247 case INET_ECN_CE: 248 if (tcp_ca_needs_ecn((struct sock *)tp)) 249 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 250 251 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 252 /* Better not delay acks, sender can have a very low cwnd */ 253 tcp_enter_quickack_mode((struct sock *)tp); 254 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 255 } 256 tp->ecn_flags |= TCP_ECN_SEEN; 257 break; 258 default: 259 if (tcp_ca_needs_ecn((struct sock *)tp)) 260 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 261 tp->ecn_flags |= TCP_ECN_SEEN; 262 break; 263 } 264 } 265 266 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 267 { 268 if (tp->ecn_flags & TCP_ECN_OK) 269 __tcp_ecn_check_ce(tp, skb); 270 } 271 272 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 273 { 274 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 275 tp->ecn_flags &= ~TCP_ECN_OK; 276 } 277 278 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 279 { 280 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 281 tp->ecn_flags &= ~TCP_ECN_OK; 282 } 283 284 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 285 { 286 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 287 return true; 288 return false; 289 } 290 291 /* Buffer size and advertised window tuning. 292 * 293 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 294 */ 295 296 static void tcp_sndbuf_expand(struct sock *sk) 297 { 298 const struct tcp_sock *tp = tcp_sk(sk); 299 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 300 int sndmem, per_mss; 301 u32 nr_segs; 302 303 /* Worst case is non GSO/TSO : each frame consumes one skb 304 * and skb->head is kmalloced using power of two area of memory 305 */ 306 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 307 MAX_TCP_HEADER + 308 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 309 310 per_mss = roundup_pow_of_two(per_mss) + 311 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 312 313 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 314 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 315 316 /* Fast Recovery (RFC 5681 3.2) : 317 * Cubic needs 1.7 factor, rounded to 2 to include 318 * extra cushion (application might react slowly to EPOLLOUT) 319 */ 320 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 321 sndmem *= nr_segs * per_mss; 322 323 if (sk->sk_sndbuf < sndmem) 324 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 325 } 326 327 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 328 * 329 * All tcp_full_space() is split to two parts: "network" buffer, allocated 330 * forward and advertised in receiver window (tp->rcv_wnd) and 331 * "application buffer", required to isolate scheduling/application 332 * latencies from network. 333 * window_clamp is maximal advertised window. It can be less than 334 * tcp_full_space(), in this case tcp_full_space() - window_clamp 335 * is reserved for "application" buffer. The less window_clamp is 336 * the smoother our behaviour from viewpoint of network, but the lower 337 * throughput and the higher sensitivity of the connection to losses. 8) 338 * 339 * rcv_ssthresh is more strict window_clamp used at "slow start" 340 * phase to predict further behaviour of this connection. 341 * It is used for two goals: 342 * - to enforce header prediction at sender, even when application 343 * requires some significant "application buffer". It is check #1. 344 * - to prevent pruning of receive queue because of misprediction 345 * of receiver window. Check #2. 346 * 347 * The scheme does not work when sender sends good segments opening 348 * window and then starts to feed us spaghetti. But it should work 349 * in common situations. Otherwise, we have to rely on queue collapsing. 350 */ 351 352 /* Slow part of check#2. */ 353 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 354 { 355 struct tcp_sock *tp = tcp_sk(sk); 356 /* Optimize this! */ 357 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 358 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 359 360 while (tp->rcv_ssthresh <= window) { 361 if (truesize <= skb->len) 362 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 363 364 truesize >>= 1; 365 window >>= 1; 366 } 367 return 0; 368 } 369 370 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 371 { 372 struct tcp_sock *tp = tcp_sk(sk); 373 374 /* Check #1 */ 375 if (tp->rcv_ssthresh < tp->window_clamp && 376 (int)tp->rcv_ssthresh < tcp_space(sk) && 377 !tcp_under_memory_pressure(sk)) { 378 int incr; 379 380 /* Check #2. Increase window, if skb with such overhead 381 * will fit to rcvbuf in future. 382 */ 383 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 384 incr = 2 * tp->advmss; 385 else 386 incr = __tcp_grow_window(sk, skb); 387 388 if (incr) { 389 incr = max_t(int, incr, 2 * skb->len); 390 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 391 tp->window_clamp); 392 inet_csk(sk)->icsk_ack.quick |= 1; 393 } 394 } 395 } 396 397 /* 3. Tuning rcvbuf, when connection enters established state. */ 398 static void tcp_fixup_rcvbuf(struct sock *sk) 399 { 400 u32 mss = tcp_sk(sk)->advmss; 401 int rcvmem; 402 403 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 404 tcp_default_init_rwnd(mss); 405 406 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 407 * Allow enough cushion so that sender is not limited by our window 408 */ 409 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 410 rcvmem <<= 2; 411 412 if (sk->sk_rcvbuf < rcvmem) 413 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 414 } 415 416 /* 4. Try to fixup all. It is made immediately after connection enters 417 * established state. 418 */ 419 void tcp_init_buffer_space(struct sock *sk) 420 { 421 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 422 struct tcp_sock *tp = tcp_sk(sk); 423 int maxwin; 424 425 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 426 tcp_fixup_rcvbuf(sk); 427 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 428 tcp_sndbuf_expand(sk); 429 430 tp->rcvq_space.space = tp->rcv_wnd; 431 tcp_mstamp_refresh(tp); 432 tp->rcvq_space.time = tp->tcp_mstamp; 433 tp->rcvq_space.seq = tp->copied_seq; 434 435 maxwin = tcp_full_space(sk); 436 437 if (tp->window_clamp >= maxwin) { 438 tp->window_clamp = maxwin; 439 440 if (tcp_app_win && maxwin > 4 * tp->advmss) 441 tp->window_clamp = max(maxwin - 442 (maxwin >> tcp_app_win), 443 4 * tp->advmss); 444 } 445 446 /* Force reservation of one segment. */ 447 if (tcp_app_win && 448 tp->window_clamp > 2 * tp->advmss && 449 tp->window_clamp + tp->advmss > maxwin) 450 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 451 452 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 453 tp->snd_cwnd_stamp = tcp_jiffies32; 454 } 455 456 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 457 static void tcp_clamp_window(struct sock *sk) 458 { 459 struct tcp_sock *tp = tcp_sk(sk); 460 struct inet_connection_sock *icsk = inet_csk(sk); 461 struct net *net = sock_net(sk); 462 463 icsk->icsk_ack.quick = 0; 464 465 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 466 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 467 !tcp_under_memory_pressure(sk) && 468 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 469 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 470 net->ipv4.sysctl_tcp_rmem[2]); 471 } 472 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 473 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 474 } 475 476 /* Initialize RCV_MSS value. 477 * RCV_MSS is an our guess about MSS used by the peer. 478 * We haven't any direct information about the MSS. 479 * It's better to underestimate the RCV_MSS rather than overestimate. 480 * Overestimations make us ACKing less frequently than needed. 481 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 482 */ 483 void tcp_initialize_rcv_mss(struct sock *sk) 484 { 485 const struct tcp_sock *tp = tcp_sk(sk); 486 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 487 488 hint = min(hint, tp->rcv_wnd / 2); 489 hint = min(hint, TCP_MSS_DEFAULT); 490 hint = max(hint, TCP_MIN_MSS); 491 492 inet_csk(sk)->icsk_ack.rcv_mss = hint; 493 } 494 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 495 496 /* Receiver "autotuning" code. 497 * 498 * The algorithm for RTT estimation w/o timestamps is based on 499 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 500 * <http://public.lanl.gov/radiant/pubs.html#DRS> 501 * 502 * More detail on this code can be found at 503 * <http://staff.psc.edu/jheffner/>, 504 * though this reference is out of date. A new paper 505 * is pending. 506 */ 507 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 508 { 509 u32 new_sample = tp->rcv_rtt_est.rtt_us; 510 long m = sample; 511 512 if (new_sample != 0) { 513 /* If we sample in larger samples in the non-timestamp 514 * case, we could grossly overestimate the RTT especially 515 * with chatty applications or bulk transfer apps which 516 * are stalled on filesystem I/O. 517 * 518 * Also, since we are only going for a minimum in the 519 * non-timestamp case, we do not smooth things out 520 * else with timestamps disabled convergence takes too 521 * long. 522 */ 523 if (!win_dep) { 524 m -= (new_sample >> 3); 525 new_sample += m; 526 } else { 527 m <<= 3; 528 if (m < new_sample) 529 new_sample = m; 530 } 531 } else { 532 /* No previous measure. */ 533 new_sample = m << 3; 534 } 535 536 tp->rcv_rtt_est.rtt_us = new_sample; 537 } 538 539 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 540 { 541 u32 delta_us; 542 543 if (tp->rcv_rtt_est.time == 0) 544 goto new_measure; 545 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 546 return; 547 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 548 if (!delta_us) 549 delta_us = 1; 550 tcp_rcv_rtt_update(tp, delta_us, 1); 551 552 new_measure: 553 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 554 tp->rcv_rtt_est.time = tp->tcp_mstamp; 555 } 556 557 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 558 const struct sk_buff *skb) 559 { 560 struct tcp_sock *tp = tcp_sk(sk); 561 562 if (tp->rx_opt.rcv_tsecr && 563 (TCP_SKB_CB(skb)->end_seq - 564 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 565 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 566 u32 delta_us; 567 568 if (!delta) 569 delta = 1; 570 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 571 tcp_rcv_rtt_update(tp, delta_us, 0); 572 } 573 } 574 575 /* 576 * This function should be called every time data is copied to user space. 577 * It calculates the appropriate TCP receive buffer space. 578 */ 579 void tcp_rcv_space_adjust(struct sock *sk) 580 { 581 struct tcp_sock *tp = tcp_sk(sk); 582 u32 copied; 583 int time; 584 585 tcp_mstamp_refresh(tp); 586 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 587 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 588 return; 589 590 /* Number of bytes copied to user in last RTT */ 591 copied = tp->copied_seq - tp->rcvq_space.seq; 592 if (copied <= tp->rcvq_space.space) 593 goto new_measure; 594 595 /* A bit of theory : 596 * copied = bytes received in previous RTT, our base window 597 * To cope with packet losses, we need a 2x factor 598 * To cope with slow start, and sender growing its cwin by 100 % 599 * every RTT, we need a 4x factor, because the ACK we are sending 600 * now is for the next RTT, not the current one : 601 * <prev RTT . ><current RTT .. ><next RTT .... > 602 */ 603 604 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 606 int rcvmem, rcvbuf; 607 u64 rcvwin, grow; 608 609 /* minimal window to cope with packet losses, assuming 610 * steady state. Add some cushion because of small variations. 611 */ 612 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 613 614 /* Accommodate for sender rate increase (eg. slow start) */ 615 grow = rcvwin * (copied - tp->rcvq_space.space); 616 do_div(grow, tp->rcvq_space.space); 617 rcvwin += (grow << 1); 618 619 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 620 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 621 rcvmem += 128; 622 623 do_div(rcvwin, tp->advmss); 624 rcvbuf = min_t(u64, rcvwin * rcvmem, 625 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 626 if (rcvbuf > sk->sk_rcvbuf) { 627 sk->sk_rcvbuf = rcvbuf; 628 629 /* Make the window clamp follow along. */ 630 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 631 } 632 } 633 tp->rcvq_space.space = copied; 634 635 new_measure: 636 tp->rcvq_space.seq = tp->copied_seq; 637 tp->rcvq_space.time = tp->tcp_mstamp; 638 } 639 640 /* There is something which you must keep in mind when you analyze the 641 * behavior of the tp->ato delayed ack timeout interval. When a 642 * connection starts up, we want to ack as quickly as possible. The 643 * problem is that "good" TCP's do slow start at the beginning of data 644 * transmission. The means that until we send the first few ACK's the 645 * sender will sit on his end and only queue most of his data, because 646 * he can only send snd_cwnd unacked packets at any given time. For 647 * each ACK we send, he increments snd_cwnd and transmits more of his 648 * queue. -DaveM 649 */ 650 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 651 { 652 struct tcp_sock *tp = tcp_sk(sk); 653 struct inet_connection_sock *icsk = inet_csk(sk); 654 u32 now; 655 656 inet_csk_schedule_ack(sk); 657 658 tcp_measure_rcv_mss(sk, skb); 659 660 tcp_rcv_rtt_measure(tp); 661 662 now = tcp_jiffies32; 663 664 if (!icsk->icsk_ack.ato) { 665 /* The _first_ data packet received, initialize 666 * delayed ACK engine. 667 */ 668 tcp_incr_quickack(sk); 669 icsk->icsk_ack.ato = TCP_ATO_MIN; 670 } else { 671 int m = now - icsk->icsk_ack.lrcvtime; 672 673 if (m <= TCP_ATO_MIN / 2) { 674 /* The fastest case is the first. */ 675 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 676 } else if (m < icsk->icsk_ack.ato) { 677 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 678 if (icsk->icsk_ack.ato > icsk->icsk_rto) 679 icsk->icsk_ack.ato = icsk->icsk_rto; 680 } else if (m > icsk->icsk_rto) { 681 /* Too long gap. Apparently sender failed to 682 * restart window, so that we send ACKs quickly. 683 */ 684 tcp_incr_quickack(sk); 685 sk_mem_reclaim(sk); 686 } 687 } 688 icsk->icsk_ack.lrcvtime = now; 689 690 tcp_ecn_check_ce(tp, skb); 691 692 if (skb->len >= 128) 693 tcp_grow_window(sk, skb); 694 } 695 696 /* Called to compute a smoothed rtt estimate. The data fed to this 697 * routine either comes from timestamps, or from segments that were 698 * known _not_ to have been retransmitted [see Karn/Partridge 699 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 700 * piece by Van Jacobson. 701 * NOTE: the next three routines used to be one big routine. 702 * To save cycles in the RFC 1323 implementation it was better to break 703 * it up into three procedures. -- erics 704 */ 705 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 long m = mrtt_us; /* RTT */ 709 u32 srtt = tp->srtt_us; 710 711 /* The following amusing code comes from Jacobson's 712 * article in SIGCOMM '88. Note that rtt and mdev 713 * are scaled versions of rtt and mean deviation. 714 * This is designed to be as fast as possible 715 * m stands for "measurement". 716 * 717 * On a 1990 paper the rto value is changed to: 718 * RTO = rtt + 4 * mdev 719 * 720 * Funny. This algorithm seems to be very broken. 721 * These formulae increase RTO, when it should be decreased, increase 722 * too slowly, when it should be increased quickly, decrease too quickly 723 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 724 * does not matter how to _calculate_ it. Seems, it was trap 725 * that VJ failed to avoid. 8) 726 */ 727 if (srtt != 0) { 728 m -= (srtt >> 3); /* m is now error in rtt est */ 729 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 730 if (m < 0) { 731 m = -m; /* m is now abs(error) */ 732 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 733 /* This is similar to one of Eifel findings. 734 * Eifel blocks mdev updates when rtt decreases. 735 * This solution is a bit different: we use finer gain 736 * for mdev in this case (alpha*beta). 737 * Like Eifel it also prevents growth of rto, 738 * but also it limits too fast rto decreases, 739 * happening in pure Eifel. 740 */ 741 if (m > 0) 742 m >>= 3; 743 } else { 744 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 745 } 746 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 747 if (tp->mdev_us > tp->mdev_max_us) { 748 tp->mdev_max_us = tp->mdev_us; 749 if (tp->mdev_max_us > tp->rttvar_us) 750 tp->rttvar_us = tp->mdev_max_us; 751 } 752 if (after(tp->snd_una, tp->rtt_seq)) { 753 if (tp->mdev_max_us < tp->rttvar_us) 754 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 755 tp->rtt_seq = tp->snd_nxt; 756 tp->mdev_max_us = tcp_rto_min_us(sk); 757 } 758 } else { 759 /* no previous measure. */ 760 srtt = m << 3; /* take the measured time to be rtt */ 761 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 762 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 763 tp->mdev_max_us = tp->rttvar_us; 764 tp->rtt_seq = tp->snd_nxt; 765 } 766 tp->srtt_us = max(1U, srtt); 767 } 768 769 static void tcp_update_pacing_rate(struct sock *sk) 770 { 771 const struct tcp_sock *tp = tcp_sk(sk); 772 u64 rate; 773 774 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 775 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 776 777 /* current rate is (cwnd * mss) / srtt 778 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 779 * In Congestion Avoidance phase, set it to 120 % the current rate. 780 * 781 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 782 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 783 * end of slow start and should slow down. 784 */ 785 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 786 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 787 else 788 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 789 790 rate *= max(tp->snd_cwnd, tp->packets_out); 791 792 if (likely(tp->srtt_us)) 793 do_div(rate, tp->srtt_us); 794 795 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 796 * without any lock. We want to make sure compiler wont store 797 * intermediate values in this location. 798 */ 799 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 800 sk->sk_max_pacing_rate)); 801 } 802 803 /* Calculate rto without backoff. This is the second half of Van Jacobson's 804 * routine referred to above. 805 */ 806 static void tcp_set_rto(struct sock *sk) 807 { 808 const struct tcp_sock *tp = tcp_sk(sk); 809 /* Old crap is replaced with new one. 8) 810 * 811 * More seriously: 812 * 1. If rtt variance happened to be less 50msec, it is hallucination. 813 * It cannot be less due to utterly erratic ACK generation made 814 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 815 * to do with delayed acks, because at cwnd>2 true delack timeout 816 * is invisible. Actually, Linux-2.4 also generates erratic 817 * ACKs in some circumstances. 818 */ 819 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 820 821 /* 2. Fixups made earlier cannot be right. 822 * If we do not estimate RTO correctly without them, 823 * all the algo is pure shit and should be replaced 824 * with correct one. It is exactly, which we pretend to do. 825 */ 826 827 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 828 * guarantees that rto is higher. 829 */ 830 tcp_bound_rto(sk); 831 } 832 833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 834 { 835 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 836 837 if (!cwnd) 838 cwnd = TCP_INIT_CWND; 839 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 840 } 841 842 /* Take a notice that peer is sending D-SACKs */ 843 static void tcp_dsack_seen(struct tcp_sock *tp) 844 { 845 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 846 tp->rack.dsack_seen = 1; 847 } 848 849 /* It's reordering when higher sequence was delivered (i.e. sacked) before 850 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 851 * distance is approximated in full-mss packet distance ("reordering"). 852 */ 853 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 854 const int ts) 855 { 856 struct tcp_sock *tp = tcp_sk(sk); 857 const u32 mss = tp->mss_cache; 858 u32 fack, metric; 859 860 fack = tcp_highest_sack_seq(tp); 861 if (!before(low_seq, fack)) 862 return; 863 864 metric = fack - low_seq; 865 if ((metric > tp->reordering * mss) && mss) { 866 #if FASTRETRANS_DEBUG > 1 867 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 868 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 869 tp->reordering, 870 0, 871 tp->sacked_out, 872 tp->undo_marker ? tp->undo_retrans : 0); 873 #endif 874 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 875 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 876 } 877 878 tp->rack.reord = 1; 879 /* This exciting event is worth to be remembered. 8) */ 880 NET_INC_STATS(sock_net(sk), 881 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 882 } 883 884 /* This must be called before lost_out is incremented */ 885 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 886 { 887 if (!tp->retransmit_skb_hint || 888 before(TCP_SKB_CB(skb)->seq, 889 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 890 tp->retransmit_skb_hint = skb; 891 } 892 893 /* Sum the number of packets on the wire we have marked as lost. 894 * There are two cases we care about here: 895 * a) Packet hasn't been marked lost (nor retransmitted), 896 * and this is the first loss. 897 * b) Packet has been marked both lost and retransmitted, 898 * and this means we think it was lost again. 899 */ 900 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 901 { 902 __u8 sacked = TCP_SKB_CB(skb)->sacked; 903 904 if (!(sacked & TCPCB_LOST) || 905 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 906 tp->lost += tcp_skb_pcount(skb); 907 } 908 909 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 910 { 911 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 912 tcp_verify_retransmit_hint(tp, skb); 913 914 tp->lost_out += tcp_skb_pcount(skb); 915 tcp_sum_lost(tp, skb); 916 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 917 } 918 } 919 920 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 921 { 922 tcp_verify_retransmit_hint(tp, skb); 923 924 tcp_sum_lost(tp, skb); 925 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 926 tp->lost_out += tcp_skb_pcount(skb); 927 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 928 } 929 } 930 931 /* This procedure tags the retransmission queue when SACKs arrive. 932 * 933 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 934 * Packets in queue with these bits set are counted in variables 935 * sacked_out, retrans_out and lost_out, correspondingly. 936 * 937 * Valid combinations are: 938 * Tag InFlight Description 939 * 0 1 - orig segment is in flight. 940 * S 0 - nothing flies, orig reached receiver. 941 * L 0 - nothing flies, orig lost by net. 942 * R 2 - both orig and retransmit are in flight. 943 * L|R 1 - orig is lost, retransmit is in flight. 944 * S|R 1 - orig reached receiver, retrans is still in flight. 945 * (L|S|R is logically valid, it could occur when L|R is sacked, 946 * but it is equivalent to plain S and code short-curcuits it to S. 947 * L|S is logically invalid, it would mean -1 packet in flight 8)) 948 * 949 * These 6 states form finite state machine, controlled by the following events: 950 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 951 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 952 * 3. Loss detection event of two flavors: 953 * A. Scoreboard estimator decided the packet is lost. 954 * A'. Reno "three dupacks" marks head of queue lost. 955 * B. SACK arrives sacking SND.NXT at the moment, when the 956 * segment was retransmitted. 957 * 4. D-SACK added new rule: D-SACK changes any tag to S. 958 * 959 * It is pleasant to note, that state diagram turns out to be commutative, 960 * so that we are allowed not to be bothered by order of our actions, 961 * when multiple events arrive simultaneously. (see the function below). 962 * 963 * Reordering detection. 964 * -------------------- 965 * Reordering metric is maximal distance, which a packet can be displaced 966 * in packet stream. With SACKs we can estimate it: 967 * 968 * 1. SACK fills old hole and the corresponding segment was not 969 * ever retransmitted -> reordering. Alas, we cannot use it 970 * when segment was retransmitted. 971 * 2. The last flaw is solved with D-SACK. D-SACK arrives 972 * for retransmitted and already SACKed segment -> reordering.. 973 * Both of these heuristics are not used in Loss state, when we cannot 974 * account for retransmits accurately. 975 * 976 * SACK block validation. 977 * ---------------------- 978 * 979 * SACK block range validation checks that the received SACK block fits to 980 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 981 * Note that SND.UNA is not included to the range though being valid because 982 * it means that the receiver is rather inconsistent with itself reporting 983 * SACK reneging when it should advance SND.UNA. Such SACK block this is 984 * perfectly valid, however, in light of RFC2018 which explicitly states 985 * that "SACK block MUST reflect the newest segment. Even if the newest 986 * segment is going to be discarded ...", not that it looks very clever 987 * in case of head skb. Due to potentional receiver driven attacks, we 988 * choose to avoid immediate execution of a walk in write queue due to 989 * reneging and defer head skb's loss recovery to standard loss recovery 990 * procedure that will eventually trigger (nothing forbids us doing this). 991 * 992 * Implements also blockage to start_seq wrap-around. Problem lies in the 993 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 994 * there's no guarantee that it will be before snd_nxt (n). The problem 995 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 996 * wrap (s_w): 997 * 998 * <- outs wnd -> <- wrapzone -> 999 * u e n u_w e_w s n_w 1000 * | | | | | | | 1001 * |<------------+------+----- TCP seqno space --------------+---------->| 1002 * ...-- <2^31 ->| |<--------... 1003 * ...---- >2^31 ------>| |<--------... 1004 * 1005 * Current code wouldn't be vulnerable but it's better still to discard such 1006 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1007 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1008 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1009 * equal to the ideal case (infinite seqno space without wrap caused issues). 1010 * 1011 * With D-SACK the lower bound is extended to cover sequence space below 1012 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1013 * again, D-SACK block must not to go across snd_una (for the same reason as 1014 * for the normal SACK blocks, explained above). But there all simplicity 1015 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1016 * fully below undo_marker they do not affect behavior in anyway and can 1017 * therefore be safely ignored. In rare cases (which are more or less 1018 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1019 * fragmentation and packet reordering past skb's retransmission. To consider 1020 * them correctly, the acceptable range must be extended even more though 1021 * the exact amount is rather hard to quantify. However, tp->max_window can 1022 * be used as an exaggerated estimate. 1023 */ 1024 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1025 u32 start_seq, u32 end_seq) 1026 { 1027 /* Too far in future, or reversed (interpretation is ambiguous) */ 1028 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1029 return false; 1030 1031 /* Nasty start_seq wrap-around check (see comments above) */ 1032 if (!before(start_seq, tp->snd_nxt)) 1033 return false; 1034 1035 /* In outstanding window? ...This is valid exit for D-SACKs too. 1036 * start_seq == snd_una is non-sensical (see comments above) 1037 */ 1038 if (after(start_seq, tp->snd_una)) 1039 return true; 1040 1041 if (!is_dsack || !tp->undo_marker) 1042 return false; 1043 1044 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1045 if (after(end_seq, tp->snd_una)) 1046 return false; 1047 1048 if (!before(start_seq, tp->undo_marker)) 1049 return true; 1050 1051 /* Too old */ 1052 if (!after(end_seq, tp->undo_marker)) 1053 return false; 1054 1055 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1056 * start_seq < undo_marker and end_seq >= undo_marker. 1057 */ 1058 return !before(start_seq, end_seq - tp->max_window); 1059 } 1060 1061 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1062 struct tcp_sack_block_wire *sp, int num_sacks, 1063 u32 prior_snd_una) 1064 { 1065 struct tcp_sock *tp = tcp_sk(sk); 1066 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1067 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1068 bool dup_sack = false; 1069 1070 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1071 dup_sack = true; 1072 tcp_dsack_seen(tp); 1073 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1074 } else if (num_sacks > 1) { 1075 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1076 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1077 1078 if (!after(end_seq_0, end_seq_1) && 1079 !before(start_seq_0, start_seq_1)) { 1080 dup_sack = true; 1081 tcp_dsack_seen(tp); 1082 NET_INC_STATS(sock_net(sk), 1083 LINUX_MIB_TCPDSACKOFORECV); 1084 } 1085 } 1086 1087 /* D-SACK for already forgotten data... Do dumb counting. */ 1088 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1089 !after(end_seq_0, prior_snd_una) && 1090 after(end_seq_0, tp->undo_marker)) 1091 tp->undo_retrans--; 1092 1093 return dup_sack; 1094 } 1095 1096 struct tcp_sacktag_state { 1097 u32 reord; 1098 /* Timestamps for earliest and latest never-retransmitted segment 1099 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1100 * but congestion control should still get an accurate delay signal. 1101 */ 1102 u64 first_sackt; 1103 u64 last_sackt; 1104 struct rate_sample *rate; 1105 int flag; 1106 unsigned int mss_now; 1107 }; 1108 1109 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1110 * the incoming SACK may not exactly match but we can find smaller MSS 1111 * aligned portion of it that matches. Therefore we might need to fragment 1112 * which may fail and creates some hassle (caller must handle error case 1113 * returns). 1114 * 1115 * FIXME: this could be merged to shift decision code 1116 */ 1117 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1118 u32 start_seq, u32 end_seq) 1119 { 1120 int err; 1121 bool in_sack; 1122 unsigned int pkt_len; 1123 unsigned int mss; 1124 1125 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1126 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1127 1128 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1129 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1130 mss = tcp_skb_mss(skb); 1131 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1132 1133 if (!in_sack) { 1134 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1135 if (pkt_len < mss) 1136 pkt_len = mss; 1137 } else { 1138 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1139 if (pkt_len < mss) 1140 return -EINVAL; 1141 } 1142 1143 /* Round if necessary so that SACKs cover only full MSSes 1144 * and/or the remaining small portion (if present) 1145 */ 1146 if (pkt_len > mss) { 1147 unsigned int new_len = (pkt_len / mss) * mss; 1148 if (!in_sack && new_len < pkt_len) 1149 new_len += mss; 1150 pkt_len = new_len; 1151 } 1152 1153 if (pkt_len >= skb->len && !in_sack) 1154 return 0; 1155 1156 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1157 pkt_len, mss, GFP_ATOMIC); 1158 if (err < 0) 1159 return err; 1160 } 1161 1162 return in_sack; 1163 } 1164 1165 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1166 static u8 tcp_sacktag_one(struct sock *sk, 1167 struct tcp_sacktag_state *state, u8 sacked, 1168 u32 start_seq, u32 end_seq, 1169 int dup_sack, int pcount, 1170 u64 xmit_time) 1171 { 1172 struct tcp_sock *tp = tcp_sk(sk); 1173 1174 /* Account D-SACK for retransmitted packet. */ 1175 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1176 if (tp->undo_marker && tp->undo_retrans > 0 && 1177 after(end_seq, tp->undo_marker)) 1178 tp->undo_retrans--; 1179 if ((sacked & TCPCB_SACKED_ACKED) && 1180 before(start_seq, state->reord)) 1181 state->reord = start_seq; 1182 } 1183 1184 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1185 if (!after(end_seq, tp->snd_una)) 1186 return sacked; 1187 1188 if (!(sacked & TCPCB_SACKED_ACKED)) { 1189 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1190 1191 if (sacked & TCPCB_SACKED_RETRANS) { 1192 /* If the segment is not tagged as lost, 1193 * we do not clear RETRANS, believing 1194 * that retransmission is still in flight. 1195 */ 1196 if (sacked & TCPCB_LOST) { 1197 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1198 tp->lost_out -= pcount; 1199 tp->retrans_out -= pcount; 1200 } 1201 } else { 1202 if (!(sacked & TCPCB_RETRANS)) { 1203 /* New sack for not retransmitted frame, 1204 * which was in hole. It is reordering. 1205 */ 1206 if (before(start_seq, 1207 tcp_highest_sack_seq(tp)) && 1208 before(start_seq, state->reord)) 1209 state->reord = start_seq; 1210 1211 if (!after(end_seq, tp->high_seq)) 1212 state->flag |= FLAG_ORIG_SACK_ACKED; 1213 if (state->first_sackt == 0) 1214 state->first_sackt = xmit_time; 1215 state->last_sackt = xmit_time; 1216 } 1217 1218 if (sacked & TCPCB_LOST) { 1219 sacked &= ~TCPCB_LOST; 1220 tp->lost_out -= pcount; 1221 } 1222 } 1223 1224 sacked |= TCPCB_SACKED_ACKED; 1225 state->flag |= FLAG_DATA_SACKED; 1226 tp->sacked_out += pcount; 1227 tp->delivered += pcount; /* Out-of-order packets delivered */ 1228 1229 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1230 if (tp->lost_skb_hint && 1231 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1232 tp->lost_cnt_hint += pcount; 1233 } 1234 1235 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1236 * frames and clear it. undo_retrans is decreased above, L|R frames 1237 * are accounted above as well. 1238 */ 1239 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1240 sacked &= ~TCPCB_SACKED_RETRANS; 1241 tp->retrans_out -= pcount; 1242 } 1243 1244 return sacked; 1245 } 1246 1247 /* Shift newly-SACKed bytes from this skb to the immediately previous 1248 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1249 */ 1250 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1251 struct sk_buff *skb, 1252 struct tcp_sacktag_state *state, 1253 unsigned int pcount, int shifted, int mss, 1254 bool dup_sack) 1255 { 1256 struct tcp_sock *tp = tcp_sk(sk); 1257 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1258 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1259 1260 BUG_ON(!pcount); 1261 1262 /* Adjust counters and hints for the newly sacked sequence 1263 * range but discard the return value since prev is already 1264 * marked. We must tag the range first because the seq 1265 * advancement below implicitly advances 1266 * tcp_highest_sack_seq() when skb is highest_sack. 1267 */ 1268 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1269 start_seq, end_seq, dup_sack, pcount, 1270 skb->skb_mstamp); 1271 tcp_rate_skb_delivered(sk, skb, state->rate); 1272 1273 if (skb == tp->lost_skb_hint) 1274 tp->lost_cnt_hint += pcount; 1275 1276 TCP_SKB_CB(prev)->end_seq += shifted; 1277 TCP_SKB_CB(skb)->seq += shifted; 1278 1279 tcp_skb_pcount_add(prev, pcount); 1280 BUG_ON(tcp_skb_pcount(skb) < pcount); 1281 tcp_skb_pcount_add(skb, -pcount); 1282 1283 /* When we're adding to gso_segs == 1, gso_size will be zero, 1284 * in theory this shouldn't be necessary but as long as DSACK 1285 * code can come after this skb later on it's better to keep 1286 * setting gso_size to something. 1287 */ 1288 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1289 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1290 1291 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1292 if (tcp_skb_pcount(skb) <= 1) 1293 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1294 1295 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1296 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1297 1298 if (skb->len > 0) { 1299 BUG_ON(!tcp_skb_pcount(skb)); 1300 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1301 return false; 1302 } 1303 1304 /* Whole SKB was eaten :-) */ 1305 1306 if (skb == tp->retransmit_skb_hint) 1307 tp->retransmit_skb_hint = prev; 1308 if (skb == tp->lost_skb_hint) { 1309 tp->lost_skb_hint = prev; 1310 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1311 } 1312 1313 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1314 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1315 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1316 TCP_SKB_CB(prev)->end_seq++; 1317 1318 if (skb == tcp_highest_sack(sk)) 1319 tcp_advance_highest_sack(sk, skb); 1320 1321 tcp_skb_collapse_tstamp(prev, skb); 1322 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1323 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1324 1325 tcp_rtx_queue_unlink_and_free(skb, sk); 1326 1327 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1328 1329 return true; 1330 } 1331 1332 /* I wish gso_size would have a bit more sane initialization than 1333 * something-or-zero which complicates things 1334 */ 1335 static int tcp_skb_seglen(const struct sk_buff *skb) 1336 { 1337 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1338 } 1339 1340 /* Shifting pages past head area doesn't work */ 1341 static int skb_can_shift(const struct sk_buff *skb) 1342 { 1343 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1344 } 1345 1346 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1347 * skb. 1348 */ 1349 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1350 struct tcp_sacktag_state *state, 1351 u32 start_seq, u32 end_seq, 1352 bool dup_sack) 1353 { 1354 struct tcp_sock *tp = tcp_sk(sk); 1355 struct sk_buff *prev; 1356 int mss; 1357 int pcount = 0; 1358 int len; 1359 int in_sack; 1360 1361 /* Normally R but no L won't result in plain S */ 1362 if (!dup_sack && 1363 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1364 goto fallback; 1365 if (!skb_can_shift(skb)) 1366 goto fallback; 1367 /* This frame is about to be dropped (was ACKed). */ 1368 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1369 goto fallback; 1370 1371 /* Can only happen with delayed DSACK + discard craziness */ 1372 prev = skb_rb_prev(skb); 1373 if (!prev) 1374 goto fallback; 1375 1376 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1377 goto fallback; 1378 1379 if (!tcp_skb_can_collapse_to(prev)) 1380 goto fallback; 1381 1382 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1383 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1384 1385 if (in_sack) { 1386 len = skb->len; 1387 pcount = tcp_skb_pcount(skb); 1388 mss = tcp_skb_seglen(skb); 1389 1390 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1391 * drop this restriction as unnecessary 1392 */ 1393 if (mss != tcp_skb_seglen(prev)) 1394 goto fallback; 1395 } else { 1396 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1397 goto noop; 1398 /* CHECKME: This is non-MSS split case only?, this will 1399 * cause skipped skbs due to advancing loop btw, original 1400 * has that feature too 1401 */ 1402 if (tcp_skb_pcount(skb) <= 1) 1403 goto noop; 1404 1405 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1406 if (!in_sack) { 1407 /* TODO: head merge to next could be attempted here 1408 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1409 * though it might not be worth of the additional hassle 1410 * 1411 * ...we can probably just fallback to what was done 1412 * previously. We could try merging non-SACKed ones 1413 * as well but it probably isn't going to buy off 1414 * because later SACKs might again split them, and 1415 * it would make skb timestamp tracking considerably 1416 * harder problem. 1417 */ 1418 goto fallback; 1419 } 1420 1421 len = end_seq - TCP_SKB_CB(skb)->seq; 1422 BUG_ON(len < 0); 1423 BUG_ON(len > skb->len); 1424 1425 /* MSS boundaries should be honoured or else pcount will 1426 * severely break even though it makes things bit trickier. 1427 * Optimize common case to avoid most of the divides 1428 */ 1429 mss = tcp_skb_mss(skb); 1430 1431 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1432 * drop this restriction as unnecessary 1433 */ 1434 if (mss != tcp_skb_seglen(prev)) 1435 goto fallback; 1436 1437 if (len == mss) { 1438 pcount = 1; 1439 } else if (len < mss) { 1440 goto noop; 1441 } else { 1442 pcount = len / mss; 1443 len = pcount * mss; 1444 } 1445 } 1446 1447 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1448 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1449 goto fallback; 1450 1451 if (!skb_shift(prev, skb, len)) 1452 goto fallback; 1453 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1454 goto out; 1455 1456 /* Hole filled allows collapsing with the next as well, this is very 1457 * useful when hole on every nth skb pattern happens 1458 */ 1459 skb = skb_rb_next(prev); 1460 if (!skb) 1461 goto out; 1462 1463 if (!skb_can_shift(skb) || 1464 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1465 (mss != tcp_skb_seglen(skb))) 1466 goto out; 1467 1468 len = skb->len; 1469 if (skb_shift(prev, skb, len)) { 1470 pcount += tcp_skb_pcount(skb); 1471 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1472 len, mss, 0); 1473 } 1474 1475 out: 1476 return prev; 1477 1478 noop: 1479 return skb; 1480 1481 fallback: 1482 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1483 return NULL; 1484 } 1485 1486 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1487 struct tcp_sack_block *next_dup, 1488 struct tcp_sacktag_state *state, 1489 u32 start_seq, u32 end_seq, 1490 bool dup_sack_in) 1491 { 1492 struct tcp_sock *tp = tcp_sk(sk); 1493 struct sk_buff *tmp; 1494 1495 skb_rbtree_walk_from(skb) { 1496 int in_sack = 0; 1497 bool dup_sack = dup_sack_in; 1498 1499 /* queue is in-order => we can short-circuit the walk early */ 1500 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1501 break; 1502 1503 if (next_dup && 1504 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1505 in_sack = tcp_match_skb_to_sack(sk, skb, 1506 next_dup->start_seq, 1507 next_dup->end_seq); 1508 if (in_sack > 0) 1509 dup_sack = true; 1510 } 1511 1512 /* skb reference here is a bit tricky to get right, since 1513 * shifting can eat and free both this skb and the next, 1514 * so not even _safe variant of the loop is enough. 1515 */ 1516 if (in_sack <= 0) { 1517 tmp = tcp_shift_skb_data(sk, skb, state, 1518 start_seq, end_seq, dup_sack); 1519 if (tmp) { 1520 if (tmp != skb) { 1521 skb = tmp; 1522 continue; 1523 } 1524 1525 in_sack = 0; 1526 } else { 1527 in_sack = tcp_match_skb_to_sack(sk, skb, 1528 start_seq, 1529 end_seq); 1530 } 1531 } 1532 1533 if (unlikely(in_sack < 0)) 1534 break; 1535 1536 if (in_sack) { 1537 TCP_SKB_CB(skb)->sacked = 1538 tcp_sacktag_one(sk, 1539 state, 1540 TCP_SKB_CB(skb)->sacked, 1541 TCP_SKB_CB(skb)->seq, 1542 TCP_SKB_CB(skb)->end_seq, 1543 dup_sack, 1544 tcp_skb_pcount(skb), 1545 skb->skb_mstamp); 1546 tcp_rate_skb_delivered(sk, skb, state->rate); 1547 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1548 list_del_init(&skb->tcp_tsorted_anchor); 1549 1550 if (!before(TCP_SKB_CB(skb)->seq, 1551 tcp_highest_sack_seq(tp))) 1552 tcp_advance_highest_sack(sk, skb); 1553 } 1554 } 1555 return skb; 1556 } 1557 1558 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1559 struct tcp_sacktag_state *state, 1560 u32 seq) 1561 { 1562 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1563 struct sk_buff *skb; 1564 1565 while (*p) { 1566 parent = *p; 1567 skb = rb_to_skb(parent); 1568 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1569 p = &parent->rb_left; 1570 continue; 1571 } 1572 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1573 p = &parent->rb_right; 1574 continue; 1575 } 1576 return skb; 1577 } 1578 return NULL; 1579 } 1580 1581 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1582 struct tcp_sacktag_state *state, 1583 u32 skip_to_seq) 1584 { 1585 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1586 return skb; 1587 1588 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1589 } 1590 1591 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1592 struct sock *sk, 1593 struct tcp_sack_block *next_dup, 1594 struct tcp_sacktag_state *state, 1595 u32 skip_to_seq) 1596 { 1597 if (!next_dup) 1598 return skb; 1599 1600 if (before(next_dup->start_seq, skip_to_seq)) { 1601 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1602 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1603 next_dup->start_seq, next_dup->end_seq, 1604 1); 1605 } 1606 1607 return skb; 1608 } 1609 1610 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1611 { 1612 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1613 } 1614 1615 static int 1616 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1617 u32 prior_snd_una, struct tcp_sacktag_state *state) 1618 { 1619 struct tcp_sock *tp = tcp_sk(sk); 1620 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1621 TCP_SKB_CB(ack_skb)->sacked); 1622 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1623 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1624 struct tcp_sack_block *cache; 1625 struct sk_buff *skb; 1626 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1627 int used_sacks; 1628 bool found_dup_sack = false; 1629 int i, j; 1630 int first_sack_index; 1631 1632 state->flag = 0; 1633 state->reord = tp->snd_nxt; 1634 1635 if (!tp->sacked_out) 1636 tcp_highest_sack_reset(sk); 1637 1638 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1639 num_sacks, prior_snd_una); 1640 if (found_dup_sack) { 1641 state->flag |= FLAG_DSACKING_ACK; 1642 tp->delivered++; /* A spurious retransmission is delivered */ 1643 } 1644 1645 /* Eliminate too old ACKs, but take into 1646 * account more or less fresh ones, they can 1647 * contain valid SACK info. 1648 */ 1649 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1650 return 0; 1651 1652 if (!tp->packets_out) 1653 goto out; 1654 1655 used_sacks = 0; 1656 first_sack_index = 0; 1657 for (i = 0; i < num_sacks; i++) { 1658 bool dup_sack = !i && found_dup_sack; 1659 1660 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1661 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1662 1663 if (!tcp_is_sackblock_valid(tp, dup_sack, 1664 sp[used_sacks].start_seq, 1665 sp[used_sacks].end_seq)) { 1666 int mib_idx; 1667 1668 if (dup_sack) { 1669 if (!tp->undo_marker) 1670 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1671 else 1672 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1673 } else { 1674 /* Don't count olds caused by ACK reordering */ 1675 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1676 !after(sp[used_sacks].end_seq, tp->snd_una)) 1677 continue; 1678 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1679 } 1680 1681 NET_INC_STATS(sock_net(sk), mib_idx); 1682 if (i == 0) 1683 first_sack_index = -1; 1684 continue; 1685 } 1686 1687 /* Ignore very old stuff early */ 1688 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1689 continue; 1690 1691 used_sacks++; 1692 } 1693 1694 /* order SACK blocks to allow in order walk of the retrans queue */ 1695 for (i = used_sacks - 1; i > 0; i--) { 1696 for (j = 0; j < i; j++) { 1697 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1698 swap(sp[j], sp[j + 1]); 1699 1700 /* Track where the first SACK block goes to */ 1701 if (j == first_sack_index) 1702 first_sack_index = j + 1; 1703 } 1704 } 1705 } 1706 1707 state->mss_now = tcp_current_mss(sk); 1708 skb = NULL; 1709 i = 0; 1710 1711 if (!tp->sacked_out) { 1712 /* It's already past, so skip checking against it */ 1713 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1714 } else { 1715 cache = tp->recv_sack_cache; 1716 /* Skip empty blocks in at head of the cache */ 1717 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1718 !cache->end_seq) 1719 cache++; 1720 } 1721 1722 while (i < used_sacks) { 1723 u32 start_seq = sp[i].start_seq; 1724 u32 end_seq = sp[i].end_seq; 1725 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1726 struct tcp_sack_block *next_dup = NULL; 1727 1728 if (found_dup_sack && ((i + 1) == first_sack_index)) 1729 next_dup = &sp[i + 1]; 1730 1731 /* Skip too early cached blocks */ 1732 while (tcp_sack_cache_ok(tp, cache) && 1733 !before(start_seq, cache->end_seq)) 1734 cache++; 1735 1736 /* Can skip some work by looking recv_sack_cache? */ 1737 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1738 after(end_seq, cache->start_seq)) { 1739 1740 /* Head todo? */ 1741 if (before(start_seq, cache->start_seq)) { 1742 skb = tcp_sacktag_skip(skb, sk, state, 1743 start_seq); 1744 skb = tcp_sacktag_walk(skb, sk, next_dup, 1745 state, 1746 start_seq, 1747 cache->start_seq, 1748 dup_sack); 1749 } 1750 1751 /* Rest of the block already fully processed? */ 1752 if (!after(end_seq, cache->end_seq)) 1753 goto advance_sp; 1754 1755 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1756 state, 1757 cache->end_seq); 1758 1759 /* ...tail remains todo... */ 1760 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1761 /* ...but better entrypoint exists! */ 1762 skb = tcp_highest_sack(sk); 1763 if (!skb) 1764 break; 1765 cache++; 1766 goto walk; 1767 } 1768 1769 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1770 /* Check overlap against next cached too (past this one already) */ 1771 cache++; 1772 continue; 1773 } 1774 1775 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1776 skb = tcp_highest_sack(sk); 1777 if (!skb) 1778 break; 1779 } 1780 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1781 1782 walk: 1783 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1784 start_seq, end_seq, dup_sack); 1785 1786 advance_sp: 1787 i++; 1788 } 1789 1790 /* Clear the head of the cache sack blocks so we can skip it next time */ 1791 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1792 tp->recv_sack_cache[i].start_seq = 0; 1793 tp->recv_sack_cache[i].end_seq = 0; 1794 } 1795 for (j = 0; j < used_sacks; j++) 1796 tp->recv_sack_cache[i++] = sp[j]; 1797 1798 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1799 tcp_check_sack_reordering(sk, state->reord, 0); 1800 1801 tcp_verify_left_out(tp); 1802 out: 1803 1804 #if FASTRETRANS_DEBUG > 0 1805 WARN_ON((int)tp->sacked_out < 0); 1806 WARN_ON((int)tp->lost_out < 0); 1807 WARN_ON((int)tp->retrans_out < 0); 1808 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1809 #endif 1810 return state->flag; 1811 } 1812 1813 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1814 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1815 */ 1816 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1817 { 1818 u32 holes; 1819 1820 holes = max(tp->lost_out, 1U); 1821 holes = min(holes, tp->packets_out); 1822 1823 if ((tp->sacked_out + holes) > tp->packets_out) { 1824 tp->sacked_out = tp->packets_out - holes; 1825 return true; 1826 } 1827 return false; 1828 } 1829 1830 /* If we receive more dupacks than we expected counting segments 1831 * in assumption of absent reordering, interpret this as reordering. 1832 * The only another reason could be bug in receiver TCP. 1833 */ 1834 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1835 { 1836 struct tcp_sock *tp = tcp_sk(sk); 1837 1838 if (!tcp_limit_reno_sacked(tp)) 1839 return; 1840 1841 tp->reordering = min_t(u32, tp->packets_out + addend, 1842 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1843 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1844 } 1845 1846 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1847 1848 static void tcp_add_reno_sack(struct sock *sk) 1849 { 1850 struct tcp_sock *tp = tcp_sk(sk); 1851 u32 prior_sacked = tp->sacked_out; 1852 1853 tp->sacked_out++; 1854 tcp_check_reno_reordering(sk, 0); 1855 if (tp->sacked_out > prior_sacked) 1856 tp->delivered++; /* Some out-of-order packet is delivered */ 1857 tcp_verify_left_out(tp); 1858 } 1859 1860 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1861 1862 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1863 { 1864 struct tcp_sock *tp = tcp_sk(sk); 1865 1866 if (acked > 0) { 1867 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1868 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1869 if (acked - 1 >= tp->sacked_out) 1870 tp->sacked_out = 0; 1871 else 1872 tp->sacked_out -= acked - 1; 1873 } 1874 tcp_check_reno_reordering(sk, acked); 1875 tcp_verify_left_out(tp); 1876 } 1877 1878 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1879 { 1880 tp->sacked_out = 0; 1881 } 1882 1883 void tcp_clear_retrans(struct tcp_sock *tp) 1884 { 1885 tp->retrans_out = 0; 1886 tp->lost_out = 0; 1887 tp->undo_marker = 0; 1888 tp->undo_retrans = -1; 1889 tp->sacked_out = 0; 1890 } 1891 1892 static inline void tcp_init_undo(struct tcp_sock *tp) 1893 { 1894 tp->undo_marker = tp->snd_una; 1895 /* Retransmission still in flight may cause DSACKs later. */ 1896 tp->undo_retrans = tp->retrans_out ? : -1; 1897 } 1898 1899 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1900 * and reset tags completely, otherwise preserve SACKs. If receiver 1901 * dropped its ofo queue, we will know this due to reneging detection. 1902 */ 1903 void tcp_enter_loss(struct sock *sk) 1904 { 1905 const struct inet_connection_sock *icsk = inet_csk(sk); 1906 struct tcp_sock *tp = tcp_sk(sk); 1907 struct net *net = sock_net(sk); 1908 struct sk_buff *skb; 1909 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1910 bool is_reneg; /* is receiver reneging on SACKs? */ 1911 bool mark_lost; 1912 1913 /* Reduce ssthresh if it has not yet been made inside this window. */ 1914 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1915 !after(tp->high_seq, tp->snd_una) || 1916 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1917 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1918 tp->prior_cwnd = tp->snd_cwnd; 1919 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1920 tcp_ca_event(sk, CA_EVENT_LOSS); 1921 tcp_init_undo(tp); 1922 } 1923 tp->snd_cwnd = 1; 1924 tp->snd_cwnd_cnt = 0; 1925 tp->snd_cwnd_stamp = tcp_jiffies32; 1926 1927 tp->retrans_out = 0; 1928 tp->lost_out = 0; 1929 1930 if (tcp_is_reno(tp)) 1931 tcp_reset_reno_sack(tp); 1932 1933 skb = tcp_rtx_queue_head(sk); 1934 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1935 if (is_reneg) { 1936 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1937 tp->sacked_out = 0; 1938 /* Mark SACK reneging until we recover from this loss event. */ 1939 tp->is_sack_reneg = 1; 1940 } 1941 tcp_clear_all_retrans_hints(tp); 1942 1943 skb_rbtree_walk_from(skb) { 1944 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1945 is_reneg); 1946 if (mark_lost) 1947 tcp_sum_lost(tp, skb); 1948 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1949 if (mark_lost) { 1950 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1951 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1952 tp->lost_out += tcp_skb_pcount(skb); 1953 } 1954 } 1955 tcp_verify_left_out(tp); 1956 1957 /* Timeout in disordered state after receiving substantial DUPACKs 1958 * suggests that the degree of reordering is over-estimated. 1959 */ 1960 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1961 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1962 tp->reordering = min_t(unsigned int, tp->reordering, 1963 net->ipv4.sysctl_tcp_reordering); 1964 tcp_set_ca_state(sk, TCP_CA_Loss); 1965 tp->high_seq = tp->snd_nxt; 1966 tcp_ecn_queue_cwr(tp); 1967 1968 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1969 * loss recovery is underway except recurring timeout(s) on 1970 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1971 */ 1972 tp->frto = net->ipv4.sysctl_tcp_frto && 1973 (new_recovery || icsk->icsk_retransmits) && 1974 !inet_csk(sk)->icsk_mtup.probe_size; 1975 } 1976 1977 /* If ACK arrived pointing to a remembered SACK, it means that our 1978 * remembered SACKs do not reflect real state of receiver i.e. 1979 * receiver _host_ is heavily congested (or buggy). 1980 * 1981 * To avoid big spurious retransmission bursts due to transient SACK 1982 * scoreboard oddities that look like reneging, we give the receiver a 1983 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1984 * restore sanity to the SACK scoreboard. If the apparent reneging 1985 * persists until this RTO then we'll clear the SACK scoreboard. 1986 */ 1987 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1988 { 1989 if (flag & FLAG_SACK_RENEGING) { 1990 struct tcp_sock *tp = tcp_sk(sk); 1991 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 1992 msecs_to_jiffies(10)); 1993 1994 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1995 delay, TCP_RTO_MAX); 1996 return true; 1997 } 1998 return false; 1999 } 2000 2001 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2002 * counter when SACK is enabled (without SACK, sacked_out is used for 2003 * that purpose). 2004 * 2005 * With reordering, holes may still be in flight, so RFC3517 recovery 2006 * uses pure sacked_out (total number of SACKed segments) even though 2007 * it violates the RFC that uses duplicate ACKs, often these are equal 2008 * but when e.g. out-of-window ACKs or packet duplication occurs, 2009 * they differ. Since neither occurs due to loss, TCP should really 2010 * ignore them. 2011 */ 2012 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2013 { 2014 return tp->sacked_out + 1; 2015 } 2016 2017 /* Linux NewReno/SACK/ECN state machine. 2018 * -------------------------------------- 2019 * 2020 * "Open" Normal state, no dubious events, fast path. 2021 * "Disorder" In all the respects it is "Open", 2022 * but requires a bit more attention. It is entered when 2023 * we see some SACKs or dupacks. It is split of "Open" 2024 * mainly to move some processing from fast path to slow one. 2025 * "CWR" CWND was reduced due to some Congestion Notification event. 2026 * It can be ECN, ICMP source quench, local device congestion. 2027 * "Recovery" CWND was reduced, we are fast-retransmitting. 2028 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2029 * 2030 * tcp_fastretrans_alert() is entered: 2031 * - each incoming ACK, if state is not "Open" 2032 * - when arrived ACK is unusual, namely: 2033 * * SACK 2034 * * Duplicate ACK. 2035 * * ECN ECE. 2036 * 2037 * Counting packets in flight is pretty simple. 2038 * 2039 * in_flight = packets_out - left_out + retrans_out 2040 * 2041 * packets_out is SND.NXT-SND.UNA counted in packets. 2042 * 2043 * retrans_out is number of retransmitted segments. 2044 * 2045 * left_out is number of segments left network, but not ACKed yet. 2046 * 2047 * left_out = sacked_out + lost_out 2048 * 2049 * sacked_out: Packets, which arrived to receiver out of order 2050 * and hence not ACKed. With SACKs this number is simply 2051 * amount of SACKed data. Even without SACKs 2052 * it is easy to give pretty reliable estimate of this number, 2053 * counting duplicate ACKs. 2054 * 2055 * lost_out: Packets lost by network. TCP has no explicit 2056 * "loss notification" feedback from network (for now). 2057 * It means that this number can be only _guessed_. 2058 * Actually, it is the heuristics to predict lossage that 2059 * distinguishes different algorithms. 2060 * 2061 * F.e. after RTO, when all the queue is considered as lost, 2062 * lost_out = packets_out and in_flight = retrans_out. 2063 * 2064 * Essentially, we have now a few algorithms detecting 2065 * lost packets. 2066 * 2067 * If the receiver supports SACK: 2068 * 2069 * RFC6675/3517: It is the conventional algorithm. A packet is 2070 * considered lost if the number of higher sequence packets 2071 * SACKed is greater than or equal the DUPACK thoreshold 2072 * (reordering). This is implemented in tcp_mark_head_lost and 2073 * tcp_update_scoreboard. 2074 * 2075 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2076 * (2017-) that checks timing instead of counting DUPACKs. 2077 * Essentially a packet is considered lost if it's not S/ACKed 2078 * after RTT + reordering_window, where both metrics are 2079 * dynamically measured and adjusted. This is implemented in 2080 * tcp_rack_mark_lost. 2081 * 2082 * If the receiver does not support SACK: 2083 * 2084 * NewReno (RFC6582): in Recovery we assume that one segment 2085 * is lost (classic Reno). While we are in Recovery and 2086 * a partial ACK arrives, we assume that one more packet 2087 * is lost (NewReno). This heuristics are the same in NewReno 2088 * and SACK. 2089 * 2090 * Really tricky (and requiring careful tuning) part of algorithm 2091 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2092 * The first determines the moment _when_ we should reduce CWND and, 2093 * hence, slow down forward transmission. In fact, it determines the moment 2094 * when we decide that hole is caused by loss, rather than by a reorder. 2095 * 2096 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2097 * holes, caused by lost packets. 2098 * 2099 * And the most logically complicated part of algorithm is undo 2100 * heuristics. We detect false retransmits due to both too early 2101 * fast retransmit (reordering) and underestimated RTO, analyzing 2102 * timestamps and D-SACKs. When we detect that some segments were 2103 * retransmitted by mistake and CWND reduction was wrong, we undo 2104 * window reduction and abort recovery phase. This logic is hidden 2105 * inside several functions named tcp_try_undo_<something>. 2106 */ 2107 2108 /* This function decides, when we should leave Disordered state 2109 * and enter Recovery phase, reducing congestion window. 2110 * 2111 * Main question: may we further continue forward transmission 2112 * with the same cwnd? 2113 */ 2114 static bool tcp_time_to_recover(struct sock *sk, int flag) 2115 { 2116 struct tcp_sock *tp = tcp_sk(sk); 2117 2118 /* Trick#1: The loss is proven. */ 2119 if (tp->lost_out) 2120 return true; 2121 2122 /* Not-A-Trick#2 : Classic rule... */ 2123 if (tcp_dupack_heuristics(tp) > tp->reordering) 2124 return true; 2125 2126 return false; 2127 } 2128 2129 /* Detect loss in event "A" above by marking head of queue up as lost. 2130 * For non-SACK(Reno) senders, the first "packets" number of segments 2131 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2132 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2133 * the maximum SACKed segments to pass before reaching this limit. 2134 */ 2135 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2136 { 2137 struct tcp_sock *tp = tcp_sk(sk); 2138 struct sk_buff *skb; 2139 int cnt, oldcnt, lost; 2140 unsigned int mss; 2141 /* Use SACK to deduce losses of new sequences sent during recovery */ 2142 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2143 2144 WARN_ON(packets > tp->packets_out); 2145 skb = tp->lost_skb_hint; 2146 if (skb) { 2147 /* Head already handled? */ 2148 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2149 return; 2150 cnt = tp->lost_cnt_hint; 2151 } else { 2152 skb = tcp_rtx_queue_head(sk); 2153 cnt = 0; 2154 } 2155 2156 skb_rbtree_walk_from(skb) { 2157 /* TODO: do this better */ 2158 /* this is not the most efficient way to do this... */ 2159 tp->lost_skb_hint = skb; 2160 tp->lost_cnt_hint = cnt; 2161 2162 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2163 break; 2164 2165 oldcnt = cnt; 2166 if (tcp_is_reno(tp) || 2167 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2168 cnt += tcp_skb_pcount(skb); 2169 2170 if (cnt > packets) { 2171 if (tcp_is_sack(tp) || 2172 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2173 (oldcnt >= packets)) 2174 break; 2175 2176 mss = tcp_skb_mss(skb); 2177 /* If needed, chop off the prefix to mark as lost. */ 2178 lost = (packets - oldcnt) * mss; 2179 if (lost < skb->len && 2180 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2181 lost, mss, GFP_ATOMIC) < 0) 2182 break; 2183 cnt = packets; 2184 } 2185 2186 tcp_skb_mark_lost(tp, skb); 2187 2188 if (mark_head) 2189 break; 2190 } 2191 tcp_verify_left_out(tp); 2192 } 2193 2194 /* Account newly detected lost packet(s) */ 2195 2196 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2197 { 2198 struct tcp_sock *tp = tcp_sk(sk); 2199 2200 if (tcp_is_reno(tp)) { 2201 tcp_mark_head_lost(sk, 1, 1); 2202 } else { 2203 int sacked_upto = tp->sacked_out - tp->reordering; 2204 if (sacked_upto >= 0) 2205 tcp_mark_head_lost(sk, sacked_upto, 0); 2206 else if (fast_rexmit) 2207 tcp_mark_head_lost(sk, 1, 1); 2208 } 2209 } 2210 2211 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2212 { 2213 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2214 before(tp->rx_opt.rcv_tsecr, when); 2215 } 2216 2217 /* skb is spurious retransmitted if the returned timestamp echo 2218 * reply is prior to the skb transmission time 2219 */ 2220 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2221 const struct sk_buff *skb) 2222 { 2223 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2224 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2225 } 2226 2227 /* Nothing was retransmitted or returned timestamp is less 2228 * than timestamp of the first retransmission. 2229 */ 2230 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2231 { 2232 return !tp->retrans_stamp || 2233 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2234 } 2235 2236 /* Undo procedures. */ 2237 2238 /* We can clear retrans_stamp when there are no retransmissions in the 2239 * window. It would seem that it is trivially available for us in 2240 * tp->retrans_out, however, that kind of assumptions doesn't consider 2241 * what will happen if errors occur when sending retransmission for the 2242 * second time. ...It could the that such segment has only 2243 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2244 * the head skb is enough except for some reneging corner cases that 2245 * are not worth the effort. 2246 * 2247 * Main reason for all this complexity is the fact that connection dying 2248 * time now depends on the validity of the retrans_stamp, in particular, 2249 * that successive retransmissions of a segment must not advance 2250 * retrans_stamp under any conditions. 2251 */ 2252 static bool tcp_any_retrans_done(const struct sock *sk) 2253 { 2254 const struct tcp_sock *tp = tcp_sk(sk); 2255 struct sk_buff *skb; 2256 2257 if (tp->retrans_out) 2258 return true; 2259 2260 skb = tcp_rtx_queue_head(sk); 2261 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2262 return true; 2263 2264 return false; 2265 } 2266 2267 static void DBGUNDO(struct sock *sk, const char *msg) 2268 { 2269 #if FASTRETRANS_DEBUG > 1 2270 struct tcp_sock *tp = tcp_sk(sk); 2271 struct inet_sock *inet = inet_sk(sk); 2272 2273 if (sk->sk_family == AF_INET) { 2274 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2275 msg, 2276 &inet->inet_daddr, ntohs(inet->inet_dport), 2277 tp->snd_cwnd, tcp_left_out(tp), 2278 tp->snd_ssthresh, tp->prior_ssthresh, 2279 tp->packets_out); 2280 } 2281 #if IS_ENABLED(CONFIG_IPV6) 2282 else if (sk->sk_family == AF_INET6) { 2283 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2284 msg, 2285 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2286 tp->snd_cwnd, tcp_left_out(tp), 2287 tp->snd_ssthresh, tp->prior_ssthresh, 2288 tp->packets_out); 2289 } 2290 #endif 2291 #endif 2292 } 2293 2294 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2295 { 2296 struct tcp_sock *tp = tcp_sk(sk); 2297 2298 if (unmark_loss) { 2299 struct sk_buff *skb; 2300 2301 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2302 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2303 } 2304 tp->lost_out = 0; 2305 tcp_clear_all_retrans_hints(tp); 2306 } 2307 2308 if (tp->prior_ssthresh) { 2309 const struct inet_connection_sock *icsk = inet_csk(sk); 2310 2311 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2312 2313 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2314 tp->snd_ssthresh = tp->prior_ssthresh; 2315 tcp_ecn_withdraw_cwr(tp); 2316 } 2317 } 2318 tp->snd_cwnd_stamp = tcp_jiffies32; 2319 tp->undo_marker = 0; 2320 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2321 } 2322 2323 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2324 { 2325 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2326 } 2327 2328 /* People celebrate: "We love our President!" */ 2329 static bool tcp_try_undo_recovery(struct sock *sk) 2330 { 2331 struct tcp_sock *tp = tcp_sk(sk); 2332 2333 if (tcp_may_undo(tp)) { 2334 int mib_idx; 2335 2336 /* Happy end! We did not retransmit anything 2337 * or our original transmission succeeded. 2338 */ 2339 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2340 tcp_undo_cwnd_reduction(sk, false); 2341 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2342 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2343 else 2344 mib_idx = LINUX_MIB_TCPFULLUNDO; 2345 2346 NET_INC_STATS(sock_net(sk), mib_idx); 2347 } else if (tp->rack.reo_wnd_persist) { 2348 tp->rack.reo_wnd_persist--; 2349 } 2350 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2351 /* Hold old state until something *above* high_seq 2352 * is ACKed. For Reno it is MUST to prevent false 2353 * fast retransmits (RFC2582). SACK TCP is safe. */ 2354 if (!tcp_any_retrans_done(sk)) 2355 tp->retrans_stamp = 0; 2356 return true; 2357 } 2358 tcp_set_ca_state(sk, TCP_CA_Open); 2359 tp->is_sack_reneg = 0; 2360 return false; 2361 } 2362 2363 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2364 static bool tcp_try_undo_dsack(struct sock *sk) 2365 { 2366 struct tcp_sock *tp = tcp_sk(sk); 2367 2368 if (tp->undo_marker && !tp->undo_retrans) { 2369 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2370 tp->rack.reo_wnd_persist + 1); 2371 DBGUNDO(sk, "D-SACK"); 2372 tcp_undo_cwnd_reduction(sk, false); 2373 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2374 return true; 2375 } 2376 return false; 2377 } 2378 2379 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2380 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2381 { 2382 struct tcp_sock *tp = tcp_sk(sk); 2383 2384 if (frto_undo || tcp_may_undo(tp)) { 2385 tcp_undo_cwnd_reduction(sk, true); 2386 2387 DBGUNDO(sk, "partial loss"); 2388 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2389 if (frto_undo) 2390 NET_INC_STATS(sock_net(sk), 2391 LINUX_MIB_TCPSPURIOUSRTOS); 2392 inet_csk(sk)->icsk_retransmits = 0; 2393 if (frto_undo || tcp_is_sack(tp)) { 2394 tcp_set_ca_state(sk, TCP_CA_Open); 2395 tp->is_sack_reneg = 0; 2396 } 2397 return true; 2398 } 2399 return false; 2400 } 2401 2402 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2403 * It computes the number of packets to send (sndcnt) based on packets newly 2404 * delivered: 2405 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2406 * cwnd reductions across a full RTT. 2407 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2408 * But when the retransmits are acked without further losses, PRR 2409 * slow starts cwnd up to ssthresh to speed up the recovery. 2410 */ 2411 static void tcp_init_cwnd_reduction(struct sock *sk) 2412 { 2413 struct tcp_sock *tp = tcp_sk(sk); 2414 2415 tp->high_seq = tp->snd_nxt; 2416 tp->tlp_high_seq = 0; 2417 tp->snd_cwnd_cnt = 0; 2418 tp->prior_cwnd = tp->snd_cwnd; 2419 tp->prr_delivered = 0; 2420 tp->prr_out = 0; 2421 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2422 tcp_ecn_queue_cwr(tp); 2423 } 2424 2425 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2426 { 2427 struct tcp_sock *tp = tcp_sk(sk); 2428 int sndcnt = 0; 2429 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2430 2431 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2432 return; 2433 2434 tp->prr_delivered += newly_acked_sacked; 2435 if (delta < 0) { 2436 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2437 tp->prior_cwnd - 1; 2438 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2439 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2440 !(flag & FLAG_LOST_RETRANS)) { 2441 sndcnt = min_t(int, delta, 2442 max_t(int, tp->prr_delivered - tp->prr_out, 2443 newly_acked_sacked) + 1); 2444 } else { 2445 sndcnt = min(delta, newly_acked_sacked); 2446 } 2447 /* Force a fast retransmit upon entering fast recovery */ 2448 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2449 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2450 } 2451 2452 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2453 { 2454 struct tcp_sock *tp = tcp_sk(sk); 2455 2456 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2457 return; 2458 2459 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2460 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2461 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2462 tp->snd_cwnd = tp->snd_ssthresh; 2463 tp->snd_cwnd_stamp = tcp_jiffies32; 2464 } 2465 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2466 } 2467 2468 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2469 void tcp_enter_cwr(struct sock *sk) 2470 { 2471 struct tcp_sock *tp = tcp_sk(sk); 2472 2473 tp->prior_ssthresh = 0; 2474 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2475 tp->undo_marker = 0; 2476 tcp_init_cwnd_reduction(sk); 2477 tcp_set_ca_state(sk, TCP_CA_CWR); 2478 } 2479 } 2480 EXPORT_SYMBOL(tcp_enter_cwr); 2481 2482 static void tcp_try_keep_open(struct sock *sk) 2483 { 2484 struct tcp_sock *tp = tcp_sk(sk); 2485 int state = TCP_CA_Open; 2486 2487 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2488 state = TCP_CA_Disorder; 2489 2490 if (inet_csk(sk)->icsk_ca_state != state) { 2491 tcp_set_ca_state(sk, state); 2492 tp->high_seq = tp->snd_nxt; 2493 } 2494 } 2495 2496 static void tcp_try_to_open(struct sock *sk, int flag) 2497 { 2498 struct tcp_sock *tp = tcp_sk(sk); 2499 2500 tcp_verify_left_out(tp); 2501 2502 if (!tcp_any_retrans_done(sk)) 2503 tp->retrans_stamp = 0; 2504 2505 if (flag & FLAG_ECE) 2506 tcp_enter_cwr(sk); 2507 2508 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2509 tcp_try_keep_open(sk); 2510 } 2511 } 2512 2513 static void tcp_mtup_probe_failed(struct sock *sk) 2514 { 2515 struct inet_connection_sock *icsk = inet_csk(sk); 2516 2517 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2518 icsk->icsk_mtup.probe_size = 0; 2519 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2520 } 2521 2522 static void tcp_mtup_probe_success(struct sock *sk) 2523 { 2524 struct tcp_sock *tp = tcp_sk(sk); 2525 struct inet_connection_sock *icsk = inet_csk(sk); 2526 2527 /* FIXME: breaks with very large cwnd */ 2528 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2529 tp->snd_cwnd = tp->snd_cwnd * 2530 tcp_mss_to_mtu(sk, tp->mss_cache) / 2531 icsk->icsk_mtup.probe_size; 2532 tp->snd_cwnd_cnt = 0; 2533 tp->snd_cwnd_stamp = tcp_jiffies32; 2534 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2535 2536 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2537 icsk->icsk_mtup.probe_size = 0; 2538 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2539 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2540 } 2541 2542 /* Do a simple retransmit without using the backoff mechanisms in 2543 * tcp_timer. This is used for path mtu discovery. 2544 * The socket is already locked here. 2545 */ 2546 void tcp_simple_retransmit(struct sock *sk) 2547 { 2548 const struct inet_connection_sock *icsk = inet_csk(sk); 2549 struct tcp_sock *tp = tcp_sk(sk); 2550 struct sk_buff *skb; 2551 unsigned int mss = tcp_current_mss(sk); 2552 2553 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2554 if (tcp_skb_seglen(skb) > mss && 2555 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2556 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2557 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2558 tp->retrans_out -= tcp_skb_pcount(skb); 2559 } 2560 tcp_skb_mark_lost_uncond_verify(tp, skb); 2561 } 2562 } 2563 2564 tcp_clear_retrans_hints_partial(tp); 2565 2566 if (!tp->lost_out) 2567 return; 2568 2569 if (tcp_is_reno(tp)) 2570 tcp_limit_reno_sacked(tp); 2571 2572 tcp_verify_left_out(tp); 2573 2574 /* Don't muck with the congestion window here. 2575 * Reason is that we do not increase amount of _data_ 2576 * in network, but units changed and effective 2577 * cwnd/ssthresh really reduced now. 2578 */ 2579 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2580 tp->high_seq = tp->snd_nxt; 2581 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2582 tp->prior_ssthresh = 0; 2583 tp->undo_marker = 0; 2584 tcp_set_ca_state(sk, TCP_CA_Loss); 2585 } 2586 tcp_xmit_retransmit_queue(sk); 2587 } 2588 EXPORT_SYMBOL(tcp_simple_retransmit); 2589 2590 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2591 { 2592 struct tcp_sock *tp = tcp_sk(sk); 2593 int mib_idx; 2594 2595 if (tcp_is_reno(tp)) 2596 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2597 else 2598 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2599 2600 NET_INC_STATS(sock_net(sk), mib_idx); 2601 2602 tp->prior_ssthresh = 0; 2603 tcp_init_undo(tp); 2604 2605 if (!tcp_in_cwnd_reduction(sk)) { 2606 if (!ece_ack) 2607 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2608 tcp_init_cwnd_reduction(sk); 2609 } 2610 tcp_set_ca_state(sk, TCP_CA_Recovery); 2611 } 2612 2613 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2614 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2615 */ 2616 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2617 int *rexmit) 2618 { 2619 struct tcp_sock *tp = tcp_sk(sk); 2620 bool recovered = !before(tp->snd_una, tp->high_seq); 2621 2622 if ((flag & FLAG_SND_UNA_ADVANCED) && 2623 tcp_try_undo_loss(sk, false)) 2624 return; 2625 2626 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2627 /* Step 3.b. A timeout is spurious if not all data are 2628 * lost, i.e., never-retransmitted data are (s)acked. 2629 */ 2630 if ((flag & FLAG_ORIG_SACK_ACKED) && 2631 tcp_try_undo_loss(sk, true)) 2632 return; 2633 2634 if (after(tp->snd_nxt, tp->high_seq)) { 2635 if (flag & FLAG_DATA_SACKED || is_dupack) 2636 tp->frto = 0; /* Step 3.a. loss was real */ 2637 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2638 tp->high_seq = tp->snd_nxt; 2639 /* Step 2.b. Try send new data (but deferred until cwnd 2640 * is updated in tcp_ack()). Otherwise fall back to 2641 * the conventional recovery. 2642 */ 2643 if (!tcp_write_queue_empty(sk) && 2644 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2645 *rexmit = REXMIT_NEW; 2646 return; 2647 } 2648 tp->frto = 0; 2649 } 2650 } 2651 2652 if (recovered) { 2653 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2654 tcp_try_undo_recovery(sk); 2655 return; 2656 } 2657 if (tcp_is_reno(tp)) { 2658 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2659 * delivered. Lower inflight to clock out (re)tranmissions. 2660 */ 2661 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2662 tcp_add_reno_sack(sk); 2663 else if (flag & FLAG_SND_UNA_ADVANCED) 2664 tcp_reset_reno_sack(tp); 2665 } 2666 *rexmit = REXMIT_LOST; 2667 } 2668 2669 /* Undo during fast recovery after partial ACK. */ 2670 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2671 { 2672 struct tcp_sock *tp = tcp_sk(sk); 2673 2674 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2675 /* Plain luck! Hole if filled with delayed 2676 * packet, rather than with a retransmit. Check reordering. 2677 */ 2678 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2679 2680 /* We are getting evidence that the reordering degree is higher 2681 * than we realized. If there are no retransmits out then we 2682 * can undo. Otherwise we clock out new packets but do not 2683 * mark more packets lost or retransmit more. 2684 */ 2685 if (tp->retrans_out) 2686 return true; 2687 2688 if (!tcp_any_retrans_done(sk)) 2689 tp->retrans_stamp = 0; 2690 2691 DBGUNDO(sk, "partial recovery"); 2692 tcp_undo_cwnd_reduction(sk, true); 2693 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2694 tcp_try_keep_open(sk); 2695 return true; 2696 } 2697 return false; 2698 } 2699 2700 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2701 { 2702 struct tcp_sock *tp = tcp_sk(sk); 2703 2704 /* Use RACK to detect loss */ 2705 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2706 u32 prior_retrans = tp->retrans_out; 2707 2708 tcp_rack_mark_lost(sk); 2709 if (prior_retrans > tp->retrans_out) 2710 *ack_flag |= FLAG_LOST_RETRANS; 2711 } 2712 } 2713 2714 static bool tcp_force_fast_retransmit(struct sock *sk) 2715 { 2716 struct tcp_sock *tp = tcp_sk(sk); 2717 2718 return after(tcp_highest_sack_seq(tp), 2719 tp->snd_una + tp->reordering * tp->mss_cache); 2720 } 2721 2722 /* Process an event, which can update packets-in-flight not trivially. 2723 * Main goal of this function is to calculate new estimate for left_out, 2724 * taking into account both packets sitting in receiver's buffer and 2725 * packets lost by network. 2726 * 2727 * Besides that it updates the congestion state when packet loss or ECN 2728 * is detected. But it does not reduce the cwnd, it is done by the 2729 * congestion control later. 2730 * 2731 * It does _not_ decide what to send, it is made in function 2732 * tcp_xmit_retransmit_queue(). 2733 */ 2734 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2735 bool is_dupack, int *ack_flag, int *rexmit) 2736 { 2737 struct inet_connection_sock *icsk = inet_csk(sk); 2738 struct tcp_sock *tp = tcp_sk(sk); 2739 int fast_rexmit = 0, flag = *ack_flag; 2740 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2741 tcp_force_fast_retransmit(sk)); 2742 2743 if (!tp->packets_out && tp->sacked_out) 2744 tp->sacked_out = 0; 2745 2746 /* Now state machine starts. 2747 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2748 if (flag & FLAG_ECE) 2749 tp->prior_ssthresh = 0; 2750 2751 /* B. In all the states check for reneging SACKs. */ 2752 if (tcp_check_sack_reneging(sk, flag)) 2753 return; 2754 2755 /* C. Check consistency of the current state. */ 2756 tcp_verify_left_out(tp); 2757 2758 /* D. Check state exit conditions. State can be terminated 2759 * when high_seq is ACKed. */ 2760 if (icsk->icsk_ca_state == TCP_CA_Open) { 2761 WARN_ON(tp->retrans_out != 0); 2762 tp->retrans_stamp = 0; 2763 } else if (!before(tp->snd_una, tp->high_seq)) { 2764 switch (icsk->icsk_ca_state) { 2765 case TCP_CA_CWR: 2766 /* CWR is to be held something *above* high_seq 2767 * is ACKed for CWR bit to reach receiver. */ 2768 if (tp->snd_una != tp->high_seq) { 2769 tcp_end_cwnd_reduction(sk); 2770 tcp_set_ca_state(sk, TCP_CA_Open); 2771 } 2772 break; 2773 2774 case TCP_CA_Recovery: 2775 if (tcp_is_reno(tp)) 2776 tcp_reset_reno_sack(tp); 2777 if (tcp_try_undo_recovery(sk)) 2778 return; 2779 tcp_end_cwnd_reduction(sk); 2780 break; 2781 } 2782 } 2783 2784 /* E. Process state. */ 2785 switch (icsk->icsk_ca_state) { 2786 case TCP_CA_Recovery: 2787 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2788 if (tcp_is_reno(tp) && is_dupack) 2789 tcp_add_reno_sack(sk); 2790 } else { 2791 if (tcp_try_undo_partial(sk, prior_snd_una)) 2792 return; 2793 /* Partial ACK arrived. Force fast retransmit. */ 2794 do_lost = tcp_is_reno(tp) || 2795 tcp_force_fast_retransmit(sk); 2796 } 2797 if (tcp_try_undo_dsack(sk)) { 2798 tcp_try_keep_open(sk); 2799 return; 2800 } 2801 tcp_rack_identify_loss(sk, ack_flag); 2802 break; 2803 case TCP_CA_Loss: 2804 tcp_process_loss(sk, flag, is_dupack, rexmit); 2805 tcp_rack_identify_loss(sk, ack_flag); 2806 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2807 (*ack_flag & FLAG_LOST_RETRANS))) 2808 return; 2809 /* Change state if cwnd is undone or retransmits are lost */ 2810 /* fall through */ 2811 default: 2812 if (tcp_is_reno(tp)) { 2813 if (flag & FLAG_SND_UNA_ADVANCED) 2814 tcp_reset_reno_sack(tp); 2815 if (is_dupack) 2816 tcp_add_reno_sack(sk); 2817 } 2818 2819 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2820 tcp_try_undo_dsack(sk); 2821 2822 tcp_rack_identify_loss(sk, ack_flag); 2823 if (!tcp_time_to_recover(sk, flag)) { 2824 tcp_try_to_open(sk, flag); 2825 return; 2826 } 2827 2828 /* MTU probe failure: don't reduce cwnd */ 2829 if (icsk->icsk_ca_state < TCP_CA_CWR && 2830 icsk->icsk_mtup.probe_size && 2831 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2832 tcp_mtup_probe_failed(sk); 2833 /* Restores the reduction we did in tcp_mtup_probe() */ 2834 tp->snd_cwnd++; 2835 tcp_simple_retransmit(sk); 2836 return; 2837 } 2838 2839 /* Otherwise enter Recovery state */ 2840 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2841 fast_rexmit = 1; 2842 } 2843 2844 if (do_lost) 2845 tcp_update_scoreboard(sk, fast_rexmit); 2846 *rexmit = REXMIT_LOST; 2847 } 2848 2849 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2850 { 2851 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2852 struct tcp_sock *tp = tcp_sk(sk); 2853 2854 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2855 /* If the remote keeps returning delayed ACKs, eventually 2856 * the min filter would pick it up and overestimate the 2857 * prop. delay when it expires. Skip suspected delayed ACKs. 2858 */ 2859 return; 2860 } 2861 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2862 rtt_us ? : jiffies_to_usecs(1)); 2863 } 2864 2865 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2866 long seq_rtt_us, long sack_rtt_us, 2867 long ca_rtt_us, struct rate_sample *rs) 2868 { 2869 const struct tcp_sock *tp = tcp_sk(sk); 2870 2871 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2872 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2873 * Karn's algorithm forbids taking RTT if some retransmitted data 2874 * is acked (RFC6298). 2875 */ 2876 if (seq_rtt_us < 0) 2877 seq_rtt_us = sack_rtt_us; 2878 2879 /* RTTM Rule: A TSecr value received in a segment is used to 2880 * update the averaged RTT measurement only if the segment 2881 * acknowledges some new data, i.e., only if it advances the 2882 * left edge of the send window. 2883 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2884 */ 2885 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2886 flag & FLAG_ACKED) { 2887 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2888 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2889 2890 seq_rtt_us = ca_rtt_us = delta_us; 2891 } 2892 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2893 if (seq_rtt_us < 0) 2894 return false; 2895 2896 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2897 * always taken together with ACK, SACK, or TS-opts. Any negative 2898 * values will be skipped with the seq_rtt_us < 0 check above. 2899 */ 2900 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2901 tcp_rtt_estimator(sk, seq_rtt_us); 2902 tcp_set_rto(sk); 2903 2904 /* RFC6298: only reset backoff on valid RTT measurement. */ 2905 inet_csk(sk)->icsk_backoff = 0; 2906 return true; 2907 } 2908 2909 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2910 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2911 { 2912 struct rate_sample rs; 2913 long rtt_us = -1L; 2914 2915 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2916 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2917 2918 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2919 } 2920 2921 2922 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2923 { 2924 const struct inet_connection_sock *icsk = inet_csk(sk); 2925 2926 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2927 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2928 } 2929 2930 /* Restart timer after forward progress on connection. 2931 * RFC2988 recommends to restart timer to now+rto. 2932 */ 2933 void tcp_rearm_rto(struct sock *sk) 2934 { 2935 const struct inet_connection_sock *icsk = inet_csk(sk); 2936 struct tcp_sock *tp = tcp_sk(sk); 2937 2938 /* If the retrans timer is currently being used by Fast Open 2939 * for SYN-ACK retrans purpose, stay put. 2940 */ 2941 if (tp->fastopen_rsk) 2942 return; 2943 2944 if (!tp->packets_out) { 2945 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2946 } else { 2947 u32 rto = inet_csk(sk)->icsk_rto; 2948 /* Offset the time elapsed after installing regular RTO */ 2949 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2950 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2951 s64 delta_us = tcp_rto_delta_us(sk); 2952 /* delta_us may not be positive if the socket is locked 2953 * when the retrans timer fires and is rescheduled. 2954 */ 2955 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2956 } 2957 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2958 TCP_RTO_MAX); 2959 } 2960 } 2961 2962 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2963 static void tcp_set_xmit_timer(struct sock *sk) 2964 { 2965 if (!tcp_schedule_loss_probe(sk, true)) 2966 tcp_rearm_rto(sk); 2967 } 2968 2969 /* If we get here, the whole TSO packet has not been acked. */ 2970 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2971 { 2972 struct tcp_sock *tp = tcp_sk(sk); 2973 u32 packets_acked; 2974 2975 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2976 2977 packets_acked = tcp_skb_pcount(skb); 2978 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2979 return 0; 2980 packets_acked -= tcp_skb_pcount(skb); 2981 2982 if (packets_acked) { 2983 BUG_ON(tcp_skb_pcount(skb) == 0); 2984 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2985 } 2986 2987 return packets_acked; 2988 } 2989 2990 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 2991 u32 prior_snd_una) 2992 { 2993 const struct skb_shared_info *shinfo; 2994 2995 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 2996 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 2997 return; 2998 2999 shinfo = skb_shinfo(skb); 3000 if (!before(shinfo->tskey, prior_snd_una) && 3001 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3002 tcp_skb_tsorted_save(skb) { 3003 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3004 } tcp_skb_tsorted_restore(skb); 3005 } 3006 } 3007 3008 /* Remove acknowledged frames from the retransmission queue. If our packet 3009 * is before the ack sequence we can discard it as it's confirmed to have 3010 * arrived at the other end. 3011 */ 3012 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3013 u32 prior_snd_una, 3014 struct tcp_sacktag_state *sack) 3015 { 3016 const struct inet_connection_sock *icsk = inet_csk(sk); 3017 u64 first_ackt, last_ackt; 3018 struct tcp_sock *tp = tcp_sk(sk); 3019 u32 prior_sacked = tp->sacked_out; 3020 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3021 struct sk_buff *skb, *next; 3022 bool fully_acked = true; 3023 long sack_rtt_us = -1L; 3024 long seq_rtt_us = -1L; 3025 long ca_rtt_us = -1L; 3026 u32 pkts_acked = 0; 3027 u32 last_in_flight = 0; 3028 bool rtt_update; 3029 int flag = 0; 3030 3031 first_ackt = 0; 3032 3033 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3034 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3035 const u32 start_seq = scb->seq; 3036 u8 sacked = scb->sacked; 3037 u32 acked_pcount; 3038 3039 tcp_ack_tstamp(sk, skb, prior_snd_una); 3040 3041 /* Determine how many packets and what bytes were acked, tso and else */ 3042 if (after(scb->end_seq, tp->snd_una)) { 3043 if (tcp_skb_pcount(skb) == 1 || 3044 !after(tp->snd_una, scb->seq)) 3045 break; 3046 3047 acked_pcount = tcp_tso_acked(sk, skb); 3048 if (!acked_pcount) 3049 break; 3050 fully_acked = false; 3051 } else { 3052 acked_pcount = tcp_skb_pcount(skb); 3053 } 3054 3055 if (unlikely(sacked & TCPCB_RETRANS)) { 3056 if (sacked & TCPCB_SACKED_RETRANS) 3057 tp->retrans_out -= acked_pcount; 3058 flag |= FLAG_RETRANS_DATA_ACKED; 3059 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3060 last_ackt = skb->skb_mstamp; 3061 WARN_ON_ONCE(last_ackt == 0); 3062 if (!first_ackt) 3063 first_ackt = last_ackt; 3064 3065 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3066 if (before(start_seq, reord)) 3067 reord = start_seq; 3068 if (!after(scb->end_seq, tp->high_seq)) 3069 flag |= FLAG_ORIG_SACK_ACKED; 3070 } 3071 3072 if (sacked & TCPCB_SACKED_ACKED) { 3073 tp->sacked_out -= acked_pcount; 3074 } else if (tcp_is_sack(tp)) { 3075 tp->delivered += acked_pcount; 3076 if (!tcp_skb_spurious_retrans(tp, skb)) 3077 tcp_rack_advance(tp, sacked, scb->end_seq, 3078 skb->skb_mstamp); 3079 } 3080 if (sacked & TCPCB_LOST) 3081 tp->lost_out -= acked_pcount; 3082 3083 tp->packets_out -= acked_pcount; 3084 pkts_acked += acked_pcount; 3085 tcp_rate_skb_delivered(sk, skb, sack->rate); 3086 3087 /* Initial outgoing SYN's get put onto the write_queue 3088 * just like anything else we transmit. It is not 3089 * true data, and if we misinform our callers that 3090 * this ACK acks real data, we will erroneously exit 3091 * connection startup slow start one packet too 3092 * quickly. This is severely frowned upon behavior. 3093 */ 3094 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3095 flag |= FLAG_DATA_ACKED; 3096 } else { 3097 flag |= FLAG_SYN_ACKED; 3098 tp->retrans_stamp = 0; 3099 } 3100 3101 if (!fully_acked) 3102 break; 3103 3104 next = skb_rb_next(skb); 3105 if (unlikely(skb == tp->retransmit_skb_hint)) 3106 tp->retransmit_skb_hint = NULL; 3107 if (unlikely(skb == tp->lost_skb_hint)) 3108 tp->lost_skb_hint = NULL; 3109 tcp_rtx_queue_unlink_and_free(skb, sk); 3110 } 3111 3112 if (!skb) 3113 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3114 3115 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3116 tp->snd_up = tp->snd_una; 3117 3118 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3119 flag |= FLAG_SACK_RENEGING; 3120 3121 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3122 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3123 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3124 3125 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3126 last_in_flight && !prior_sacked && fully_acked && 3127 sack->rate->prior_delivered + 1 == tp->delivered && 3128 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3129 /* Conservatively mark a delayed ACK. It's typically 3130 * from a lone runt packet over the round trip to 3131 * a receiver w/o out-of-order or CE events. 3132 */ 3133 flag |= FLAG_ACK_MAYBE_DELAYED; 3134 } 3135 } 3136 if (sack->first_sackt) { 3137 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3138 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3139 } 3140 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3141 ca_rtt_us, sack->rate); 3142 3143 if (flag & FLAG_ACKED) { 3144 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3145 if (unlikely(icsk->icsk_mtup.probe_size && 3146 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3147 tcp_mtup_probe_success(sk); 3148 } 3149 3150 if (tcp_is_reno(tp)) { 3151 tcp_remove_reno_sacks(sk, pkts_acked); 3152 } else { 3153 int delta; 3154 3155 /* Non-retransmitted hole got filled? That's reordering */ 3156 if (before(reord, prior_fack)) 3157 tcp_check_sack_reordering(sk, reord, 0); 3158 3159 delta = prior_sacked - tp->sacked_out; 3160 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3161 } 3162 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3163 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3164 /* Do not re-arm RTO if the sack RTT is measured from data sent 3165 * after when the head was last (re)transmitted. Otherwise the 3166 * timeout may continue to extend in loss recovery. 3167 */ 3168 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3169 } 3170 3171 if (icsk->icsk_ca_ops->pkts_acked) { 3172 struct ack_sample sample = { .pkts_acked = pkts_acked, 3173 .rtt_us = sack->rate->rtt_us, 3174 .in_flight = last_in_flight }; 3175 3176 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3177 } 3178 3179 #if FASTRETRANS_DEBUG > 0 3180 WARN_ON((int)tp->sacked_out < 0); 3181 WARN_ON((int)tp->lost_out < 0); 3182 WARN_ON((int)tp->retrans_out < 0); 3183 if (!tp->packets_out && tcp_is_sack(tp)) { 3184 icsk = inet_csk(sk); 3185 if (tp->lost_out) { 3186 pr_debug("Leak l=%u %d\n", 3187 tp->lost_out, icsk->icsk_ca_state); 3188 tp->lost_out = 0; 3189 } 3190 if (tp->sacked_out) { 3191 pr_debug("Leak s=%u %d\n", 3192 tp->sacked_out, icsk->icsk_ca_state); 3193 tp->sacked_out = 0; 3194 } 3195 if (tp->retrans_out) { 3196 pr_debug("Leak r=%u %d\n", 3197 tp->retrans_out, icsk->icsk_ca_state); 3198 tp->retrans_out = 0; 3199 } 3200 } 3201 #endif 3202 return flag; 3203 } 3204 3205 static void tcp_ack_probe(struct sock *sk) 3206 { 3207 struct inet_connection_sock *icsk = inet_csk(sk); 3208 struct sk_buff *head = tcp_send_head(sk); 3209 const struct tcp_sock *tp = tcp_sk(sk); 3210 3211 /* Was it a usable window open? */ 3212 if (!head) 3213 return; 3214 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3215 icsk->icsk_backoff = 0; 3216 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3217 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3218 * This function is not for random using! 3219 */ 3220 } else { 3221 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3222 3223 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3224 when, TCP_RTO_MAX); 3225 } 3226 } 3227 3228 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3229 { 3230 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3231 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3232 } 3233 3234 /* Decide wheather to run the increase function of congestion control. */ 3235 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3236 { 3237 /* If reordering is high then always grow cwnd whenever data is 3238 * delivered regardless of its ordering. Otherwise stay conservative 3239 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3240 * new SACK or ECE mark may first advance cwnd here and later reduce 3241 * cwnd in tcp_fastretrans_alert() based on more states. 3242 */ 3243 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3244 return flag & FLAG_FORWARD_PROGRESS; 3245 3246 return flag & FLAG_DATA_ACKED; 3247 } 3248 3249 /* The "ultimate" congestion control function that aims to replace the rigid 3250 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3251 * It's called toward the end of processing an ACK with precise rate 3252 * information. All transmission or retransmission are delayed afterwards. 3253 */ 3254 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3255 int flag, const struct rate_sample *rs) 3256 { 3257 const struct inet_connection_sock *icsk = inet_csk(sk); 3258 3259 if (icsk->icsk_ca_ops->cong_control) { 3260 icsk->icsk_ca_ops->cong_control(sk, rs); 3261 return; 3262 } 3263 3264 if (tcp_in_cwnd_reduction(sk)) { 3265 /* Reduce cwnd if state mandates */ 3266 tcp_cwnd_reduction(sk, acked_sacked, flag); 3267 } else if (tcp_may_raise_cwnd(sk, flag)) { 3268 /* Advance cwnd if state allows */ 3269 tcp_cong_avoid(sk, ack, acked_sacked); 3270 } 3271 tcp_update_pacing_rate(sk); 3272 } 3273 3274 /* Check that window update is acceptable. 3275 * The function assumes that snd_una<=ack<=snd_next. 3276 */ 3277 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3278 const u32 ack, const u32 ack_seq, 3279 const u32 nwin) 3280 { 3281 return after(ack, tp->snd_una) || 3282 after(ack_seq, tp->snd_wl1) || 3283 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3284 } 3285 3286 /* If we update tp->snd_una, also update tp->bytes_acked */ 3287 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3288 { 3289 u32 delta = ack - tp->snd_una; 3290 3291 sock_owned_by_me((struct sock *)tp); 3292 tp->bytes_acked += delta; 3293 tp->snd_una = ack; 3294 } 3295 3296 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3297 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3298 { 3299 u32 delta = seq - tp->rcv_nxt; 3300 3301 sock_owned_by_me((struct sock *)tp); 3302 tp->bytes_received += delta; 3303 tp->rcv_nxt = seq; 3304 } 3305 3306 /* Update our send window. 3307 * 3308 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3309 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3310 */ 3311 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3312 u32 ack_seq) 3313 { 3314 struct tcp_sock *tp = tcp_sk(sk); 3315 int flag = 0; 3316 u32 nwin = ntohs(tcp_hdr(skb)->window); 3317 3318 if (likely(!tcp_hdr(skb)->syn)) 3319 nwin <<= tp->rx_opt.snd_wscale; 3320 3321 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3322 flag |= FLAG_WIN_UPDATE; 3323 tcp_update_wl(tp, ack_seq); 3324 3325 if (tp->snd_wnd != nwin) { 3326 tp->snd_wnd = nwin; 3327 3328 /* Note, it is the only place, where 3329 * fast path is recovered for sending TCP. 3330 */ 3331 tp->pred_flags = 0; 3332 tcp_fast_path_check(sk); 3333 3334 if (!tcp_write_queue_empty(sk)) 3335 tcp_slow_start_after_idle_check(sk); 3336 3337 if (nwin > tp->max_window) { 3338 tp->max_window = nwin; 3339 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3340 } 3341 } 3342 } 3343 3344 tcp_snd_una_update(tp, ack); 3345 3346 return flag; 3347 } 3348 3349 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3350 u32 *last_oow_ack_time) 3351 { 3352 if (*last_oow_ack_time) { 3353 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3354 3355 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3356 NET_INC_STATS(net, mib_idx); 3357 return true; /* rate-limited: don't send yet! */ 3358 } 3359 } 3360 3361 *last_oow_ack_time = tcp_jiffies32; 3362 3363 return false; /* not rate-limited: go ahead, send dupack now! */ 3364 } 3365 3366 /* Return true if we're currently rate-limiting out-of-window ACKs and 3367 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3368 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3369 * attacks that send repeated SYNs or ACKs for the same connection. To 3370 * do this, we do not send a duplicate SYNACK or ACK if the remote 3371 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3372 */ 3373 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3374 int mib_idx, u32 *last_oow_ack_time) 3375 { 3376 /* Data packets without SYNs are not likely part of an ACK loop. */ 3377 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3378 !tcp_hdr(skb)->syn) 3379 return false; 3380 3381 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3382 } 3383 3384 /* RFC 5961 7 [ACK Throttling] */ 3385 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3386 { 3387 /* unprotected vars, we dont care of overwrites */ 3388 static u32 challenge_timestamp; 3389 static unsigned int challenge_count; 3390 struct tcp_sock *tp = tcp_sk(sk); 3391 struct net *net = sock_net(sk); 3392 u32 count, now; 3393 3394 /* First check our per-socket dupack rate limit. */ 3395 if (__tcp_oow_rate_limited(net, 3396 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3397 &tp->last_oow_ack_time)) 3398 return; 3399 3400 /* Then check host-wide RFC 5961 rate limit. */ 3401 now = jiffies / HZ; 3402 if (now != challenge_timestamp) { 3403 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3404 u32 half = (ack_limit + 1) >> 1; 3405 3406 challenge_timestamp = now; 3407 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3408 } 3409 count = READ_ONCE(challenge_count); 3410 if (count > 0) { 3411 WRITE_ONCE(challenge_count, count - 1); 3412 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3413 tcp_send_ack(sk); 3414 } 3415 } 3416 3417 static void tcp_store_ts_recent(struct tcp_sock *tp) 3418 { 3419 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3420 tp->rx_opt.ts_recent_stamp = get_seconds(); 3421 } 3422 3423 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3424 { 3425 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3426 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3427 * extra check below makes sure this can only happen 3428 * for pure ACK frames. -DaveM 3429 * 3430 * Not only, also it occurs for expired timestamps. 3431 */ 3432 3433 if (tcp_paws_check(&tp->rx_opt, 0)) 3434 tcp_store_ts_recent(tp); 3435 } 3436 } 3437 3438 /* This routine deals with acks during a TLP episode. 3439 * We mark the end of a TLP episode on receiving TLP dupack or when 3440 * ack is after tlp_high_seq. 3441 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3442 */ 3443 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3444 { 3445 struct tcp_sock *tp = tcp_sk(sk); 3446 3447 if (before(ack, tp->tlp_high_seq)) 3448 return; 3449 3450 if (flag & FLAG_DSACKING_ACK) { 3451 /* This DSACK means original and TLP probe arrived; no loss */ 3452 tp->tlp_high_seq = 0; 3453 } else if (after(ack, tp->tlp_high_seq)) { 3454 /* ACK advances: there was a loss, so reduce cwnd. Reset 3455 * tlp_high_seq in tcp_init_cwnd_reduction() 3456 */ 3457 tcp_init_cwnd_reduction(sk); 3458 tcp_set_ca_state(sk, TCP_CA_CWR); 3459 tcp_end_cwnd_reduction(sk); 3460 tcp_try_keep_open(sk); 3461 NET_INC_STATS(sock_net(sk), 3462 LINUX_MIB_TCPLOSSPROBERECOVERY); 3463 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3464 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3465 /* Pure dupack: original and TLP probe arrived; no loss */ 3466 tp->tlp_high_seq = 0; 3467 } 3468 } 3469 3470 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3471 { 3472 const struct inet_connection_sock *icsk = inet_csk(sk); 3473 3474 if (icsk->icsk_ca_ops->in_ack_event) 3475 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3476 } 3477 3478 /* Congestion control has updated the cwnd already. So if we're in 3479 * loss recovery then now we do any new sends (for FRTO) or 3480 * retransmits (for CA_Loss or CA_recovery) that make sense. 3481 */ 3482 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3483 { 3484 struct tcp_sock *tp = tcp_sk(sk); 3485 3486 if (rexmit == REXMIT_NONE) 3487 return; 3488 3489 if (unlikely(rexmit == 2)) { 3490 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3491 TCP_NAGLE_OFF); 3492 if (after(tp->snd_nxt, tp->high_seq)) 3493 return; 3494 tp->frto = 0; 3495 } 3496 tcp_xmit_retransmit_queue(sk); 3497 } 3498 3499 /* Returns the number of packets newly acked or sacked by the current ACK */ 3500 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3501 { 3502 const struct net *net = sock_net(sk); 3503 struct tcp_sock *tp = tcp_sk(sk); 3504 u32 delivered; 3505 3506 delivered = tp->delivered - prior_delivered; 3507 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3508 if (flag & FLAG_ECE) { 3509 tp->delivered_ce += delivered; 3510 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3511 } 3512 return delivered; 3513 } 3514 3515 /* This routine deals with incoming acks, but not outgoing ones. */ 3516 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3517 { 3518 struct inet_connection_sock *icsk = inet_csk(sk); 3519 struct tcp_sock *tp = tcp_sk(sk); 3520 struct tcp_sacktag_state sack_state; 3521 struct rate_sample rs = { .prior_delivered = 0 }; 3522 u32 prior_snd_una = tp->snd_una; 3523 bool is_sack_reneg = tp->is_sack_reneg; 3524 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3525 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3526 bool is_dupack = false; 3527 int prior_packets = tp->packets_out; 3528 u32 delivered = tp->delivered; 3529 u32 lost = tp->lost; 3530 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3531 u32 prior_fack; 3532 3533 sack_state.first_sackt = 0; 3534 sack_state.rate = &rs; 3535 3536 /* We very likely will need to access rtx queue. */ 3537 prefetch(sk->tcp_rtx_queue.rb_node); 3538 3539 /* If the ack is older than previous acks 3540 * then we can probably ignore it. 3541 */ 3542 if (before(ack, prior_snd_una)) { 3543 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3544 if (before(ack, prior_snd_una - tp->max_window)) { 3545 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3546 tcp_send_challenge_ack(sk, skb); 3547 return -1; 3548 } 3549 goto old_ack; 3550 } 3551 3552 /* If the ack includes data we haven't sent yet, discard 3553 * this segment (RFC793 Section 3.9). 3554 */ 3555 if (after(ack, tp->snd_nxt)) 3556 goto invalid_ack; 3557 3558 if (after(ack, prior_snd_una)) { 3559 flag |= FLAG_SND_UNA_ADVANCED; 3560 icsk->icsk_retransmits = 0; 3561 } 3562 3563 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3564 rs.prior_in_flight = tcp_packets_in_flight(tp); 3565 3566 /* ts_recent update must be made after we are sure that the packet 3567 * is in window. 3568 */ 3569 if (flag & FLAG_UPDATE_TS_RECENT) 3570 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3571 3572 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3573 /* Window is constant, pure forward advance. 3574 * No more checks are required. 3575 * Note, we use the fact that SND.UNA>=SND.WL2. 3576 */ 3577 tcp_update_wl(tp, ack_seq); 3578 tcp_snd_una_update(tp, ack); 3579 flag |= FLAG_WIN_UPDATE; 3580 3581 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3582 3583 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3584 } else { 3585 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3586 3587 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3588 flag |= FLAG_DATA; 3589 else 3590 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3591 3592 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3593 3594 if (TCP_SKB_CB(skb)->sacked) 3595 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3596 &sack_state); 3597 3598 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3599 flag |= FLAG_ECE; 3600 ack_ev_flags |= CA_ACK_ECE; 3601 } 3602 3603 if (flag & FLAG_WIN_UPDATE) 3604 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3605 3606 tcp_in_ack_event(sk, ack_ev_flags); 3607 } 3608 3609 /* We passed data and got it acked, remove any soft error 3610 * log. Something worked... 3611 */ 3612 sk->sk_err_soft = 0; 3613 icsk->icsk_probes_out = 0; 3614 tp->rcv_tstamp = tcp_jiffies32; 3615 if (!prior_packets) 3616 goto no_queue; 3617 3618 /* See if we can take anything off of the retransmit queue. */ 3619 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3620 3621 tcp_rack_update_reo_wnd(sk, &rs); 3622 3623 if (tp->tlp_high_seq) 3624 tcp_process_tlp_ack(sk, ack, flag); 3625 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3626 if (flag & FLAG_SET_XMIT_TIMER) 3627 tcp_set_xmit_timer(sk); 3628 3629 if (tcp_ack_is_dubious(sk, flag)) { 3630 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3631 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3632 &rexmit); 3633 } 3634 3635 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3636 sk_dst_confirm(sk); 3637 3638 delivered = tcp_newly_delivered(sk, delivered, flag); 3639 lost = tp->lost - lost; /* freshly marked lost */ 3640 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3641 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3642 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3643 tcp_xmit_recovery(sk, rexmit); 3644 return 1; 3645 3646 no_queue: 3647 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3648 if (flag & FLAG_DSACKING_ACK) { 3649 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3650 &rexmit); 3651 tcp_newly_delivered(sk, delivered, flag); 3652 } 3653 /* If this ack opens up a zero window, clear backoff. It was 3654 * being used to time the probes, and is probably far higher than 3655 * it needs to be for normal retransmission. 3656 */ 3657 tcp_ack_probe(sk); 3658 3659 if (tp->tlp_high_seq) 3660 tcp_process_tlp_ack(sk, ack, flag); 3661 return 1; 3662 3663 invalid_ack: 3664 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3665 return -1; 3666 3667 old_ack: 3668 /* If data was SACKed, tag it and see if we should send more data. 3669 * If data was DSACKed, see if we can undo a cwnd reduction. 3670 */ 3671 if (TCP_SKB_CB(skb)->sacked) { 3672 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3673 &sack_state); 3674 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3675 &rexmit); 3676 tcp_newly_delivered(sk, delivered, flag); 3677 tcp_xmit_recovery(sk, rexmit); 3678 } 3679 3680 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3681 return 0; 3682 } 3683 3684 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3685 bool syn, struct tcp_fastopen_cookie *foc, 3686 bool exp_opt) 3687 { 3688 /* Valid only in SYN or SYN-ACK with an even length. */ 3689 if (!foc || !syn || len < 0 || (len & 1)) 3690 return; 3691 3692 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3693 len <= TCP_FASTOPEN_COOKIE_MAX) 3694 memcpy(foc->val, cookie, len); 3695 else if (len != 0) 3696 len = -1; 3697 foc->len = len; 3698 foc->exp = exp_opt; 3699 } 3700 3701 static void smc_parse_options(const struct tcphdr *th, 3702 struct tcp_options_received *opt_rx, 3703 const unsigned char *ptr, 3704 int opsize) 3705 { 3706 #if IS_ENABLED(CONFIG_SMC) 3707 if (static_branch_unlikely(&tcp_have_smc)) { 3708 if (th->syn && !(opsize & 1) && 3709 opsize >= TCPOLEN_EXP_SMC_BASE && 3710 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3711 opt_rx->smc_ok = 1; 3712 } 3713 #endif 3714 } 3715 3716 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3717 * But, this can also be called on packets in the established flow when 3718 * the fast version below fails. 3719 */ 3720 void tcp_parse_options(const struct net *net, 3721 const struct sk_buff *skb, 3722 struct tcp_options_received *opt_rx, int estab, 3723 struct tcp_fastopen_cookie *foc) 3724 { 3725 const unsigned char *ptr; 3726 const struct tcphdr *th = tcp_hdr(skb); 3727 int length = (th->doff * 4) - sizeof(struct tcphdr); 3728 3729 ptr = (const unsigned char *)(th + 1); 3730 opt_rx->saw_tstamp = 0; 3731 3732 while (length > 0) { 3733 int opcode = *ptr++; 3734 int opsize; 3735 3736 switch (opcode) { 3737 case TCPOPT_EOL: 3738 return; 3739 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3740 length--; 3741 continue; 3742 default: 3743 opsize = *ptr++; 3744 if (opsize < 2) /* "silly options" */ 3745 return; 3746 if (opsize > length) 3747 return; /* don't parse partial options */ 3748 switch (opcode) { 3749 case TCPOPT_MSS: 3750 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3751 u16 in_mss = get_unaligned_be16(ptr); 3752 if (in_mss) { 3753 if (opt_rx->user_mss && 3754 opt_rx->user_mss < in_mss) 3755 in_mss = opt_rx->user_mss; 3756 opt_rx->mss_clamp = in_mss; 3757 } 3758 } 3759 break; 3760 case TCPOPT_WINDOW: 3761 if (opsize == TCPOLEN_WINDOW && th->syn && 3762 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3763 __u8 snd_wscale = *(__u8 *)ptr; 3764 opt_rx->wscale_ok = 1; 3765 if (snd_wscale > TCP_MAX_WSCALE) { 3766 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3767 __func__, 3768 snd_wscale, 3769 TCP_MAX_WSCALE); 3770 snd_wscale = TCP_MAX_WSCALE; 3771 } 3772 opt_rx->snd_wscale = snd_wscale; 3773 } 3774 break; 3775 case TCPOPT_TIMESTAMP: 3776 if ((opsize == TCPOLEN_TIMESTAMP) && 3777 ((estab && opt_rx->tstamp_ok) || 3778 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3779 opt_rx->saw_tstamp = 1; 3780 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3781 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3782 } 3783 break; 3784 case TCPOPT_SACK_PERM: 3785 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3786 !estab && net->ipv4.sysctl_tcp_sack) { 3787 opt_rx->sack_ok = TCP_SACK_SEEN; 3788 tcp_sack_reset(opt_rx); 3789 } 3790 break; 3791 3792 case TCPOPT_SACK: 3793 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3794 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3795 opt_rx->sack_ok) { 3796 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3797 } 3798 break; 3799 #ifdef CONFIG_TCP_MD5SIG 3800 case TCPOPT_MD5SIG: 3801 /* 3802 * The MD5 Hash has already been 3803 * checked (see tcp_v{4,6}_do_rcv()). 3804 */ 3805 break; 3806 #endif 3807 case TCPOPT_FASTOPEN: 3808 tcp_parse_fastopen_option( 3809 opsize - TCPOLEN_FASTOPEN_BASE, 3810 ptr, th->syn, foc, false); 3811 break; 3812 3813 case TCPOPT_EXP: 3814 /* Fast Open option shares code 254 using a 3815 * 16 bits magic number. 3816 */ 3817 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3818 get_unaligned_be16(ptr) == 3819 TCPOPT_FASTOPEN_MAGIC) 3820 tcp_parse_fastopen_option(opsize - 3821 TCPOLEN_EXP_FASTOPEN_BASE, 3822 ptr + 2, th->syn, foc, true); 3823 else 3824 smc_parse_options(th, opt_rx, ptr, 3825 opsize); 3826 break; 3827 3828 } 3829 ptr += opsize-2; 3830 length -= opsize; 3831 } 3832 } 3833 } 3834 EXPORT_SYMBOL(tcp_parse_options); 3835 3836 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3837 { 3838 const __be32 *ptr = (const __be32 *)(th + 1); 3839 3840 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3841 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3842 tp->rx_opt.saw_tstamp = 1; 3843 ++ptr; 3844 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3845 ++ptr; 3846 if (*ptr) 3847 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3848 else 3849 tp->rx_opt.rcv_tsecr = 0; 3850 return true; 3851 } 3852 return false; 3853 } 3854 3855 /* Fast parse options. This hopes to only see timestamps. 3856 * If it is wrong it falls back on tcp_parse_options(). 3857 */ 3858 static bool tcp_fast_parse_options(const struct net *net, 3859 const struct sk_buff *skb, 3860 const struct tcphdr *th, struct tcp_sock *tp) 3861 { 3862 /* In the spirit of fast parsing, compare doff directly to constant 3863 * values. Because equality is used, short doff can be ignored here. 3864 */ 3865 if (th->doff == (sizeof(*th) / 4)) { 3866 tp->rx_opt.saw_tstamp = 0; 3867 return false; 3868 } else if (tp->rx_opt.tstamp_ok && 3869 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3870 if (tcp_parse_aligned_timestamp(tp, th)) 3871 return true; 3872 } 3873 3874 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3875 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3876 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3877 3878 return true; 3879 } 3880 3881 #ifdef CONFIG_TCP_MD5SIG 3882 /* 3883 * Parse MD5 Signature option 3884 */ 3885 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3886 { 3887 int length = (th->doff << 2) - sizeof(*th); 3888 const u8 *ptr = (const u8 *)(th + 1); 3889 3890 /* If the TCP option is too short, we can short cut */ 3891 if (length < TCPOLEN_MD5SIG) 3892 return NULL; 3893 3894 while (length > 0) { 3895 int opcode = *ptr++; 3896 int opsize; 3897 3898 switch (opcode) { 3899 case TCPOPT_EOL: 3900 return NULL; 3901 case TCPOPT_NOP: 3902 length--; 3903 continue; 3904 default: 3905 opsize = *ptr++; 3906 if (opsize < 2 || opsize > length) 3907 return NULL; 3908 if (opcode == TCPOPT_MD5SIG) 3909 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3910 } 3911 ptr += opsize - 2; 3912 length -= opsize; 3913 } 3914 return NULL; 3915 } 3916 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3917 #endif 3918 3919 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3920 * 3921 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3922 * it can pass through stack. So, the following predicate verifies that 3923 * this segment is not used for anything but congestion avoidance or 3924 * fast retransmit. Moreover, we even are able to eliminate most of such 3925 * second order effects, if we apply some small "replay" window (~RTO) 3926 * to timestamp space. 3927 * 3928 * All these measures still do not guarantee that we reject wrapped ACKs 3929 * on networks with high bandwidth, when sequence space is recycled fastly, 3930 * but it guarantees that such events will be very rare and do not affect 3931 * connection seriously. This doesn't look nice, but alas, PAWS is really 3932 * buggy extension. 3933 * 3934 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3935 * states that events when retransmit arrives after original data are rare. 3936 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3937 * the biggest problem on large power networks even with minor reordering. 3938 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3939 * up to bandwidth of 18Gigabit/sec. 8) ] 3940 */ 3941 3942 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3943 { 3944 const struct tcp_sock *tp = tcp_sk(sk); 3945 const struct tcphdr *th = tcp_hdr(skb); 3946 u32 seq = TCP_SKB_CB(skb)->seq; 3947 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3948 3949 return (/* 1. Pure ACK with correct sequence number. */ 3950 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3951 3952 /* 2. ... and duplicate ACK. */ 3953 ack == tp->snd_una && 3954 3955 /* 3. ... and does not update window. */ 3956 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3957 3958 /* 4. ... and sits in replay window. */ 3959 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3960 } 3961 3962 static inline bool tcp_paws_discard(const struct sock *sk, 3963 const struct sk_buff *skb) 3964 { 3965 const struct tcp_sock *tp = tcp_sk(sk); 3966 3967 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3968 !tcp_disordered_ack(sk, skb); 3969 } 3970 3971 /* Check segment sequence number for validity. 3972 * 3973 * Segment controls are considered valid, if the segment 3974 * fits to the window after truncation to the window. Acceptability 3975 * of data (and SYN, FIN, of course) is checked separately. 3976 * See tcp_data_queue(), for example. 3977 * 3978 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3979 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3980 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3981 * (borrowed from freebsd) 3982 */ 3983 3984 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3985 { 3986 return !before(end_seq, tp->rcv_wup) && 3987 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3988 } 3989 3990 /* When we get a reset we do this. */ 3991 void tcp_reset(struct sock *sk) 3992 { 3993 trace_tcp_receive_reset(sk); 3994 3995 /* We want the right error as BSD sees it (and indeed as we do). */ 3996 switch (sk->sk_state) { 3997 case TCP_SYN_SENT: 3998 sk->sk_err = ECONNREFUSED; 3999 break; 4000 case TCP_CLOSE_WAIT: 4001 sk->sk_err = EPIPE; 4002 break; 4003 case TCP_CLOSE: 4004 return; 4005 default: 4006 sk->sk_err = ECONNRESET; 4007 } 4008 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4009 smp_wmb(); 4010 4011 tcp_write_queue_purge(sk); 4012 tcp_done(sk); 4013 4014 if (!sock_flag(sk, SOCK_DEAD)) 4015 sk->sk_error_report(sk); 4016 } 4017 4018 /* 4019 * Process the FIN bit. This now behaves as it is supposed to work 4020 * and the FIN takes effect when it is validly part of sequence 4021 * space. Not before when we get holes. 4022 * 4023 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4024 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4025 * TIME-WAIT) 4026 * 4027 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4028 * close and we go into CLOSING (and later onto TIME-WAIT) 4029 * 4030 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4031 */ 4032 void tcp_fin(struct sock *sk) 4033 { 4034 struct tcp_sock *tp = tcp_sk(sk); 4035 4036 inet_csk_schedule_ack(sk); 4037 4038 sk->sk_shutdown |= RCV_SHUTDOWN; 4039 sock_set_flag(sk, SOCK_DONE); 4040 4041 switch (sk->sk_state) { 4042 case TCP_SYN_RECV: 4043 case TCP_ESTABLISHED: 4044 /* Move to CLOSE_WAIT */ 4045 tcp_set_state(sk, TCP_CLOSE_WAIT); 4046 inet_csk(sk)->icsk_ack.pingpong = 1; 4047 break; 4048 4049 case TCP_CLOSE_WAIT: 4050 case TCP_CLOSING: 4051 /* Received a retransmission of the FIN, do 4052 * nothing. 4053 */ 4054 break; 4055 case TCP_LAST_ACK: 4056 /* RFC793: Remain in the LAST-ACK state. */ 4057 break; 4058 4059 case TCP_FIN_WAIT1: 4060 /* This case occurs when a simultaneous close 4061 * happens, we must ack the received FIN and 4062 * enter the CLOSING state. 4063 */ 4064 tcp_send_ack(sk); 4065 tcp_set_state(sk, TCP_CLOSING); 4066 break; 4067 case TCP_FIN_WAIT2: 4068 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4069 tcp_send_ack(sk); 4070 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4071 break; 4072 default: 4073 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4074 * cases we should never reach this piece of code. 4075 */ 4076 pr_err("%s: Impossible, sk->sk_state=%d\n", 4077 __func__, sk->sk_state); 4078 break; 4079 } 4080 4081 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4082 * Probably, we should reset in this case. For now drop them. 4083 */ 4084 skb_rbtree_purge(&tp->out_of_order_queue); 4085 if (tcp_is_sack(tp)) 4086 tcp_sack_reset(&tp->rx_opt); 4087 sk_mem_reclaim(sk); 4088 4089 if (!sock_flag(sk, SOCK_DEAD)) { 4090 sk->sk_state_change(sk); 4091 4092 /* Do not send POLL_HUP for half duplex close. */ 4093 if (sk->sk_shutdown == SHUTDOWN_MASK || 4094 sk->sk_state == TCP_CLOSE) 4095 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4096 else 4097 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4098 } 4099 } 4100 4101 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4102 u32 end_seq) 4103 { 4104 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4105 if (before(seq, sp->start_seq)) 4106 sp->start_seq = seq; 4107 if (after(end_seq, sp->end_seq)) 4108 sp->end_seq = end_seq; 4109 return true; 4110 } 4111 return false; 4112 } 4113 4114 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4115 { 4116 struct tcp_sock *tp = tcp_sk(sk); 4117 4118 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4119 int mib_idx; 4120 4121 if (before(seq, tp->rcv_nxt)) 4122 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4123 else 4124 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4125 4126 NET_INC_STATS(sock_net(sk), mib_idx); 4127 4128 tp->rx_opt.dsack = 1; 4129 tp->duplicate_sack[0].start_seq = seq; 4130 tp->duplicate_sack[0].end_seq = end_seq; 4131 } 4132 } 4133 4134 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4135 { 4136 struct tcp_sock *tp = tcp_sk(sk); 4137 4138 if (!tp->rx_opt.dsack) 4139 tcp_dsack_set(sk, seq, end_seq); 4140 else 4141 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4142 } 4143 4144 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4145 { 4146 struct tcp_sock *tp = tcp_sk(sk); 4147 4148 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4149 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4150 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4151 tcp_enter_quickack_mode(sk); 4152 4153 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4154 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4155 4156 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4157 end_seq = tp->rcv_nxt; 4158 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4159 } 4160 } 4161 4162 tcp_send_ack(sk); 4163 } 4164 4165 /* These routines update the SACK block as out-of-order packets arrive or 4166 * in-order packets close up the sequence space. 4167 */ 4168 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4169 { 4170 int this_sack; 4171 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4172 struct tcp_sack_block *swalk = sp + 1; 4173 4174 /* See if the recent change to the first SACK eats into 4175 * or hits the sequence space of other SACK blocks, if so coalesce. 4176 */ 4177 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4178 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4179 int i; 4180 4181 /* Zap SWALK, by moving every further SACK up by one slot. 4182 * Decrease num_sacks. 4183 */ 4184 tp->rx_opt.num_sacks--; 4185 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4186 sp[i] = sp[i + 1]; 4187 continue; 4188 } 4189 this_sack++, swalk++; 4190 } 4191 } 4192 4193 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4194 { 4195 struct tcp_sock *tp = tcp_sk(sk); 4196 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4197 int cur_sacks = tp->rx_opt.num_sacks; 4198 int this_sack; 4199 4200 if (!cur_sacks) 4201 goto new_sack; 4202 4203 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4204 if (tcp_sack_extend(sp, seq, end_seq)) { 4205 /* Rotate this_sack to the first one. */ 4206 for (; this_sack > 0; this_sack--, sp--) 4207 swap(*sp, *(sp - 1)); 4208 if (cur_sacks > 1) 4209 tcp_sack_maybe_coalesce(tp); 4210 return; 4211 } 4212 } 4213 4214 /* Could not find an adjacent existing SACK, build a new one, 4215 * put it at the front, and shift everyone else down. We 4216 * always know there is at least one SACK present already here. 4217 * 4218 * If the sack array is full, forget about the last one. 4219 */ 4220 if (this_sack >= TCP_NUM_SACKS) { 4221 this_sack--; 4222 tp->rx_opt.num_sacks--; 4223 sp--; 4224 } 4225 for (; this_sack > 0; this_sack--, sp--) 4226 *sp = *(sp - 1); 4227 4228 new_sack: 4229 /* Build the new head SACK, and we're done. */ 4230 sp->start_seq = seq; 4231 sp->end_seq = end_seq; 4232 tp->rx_opt.num_sacks++; 4233 } 4234 4235 /* RCV.NXT advances, some SACKs should be eaten. */ 4236 4237 static void tcp_sack_remove(struct tcp_sock *tp) 4238 { 4239 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4240 int num_sacks = tp->rx_opt.num_sacks; 4241 int this_sack; 4242 4243 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4244 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4245 tp->rx_opt.num_sacks = 0; 4246 return; 4247 } 4248 4249 for (this_sack = 0; this_sack < num_sacks;) { 4250 /* Check if the start of the sack is covered by RCV.NXT. */ 4251 if (!before(tp->rcv_nxt, sp->start_seq)) { 4252 int i; 4253 4254 /* RCV.NXT must cover all the block! */ 4255 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4256 4257 /* Zap this SACK, by moving forward any other SACKS. */ 4258 for (i = this_sack+1; i < num_sacks; i++) 4259 tp->selective_acks[i-1] = tp->selective_acks[i]; 4260 num_sacks--; 4261 continue; 4262 } 4263 this_sack++; 4264 sp++; 4265 } 4266 tp->rx_opt.num_sacks = num_sacks; 4267 } 4268 4269 /** 4270 * tcp_try_coalesce - try to merge skb to prior one 4271 * @sk: socket 4272 * @dest: destination queue 4273 * @to: prior buffer 4274 * @from: buffer to add in queue 4275 * @fragstolen: pointer to boolean 4276 * 4277 * Before queueing skb @from after @to, try to merge them 4278 * to reduce overall memory use and queue lengths, if cost is small. 4279 * Packets in ofo or receive queues can stay a long time. 4280 * Better try to coalesce them right now to avoid future collapses. 4281 * Returns true if caller should free @from instead of queueing it 4282 */ 4283 static bool tcp_try_coalesce(struct sock *sk, 4284 struct sk_buff *to, 4285 struct sk_buff *from, 4286 bool *fragstolen) 4287 { 4288 int delta; 4289 4290 *fragstolen = false; 4291 4292 /* Its possible this segment overlaps with prior segment in queue */ 4293 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4294 return false; 4295 4296 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4297 return false; 4298 4299 atomic_add(delta, &sk->sk_rmem_alloc); 4300 sk_mem_charge(sk, delta); 4301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4302 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4303 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4304 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4305 4306 if (TCP_SKB_CB(from)->has_rxtstamp) { 4307 TCP_SKB_CB(to)->has_rxtstamp = true; 4308 to->tstamp = from->tstamp; 4309 } 4310 4311 return true; 4312 } 4313 4314 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4315 { 4316 sk_drops_add(sk, skb); 4317 __kfree_skb(skb); 4318 } 4319 4320 /* This one checks to see if we can put data from the 4321 * out_of_order queue into the receive_queue. 4322 */ 4323 static void tcp_ofo_queue(struct sock *sk) 4324 { 4325 struct tcp_sock *tp = tcp_sk(sk); 4326 __u32 dsack_high = tp->rcv_nxt; 4327 bool fin, fragstolen, eaten; 4328 struct sk_buff *skb, *tail; 4329 struct rb_node *p; 4330 4331 p = rb_first(&tp->out_of_order_queue); 4332 while (p) { 4333 skb = rb_to_skb(p); 4334 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4335 break; 4336 4337 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4338 __u32 dsack = dsack_high; 4339 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4340 dsack_high = TCP_SKB_CB(skb)->end_seq; 4341 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4342 } 4343 p = rb_next(p); 4344 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4345 4346 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4347 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4348 tcp_drop(sk, skb); 4349 continue; 4350 } 4351 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4352 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4353 TCP_SKB_CB(skb)->end_seq); 4354 4355 tail = skb_peek_tail(&sk->sk_receive_queue); 4356 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4357 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4358 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4359 if (!eaten) 4360 __skb_queue_tail(&sk->sk_receive_queue, skb); 4361 else 4362 kfree_skb_partial(skb, fragstolen); 4363 4364 if (unlikely(fin)) { 4365 tcp_fin(sk); 4366 /* tcp_fin() purges tp->out_of_order_queue, 4367 * so we must end this loop right now. 4368 */ 4369 break; 4370 } 4371 } 4372 } 4373 4374 static bool tcp_prune_ofo_queue(struct sock *sk); 4375 static int tcp_prune_queue(struct sock *sk); 4376 4377 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4378 unsigned int size) 4379 { 4380 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4381 !sk_rmem_schedule(sk, skb, size)) { 4382 4383 if (tcp_prune_queue(sk) < 0) 4384 return -1; 4385 4386 while (!sk_rmem_schedule(sk, skb, size)) { 4387 if (!tcp_prune_ofo_queue(sk)) 4388 return -1; 4389 } 4390 } 4391 return 0; 4392 } 4393 4394 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4395 { 4396 struct tcp_sock *tp = tcp_sk(sk); 4397 struct rb_node **p, *parent; 4398 struct sk_buff *skb1; 4399 u32 seq, end_seq; 4400 bool fragstolen; 4401 4402 tcp_ecn_check_ce(tp, skb); 4403 4404 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4405 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4406 tcp_drop(sk, skb); 4407 return; 4408 } 4409 4410 /* Disable header prediction. */ 4411 tp->pred_flags = 0; 4412 inet_csk_schedule_ack(sk); 4413 4414 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4415 seq = TCP_SKB_CB(skb)->seq; 4416 end_seq = TCP_SKB_CB(skb)->end_seq; 4417 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4418 tp->rcv_nxt, seq, end_seq); 4419 4420 p = &tp->out_of_order_queue.rb_node; 4421 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4422 /* Initial out of order segment, build 1 SACK. */ 4423 if (tcp_is_sack(tp)) { 4424 tp->rx_opt.num_sacks = 1; 4425 tp->selective_acks[0].start_seq = seq; 4426 tp->selective_acks[0].end_seq = end_seq; 4427 } 4428 rb_link_node(&skb->rbnode, NULL, p); 4429 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4430 tp->ooo_last_skb = skb; 4431 goto end; 4432 } 4433 4434 /* In the typical case, we are adding an skb to the end of the list. 4435 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4436 */ 4437 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4438 skb, &fragstolen)) { 4439 coalesce_done: 4440 tcp_grow_window(sk, skb); 4441 kfree_skb_partial(skb, fragstolen); 4442 skb = NULL; 4443 goto add_sack; 4444 } 4445 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4446 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4447 parent = &tp->ooo_last_skb->rbnode; 4448 p = &parent->rb_right; 4449 goto insert; 4450 } 4451 4452 /* Find place to insert this segment. Handle overlaps on the way. */ 4453 parent = NULL; 4454 while (*p) { 4455 parent = *p; 4456 skb1 = rb_to_skb(parent); 4457 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4458 p = &parent->rb_left; 4459 continue; 4460 } 4461 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4462 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4463 /* All the bits are present. Drop. */ 4464 NET_INC_STATS(sock_net(sk), 4465 LINUX_MIB_TCPOFOMERGE); 4466 __kfree_skb(skb); 4467 skb = NULL; 4468 tcp_dsack_set(sk, seq, end_seq); 4469 goto add_sack; 4470 } 4471 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4472 /* Partial overlap. */ 4473 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4474 } else { 4475 /* skb's seq == skb1's seq and skb covers skb1. 4476 * Replace skb1 with skb. 4477 */ 4478 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4479 &tp->out_of_order_queue); 4480 tcp_dsack_extend(sk, 4481 TCP_SKB_CB(skb1)->seq, 4482 TCP_SKB_CB(skb1)->end_seq); 4483 NET_INC_STATS(sock_net(sk), 4484 LINUX_MIB_TCPOFOMERGE); 4485 __kfree_skb(skb1); 4486 goto merge_right; 4487 } 4488 } else if (tcp_try_coalesce(sk, skb1, 4489 skb, &fragstolen)) { 4490 goto coalesce_done; 4491 } 4492 p = &parent->rb_right; 4493 } 4494 insert: 4495 /* Insert segment into RB tree. */ 4496 rb_link_node(&skb->rbnode, parent, p); 4497 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4498 4499 merge_right: 4500 /* Remove other segments covered by skb. */ 4501 while ((skb1 = skb_rb_next(skb)) != NULL) { 4502 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4503 break; 4504 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4505 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4506 end_seq); 4507 break; 4508 } 4509 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4510 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4511 TCP_SKB_CB(skb1)->end_seq); 4512 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4513 tcp_drop(sk, skb1); 4514 } 4515 /* If there is no skb after us, we are the last_skb ! */ 4516 if (!skb1) 4517 tp->ooo_last_skb = skb; 4518 4519 add_sack: 4520 if (tcp_is_sack(tp)) 4521 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4522 end: 4523 if (skb) { 4524 tcp_grow_window(sk, skb); 4525 skb_condense(skb); 4526 skb_set_owner_r(skb, sk); 4527 } 4528 } 4529 4530 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4531 bool *fragstolen) 4532 { 4533 int eaten; 4534 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4535 4536 __skb_pull(skb, hdrlen); 4537 eaten = (tail && 4538 tcp_try_coalesce(sk, tail, 4539 skb, fragstolen)) ? 1 : 0; 4540 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4541 if (!eaten) { 4542 __skb_queue_tail(&sk->sk_receive_queue, skb); 4543 skb_set_owner_r(skb, sk); 4544 } 4545 return eaten; 4546 } 4547 4548 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4549 { 4550 struct sk_buff *skb; 4551 int err = -ENOMEM; 4552 int data_len = 0; 4553 bool fragstolen; 4554 4555 if (size == 0) 4556 return 0; 4557 4558 if (size > PAGE_SIZE) { 4559 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4560 4561 data_len = npages << PAGE_SHIFT; 4562 size = data_len + (size & ~PAGE_MASK); 4563 } 4564 skb = alloc_skb_with_frags(size - data_len, data_len, 4565 PAGE_ALLOC_COSTLY_ORDER, 4566 &err, sk->sk_allocation); 4567 if (!skb) 4568 goto err; 4569 4570 skb_put(skb, size - data_len); 4571 skb->data_len = data_len; 4572 skb->len = size; 4573 4574 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4575 goto err_free; 4576 4577 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4578 if (err) 4579 goto err_free; 4580 4581 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4582 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4583 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4584 4585 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4586 WARN_ON_ONCE(fragstolen); /* should not happen */ 4587 __kfree_skb(skb); 4588 } 4589 return size; 4590 4591 err_free: 4592 kfree_skb(skb); 4593 err: 4594 return err; 4595 4596 } 4597 4598 void tcp_data_ready(struct sock *sk) 4599 { 4600 const struct tcp_sock *tp = tcp_sk(sk); 4601 int avail = tp->rcv_nxt - tp->copied_seq; 4602 4603 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4604 return; 4605 4606 sk->sk_data_ready(sk); 4607 } 4608 4609 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4610 { 4611 struct tcp_sock *tp = tcp_sk(sk); 4612 bool fragstolen; 4613 int eaten; 4614 4615 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4616 __kfree_skb(skb); 4617 return; 4618 } 4619 skb_dst_drop(skb); 4620 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4621 4622 tcp_ecn_accept_cwr(tp, skb); 4623 4624 tp->rx_opt.dsack = 0; 4625 4626 /* Queue data for delivery to the user. 4627 * Packets in sequence go to the receive queue. 4628 * Out of sequence packets to the out_of_order_queue. 4629 */ 4630 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4631 if (tcp_receive_window(tp) == 0) 4632 goto out_of_window; 4633 4634 /* Ok. In sequence. In window. */ 4635 queue_and_out: 4636 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4637 sk_forced_mem_schedule(sk, skb->truesize); 4638 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4639 goto drop; 4640 4641 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4642 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4643 if (skb->len) 4644 tcp_event_data_recv(sk, skb); 4645 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4646 tcp_fin(sk); 4647 4648 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4649 tcp_ofo_queue(sk); 4650 4651 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4652 * gap in queue is filled. 4653 */ 4654 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4655 inet_csk(sk)->icsk_ack.pingpong = 0; 4656 } 4657 4658 if (tp->rx_opt.num_sacks) 4659 tcp_sack_remove(tp); 4660 4661 tcp_fast_path_check(sk); 4662 4663 if (eaten > 0) 4664 kfree_skb_partial(skb, fragstolen); 4665 if (!sock_flag(sk, SOCK_DEAD)) 4666 tcp_data_ready(sk); 4667 return; 4668 } 4669 4670 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4671 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4672 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4673 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4674 4675 out_of_window: 4676 tcp_enter_quickack_mode(sk); 4677 inet_csk_schedule_ack(sk); 4678 drop: 4679 tcp_drop(sk, skb); 4680 return; 4681 } 4682 4683 /* Out of window. F.e. zero window probe. */ 4684 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4685 goto out_of_window; 4686 4687 tcp_enter_quickack_mode(sk); 4688 4689 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4690 /* Partial packet, seq < rcv_next < end_seq */ 4691 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4692 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4693 TCP_SKB_CB(skb)->end_seq); 4694 4695 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4696 4697 /* If window is closed, drop tail of packet. But after 4698 * remembering D-SACK for its head made in previous line. 4699 */ 4700 if (!tcp_receive_window(tp)) 4701 goto out_of_window; 4702 goto queue_and_out; 4703 } 4704 4705 tcp_data_queue_ofo(sk, skb); 4706 } 4707 4708 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4709 { 4710 if (list) 4711 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4712 4713 return skb_rb_next(skb); 4714 } 4715 4716 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4717 struct sk_buff_head *list, 4718 struct rb_root *root) 4719 { 4720 struct sk_buff *next = tcp_skb_next(skb, list); 4721 4722 if (list) 4723 __skb_unlink(skb, list); 4724 else 4725 rb_erase(&skb->rbnode, root); 4726 4727 __kfree_skb(skb); 4728 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4729 4730 return next; 4731 } 4732 4733 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4734 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4735 { 4736 struct rb_node **p = &root->rb_node; 4737 struct rb_node *parent = NULL; 4738 struct sk_buff *skb1; 4739 4740 while (*p) { 4741 parent = *p; 4742 skb1 = rb_to_skb(parent); 4743 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4744 p = &parent->rb_left; 4745 else 4746 p = &parent->rb_right; 4747 } 4748 rb_link_node(&skb->rbnode, parent, p); 4749 rb_insert_color(&skb->rbnode, root); 4750 } 4751 4752 /* Collapse contiguous sequence of skbs head..tail with 4753 * sequence numbers start..end. 4754 * 4755 * If tail is NULL, this means until the end of the queue. 4756 * 4757 * Segments with FIN/SYN are not collapsed (only because this 4758 * simplifies code) 4759 */ 4760 static void 4761 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4762 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4763 { 4764 struct sk_buff *skb = head, *n; 4765 struct sk_buff_head tmp; 4766 bool end_of_skbs; 4767 4768 /* First, check that queue is collapsible and find 4769 * the point where collapsing can be useful. 4770 */ 4771 restart: 4772 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4773 n = tcp_skb_next(skb, list); 4774 4775 /* No new bits? It is possible on ofo queue. */ 4776 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4777 skb = tcp_collapse_one(sk, skb, list, root); 4778 if (!skb) 4779 break; 4780 goto restart; 4781 } 4782 4783 /* The first skb to collapse is: 4784 * - not SYN/FIN and 4785 * - bloated or contains data before "start" or 4786 * overlaps to the next one. 4787 */ 4788 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4789 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4790 before(TCP_SKB_CB(skb)->seq, start))) { 4791 end_of_skbs = false; 4792 break; 4793 } 4794 4795 if (n && n != tail && 4796 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4797 end_of_skbs = false; 4798 break; 4799 } 4800 4801 /* Decided to skip this, advance start seq. */ 4802 start = TCP_SKB_CB(skb)->end_seq; 4803 } 4804 if (end_of_skbs || 4805 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4806 return; 4807 4808 __skb_queue_head_init(&tmp); 4809 4810 while (before(start, end)) { 4811 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4812 struct sk_buff *nskb; 4813 4814 nskb = alloc_skb(copy, GFP_ATOMIC); 4815 if (!nskb) 4816 break; 4817 4818 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4819 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4820 if (list) 4821 __skb_queue_before(list, skb, nskb); 4822 else 4823 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4824 skb_set_owner_r(nskb, sk); 4825 4826 /* Copy data, releasing collapsed skbs. */ 4827 while (copy > 0) { 4828 int offset = start - TCP_SKB_CB(skb)->seq; 4829 int size = TCP_SKB_CB(skb)->end_seq - start; 4830 4831 BUG_ON(offset < 0); 4832 if (size > 0) { 4833 size = min(copy, size); 4834 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4835 BUG(); 4836 TCP_SKB_CB(nskb)->end_seq += size; 4837 copy -= size; 4838 start += size; 4839 } 4840 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4841 skb = tcp_collapse_one(sk, skb, list, root); 4842 if (!skb || 4843 skb == tail || 4844 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4845 goto end; 4846 } 4847 } 4848 } 4849 end: 4850 skb_queue_walk_safe(&tmp, skb, n) 4851 tcp_rbtree_insert(root, skb); 4852 } 4853 4854 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4855 * and tcp_collapse() them until all the queue is collapsed. 4856 */ 4857 static void tcp_collapse_ofo_queue(struct sock *sk) 4858 { 4859 struct tcp_sock *tp = tcp_sk(sk); 4860 struct sk_buff *skb, *head; 4861 u32 start, end; 4862 4863 skb = skb_rb_first(&tp->out_of_order_queue); 4864 new_range: 4865 if (!skb) { 4866 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4867 return; 4868 } 4869 start = TCP_SKB_CB(skb)->seq; 4870 end = TCP_SKB_CB(skb)->end_seq; 4871 4872 for (head = skb;;) { 4873 skb = skb_rb_next(skb); 4874 4875 /* Range is terminated when we see a gap or when 4876 * we are at the queue end. 4877 */ 4878 if (!skb || 4879 after(TCP_SKB_CB(skb)->seq, end) || 4880 before(TCP_SKB_CB(skb)->end_seq, start)) { 4881 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4882 head, skb, start, end); 4883 goto new_range; 4884 } 4885 4886 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4887 start = TCP_SKB_CB(skb)->seq; 4888 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4889 end = TCP_SKB_CB(skb)->end_seq; 4890 } 4891 } 4892 4893 /* 4894 * Clean the out-of-order queue to make room. 4895 * We drop high sequences packets to : 4896 * 1) Let a chance for holes to be filled. 4897 * 2) not add too big latencies if thousands of packets sit there. 4898 * (But if application shrinks SO_RCVBUF, we could still end up 4899 * freeing whole queue here) 4900 * 4901 * Return true if queue has shrunk. 4902 */ 4903 static bool tcp_prune_ofo_queue(struct sock *sk) 4904 { 4905 struct tcp_sock *tp = tcp_sk(sk); 4906 struct rb_node *node, *prev; 4907 4908 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4909 return false; 4910 4911 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4912 node = &tp->ooo_last_skb->rbnode; 4913 do { 4914 prev = rb_prev(node); 4915 rb_erase(node, &tp->out_of_order_queue); 4916 tcp_drop(sk, rb_to_skb(node)); 4917 sk_mem_reclaim(sk); 4918 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4919 !tcp_under_memory_pressure(sk)) 4920 break; 4921 node = prev; 4922 } while (node); 4923 tp->ooo_last_skb = rb_to_skb(prev); 4924 4925 /* Reset SACK state. A conforming SACK implementation will 4926 * do the same at a timeout based retransmit. When a connection 4927 * is in a sad state like this, we care only about integrity 4928 * of the connection not performance. 4929 */ 4930 if (tp->rx_opt.sack_ok) 4931 tcp_sack_reset(&tp->rx_opt); 4932 return true; 4933 } 4934 4935 /* Reduce allocated memory if we can, trying to get 4936 * the socket within its memory limits again. 4937 * 4938 * Return less than zero if we should start dropping frames 4939 * until the socket owning process reads some of the data 4940 * to stabilize the situation. 4941 */ 4942 static int tcp_prune_queue(struct sock *sk) 4943 { 4944 struct tcp_sock *tp = tcp_sk(sk); 4945 4946 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4947 4948 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4949 4950 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4951 tcp_clamp_window(sk); 4952 else if (tcp_under_memory_pressure(sk)) 4953 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4954 4955 tcp_collapse_ofo_queue(sk); 4956 if (!skb_queue_empty(&sk->sk_receive_queue)) 4957 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4958 skb_peek(&sk->sk_receive_queue), 4959 NULL, 4960 tp->copied_seq, tp->rcv_nxt); 4961 sk_mem_reclaim(sk); 4962 4963 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4964 return 0; 4965 4966 /* Collapsing did not help, destructive actions follow. 4967 * This must not ever occur. */ 4968 4969 tcp_prune_ofo_queue(sk); 4970 4971 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4972 return 0; 4973 4974 /* If we are really being abused, tell the caller to silently 4975 * drop receive data on the floor. It will get retransmitted 4976 * and hopefully then we'll have sufficient space. 4977 */ 4978 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4979 4980 /* Massive buffer overcommit. */ 4981 tp->pred_flags = 0; 4982 return -1; 4983 } 4984 4985 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4986 { 4987 const struct tcp_sock *tp = tcp_sk(sk); 4988 4989 /* If the user specified a specific send buffer setting, do 4990 * not modify it. 4991 */ 4992 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4993 return false; 4994 4995 /* If we are under global TCP memory pressure, do not expand. */ 4996 if (tcp_under_memory_pressure(sk)) 4997 return false; 4998 4999 /* If we are under soft global TCP memory pressure, do not expand. */ 5000 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5001 return false; 5002 5003 /* If we filled the congestion window, do not expand. */ 5004 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5005 return false; 5006 5007 return true; 5008 } 5009 5010 /* When incoming ACK allowed to free some skb from write_queue, 5011 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5012 * on the exit from tcp input handler. 5013 * 5014 * PROBLEM: sndbuf expansion does not work well with largesend. 5015 */ 5016 static void tcp_new_space(struct sock *sk) 5017 { 5018 struct tcp_sock *tp = tcp_sk(sk); 5019 5020 if (tcp_should_expand_sndbuf(sk)) { 5021 tcp_sndbuf_expand(sk); 5022 tp->snd_cwnd_stamp = tcp_jiffies32; 5023 } 5024 5025 sk->sk_write_space(sk); 5026 } 5027 5028 static void tcp_check_space(struct sock *sk) 5029 { 5030 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5031 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5032 /* pairs with tcp_poll() */ 5033 smp_mb(); 5034 if (sk->sk_socket && 5035 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5036 tcp_new_space(sk); 5037 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5038 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5039 } 5040 } 5041 } 5042 5043 static inline void tcp_data_snd_check(struct sock *sk) 5044 { 5045 tcp_push_pending_frames(sk); 5046 tcp_check_space(sk); 5047 } 5048 5049 /* 5050 * Check if sending an ack is needed. 5051 */ 5052 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5053 { 5054 struct tcp_sock *tp = tcp_sk(sk); 5055 5056 /* More than one full frame received... */ 5057 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5058 /* ... and right edge of window advances far enough. 5059 * (tcp_recvmsg() will send ACK otherwise). 5060 * If application uses SO_RCVLOWAT, we want send ack now if 5061 * we have not received enough bytes to satisfy the condition. 5062 */ 5063 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5064 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5065 /* We ACK each frame or... */ 5066 tcp_in_quickack_mode(sk) || 5067 /* We have out of order data. */ 5068 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5069 /* Then ack it now */ 5070 tcp_send_ack(sk); 5071 } else { 5072 /* Else, send delayed ack. */ 5073 tcp_send_delayed_ack(sk); 5074 } 5075 } 5076 5077 static inline void tcp_ack_snd_check(struct sock *sk) 5078 { 5079 if (!inet_csk_ack_scheduled(sk)) { 5080 /* We sent a data segment already. */ 5081 return; 5082 } 5083 __tcp_ack_snd_check(sk, 1); 5084 } 5085 5086 /* 5087 * This routine is only called when we have urgent data 5088 * signaled. Its the 'slow' part of tcp_urg. It could be 5089 * moved inline now as tcp_urg is only called from one 5090 * place. We handle URGent data wrong. We have to - as 5091 * BSD still doesn't use the correction from RFC961. 5092 * For 1003.1g we should support a new option TCP_STDURG to permit 5093 * either form (or just set the sysctl tcp_stdurg). 5094 */ 5095 5096 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5097 { 5098 struct tcp_sock *tp = tcp_sk(sk); 5099 u32 ptr = ntohs(th->urg_ptr); 5100 5101 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5102 ptr--; 5103 ptr += ntohl(th->seq); 5104 5105 /* Ignore urgent data that we've already seen and read. */ 5106 if (after(tp->copied_seq, ptr)) 5107 return; 5108 5109 /* Do not replay urg ptr. 5110 * 5111 * NOTE: interesting situation not covered by specs. 5112 * Misbehaving sender may send urg ptr, pointing to segment, 5113 * which we already have in ofo queue. We are not able to fetch 5114 * such data and will stay in TCP_URG_NOTYET until will be eaten 5115 * by recvmsg(). Seems, we are not obliged to handle such wicked 5116 * situations. But it is worth to think about possibility of some 5117 * DoSes using some hypothetical application level deadlock. 5118 */ 5119 if (before(ptr, tp->rcv_nxt)) 5120 return; 5121 5122 /* Do we already have a newer (or duplicate) urgent pointer? */ 5123 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5124 return; 5125 5126 /* Tell the world about our new urgent pointer. */ 5127 sk_send_sigurg(sk); 5128 5129 /* We may be adding urgent data when the last byte read was 5130 * urgent. To do this requires some care. We cannot just ignore 5131 * tp->copied_seq since we would read the last urgent byte again 5132 * as data, nor can we alter copied_seq until this data arrives 5133 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5134 * 5135 * NOTE. Double Dutch. Rendering to plain English: author of comment 5136 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5137 * and expect that both A and B disappear from stream. This is _wrong_. 5138 * Though this happens in BSD with high probability, this is occasional. 5139 * Any application relying on this is buggy. Note also, that fix "works" 5140 * only in this artificial test. Insert some normal data between A and B and we will 5141 * decline of BSD again. Verdict: it is better to remove to trap 5142 * buggy users. 5143 */ 5144 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5145 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5146 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5147 tp->copied_seq++; 5148 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5149 __skb_unlink(skb, &sk->sk_receive_queue); 5150 __kfree_skb(skb); 5151 } 5152 } 5153 5154 tp->urg_data = TCP_URG_NOTYET; 5155 tp->urg_seq = ptr; 5156 5157 /* Disable header prediction. */ 5158 tp->pred_flags = 0; 5159 } 5160 5161 /* This is the 'fast' part of urgent handling. */ 5162 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5163 { 5164 struct tcp_sock *tp = tcp_sk(sk); 5165 5166 /* Check if we get a new urgent pointer - normally not. */ 5167 if (th->urg) 5168 tcp_check_urg(sk, th); 5169 5170 /* Do we wait for any urgent data? - normally not... */ 5171 if (tp->urg_data == TCP_URG_NOTYET) { 5172 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5173 th->syn; 5174 5175 /* Is the urgent pointer pointing into this packet? */ 5176 if (ptr < skb->len) { 5177 u8 tmp; 5178 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5179 BUG(); 5180 tp->urg_data = TCP_URG_VALID | tmp; 5181 if (!sock_flag(sk, SOCK_DEAD)) 5182 sk->sk_data_ready(sk); 5183 } 5184 } 5185 } 5186 5187 /* Accept RST for rcv_nxt - 1 after a FIN. 5188 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5189 * FIN is sent followed by a RST packet. The RST is sent with the same 5190 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5191 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5192 * ACKs on the closed socket. In addition middleboxes can drop either the 5193 * challenge ACK or a subsequent RST. 5194 */ 5195 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5196 { 5197 struct tcp_sock *tp = tcp_sk(sk); 5198 5199 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5200 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5201 TCPF_CLOSING)); 5202 } 5203 5204 /* Does PAWS and seqno based validation of an incoming segment, flags will 5205 * play significant role here. 5206 */ 5207 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5208 const struct tcphdr *th, int syn_inerr) 5209 { 5210 struct tcp_sock *tp = tcp_sk(sk); 5211 bool rst_seq_match = false; 5212 5213 /* RFC1323: H1. Apply PAWS check first. */ 5214 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5215 tp->rx_opt.saw_tstamp && 5216 tcp_paws_discard(sk, skb)) { 5217 if (!th->rst) { 5218 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5219 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5220 LINUX_MIB_TCPACKSKIPPEDPAWS, 5221 &tp->last_oow_ack_time)) 5222 tcp_send_dupack(sk, skb); 5223 goto discard; 5224 } 5225 /* Reset is accepted even if it did not pass PAWS. */ 5226 } 5227 5228 /* Step 1: check sequence number */ 5229 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5230 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5231 * (RST) segments are validated by checking their SEQ-fields." 5232 * And page 69: "If an incoming segment is not acceptable, 5233 * an acknowledgment should be sent in reply (unless the RST 5234 * bit is set, if so drop the segment and return)". 5235 */ 5236 if (!th->rst) { 5237 if (th->syn) 5238 goto syn_challenge; 5239 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5240 LINUX_MIB_TCPACKSKIPPEDSEQ, 5241 &tp->last_oow_ack_time)) 5242 tcp_send_dupack(sk, skb); 5243 } else if (tcp_reset_check(sk, skb)) { 5244 tcp_reset(sk); 5245 } 5246 goto discard; 5247 } 5248 5249 /* Step 2: check RST bit */ 5250 if (th->rst) { 5251 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5252 * FIN and SACK too if available): 5253 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5254 * the right-most SACK block, 5255 * then 5256 * RESET the connection 5257 * else 5258 * Send a challenge ACK 5259 */ 5260 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5261 tcp_reset_check(sk, skb)) { 5262 rst_seq_match = true; 5263 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5264 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5265 int max_sack = sp[0].end_seq; 5266 int this_sack; 5267 5268 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5269 ++this_sack) { 5270 max_sack = after(sp[this_sack].end_seq, 5271 max_sack) ? 5272 sp[this_sack].end_seq : max_sack; 5273 } 5274 5275 if (TCP_SKB_CB(skb)->seq == max_sack) 5276 rst_seq_match = true; 5277 } 5278 5279 if (rst_seq_match) 5280 tcp_reset(sk); 5281 else { 5282 /* Disable TFO if RST is out-of-order 5283 * and no data has been received 5284 * for current active TFO socket 5285 */ 5286 if (tp->syn_fastopen && !tp->data_segs_in && 5287 sk->sk_state == TCP_ESTABLISHED) 5288 tcp_fastopen_active_disable(sk); 5289 tcp_send_challenge_ack(sk, skb); 5290 } 5291 goto discard; 5292 } 5293 5294 /* step 3: check security and precedence [ignored] */ 5295 5296 /* step 4: Check for a SYN 5297 * RFC 5961 4.2 : Send a challenge ack 5298 */ 5299 if (th->syn) { 5300 syn_challenge: 5301 if (syn_inerr) 5302 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5303 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5304 tcp_send_challenge_ack(sk, skb); 5305 goto discard; 5306 } 5307 5308 return true; 5309 5310 discard: 5311 tcp_drop(sk, skb); 5312 return false; 5313 } 5314 5315 /* 5316 * TCP receive function for the ESTABLISHED state. 5317 * 5318 * It is split into a fast path and a slow path. The fast path is 5319 * disabled when: 5320 * - A zero window was announced from us - zero window probing 5321 * is only handled properly in the slow path. 5322 * - Out of order segments arrived. 5323 * - Urgent data is expected. 5324 * - There is no buffer space left 5325 * - Unexpected TCP flags/window values/header lengths are received 5326 * (detected by checking the TCP header against pred_flags) 5327 * - Data is sent in both directions. Fast path only supports pure senders 5328 * or pure receivers (this means either the sequence number or the ack 5329 * value must stay constant) 5330 * - Unexpected TCP option. 5331 * 5332 * When these conditions are not satisfied it drops into a standard 5333 * receive procedure patterned after RFC793 to handle all cases. 5334 * The first three cases are guaranteed by proper pred_flags setting, 5335 * the rest is checked inline. Fast processing is turned on in 5336 * tcp_data_queue when everything is OK. 5337 */ 5338 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5339 const struct tcphdr *th) 5340 { 5341 unsigned int len = skb->len; 5342 struct tcp_sock *tp = tcp_sk(sk); 5343 5344 /* TCP congestion window tracking */ 5345 trace_tcp_probe(sk, skb); 5346 5347 tcp_mstamp_refresh(tp); 5348 if (unlikely(!sk->sk_rx_dst)) 5349 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5350 /* 5351 * Header prediction. 5352 * The code loosely follows the one in the famous 5353 * "30 instruction TCP receive" Van Jacobson mail. 5354 * 5355 * Van's trick is to deposit buffers into socket queue 5356 * on a device interrupt, to call tcp_recv function 5357 * on the receive process context and checksum and copy 5358 * the buffer to user space. smart... 5359 * 5360 * Our current scheme is not silly either but we take the 5361 * extra cost of the net_bh soft interrupt processing... 5362 * We do checksum and copy also but from device to kernel. 5363 */ 5364 5365 tp->rx_opt.saw_tstamp = 0; 5366 5367 /* pred_flags is 0xS?10 << 16 + snd_wnd 5368 * if header_prediction is to be made 5369 * 'S' will always be tp->tcp_header_len >> 2 5370 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5371 * turn it off (when there are holes in the receive 5372 * space for instance) 5373 * PSH flag is ignored. 5374 */ 5375 5376 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5377 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5378 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5379 int tcp_header_len = tp->tcp_header_len; 5380 5381 /* Timestamp header prediction: tcp_header_len 5382 * is automatically equal to th->doff*4 due to pred_flags 5383 * match. 5384 */ 5385 5386 /* Check timestamp */ 5387 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5388 /* No? Slow path! */ 5389 if (!tcp_parse_aligned_timestamp(tp, th)) 5390 goto slow_path; 5391 5392 /* If PAWS failed, check it more carefully in slow path */ 5393 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5394 goto slow_path; 5395 5396 /* DO NOT update ts_recent here, if checksum fails 5397 * and timestamp was corrupted part, it will result 5398 * in a hung connection since we will drop all 5399 * future packets due to the PAWS test. 5400 */ 5401 } 5402 5403 if (len <= tcp_header_len) { 5404 /* Bulk data transfer: sender */ 5405 if (len == tcp_header_len) { 5406 /* Predicted packet is in window by definition. 5407 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5408 * Hence, check seq<=rcv_wup reduces to: 5409 */ 5410 if (tcp_header_len == 5411 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5412 tp->rcv_nxt == tp->rcv_wup) 5413 tcp_store_ts_recent(tp); 5414 5415 /* We know that such packets are checksummed 5416 * on entry. 5417 */ 5418 tcp_ack(sk, skb, 0); 5419 __kfree_skb(skb); 5420 tcp_data_snd_check(sk); 5421 return; 5422 } else { /* Header too small */ 5423 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5424 goto discard; 5425 } 5426 } else { 5427 int eaten = 0; 5428 bool fragstolen = false; 5429 5430 if (tcp_checksum_complete(skb)) 5431 goto csum_error; 5432 5433 if ((int)skb->truesize > sk->sk_forward_alloc) 5434 goto step5; 5435 5436 /* Predicted packet is in window by definition. 5437 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5438 * Hence, check seq<=rcv_wup reduces to: 5439 */ 5440 if (tcp_header_len == 5441 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5442 tp->rcv_nxt == tp->rcv_wup) 5443 tcp_store_ts_recent(tp); 5444 5445 tcp_rcv_rtt_measure_ts(sk, skb); 5446 5447 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5448 5449 /* Bulk data transfer: receiver */ 5450 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5451 &fragstolen); 5452 5453 tcp_event_data_recv(sk, skb); 5454 5455 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5456 /* Well, only one small jumplet in fast path... */ 5457 tcp_ack(sk, skb, FLAG_DATA); 5458 tcp_data_snd_check(sk); 5459 if (!inet_csk_ack_scheduled(sk)) 5460 goto no_ack; 5461 } 5462 5463 __tcp_ack_snd_check(sk, 0); 5464 no_ack: 5465 if (eaten) 5466 kfree_skb_partial(skb, fragstolen); 5467 tcp_data_ready(sk); 5468 return; 5469 } 5470 } 5471 5472 slow_path: 5473 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5474 goto csum_error; 5475 5476 if (!th->ack && !th->rst && !th->syn) 5477 goto discard; 5478 5479 /* 5480 * Standard slow path. 5481 */ 5482 5483 if (!tcp_validate_incoming(sk, skb, th, 1)) 5484 return; 5485 5486 step5: 5487 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5488 goto discard; 5489 5490 tcp_rcv_rtt_measure_ts(sk, skb); 5491 5492 /* Process urgent data. */ 5493 tcp_urg(sk, skb, th); 5494 5495 /* step 7: process the segment text */ 5496 tcp_data_queue(sk, skb); 5497 5498 tcp_data_snd_check(sk); 5499 tcp_ack_snd_check(sk); 5500 return; 5501 5502 csum_error: 5503 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5504 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5505 5506 discard: 5507 tcp_drop(sk, skb); 5508 } 5509 EXPORT_SYMBOL(tcp_rcv_established); 5510 5511 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5512 { 5513 struct tcp_sock *tp = tcp_sk(sk); 5514 struct inet_connection_sock *icsk = inet_csk(sk); 5515 5516 tcp_set_state(sk, TCP_ESTABLISHED); 5517 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5518 5519 if (skb) { 5520 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5521 security_inet_conn_established(sk, skb); 5522 } 5523 5524 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5525 5526 /* Prevent spurious tcp_cwnd_restart() on first data 5527 * packet. 5528 */ 5529 tp->lsndtime = tcp_jiffies32; 5530 5531 if (sock_flag(sk, SOCK_KEEPOPEN)) 5532 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5533 5534 if (!tp->rx_opt.snd_wscale) 5535 __tcp_fast_path_on(tp, tp->snd_wnd); 5536 else 5537 tp->pred_flags = 0; 5538 } 5539 5540 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5541 struct tcp_fastopen_cookie *cookie) 5542 { 5543 struct tcp_sock *tp = tcp_sk(sk); 5544 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5545 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5546 bool syn_drop = false; 5547 5548 if (mss == tp->rx_opt.user_mss) { 5549 struct tcp_options_received opt; 5550 5551 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5552 tcp_clear_options(&opt); 5553 opt.user_mss = opt.mss_clamp = 0; 5554 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5555 mss = opt.mss_clamp; 5556 } 5557 5558 if (!tp->syn_fastopen) { 5559 /* Ignore an unsolicited cookie */ 5560 cookie->len = -1; 5561 } else if (tp->total_retrans) { 5562 /* SYN timed out and the SYN-ACK neither has a cookie nor 5563 * acknowledges data. Presumably the remote received only 5564 * the retransmitted (regular) SYNs: either the original 5565 * SYN-data or the corresponding SYN-ACK was dropped. 5566 */ 5567 syn_drop = (cookie->len < 0 && data); 5568 } else if (cookie->len < 0 && !tp->syn_data) { 5569 /* We requested a cookie but didn't get it. If we did not use 5570 * the (old) exp opt format then try so next time (try_exp=1). 5571 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5572 */ 5573 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5574 } 5575 5576 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5577 5578 if (data) { /* Retransmit unacked data in SYN */ 5579 skb_rbtree_walk_from(data) { 5580 if (__tcp_retransmit_skb(sk, data, 1)) 5581 break; 5582 } 5583 tcp_rearm_rto(sk); 5584 NET_INC_STATS(sock_net(sk), 5585 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5586 return true; 5587 } 5588 tp->syn_data_acked = tp->syn_data; 5589 if (tp->syn_data_acked) { 5590 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5591 /* SYN-data is counted as two separate packets in tcp_ack() */ 5592 if (tp->delivered > 1) 5593 --tp->delivered; 5594 } 5595 5596 tcp_fastopen_add_skb(sk, synack); 5597 5598 return false; 5599 } 5600 5601 static void smc_check_reset_syn(struct tcp_sock *tp) 5602 { 5603 #if IS_ENABLED(CONFIG_SMC) 5604 if (static_branch_unlikely(&tcp_have_smc)) { 5605 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5606 tp->syn_smc = 0; 5607 } 5608 #endif 5609 } 5610 5611 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5612 const struct tcphdr *th) 5613 { 5614 struct inet_connection_sock *icsk = inet_csk(sk); 5615 struct tcp_sock *tp = tcp_sk(sk); 5616 struct tcp_fastopen_cookie foc = { .len = -1 }; 5617 int saved_clamp = tp->rx_opt.mss_clamp; 5618 bool fastopen_fail; 5619 5620 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5621 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5622 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5623 5624 if (th->ack) { 5625 /* rfc793: 5626 * "If the state is SYN-SENT then 5627 * first check the ACK bit 5628 * If the ACK bit is set 5629 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5630 * a reset (unless the RST bit is set, if so drop 5631 * the segment and return)" 5632 */ 5633 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5634 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5635 goto reset_and_undo; 5636 5637 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5638 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5639 tcp_time_stamp(tp))) { 5640 NET_INC_STATS(sock_net(sk), 5641 LINUX_MIB_PAWSACTIVEREJECTED); 5642 goto reset_and_undo; 5643 } 5644 5645 /* Now ACK is acceptable. 5646 * 5647 * "If the RST bit is set 5648 * If the ACK was acceptable then signal the user "error: 5649 * connection reset", drop the segment, enter CLOSED state, 5650 * delete TCB, and return." 5651 */ 5652 5653 if (th->rst) { 5654 tcp_reset(sk); 5655 goto discard; 5656 } 5657 5658 /* rfc793: 5659 * "fifth, if neither of the SYN or RST bits is set then 5660 * drop the segment and return." 5661 * 5662 * See note below! 5663 * --ANK(990513) 5664 */ 5665 if (!th->syn) 5666 goto discard_and_undo; 5667 5668 /* rfc793: 5669 * "If the SYN bit is on ... 5670 * are acceptable then ... 5671 * (our SYN has been ACKed), change the connection 5672 * state to ESTABLISHED..." 5673 */ 5674 5675 tcp_ecn_rcv_synack(tp, th); 5676 5677 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5678 tcp_ack(sk, skb, FLAG_SLOWPATH); 5679 5680 /* Ok.. it's good. Set up sequence numbers and 5681 * move to established. 5682 */ 5683 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5684 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5685 5686 /* RFC1323: The window in SYN & SYN/ACK segments is 5687 * never scaled. 5688 */ 5689 tp->snd_wnd = ntohs(th->window); 5690 5691 if (!tp->rx_opt.wscale_ok) { 5692 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5693 tp->window_clamp = min(tp->window_clamp, 65535U); 5694 } 5695 5696 if (tp->rx_opt.saw_tstamp) { 5697 tp->rx_opt.tstamp_ok = 1; 5698 tp->tcp_header_len = 5699 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5700 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5701 tcp_store_ts_recent(tp); 5702 } else { 5703 tp->tcp_header_len = sizeof(struct tcphdr); 5704 } 5705 5706 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5707 tcp_initialize_rcv_mss(sk); 5708 5709 /* Remember, tcp_poll() does not lock socket! 5710 * Change state from SYN-SENT only after copied_seq 5711 * is initialized. */ 5712 tp->copied_seq = tp->rcv_nxt; 5713 5714 smc_check_reset_syn(tp); 5715 5716 smp_mb(); 5717 5718 tcp_finish_connect(sk, skb); 5719 5720 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5721 tcp_rcv_fastopen_synack(sk, skb, &foc); 5722 5723 if (!sock_flag(sk, SOCK_DEAD)) { 5724 sk->sk_state_change(sk); 5725 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5726 } 5727 if (fastopen_fail) 5728 return -1; 5729 if (sk->sk_write_pending || 5730 icsk->icsk_accept_queue.rskq_defer_accept || 5731 icsk->icsk_ack.pingpong) { 5732 /* Save one ACK. Data will be ready after 5733 * several ticks, if write_pending is set. 5734 * 5735 * It may be deleted, but with this feature tcpdumps 5736 * look so _wonderfully_ clever, that I was not able 5737 * to stand against the temptation 8) --ANK 5738 */ 5739 inet_csk_schedule_ack(sk); 5740 tcp_enter_quickack_mode(sk); 5741 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5742 TCP_DELACK_MAX, TCP_RTO_MAX); 5743 5744 discard: 5745 tcp_drop(sk, skb); 5746 return 0; 5747 } else { 5748 tcp_send_ack(sk); 5749 } 5750 return -1; 5751 } 5752 5753 /* No ACK in the segment */ 5754 5755 if (th->rst) { 5756 /* rfc793: 5757 * "If the RST bit is set 5758 * 5759 * Otherwise (no ACK) drop the segment and return." 5760 */ 5761 5762 goto discard_and_undo; 5763 } 5764 5765 /* PAWS check. */ 5766 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5767 tcp_paws_reject(&tp->rx_opt, 0)) 5768 goto discard_and_undo; 5769 5770 if (th->syn) { 5771 /* We see SYN without ACK. It is attempt of 5772 * simultaneous connect with crossed SYNs. 5773 * Particularly, it can be connect to self. 5774 */ 5775 tcp_set_state(sk, TCP_SYN_RECV); 5776 5777 if (tp->rx_opt.saw_tstamp) { 5778 tp->rx_opt.tstamp_ok = 1; 5779 tcp_store_ts_recent(tp); 5780 tp->tcp_header_len = 5781 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5782 } else { 5783 tp->tcp_header_len = sizeof(struct tcphdr); 5784 } 5785 5786 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5787 tp->copied_seq = tp->rcv_nxt; 5788 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5789 5790 /* RFC1323: The window in SYN & SYN/ACK segments is 5791 * never scaled. 5792 */ 5793 tp->snd_wnd = ntohs(th->window); 5794 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5795 tp->max_window = tp->snd_wnd; 5796 5797 tcp_ecn_rcv_syn(tp, th); 5798 5799 tcp_mtup_init(sk); 5800 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5801 tcp_initialize_rcv_mss(sk); 5802 5803 tcp_send_synack(sk); 5804 #if 0 5805 /* Note, we could accept data and URG from this segment. 5806 * There are no obstacles to make this (except that we must 5807 * either change tcp_recvmsg() to prevent it from returning data 5808 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5809 * 5810 * However, if we ignore data in ACKless segments sometimes, 5811 * we have no reasons to accept it sometimes. 5812 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5813 * is not flawless. So, discard packet for sanity. 5814 * Uncomment this return to process the data. 5815 */ 5816 return -1; 5817 #else 5818 goto discard; 5819 #endif 5820 } 5821 /* "fifth, if neither of the SYN or RST bits is set then 5822 * drop the segment and return." 5823 */ 5824 5825 discard_and_undo: 5826 tcp_clear_options(&tp->rx_opt); 5827 tp->rx_opt.mss_clamp = saved_clamp; 5828 goto discard; 5829 5830 reset_and_undo: 5831 tcp_clear_options(&tp->rx_opt); 5832 tp->rx_opt.mss_clamp = saved_clamp; 5833 return 1; 5834 } 5835 5836 /* 5837 * This function implements the receiving procedure of RFC 793 for 5838 * all states except ESTABLISHED and TIME_WAIT. 5839 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5840 * address independent. 5841 */ 5842 5843 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5844 { 5845 struct tcp_sock *tp = tcp_sk(sk); 5846 struct inet_connection_sock *icsk = inet_csk(sk); 5847 const struct tcphdr *th = tcp_hdr(skb); 5848 struct request_sock *req; 5849 int queued = 0; 5850 bool acceptable; 5851 5852 switch (sk->sk_state) { 5853 case TCP_CLOSE: 5854 goto discard; 5855 5856 case TCP_LISTEN: 5857 if (th->ack) 5858 return 1; 5859 5860 if (th->rst) 5861 goto discard; 5862 5863 if (th->syn) { 5864 if (th->fin) 5865 goto discard; 5866 /* It is possible that we process SYN packets from backlog, 5867 * so we need to make sure to disable BH right there. 5868 */ 5869 local_bh_disable(); 5870 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5871 local_bh_enable(); 5872 5873 if (!acceptable) 5874 return 1; 5875 consume_skb(skb); 5876 return 0; 5877 } 5878 goto discard; 5879 5880 case TCP_SYN_SENT: 5881 tp->rx_opt.saw_tstamp = 0; 5882 tcp_mstamp_refresh(tp); 5883 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5884 if (queued >= 0) 5885 return queued; 5886 5887 /* Do step6 onward by hand. */ 5888 tcp_urg(sk, skb, th); 5889 __kfree_skb(skb); 5890 tcp_data_snd_check(sk); 5891 return 0; 5892 } 5893 5894 tcp_mstamp_refresh(tp); 5895 tp->rx_opt.saw_tstamp = 0; 5896 req = tp->fastopen_rsk; 5897 if (req) { 5898 bool req_stolen; 5899 5900 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5901 sk->sk_state != TCP_FIN_WAIT1); 5902 5903 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 5904 goto discard; 5905 } 5906 5907 if (!th->ack && !th->rst && !th->syn) 5908 goto discard; 5909 5910 if (!tcp_validate_incoming(sk, skb, th, 0)) 5911 return 0; 5912 5913 /* step 5: check the ACK field */ 5914 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5915 FLAG_UPDATE_TS_RECENT | 5916 FLAG_NO_CHALLENGE_ACK) > 0; 5917 5918 if (!acceptable) { 5919 if (sk->sk_state == TCP_SYN_RECV) 5920 return 1; /* send one RST */ 5921 tcp_send_challenge_ack(sk, skb); 5922 goto discard; 5923 } 5924 switch (sk->sk_state) { 5925 case TCP_SYN_RECV: 5926 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 5927 if (!tp->srtt_us) 5928 tcp_synack_rtt_meas(sk, req); 5929 5930 /* Once we leave TCP_SYN_RECV, we no longer need req 5931 * so release it. 5932 */ 5933 if (req) { 5934 inet_csk(sk)->icsk_retransmits = 0; 5935 reqsk_fastopen_remove(sk, req, false); 5936 /* Re-arm the timer because data may have been sent out. 5937 * This is similar to the regular data transmission case 5938 * when new data has just been ack'ed. 5939 * 5940 * (TFO) - we could try to be more aggressive and 5941 * retransmitting any data sooner based on when they 5942 * are sent out. 5943 */ 5944 tcp_rearm_rto(sk); 5945 } else { 5946 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5947 tp->copied_seq = tp->rcv_nxt; 5948 } 5949 smp_mb(); 5950 tcp_set_state(sk, TCP_ESTABLISHED); 5951 sk->sk_state_change(sk); 5952 5953 /* Note, that this wakeup is only for marginal crossed SYN case. 5954 * Passively open sockets are not waked up, because 5955 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5956 */ 5957 if (sk->sk_socket) 5958 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5959 5960 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5961 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5962 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5963 5964 if (tp->rx_opt.tstamp_ok) 5965 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5966 5967 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5968 tcp_update_pacing_rate(sk); 5969 5970 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5971 tp->lsndtime = tcp_jiffies32; 5972 5973 tcp_initialize_rcv_mss(sk); 5974 tcp_fast_path_on(tp); 5975 break; 5976 5977 case TCP_FIN_WAIT1: { 5978 int tmo; 5979 5980 /* If we enter the TCP_FIN_WAIT1 state and we are a 5981 * Fast Open socket and this is the first acceptable 5982 * ACK we have received, this would have acknowledged 5983 * our SYNACK so stop the SYNACK timer. 5984 */ 5985 if (req) { 5986 /* We no longer need the request sock. */ 5987 reqsk_fastopen_remove(sk, req, false); 5988 tcp_rearm_rto(sk); 5989 } 5990 if (tp->snd_una != tp->write_seq) 5991 break; 5992 5993 tcp_set_state(sk, TCP_FIN_WAIT2); 5994 sk->sk_shutdown |= SEND_SHUTDOWN; 5995 5996 sk_dst_confirm(sk); 5997 5998 if (!sock_flag(sk, SOCK_DEAD)) { 5999 /* Wake up lingering close() */ 6000 sk->sk_state_change(sk); 6001 break; 6002 } 6003 6004 if (tp->linger2 < 0) { 6005 tcp_done(sk); 6006 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6007 return 1; 6008 } 6009 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6010 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6011 /* Receive out of order FIN after close() */ 6012 if (tp->syn_fastopen && th->fin) 6013 tcp_fastopen_active_disable(sk); 6014 tcp_done(sk); 6015 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6016 return 1; 6017 } 6018 6019 tmo = tcp_fin_time(sk); 6020 if (tmo > TCP_TIMEWAIT_LEN) { 6021 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6022 } else if (th->fin || sock_owned_by_user(sk)) { 6023 /* Bad case. We could lose such FIN otherwise. 6024 * It is not a big problem, but it looks confusing 6025 * and not so rare event. We still can lose it now, 6026 * if it spins in bh_lock_sock(), but it is really 6027 * marginal case. 6028 */ 6029 inet_csk_reset_keepalive_timer(sk, tmo); 6030 } else { 6031 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6032 goto discard; 6033 } 6034 break; 6035 } 6036 6037 case TCP_CLOSING: 6038 if (tp->snd_una == tp->write_seq) { 6039 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6040 goto discard; 6041 } 6042 break; 6043 6044 case TCP_LAST_ACK: 6045 if (tp->snd_una == tp->write_seq) { 6046 tcp_update_metrics(sk); 6047 tcp_done(sk); 6048 goto discard; 6049 } 6050 break; 6051 } 6052 6053 /* step 6: check the URG bit */ 6054 tcp_urg(sk, skb, th); 6055 6056 /* step 7: process the segment text */ 6057 switch (sk->sk_state) { 6058 case TCP_CLOSE_WAIT: 6059 case TCP_CLOSING: 6060 case TCP_LAST_ACK: 6061 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6062 break; 6063 /* fall through */ 6064 case TCP_FIN_WAIT1: 6065 case TCP_FIN_WAIT2: 6066 /* RFC 793 says to queue data in these states, 6067 * RFC 1122 says we MUST send a reset. 6068 * BSD 4.4 also does reset. 6069 */ 6070 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6071 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6072 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6073 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6074 tcp_reset(sk); 6075 return 1; 6076 } 6077 } 6078 /* Fall through */ 6079 case TCP_ESTABLISHED: 6080 tcp_data_queue(sk, skb); 6081 queued = 1; 6082 break; 6083 } 6084 6085 /* tcp_data could move socket to TIME-WAIT */ 6086 if (sk->sk_state != TCP_CLOSE) { 6087 tcp_data_snd_check(sk); 6088 tcp_ack_snd_check(sk); 6089 } 6090 6091 if (!queued) { 6092 discard: 6093 tcp_drop(sk, skb); 6094 } 6095 return 0; 6096 } 6097 EXPORT_SYMBOL(tcp_rcv_state_process); 6098 6099 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6100 { 6101 struct inet_request_sock *ireq = inet_rsk(req); 6102 6103 if (family == AF_INET) 6104 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6105 &ireq->ir_rmt_addr, port); 6106 #if IS_ENABLED(CONFIG_IPV6) 6107 else if (family == AF_INET6) 6108 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6109 &ireq->ir_v6_rmt_addr, port); 6110 #endif 6111 } 6112 6113 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6114 * 6115 * If we receive a SYN packet with these bits set, it means a 6116 * network is playing bad games with TOS bits. In order to 6117 * avoid possible false congestion notifications, we disable 6118 * TCP ECN negotiation. 6119 * 6120 * Exception: tcp_ca wants ECN. This is required for DCTCP 6121 * congestion control: Linux DCTCP asserts ECT on all packets, 6122 * including SYN, which is most optimal solution; however, 6123 * others, such as FreeBSD do not. 6124 */ 6125 static void tcp_ecn_create_request(struct request_sock *req, 6126 const struct sk_buff *skb, 6127 const struct sock *listen_sk, 6128 const struct dst_entry *dst) 6129 { 6130 const struct tcphdr *th = tcp_hdr(skb); 6131 const struct net *net = sock_net(listen_sk); 6132 bool th_ecn = th->ece && th->cwr; 6133 bool ect, ecn_ok; 6134 u32 ecn_ok_dst; 6135 6136 if (!th_ecn) 6137 return; 6138 6139 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6140 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6141 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6142 6143 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6144 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6145 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6146 inet_rsk(req)->ecn_ok = 1; 6147 } 6148 6149 static void tcp_openreq_init(struct request_sock *req, 6150 const struct tcp_options_received *rx_opt, 6151 struct sk_buff *skb, const struct sock *sk) 6152 { 6153 struct inet_request_sock *ireq = inet_rsk(req); 6154 6155 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6156 req->cookie_ts = 0; 6157 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6158 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6159 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6160 tcp_rsk(req)->last_oow_ack_time = 0; 6161 req->mss = rx_opt->mss_clamp; 6162 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6163 ireq->tstamp_ok = rx_opt->tstamp_ok; 6164 ireq->sack_ok = rx_opt->sack_ok; 6165 ireq->snd_wscale = rx_opt->snd_wscale; 6166 ireq->wscale_ok = rx_opt->wscale_ok; 6167 ireq->acked = 0; 6168 ireq->ecn_ok = 0; 6169 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6170 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6171 ireq->ir_mark = inet_request_mark(sk, skb); 6172 #if IS_ENABLED(CONFIG_SMC) 6173 ireq->smc_ok = rx_opt->smc_ok; 6174 #endif 6175 } 6176 6177 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6178 struct sock *sk_listener, 6179 bool attach_listener) 6180 { 6181 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6182 attach_listener); 6183 6184 if (req) { 6185 struct inet_request_sock *ireq = inet_rsk(req); 6186 6187 ireq->ireq_opt = NULL; 6188 #if IS_ENABLED(CONFIG_IPV6) 6189 ireq->pktopts = NULL; 6190 #endif 6191 atomic64_set(&ireq->ir_cookie, 0); 6192 ireq->ireq_state = TCP_NEW_SYN_RECV; 6193 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6194 ireq->ireq_family = sk_listener->sk_family; 6195 } 6196 6197 return req; 6198 } 6199 EXPORT_SYMBOL(inet_reqsk_alloc); 6200 6201 /* 6202 * Return true if a syncookie should be sent 6203 */ 6204 static bool tcp_syn_flood_action(const struct sock *sk, 6205 const struct sk_buff *skb, 6206 const char *proto) 6207 { 6208 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6209 const char *msg = "Dropping request"; 6210 bool want_cookie = false; 6211 struct net *net = sock_net(sk); 6212 6213 #ifdef CONFIG_SYN_COOKIES 6214 if (net->ipv4.sysctl_tcp_syncookies) { 6215 msg = "Sending cookies"; 6216 want_cookie = true; 6217 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6218 } else 6219 #endif 6220 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6221 6222 if (!queue->synflood_warned && 6223 net->ipv4.sysctl_tcp_syncookies != 2 && 6224 xchg(&queue->synflood_warned, 1) == 0) 6225 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6226 proto, ntohs(tcp_hdr(skb)->dest), msg); 6227 6228 return want_cookie; 6229 } 6230 6231 static void tcp_reqsk_record_syn(const struct sock *sk, 6232 struct request_sock *req, 6233 const struct sk_buff *skb) 6234 { 6235 if (tcp_sk(sk)->save_syn) { 6236 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6237 u32 *copy; 6238 6239 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6240 if (copy) { 6241 copy[0] = len; 6242 memcpy(©[1], skb_network_header(skb), len); 6243 req->saved_syn = copy; 6244 } 6245 } 6246 } 6247 6248 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6249 const struct tcp_request_sock_ops *af_ops, 6250 struct sock *sk, struct sk_buff *skb) 6251 { 6252 struct tcp_fastopen_cookie foc = { .len = -1 }; 6253 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6254 struct tcp_options_received tmp_opt; 6255 struct tcp_sock *tp = tcp_sk(sk); 6256 struct net *net = sock_net(sk); 6257 struct sock *fastopen_sk = NULL; 6258 struct request_sock *req; 6259 bool want_cookie = false; 6260 struct dst_entry *dst; 6261 struct flowi fl; 6262 6263 /* TW buckets are converted to open requests without 6264 * limitations, they conserve resources and peer is 6265 * evidently real one. 6266 */ 6267 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6268 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6269 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6270 if (!want_cookie) 6271 goto drop; 6272 } 6273 6274 if (sk_acceptq_is_full(sk)) { 6275 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6276 goto drop; 6277 } 6278 6279 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6280 if (!req) 6281 goto drop; 6282 6283 tcp_rsk(req)->af_specific = af_ops; 6284 tcp_rsk(req)->ts_off = 0; 6285 6286 tcp_clear_options(&tmp_opt); 6287 tmp_opt.mss_clamp = af_ops->mss_clamp; 6288 tmp_opt.user_mss = tp->rx_opt.user_mss; 6289 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6290 want_cookie ? NULL : &foc); 6291 6292 if (want_cookie && !tmp_opt.saw_tstamp) 6293 tcp_clear_options(&tmp_opt); 6294 6295 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6296 tmp_opt.smc_ok = 0; 6297 6298 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6299 tcp_openreq_init(req, &tmp_opt, skb, sk); 6300 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6301 6302 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6303 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6304 6305 af_ops->init_req(req, sk, skb); 6306 6307 if (security_inet_conn_request(sk, skb, req)) 6308 goto drop_and_free; 6309 6310 if (tmp_opt.tstamp_ok) 6311 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6312 6313 dst = af_ops->route_req(sk, &fl, req); 6314 if (!dst) 6315 goto drop_and_free; 6316 6317 if (!want_cookie && !isn) { 6318 /* Kill the following clause, if you dislike this way. */ 6319 if (!net->ipv4.sysctl_tcp_syncookies && 6320 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6321 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6322 !tcp_peer_is_proven(req, dst)) { 6323 /* Without syncookies last quarter of 6324 * backlog is filled with destinations, 6325 * proven to be alive. 6326 * It means that we continue to communicate 6327 * to destinations, already remembered 6328 * to the moment of synflood. 6329 */ 6330 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6331 rsk_ops->family); 6332 goto drop_and_release; 6333 } 6334 6335 isn = af_ops->init_seq(skb); 6336 } 6337 6338 tcp_ecn_create_request(req, skb, sk, dst); 6339 6340 if (want_cookie) { 6341 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6342 req->cookie_ts = tmp_opt.tstamp_ok; 6343 if (!tmp_opt.tstamp_ok) 6344 inet_rsk(req)->ecn_ok = 0; 6345 } 6346 6347 tcp_rsk(req)->snt_isn = isn; 6348 tcp_rsk(req)->txhash = net_tx_rndhash(); 6349 tcp_openreq_init_rwin(req, sk, dst); 6350 if (!want_cookie) { 6351 tcp_reqsk_record_syn(sk, req, skb); 6352 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6353 } 6354 if (fastopen_sk) { 6355 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6356 &foc, TCP_SYNACK_FASTOPEN); 6357 /* Add the child socket directly into the accept queue */ 6358 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6359 sk->sk_data_ready(sk); 6360 bh_unlock_sock(fastopen_sk); 6361 sock_put(fastopen_sk); 6362 } else { 6363 tcp_rsk(req)->tfo_listener = false; 6364 if (!want_cookie) 6365 inet_csk_reqsk_queue_hash_add(sk, req, 6366 tcp_timeout_init((struct sock *)req)); 6367 af_ops->send_synack(sk, dst, &fl, req, &foc, 6368 !want_cookie ? TCP_SYNACK_NORMAL : 6369 TCP_SYNACK_COOKIE); 6370 if (want_cookie) { 6371 reqsk_free(req); 6372 return 0; 6373 } 6374 } 6375 reqsk_put(req); 6376 return 0; 6377 6378 drop_and_release: 6379 dst_release(dst); 6380 drop_and_free: 6381 reqsk_free(req); 6382 drop: 6383 tcp_listendrop(sk); 6384 return 0; 6385 } 6386 EXPORT_SYMBOL(tcp_conn_request); 6387