1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/mm.h> 67 #include <linux/module.h> 68 #include <linux/sysctl.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps = 1; 76 int sysctl_tcp_window_scaling = 1; 77 int sysctl_tcp_sack = 1; 78 int sysctl_tcp_fack = 1; 79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn; 81 int sysctl_tcp_dsack = 1; 82 int sysctl_tcp_app_win = 31; 83 int sysctl_tcp_adv_win_scale = 2; 84 85 int sysctl_tcp_stdurg; 86 int sysctl_tcp_rfc1337; 87 int sysctl_tcp_max_orphans = NR_FILE; 88 int sysctl_tcp_frto; 89 int sysctl_tcp_nometrics_save; 90 91 int sysctl_tcp_moderate_rcvbuf = 1; 92 int sysctl_tcp_abc = 1; 93 94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 100 #define FLAG_ECE 0x40 /* ECE in this ACK */ 101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 112 113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 114 115 /* Adapt the MSS value used to make delayed ack decision to the 116 * real world. 117 */ 118 static void tcp_measure_rcv_mss(struct sock *sk, 119 const struct sk_buff *skb) 120 { 121 struct inet_connection_sock *icsk = inet_csk(sk); 122 const unsigned int lss = icsk->icsk_ack.last_seg_size; 123 unsigned int len; 124 125 icsk->icsk_ack.last_seg_size = 0; 126 127 /* skb->len may jitter because of SACKs, even if peer 128 * sends good full-sized frames. 129 */ 130 len = skb->len; 131 if (len >= icsk->icsk_ack.rcv_mss) { 132 icsk->icsk_ack.rcv_mss = len; 133 } else { 134 /* Otherwise, we make more careful check taking into account, 135 * that SACKs block is variable. 136 * 137 * "len" is invariant segment length, including TCP header. 138 */ 139 len += skb->data - skb->h.raw; 140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 141 /* If PSH is not set, packet should be 142 * full sized, provided peer TCP is not badly broken. 143 * This observation (if it is correct 8)) allows 144 * to handle super-low mtu links fairly. 145 */ 146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) { 148 /* Subtract also invariant (if peer is RFC compliant), 149 * tcp header plus fixed timestamp option length. 150 * Resulting "len" is MSS free of SACK jitter. 151 */ 152 len -= tcp_sk(sk)->tcp_header_len; 153 icsk->icsk_ack.last_seg_size = len; 154 if (len == lss) { 155 icsk->icsk_ack.rcv_mss = len; 156 return; 157 } 158 } 159 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 160 } 161 } 162 163 static void tcp_incr_quickack(struct sock *sk) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 167 168 if (quickacks==0) 169 quickacks=2; 170 if (quickacks > icsk->icsk_ack.quick) 171 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 172 } 173 174 void tcp_enter_quickack_mode(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 tcp_incr_quickack(sk); 178 icsk->icsk_ack.pingpong = 0; 179 icsk->icsk_ack.ato = TCP_ATO_MIN; 180 } 181 182 /* Send ACKs quickly, if "quick" count is not exhausted 183 * and the session is not interactive. 184 */ 185 186 static inline int tcp_in_quickack_mode(const struct sock *sk) 187 { 188 const struct inet_connection_sock *icsk = inet_csk(sk); 189 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 190 } 191 192 /* Buffer size and advertised window tuning. 193 * 194 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 195 */ 196 197 static void tcp_fixup_sndbuf(struct sock *sk) 198 { 199 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 200 sizeof(struct sk_buff); 201 202 if (sk->sk_sndbuf < 3 * sndmem) 203 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 204 } 205 206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 207 * 208 * All tcp_full_space() is split to two parts: "network" buffer, allocated 209 * forward and advertised in receiver window (tp->rcv_wnd) and 210 * "application buffer", required to isolate scheduling/application 211 * latencies from network. 212 * window_clamp is maximal advertised window. It can be less than 213 * tcp_full_space(), in this case tcp_full_space() - window_clamp 214 * is reserved for "application" buffer. The less window_clamp is 215 * the smoother our behaviour from viewpoint of network, but the lower 216 * throughput and the higher sensitivity of the connection to losses. 8) 217 * 218 * rcv_ssthresh is more strict window_clamp used at "slow start" 219 * phase to predict further behaviour of this connection. 220 * It is used for two goals: 221 * - to enforce header prediction at sender, even when application 222 * requires some significant "application buffer". It is check #1. 223 * - to prevent pruning of receive queue because of misprediction 224 * of receiver window. Check #2. 225 * 226 * The scheme does not work when sender sends good segments opening 227 * window and then starts to feed us spaghetti. But it should work 228 * in common situations. Otherwise, we have to rely on queue collapsing. 229 */ 230 231 /* Slow part of check#2. */ 232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp, 233 const struct sk_buff *skb) 234 { 235 /* Optimize this! */ 236 int truesize = tcp_win_from_space(skb->truesize)/2; 237 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; 238 239 while (tp->rcv_ssthresh <= window) { 240 if (truesize <= skb->len) 241 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 242 243 truesize >>= 1; 244 window >>= 1; 245 } 246 return 0; 247 } 248 249 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp, 250 struct sk_buff *skb) 251 { 252 /* Check #1 */ 253 if (tp->rcv_ssthresh < tp->window_clamp && 254 (int)tp->rcv_ssthresh < tcp_space(sk) && 255 !tcp_memory_pressure) { 256 int incr; 257 258 /* Check #2. Increase window, if skb with such overhead 259 * will fit to rcvbuf in future. 260 */ 261 if (tcp_win_from_space(skb->truesize) <= skb->len) 262 incr = 2*tp->advmss; 263 else 264 incr = __tcp_grow_window(sk, tp, skb); 265 266 if (incr) { 267 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 268 inet_csk(sk)->icsk_ack.quick |= 1; 269 } 270 } 271 } 272 273 /* 3. Tuning rcvbuf, when connection enters established state. */ 274 275 static void tcp_fixup_rcvbuf(struct sock *sk) 276 { 277 struct tcp_sock *tp = tcp_sk(sk); 278 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 279 280 /* Try to select rcvbuf so that 4 mss-sized segments 281 * will fit to window and corresponding skbs will fit to our rcvbuf. 282 * (was 3; 4 is minimum to allow fast retransmit to work.) 283 */ 284 while (tcp_win_from_space(rcvmem) < tp->advmss) 285 rcvmem += 128; 286 if (sk->sk_rcvbuf < 4 * rcvmem) 287 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 288 } 289 290 /* 4. Try to fixup all. It is made immediately after connection enters 291 * established state. 292 */ 293 static void tcp_init_buffer_space(struct sock *sk) 294 { 295 struct tcp_sock *tp = tcp_sk(sk); 296 int maxwin; 297 298 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 299 tcp_fixup_rcvbuf(sk); 300 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 301 tcp_fixup_sndbuf(sk); 302 303 tp->rcvq_space.space = tp->rcv_wnd; 304 305 maxwin = tcp_full_space(sk); 306 307 if (tp->window_clamp >= maxwin) { 308 tp->window_clamp = maxwin; 309 310 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 311 tp->window_clamp = max(maxwin - 312 (maxwin >> sysctl_tcp_app_win), 313 4 * tp->advmss); 314 } 315 316 /* Force reservation of one segment. */ 317 if (sysctl_tcp_app_win && 318 tp->window_clamp > 2 * tp->advmss && 319 tp->window_clamp + tp->advmss > maxwin) 320 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 321 322 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 323 tp->snd_cwnd_stamp = tcp_time_stamp; 324 } 325 326 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp) 328 { 329 struct inet_connection_sock *icsk = inet_csk(sk); 330 331 icsk->icsk_ack.quick = 0; 332 333 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 334 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 335 !tcp_memory_pressure && 336 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 337 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 338 sysctl_tcp_rmem[2]); 339 } 340 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 341 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 342 } 343 344 345 /* Initialize RCV_MSS value. 346 * RCV_MSS is an our guess about MSS used by the peer. 347 * We haven't any direct information about the MSS. 348 * It's better to underestimate the RCV_MSS rather than overestimate. 349 * Overestimations make us ACKing less frequently than needed. 350 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 351 */ 352 void tcp_initialize_rcv_mss(struct sock *sk) 353 { 354 struct tcp_sock *tp = tcp_sk(sk); 355 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 356 357 hint = min(hint, tp->rcv_wnd/2); 358 hint = min(hint, TCP_MIN_RCVMSS); 359 hint = max(hint, TCP_MIN_MSS); 360 361 inet_csk(sk)->icsk_ack.rcv_mss = hint; 362 } 363 364 /* Receiver "autotuning" code. 365 * 366 * The algorithm for RTT estimation w/o timestamps is based on 367 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 368 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 369 * 370 * More detail on this code can be found at 371 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 372 * though this reference is out of date. A new paper 373 * is pending. 374 */ 375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 376 { 377 u32 new_sample = tp->rcv_rtt_est.rtt; 378 long m = sample; 379 380 if (m == 0) 381 m = 1; 382 383 if (new_sample != 0) { 384 /* If we sample in larger samples in the non-timestamp 385 * case, we could grossly overestimate the RTT especially 386 * with chatty applications or bulk transfer apps which 387 * are stalled on filesystem I/O. 388 * 389 * Also, since we are only going for a minimum in the 390 * non-timestamp case, we do not smooth things out 391 * else with timestamps disabled convergence takes too 392 * long. 393 */ 394 if (!win_dep) { 395 m -= (new_sample >> 3); 396 new_sample += m; 397 } else if (m < new_sample) 398 new_sample = m << 3; 399 } else { 400 /* No previous measure. */ 401 new_sample = m << 3; 402 } 403 404 if (tp->rcv_rtt_est.rtt != new_sample) 405 tp->rcv_rtt_est.rtt = new_sample; 406 } 407 408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 409 { 410 if (tp->rcv_rtt_est.time == 0) 411 goto new_measure; 412 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 413 return; 414 tcp_rcv_rtt_update(tp, 415 jiffies - tp->rcv_rtt_est.time, 416 1); 417 418 new_measure: 419 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 420 tp->rcv_rtt_est.time = tcp_time_stamp; 421 } 422 423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) 424 { 425 struct tcp_sock *tp = tcp_sk(sk); 426 if (tp->rx_opt.rcv_tsecr && 427 (TCP_SKB_CB(skb)->end_seq - 428 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 429 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 430 } 431 432 /* 433 * This function should be called every time data is copied to user space. 434 * It calculates the appropriate TCP receive buffer space. 435 */ 436 void tcp_rcv_space_adjust(struct sock *sk) 437 { 438 struct tcp_sock *tp = tcp_sk(sk); 439 int time; 440 int space; 441 442 if (tp->rcvq_space.time == 0) 443 goto new_measure; 444 445 time = tcp_time_stamp - tp->rcvq_space.time; 446 if (time < (tp->rcv_rtt_est.rtt >> 3) || 447 tp->rcv_rtt_est.rtt == 0) 448 return; 449 450 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 451 452 space = max(tp->rcvq_space.space, space); 453 454 if (tp->rcvq_space.space != space) { 455 int rcvmem; 456 457 tp->rcvq_space.space = space; 458 459 if (sysctl_tcp_moderate_rcvbuf && 460 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 461 int new_clamp = space; 462 463 /* Receive space grows, normalize in order to 464 * take into account packet headers and sk_buff 465 * structure overhead. 466 */ 467 space /= tp->advmss; 468 if (!space) 469 space = 1; 470 rcvmem = (tp->advmss + MAX_TCP_HEADER + 471 16 + sizeof(struct sk_buff)); 472 while (tcp_win_from_space(rcvmem) < tp->advmss) 473 rcvmem += 128; 474 space *= rcvmem; 475 space = min(space, sysctl_tcp_rmem[2]); 476 if (space > sk->sk_rcvbuf) { 477 sk->sk_rcvbuf = space; 478 479 /* Make the window clamp follow along. */ 480 tp->window_clamp = new_clamp; 481 } 482 } 483 } 484 485 new_measure: 486 tp->rcvq_space.seq = tp->copied_seq; 487 tp->rcvq_space.time = tcp_time_stamp; 488 } 489 490 /* There is something which you must keep in mind when you analyze the 491 * behavior of the tp->ato delayed ack timeout interval. When a 492 * connection starts up, we want to ack as quickly as possible. The 493 * problem is that "good" TCP's do slow start at the beginning of data 494 * transmission. The means that until we send the first few ACK's the 495 * sender will sit on his end and only queue most of his data, because 496 * he can only send snd_cwnd unacked packets at any given time. For 497 * each ACK we send, he increments snd_cwnd and transmits more of his 498 * queue. -DaveM 499 */ 500 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 501 { 502 struct inet_connection_sock *icsk = inet_csk(sk); 503 u32 now; 504 505 inet_csk_schedule_ack(sk); 506 507 tcp_measure_rcv_mss(sk, skb); 508 509 tcp_rcv_rtt_measure(tp); 510 511 now = tcp_time_stamp; 512 513 if (!icsk->icsk_ack.ato) { 514 /* The _first_ data packet received, initialize 515 * delayed ACK engine. 516 */ 517 tcp_incr_quickack(sk); 518 icsk->icsk_ack.ato = TCP_ATO_MIN; 519 } else { 520 int m = now - icsk->icsk_ack.lrcvtime; 521 522 if (m <= TCP_ATO_MIN/2) { 523 /* The fastest case is the first. */ 524 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 525 } else if (m < icsk->icsk_ack.ato) { 526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 527 if (icsk->icsk_ack.ato > icsk->icsk_rto) 528 icsk->icsk_ack.ato = icsk->icsk_rto; 529 } else if (m > icsk->icsk_rto) { 530 /* Too long gap. Apparently sender failed to 531 * restart window, so that we send ACKs quickly. 532 */ 533 tcp_incr_quickack(sk); 534 sk_stream_mem_reclaim(sk); 535 } 536 } 537 icsk->icsk_ack.lrcvtime = now; 538 539 TCP_ECN_check_ce(tp, skb); 540 541 if (skb->len >= 128) 542 tcp_grow_window(sk, tp, skb); 543 } 544 545 /* Called to compute a smoothed rtt estimate. The data fed to this 546 * routine either comes from timestamps, or from segments that were 547 * known _not_ to have been retransmitted [see Karn/Partridge 548 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 549 * piece by Van Jacobson. 550 * NOTE: the next three routines used to be one big routine. 551 * To save cycles in the RFC 1323 implementation it was better to break 552 * it up into three procedures. -- erics 553 */ 554 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 555 { 556 struct tcp_sock *tp = tcp_sk(sk); 557 long m = mrtt; /* RTT */ 558 559 /* The following amusing code comes from Jacobson's 560 * article in SIGCOMM '88. Note that rtt and mdev 561 * are scaled versions of rtt and mean deviation. 562 * This is designed to be as fast as possible 563 * m stands for "measurement". 564 * 565 * On a 1990 paper the rto value is changed to: 566 * RTO = rtt + 4 * mdev 567 * 568 * Funny. This algorithm seems to be very broken. 569 * These formulae increase RTO, when it should be decreased, increase 570 * too slowly, when it should be increased quickly, decrease too quickly 571 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 572 * does not matter how to _calculate_ it. Seems, it was trap 573 * that VJ failed to avoid. 8) 574 */ 575 if(m == 0) 576 m = 1; 577 if (tp->srtt != 0) { 578 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 579 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 580 if (m < 0) { 581 m = -m; /* m is now abs(error) */ 582 m -= (tp->mdev >> 2); /* similar update on mdev */ 583 /* This is similar to one of Eifel findings. 584 * Eifel blocks mdev updates when rtt decreases. 585 * This solution is a bit different: we use finer gain 586 * for mdev in this case (alpha*beta). 587 * Like Eifel it also prevents growth of rto, 588 * but also it limits too fast rto decreases, 589 * happening in pure Eifel. 590 */ 591 if (m > 0) 592 m >>= 3; 593 } else { 594 m -= (tp->mdev >> 2); /* similar update on mdev */ 595 } 596 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 597 if (tp->mdev > tp->mdev_max) { 598 tp->mdev_max = tp->mdev; 599 if (tp->mdev_max > tp->rttvar) 600 tp->rttvar = tp->mdev_max; 601 } 602 if (after(tp->snd_una, tp->rtt_seq)) { 603 if (tp->mdev_max < tp->rttvar) 604 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 605 tp->rtt_seq = tp->snd_nxt; 606 tp->mdev_max = TCP_RTO_MIN; 607 } 608 } else { 609 /* no previous measure. */ 610 tp->srtt = m<<3; /* take the measured time to be rtt */ 611 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 612 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 613 tp->rtt_seq = tp->snd_nxt; 614 } 615 } 616 617 /* Calculate rto without backoff. This is the second half of Van Jacobson's 618 * routine referred to above. 619 */ 620 static inline void tcp_set_rto(struct sock *sk) 621 { 622 const struct tcp_sock *tp = tcp_sk(sk); 623 /* Old crap is replaced with new one. 8) 624 * 625 * More seriously: 626 * 1. If rtt variance happened to be less 50msec, it is hallucination. 627 * It cannot be less due to utterly erratic ACK generation made 628 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 629 * to do with delayed acks, because at cwnd>2 true delack timeout 630 * is invisible. Actually, Linux-2.4 also generates erratic 631 * ACKs in some circumstances. 632 */ 633 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 634 635 /* 2. Fixups made earlier cannot be right. 636 * If we do not estimate RTO correctly without them, 637 * all the algo is pure shit and should be replaced 638 * with correct one. It is exactly, which we pretend to do. 639 */ 640 } 641 642 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 643 * guarantees that rto is higher. 644 */ 645 static inline void tcp_bound_rto(struct sock *sk) 646 { 647 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 648 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 649 } 650 651 /* Save metrics learned by this TCP session. 652 This function is called only, when TCP finishes successfully 653 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 654 */ 655 void tcp_update_metrics(struct sock *sk) 656 { 657 struct tcp_sock *tp = tcp_sk(sk); 658 struct dst_entry *dst = __sk_dst_get(sk); 659 660 if (sysctl_tcp_nometrics_save) 661 return; 662 663 dst_confirm(dst); 664 665 if (dst && (dst->flags&DST_HOST)) { 666 const struct inet_connection_sock *icsk = inet_csk(sk); 667 int m; 668 669 if (icsk->icsk_backoff || !tp->srtt) { 670 /* This session failed to estimate rtt. Why? 671 * Probably, no packets returned in time. 672 * Reset our results. 673 */ 674 if (!(dst_metric_locked(dst, RTAX_RTT))) 675 dst->metrics[RTAX_RTT-1] = 0; 676 return; 677 } 678 679 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 680 681 /* If newly calculated rtt larger than stored one, 682 * store new one. Otherwise, use EWMA. Remember, 683 * rtt overestimation is always better than underestimation. 684 */ 685 if (!(dst_metric_locked(dst, RTAX_RTT))) { 686 if (m <= 0) 687 dst->metrics[RTAX_RTT-1] = tp->srtt; 688 else 689 dst->metrics[RTAX_RTT-1] -= (m>>3); 690 } 691 692 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 693 if (m < 0) 694 m = -m; 695 696 /* Scale deviation to rttvar fixed point */ 697 m >>= 1; 698 if (m < tp->mdev) 699 m = tp->mdev; 700 701 if (m >= dst_metric(dst, RTAX_RTTVAR)) 702 dst->metrics[RTAX_RTTVAR-1] = m; 703 else 704 dst->metrics[RTAX_RTTVAR-1] -= 705 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 706 } 707 708 if (tp->snd_ssthresh >= 0xFFFF) { 709 /* Slow start still did not finish. */ 710 if (dst_metric(dst, RTAX_SSTHRESH) && 711 !dst_metric_locked(dst, RTAX_SSTHRESH) && 712 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 713 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 714 if (!dst_metric_locked(dst, RTAX_CWND) && 715 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 716 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 717 } else if (tp->snd_cwnd > tp->snd_ssthresh && 718 icsk->icsk_ca_state == TCP_CA_Open) { 719 /* Cong. avoidance phase, cwnd is reliable. */ 720 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 721 dst->metrics[RTAX_SSTHRESH-1] = 722 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 723 if (!dst_metric_locked(dst, RTAX_CWND)) 724 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 725 } else { 726 /* Else slow start did not finish, cwnd is non-sense, 727 ssthresh may be also invalid. 728 */ 729 if (!dst_metric_locked(dst, RTAX_CWND)) 730 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 731 if (dst->metrics[RTAX_SSTHRESH-1] && 732 !dst_metric_locked(dst, RTAX_SSTHRESH) && 733 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 734 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 735 } 736 737 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 738 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 739 tp->reordering != sysctl_tcp_reordering) 740 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 741 } 742 } 743 } 744 745 /* Numbers are taken from RFC2414. */ 746 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 747 { 748 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 749 750 if (!cwnd) { 751 if (tp->mss_cache > 1460) 752 cwnd = 2; 753 else 754 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 755 } 756 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 757 } 758 759 /* Set slow start threshold and cwnd not falling to slow start */ 760 void tcp_enter_cwr(struct sock *sk) 761 { 762 struct tcp_sock *tp = tcp_sk(sk); 763 764 tp->prior_ssthresh = 0; 765 tp->bytes_acked = 0; 766 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 767 tp->undo_marker = 0; 768 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 769 tp->snd_cwnd = min(tp->snd_cwnd, 770 tcp_packets_in_flight(tp) + 1U); 771 tp->snd_cwnd_cnt = 0; 772 tp->high_seq = tp->snd_nxt; 773 tp->snd_cwnd_stamp = tcp_time_stamp; 774 TCP_ECN_queue_cwr(tp); 775 776 tcp_set_ca_state(sk, TCP_CA_CWR); 777 } 778 } 779 780 /* Initialize metrics on socket. */ 781 782 static void tcp_init_metrics(struct sock *sk) 783 { 784 struct tcp_sock *tp = tcp_sk(sk); 785 struct dst_entry *dst = __sk_dst_get(sk); 786 787 if (dst == NULL) 788 goto reset; 789 790 dst_confirm(dst); 791 792 if (dst_metric_locked(dst, RTAX_CWND)) 793 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 794 if (dst_metric(dst, RTAX_SSTHRESH)) { 795 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 796 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 797 tp->snd_ssthresh = tp->snd_cwnd_clamp; 798 } 799 if (dst_metric(dst, RTAX_REORDERING) && 800 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 801 tp->rx_opt.sack_ok &= ~2; 802 tp->reordering = dst_metric(dst, RTAX_REORDERING); 803 } 804 805 if (dst_metric(dst, RTAX_RTT) == 0) 806 goto reset; 807 808 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 809 goto reset; 810 811 /* Initial rtt is determined from SYN,SYN-ACK. 812 * The segment is small and rtt may appear much 813 * less than real one. Use per-dst memory 814 * to make it more realistic. 815 * 816 * A bit of theory. RTT is time passed after "normal" sized packet 817 * is sent until it is ACKed. In normal circumstances sending small 818 * packets force peer to delay ACKs and calculation is correct too. 819 * The algorithm is adaptive and, provided we follow specs, it 820 * NEVER underestimate RTT. BUT! If peer tries to make some clever 821 * tricks sort of "quick acks" for time long enough to decrease RTT 822 * to low value, and then abruptly stops to do it and starts to delay 823 * ACKs, wait for troubles. 824 */ 825 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 826 tp->srtt = dst_metric(dst, RTAX_RTT); 827 tp->rtt_seq = tp->snd_nxt; 828 } 829 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 830 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 831 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 832 } 833 tcp_set_rto(sk); 834 tcp_bound_rto(sk); 835 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 836 goto reset; 837 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 838 tp->snd_cwnd_stamp = tcp_time_stamp; 839 return; 840 841 reset: 842 /* Play conservative. If timestamps are not 843 * supported, TCP will fail to recalculate correct 844 * rtt, if initial rto is too small. FORGET ALL AND RESET! 845 */ 846 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 847 tp->srtt = 0; 848 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 849 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 850 } 851 } 852 853 static void tcp_update_reordering(struct sock *sk, const int metric, 854 const int ts) 855 { 856 struct tcp_sock *tp = tcp_sk(sk); 857 if (metric > tp->reordering) { 858 tp->reordering = min(TCP_MAX_REORDERING, metric); 859 860 /* This exciting event is worth to be remembered. 8) */ 861 if (ts) 862 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 863 else if (IsReno(tp)) 864 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 865 else if (IsFack(tp)) 866 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 867 else 868 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 869 #if FASTRETRANS_DEBUG > 1 870 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 871 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 872 tp->reordering, 873 tp->fackets_out, 874 tp->sacked_out, 875 tp->undo_marker ? tp->undo_retrans : 0); 876 #endif 877 /* Disable FACK yet. */ 878 tp->rx_opt.sack_ok &= ~2; 879 } 880 } 881 882 /* This procedure tags the retransmission queue when SACKs arrive. 883 * 884 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 885 * Packets in queue with these bits set are counted in variables 886 * sacked_out, retrans_out and lost_out, correspondingly. 887 * 888 * Valid combinations are: 889 * Tag InFlight Description 890 * 0 1 - orig segment is in flight. 891 * S 0 - nothing flies, orig reached receiver. 892 * L 0 - nothing flies, orig lost by net. 893 * R 2 - both orig and retransmit are in flight. 894 * L|R 1 - orig is lost, retransmit is in flight. 895 * S|R 1 - orig reached receiver, retrans is still in flight. 896 * (L|S|R is logically valid, it could occur when L|R is sacked, 897 * but it is equivalent to plain S and code short-curcuits it to S. 898 * L|S is logically invalid, it would mean -1 packet in flight 8)) 899 * 900 * These 6 states form finite state machine, controlled by the following events: 901 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 902 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 903 * 3. Loss detection event of one of three flavors: 904 * A. Scoreboard estimator decided the packet is lost. 905 * A'. Reno "three dupacks" marks head of queue lost. 906 * A''. Its FACK modfication, head until snd.fack is lost. 907 * B. SACK arrives sacking data transmitted after never retransmitted 908 * hole was sent out. 909 * C. SACK arrives sacking SND.NXT at the moment, when the 910 * segment was retransmitted. 911 * 4. D-SACK added new rule: D-SACK changes any tag to S. 912 * 913 * It is pleasant to note, that state diagram turns out to be commutative, 914 * so that we are allowed not to be bothered by order of our actions, 915 * when multiple events arrive simultaneously. (see the function below). 916 * 917 * Reordering detection. 918 * -------------------- 919 * Reordering metric is maximal distance, which a packet can be displaced 920 * in packet stream. With SACKs we can estimate it: 921 * 922 * 1. SACK fills old hole and the corresponding segment was not 923 * ever retransmitted -> reordering. Alas, we cannot use it 924 * when segment was retransmitted. 925 * 2. The last flaw is solved with D-SACK. D-SACK arrives 926 * for retransmitted and already SACKed segment -> reordering.. 927 * Both of these heuristics are not used in Loss state, when we cannot 928 * account for retransmits accurately. 929 */ 930 static int 931 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 932 { 933 const struct inet_connection_sock *icsk = inet_csk(sk); 934 struct tcp_sock *tp = tcp_sk(sk); 935 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked; 936 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2); 937 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 938 int reord = tp->packets_out; 939 int prior_fackets; 940 u32 lost_retrans = 0; 941 int flag = 0; 942 int dup_sack = 0; 943 int i; 944 945 if (!tp->sacked_out) 946 tp->fackets_out = 0; 947 prior_fackets = tp->fackets_out; 948 949 /* SACK fastpath: 950 * if the only SACK change is the increase of the end_seq of 951 * the first block then only apply that SACK block 952 * and use retrans queue hinting otherwise slowpath */ 953 flag = 1; 954 for (i = 0; i< num_sacks; i++) { 955 __u32 start_seq = ntohl(sp[i].start_seq); 956 __u32 end_seq = ntohl(sp[i].end_seq); 957 958 if (i == 0){ 959 if (tp->recv_sack_cache[i].start_seq != start_seq) 960 flag = 0; 961 } else { 962 if ((tp->recv_sack_cache[i].start_seq != start_seq) || 963 (tp->recv_sack_cache[i].end_seq != end_seq)) 964 flag = 0; 965 } 966 tp->recv_sack_cache[i].start_seq = start_seq; 967 tp->recv_sack_cache[i].end_seq = end_seq; 968 969 /* Check for D-SACK. */ 970 if (i == 0) { 971 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq; 972 973 if (before(start_seq, ack)) { 974 dup_sack = 1; 975 tp->rx_opt.sack_ok |= 4; 976 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 977 } else if (num_sacks > 1 && 978 !after(end_seq, ntohl(sp[1].end_seq)) && 979 !before(start_seq, ntohl(sp[1].start_seq))) { 980 dup_sack = 1; 981 tp->rx_opt.sack_ok |= 4; 982 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 983 } 984 985 /* D-SACK for already forgotten data... 986 * Do dumb counting. */ 987 if (dup_sack && 988 !after(end_seq, prior_snd_una) && 989 after(end_seq, tp->undo_marker)) 990 tp->undo_retrans--; 991 992 /* Eliminate too old ACKs, but take into 993 * account more or less fresh ones, they can 994 * contain valid SACK info. 995 */ 996 if (before(ack, prior_snd_una - tp->max_window)) 997 return 0; 998 } 999 } 1000 1001 if (flag) 1002 num_sacks = 1; 1003 else { 1004 int j; 1005 tp->fastpath_skb_hint = NULL; 1006 1007 /* order SACK blocks to allow in order walk of the retrans queue */ 1008 for (i = num_sacks-1; i > 0; i--) { 1009 for (j = 0; j < i; j++){ 1010 if (after(ntohl(sp[j].start_seq), 1011 ntohl(sp[j+1].start_seq))){ 1012 sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq); 1013 sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq); 1014 sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq); 1015 sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq); 1016 } 1017 1018 } 1019 } 1020 } 1021 1022 /* clear flag as used for different purpose in following code */ 1023 flag = 0; 1024 1025 for (i=0; i<num_sacks; i++, sp++) { 1026 struct sk_buff *skb; 1027 __u32 start_seq = ntohl(sp->start_seq); 1028 __u32 end_seq = ntohl(sp->end_seq); 1029 int fack_count; 1030 1031 /* Use SACK fastpath hint if valid */ 1032 if (tp->fastpath_skb_hint) { 1033 skb = tp->fastpath_skb_hint; 1034 fack_count = tp->fastpath_cnt_hint; 1035 } else { 1036 skb = sk->sk_write_queue.next; 1037 fack_count = 0; 1038 } 1039 1040 /* Event "B" in the comment above. */ 1041 if (after(end_seq, tp->high_seq)) 1042 flag |= FLAG_DATA_LOST; 1043 1044 sk_stream_for_retrans_queue_from(skb, sk) { 1045 int in_sack, pcount; 1046 u8 sacked; 1047 1048 tp->fastpath_skb_hint = skb; 1049 tp->fastpath_cnt_hint = fack_count; 1050 1051 /* The retransmission queue is always in order, so 1052 * we can short-circuit the walk early. 1053 */ 1054 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1055 break; 1056 1057 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1058 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1059 1060 pcount = tcp_skb_pcount(skb); 1061 1062 if (pcount > 1 && !in_sack && 1063 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1064 unsigned int pkt_len; 1065 1066 in_sack = !after(start_seq, 1067 TCP_SKB_CB(skb)->seq); 1068 1069 if (!in_sack) 1070 pkt_len = (start_seq - 1071 TCP_SKB_CB(skb)->seq); 1072 else 1073 pkt_len = (end_seq - 1074 TCP_SKB_CB(skb)->seq); 1075 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size)) 1076 break; 1077 pcount = tcp_skb_pcount(skb); 1078 } 1079 1080 fack_count += pcount; 1081 1082 sacked = TCP_SKB_CB(skb)->sacked; 1083 1084 /* Account D-SACK for retransmitted packet. */ 1085 if ((dup_sack && in_sack) && 1086 (sacked & TCPCB_RETRANS) && 1087 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1088 tp->undo_retrans--; 1089 1090 /* The frame is ACKed. */ 1091 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1092 if (sacked&TCPCB_RETRANS) { 1093 if ((dup_sack && in_sack) && 1094 (sacked&TCPCB_SACKED_ACKED)) 1095 reord = min(fack_count, reord); 1096 } else { 1097 /* If it was in a hole, we detected reordering. */ 1098 if (fack_count < prior_fackets && 1099 !(sacked&TCPCB_SACKED_ACKED)) 1100 reord = min(fack_count, reord); 1101 } 1102 1103 /* Nothing to do; acked frame is about to be dropped. */ 1104 continue; 1105 } 1106 1107 if ((sacked&TCPCB_SACKED_RETRANS) && 1108 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1109 (!lost_retrans || after(end_seq, lost_retrans))) 1110 lost_retrans = end_seq; 1111 1112 if (!in_sack) 1113 continue; 1114 1115 if (!(sacked&TCPCB_SACKED_ACKED)) { 1116 if (sacked & TCPCB_SACKED_RETRANS) { 1117 /* If the segment is not tagged as lost, 1118 * we do not clear RETRANS, believing 1119 * that retransmission is still in flight. 1120 */ 1121 if (sacked & TCPCB_LOST) { 1122 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1123 tp->lost_out -= tcp_skb_pcount(skb); 1124 tp->retrans_out -= tcp_skb_pcount(skb); 1125 1126 /* clear lost hint */ 1127 tp->retransmit_skb_hint = NULL; 1128 } 1129 } else { 1130 /* New sack for not retransmitted frame, 1131 * which was in hole. It is reordering. 1132 */ 1133 if (!(sacked & TCPCB_RETRANS) && 1134 fack_count < prior_fackets) 1135 reord = min(fack_count, reord); 1136 1137 if (sacked & TCPCB_LOST) { 1138 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1139 tp->lost_out -= tcp_skb_pcount(skb); 1140 1141 /* clear lost hint */ 1142 tp->retransmit_skb_hint = NULL; 1143 } 1144 } 1145 1146 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1147 flag |= FLAG_DATA_SACKED; 1148 tp->sacked_out += tcp_skb_pcount(skb); 1149 1150 if (fack_count > tp->fackets_out) 1151 tp->fackets_out = fack_count; 1152 } else { 1153 if (dup_sack && (sacked&TCPCB_RETRANS)) 1154 reord = min(fack_count, reord); 1155 } 1156 1157 /* D-SACK. We can detect redundant retransmission 1158 * in S|R and plain R frames and clear it. 1159 * undo_retrans is decreased above, L|R frames 1160 * are accounted above as well. 1161 */ 1162 if (dup_sack && 1163 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1164 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1165 tp->retrans_out -= tcp_skb_pcount(skb); 1166 tp->retransmit_skb_hint = NULL; 1167 } 1168 } 1169 } 1170 1171 /* Check for lost retransmit. This superb idea is 1172 * borrowed from "ratehalving". Event "C". 1173 * Later note: FACK people cheated me again 8), 1174 * we have to account for reordering! Ugly, 1175 * but should help. 1176 */ 1177 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) { 1178 struct sk_buff *skb; 1179 1180 sk_stream_for_retrans_queue(skb, sk) { 1181 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1182 break; 1183 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1184 continue; 1185 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1186 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1187 (IsFack(tp) || 1188 !before(lost_retrans, 1189 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1190 tp->mss_cache))) { 1191 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1192 tp->retrans_out -= tcp_skb_pcount(skb); 1193 1194 /* clear lost hint */ 1195 tp->retransmit_skb_hint = NULL; 1196 1197 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1198 tp->lost_out += tcp_skb_pcount(skb); 1199 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1200 flag |= FLAG_DATA_SACKED; 1201 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1202 } 1203 } 1204 } 1205 } 1206 1207 tp->left_out = tp->sacked_out + tp->lost_out; 1208 1209 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss) 1210 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0); 1211 1212 #if FASTRETRANS_DEBUG > 0 1213 BUG_TRAP((int)tp->sacked_out >= 0); 1214 BUG_TRAP((int)tp->lost_out >= 0); 1215 BUG_TRAP((int)tp->retrans_out >= 0); 1216 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1217 #endif 1218 return flag; 1219 } 1220 1221 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new 1222 * segments to see from the next ACKs whether any data was really missing. 1223 * If the RTO was spurious, new ACKs should arrive. 1224 */ 1225 void tcp_enter_frto(struct sock *sk) 1226 { 1227 const struct inet_connection_sock *icsk = inet_csk(sk); 1228 struct tcp_sock *tp = tcp_sk(sk); 1229 struct sk_buff *skb; 1230 1231 tp->frto_counter = 1; 1232 1233 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1234 tp->snd_una == tp->high_seq || 1235 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1236 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1237 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1238 tcp_ca_event(sk, CA_EVENT_FRTO); 1239 } 1240 1241 /* Have to clear retransmission markers here to keep the bookkeeping 1242 * in shape, even though we are not yet in Loss state. 1243 * If something was really lost, it is eventually caught up 1244 * in tcp_enter_frto_loss. 1245 */ 1246 tp->retrans_out = 0; 1247 tp->undo_marker = tp->snd_una; 1248 tp->undo_retrans = 0; 1249 1250 sk_stream_for_retrans_queue(skb, sk) { 1251 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS; 1252 } 1253 tcp_sync_left_out(tp); 1254 1255 tcp_set_ca_state(sk, TCP_CA_Open); 1256 tp->frto_highmark = tp->snd_nxt; 1257 } 1258 1259 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1260 * which indicates that we should follow the traditional RTO recovery, 1261 * i.e. mark everything lost and do go-back-N retransmission. 1262 */ 1263 static void tcp_enter_frto_loss(struct sock *sk) 1264 { 1265 struct tcp_sock *tp = tcp_sk(sk); 1266 struct sk_buff *skb; 1267 int cnt = 0; 1268 1269 tp->sacked_out = 0; 1270 tp->lost_out = 0; 1271 tp->fackets_out = 0; 1272 1273 sk_stream_for_retrans_queue(skb, sk) { 1274 cnt += tcp_skb_pcount(skb); 1275 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1276 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1277 1278 /* Do not mark those segments lost that were 1279 * forward transmitted after RTO 1280 */ 1281 if (!after(TCP_SKB_CB(skb)->end_seq, 1282 tp->frto_highmark)) { 1283 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1284 tp->lost_out += tcp_skb_pcount(skb); 1285 } 1286 } else { 1287 tp->sacked_out += tcp_skb_pcount(skb); 1288 tp->fackets_out = cnt; 1289 } 1290 } 1291 tcp_sync_left_out(tp); 1292 1293 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1; 1294 tp->snd_cwnd_cnt = 0; 1295 tp->snd_cwnd_stamp = tcp_time_stamp; 1296 tp->undo_marker = 0; 1297 tp->frto_counter = 0; 1298 1299 tp->reordering = min_t(unsigned int, tp->reordering, 1300 sysctl_tcp_reordering); 1301 tcp_set_ca_state(sk, TCP_CA_Loss); 1302 tp->high_seq = tp->frto_highmark; 1303 TCP_ECN_queue_cwr(tp); 1304 1305 clear_all_retrans_hints(tp); 1306 } 1307 1308 void tcp_clear_retrans(struct tcp_sock *tp) 1309 { 1310 tp->left_out = 0; 1311 tp->retrans_out = 0; 1312 1313 tp->fackets_out = 0; 1314 tp->sacked_out = 0; 1315 tp->lost_out = 0; 1316 1317 tp->undo_marker = 0; 1318 tp->undo_retrans = 0; 1319 } 1320 1321 /* Enter Loss state. If "how" is not zero, forget all SACK information 1322 * and reset tags completely, otherwise preserve SACKs. If receiver 1323 * dropped its ofo queue, we will know this due to reneging detection. 1324 */ 1325 void tcp_enter_loss(struct sock *sk, int how) 1326 { 1327 const struct inet_connection_sock *icsk = inet_csk(sk); 1328 struct tcp_sock *tp = tcp_sk(sk); 1329 struct sk_buff *skb; 1330 int cnt = 0; 1331 1332 /* Reduce ssthresh if it has not yet been made inside this window. */ 1333 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1334 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1335 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1336 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1337 tcp_ca_event(sk, CA_EVENT_LOSS); 1338 } 1339 tp->snd_cwnd = 1; 1340 tp->snd_cwnd_cnt = 0; 1341 tp->snd_cwnd_stamp = tcp_time_stamp; 1342 1343 tp->bytes_acked = 0; 1344 tcp_clear_retrans(tp); 1345 1346 /* Push undo marker, if it was plain RTO and nothing 1347 * was retransmitted. */ 1348 if (!how) 1349 tp->undo_marker = tp->snd_una; 1350 1351 sk_stream_for_retrans_queue(skb, sk) { 1352 cnt += tcp_skb_pcount(skb); 1353 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1354 tp->undo_marker = 0; 1355 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1356 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1358 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1359 tp->lost_out += tcp_skb_pcount(skb); 1360 } else { 1361 tp->sacked_out += tcp_skb_pcount(skb); 1362 tp->fackets_out = cnt; 1363 } 1364 } 1365 tcp_sync_left_out(tp); 1366 1367 tp->reordering = min_t(unsigned int, tp->reordering, 1368 sysctl_tcp_reordering); 1369 tcp_set_ca_state(sk, TCP_CA_Loss); 1370 tp->high_seq = tp->snd_nxt; 1371 TCP_ECN_queue_cwr(tp); 1372 1373 clear_all_retrans_hints(tp); 1374 } 1375 1376 static int tcp_check_sack_reneging(struct sock *sk) 1377 { 1378 struct sk_buff *skb; 1379 1380 /* If ACK arrived pointing to a remembered SACK, 1381 * it means that our remembered SACKs do not reflect 1382 * real state of receiver i.e. 1383 * receiver _host_ is heavily congested (or buggy). 1384 * Do processing similar to RTO timeout. 1385 */ 1386 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL && 1387 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1388 struct inet_connection_sock *icsk = inet_csk(sk); 1389 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1390 1391 tcp_enter_loss(sk, 1); 1392 icsk->icsk_retransmits++; 1393 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue)); 1394 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1395 icsk->icsk_rto, TCP_RTO_MAX); 1396 return 1; 1397 } 1398 return 0; 1399 } 1400 1401 static inline int tcp_fackets_out(struct tcp_sock *tp) 1402 { 1403 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1404 } 1405 1406 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1407 { 1408 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1409 } 1410 1411 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp) 1412 { 1413 return tp->packets_out && 1414 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue)); 1415 } 1416 1417 /* Linux NewReno/SACK/FACK/ECN state machine. 1418 * -------------------------------------- 1419 * 1420 * "Open" Normal state, no dubious events, fast path. 1421 * "Disorder" In all the respects it is "Open", 1422 * but requires a bit more attention. It is entered when 1423 * we see some SACKs or dupacks. It is split of "Open" 1424 * mainly to move some processing from fast path to slow one. 1425 * "CWR" CWND was reduced due to some Congestion Notification event. 1426 * It can be ECN, ICMP source quench, local device congestion. 1427 * "Recovery" CWND was reduced, we are fast-retransmitting. 1428 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1429 * 1430 * tcp_fastretrans_alert() is entered: 1431 * - each incoming ACK, if state is not "Open" 1432 * - when arrived ACK is unusual, namely: 1433 * * SACK 1434 * * Duplicate ACK. 1435 * * ECN ECE. 1436 * 1437 * Counting packets in flight is pretty simple. 1438 * 1439 * in_flight = packets_out - left_out + retrans_out 1440 * 1441 * packets_out is SND.NXT-SND.UNA counted in packets. 1442 * 1443 * retrans_out is number of retransmitted segments. 1444 * 1445 * left_out is number of segments left network, but not ACKed yet. 1446 * 1447 * left_out = sacked_out + lost_out 1448 * 1449 * sacked_out: Packets, which arrived to receiver out of order 1450 * and hence not ACKed. With SACKs this number is simply 1451 * amount of SACKed data. Even without SACKs 1452 * it is easy to give pretty reliable estimate of this number, 1453 * counting duplicate ACKs. 1454 * 1455 * lost_out: Packets lost by network. TCP has no explicit 1456 * "loss notification" feedback from network (for now). 1457 * It means that this number can be only _guessed_. 1458 * Actually, it is the heuristics to predict lossage that 1459 * distinguishes different algorithms. 1460 * 1461 * F.e. after RTO, when all the queue is considered as lost, 1462 * lost_out = packets_out and in_flight = retrans_out. 1463 * 1464 * Essentially, we have now two algorithms counting 1465 * lost packets. 1466 * 1467 * FACK: It is the simplest heuristics. As soon as we decided 1468 * that something is lost, we decide that _all_ not SACKed 1469 * packets until the most forward SACK are lost. I.e. 1470 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1471 * It is absolutely correct estimate, if network does not reorder 1472 * packets. And it loses any connection to reality when reordering 1473 * takes place. We use FACK by default until reordering 1474 * is suspected on the path to this destination. 1475 * 1476 * NewReno: when Recovery is entered, we assume that one segment 1477 * is lost (classic Reno). While we are in Recovery and 1478 * a partial ACK arrives, we assume that one more packet 1479 * is lost (NewReno). This heuristics are the same in NewReno 1480 * and SACK. 1481 * 1482 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1483 * deflation etc. CWND is real congestion window, never inflated, changes 1484 * only according to classic VJ rules. 1485 * 1486 * Really tricky (and requiring careful tuning) part of algorithm 1487 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1488 * The first determines the moment _when_ we should reduce CWND and, 1489 * hence, slow down forward transmission. In fact, it determines the moment 1490 * when we decide that hole is caused by loss, rather than by a reorder. 1491 * 1492 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1493 * holes, caused by lost packets. 1494 * 1495 * And the most logically complicated part of algorithm is undo 1496 * heuristics. We detect false retransmits due to both too early 1497 * fast retransmit (reordering) and underestimated RTO, analyzing 1498 * timestamps and D-SACKs. When we detect that some segments were 1499 * retransmitted by mistake and CWND reduction was wrong, we undo 1500 * window reduction and abort recovery phase. This logic is hidden 1501 * inside several functions named tcp_try_undo_<something>. 1502 */ 1503 1504 /* This function decides, when we should leave Disordered state 1505 * and enter Recovery phase, reducing congestion window. 1506 * 1507 * Main question: may we further continue forward transmission 1508 * with the same cwnd? 1509 */ 1510 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp) 1511 { 1512 __u32 packets_out; 1513 1514 /* Trick#1: The loss is proven. */ 1515 if (tp->lost_out) 1516 return 1; 1517 1518 /* Not-A-Trick#2 : Classic rule... */ 1519 if (tcp_fackets_out(tp) > tp->reordering) 1520 return 1; 1521 1522 /* Trick#3 : when we use RFC2988 timer restart, fast 1523 * retransmit can be triggered by timeout of queue head. 1524 */ 1525 if (tcp_head_timedout(sk, tp)) 1526 return 1; 1527 1528 /* Trick#4: It is still not OK... But will it be useful to delay 1529 * recovery more? 1530 */ 1531 packets_out = tp->packets_out; 1532 if (packets_out <= tp->reordering && 1533 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1534 !tcp_may_send_now(sk, tp)) { 1535 /* We have nothing to send. This connection is limited 1536 * either by receiver window or by application. 1537 */ 1538 return 1; 1539 } 1540 1541 return 0; 1542 } 1543 1544 /* If we receive more dupacks than we expected counting segments 1545 * in assumption of absent reordering, interpret this as reordering. 1546 * The only another reason could be bug in receiver TCP. 1547 */ 1548 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1549 { 1550 struct tcp_sock *tp = tcp_sk(sk); 1551 u32 holes; 1552 1553 holes = max(tp->lost_out, 1U); 1554 holes = min(holes, tp->packets_out); 1555 1556 if ((tp->sacked_out + holes) > tp->packets_out) { 1557 tp->sacked_out = tp->packets_out - holes; 1558 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1559 } 1560 } 1561 1562 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1563 1564 static void tcp_add_reno_sack(struct sock *sk) 1565 { 1566 struct tcp_sock *tp = tcp_sk(sk); 1567 tp->sacked_out++; 1568 tcp_check_reno_reordering(sk, 0); 1569 tcp_sync_left_out(tp); 1570 } 1571 1572 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1573 1574 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked) 1575 { 1576 if (acked > 0) { 1577 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1578 if (acked-1 >= tp->sacked_out) 1579 tp->sacked_out = 0; 1580 else 1581 tp->sacked_out -= acked-1; 1582 } 1583 tcp_check_reno_reordering(sk, acked); 1584 tcp_sync_left_out(tp); 1585 } 1586 1587 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1588 { 1589 tp->sacked_out = 0; 1590 tp->left_out = tp->lost_out; 1591 } 1592 1593 /* Mark head of queue up as lost. */ 1594 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp, 1595 int packets, u32 high_seq) 1596 { 1597 struct sk_buff *skb; 1598 int cnt; 1599 1600 BUG_TRAP(packets <= tp->packets_out); 1601 if (tp->lost_skb_hint) { 1602 skb = tp->lost_skb_hint; 1603 cnt = tp->lost_cnt_hint; 1604 } else { 1605 skb = sk->sk_write_queue.next; 1606 cnt = 0; 1607 } 1608 1609 sk_stream_for_retrans_queue_from(skb, sk) { 1610 /* TODO: do this better */ 1611 /* this is not the most efficient way to do this... */ 1612 tp->lost_skb_hint = skb; 1613 tp->lost_cnt_hint = cnt; 1614 cnt += tcp_skb_pcount(skb); 1615 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1616 break; 1617 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1618 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1619 tp->lost_out += tcp_skb_pcount(skb); 1620 1621 /* clear xmit_retransmit_queue hints 1622 * if this is beyond hint */ 1623 if(tp->retransmit_skb_hint != NULL && 1624 before(TCP_SKB_CB(skb)->seq, 1625 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) { 1626 1627 tp->retransmit_skb_hint = NULL; 1628 } 1629 } 1630 } 1631 tcp_sync_left_out(tp); 1632 } 1633 1634 /* Account newly detected lost packet(s) */ 1635 1636 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp) 1637 { 1638 if (IsFack(tp)) { 1639 int lost = tp->fackets_out - tp->reordering; 1640 if (lost <= 0) 1641 lost = 1; 1642 tcp_mark_head_lost(sk, tp, lost, tp->high_seq); 1643 } else { 1644 tcp_mark_head_lost(sk, tp, 1, tp->high_seq); 1645 } 1646 1647 /* New heuristics: it is possible only after we switched 1648 * to restart timer each time when something is ACKed. 1649 * Hence, we can detect timed out packets during fast 1650 * retransmit without falling to slow start. 1651 */ 1652 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) { 1653 struct sk_buff *skb; 1654 1655 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 1656 : sk->sk_write_queue.next; 1657 1658 sk_stream_for_retrans_queue_from(skb, sk) { 1659 if (!tcp_skb_timedout(sk, skb)) 1660 break; 1661 1662 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1663 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1664 tp->lost_out += tcp_skb_pcount(skb); 1665 1666 /* clear xmit_retrans hint */ 1667 if (tp->retransmit_skb_hint && 1668 before(TCP_SKB_CB(skb)->seq, 1669 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1670 1671 tp->retransmit_skb_hint = NULL; 1672 } 1673 } 1674 1675 tp->scoreboard_skb_hint = skb; 1676 1677 tcp_sync_left_out(tp); 1678 } 1679 } 1680 1681 /* CWND moderation, preventing bursts due to too big ACKs 1682 * in dubious situations. 1683 */ 1684 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1685 { 1686 tp->snd_cwnd = min(tp->snd_cwnd, 1687 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1688 tp->snd_cwnd_stamp = tcp_time_stamp; 1689 } 1690 1691 /* Lower bound on congestion window is slow start threshold 1692 * unless congestion avoidance choice decides to overide it. 1693 */ 1694 static inline u32 tcp_cwnd_min(const struct sock *sk) 1695 { 1696 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1697 1698 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 1699 } 1700 1701 /* Decrease cwnd each second ack. */ 1702 static void tcp_cwnd_down(struct sock *sk) 1703 { 1704 struct tcp_sock *tp = tcp_sk(sk); 1705 int decr = tp->snd_cwnd_cnt + 1; 1706 1707 tp->snd_cwnd_cnt = decr&1; 1708 decr >>= 1; 1709 1710 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 1711 tp->snd_cwnd -= decr; 1712 1713 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1714 tp->snd_cwnd_stamp = tcp_time_stamp; 1715 } 1716 1717 /* Nothing was retransmitted or returned timestamp is less 1718 * than timestamp of the first retransmission. 1719 */ 1720 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1721 { 1722 return !tp->retrans_stamp || 1723 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1724 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1725 } 1726 1727 /* Undo procedures. */ 1728 1729 #if FASTRETRANS_DEBUG > 1 1730 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg) 1731 { 1732 struct inet_sock *inet = inet_sk(sk); 1733 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1734 msg, 1735 NIPQUAD(inet->daddr), ntohs(inet->dport), 1736 tp->snd_cwnd, tp->left_out, 1737 tp->snd_ssthresh, tp->prior_ssthresh, 1738 tp->packets_out); 1739 } 1740 #else 1741 #define DBGUNDO(x...) do { } while (0) 1742 #endif 1743 1744 static void tcp_undo_cwr(struct sock *sk, const int undo) 1745 { 1746 struct tcp_sock *tp = tcp_sk(sk); 1747 1748 if (tp->prior_ssthresh) { 1749 const struct inet_connection_sock *icsk = inet_csk(sk); 1750 1751 if (icsk->icsk_ca_ops->undo_cwnd) 1752 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 1753 else 1754 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1755 1756 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1757 tp->snd_ssthresh = tp->prior_ssthresh; 1758 TCP_ECN_withdraw_cwr(tp); 1759 } 1760 } else { 1761 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1762 } 1763 tcp_moderate_cwnd(tp); 1764 tp->snd_cwnd_stamp = tcp_time_stamp; 1765 1766 /* There is something screwy going on with the retrans hints after 1767 an undo */ 1768 clear_all_retrans_hints(tp); 1769 } 1770 1771 static inline int tcp_may_undo(struct tcp_sock *tp) 1772 { 1773 return tp->undo_marker && 1774 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1775 } 1776 1777 /* People celebrate: "We love our President!" */ 1778 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp) 1779 { 1780 if (tcp_may_undo(tp)) { 1781 /* Happy end! We did not retransmit anything 1782 * or our original transmission succeeded. 1783 */ 1784 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1785 tcp_undo_cwr(sk, 1); 1786 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 1787 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1788 else 1789 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1790 tp->undo_marker = 0; 1791 } 1792 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1793 /* Hold old state until something *above* high_seq 1794 * is ACKed. For Reno it is MUST to prevent false 1795 * fast retransmits (RFC2582). SACK TCP is safe. */ 1796 tcp_moderate_cwnd(tp); 1797 return 1; 1798 } 1799 tcp_set_ca_state(sk, TCP_CA_Open); 1800 return 0; 1801 } 1802 1803 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1804 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp) 1805 { 1806 if (tp->undo_marker && !tp->undo_retrans) { 1807 DBGUNDO(sk, tp, "D-SACK"); 1808 tcp_undo_cwr(sk, 1); 1809 tp->undo_marker = 0; 1810 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1811 } 1812 } 1813 1814 /* Undo during fast recovery after partial ACK. */ 1815 1816 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp, 1817 int acked) 1818 { 1819 /* Partial ACK arrived. Force Hoe's retransmit. */ 1820 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1821 1822 if (tcp_may_undo(tp)) { 1823 /* Plain luck! Hole if filled with delayed 1824 * packet, rather than with a retransmit. 1825 */ 1826 if (tp->retrans_out == 0) 1827 tp->retrans_stamp = 0; 1828 1829 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 1830 1831 DBGUNDO(sk, tp, "Hoe"); 1832 tcp_undo_cwr(sk, 0); 1833 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1834 1835 /* So... Do not make Hoe's retransmit yet. 1836 * If the first packet was delayed, the rest 1837 * ones are most probably delayed as well. 1838 */ 1839 failed = 0; 1840 } 1841 return failed; 1842 } 1843 1844 /* Undo during loss recovery after partial ACK. */ 1845 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp) 1846 { 1847 if (tcp_may_undo(tp)) { 1848 struct sk_buff *skb; 1849 sk_stream_for_retrans_queue(skb, sk) { 1850 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1851 } 1852 1853 clear_all_retrans_hints(tp); 1854 1855 DBGUNDO(sk, tp, "partial loss"); 1856 tp->lost_out = 0; 1857 tp->left_out = tp->sacked_out; 1858 tcp_undo_cwr(sk, 1); 1859 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1860 inet_csk(sk)->icsk_retransmits = 0; 1861 tp->undo_marker = 0; 1862 if (!IsReno(tp)) 1863 tcp_set_ca_state(sk, TCP_CA_Open); 1864 return 1; 1865 } 1866 return 0; 1867 } 1868 1869 static inline void tcp_complete_cwr(struct sock *sk) 1870 { 1871 struct tcp_sock *tp = tcp_sk(sk); 1872 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 1873 tp->snd_cwnd_stamp = tcp_time_stamp; 1874 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 1875 } 1876 1877 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag) 1878 { 1879 tp->left_out = tp->sacked_out; 1880 1881 if (tp->retrans_out == 0) 1882 tp->retrans_stamp = 0; 1883 1884 if (flag&FLAG_ECE) 1885 tcp_enter_cwr(sk); 1886 1887 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 1888 int state = TCP_CA_Open; 1889 1890 if (tp->left_out || tp->retrans_out || tp->undo_marker) 1891 state = TCP_CA_Disorder; 1892 1893 if (inet_csk(sk)->icsk_ca_state != state) { 1894 tcp_set_ca_state(sk, state); 1895 tp->high_seq = tp->snd_nxt; 1896 } 1897 tcp_moderate_cwnd(tp); 1898 } else { 1899 tcp_cwnd_down(sk); 1900 } 1901 } 1902 1903 static void tcp_mtup_probe_failed(struct sock *sk) 1904 { 1905 struct inet_connection_sock *icsk = inet_csk(sk); 1906 1907 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 1908 icsk->icsk_mtup.probe_size = 0; 1909 } 1910 1911 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 1912 { 1913 struct tcp_sock *tp = tcp_sk(sk); 1914 struct inet_connection_sock *icsk = inet_csk(sk); 1915 1916 /* FIXME: breaks with very large cwnd */ 1917 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1918 tp->snd_cwnd = tp->snd_cwnd * 1919 tcp_mss_to_mtu(sk, tp->mss_cache) / 1920 icsk->icsk_mtup.probe_size; 1921 tp->snd_cwnd_cnt = 0; 1922 tp->snd_cwnd_stamp = tcp_time_stamp; 1923 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 1924 1925 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 1926 icsk->icsk_mtup.probe_size = 0; 1927 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 1928 } 1929 1930 1931 /* Process an event, which can update packets-in-flight not trivially. 1932 * Main goal of this function is to calculate new estimate for left_out, 1933 * taking into account both packets sitting in receiver's buffer and 1934 * packets lost by network. 1935 * 1936 * Besides that it does CWND reduction, when packet loss is detected 1937 * and changes state of machine. 1938 * 1939 * It does _not_ decide what to send, it is made in function 1940 * tcp_xmit_retransmit_queue(). 1941 */ 1942 static void 1943 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 1944 int prior_packets, int flag) 1945 { 1946 struct inet_connection_sock *icsk = inet_csk(sk); 1947 struct tcp_sock *tp = tcp_sk(sk); 1948 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 1949 1950 /* Some technical things: 1951 * 1. Reno does not count dupacks (sacked_out) automatically. */ 1952 if (!tp->packets_out) 1953 tp->sacked_out = 0; 1954 /* 2. SACK counts snd_fack in packets inaccurately. */ 1955 if (tp->sacked_out == 0) 1956 tp->fackets_out = 0; 1957 1958 /* Now state machine starts. 1959 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 1960 if (flag&FLAG_ECE) 1961 tp->prior_ssthresh = 0; 1962 1963 /* B. In all the states check for reneging SACKs. */ 1964 if (tp->sacked_out && tcp_check_sack_reneging(sk)) 1965 return; 1966 1967 /* C. Process data loss notification, provided it is valid. */ 1968 if ((flag&FLAG_DATA_LOST) && 1969 before(tp->snd_una, tp->high_seq) && 1970 icsk->icsk_ca_state != TCP_CA_Open && 1971 tp->fackets_out > tp->reordering) { 1972 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq); 1973 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 1974 } 1975 1976 /* D. Synchronize left_out to current state. */ 1977 tcp_sync_left_out(tp); 1978 1979 /* E. Check state exit conditions. State can be terminated 1980 * when high_seq is ACKed. */ 1981 if (icsk->icsk_ca_state == TCP_CA_Open) { 1982 if (!sysctl_tcp_frto) 1983 BUG_TRAP(tp->retrans_out == 0); 1984 tp->retrans_stamp = 0; 1985 } else if (!before(tp->snd_una, tp->high_seq)) { 1986 switch (icsk->icsk_ca_state) { 1987 case TCP_CA_Loss: 1988 icsk->icsk_retransmits = 0; 1989 if (tcp_try_undo_recovery(sk, tp)) 1990 return; 1991 break; 1992 1993 case TCP_CA_CWR: 1994 /* CWR is to be held something *above* high_seq 1995 * is ACKed for CWR bit to reach receiver. */ 1996 if (tp->snd_una != tp->high_seq) { 1997 tcp_complete_cwr(sk); 1998 tcp_set_ca_state(sk, TCP_CA_Open); 1999 } 2000 break; 2001 2002 case TCP_CA_Disorder: 2003 tcp_try_undo_dsack(sk, tp); 2004 if (!tp->undo_marker || 2005 /* For SACK case do not Open to allow to undo 2006 * catching for all duplicate ACKs. */ 2007 IsReno(tp) || tp->snd_una != tp->high_seq) { 2008 tp->undo_marker = 0; 2009 tcp_set_ca_state(sk, TCP_CA_Open); 2010 } 2011 break; 2012 2013 case TCP_CA_Recovery: 2014 if (IsReno(tp)) 2015 tcp_reset_reno_sack(tp); 2016 if (tcp_try_undo_recovery(sk, tp)) 2017 return; 2018 tcp_complete_cwr(sk); 2019 break; 2020 } 2021 } 2022 2023 /* F. Process state. */ 2024 switch (icsk->icsk_ca_state) { 2025 case TCP_CA_Recovery: 2026 if (prior_snd_una == tp->snd_una) { 2027 if (IsReno(tp) && is_dupack) 2028 tcp_add_reno_sack(sk); 2029 } else { 2030 int acked = prior_packets - tp->packets_out; 2031 if (IsReno(tp)) 2032 tcp_remove_reno_sacks(sk, tp, acked); 2033 is_dupack = tcp_try_undo_partial(sk, tp, acked); 2034 } 2035 break; 2036 case TCP_CA_Loss: 2037 if (flag&FLAG_DATA_ACKED) 2038 icsk->icsk_retransmits = 0; 2039 if (!tcp_try_undo_loss(sk, tp)) { 2040 tcp_moderate_cwnd(tp); 2041 tcp_xmit_retransmit_queue(sk); 2042 return; 2043 } 2044 if (icsk->icsk_ca_state != TCP_CA_Open) 2045 return; 2046 /* Loss is undone; fall through to processing in Open state. */ 2047 default: 2048 if (IsReno(tp)) { 2049 if (tp->snd_una != prior_snd_una) 2050 tcp_reset_reno_sack(tp); 2051 if (is_dupack) 2052 tcp_add_reno_sack(sk); 2053 } 2054 2055 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2056 tcp_try_undo_dsack(sk, tp); 2057 2058 if (!tcp_time_to_recover(sk, tp)) { 2059 tcp_try_to_open(sk, tp, flag); 2060 return; 2061 } 2062 2063 /* MTU probe failure: don't reduce cwnd */ 2064 if (icsk->icsk_ca_state < TCP_CA_CWR && 2065 icsk->icsk_mtup.probe_size && 2066 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2067 tcp_mtup_probe_failed(sk); 2068 /* Restores the reduction we did in tcp_mtup_probe() */ 2069 tp->snd_cwnd++; 2070 tcp_simple_retransmit(sk); 2071 return; 2072 } 2073 2074 /* Otherwise enter Recovery state */ 2075 2076 if (IsReno(tp)) 2077 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2078 else 2079 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2080 2081 tp->high_seq = tp->snd_nxt; 2082 tp->prior_ssthresh = 0; 2083 tp->undo_marker = tp->snd_una; 2084 tp->undo_retrans = tp->retrans_out; 2085 2086 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2087 if (!(flag&FLAG_ECE)) 2088 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2089 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2090 TCP_ECN_queue_cwr(tp); 2091 } 2092 2093 tp->bytes_acked = 0; 2094 tp->snd_cwnd_cnt = 0; 2095 tcp_set_ca_state(sk, TCP_CA_Recovery); 2096 } 2097 2098 if (is_dupack || tcp_head_timedout(sk, tp)) 2099 tcp_update_scoreboard(sk, tp); 2100 tcp_cwnd_down(sk); 2101 tcp_xmit_retransmit_queue(sk); 2102 } 2103 2104 /* Read draft-ietf-tcplw-high-performance before mucking 2105 * with this code. (Supersedes RFC1323) 2106 */ 2107 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2108 { 2109 /* RTTM Rule: A TSecr value received in a segment is used to 2110 * update the averaged RTT measurement only if the segment 2111 * acknowledges some new data, i.e., only if it advances the 2112 * left edge of the send window. 2113 * 2114 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2115 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2116 * 2117 * Changed: reset backoff as soon as we see the first valid sample. 2118 * If we do not, we get strongly overestimated rto. With timestamps 2119 * samples are accepted even from very old segments: f.e., when rtt=1 2120 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2121 * answer arrives rto becomes 120 seconds! If at least one of segments 2122 * in window is lost... Voila. --ANK (010210) 2123 */ 2124 struct tcp_sock *tp = tcp_sk(sk); 2125 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2126 tcp_rtt_estimator(sk, seq_rtt); 2127 tcp_set_rto(sk); 2128 inet_csk(sk)->icsk_backoff = 0; 2129 tcp_bound_rto(sk); 2130 } 2131 2132 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2133 { 2134 /* We don't have a timestamp. Can only use 2135 * packets that are not retransmitted to determine 2136 * rtt estimates. Also, we must not reset the 2137 * backoff for rto until we get a non-retransmitted 2138 * packet. This allows us to deal with a situation 2139 * where the network delay has increased suddenly. 2140 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2141 */ 2142 2143 if (flag & FLAG_RETRANS_DATA_ACKED) 2144 return; 2145 2146 tcp_rtt_estimator(sk, seq_rtt); 2147 tcp_set_rto(sk); 2148 inet_csk(sk)->icsk_backoff = 0; 2149 tcp_bound_rto(sk); 2150 } 2151 2152 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2153 const s32 seq_rtt) 2154 { 2155 const struct tcp_sock *tp = tcp_sk(sk); 2156 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2157 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2158 tcp_ack_saw_tstamp(sk, flag); 2159 else if (seq_rtt >= 0) 2160 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2161 } 2162 2163 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt, 2164 u32 in_flight, int good) 2165 { 2166 const struct inet_connection_sock *icsk = inet_csk(sk); 2167 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good); 2168 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2169 } 2170 2171 /* Restart timer after forward progress on connection. 2172 * RFC2988 recommends to restart timer to now+rto. 2173 */ 2174 2175 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp) 2176 { 2177 if (!tp->packets_out) { 2178 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2179 } else { 2180 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2181 } 2182 } 2183 2184 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 2185 __u32 now, __s32 *seq_rtt) 2186 { 2187 struct tcp_sock *tp = tcp_sk(sk); 2188 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2189 __u32 seq = tp->snd_una; 2190 __u32 packets_acked; 2191 int acked = 0; 2192 2193 /* If we get here, the whole TSO packet has not been 2194 * acked. 2195 */ 2196 BUG_ON(!after(scb->end_seq, seq)); 2197 2198 packets_acked = tcp_skb_pcount(skb); 2199 if (tcp_trim_head(sk, skb, seq - scb->seq)) 2200 return 0; 2201 packets_acked -= tcp_skb_pcount(skb); 2202 2203 if (packets_acked) { 2204 __u8 sacked = scb->sacked; 2205 2206 acked |= FLAG_DATA_ACKED; 2207 if (sacked) { 2208 if (sacked & TCPCB_RETRANS) { 2209 if (sacked & TCPCB_SACKED_RETRANS) 2210 tp->retrans_out -= packets_acked; 2211 acked |= FLAG_RETRANS_DATA_ACKED; 2212 *seq_rtt = -1; 2213 } else if (*seq_rtt < 0) 2214 *seq_rtt = now - scb->when; 2215 if (sacked & TCPCB_SACKED_ACKED) 2216 tp->sacked_out -= packets_acked; 2217 if (sacked & TCPCB_LOST) 2218 tp->lost_out -= packets_acked; 2219 if (sacked & TCPCB_URG) { 2220 if (tp->urg_mode && 2221 !before(seq, tp->snd_up)) 2222 tp->urg_mode = 0; 2223 } 2224 } else if (*seq_rtt < 0) 2225 *seq_rtt = now - scb->when; 2226 2227 if (tp->fackets_out) { 2228 __u32 dval = min(tp->fackets_out, packets_acked); 2229 tp->fackets_out -= dval; 2230 } 2231 tp->packets_out -= packets_acked; 2232 2233 BUG_ON(tcp_skb_pcount(skb) == 0); 2234 BUG_ON(!before(scb->seq, scb->end_seq)); 2235 } 2236 2237 return acked; 2238 } 2239 2240 static u32 tcp_usrtt(const struct sk_buff *skb) 2241 { 2242 struct timeval tv, now; 2243 2244 do_gettimeofday(&now); 2245 skb_get_timestamp(skb, &tv); 2246 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec); 2247 } 2248 2249 /* Remove acknowledged frames from the retransmission queue. */ 2250 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) 2251 { 2252 struct tcp_sock *tp = tcp_sk(sk); 2253 const struct inet_connection_sock *icsk = inet_csk(sk); 2254 struct sk_buff *skb; 2255 __u32 now = tcp_time_stamp; 2256 int acked = 0; 2257 __s32 seq_rtt = -1; 2258 u32 pkts_acked = 0; 2259 void (*rtt_sample)(struct sock *sk, u32 usrtt) 2260 = icsk->icsk_ca_ops->rtt_sample; 2261 2262 while ((skb = skb_peek(&sk->sk_write_queue)) && 2263 skb != sk->sk_send_head) { 2264 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2265 __u8 sacked = scb->sacked; 2266 2267 /* If our packet is before the ack sequence we can 2268 * discard it as it's confirmed to have arrived at 2269 * the other end. 2270 */ 2271 if (after(scb->end_seq, tp->snd_una)) { 2272 if (tcp_skb_pcount(skb) > 1 && 2273 after(tp->snd_una, scb->seq)) 2274 acked |= tcp_tso_acked(sk, skb, 2275 now, &seq_rtt); 2276 break; 2277 } 2278 2279 /* Initial outgoing SYN's get put onto the write_queue 2280 * just like anything else we transmit. It is not 2281 * true data, and if we misinform our callers that 2282 * this ACK acks real data, we will erroneously exit 2283 * connection startup slow start one packet too 2284 * quickly. This is severely frowned upon behavior. 2285 */ 2286 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2287 acked |= FLAG_DATA_ACKED; 2288 ++pkts_acked; 2289 } else { 2290 acked |= FLAG_SYN_ACKED; 2291 tp->retrans_stamp = 0; 2292 } 2293 2294 /* MTU probing checks */ 2295 if (icsk->icsk_mtup.probe_size) { 2296 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) { 2297 tcp_mtup_probe_success(sk, skb); 2298 } 2299 } 2300 2301 if (sacked) { 2302 if (sacked & TCPCB_RETRANS) { 2303 if(sacked & TCPCB_SACKED_RETRANS) 2304 tp->retrans_out -= tcp_skb_pcount(skb); 2305 acked |= FLAG_RETRANS_DATA_ACKED; 2306 seq_rtt = -1; 2307 } else if (seq_rtt < 0) { 2308 seq_rtt = now - scb->when; 2309 if (rtt_sample) 2310 (*rtt_sample)(sk, tcp_usrtt(skb)); 2311 } 2312 if (sacked & TCPCB_SACKED_ACKED) 2313 tp->sacked_out -= tcp_skb_pcount(skb); 2314 if (sacked & TCPCB_LOST) 2315 tp->lost_out -= tcp_skb_pcount(skb); 2316 if (sacked & TCPCB_URG) { 2317 if (tp->urg_mode && 2318 !before(scb->end_seq, tp->snd_up)) 2319 tp->urg_mode = 0; 2320 } 2321 } else if (seq_rtt < 0) { 2322 seq_rtt = now - scb->when; 2323 if (rtt_sample) 2324 (*rtt_sample)(sk, tcp_usrtt(skb)); 2325 } 2326 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2327 tcp_packets_out_dec(tp, skb); 2328 __skb_unlink(skb, &sk->sk_write_queue); 2329 sk_stream_free_skb(sk, skb); 2330 clear_all_retrans_hints(tp); 2331 } 2332 2333 if (acked&FLAG_ACKED) { 2334 tcp_ack_update_rtt(sk, acked, seq_rtt); 2335 tcp_ack_packets_out(sk, tp); 2336 2337 if (icsk->icsk_ca_ops->pkts_acked) 2338 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked); 2339 } 2340 2341 #if FASTRETRANS_DEBUG > 0 2342 BUG_TRAP((int)tp->sacked_out >= 0); 2343 BUG_TRAP((int)tp->lost_out >= 0); 2344 BUG_TRAP((int)tp->retrans_out >= 0); 2345 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2346 const struct inet_connection_sock *icsk = inet_csk(sk); 2347 if (tp->lost_out) { 2348 printk(KERN_DEBUG "Leak l=%u %d\n", 2349 tp->lost_out, icsk->icsk_ca_state); 2350 tp->lost_out = 0; 2351 } 2352 if (tp->sacked_out) { 2353 printk(KERN_DEBUG "Leak s=%u %d\n", 2354 tp->sacked_out, icsk->icsk_ca_state); 2355 tp->sacked_out = 0; 2356 } 2357 if (tp->retrans_out) { 2358 printk(KERN_DEBUG "Leak r=%u %d\n", 2359 tp->retrans_out, icsk->icsk_ca_state); 2360 tp->retrans_out = 0; 2361 } 2362 } 2363 #endif 2364 *seq_rtt_p = seq_rtt; 2365 return acked; 2366 } 2367 2368 static void tcp_ack_probe(struct sock *sk) 2369 { 2370 const struct tcp_sock *tp = tcp_sk(sk); 2371 struct inet_connection_sock *icsk = inet_csk(sk); 2372 2373 /* Was it a usable window open? */ 2374 2375 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq, 2376 tp->snd_una + tp->snd_wnd)) { 2377 icsk->icsk_backoff = 0; 2378 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2379 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2380 * This function is not for random using! 2381 */ 2382 } else { 2383 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2384 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2385 TCP_RTO_MAX); 2386 } 2387 } 2388 2389 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2390 { 2391 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2392 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2393 } 2394 2395 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2396 { 2397 const struct tcp_sock *tp = tcp_sk(sk); 2398 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2399 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2400 } 2401 2402 /* Check that window update is acceptable. 2403 * The function assumes that snd_una<=ack<=snd_next. 2404 */ 2405 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, 2406 const u32 ack_seq, const u32 nwin) 2407 { 2408 return (after(ack, tp->snd_una) || 2409 after(ack_seq, tp->snd_wl1) || 2410 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2411 } 2412 2413 /* Update our send window. 2414 * 2415 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2416 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2417 */ 2418 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp, 2419 struct sk_buff *skb, u32 ack, u32 ack_seq) 2420 { 2421 int flag = 0; 2422 u32 nwin = ntohs(skb->h.th->window); 2423 2424 if (likely(!skb->h.th->syn)) 2425 nwin <<= tp->rx_opt.snd_wscale; 2426 2427 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2428 flag |= FLAG_WIN_UPDATE; 2429 tcp_update_wl(tp, ack, ack_seq); 2430 2431 if (tp->snd_wnd != nwin) { 2432 tp->snd_wnd = nwin; 2433 2434 /* Note, it is the only place, where 2435 * fast path is recovered for sending TCP. 2436 */ 2437 tp->pred_flags = 0; 2438 tcp_fast_path_check(sk, tp); 2439 2440 if (nwin > tp->max_window) { 2441 tp->max_window = nwin; 2442 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 2443 } 2444 } 2445 } 2446 2447 tp->snd_una = ack; 2448 2449 return flag; 2450 } 2451 2452 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una) 2453 { 2454 struct tcp_sock *tp = tcp_sk(sk); 2455 2456 tcp_sync_left_out(tp); 2457 2458 if (tp->snd_una == prior_snd_una || 2459 !before(tp->snd_una, tp->frto_highmark)) { 2460 /* RTO was caused by loss, start retransmitting in 2461 * go-back-N slow start 2462 */ 2463 tcp_enter_frto_loss(sk); 2464 return; 2465 } 2466 2467 if (tp->frto_counter == 1) { 2468 /* First ACK after RTO advances the window: allow two new 2469 * segments out. 2470 */ 2471 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2472 } else { 2473 /* Also the second ACK after RTO advances the window. 2474 * The RTO was likely spurious. Reduce cwnd and continue 2475 * in congestion avoidance 2476 */ 2477 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2478 tcp_moderate_cwnd(tp); 2479 } 2480 2481 /* F-RTO affects on two new ACKs following RTO. 2482 * At latest on third ACK the TCP behavior is back to normal. 2483 */ 2484 tp->frto_counter = (tp->frto_counter + 1) % 3; 2485 } 2486 2487 /* This routine deals with incoming acks, but not outgoing ones. */ 2488 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2489 { 2490 struct inet_connection_sock *icsk = inet_csk(sk); 2491 struct tcp_sock *tp = tcp_sk(sk); 2492 u32 prior_snd_una = tp->snd_una; 2493 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2494 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2495 u32 prior_in_flight; 2496 s32 seq_rtt; 2497 int prior_packets; 2498 2499 /* If the ack is newer than sent or older than previous acks 2500 * then we can probably ignore it. 2501 */ 2502 if (after(ack, tp->snd_nxt)) 2503 goto uninteresting_ack; 2504 2505 if (before(ack, prior_snd_una)) 2506 goto old_ack; 2507 2508 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR) 2509 tp->bytes_acked += ack - prior_snd_una; 2510 2511 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2512 /* Window is constant, pure forward advance. 2513 * No more checks are required. 2514 * Note, we use the fact that SND.UNA>=SND.WL2. 2515 */ 2516 tcp_update_wl(tp, ack, ack_seq); 2517 tp->snd_una = ack; 2518 flag |= FLAG_WIN_UPDATE; 2519 2520 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 2521 2522 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2523 } else { 2524 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2525 flag |= FLAG_DATA; 2526 else 2527 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2528 2529 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq); 2530 2531 if (TCP_SKB_CB(skb)->sacked) 2532 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2533 2534 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th)) 2535 flag |= FLAG_ECE; 2536 2537 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 2538 } 2539 2540 /* We passed data and got it acked, remove any soft error 2541 * log. Something worked... 2542 */ 2543 sk->sk_err_soft = 0; 2544 tp->rcv_tstamp = tcp_time_stamp; 2545 prior_packets = tp->packets_out; 2546 if (!prior_packets) 2547 goto no_queue; 2548 2549 prior_in_flight = tcp_packets_in_flight(tp); 2550 2551 /* See if we can take anything off of the retransmit queue. */ 2552 flag |= tcp_clean_rtx_queue(sk, &seq_rtt); 2553 2554 if (tp->frto_counter) 2555 tcp_process_frto(sk, prior_snd_una); 2556 2557 if (tcp_ack_is_dubious(sk, flag)) { 2558 /* Advance CWND, if state allows this. */ 2559 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag)) 2560 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0); 2561 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2562 } else { 2563 if ((flag & FLAG_DATA_ACKED)) 2564 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1); 2565 } 2566 2567 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2568 dst_confirm(sk->sk_dst_cache); 2569 2570 return 1; 2571 2572 no_queue: 2573 icsk->icsk_probes_out = 0; 2574 2575 /* If this ack opens up a zero window, clear backoff. It was 2576 * being used to time the probes, and is probably far higher than 2577 * it needs to be for normal retransmission. 2578 */ 2579 if (sk->sk_send_head) 2580 tcp_ack_probe(sk); 2581 return 1; 2582 2583 old_ack: 2584 if (TCP_SKB_CB(skb)->sacked) 2585 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2586 2587 uninteresting_ack: 2588 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2589 return 0; 2590 } 2591 2592 2593 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2594 * But, this can also be called on packets in the established flow when 2595 * the fast version below fails. 2596 */ 2597 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2598 { 2599 unsigned char *ptr; 2600 struct tcphdr *th = skb->h.th; 2601 int length=(th->doff*4)-sizeof(struct tcphdr); 2602 2603 ptr = (unsigned char *)(th + 1); 2604 opt_rx->saw_tstamp = 0; 2605 2606 while(length>0) { 2607 int opcode=*ptr++; 2608 int opsize; 2609 2610 switch (opcode) { 2611 case TCPOPT_EOL: 2612 return; 2613 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 2614 length--; 2615 continue; 2616 default: 2617 opsize=*ptr++; 2618 if (opsize < 2) /* "silly options" */ 2619 return; 2620 if (opsize > length) 2621 return; /* don't parse partial options */ 2622 switch(opcode) { 2623 case TCPOPT_MSS: 2624 if(opsize==TCPOLEN_MSS && th->syn && !estab) { 2625 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr)); 2626 if (in_mss) { 2627 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 2628 in_mss = opt_rx->user_mss; 2629 opt_rx->mss_clamp = in_mss; 2630 } 2631 } 2632 break; 2633 case TCPOPT_WINDOW: 2634 if(opsize==TCPOLEN_WINDOW && th->syn && !estab) 2635 if (sysctl_tcp_window_scaling) { 2636 __u8 snd_wscale = *(__u8 *) ptr; 2637 opt_rx->wscale_ok = 1; 2638 if (snd_wscale > 14) { 2639 if(net_ratelimit()) 2640 printk(KERN_INFO "tcp_parse_options: Illegal window " 2641 "scaling value %d >14 received.\n", 2642 snd_wscale); 2643 snd_wscale = 14; 2644 } 2645 opt_rx->snd_wscale = snd_wscale; 2646 } 2647 break; 2648 case TCPOPT_TIMESTAMP: 2649 if(opsize==TCPOLEN_TIMESTAMP) { 2650 if ((estab && opt_rx->tstamp_ok) || 2651 (!estab && sysctl_tcp_timestamps)) { 2652 opt_rx->saw_tstamp = 1; 2653 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr)); 2654 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4))); 2655 } 2656 } 2657 break; 2658 case TCPOPT_SACK_PERM: 2659 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 2660 if (sysctl_tcp_sack) { 2661 opt_rx->sack_ok = 1; 2662 tcp_sack_reset(opt_rx); 2663 } 2664 } 2665 break; 2666 2667 case TCPOPT_SACK: 2668 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 2669 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 2670 opt_rx->sack_ok) { 2671 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 2672 } 2673 }; 2674 ptr+=opsize-2; 2675 length-=opsize; 2676 }; 2677 } 2678 } 2679 2680 /* Fast parse options. This hopes to only see timestamps. 2681 * If it is wrong it falls back on tcp_parse_options(). 2682 */ 2683 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 2684 struct tcp_sock *tp) 2685 { 2686 if (th->doff == sizeof(struct tcphdr)>>2) { 2687 tp->rx_opt.saw_tstamp = 0; 2688 return 0; 2689 } else if (tp->rx_opt.tstamp_ok && 2690 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 2691 __u32 *ptr = (__u32 *)(th + 1); 2692 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 2693 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 2694 tp->rx_opt.saw_tstamp = 1; 2695 ++ptr; 2696 tp->rx_opt.rcv_tsval = ntohl(*ptr); 2697 ++ptr; 2698 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 2699 return 1; 2700 } 2701 } 2702 tcp_parse_options(skb, &tp->rx_opt, 1); 2703 return 1; 2704 } 2705 2706 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 2707 { 2708 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 2709 tp->rx_opt.ts_recent_stamp = xtime.tv_sec; 2710 } 2711 2712 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 2713 { 2714 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 2715 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 2716 * extra check below makes sure this can only happen 2717 * for pure ACK frames. -DaveM 2718 * 2719 * Not only, also it occurs for expired timestamps. 2720 */ 2721 2722 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 2723 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 2724 tcp_store_ts_recent(tp); 2725 } 2726 } 2727 2728 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 2729 * 2730 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 2731 * it can pass through stack. So, the following predicate verifies that 2732 * this segment is not used for anything but congestion avoidance or 2733 * fast retransmit. Moreover, we even are able to eliminate most of such 2734 * second order effects, if we apply some small "replay" window (~RTO) 2735 * to timestamp space. 2736 * 2737 * All these measures still do not guarantee that we reject wrapped ACKs 2738 * on networks with high bandwidth, when sequence space is recycled fastly, 2739 * but it guarantees that such events will be very rare and do not affect 2740 * connection seriously. This doesn't look nice, but alas, PAWS is really 2741 * buggy extension. 2742 * 2743 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 2744 * states that events when retransmit arrives after original data are rare. 2745 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 2746 * the biggest problem on large power networks even with minor reordering. 2747 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 2748 * up to bandwidth of 18Gigabit/sec. 8) ] 2749 */ 2750 2751 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 2752 { 2753 struct tcp_sock *tp = tcp_sk(sk); 2754 struct tcphdr *th = skb->h.th; 2755 u32 seq = TCP_SKB_CB(skb)->seq; 2756 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2757 2758 return (/* 1. Pure ACK with correct sequence number. */ 2759 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 2760 2761 /* 2. ... and duplicate ACK. */ 2762 ack == tp->snd_una && 2763 2764 /* 3. ... and does not update window. */ 2765 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 2766 2767 /* 4. ... and sits in replay window. */ 2768 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 2769 } 2770 2771 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) 2772 { 2773 const struct tcp_sock *tp = tcp_sk(sk); 2774 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 2775 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 2776 !tcp_disordered_ack(sk, skb)); 2777 } 2778 2779 /* Check segment sequence number for validity. 2780 * 2781 * Segment controls are considered valid, if the segment 2782 * fits to the window after truncation to the window. Acceptability 2783 * of data (and SYN, FIN, of course) is checked separately. 2784 * See tcp_data_queue(), for example. 2785 * 2786 * Also, controls (RST is main one) are accepted using RCV.WUP instead 2787 * of RCV.NXT. Peer still did not advance his SND.UNA when we 2788 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 2789 * (borrowed from freebsd) 2790 */ 2791 2792 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 2793 { 2794 return !before(end_seq, tp->rcv_wup) && 2795 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 2796 } 2797 2798 /* When we get a reset we do this. */ 2799 static void tcp_reset(struct sock *sk) 2800 { 2801 /* We want the right error as BSD sees it (and indeed as we do). */ 2802 switch (sk->sk_state) { 2803 case TCP_SYN_SENT: 2804 sk->sk_err = ECONNREFUSED; 2805 break; 2806 case TCP_CLOSE_WAIT: 2807 sk->sk_err = EPIPE; 2808 break; 2809 case TCP_CLOSE: 2810 return; 2811 default: 2812 sk->sk_err = ECONNRESET; 2813 } 2814 2815 if (!sock_flag(sk, SOCK_DEAD)) 2816 sk->sk_error_report(sk); 2817 2818 tcp_done(sk); 2819 } 2820 2821 /* 2822 * Process the FIN bit. This now behaves as it is supposed to work 2823 * and the FIN takes effect when it is validly part of sequence 2824 * space. Not before when we get holes. 2825 * 2826 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 2827 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 2828 * TIME-WAIT) 2829 * 2830 * If we are in FINWAIT-1, a received FIN indicates simultaneous 2831 * close and we go into CLOSING (and later onto TIME-WAIT) 2832 * 2833 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 2834 */ 2835 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 2836 { 2837 struct tcp_sock *tp = tcp_sk(sk); 2838 2839 inet_csk_schedule_ack(sk); 2840 2841 sk->sk_shutdown |= RCV_SHUTDOWN; 2842 sock_set_flag(sk, SOCK_DONE); 2843 2844 switch (sk->sk_state) { 2845 case TCP_SYN_RECV: 2846 case TCP_ESTABLISHED: 2847 /* Move to CLOSE_WAIT */ 2848 tcp_set_state(sk, TCP_CLOSE_WAIT); 2849 inet_csk(sk)->icsk_ack.pingpong = 1; 2850 break; 2851 2852 case TCP_CLOSE_WAIT: 2853 case TCP_CLOSING: 2854 /* Received a retransmission of the FIN, do 2855 * nothing. 2856 */ 2857 break; 2858 case TCP_LAST_ACK: 2859 /* RFC793: Remain in the LAST-ACK state. */ 2860 break; 2861 2862 case TCP_FIN_WAIT1: 2863 /* This case occurs when a simultaneous close 2864 * happens, we must ack the received FIN and 2865 * enter the CLOSING state. 2866 */ 2867 tcp_send_ack(sk); 2868 tcp_set_state(sk, TCP_CLOSING); 2869 break; 2870 case TCP_FIN_WAIT2: 2871 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 2872 tcp_send_ack(sk); 2873 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 2874 break; 2875 default: 2876 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 2877 * cases we should never reach this piece of code. 2878 */ 2879 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 2880 __FUNCTION__, sk->sk_state); 2881 break; 2882 }; 2883 2884 /* It _is_ possible, that we have something out-of-order _after_ FIN. 2885 * Probably, we should reset in this case. For now drop them. 2886 */ 2887 __skb_queue_purge(&tp->out_of_order_queue); 2888 if (tp->rx_opt.sack_ok) 2889 tcp_sack_reset(&tp->rx_opt); 2890 sk_stream_mem_reclaim(sk); 2891 2892 if (!sock_flag(sk, SOCK_DEAD)) { 2893 sk->sk_state_change(sk); 2894 2895 /* Do not send POLL_HUP for half duplex close. */ 2896 if (sk->sk_shutdown == SHUTDOWN_MASK || 2897 sk->sk_state == TCP_CLOSE) 2898 sk_wake_async(sk, 1, POLL_HUP); 2899 else 2900 sk_wake_async(sk, 1, POLL_IN); 2901 } 2902 } 2903 2904 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 2905 { 2906 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 2907 if (before(seq, sp->start_seq)) 2908 sp->start_seq = seq; 2909 if (after(end_seq, sp->end_seq)) 2910 sp->end_seq = end_seq; 2911 return 1; 2912 } 2913 return 0; 2914 } 2915 2916 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 2917 { 2918 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2919 if (before(seq, tp->rcv_nxt)) 2920 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 2921 else 2922 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 2923 2924 tp->rx_opt.dsack = 1; 2925 tp->duplicate_sack[0].start_seq = seq; 2926 tp->duplicate_sack[0].end_seq = end_seq; 2927 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 2928 } 2929 } 2930 2931 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 2932 { 2933 if (!tp->rx_opt.dsack) 2934 tcp_dsack_set(tp, seq, end_seq); 2935 else 2936 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 2937 } 2938 2939 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 2940 { 2941 struct tcp_sock *tp = tcp_sk(sk); 2942 2943 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 2944 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 2945 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 2946 tcp_enter_quickack_mode(sk); 2947 2948 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2949 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2950 2951 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 2952 end_seq = tp->rcv_nxt; 2953 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 2954 } 2955 } 2956 2957 tcp_send_ack(sk); 2958 } 2959 2960 /* These routines update the SACK block as out-of-order packets arrive or 2961 * in-order packets close up the sequence space. 2962 */ 2963 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 2964 { 2965 int this_sack; 2966 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2967 struct tcp_sack_block *swalk = sp+1; 2968 2969 /* See if the recent change to the first SACK eats into 2970 * or hits the sequence space of other SACK blocks, if so coalesce. 2971 */ 2972 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 2973 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 2974 int i; 2975 2976 /* Zap SWALK, by moving every further SACK up by one slot. 2977 * Decrease num_sacks. 2978 */ 2979 tp->rx_opt.num_sacks--; 2980 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2981 for(i=this_sack; i < tp->rx_opt.num_sacks; i++) 2982 sp[i] = sp[i+1]; 2983 continue; 2984 } 2985 this_sack++, swalk++; 2986 } 2987 } 2988 2989 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 2990 { 2991 __u32 tmp; 2992 2993 tmp = sack1->start_seq; 2994 sack1->start_seq = sack2->start_seq; 2995 sack2->start_seq = tmp; 2996 2997 tmp = sack1->end_seq; 2998 sack1->end_seq = sack2->end_seq; 2999 sack2->end_seq = tmp; 3000 } 3001 3002 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3003 { 3004 struct tcp_sock *tp = tcp_sk(sk); 3005 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3006 int cur_sacks = tp->rx_opt.num_sacks; 3007 int this_sack; 3008 3009 if (!cur_sacks) 3010 goto new_sack; 3011 3012 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 3013 if (tcp_sack_extend(sp, seq, end_seq)) { 3014 /* Rotate this_sack to the first one. */ 3015 for (; this_sack>0; this_sack--, sp--) 3016 tcp_sack_swap(sp, sp-1); 3017 if (cur_sacks > 1) 3018 tcp_sack_maybe_coalesce(tp); 3019 return; 3020 } 3021 } 3022 3023 /* Could not find an adjacent existing SACK, build a new one, 3024 * put it at the front, and shift everyone else down. We 3025 * always know there is at least one SACK present already here. 3026 * 3027 * If the sack array is full, forget about the last one. 3028 */ 3029 if (this_sack >= 4) { 3030 this_sack--; 3031 tp->rx_opt.num_sacks--; 3032 sp--; 3033 } 3034 for(; this_sack > 0; this_sack--, sp--) 3035 *sp = *(sp-1); 3036 3037 new_sack: 3038 /* Build the new head SACK, and we're done. */ 3039 sp->start_seq = seq; 3040 sp->end_seq = end_seq; 3041 tp->rx_opt.num_sacks++; 3042 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3043 } 3044 3045 /* RCV.NXT advances, some SACKs should be eaten. */ 3046 3047 static void tcp_sack_remove(struct tcp_sock *tp) 3048 { 3049 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3050 int num_sacks = tp->rx_opt.num_sacks; 3051 int this_sack; 3052 3053 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3054 if (skb_queue_empty(&tp->out_of_order_queue)) { 3055 tp->rx_opt.num_sacks = 0; 3056 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3057 return; 3058 } 3059 3060 for(this_sack = 0; this_sack < num_sacks; ) { 3061 /* Check if the start of the sack is covered by RCV.NXT. */ 3062 if (!before(tp->rcv_nxt, sp->start_seq)) { 3063 int i; 3064 3065 /* RCV.NXT must cover all the block! */ 3066 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3067 3068 /* Zap this SACK, by moving forward any other SACKS. */ 3069 for (i=this_sack+1; i < num_sacks; i++) 3070 tp->selective_acks[i-1] = tp->selective_acks[i]; 3071 num_sacks--; 3072 continue; 3073 } 3074 this_sack++; 3075 sp++; 3076 } 3077 if (num_sacks != tp->rx_opt.num_sacks) { 3078 tp->rx_opt.num_sacks = num_sacks; 3079 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3080 } 3081 } 3082 3083 /* This one checks to see if we can put data from the 3084 * out_of_order queue into the receive_queue. 3085 */ 3086 static void tcp_ofo_queue(struct sock *sk) 3087 { 3088 struct tcp_sock *tp = tcp_sk(sk); 3089 __u32 dsack_high = tp->rcv_nxt; 3090 struct sk_buff *skb; 3091 3092 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3093 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3094 break; 3095 3096 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3097 __u32 dsack = dsack_high; 3098 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3099 dsack_high = TCP_SKB_CB(skb)->end_seq; 3100 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3101 } 3102 3103 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3104 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3105 __skb_unlink(skb, &tp->out_of_order_queue); 3106 __kfree_skb(skb); 3107 continue; 3108 } 3109 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3110 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3111 TCP_SKB_CB(skb)->end_seq); 3112 3113 __skb_unlink(skb, &tp->out_of_order_queue); 3114 __skb_queue_tail(&sk->sk_receive_queue, skb); 3115 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3116 if(skb->h.th->fin) 3117 tcp_fin(skb, sk, skb->h.th); 3118 } 3119 } 3120 3121 static int tcp_prune_queue(struct sock *sk); 3122 3123 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3124 { 3125 struct tcphdr *th = skb->h.th; 3126 struct tcp_sock *tp = tcp_sk(sk); 3127 int eaten = -1; 3128 3129 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3130 goto drop; 3131 3132 __skb_pull(skb, th->doff*4); 3133 3134 TCP_ECN_accept_cwr(tp, skb); 3135 3136 if (tp->rx_opt.dsack) { 3137 tp->rx_opt.dsack = 0; 3138 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3139 4 - tp->rx_opt.tstamp_ok); 3140 } 3141 3142 /* Queue data for delivery to the user. 3143 * Packets in sequence go to the receive queue. 3144 * Out of sequence packets to the out_of_order_queue. 3145 */ 3146 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3147 if (tcp_receive_window(tp) == 0) 3148 goto out_of_window; 3149 3150 /* Ok. In sequence. In window. */ 3151 if (tp->ucopy.task == current && 3152 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3153 sock_owned_by_user(sk) && !tp->urg_data) { 3154 int chunk = min_t(unsigned int, skb->len, 3155 tp->ucopy.len); 3156 3157 __set_current_state(TASK_RUNNING); 3158 3159 local_bh_enable(); 3160 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3161 tp->ucopy.len -= chunk; 3162 tp->copied_seq += chunk; 3163 eaten = (chunk == skb->len && !th->fin); 3164 tcp_rcv_space_adjust(sk); 3165 } 3166 local_bh_disable(); 3167 } 3168 3169 if (eaten <= 0) { 3170 queue_and_out: 3171 if (eaten < 0 && 3172 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3173 !sk_stream_rmem_schedule(sk, skb))) { 3174 if (tcp_prune_queue(sk) < 0 || 3175 !sk_stream_rmem_schedule(sk, skb)) 3176 goto drop; 3177 } 3178 sk_stream_set_owner_r(skb, sk); 3179 __skb_queue_tail(&sk->sk_receive_queue, skb); 3180 } 3181 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3182 if(skb->len) 3183 tcp_event_data_recv(sk, tp, skb); 3184 if(th->fin) 3185 tcp_fin(skb, sk, th); 3186 3187 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3188 tcp_ofo_queue(sk); 3189 3190 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3191 * gap in queue is filled. 3192 */ 3193 if (skb_queue_empty(&tp->out_of_order_queue)) 3194 inet_csk(sk)->icsk_ack.pingpong = 0; 3195 } 3196 3197 if (tp->rx_opt.num_sacks) 3198 tcp_sack_remove(tp); 3199 3200 tcp_fast_path_check(sk, tp); 3201 3202 if (eaten > 0) 3203 __kfree_skb(skb); 3204 else if (!sock_flag(sk, SOCK_DEAD)) 3205 sk->sk_data_ready(sk, 0); 3206 return; 3207 } 3208 3209 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3210 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3211 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3212 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3213 3214 out_of_window: 3215 tcp_enter_quickack_mode(sk); 3216 inet_csk_schedule_ack(sk); 3217 drop: 3218 __kfree_skb(skb); 3219 return; 3220 } 3221 3222 /* Out of window. F.e. zero window probe. */ 3223 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3224 goto out_of_window; 3225 3226 tcp_enter_quickack_mode(sk); 3227 3228 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3229 /* Partial packet, seq < rcv_next < end_seq */ 3230 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3231 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3232 TCP_SKB_CB(skb)->end_seq); 3233 3234 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3235 3236 /* If window is closed, drop tail of packet. But after 3237 * remembering D-SACK for its head made in previous line. 3238 */ 3239 if (!tcp_receive_window(tp)) 3240 goto out_of_window; 3241 goto queue_and_out; 3242 } 3243 3244 TCP_ECN_check_ce(tp, skb); 3245 3246 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3247 !sk_stream_rmem_schedule(sk, skb)) { 3248 if (tcp_prune_queue(sk) < 0 || 3249 !sk_stream_rmem_schedule(sk, skb)) 3250 goto drop; 3251 } 3252 3253 /* Disable header prediction. */ 3254 tp->pred_flags = 0; 3255 inet_csk_schedule_ack(sk); 3256 3257 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3258 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3259 3260 sk_stream_set_owner_r(skb, sk); 3261 3262 if (!skb_peek(&tp->out_of_order_queue)) { 3263 /* Initial out of order segment, build 1 SACK. */ 3264 if (tp->rx_opt.sack_ok) { 3265 tp->rx_opt.num_sacks = 1; 3266 tp->rx_opt.dsack = 0; 3267 tp->rx_opt.eff_sacks = 1; 3268 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3269 tp->selective_acks[0].end_seq = 3270 TCP_SKB_CB(skb)->end_seq; 3271 } 3272 __skb_queue_head(&tp->out_of_order_queue,skb); 3273 } else { 3274 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3275 u32 seq = TCP_SKB_CB(skb)->seq; 3276 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3277 3278 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3279 __skb_append(skb1, skb, &tp->out_of_order_queue); 3280 3281 if (!tp->rx_opt.num_sacks || 3282 tp->selective_acks[0].end_seq != seq) 3283 goto add_sack; 3284 3285 /* Common case: data arrive in order after hole. */ 3286 tp->selective_acks[0].end_seq = end_seq; 3287 return; 3288 } 3289 3290 /* Find place to insert this segment. */ 3291 do { 3292 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3293 break; 3294 } while ((skb1 = skb1->prev) != 3295 (struct sk_buff*)&tp->out_of_order_queue); 3296 3297 /* Do skb overlap to previous one? */ 3298 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3299 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3300 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3301 /* All the bits are present. Drop. */ 3302 __kfree_skb(skb); 3303 tcp_dsack_set(tp, seq, end_seq); 3304 goto add_sack; 3305 } 3306 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3307 /* Partial overlap. */ 3308 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3309 } else { 3310 skb1 = skb1->prev; 3311 } 3312 } 3313 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3314 3315 /* And clean segments covered by new one as whole. */ 3316 while ((skb1 = skb->next) != 3317 (struct sk_buff*)&tp->out_of_order_queue && 3318 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3319 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3320 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3321 break; 3322 } 3323 __skb_unlink(skb1, &tp->out_of_order_queue); 3324 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3325 __kfree_skb(skb1); 3326 } 3327 3328 add_sack: 3329 if (tp->rx_opt.sack_ok) 3330 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3331 } 3332 } 3333 3334 /* Collapse contiguous sequence of skbs head..tail with 3335 * sequence numbers start..end. 3336 * Segments with FIN/SYN are not collapsed (only because this 3337 * simplifies code) 3338 */ 3339 static void 3340 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 3341 struct sk_buff *head, struct sk_buff *tail, 3342 u32 start, u32 end) 3343 { 3344 struct sk_buff *skb; 3345 3346 /* First, check that queue is collapsible and find 3347 * the point where collapsing can be useful. */ 3348 for (skb = head; skb != tail; ) { 3349 /* No new bits? It is possible on ofo queue. */ 3350 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3351 struct sk_buff *next = skb->next; 3352 __skb_unlink(skb, list); 3353 __kfree_skb(skb); 3354 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3355 skb = next; 3356 continue; 3357 } 3358 3359 /* The first skb to collapse is: 3360 * - not SYN/FIN and 3361 * - bloated or contains data before "start" or 3362 * overlaps to the next one. 3363 */ 3364 if (!skb->h.th->syn && !skb->h.th->fin && 3365 (tcp_win_from_space(skb->truesize) > skb->len || 3366 before(TCP_SKB_CB(skb)->seq, start) || 3367 (skb->next != tail && 3368 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3369 break; 3370 3371 /* Decided to skip this, advance start seq. */ 3372 start = TCP_SKB_CB(skb)->end_seq; 3373 skb = skb->next; 3374 } 3375 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3376 return; 3377 3378 while (before(start, end)) { 3379 struct sk_buff *nskb; 3380 int header = skb_headroom(skb); 3381 int copy = SKB_MAX_ORDER(header, 0); 3382 3383 /* Too big header? This can happen with IPv6. */ 3384 if (copy < 0) 3385 return; 3386 if (end-start < copy) 3387 copy = end-start; 3388 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3389 if (!nskb) 3390 return; 3391 skb_reserve(nskb, header); 3392 memcpy(nskb->head, skb->head, header); 3393 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head); 3394 nskb->h.raw = nskb->head + (skb->h.raw-skb->head); 3395 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head); 3396 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3397 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3398 __skb_insert(nskb, skb->prev, skb, list); 3399 sk_stream_set_owner_r(nskb, sk); 3400 3401 /* Copy data, releasing collapsed skbs. */ 3402 while (copy > 0) { 3403 int offset = start - TCP_SKB_CB(skb)->seq; 3404 int size = TCP_SKB_CB(skb)->end_seq - start; 3405 3406 BUG_ON(offset < 0); 3407 if (size > 0) { 3408 size = min(copy, size); 3409 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3410 BUG(); 3411 TCP_SKB_CB(nskb)->end_seq += size; 3412 copy -= size; 3413 start += size; 3414 } 3415 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3416 struct sk_buff *next = skb->next; 3417 __skb_unlink(skb, list); 3418 __kfree_skb(skb); 3419 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3420 skb = next; 3421 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3422 return; 3423 } 3424 } 3425 } 3426 } 3427 3428 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3429 * and tcp_collapse() them until all the queue is collapsed. 3430 */ 3431 static void tcp_collapse_ofo_queue(struct sock *sk) 3432 { 3433 struct tcp_sock *tp = tcp_sk(sk); 3434 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3435 struct sk_buff *head; 3436 u32 start, end; 3437 3438 if (skb == NULL) 3439 return; 3440 3441 start = TCP_SKB_CB(skb)->seq; 3442 end = TCP_SKB_CB(skb)->end_seq; 3443 head = skb; 3444 3445 for (;;) { 3446 skb = skb->next; 3447 3448 /* Segment is terminated when we see gap or when 3449 * we are at the end of all the queue. */ 3450 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3451 after(TCP_SKB_CB(skb)->seq, end) || 3452 before(TCP_SKB_CB(skb)->end_seq, start)) { 3453 tcp_collapse(sk, &tp->out_of_order_queue, 3454 head, skb, start, end); 3455 head = skb; 3456 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3457 break; 3458 /* Start new segment */ 3459 start = TCP_SKB_CB(skb)->seq; 3460 end = TCP_SKB_CB(skb)->end_seq; 3461 } else { 3462 if (before(TCP_SKB_CB(skb)->seq, start)) 3463 start = TCP_SKB_CB(skb)->seq; 3464 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3465 end = TCP_SKB_CB(skb)->end_seq; 3466 } 3467 } 3468 } 3469 3470 /* Reduce allocated memory if we can, trying to get 3471 * the socket within its memory limits again. 3472 * 3473 * Return less than zero if we should start dropping frames 3474 * until the socket owning process reads some of the data 3475 * to stabilize the situation. 3476 */ 3477 static int tcp_prune_queue(struct sock *sk) 3478 { 3479 struct tcp_sock *tp = tcp_sk(sk); 3480 3481 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3482 3483 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3484 3485 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3486 tcp_clamp_window(sk, tp); 3487 else if (tcp_memory_pressure) 3488 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3489 3490 tcp_collapse_ofo_queue(sk); 3491 tcp_collapse(sk, &sk->sk_receive_queue, 3492 sk->sk_receive_queue.next, 3493 (struct sk_buff*)&sk->sk_receive_queue, 3494 tp->copied_seq, tp->rcv_nxt); 3495 sk_stream_mem_reclaim(sk); 3496 3497 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3498 return 0; 3499 3500 /* Collapsing did not help, destructive actions follow. 3501 * This must not ever occur. */ 3502 3503 /* First, purge the out_of_order queue. */ 3504 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3505 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 3506 __skb_queue_purge(&tp->out_of_order_queue); 3507 3508 /* Reset SACK state. A conforming SACK implementation will 3509 * do the same at a timeout based retransmit. When a connection 3510 * is in a sad state like this, we care only about integrity 3511 * of the connection not performance. 3512 */ 3513 if (tp->rx_opt.sack_ok) 3514 tcp_sack_reset(&tp->rx_opt); 3515 sk_stream_mem_reclaim(sk); 3516 } 3517 3518 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3519 return 0; 3520 3521 /* If we are really being abused, tell the caller to silently 3522 * drop receive data on the floor. It will get retransmitted 3523 * and hopefully then we'll have sufficient space. 3524 */ 3525 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3526 3527 /* Massive buffer overcommit. */ 3528 tp->pred_flags = 0; 3529 return -1; 3530 } 3531 3532 3533 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3534 * As additional protections, we do not touch cwnd in retransmission phases, 3535 * and if application hit its sndbuf limit recently. 3536 */ 3537 void tcp_cwnd_application_limited(struct sock *sk) 3538 { 3539 struct tcp_sock *tp = tcp_sk(sk); 3540 3541 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 3542 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3543 /* Limited by application or receiver window. */ 3544 u32 win_used = max(tp->snd_cwnd_used, 2U); 3545 if (win_used < tp->snd_cwnd) { 3546 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3547 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3548 } 3549 tp->snd_cwnd_used = 0; 3550 } 3551 tp->snd_cwnd_stamp = tcp_time_stamp; 3552 } 3553 3554 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp) 3555 { 3556 /* If the user specified a specific send buffer setting, do 3557 * not modify it. 3558 */ 3559 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 3560 return 0; 3561 3562 /* If we are under global TCP memory pressure, do not expand. */ 3563 if (tcp_memory_pressure) 3564 return 0; 3565 3566 /* If we are under soft global TCP memory pressure, do not expand. */ 3567 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 3568 return 0; 3569 3570 /* If we filled the congestion window, do not expand. */ 3571 if (tp->packets_out >= tp->snd_cwnd) 3572 return 0; 3573 3574 return 1; 3575 } 3576 3577 /* When incoming ACK allowed to free some skb from write_queue, 3578 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3579 * on the exit from tcp input handler. 3580 * 3581 * PROBLEM: sndbuf expansion does not work well with largesend. 3582 */ 3583 static void tcp_new_space(struct sock *sk) 3584 { 3585 struct tcp_sock *tp = tcp_sk(sk); 3586 3587 if (tcp_should_expand_sndbuf(sk, tp)) { 3588 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 3589 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3590 demanded = max_t(unsigned int, tp->snd_cwnd, 3591 tp->reordering + 1); 3592 sndmem *= 2*demanded; 3593 if (sndmem > sk->sk_sndbuf) 3594 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3595 tp->snd_cwnd_stamp = tcp_time_stamp; 3596 } 3597 3598 sk->sk_write_space(sk); 3599 } 3600 3601 static void tcp_check_space(struct sock *sk) 3602 { 3603 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3604 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3605 if (sk->sk_socket && 3606 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3607 tcp_new_space(sk); 3608 } 3609 } 3610 3611 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp) 3612 { 3613 tcp_push_pending_frames(sk, tp); 3614 tcp_check_space(sk); 3615 } 3616 3617 /* 3618 * Check if sending an ack is needed. 3619 */ 3620 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 3621 { 3622 struct tcp_sock *tp = tcp_sk(sk); 3623 3624 /* More than one full frame received... */ 3625 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 3626 /* ... and right edge of window advances far enough. 3627 * (tcp_recvmsg() will send ACK otherwise). Or... 3628 */ 3629 && __tcp_select_window(sk) >= tp->rcv_wnd) || 3630 /* We ACK each frame or... */ 3631 tcp_in_quickack_mode(sk) || 3632 /* We have out of order data. */ 3633 (ofo_possible && 3634 skb_peek(&tp->out_of_order_queue))) { 3635 /* Then ack it now */ 3636 tcp_send_ack(sk); 3637 } else { 3638 /* Else, send delayed ack. */ 3639 tcp_send_delayed_ack(sk); 3640 } 3641 } 3642 3643 static inline void tcp_ack_snd_check(struct sock *sk) 3644 { 3645 if (!inet_csk_ack_scheduled(sk)) { 3646 /* We sent a data segment already. */ 3647 return; 3648 } 3649 __tcp_ack_snd_check(sk, 1); 3650 } 3651 3652 /* 3653 * This routine is only called when we have urgent data 3654 * signaled. Its the 'slow' part of tcp_urg. It could be 3655 * moved inline now as tcp_urg is only called from one 3656 * place. We handle URGent data wrong. We have to - as 3657 * BSD still doesn't use the correction from RFC961. 3658 * For 1003.1g we should support a new option TCP_STDURG to permit 3659 * either form (or just set the sysctl tcp_stdurg). 3660 */ 3661 3662 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 3663 { 3664 struct tcp_sock *tp = tcp_sk(sk); 3665 u32 ptr = ntohs(th->urg_ptr); 3666 3667 if (ptr && !sysctl_tcp_stdurg) 3668 ptr--; 3669 ptr += ntohl(th->seq); 3670 3671 /* Ignore urgent data that we've already seen and read. */ 3672 if (after(tp->copied_seq, ptr)) 3673 return; 3674 3675 /* Do not replay urg ptr. 3676 * 3677 * NOTE: interesting situation not covered by specs. 3678 * Misbehaving sender may send urg ptr, pointing to segment, 3679 * which we already have in ofo queue. We are not able to fetch 3680 * such data and will stay in TCP_URG_NOTYET until will be eaten 3681 * by recvmsg(). Seems, we are not obliged to handle such wicked 3682 * situations. But it is worth to think about possibility of some 3683 * DoSes using some hypothetical application level deadlock. 3684 */ 3685 if (before(ptr, tp->rcv_nxt)) 3686 return; 3687 3688 /* Do we already have a newer (or duplicate) urgent pointer? */ 3689 if (tp->urg_data && !after(ptr, tp->urg_seq)) 3690 return; 3691 3692 /* Tell the world about our new urgent pointer. */ 3693 sk_send_sigurg(sk); 3694 3695 /* We may be adding urgent data when the last byte read was 3696 * urgent. To do this requires some care. We cannot just ignore 3697 * tp->copied_seq since we would read the last urgent byte again 3698 * as data, nor can we alter copied_seq until this data arrives 3699 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 3700 * 3701 * NOTE. Double Dutch. Rendering to plain English: author of comment 3702 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 3703 * and expect that both A and B disappear from stream. This is _wrong_. 3704 * Though this happens in BSD with high probability, this is occasional. 3705 * Any application relying on this is buggy. Note also, that fix "works" 3706 * only in this artificial test. Insert some normal data between A and B and we will 3707 * decline of BSD again. Verdict: it is better to remove to trap 3708 * buggy users. 3709 */ 3710 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 3711 !sock_flag(sk, SOCK_URGINLINE) && 3712 tp->copied_seq != tp->rcv_nxt) { 3713 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 3714 tp->copied_seq++; 3715 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 3716 __skb_unlink(skb, &sk->sk_receive_queue); 3717 __kfree_skb(skb); 3718 } 3719 } 3720 3721 tp->urg_data = TCP_URG_NOTYET; 3722 tp->urg_seq = ptr; 3723 3724 /* Disable header prediction. */ 3725 tp->pred_flags = 0; 3726 } 3727 3728 /* This is the 'fast' part of urgent handling. */ 3729 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 3730 { 3731 struct tcp_sock *tp = tcp_sk(sk); 3732 3733 /* Check if we get a new urgent pointer - normally not. */ 3734 if (th->urg) 3735 tcp_check_urg(sk,th); 3736 3737 /* Do we wait for any urgent data? - normally not... */ 3738 if (tp->urg_data == TCP_URG_NOTYET) { 3739 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 3740 th->syn; 3741 3742 /* Is the urgent pointer pointing into this packet? */ 3743 if (ptr < skb->len) { 3744 u8 tmp; 3745 if (skb_copy_bits(skb, ptr, &tmp, 1)) 3746 BUG(); 3747 tp->urg_data = TCP_URG_VALID | tmp; 3748 if (!sock_flag(sk, SOCK_DEAD)) 3749 sk->sk_data_ready(sk, 0); 3750 } 3751 } 3752 } 3753 3754 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 3755 { 3756 struct tcp_sock *tp = tcp_sk(sk); 3757 int chunk = skb->len - hlen; 3758 int err; 3759 3760 local_bh_enable(); 3761 if (skb->ip_summed==CHECKSUM_UNNECESSARY) 3762 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 3763 else 3764 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 3765 tp->ucopy.iov); 3766 3767 if (!err) { 3768 tp->ucopy.len -= chunk; 3769 tp->copied_seq += chunk; 3770 tcp_rcv_space_adjust(sk); 3771 } 3772 3773 local_bh_disable(); 3774 return err; 3775 } 3776 3777 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3778 { 3779 int result; 3780 3781 if (sock_owned_by_user(sk)) { 3782 local_bh_enable(); 3783 result = __tcp_checksum_complete(skb); 3784 local_bh_disable(); 3785 } else { 3786 result = __tcp_checksum_complete(skb); 3787 } 3788 return result; 3789 } 3790 3791 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3792 { 3793 return skb->ip_summed != CHECKSUM_UNNECESSARY && 3794 __tcp_checksum_complete_user(sk, skb); 3795 } 3796 3797 #ifdef CONFIG_NET_DMA 3798 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen) 3799 { 3800 struct tcp_sock *tp = tcp_sk(sk); 3801 int chunk = skb->len - hlen; 3802 int dma_cookie; 3803 int copied_early = 0; 3804 3805 if (tp->ucopy.wakeup) 3806 return 0; 3807 3808 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 3809 tp->ucopy.dma_chan = get_softnet_dma(); 3810 3811 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) { 3812 3813 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 3814 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list); 3815 3816 if (dma_cookie < 0) 3817 goto out; 3818 3819 tp->ucopy.dma_cookie = dma_cookie; 3820 copied_early = 1; 3821 3822 tp->ucopy.len -= chunk; 3823 tp->copied_seq += chunk; 3824 tcp_rcv_space_adjust(sk); 3825 3826 if ((tp->ucopy.len == 0) || 3827 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) || 3828 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 3829 tp->ucopy.wakeup = 1; 3830 sk->sk_data_ready(sk, 0); 3831 } 3832 } else if (chunk > 0) { 3833 tp->ucopy.wakeup = 1; 3834 sk->sk_data_ready(sk, 0); 3835 } 3836 out: 3837 return copied_early; 3838 } 3839 #endif /* CONFIG_NET_DMA */ 3840 3841 /* 3842 * TCP receive function for the ESTABLISHED state. 3843 * 3844 * It is split into a fast path and a slow path. The fast path is 3845 * disabled when: 3846 * - A zero window was announced from us - zero window probing 3847 * is only handled properly in the slow path. 3848 * - Out of order segments arrived. 3849 * - Urgent data is expected. 3850 * - There is no buffer space left 3851 * - Unexpected TCP flags/window values/header lengths are received 3852 * (detected by checking the TCP header against pred_flags) 3853 * - Data is sent in both directions. Fast path only supports pure senders 3854 * or pure receivers (this means either the sequence number or the ack 3855 * value must stay constant) 3856 * - Unexpected TCP option. 3857 * 3858 * When these conditions are not satisfied it drops into a standard 3859 * receive procedure patterned after RFC793 to handle all cases. 3860 * The first three cases are guaranteed by proper pred_flags setting, 3861 * the rest is checked inline. Fast processing is turned on in 3862 * tcp_data_queue when everything is OK. 3863 */ 3864 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 3865 struct tcphdr *th, unsigned len) 3866 { 3867 struct tcp_sock *tp = tcp_sk(sk); 3868 3869 /* 3870 * Header prediction. 3871 * The code loosely follows the one in the famous 3872 * "30 instruction TCP receive" Van Jacobson mail. 3873 * 3874 * Van's trick is to deposit buffers into socket queue 3875 * on a device interrupt, to call tcp_recv function 3876 * on the receive process context and checksum and copy 3877 * the buffer to user space. smart... 3878 * 3879 * Our current scheme is not silly either but we take the 3880 * extra cost of the net_bh soft interrupt processing... 3881 * We do checksum and copy also but from device to kernel. 3882 */ 3883 3884 tp->rx_opt.saw_tstamp = 0; 3885 3886 /* pred_flags is 0xS?10 << 16 + snd_wnd 3887 * if header_prediction is to be made 3888 * 'S' will always be tp->tcp_header_len >> 2 3889 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 3890 * turn it off (when there are holes in the receive 3891 * space for instance) 3892 * PSH flag is ignored. 3893 */ 3894 3895 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 3896 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3897 int tcp_header_len = tp->tcp_header_len; 3898 3899 /* Timestamp header prediction: tcp_header_len 3900 * is automatically equal to th->doff*4 due to pred_flags 3901 * match. 3902 */ 3903 3904 /* Check timestamp */ 3905 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 3906 __u32 *ptr = (__u32 *)(th + 1); 3907 3908 /* No? Slow path! */ 3909 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3910 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 3911 goto slow_path; 3912 3913 tp->rx_opt.saw_tstamp = 1; 3914 ++ptr; 3915 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3916 ++ptr; 3917 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3918 3919 /* If PAWS failed, check it more carefully in slow path */ 3920 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 3921 goto slow_path; 3922 3923 /* DO NOT update ts_recent here, if checksum fails 3924 * and timestamp was corrupted part, it will result 3925 * in a hung connection since we will drop all 3926 * future packets due to the PAWS test. 3927 */ 3928 } 3929 3930 if (len <= tcp_header_len) { 3931 /* Bulk data transfer: sender */ 3932 if (len == tcp_header_len) { 3933 /* Predicted packet is in window by definition. 3934 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3935 * Hence, check seq<=rcv_wup reduces to: 3936 */ 3937 if (tcp_header_len == 3938 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3939 tp->rcv_nxt == tp->rcv_wup) 3940 tcp_store_ts_recent(tp); 3941 3942 /* We know that such packets are checksummed 3943 * on entry. 3944 */ 3945 tcp_ack(sk, skb, 0); 3946 __kfree_skb(skb); 3947 tcp_data_snd_check(sk, tp); 3948 return 0; 3949 } else { /* Header too small */ 3950 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3951 goto discard; 3952 } 3953 } else { 3954 int eaten = 0; 3955 int copied_early = 0; 3956 3957 if (tp->copied_seq == tp->rcv_nxt && 3958 len - tcp_header_len <= tp->ucopy.len) { 3959 #ifdef CONFIG_NET_DMA 3960 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 3961 copied_early = 1; 3962 eaten = 1; 3963 } 3964 #endif 3965 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) { 3966 __set_current_state(TASK_RUNNING); 3967 3968 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 3969 eaten = 1; 3970 } 3971 if (eaten) { 3972 /* Predicted packet is in window by definition. 3973 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3974 * Hence, check seq<=rcv_wup reduces to: 3975 */ 3976 if (tcp_header_len == 3977 (sizeof(struct tcphdr) + 3978 TCPOLEN_TSTAMP_ALIGNED) && 3979 tp->rcv_nxt == tp->rcv_wup) 3980 tcp_store_ts_recent(tp); 3981 3982 tcp_rcv_rtt_measure_ts(sk, skb); 3983 3984 __skb_pull(skb, tcp_header_len); 3985 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3986 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 3987 } 3988 if (copied_early) 3989 tcp_cleanup_rbuf(sk, skb->len); 3990 } 3991 if (!eaten) { 3992 if (tcp_checksum_complete_user(sk, skb)) 3993 goto csum_error; 3994 3995 /* Predicted packet is in window by definition. 3996 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3997 * Hence, check seq<=rcv_wup reduces to: 3998 */ 3999 if (tcp_header_len == 4000 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4001 tp->rcv_nxt == tp->rcv_wup) 4002 tcp_store_ts_recent(tp); 4003 4004 tcp_rcv_rtt_measure_ts(sk, skb); 4005 4006 if ((int)skb->truesize > sk->sk_forward_alloc) 4007 goto step5; 4008 4009 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 4010 4011 /* Bulk data transfer: receiver */ 4012 __skb_pull(skb,tcp_header_len); 4013 __skb_queue_tail(&sk->sk_receive_queue, skb); 4014 sk_stream_set_owner_r(skb, sk); 4015 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4016 } 4017 4018 tcp_event_data_recv(sk, tp, skb); 4019 4020 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 4021 /* Well, only one small jumplet in fast path... */ 4022 tcp_ack(sk, skb, FLAG_DATA); 4023 tcp_data_snd_check(sk, tp); 4024 if (!inet_csk_ack_scheduled(sk)) 4025 goto no_ack; 4026 } 4027 4028 __tcp_ack_snd_check(sk, 0); 4029 no_ack: 4030 #ifdef CONFIG_NET_DMA 4031 if (copied_early) 4032 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 4033 else 4034 #endif 4035 if (eaten) 4036 __kfree_skb(skb); 4037 else 4038 sk->sk_data_ready(sk, 0); 4039 return 0; 4040 } 4041 } 4042 4043 slow_path: 4044 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 4045 goto csum_error; 4046 4047 /* 4048 * RFC1323: H1. Apply PAWS check first. 4049 */ 4050 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4051 tcp_paws_discard(sk, skb)) { 4052 if (!th->rst) { 4053 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4054 tcp_send_dupack(sk, skb); 4055 goto discard; 4056 } 4057 /* Resets are accepted even if PAWS failed. 4058 4059 ts_recent update must be made after we are sure 4060 that the packet is in window. 4061 */ 4062 } 4063 4064 /* 4065 * Standard slow path. 4066 */ 4067 4068 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4069 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4070 * (RST) segments are validated by checking their SEQ-fields." 4071 * And page 69: "If an incoming segment is not acceptable, 4072 * an acknowledgment should be sent in reply (unless the RST bit 4073 * is set, if so drop the segment and return)". 4074 */ 4075 if (!th->rst) 4076 tcp_send_dupack(sk, skb); 4077 goto discard; 4078 } 4079 4080 if(th->rst) { 4081 tcp_reset(sk); 4082 goto discard; 4083 } 4084 4085 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4086 4087 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4088 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4089 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4090 tcp_reset(sk); 4091 return 1; 4092 } 4093 4094 step5: 4095 if(th->ack) 4096 tcp_ack(sk, skb, FLAG_SLOWPATH); 4097 4098 tcp_rcv_rtt_measure_ts(sk, skb); 4099 4100 /* Process urgent data. */ 4101 tcp_urg(sk, skb, th); 4102 4103 /* step 7: process the segment text */ 4104 tcp_data_queue(sk, skb); 4105 4106 tcp_data_snd_check(sk, tp); 4107 tcp_ack_snd_check(sk); 4108 return 0; 4109 4110 csum_error: 4111 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4112 4113 discard: 4114 __kfree_skb(skb); 4115 return 0; 4116 } 4117 4118 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4119 struct tcphdr *th, unsigned len) 4120 { 4121 struct tcp_sock *tp = tcp_sk(sk); 4122 struct inet_connection_sock *icsk = inet_csk(sk); 4123 int saved_clamp = tp->rx_opt.mss_clamp; 4124 4125 tcp_parse_options(skb, &tp->rx_opt, 0); 4126 4127 if (th->ack) { 4128 /* rfc793: 4129 * "If the state is SYN-SENT then 4130 * first check the ACK bit 4131 * If the ACK bit is set 4132 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4133 * a reset (unless the RST bit is set, if so drop 4134 * the segment and return)" 4135 * 4136 * We do not send data with SYN, so that RFC-correct 4137 * test reduces to: 4138 */ 4139 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4140 goto reset_and_undo; 4141 4142 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4143 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4144 tcp_time_stamp)) { 4145 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4146 goto reset_and_undo; 4147 } 4148 4149 /* Now ACK is acceptable. 4150 * 4151 * "If the RST bit is set 4152 * If the ACK was acceptable then signal the user "error: 4153 * connection reset", drop the segment, enter CLOSED state, 4154 * delete TCB, and return." 4155 */ 4156 4157 if (th->rst) { 4158 tcp_reset(sk); 4159 goto discard; 4160 } 4161 4162 /* rfc793: 4163 * "fifth, if neither of the SYN or RST bits is set then 4164 * drop the segment and return." 4165 * 4166 * See note below! 4167 * --ANK(990513) 4168 */ 4169 if (!th->syn) 4170 goto discard_and_undo; 4171 4172 /* rfc793: 4173 * "If the SYN bit is on ... 4174 * are acceptable then ... 4175 * (our SYN has been ACKed), change the connection 4176 * state to ESTABLISHED..." 4177 */ 4178 4179 TCP_ECN_rcv_synack(tp, th); 4180 4181 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4182 tcp_ack(sk, skb, FLAG_SLOWPATH); 4183 4184 /* Ok.. it's good. Set up sequence numbers and 4185 * move to established. 4186 */ 4187 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4188 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4189 4190 /* RFC1323: The window in SYN & SYN/ACK segments is 4191 * never scaled. 4192 */ 4193 tp->snd_wnd = ntohs(th->window); 4194 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4195 4196 if (!tp->rx_opt.wscale_ok) { 4197 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4198 tp->window_clamp = min(tp->window_clamp, 65535U); 4199 } 4200 4201 if (tp->rx_opt.saw_tstamp) { 4202 tp->rx_opt.tstamp_ok = 1; 4203 tp->tcp_header_len = 4204 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4205 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4206 tcp_store_ts_recent(tp); 4207 } else { 4208 tp->tcp_header_len = sizeof(struct tcphdr); 4209 } 4210 4211 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 4212 tp->rx_opt.sack_ok |= 2; 4213 4214 tcp_mtup_init(sk); 4215 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4216 tcp_initialize_rcv_mss(sk); 4217 4218 /* Remember, tcp_poll() does not lock socket! 4219 * Change state from SYN-SENT only after copied_seq 4220 * is initialized. */ 4221 tp->copied_seq = tp->rcv_nxt; 4222 mb(); 4223 tcp_set_state(sk, TCP_ESTABLISHED); 4224 4225 /* Make sure socket is routed, for correct metrics. */ 4226 icsk->icsk_af_ops->rebuild_header(sk); 4227 4228 tcp_init_metrics(sk); 4229 4230 tcp_init_congestion_control(sk); 4231 4232 /* Prevent spurious tcp_cwnd_restart() on first data 4233 * packet. 4234 */ 4235 tp->lsndtime = tcp_time_stamp; 4236 4237 tcp_init_buffer_space(sk); 4238 4239 if (sock_flag(sk, SOCK_KEEPOPEN)) 4240 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4241 4242 if (!tp->rx_opt.snd_wscale) 4243 __tcp_fast_path_on(tp, tp->snd_wnd); 4244 else 4245 tp->pred_flags = 0; 4246 4247 if (!sock_flag(sk, SOCK_DEAD)) { 4248 sk->sk_state_change(sk); 4249 sk_wake_async(sk, 0, POLL_OUT); 4250 } 4251 4252 if (sk->sk_write_pending || 4253 icsk->icsk_accept_queue.rskq_defer_accept || 4254 icsk->icsk_ack.pingpong) { 4255 /* Save one ACK. Data will be ready after 4256 * several ticks, if write_pending is set. 4257 * 4258 * It may be deleted, but with this feature tcpdumps 4259 * look so _wonderfully_ clever, that I was not able 4260 * to stand against the temptation 8) --ANK 4261 */ 4262 inet_csk_schedule_ack(sk); 4263 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4264 icsk->icsk_ack.ato = TCP_ATO_MIN; 4265 tcp_incr_quickack(sk); 4266 tcp_enter_quickack_mode(sk); 4267 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4268 TCP_DELACK_MAX, TCP_RTO_MAX); 4269 4270 discard: 4271 __kfree_skb(skb); 4272 return 0; 4273 } else { 4274 tcp_send_ack(sk); 4275 } 4276 return -1; 4277 } 4278 4279 /* No ACK in the segment */ 4280 4281 if (th->rst) { 4282 /* rfc793: 4283 * "If the RST bit is set 4284 * 4285 * Otherwise (no ACK) drop the segment and return." 4286 */ 4287 4288 goto discard_and_undo; 4289 } 4290 4291 /* PAWS check. */ 4292 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4293 goto discard_and_undo; 4294 4295 if (th->syn) { 4296 /* We see SYN without ACK. It is attempt of 4297 * simultaneous connect with crossed SYNs. 4298 * Particularly, it can be connect to self. 4299 */ 4300 tcp_set_state(sk, TCP_SYN_RECV); 4301 4302 if (tp->rx_opt.saw_tstamp) { 4303 tp->rx_opt.tstamp_ok = 1; 4304 tcp_store_ts_recent(tp); 4305 tp->tcp_header_len = 4306 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4307 } else { 4308 tp->tcp_header_len = sizeof(struct tcphdr); 4309 } 4310 4311 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4312 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4313 4314 /* RFC1323: The window in SYN & SYN/ACK segments is 4315 * never scaled. 4316 */ 4317 tp->snd_wnd = ntohs(th->window); 4318 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4319 tp->max_window = tp->snd_wnd; 4320 4321 TCP_ECN_rcv_syn(tp, th); 4322 4323 tcp_mtup_init(sk); 4324 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4325 tcp_initialize_rcv_mss(sk); 4326 4327 4328 tcp_send_synack(sk); 4329 #if 0 4330 /* Note, we could accept data and URG from this segment. 4331 * There are no obstacles to make this. 4332 * 4333 * However, if we ignore data in ACKless segments sometimes, 4334 * we have no reasons to accept it sometimes. 4335 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4336 * is not flawless. So, discard packet for sanity. 4337 * Uncomment this return to process the data. 4338 */ 4339 return -1; 4340 #else 4341 goto discard; 4342 #endif 4343 } 4344 /* "fifth, if neither of the SYN or RST bits is set then 4345 * drop the segment and return." 4346 */ 4347 4348 discard_and_undo: 4349 tcp_clear_options(&tp->rx_opt); 4350 tp->rx_opt.mss_clamp = saved_clamp; 4351 goto discard; 4352 4353 reset_and_undo: 4354 tcp_clear_options(&tp->rx_opt); 4355 tp->rx_opt.mss_clamp = saved_clamp; 4356 return 1; 4357 } 4358 4359 4360 /* 4361 * This function implements the receiving procedure of RFC 793 for 4362 * all states except ESTABLISHED and TIME_WAIT. 4363 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4364 * address independent. 4365 */ 4366 4367 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4368 struct tcphdr *th, unsigned len) 4369 { 4370 struct tcp_sock *tp = tcp_sk(sk); 4371 struct inet_connection_sock *icsk = inet_csk(sk); 4372 int queued = 0; 4373 4374 tp->rx_opt.saw_tstamp = 0; 4375 4376 switch (sk->sk_state) { 4377 case TCP_CLOSE: 4378 goto discard; 4379 4380 case TCP_LISTEN: 4381 if(th->ack) 4382 return 1; 4383 4384 if(th->rst) 4385 goto discard; 4386 4387 if(th->syn) { 4388 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 4389 return 1; 4390 4391 /* Now we have several options: In theory there is 4392 * nothing else in the frame. KA9Q has an option to 4393 * send data with the syn, BSD accepts data with the 4394 * syn up to the [to be] advertised window and 4395 * Solaris 2.1 gives you a protocol error. For now 4396 * we just ignore it, that fits the spec precisely 4397 * and avoids incompatibilities. It would be nice in 4398 * future to drop through and process the data. 4399 * 4400 * Now that TTCP is starting to be used we ought to 4401 * queue this data. 4402 * But, this leaves one open to an easy denial of 4403 * service attack, and SYN cookies can't defend 4404 * against this problem. So, we drop the data 4405 * in the interest of security over speed. 4406 */ 4407 goto discard; 4408 } 4409 goto discard; 4410 4411 case TCP_SYN_SENT: 4412 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4413 if (queued >= 0) 4414 return queued; 4415 4416 /* Do step6 onward by hand. */ 4417 tcp_urg(sk, skb, th); 4418 __kfree_skb(skb); 4419 tcp_data_snd_check(sk, tp); 4420 return 0; 4421 } 4422 4423 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4424 tcp_paws_discard(sk, skb)) { 4425 if (!th->rst) { 4426 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4427 tcp_send_dupack(sk, skb); 4428 goto discard; 4429 } 4430 /* Reset is accepted even if it did not pass PAWS. */ 4431 } 4432 4433 /* step 1: check sequence number */ 4434 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4435 if (!th->rst) 4436 tcp_send_dupack(sk, skb); 4437 goto discard; 4438 } 4439 4440 /* step 2: check RST bit */ 4441 if(th->rst) { 4442 tcp_reset(sk); 4443 goto discard; 4444 } 4445 4446 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4447 4448 /* step 3: check security and precedence [ignored] */ 4449 4450 /* step 4: 4451 * 4452 * Check for a SYN in window. 4453 */ 4454 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4455 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4456 tcp_reset(sk); 4457 return 1; 4458 } 4459 4460 /* step 5: check the ACK field */ 4461 if (th->ack) { 4462 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4463 4464 switch(sk->sk_state) { 4465 case TCP_SYN_RECV: 4466 if (acceptable) { 4467 tp->copied_seq = tp->rcv_nxt; 4468 mb(); 4469 tcp_set_state(sk, TCP_ESTABLISHED); 4470 sk->sk_state_change(sk); 4471 4472 /* Note, that this wakeup is only for marginal 4473 * crossed SYN case. Passively open sockets 4474 * are not waked up, because sk->sk_sleep == 4475 * NULL and sk->sk_socket == NULL. 4476 */ 4477 if (sk->sk_socket) { 4478 sk_wake_async(sk,0,POLL_OUT); 4479 } 4480 4481 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4482 tp->snd_wnd = ntohs(th->window) << 4483 tp->rx_opt.snd_wscale; 4484 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4485 TCP_SKB_CB(skb)->seq); 4486 4487 /* tcp_ack considers this ACK as duplicate 4488 * and does not calculate rtt. 4489 * Fix it at least with timestamps. 4490 */ 4491 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4492 !tp->srtt) 4493 tcp_ack_saw_tstamp(sk, 0); 4494 4495 if (tp->rx_opt.tstamp_ok) 4496 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4497 4498 /* Make sure socket is routed, for 4499 * correct metrics. 4500 */ 4501 icsk->icsk_af_ops->rebuild_header(sk); 4502 4503 tcp_init_metrics(sk); 4504 4505 tcp_init_congestion_control(sk); 4506 4507 /* Prevent spurious tcp_cwnd_restart() on 4508 * first data packet. 4509 */ 4510 tp->lsndtime = tcp_time_stamp; 4511 4512 tcp_mtup_init(sk); 4513 tcp_initialize_rcv_mss(sk); 4514 tcp_init_buffer_space(sk); 4515 tcp_fast_path_on(tp); 4516 } else { 4517 return 1; 4518 } 4519 break; 4520 4521 case TCP_FIN_WAIT1: 4522 if (tp->snd_una == tp->write_seq) { 4523 tcp_set_state(sk, TCP_FIN_WAIT2); 4524 sk->sk_shutdown |= SEND_SHUTDOWN; 4525 dst_confirm(sk->sk_dst_cache); 4526 4527 if (!sock_flag(sk, SOCK_DEAD)) 4528 /* Wake up lingering close() */ 4529 sk->sk_state_change(sk); 4530 else { 4531 int tmo; 4532 4533 if (tp->linger2 < 0 || 4534 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4535 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4536 tcp_done(sk); 4537 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4538 return 1; 4539 } 4540 4541 tmo = tcp_fin_time(sk); 4542 if (tmo > TCP_TIMEWAIT_LEN) { 4543 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4544 } else if (th->fin || sock_owned_by_user(sk)) { 4545 /* Bad case. We could lose such FIN otherwise. 4546 * It is not a big problem, but it looks confusing 4547 * and not so rare event. We still can lose it now, 4548 * if it spins in bh_lock_sock(), but it is really 4549 * marginal case. 4550 */ 4551 inet_csk_reset_keepalive_timer(sk, tmo); 4552 } else { 4553 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4554 goto discard; 4555 } 4556 } 4557 } 4558 break; 4559 4560 case TCP_CLOSING: 4561 if (tp->snd_una == tp->write_seq) { 4562 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4563 goto discard; 4564 } 4565 break; 4566 4567 case TCP_LAST_ACK: 4568 if (tp->snd_una == tp->write_seq) { 4569 tcp_update_metrics(sk); 4570 tcp_done(sk); 4571 goto discard; 4572 } 4573 break; 4574 } 4575 } else 4576 goto discard; 4577 4578 /* step 6: check the URG bit */ 4579 tcp_urg(sk, skb, th); 4580 4581 /* step 7: process the segment text */ 4582 switch (sk->sk_state) { 4583 case TCP_CLOSE_WAIT: 4584 case TCP_CLOSING: 4585 case TCP_LAST_ACK: 4586 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4587 break; 4588 case TCP_FIN_WAIT1: 4589 case TCP_FIN_WAIT2: 4590 /* RFC 793 says to queue data in these states, 4591 * RFC 1122 says we MUST send a reset. 4592 * BSD 4.4 also does reset. 4593 */ 4594 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4595 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4596 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4597 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4598 tcp_reset(sk); 4599 return 1; 4600 } 4601 } 4602 /* Fall through */ 4603 case TCP_ESTABLISHED: 4604 tcp_data_queue(sk, skb); 4605 queued = 1; 4606 break; 4607 } 4608 4609 /* tcp_data could move socket to TIME-WAIT */ 4610 if (sk->sk_state != TCP_CLOSE) { 4611 tcp_data_snd_check(sk, tp); 4612 tcp_ack_snd_check(sk); 4613 } 4614 4615 if (!queued) { 4616 discard: 4617 __kfree_skb(skb); 4618 } 4619 return 0; 4620 } 4621 4622 EXPORT_SYMBOL(sysctl_tcp_ecn); 4623 EXPORT_SYMBOL(sysctl_tcp_reordering); 4624 EXPORT_SYMBOL(tcp_parse_options); 4625 EXPORT_SYMBOL(tcp_rcv_established); 4626 EXPORT_SYMBOL(tcp_rcv_state_process); 4627 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 4628