xref: /linux/net/ipv4/tcp_input.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103 
104 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
105 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
106 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
107 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
108 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
109 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
110 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
111 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
114 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
118 
119 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 #define REXMIT_NONE	0 /* no loss recovery to do */
128 #define REXMIT_LOST	1 /* retransmit packets marked lost */
129 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
130 
131 /* Adapt the MSS value used to make delayed ack decision to the
132  * real world.
133  */
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 	struct inet_connection_sock *icsk = inet_csk(sk);
137 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 	unsigned int len;
139 
140 	icsk->icsk_ack.last_seg_size = 0;
141 
142 	/* skb->len may jitter because of SACKs, even if peer
143 	 * sends good full-sized frames.
144 	 */
145 	len = skb_shinfo(skb)->gso_size ? : skb->len;
146 	if (len >= icsk->icsk_ack.rcv_mss) {
147 		icsk->icsk_ack.rcv_mss = len;
148 	} else {
149 		/* Otherwise, we make more careful check taking into account,
150 		 * that SACKs block is variable.
151 		 *
152 		 * "len" is invariant segment length, including TCP header.
153 		 */
154 		len += skb->data - skb_transport_header(skb);
155 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 		    /* If PSH is not set, packet should be
157 		     * full sized, provided peer TCP is not badly broken.
158 		     * This observation (if it is correct 8)) allows
159 		     * to handle super-low mtu links fairly.
160 		     */
161 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 			/* Subtract also invariant (if peer is RFC compliant),
164 			 * tcp header plus fixed timestamp option length.
165 			 * Resulting "len" is MSS free of SACK jitter.
166 			 */
167 			len -= tcp_sk(sk)->tcp_header_len;
168 			icsk->icsk_ack.last_seg_size = len;
169 			if (len == lss) {
170 				icsk->icsk_ack.rcv_mss = len;
171 				return;
172 			}
173 		}
174 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
177 	}
178 }
179 
180 static void tcp_incr_quickack(struct sock *sk)
181 {
182 	struct inet_connection_sock *icsk = inet_csk(sk);
183 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184 
185 	if (quickacks == 0)
186 		quickacks = 2;
187 	if (quickacks > icsk->icsk_ack.quick)
188 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
189 }
190 
191 static void tcp_enter_quickack_mode(struct sock *sk)
192 {
193 	struct inet_connection_sock *icsk = inet_csk(sk);
194 	tcp_incr_quickack(sk);
195 	icsk->icsk_ack.pingpong = 0;
196 	icsk->icsk_ack.ato = TCP_ATO_MIN;
197 }
198 
199 /* Send ACKs quickly, if "quick" count is not exhausted
200  * and the session is not interactive.
201  */
202 
203 static bool tcp_in_quickack_mode(struct sock *sk)
204 {
205 	const struct inet_connection_sock *icsk = inet_csk(sk);
206 	const struct dst_entry *dst = __sk_dst_get(sk);
207 
208 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
210 }
211 
212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
213 {
214 	if (tp->ecn_flags & TCP_ECN_OK)
215 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216 }
217 
218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
219 {
220 	if (tcp_hdr(skb)->cwr)
221 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223 
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
225 {
226 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227 }
228 
229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
230 {
231 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
232 	case INET_ECN_NOT_ECT:
233 		/* Funny extension: if ECT is not set on a segment,
234 		 * and we already seen ECT on a previous segment,
235 		 * it is probably a retransmit.
236 		 */
237 		if (tp->ecn_flags & TCP_ECN_SEEN)
238 			tcp_enter_quickack_mode((struct sock *)tp);
239 		break;
240 	case INET_ECN_CE:
241 		if (tcp_ca_needs_ecn((struct sock *)tp))
242 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243 
244 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 			/* Better not delay acks, sender can have a very low cwnd */
246 			tcp_enter_quickack_mode((struct sock *)tp);
247 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 		}
249 		tp->ecn_flags |= TCP_ECN_SEEN;
250 		break;
251 	default:
252 		if (tcp_ca_needs_ecn((struct sock *)tp))
253 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
254 		tp->ecn_flags |= TCP_ECN_SEEN;
255 		break;
256 	}
257 }
258 
259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260 {
261 	if (tp->ecn_flags & TCP_ECN_OK)
262 		__tcp_ecn_check_ce(tp, skb);
263 }
264 
265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
268 		tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270 
271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
274 		tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276 
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
280 		return true;
281 	return false;
282 }
283 
284 /* Buffer size and advertised window tuning.
285  *
286  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287  */
288 
289 static void tcp_sndbuf_expand(struct sock *sk)
290 {
291 	const struct tcp_sock *tp = tcp_sk(sk);
292 	int sndmem, per_mss;
293 	u32 nr_segs;
294 
295 	/* Worst case is non GSO/TSO : each frame consumes one skb
296 	 * and skb->head is kmalloced using power of two area of memory
297 	 */
298 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
299 		  MAX_TCP_HEADER +
300 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
301 
302 	per_mss = roundup_pow_of_two(per_mss) +
303 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
304 
305 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
306 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
307 
308 	/* Fast Recovery (RFC 5681 3.2) :
309 	 * Cubic needs 1.7 factor, rounded to 2 to include
310 	 * extra cushion (application might react slowly to POLLOUT)
311 	 */
312 	sndmem = 2 * nr_segs * per_mss;
313 
314 	if (sk->sk_sndbuf < sndmem)
315 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
316 }
317 
318 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
319  *
320  * All tcp_full_space() is split to two parts: "network" buffer, allocated
321  * forward and advertised in receiver window (tp->rcv_wnd) and
322  * "application buffer", required to isolate scheduling/application
323  * latencies from network.
324  * window_clamp is maximal advertised window. It can be less than
325  * tcp_full_space(), in this case tcp_full_space() - window_clamp
326  * is reserved for "application" buffer. The less window_clamp is
327  * the smoother our behaviour from viewpoint of network, but the lower
328  * throughput and the higher sensitivity of the connection to losses. 8)
329  *
330  * rcv_ssthresh is more strict window_clamp used at "slow start"
331  * phase to predict further behaviour of this connection.
332  * It is used for two goals:
333  * - to enforce header prediction at sender, even when application
334  *   requires some significant "application buffer". It is check #1.
335  * - to prevent pruning of receive queue because of misprediction
336  *   of receiver window. Check #2.
337  *
338  * The scheme does not work when sender sends good segments opening
339  * window and then starts to feed us spaghetti. But it should work
340  * in common situations. Otherwise, we have to rely on queue collapsing.
341  */
342 
343 /* Slow part of check#2. */
344 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
345 {
346 	struct tcp_sock *tp = tcp_sk(sk);
347 	/* Optimize this! */
348 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
349 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
350 
351 	while (tp->rcv_ssthresh <= window) {
352 		if (truesize <= skb->len)
353 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
354 
355 		truesize >>= 1;
356 		window >>= 1;
357 	}
358 	return 0;
359 }
360 
361 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
362 {
363 	struct tcp_sock *tp = tcp_sk(sk);
364 
365 	/* Check #1 */
366 	if (tp->rcv_ssthresh < tp->window_clamp &&
367 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
368 	    !tcp_under_memory_pressure(sk)) {
369 		int incr;
370 
371 		/* Check #2. Increase window, if skb with such overhead
372 		 * will fit to rcvbuf in future.
373 		 */
374 		if (tcp_win_from_space(skb->truesize) <= skb->len)
375 			incr = 2 * tp->advmss;
376 		else
377 			incr = __tcp_grow_window(sk, skb);
378 
379 		if (incr) {
380 			incr = max_t(int, incr, 2 * skb->len);
381 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
382 					       tp->window_clamp);
383 			inet_csk(sk)->icsk_ack.quick |= 1;
384 		}
385 	}
386 }
387 
388 /* 3. Tuning rcvbuf, when connection enters established state. */
389 static void tcp_fixup_rcvbuf(struct sock *sk)
390 {
391 	u32 mss = tcp_sk(sk)->advmss;
392 	int rcvmem;
393 
394 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
395 		 tcp_default_init_rwnd(mss);
396 
397 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
398 	 * Allow enough cushion so that sender is not limited by our window
399 	 */
400 	if (sysctl_tcp_moderate_rcvbuf)
401 		rcvmem <<= 2;
402 
403 	if (sk->sk_rcvbuf < rcvmem)
404 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
405 }
406 
407 /* 4. Try to fixup all. It is made immediately after connection enters
408  *    established state.
409  */
410 void tcp_init_buffer_space(struct sock *sk)
411 {
412 	struct tcp_sock *tp = tcp_sk(sk);
413 	int maxwin;
414 
415 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
416 		tcp_fixup_rcvbuf(sk);
417 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
418 		tcp_sndbuf_expand(sk);
419 
420 	tp->rcvq_space.space = tp->rcv_wnd;
421 	tp->rcvq_space.time = tcp_time_stamp;
422 	tp->rcvq_space.seq = tp->copied_seq;
423 
424 	maxwin = tcp_full_space(sk);
425 
426 	if (tp->window_clamp >= maxwin) {
427 		tp->window_clamp = maxwin;
428 
429 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
430 			tp->window_clamp = max(maxwin -
431 					       (maxwin >> sysctl_tcp_app_win),
432 					       4 * tp->advmss);
433 	}
434 
435 	/* Force reservation of one segment. */
436 	if (sysctl_tcp_app_win &&
437 	    tp->window_clamp > 2 * tp->advmss &&
438 	    tp->window_clamp + tp->advmss > maxwin)
439 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
440 
441 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
442 	tp->snd_cwnd_stamp = tcp_time_stamp;
443 }
444 
445 /* 5. Recalculate window clamp after socket hit its memory bounds. */
446 static void tcp_clamp_window(struct sock *sk)
447 {
448 	struct tcp_sock *tp = tcp_sk(sk);
449 	struct inet_connection_sock *icsk = inet_csk(sk);
450 
451 	icsk->icsk_ack.quick = 0;
452 
453 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
454 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
455 	    !tcp_under_memory_pressure(sk) &&
456 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
457 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
458 				    sysctl_tcp_rmem[2]);
459 	}
460 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
461 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
462 }
463 
464 /* Initialize RCV_MSS value.
465  * RCV_MSS is an our guess about MSS used by the peer.
466  * We haven't any direct information about the MSS.
467  * It's better to underestimate the RCV_MSS rather than overestimate.
468  * Overestimations make us ACKing less frequently than needed.
469  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
470  */
471 void tcp_initialize_rcv_mss(struct sock *sk)
472 {
473 	const struct tcp_sock *tp = tcp_sk(sk);
474 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
475 
476 	hint = min(hint, tp->rcv_wnd / 2);
477 	hint = min(hint, TCP_MSS_DEFAULT);
478 	hint = max(hint, TCP_MIN_MSS);
479 
480 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
481 }
482 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
483 
484 /* Receiver "autotuning" code.
485  *
486  * The algorithm for RTT estimation w/o timestamps is based on
487  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
488  * <http://public.lanl.gov/radiant/pubs.html#DRS>
489  *
490  * More detail on this code can be found at
491  * <http://staff.psc.edu/jheffner/>,
492  * though this reference is out of date.  A new paper
493  * is pending.
494  */
495 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
496 {
497 	u32 new_sample = tp->rcv_rtt_est.rtt;
498 	long m = sample;
499 
500 	if (m == 0)
501 		m = 1;
502 
503 	if (new_sample != 0) {
504 		/* If we sample in larger samples in the non-timestamp
505 		 * case, we could grossly overestimate the RTT especially
506 		 * with chatty applications or bulk transfer apps which
507 		 * are stalled on filesystem I/O.
508 		 *
509 		 * Also, since we are only going for a minimum in the
510 		 * non-timestamp case, we do not smooth things out
511 		 * else with timestamps disabled convergence takes too
512 		 * long.
513 		 */
514 		if (!win_dep) {
515 			m -= (new_sample >> 3);
516 			new_sample += m;
517 		} else {
518 			m <<= 3;
519 			if (m < new_sample)
520 				new_sample = m;
521 		}
522 	} else {
523 		/* No previous measure. */
524 		new_sample = m << 3;
525 	}
526 
527 	if (tp->rcv_rtt_est.rtt != new_sample)
528 		tp->rcv_rtt_est.rtt = new_sample;
529 }
530 
531 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
532 {
533 	if (tp->rcv_rtt_est.time == 0)
534 		goto new_measure;
535 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
536 		return;
537 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
538 
539 new_measure:
540 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
541 	tp->rcv_rtt_est.time = tcp_time_stamp;
542 }
543 
544 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
545 					  const struct sk_buff *skb)
546 {
547 	struct tcp_sock *tp = tcp_sk(sk);
548 	if (tp->rx_opt.rcv_tsecr &&
549 	    (TCP_SKB_CB(skb)->end_seq -
550 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
551 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
552 }
553 
554 /*
555  * This function should be called every time data is copied to user space.
556  * It calculates the appropriate TCP receive buffer space.
557  */
558 void tcp_rcv_space_adjust(struct sock *sk)
559 {
560 	struct tcp_sock *tp = tcp_sk(sk);
561 	int time;
562 	int copied;
563 
564 	time = tcp_time_stamp - tp->rcvq_space.time;
565 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
566 		return;
567 
568 	/* Number of bytes copied to user in last RTT */
569 	copied = tp->copied_seq - tp->rcvq_space.seq;
570 	if (copied <= tp->rcvq_space.space)
571 		goto new_measure;
572 
573 	/* A bit of theory :
574 	 * copied = bytes received in previous RTT, our base window
575 	 * To cope with packet losses, we need a 2x factor
576 	 * To cope with slow start, and sender growing its cwin by 100 %
577 	 * every RTT, we need a 4x factor, because the ACK we are sending
578 	 * now is for the next RTT, not the current one :
579 	 * <prev RTT . ><current RTT .. ><next RTT .... >
580 	 */
581 
582 	if (sysctl_tcp_moderate_rcvbuf &&
583 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
584 		int rcvwin, rcvmem, rcvbuf;
585 
586 		/* minimal window to cope with packet losses, assuming
587 		 * steady state. Add some cushion because of small variations.
588 		 */
589 		rcvwin = (copied << 1) + 16 * tp->advmss;
590 
591 		/* If rate increased by 25%,
592 		 *	assume slow start, rcvwin = 3 * copied
593 		 * If rate increased by 50%,
594 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
595 		 */
596 		if (copied >=
597 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
598 			if (copied >=
599 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
600 				rcvwin <<= 1;
601 			else
602 				rcvwin += (rcvwin >> 1);
603 		}
604 
605 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
606 		while (tcp_win_from_space(rcvmem) < tp->advmss)
607 			rcvmem += 128;
608 
609 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
610 		if (rcvbuf > sk->sk_rcvbuf) {
611 			sk->sk_rcvbuf = rcvbuf;
612 
613 			/* Make the window clamp follow along.  */
614 			tp->window_clamp = rcvwin;
615 		}
616 	}
617 	tp->rcvq_space.space = copied;
618 
619 new_measure:
620 	tp->rcvq_space.seq = tp->copied_seq;
621 	tp->rcvq_space.time = tcp_time_stamp;
622 }
623 
624 /* There is something which you must keep in mind when you analyze the
625  * behavior of the tp->ato delayed ack timeout interval.  When a
626  * connection starts up, we want to ack as quickly as possible.  The
627  * problem is that "good" TCP's do slow start at the beginning of data
628  * transmission.  The means that until we send the first few ACK's the
629  * sender will sit on his end and only queue most of his data, because
630  * he can only send snd_cwnd unacked packets at any given time.  For
631  * each ACK we send, he increments snd_cwnd and transmits more of his
632  * queue.  -DaveM
633  */
634 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
635 {
636 	struct tcp_sock *tp = tcp_sk(sk);
637 	struct inet_connection_sock *icsk = inet_csk(sk);
638 	u32 now;
639 
640 	inet_csk_schedule_ack(sk);
641 
642 	tcp_measure_rcv_mss(sk, skb);
643 
644 	tcp_rcv_rtt_measure(tp);
645 
646 	now = tcp_time_stamp;
647 
648 	if (!icsk->icsk_ack.ato) {
649 		/* The _first_ data packet received, initialize
650 		 * delayed ACK engine.
651 		 */
652 		tcp_incr_quickack(sk);
653 		icsk->icsk_ack.ato = TCP_ATO_MIN;
654 	} else {
655 		int m = now - icsk->icsk_ack.lrcvtime;
656 
657 		if (m <= TCP_ATO_MIN / 2) {
658 			/* The fastest case is the first. */
659 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
660 		} else if (m < icsk->icsk_ack.ato) {
661 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
662 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
663 				icsk->icsk_ack.ato = icsk->icsk_rto;
664 		} else if (m > icsk->icsk_rto) {
665 			/* Too long gap. Apparently sender failed to
666 			 * restart window, so that we send ACKs quickly.
667 			 */
668 			tcp_incr_quickack(sk);
669 			sk_mem_reclaim(sk);
670 		}
671 	}
672 	icsk->icsk_ack.lrcvtime = now;
673 
674 	tcp_ecn_check_ce(tp, skb);
675 
676 	if (skb->len >= 128)
677 		tcp_grow_window(sk, skb);
678 }
679 
680 /* Called to compute a smoothed rtt estimate. The data fed to this
681  * routine either comes from timestamps, or from segments that were
682  * known _not_ to have been retransmitted [see Karn/Partridge
683  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
684  * piece by Van Jacobson.
685  * NOTE: the next three routines used to be one big routine.
686  * To save cycles in the RFC 1323 implementation it was better to break
687  * it up into three procedures. -- erics
688  */
689 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
690 {
691 	struct tcp_sock *tp = tcp_sk(sk);
692 	long m = mrtt_us; /* RTT */
693 	u32 srtt = tp->srtt_us;
694 
695 	/*	The following amusing code comes from Jacobson's
696 	 *	article in SIGCOMM '88.  Note that rtt and mdev
697 	 *	are scaled versions of rtt and mean deviation.
698 	 *	This is designed to be as fast as possible
699 	 *	m stands for "measurement".
700 	 *
701 	 *	On a 1990 paper the rto value is changed to:
702 	 *	RTO = rtt + 4 * mdev
703 	 *
704 	 * Funny. This algorithm seems to be very broken.
705 	 * These formulae increase RTO, when it should be decreased, increase
706 	 * too slowly, when it should be increased quickly, decrease too quickly
707 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
708 	 * does not matter how to _calculate_ it. Seems, it was trap
709 	 * that VJ failed to avoid. 8)
710 	 */
711 	if (srtt != 0) {
712 		m -= (srtt >> 3);	/* m is now error in rtt est */
713 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
714 		if (m < 0) {
715 			m = -m;		/* m is now abs(error) */
716 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
717 			/* This is similar to one of Eifel findings.
718 			 * Eifel blocks mdev updates when rtt decreases.
719 			 * This solution is a bit different: we use finer gain
720 			 * for mdev in this case (alpha*beta).
721 			 * Like Eifel it also prevents growth of rto,
722 			 * but also it limits too fast rto decreases,
723 			 * happening in pure Eifel.
724 			 */
725 			if (m > 0)
726 				m >>= 3;
727 		} else {
728 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
729 		}
730 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
731 		if (tp->mdev_us > tp->mdev_max_us) {
732 			tp->mdev_max_us = tp->mdev_us;
733 			if (tp->mdev_max_us > tp->rttvar_us)
734 				tp->rttvar_us = tp->mdev_max_us;
735 		}
736 		if (after(tp->snd_una, tp->rtt_seq)) {
737 			if (tp->mdev_max_us < tp->rttvar_us)
738 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
739 			tp->rtt_seq = tp->snd_nxt;
740 			tp->mdev_max_us = tcp_rto_min_us(sk);
741 		}
742 	} else {
743 		/* no previous measure. */
744 		srtt = m << 3;		/* take the measured time to be rtt */
745 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
746 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
747 		tp->mdev_max_us = tp->rttvar_us;
748 		tp->rtt_seq = tp->snd_nxt;
749 	}
750 	tp->srtt_us = max(1U, srtt);
751 }
752 
753 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
754  * Note: TCP stack does not yet implement pacing.
755  * FQ packet scheduler can be used to implement cheap but effective
756  * TCP pacing, to smooth the burst on large writes when packets
757  * in flight is significantly lower than cwnd (or rwin)
758  */
759 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
760 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
761 
762 static void tcp_update_pacing_rate(struct sock *sk)
763 {
764 	const struct tcp_sock *tp = tcp_sk(sk);
765 	u64 rate;
766 
767 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
768 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
769 
770 	/* current rate is (cwnd * mss) / srtt
771 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
772 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
773 	 *
774 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
775 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
776 	 *	 end of slow start and should slow down.
777 	 */
778 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
779 		rate *= sysctl_tcp_pacing_ss_ratio;
780 	else
781 		rate *= sysctl_tcp_pacing_ca_ratio;
782 
783 	rate *= max(tp->snd_cwnd, tp->packets_out);
784 
785 	if (likely(tp->srtt_us))
786 		do_div(rate, tp->srtt_us);
787 
788 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
789 	 * without any lock. We want to make sure compiler wont store
790 	 * intermediate values in this location.
791 	 */
792 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
793 						sk->sk_max_pacing_rate);
794 }
795 
796 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
797  * routine referred to above.
798  */
799 static void tcp_set_rto(struct sock *sk)
800 {
801 	const struct tcp_sock *tp = tcp_sk(sk);
802 	/* Old crap is replaced with new one. 8)
803 	 *
804 	 * More seriously:
805 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
806 	 *    It cannot be less due to utterly erratic ACK generation made
807 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
808 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
809 	 *    is invisible. Actually, Linux-2.4 also generates erratic
810 	 *    ACKs in some circumstances.
811 	 */
812 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
813 
814 	/* 2. Fixups made earlier cannot be right.
815 	 *    If we do not estimate RTO correctly without them,
816 	 *    all the algo is pure shit and should be replaced
817 	 *    with correct one. It is exactly, which we pretend to do.
818 	 */
819 
820 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
821 	 * guarantees that rto is higher.
822 	 */
823 	tcp_bound_rto(sk);
824 }
825 
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829 
830 	if (!cwnd)
831 		cwnd = TCP_INIT_CWND;
832 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834 
835 /*
836  * Packet counting of FACK is based on in-order assumptions, therefore TCP
837  * disables it when reordering is detected
838  */
839 void tcp_disable_fack(struct tcp_sock *tp)
840 {
841 	/* RFC3517 uses different metric in lost marker => reset on change */
842 	if (tcp_is_fack(tp))
843 		tp->lost_skb_hint = NULL;
844 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
845 }
846 
847 /* Take a notice that peer is sending D-SACKs */
848 static void tcp_dsack_seen(struct tcp_sock *tp)
849 {
850 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
851 }
852 
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 				  const int ts)
855 {
856 	struct tcp_sock *tp = tcp_sk(sk);
857 	if (metric > tp->reordering) {
858 		int mib_idx;
859 
860 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
861 
862 		/* This exciting event is worth to be remembered. 8) */
863 		if (ts)
864 			mib_idx = LINUX_MIB_TCPTSREORDER;
865 		else if (tcp_is_reno(tp))
866 			mib_idx = LINUX_MIB_TCPRENOREORDER;
867 		else if (tcp_is_fack(tp))
868 			mib_idx = LINUX_MIB_TCPFACKREORDER;
869 		else
870 			mib_idx = LINUX_MIB_TCPSACKREORDER;
871 
872 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
873 #if FASTRETRANS_DEBUG > 1
874 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
875 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
876 			 tp->reordering,
877 			 tp->fackets_out,
878 			 tp->sacked_out,
879 			 tp->undo_marker ? tp->undo_retrans : 0);
880 #endif
881 		tcp_disable_fack(tp);
882 	}
883 
884 	if (metric > 0)
885 		tcp_disable_early_retrans(tp);
886 	tp->rack.reord = 1;
887 }
888 
889 /* This must be called before lost_out is incremented */
890 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
891 {
892 	if (!tp->retransmit_skb_hint ||
893 	    before(TCP_SKB_CB(skb)->seq,
894 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
895 		tp->retransmit_skb_hint = skb;
896 
897 	if (!tp->lost_out ||
898 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
899 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
900 }
901 
902 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
903 {
904 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
905 		tcp_verify_retransmit_hint(tp, skb);
906 
907 		tp->lost_out += tcp_skb_pcount(skb);
908 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
909 	}
910 }
911 
912 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
913 {
914 	tcp_verify_retransmit_hint(tp, skb);
915 
916 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
917 		tp->lost_out += tcp_skb_pcount(skb);
918 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
919 	}
920 }
921 
922 /* This procedure tags the retransmission queue when SACKs arrive.
923  *
924  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
925  * Packets in queue with these bits set are counted in variables
926  * sacked_out, retrans_out and lost_out, correspondingly.
927  *
928  * Valid combinations are:
929  * Tag  InFlight	Description
930  * 0	1		- orig segment is in flight.
931  * S	0		- nothing flies, orig reached receiver.
932  * L	0		- nothing flies, orig lost by net.
933  * R	2		- both orig and retransmit are in flight.
934  * L|R	1		- orig is lost, retransmit is in flight.
935  * S|R  1		- orig reached receiver, retrans is still in flight.
936  * (L|S|R is logically valid, it could occur when L|R is sacked,
937  *  but it is equivalent to plain S and code short-curcuits it to S.
938  *  L|S is logically invalid, it would mean -1 packet in flight 8))
939  *
940  * These 6 states form finite state machine, controlled by the following events:
941  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
942  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
943  * 3. Loss detection event of two flavors:
944  *	A. Scoreboard estimator decided the packet is lost.
945  *	   A'. Reno "three dupacks" marks head of queue lost.
946  *	   A''. Its FACK modification, head until snd.fack is lost.
947  *	B. SACK arrives sacking SND.NXT at the moment, when the
948  *	   segment was retransmitted.
949  * 4. D-SACK added new rule: D-SACK changes any tag to S.
950  *
951  * It is pleasant to note, that state diagram turns out to be commutative,
952  * so that we are allowed not to be bothered by order of our actions,
953  * when multiple events arrive simultaneously. (see the function below).
954  *
955  * Reordering detection.
956  * --------------------
957  * Reordering metric is maximal distance, which a packet can be displaced
958  * in packet stream. With SACKs we can estimate it:
959  *
960  * 1. SACK fills old hole and the corresponding segment was not
961  *    ever retransmitted -> reordering. Alas, we cannot use it
962  *    when segment was retransmitted.
963  * 2. The last flaw is solved with D-SACK. D-SACK arrives
964  *    for retransmitted and already SACKed segment -> reordering..
965  * Both of these heuristics are not used in Loss state, when we cannot
966  * account for retransmits accurately.
967  *
968  * SACK block validation.
969  * ----------------------
970  *
971  * SACK block range validation checks that the received SACK block fits to
972  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
973  * Note that SND.UNA is not included to the range though being valid because
974  * it means that the receiver is rather inconsistent with itself reporting
975  * SACK reneging when it should advance SND.UNA. Such SACK block this is
976  * perfectly valid, however, in light of RFC2018 which explicitly states
977  * that "SACK block MUST reflect the newest segment.  Even if the newest
978  * segment is going to be discarded ...", not that it looks very clever
979  * in case of head skb. Due to potentional receiver driven attacks, we
980  * choose to avoid immediate execution of a walk in write queue due to
981  * reneging and defer head skb's loss recovery to standard loss recovery
982  * procedure that will eventually trigger (nothing forbids us doing this).
983  *
984  * Implements also blockage to start_seq wrap-around. Problem lies in the
985  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
986  * there's no guarantee that it will be before snd_nxt (n). The problem
987  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
988  * wrap (s_w):
989  *
990  *         <- outs wnd ->                          <- wrapzone ->
991  *         u     e      n                         u_w   e_w  s n_w
992  *         |     |      |                          |     |   |  |
993  * |<------------+------+----- TCP seqno space --------------+---------->|
994  * ...-- <2^31 ->|                                           |<--------...
995  * ...---- >2^31 ------>|                                    |<--------...
996  *
997  * Current code wouldn't be vulnerable but it's better still to discard such
998  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
999  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001  * equal to the ideal case (infinite seqno space without wrap caused issues).
1002  *
1003  * With D-SACK the lower bound is extended to cover sequence space below
1004  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005  * again, D-SACK block must not to go across snd_una (for the same reason as
1006  * for the normal SACK blocks, explained above). But there all simplicity
1007  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008  * fully below undo_marker they do not affect behavior in anyway and can
1009  * therefore be safely ignored. In rare cases (which are more or less
1010  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011  * fragmentation and packet reordering past skb's retransmission. To consider
1012  * them correctly, the acceptable range must be extended even more though
1013  * the exact amount is rather hard to quantify. However, tp->max_window can
1014  * be used as an exaggerated estimate.
1015  */
1016 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017 				   u32 start_seq, u32 end_seq)
1018 {
1019 	/* Too far in future, or reversed (interpretation is ambiguous) */
1020 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021 		return false;
1022 
1023 	/* Nasty start_seq wrap-around check (see comments above) */
1024 	if (!before(start_seq, tp->snd_nxt))
1025 		return false;
1026 
1027 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1028 	 * start_seq == snd_una is non-sensical (see comments above)
1029 	 */
1030 	if (after(start_seq, tp->snd_una))
1031 		return true;
1032 
1033 	if (!is_dsack || !tp->undo_marker)
1034 		return false;
1035 
1036 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1037 	if (after(end_seq, tp->snd_una))
1038 		return false;
1039 
1040 	if (!before(start_seq, tp->undo_marker))
1041 		return true;
1042 
1043 	/* Too old */
1044 	if (!after(end_seq, tp->undo_marker))
1045 		return false;
1046 
1047 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1048 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1049 	 */
1050 	return !before(start_seq, end_seq - tp->max_window);
1051 }
1052 
1053 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054 			    struct tcp_sack_block_wire *sp, int num_sacks,
1055 			    u32 prior_snd_una)
1056 {
1057 	struct tcp_sock *tp = tcp_sk(sk);
1058 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060 	bool dup_sack = false;
1061 
1062 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063 		dup_sack = true;
1064 		tcp_dsack_seen(tp);
1065 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066 	} else if (num_sacks > 1) {
1067 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069 
1070 		if (!after(end_seq_0, end_seq_1) &&
1071 		    !before(start_seq_0, start_seq_1)) {
1072 			dup_sack = true;
1073 			tcp_dsack_seen(tp);
1074 			NET_INC_STATS_BH(sock_net(sk),
1075 					LINUX_MIB_TCPDSACKOFORECV);
1076 		}
1077 	}
1078 
1079 	/* D-SACK for already forgotten data... Do dumb counting. */
1080 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081 	    !after(end_seq_0, prior_snd_una) &&
1082 	    after(end_seq_0, tp->undo_marker))
1083 		tp->undo_retrans--;
1084 
1085 	return dup_sack;
1086 }
1087 
1088 struct tcp_sacktag_state {
1089 	int	reord;
1090 	int	fack_count;
1091 	/* Timestamps for earliest and latest never-retransmitted segment
1092 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093 	 * but congestion control should still get an accurate delay signal.
1094 	 */
1095 	struct skb_mstamp first_sackt;
1096 	struct skb_mstamp last_sackt;
1097 	int	flag;
1098 };
1099 
1100 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101  * the incoming SACK may not exactly match but we can find smaller MSS
1102  * aligned portion of it that matches. Therefore we might need to fragment
1103  * which may fail and creates some hassle (caller must handle error case
1104  * returns).
1105  *
1106  * FIXME: this could be merged to shift decision code
1107  */
1108 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109 				  u32 start_seq, u32 end_seq)
1110 {
1111 	int err;
1112 	bool in_sack;
1113 	unsigned int pkt_len;
1114 	unsigned int mss;
1115 
1116 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118 
1119 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121 		mss = tcp_skb_mss(skb);
1122 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123 
1124 		if (!in_sack) {
1125 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126 			if (pkt_len < mss)
1127 				pkt_len = mss;
1128 		} else {
1129 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130 			if (pkt_len < mss)
1131 				return -EINVAL;
1132 		}
1133 
1134 		/* Round if necessary so that SACKs cover only full MSSes
1135 		 * and/or the remaining small portion (if present)
1136 		 */
1137 		if (pkt_len > mss) {
1138 			unsigned int new_len = (pkt_len / mss) * mss;
1139 			if (!in_sack && new_len < pkt_len) {
1140 				new_len += mss;
1141 				if (new_len >= skb->len)
1142 					return 0;
1143 			}
1144 			pkt_len = new_len;
1145 		}
1146 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147 		if (err < 0)
1148 			return err;
1149 	}
1150 
1151 	return in_sack;
1152 }
1153 
1154 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155 static u8 tcp_sacktag_one(struct sock *sk,
1156 			  struct tcp_sacktag_state *state, u8 sacked,
1157 			  u32 start_seq, u32 end_seq,
1158 			  int dup_sack, int pcount,
1159 			  const struct skb_mstamp *xmit_time)
1160 {
1161 	struct tcp_sock *tp = tcp_sk(sk);
1162 	int fack_count = state->fack_count;
1163 
1164 	/* Account D-SACK for retransmitted packet. */
1165 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1167 		    after(end_seq, tp->undo_marker))
1168 			tp->undo_retrans--;
1169 		if (sacked & TCPCB_SACKED_ACKED)
1170 			state->reord = min(fack_count, state->reord);
1171 	}
1172 
1173 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174 	if (!after(end_seq, tp->snd_una))
1175 		return sacked;
1176 
1177 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1178 		tcp_rack_advance(tp, xmit_time, sacked);
1179 
1180 		if (sacked & TCPCB_SACKED_RETRANS) {
1181 			/* If the segment is not tagged as lost,
1182 			 * we do not clear RETRANS, believing
1183 			 * that retransmission is still in flight.
1184 			 */
1185 			if (sacked & TCPCB_LOST) {
1186 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187 				tp->lost_out -= pcount;
1188 				tp->retrans_out -= pcount;
1189 			}
1190 		} else {
1191 			if (!(sacked & TCPCB_RETRANS)) {
1192 				/* New sack for not retransmitted frame,
1193 				 * which was in hole. It is reordering.
1194 				 */
1195 				if (before(start_seq,
1196 					   tcp_highest_sack_seq(tp)))
1197 					state->reord = min(fack_count,
1198 							   state->reord);
1199 				if (!after(end_seq, tp->high_seq))
1200 					state->flag |= FLAG_ORIG_SACK_ACKED;
1201 				if (state->first_sackt.v64 == 0)
1202 					state->first_sackt = *xmit_time;
1203 				state->last_sackt = *xmit_time;
1204 			}
1205 
1206 			if (sacked & TCPCB_LOST) {
1207 				sacked &= ~TCPCB_LOST;
1208 				tp->lost_out -= pcount;
1209 			}
1210 		}
1211 
1212 		sacked |= TCPCB_SACKED_ACKED;
1213 		state->flag |= FLAG_DATA_SACKED;
1214 		tp->sacked_out += pcount;
1215 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1216 
1217 		fack_count += pcount;
1218 
1219 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222 			tp->lost_cnt_hint += pcount;
1223 
1224 		if (fack_count > tp->fackets_out)
1225 			tp->fackets_out = fack_count;
1226 	}
1227 
1228 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1229 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1230 	 * are accounted above as well.
1231 	 */
1232 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233 		sacked &= ~TCPCB_SACKED_RETRANS;
1234 		tp->retrans_out -= pcount;
1235 	}
1236 
1237 	return sacked;
1238 }
1239 
1240 /* Shift newly-SACKed bytes from this skb to the immediately previous
1241  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242  */
1243 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244 			    struct tcp_sacktag_state *state,
1245 			    unsigned int pcount, int shifted, int mss,
1246 			    bool dup_sack)
1247 {
1248 	struct tcp_sock *tp = tcp_sk(sk);
1249 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1251 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1252 
1253 	BUG_ON(!pcount);
1254 
1255 	/* Adjust counters and hints for the newly sacked sequence
1256 	 * range but discard the return value since prev is already
1257 	 * marked. We must tag the range first because the seq
1258 	 * advancement below implicitly advances
1259 	 * tcp_highest_sack_seq() when skb is highest_sack.
1260 	 */
1261 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262 			start_seq, end_seq, dup_sack, pcount,
1263 			&skb->skb_mstamp);
1264 
1265 	if (skb == tp->lost_skb_hint)
1266 		tp->lost_cnt_hint += pcount;
1267 
1268 	TCP_SKB_CB(prev)->end_seq += shifted;
1269 	TCP_SKB_CB(skb)->seq += shifted;
1270 
1271 	tcp_skb_pcount_add(prev, pcount);
1272 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1273 	tcp_skb_pcount_add(skb, -pcount);
1274 
1275 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1276 	 * in theory this shouldn't be necessary but as long as DSACK
1277 	 * code can come after this skb later on it's better to keep
1278 	 * setting gso_size to something.
1279 	 */
1280 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1282 
1283 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284 	if (tcp_skb_pcount(skb) <= 1)
1285 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286 
1287 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289 
1290 	if (skb->len > 0) {
1291 		BUG_ON(!tcp_skb_pcount(skb));
1292 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293 		return false;
1294 	}
1295 
1296 	/* Whole SKB was eaten :-) */
1297 
1298 	if (skb == tp->retransmit_skb_hint)
1299 		tp->retransmit_skb_hint = prev;
1300 	if (skb == tp->lost_skb_hint) {
1301 		tp->lost_skb_hint = prev;
1302 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303 	}
1304 
1305 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1307 		TCP_SKB_CB(prev)->end_seq++;
1308 
1309 	if (skb == tcp_highest_sack(sk))
1310 		tcp_advance_highest_sack(sk, skb);
1311 
1312 	tcp_unlink_write_queue(skb, sk);
1313 	sk_wmem_free_skb(sk, skb);
1314 
1315 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1316 
1317 	return true;
1318 }
1319 
1320 /* I wish gso_size would have a bit more sane initialization than
1321  * something-or-zero which complicates things
1322  */
1323 static int tcp_skb_seglen(const struct sk_buff *skb)
1324 {
1325 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1326 }
1327 
1328 /* Shifting pages past head area doesn't work */
1329 static int skb_can_shift(const struct sk_buff *skb)
1330 {
1331 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1332 }
1333 
1334 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1335  * skb.
1336  */
1337 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1338 					  struct tcp_sacktag_state *state,
1339 					  u32 start_seq, u32 end_seq,
1340 					  bool dup_sack)
1341 {
1342 	struct tcp_sock *tp = tcp_sk(sk);
1343 	struct sk_buff *prev;
1344 	int mss;
1345 	int pcount = 0;
1346 	int len;
1347 	int in_sack;
1348 
1349 	if (!sk_can_gso(sk))
1350 		goto fallback;
1351 
1352 	/* Normally R but no L won't result in plain S */
1353 	if (!dup_sack &&
1354 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1355 		goto fallback;
1356 	if (!skb_can_shift(skb))
1357 		goto fallback;
1358 	/* This frame is about to be dropped (was ACKed). */
1359 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1360 		goto fallback;
1361 
1362 	/* Can only happen with delayed DSACK + discard craziness */
1363 	if (unlikely(skb == tcp_write_queue_head(sk)))
1364 		goto fallback;
1365 	prev = tcp_write_queue_prev(sk, skb);
1366 
1367 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1368 		goto fallback;
1369 
1370 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1371 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1372 
1373 	if (in_sack) {
1374 		len = skb->len;
1375 		pcount = tcp_skb_pcount(skb);
1376 		mss = tcp_skb_seglen(skb);
1377 
1378 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1379 		 * drop this restriction as unnecessary
1380 		 */
1381 		if (mss != tcp_skb_seglen(prev))
1382 			goto fallback;
1383 	} else {
1384 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1385 			goto noop;
1386 		/* CHECKME: This is non-MSS split case only?, this will
1387 		 * cause skipped skbs due to advancing loop btw, original
1388 		 * has that feature too
1389 		 */
1390 		if (tcp_skb_pcount(skb) <= 1)
1391 			goto noop;
1392 
1393 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1394 		if (!in_sack) {
1395 			/* TODO: head merge to next could be attempted here
1396 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1397 			 * though it might not be worth of the additional hassle
1398 			 *
1399 			 * ...we can probably just fallback to what was done
1400 			 * previously. We could try merging non-SACKed ones
1401 			 * as well but it probably isn't going to buy off
1402 			 * because later SACKs might again split them, and
1403 			 * it would make skb timestamp tracking considerably
1404 			 * harder problem.
1405 			 */
1406 			goto fallback;
1407 		}
1408 
1409 		len = end_seq - TCP_SKB_CB(skb)->seq;
1410 		BUG_ON(len < 0);
1411 		BUG_ON(len > skb->len);
1412 
1413 		/* MSS boundaries should be honoured or else pcount will
1414 		 * severely break even though it makes things bit trickier.
1415 		 * Optimize common case to avoid most of the divides
1416 		 */
1417 		mss = tcp_skb_mss(skb);
1418 
1419 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1420 		 * drop this restriction as unnecessary
1421 		 */
1422 		if (mss != tcp_skb_seglen(prev))
1423 			goto fallback;
1424 
1425 		if (len == mss) {
1426 			pcount = 1;
1427 		} else if (len < mss) {
1428 			goto noop;
1429 		} else {
1430 			pcount = len / mss;
1431 			len = pcount * mss;
1432 		}
1433 	}
1434 
1435 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1436 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1437 		goto fallback;
1438 
1439 	if (!skb_shift(prev, skb, len))
1440 		goto fallback;
1441 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1442 		goto out;
1443 
1444 	/* Hole filled allows collapsing with the next as well, this is very
1445 	 * useful when hole on every nth skb pattern happens
1446 	 */
1447 	if (prev == tcp_write_queue_tail(sk))
1448 		goto out;
1449 	skb = tcp_write_queue_next(sk, prev);
1450 
1451 	if (!skb_can_shift(skb) ||
1452 	    (skb == tcp_send_head(sk)) ||
1453 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1454 	    (mss != tcp_skb_seglen(skb)))
1455 		goto out;
1456 
1457 	len = skb->len;
1458 	if (skb_shift(prev, skb, len)) {
1459 		pcount += tcp_skb_pcount(skb);
1460 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1461 	}
1462 
1463 out:
1464 	state->fack_count += pcount;
1465 	return prev;
1466 
1467 noop:
1468 	return skb;
1469 
1470 fallback:
1471 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1472 	return NULL;
1473 }
1474 
1475 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1476 					struct tcp_sack_block *next_dup,
1477 					struct tcp_sacktag_state *state,
1478 					u32 start_seq, u32 end_seq,
1479 					bool dup_sack_in)
1480 {
1481 	struct tcp_sock *tp = tcp_sk(sk);
1482 	struct sk_buff *tmp;
1483 
1484 	tcp_for_write_queue_from(skb, sk) {
1485 		int in_sack = 0;
1486 		bool dup_sack = dup_sack_in;
1487 
1488 		if (skb == tcp_send_head(sk))
1489 			break;
1490 
1491 		/* queue is in-order => we can short-circuit the walk early */
1492 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1493 			break;
1494 
1495 		if (next_dup  &&
1496 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1497 			in_sack = tcp_match_skb_to_sack(sk, skb,
1498 							next_dup->start_seq,
1499 							next_dup->end_seq);
1500 			if (in_sack > 0)
1501 				dup_sack = true;
1502 		}
1503 
1504 		/* skb reference here is a bit tricky to get right, since
1505 		 * shifting can eat and free both this skb and the next,
1506 		 * so not even _safe variant of the loop is enough.
1507 		 */
1508 		if (in_sack <= 0) {
1509 			tmp = tcp_shift_skb_data(sk, skb, state,
1510 						 start_seq, end_seq, dup_sack);
1511 			if (tmp) {
1512 				if (tmp != skb) {
1513 					skb = tmp;
1514 					continue;
1515 				}
1516 
1517 				in_sack = 0;
1518 			} else {
1519 				in_sack = tcp_match_skb_to_sack(sk, skb,
1520 								start_seq,
1521 								end_seq);
1522 			}
1523 		}
1524 
1525 		if (unlikely(in_sack < 0))
1526 			break;
1527 
1528 		if (in_sack) {
1529 			TCP_SKB_CB(skb)->sacked =
1530 				tcp_sacktag_one(sk,
1531 						state,
1532 						TCP_SKB_CB(skb)->sacked,
1533 						TCP_SKB_CB(skb)->seq,
1534 						TCP_SKB_CB(skb)->end_seq,
1535 						dup_sack,
1536 						tcp_skb_pcount(skb),
1537 						&skb->skb_mstamp);
1538 
1539 			if (!before(TCP_SKB_CB(skb)->seq,
1540 				    tcp_highest_sack_seq(tp)))
1541 				tcp_advance_highest_sack(sk, skb);
1542 		}
1543 
1544 		state->fack_count += tcp_skb_pcount(skb);
1545 	}
1546 	return skb;
1547 }
1548 
1549 /* Avoid all extra work that is being done by sacktag while walking in
1550  * a normal way
1551  */
1552 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1553 					struct tcp_sacktag_state *state,
1554 					u32 skip_to_seq)
1555 {
1556 	tcp_for_write_queue_from(skb, sk) {
1557 		if (skb == tcp_send_head(sk))
1558 			break;
1559 
1560 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1561 			break;
1562 
1563 		state->fack_count += tcp_skb_pcount(skb);
1564 	}
1565 	return skb;
1566 }
1567 
1568 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1569 						struct sock *sk,
1570 						struct tcp_sack_block *next_dup,
1571 						struct tcp_sacktag_state *state,
1572 						u32 skip_to_seq)
1573 {
1574 	if (!next_dup)
1575 		return skb;
1576 
1577 	if (before(next_dup->start_seq, skip_to_seq)) {
1578 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1579 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1580 				       next_dup->start_seq, next_dup->end_seq,
1581 				       1);
1582 	}
1583 
1584 	return skb;
1585 }
1586 
1587 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1588 {
1589 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1590 }
1591 
1592 static int
1593 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1594 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1595 {
1596 	struct tcp_sock *tp = tcp_sk(sk);
1597 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1598 				    TCP_SKB_CB(ack_skb)->sacked);
1599 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1600 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1601 	struct tcp_sack_block *cache;
1602 	struct sk_buff *skb;
1603 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1604 	int used_sacks;
1605 	bool found_dup_sack = false;
1606 	int i, j;
1607 	int first_sack_index;
1608 
1609 	state->flag = 0;
1610 	state->reord = tp->packets_out;
1611 
1612 	if (!tp->sacked_out) {
1613 		if (WARN_ON(tp->fackets_out))
1614 			tp->fackets_out = 0;
1615 		tcp_highest_sack_reset(sk);
1616 	}
1617 
1618 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1619 					 num_sacks, prior_snd_una);
1620 	if (found_dup_sack)
1621 		state->flag |= FLAG_DSACKING_ACK;
1622 
1623 	/* Eliminate too old ACKs, but take into
1624 	 * account more or less fresh ones, they can
1625 	 * contain valid SACK info.
1626 	 */
1627 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1628 		return 0;
1629 
1630 	if (!tp->packets_out)
1631 		goto out;
1632 
1633 	used_sacks = 0;
1634 	first_sack_index = 0;
1635 	for (i = 0; i < num_sacks; i++) {
1636 		bool dup_sack = !i && found_dup_sack;
1637 
1638 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1639 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1640 
1641 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1642 					    sp[used_sacks].start_seq,
1643 					    sp[used_sacks].end_seq)) {
1644 			int mib_idx;
1645 
1646 			if (dup_sack) {
1647 				if (!tp->undo_marker)
1648 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1649 				else
1650 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1651 			} else {
1652 				/* Don't count olds caused by ACK reordering */
1653 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1654 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1655 					continue;
1656 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1657 			}
1658 
1659 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1660 			if (i == 0)
1661 				first_sack_index = -1;
1662 			continue;
1663 		}
1664 
1665 		/* Ignore very old stuff early */
1666 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1667 			continue;
1668 
1669 		used_sacks++;
1670 	}
1671 
1672 	/* order SACK blocks to allow in order walk of the retrans queue */
1673 	for (i = used_sacks - 1; i > 0; i--) {
1674 		for (j = 0; j < i; j++) {
1675 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1676 				swap(sp[j], sp[j + 1]);
1677 
1678 				/* Track where the first SACK block goes to */
1679 				if (j == first_sack_index)
1680 					first_sack_index = j + 1;
1681 			}
1682 		}
1683 	}
1684 
1685 	skb = tcp_write_queue_head(sk);
1686 	state->fack_count = 0;
1687 	i = 0;
1688 
1689 	if (!tp->sacked_out) {
1690 		/* It's already past, so skip checking against it */
1691 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1692 	} else {
1693 		cache = tp->recv_sack_cache;
1694 		/* Skip empty blocks in at head of the cache */
1695 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1696 		       !cache->end_seq)
1697 			cache++;
1698 	}
1699 
1700 	while (i < used_sacks) {
1701 		u32 start_seq = sp[i].start_seq;
1702 		u32 end_seq = sp[i].end_seq;
1703 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1704 		struct tcp_sack_block *next_dup = NULL;
1705 
1706 		if (found_dup_sack && ((i + 1) == first_sack_index))
1707 			next_dup = &sp[i + 1];
1708 
1709 		/* Skip too early cached blocks */
1710 		while (tcp_sack_cache_ok(tp, cache) &&
1711 		       !before(start_seq, cache->end_seq))
1712 			cache++;
1713 
1714 		/* Can skip some work by looking recv_sack_cache? */
1715 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1716 		    after(end_seq, cache->start_seq)) {
1717 
1718 			/* Head todo? */
1719 			if (before(start_seq, cache->start_seq)) {
1720 				skb = tcp_sacktag_skip(skb, sk, state,
1721 						       start_seq);
1722 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1723 						       state,
1724 						       start_seq,
1725 						       cache->start_seq,
1726 						       dup_sack);
1727 			}
1728 
1729 			/* Rest of the block already fully processed? */
1730 			if (!after(end_seq, cache->end_seq))
1731 				goto advance_sp;
1732 
1733 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1734 						       state,
1735 						       cache->end_seq);
1736 
1737 			/* ...tail remains todo... */
1738 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1739 				/* ...but better entrypoint exists! */
1740 				skb = tcp_highest_sack(sk);
1741 				if (!skb)
1742 					break;
1743 				state->fack_count = tp->fackets_out;
1744 				cache++;
1745 				goto walk;
1746 			}
1747 
1748 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1749 			/* Check overlap against next cached too (past this one already) */
1750 			cache++;
1751 			continue;
1752 		}
1753 
1754 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1755 			skb = tcp_highest_sack(sk);
1756 			if (!skb)
1757 				break;
1758 			state->fack_count = tp->fackets_out;
1759 		}
1760 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1761 
1762 walk:
1763 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1764 				       start_seq, end_seq, dup_sack);
1765 
1766 advance_sp:
1767 		i++;
1768 	}
1769 
1770 	/* Clear the head of the cache sack blocks so we can skip it next time */
1771 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1772 		tp->recv_sack_cache[i].start_seq = 0;
1773 		tp->recv_sack_cache[i].end_seq = 0;
1774 	}
1775 	for (j = 0; j < used_sacks; j++)
1776 		tp->recv_sack_cache[i++] = sp[j];
1777 
1778 	if ((state->reord < tp->fackets_out) &&
1779 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1780 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1781 
1782 	tcp_verify_left_out(tp);
1783 out:
1784 
1785 #if FASTRETRANS_DEBUG > 0
1786 	WARN_ON((int)tp->sacked_out < 0);
1787 	WARN_ON((int)tp->lost_out < 0);
1788 	WARN_ON((int)tp->retrans_out < 0);
1789 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1790 #endif
1791 	return state->flag;
1792 }
1793 
1794 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1795  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1796  */
1797 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1798 {
1799 	u32 holes;
1800 
1801 	holes = max(tp->lost_out, 1U);
1802 	holes = min(holes, tp->packets_out);
1803 
1804 	if ((tp->sacked_out + holes) > tp->packets_out) {
1805 		tp->sacked_out = tp->packets_out - holes;
1806 		return true;
1807 	}
1808 	return false;
1809 }
1810 
1811 /* If we receive more dupacks than we expected counting segments
1812  * in assumption of absent reordering, interpret this as reordering.
1813  * The only another reason could be bug in receiver TCP.
1814  */
1815 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1816 {
1817 	struct tcp_sock *tp = tcp_sk(sk);
1818 	if (tcp_limit_reno_sacked(tp))
1819 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1820 }
1821 
1822 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1823 
1824 static void tcp_add_reno_sack(struct sock *sk)
1825 {
1826 	struct tcp_sock *tp = tcp_sk(sk);
1827 	u32 prior_sacked = tp->sacked_out;
1828 
1829 	tp->sacked_out++;
1830 	tcp_check_reno_reordering(sk, 0);
1831 	if (tp->sacked_out > prior_sacked)
1832 		tp->delivered++; /* Some out-of-order packet is delivered */
1833 	tcp_verify_left_out(tp);
1834 }
1835 
1836 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1837 
1838 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1839 {
1840 	struct tcp_sock *tp = tcp_sk(sk);
1841 
1842 	if (acked > 0) {
1843 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1844 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1845 		if (acked - 1 >= tp->sacked_out)
1846 			tp->sacked_out = 0;
1847 		else
1848 			tp->sacked_out -= acked - 1;
1849 	}
1850 	tcp_check_reno_reordering(sk, acked);
1851 	tcp_verify_left_out(tp);
1852 }
1853 
1854 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1855 {
1856 	tp->sacked_out = 0;
1857 }
1858 
1859 void tcp_clear_retrans(struct tcp_sock *tp)
1860 {
1861 	tp->retrans_out = 0;
1862 	tp->lost_out = 0;
1863 	tp->undo_marker = 0;
1864 	tp->undo_retrans = -1;
1865 	tp->fackets_out = 0;
1866 	tp->sacked_out = 0;
1867 }
1868 
1869 static inline void tcp_init_undo(struct tcp_sock *tp)
1870 {
1871 	tp->undo_marker = tp->snd_una;
1872 	/* Retransmission still in flight may cause DSACKs later. */
1873 	tp->undo_retrans = tp->retrans_out ? : -1;
1874 }
1875 
1876 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1877  * and reset tags completely, otherwise preserve SACKs. If receiver
1878  * dropped its ofo queue, we will know this due to reneging detection.
1879  */
1880 void tcp_enter_loss(struct sock *sk)
1881 {
1882 	const struct inet_connection_sock *icsk = inet_csk(sk);
1883 	struct tcp_sock *tp = tcp_sk(sk);
1884 	struct net *net = sock_net(sk);
1885 	struct sk_buff *skb;
1886 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1887 	bool is_reneg;			/* is receiver reneging on SACKs? */
1888 
1889 	/* Reduce ssthresh if it has not yet been made inside this window. */
1890 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1891 	    !after(tp->high_seq, tp->snd_una) ||
1892 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1893 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1894 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1895 		tcp_ca_event(sk, CA_EVENT_LOSS);
1896 		tcp_init_undo(tp);
1897 	}
1898 	tp->snd_cwnd	   = 1;
1899 	tp->snd_cwnd_cnt   = 0;
1900 	tp->snd_cwnd_stamp = tcp_time_stamp;
1901 
1902 	tp->retrans_out = 0;
1903 	tp->lost_out = 0;
1904 
1905 	if (tcp_is_reno(tp))
1906 		tcp_reset_reno_sack(tp);
1907 
1908 	skb = tcp_write_queue_head(sk);
1909 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1910 	if (is_reneg) {
1911 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1912 		tp->sacked_out = 0;
1913 		tp->fackets_out = 0;
1914 	}
1915 	tcp_clear_all_retrans_hints(tp);
1916 
1917 	tcp_for_write_queue(skb, sk) {
1918 		if (skb == tcp_send_head(sk))
1919 			break;
1920 
1921 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1922 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1923 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1924 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1925 			tp->lost_out += tcp_skb_pcount(skb);
1926 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1927 		}
1928 	}
1929 	tcp_verify_left_out(tp);
1930 
1931 	/* Timeout in disordered state after receiving substantial DUPACKs
1932 	 * suggests that the degree of reordering is over-estimated.
1933 	 */
1934 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1935 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1936 		tp->reordering = min_t(unsigned int, tp->reordering,
1937 				       net->ipv4.sysctl_tcp_reordering);
1938 	tcp_set_ca_state(sk, TCP_CA_Loss);
1939 	tp->high_seq = tp->snd_nxt;
1940 	tcp_ecn_queue_cwr(tp);
1941 
1942 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1943 	 * loss recovery is underway except recurring timeout(s) on
1944 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1945 	 */
1946 	tp->frto = sysctl_tcp_frto &&
1947 		   (new_recovery || icsk->icsk_retransmits) &&
1948 		   !inet_csk(sk)->icsk_mtup.probe_size;
1949 }
1950 
1951 /* If ACK arrived pointing to a remembered SACK, it means that our
1952  * remembered SACKs do not reflect real state of receiver i.e.
1953  * receiver _host_ is heavily congested (or buggy).
1954  *
1955  * To avoid big spurious retransmission bursts due to transient SACK
1956  * scoreboard oddities that look like reneging, we give the receiver a
1957  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1958  * restore sanity to the SACK scoreboard. If the apparent reneging
1959  * persists until this RTO then we'll clear the SACK scoreboard.
1960  */
1961 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1962 {
1963 	if (flag & FLAG_SACK_RENEGING) {
1964 		struct tcp_sock *tp = tcp_sk(sk);
1965 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1966 					  msecs_to_jiffies(10));
1967 
1968 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1969 					  delay, TCP_RTO_MAX);
1970 		return true;
1971 	}
1972 	return false;
1973 }
1974 
1975 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1976 {
1977 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1978 }
1979 
1980 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1981  * counter when SACK is enabled (without SACK, sacked_out is used for
1982  * that purpose).
1983  *
1984  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1985  * segments up to the highest received SACK block so far and holes in
1986  * between them.
1987  *
1988  * With reordering, holes may still be in flight, so RFC3517 recovery
1989  * uses pure sacked_out (total number of SACKed segments) even though
1990  * it violates the RFC that uses duplicate ACKs, often these are equal
1991  * but when e.g. out-of-window ACKs or packet duplication occurs,
1992  * they differ. Since neither occurs due to loss, TCP should really
1993  * ignore them.
1994  */
1995 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1996 {
1997 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1998 }
1999 
2000 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2001 {
2002 	struct tcp_sock *tp = tcp_sk(sk);
2003 	unsigned long delay;
2004 
2005 	/* Delay early retransmit and entering fast recovery for
2006 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2007 	 * available, or RTO is scheduled to fire first.
2008 	 */
2009 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2010 	    (flag & FLAG_ECE) || !tp->srtt_us)
2011 		return false;
2012 
2013 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2014 		    msecs_to_jiffies(2));
2015 
2016 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2017 		return false;
2018 
2019 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2020 				  TCP_RTO_MAX);
2021 	return true;
2022 }
2023 
2024 /* Linux NewReno/SACK/FACK/ECN state machine.
2025  * --------------------------------------
2026  *
2027  * "Open"	Normal state, no dubious events, fast path.
2028  * "Disorder"   In all the respects it is "Open",
2029  *		but requires a bit more attention. It is entered when
2030  *		we see some SACKs or dupacks. It is split of "Open"
2031  *		mainly to move some processing from fast path to slow one.
2032  * "CWR"	CWND was reduced due to some Congestion Notification event.
2033  *		It can be ECN, ICMP source quench, local device congestion.
2034  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2035  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2036  *
2037  * tcp_fastretrans_alert() is entered:
2038  * - each incoming ACK, if state is not "Open"
2039  * - when arrived ACK is unusual, namely:
2040  *	* SACK
2041  *	* Duplicate ACK.
2042  *	* ECN ECE.
2043  *
2044  * Counting packets in flight is pretty simple.
2045  *
2046  *	in_flight = packets_out - left_out + retrans_out
2047  *
2048  *	packets_out is SND.NXT-SND.UNA counted in packets.
2049  *
2050  *	retrans_out is number of retransmitted segments.
2051  *
2052  *	left_out is number of segments left network, but not ACKed yet.
2053  *
2054  *		left_out = sacked_out + lost_out
2055  *
2056  *     sacked_out: Packets, which arrived to receiver out of order
2057  *		   and hence not ACKed. With SACKs this number is simply
2058  *		   amount of SACKed data. Even without SACKs
2059  *		   it is easy to give pretty reliable estimate of this number,
2060  *		   counting duplicate ACKs.
2061  *
2062  *       lost_out: Packets lost by network. TCP has no explicit
2063  *		   "loss notification" feedback from network (for now).
2064  *		   It means that this number can be only _guessed_.
2065  *		   Actually, it is the heuristics to predict lossage that
2066  *		   distinguishes different algorithms.
2067  *
2068  *	F.e. after RTO, when all the queue is considered as lost,
2069  *	lost_out = packets_out and in_flight = retrans_out.
2070  *
2071  *		Essentially, we have now two algorithms counting
2072  *		lost packets.
2073  *
2074  *		FACK: It is the simplest heuristics. As soon as we decided
2075  *		that something is lost, we decide that _all_ not SACKed
2076  *		packets until the most forward SACK are lost. I.e.
2077  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2078  *		It is absolutely correct estimate, if network does not reorder
2079  *		packets. And it loses any connection to reality when reordering
2080  *		takes place. We use FACK by default until reordering
2081  *		is suspected on the path to this destination.
2082  *
2083  *		NewReno: when Recovery is entered, we assume that one segment
2084  *		is lost (classic Reno). While we are in Recovery and
2085  *		a partial ACK arrives, we assume that one more packet
2086  *		is lost (NewReno). This heuristics are the same in NewReno
2087  *		and SACK.
2088  *
2089  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2090  *  deflation etc. CWND is real congestion window, never inflated, changes
2091  *  only according to classic VJ rules.
2092  *
2093  * Really tricky (and requiring careful tuning) part of algorithm
2094  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2095  * The first determines the moment _when_ we should reduce CWND and,
2096  * hence, slow down forward transmission. In fact, it determines the moment
2097  * when we decide that hole is caused by loss, rather than by a reorder.
2098  *
2099  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2100  * holes, caused by lost packets.
2101  *
2102  * And the most logically complicated part of algorithm is undo
2103  * heuristics. We detect false retransmits due to both too early
2104  * fast retransmit (reordering) and underestimated RTO, analyzing
2105  * timestamps and D-SACKs. When we detect that some segments were
2106  * retransmitted by mistake and CWND reduction was wrong, we undo
2107  * window reduction and abort recovery phase. This logic is hidden
2108  * inside several functions named tcp_try_undo_<something>.
2109  */
2110 
2111 /* This function decides, when we should leave Disordered state
2112  * and enter Recovery phase, reducing congestion window.
2113  *
2114  * Main question: may we further continue forward transmission
2115  * with the same cwnd?
2116  */
2117 static bool tcp_time_to_recover(struct sock *sk, int flag)
2118 {
2119 	struct tcp_sock *tp = tcp_sk(sk);
2120 	__u32 packets_out;
2121 	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2122 
2123 	/* Trick#1: The loss is proven. */
2124 	if (tp->lost_out)
2125 		return true;
2126 
2127 	/* Not-A-Trick#2 : Classic rule... */
2128 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2129 		return true;
2130 
2131 	/* Trick#4: It is still not OK... But will it be useful to delay
2132 	 * recovery more?
2133 	 */
2134 	packets_out = tp->packets_out;
2135 	if (packets_out <= tp->reordering &&
2136 	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2137 	    !tcp_may_send_now(sk)) {
2138 		/* We have nothing to send. This connection is limited
2139 		 * either by receiver window or by application.
2140 		 */
2141 		return true;
2142 	}
2143 
2144 	/* If a thin stream is detected, retransmit after first
2145 	 * received dupack. Employ only if SACK is supported in order
2146 	 * to avoid possible corner-case series of spurious retransmissions
2147 	 * Use only if there are no unsent data.
2148 	 */
2149 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2150 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2151 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2152 		return true;
2153 
2154 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2155 	 * retransmissions due to small network reorderings, we implement
2156 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2157 	 * interval if appropriate.
2158 	 */
2159 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2160 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2161 	    !tcp_may_send_now(sk))
2162 		return !tcp_pause_early_retransmit(sk, flag);
2163 
2164 	return false;
2165 }
2166 
2167 /* Detect loss in event "A" above by marking head of queue up as lost.
2168  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2169  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2170  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2171  * the maximum SACKed segments to pass before reaching this limit.
2172  */
2173 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2174 {
2175 	struct tcp_sock *tp = tcp_sk(sk);
2176 	struct sk_buff *skb;
2177 	int cnt, oldcnt, lost;
2178 	unsigned int mss;
2179 	/* Use SACK to deduce losses of new sequences sent during recovery */
2180 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2181 
2182 	WARN_ON(packets > tp->packets_out);
2183 	if (tp->lost_skb_hint) {
2184 		skb = tp->lost_skb_hint;
2185 		cnt = tp->lost_cnt_hint;
2186 		/* Head already handled? */
2187 		if (mark_head && skb != tcp_write_queue_head(sk))
2188 			return;
2189 	} else {
2190 		skb = tcp_write_queue_head(sk);
2191 		cnt = 0;
2192 	}
2193 
2194 	tcp_for_write_queue_from(skb, sk) {
2195 		if (skb == tcp_send_head(sk))
2196 			break;
2197 		/* TODO: do this better */
2198 		/* this is not the most efficient way to do this... */
2199 		tp->lost_skb_hint = skb;
2200 		tp->lost_cnt_hint = cnt;
2201 
2202 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2203 			break;
2204 
2205 		oldcnt = cnt;
2206 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2207 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2208 			cnt += tcp_skb_pcount(skb);
2209 
2210 		if (cnt > packets) {
2211 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2212 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2213 			    (oldcnt >= packets))
2214 				break;
2215 
2216 			mss = tcp_skb_mss(skb);
2217 			/* If needed, chop off the prefix to mark as lost. */
2218 			lost = (packets - oldcnt) * mss;
2219 			if (lost < skb->len &&
2220 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2221 				break;
2222 			cnt = packets;
2223 		}
2224 
2225 		tcp_skb_mark_lost(tp, skb);
2226 
2227 		if (mark_head)
2228 			break;
2229 	}
2230 	tcp_verify_left_out(tp);
2231 }
2232 
2233 /* Account newly detected lost packet(s) */
2234 
2235 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2236 {
2237 	struct tcp_sock *tp = tcp_sk(sk);
2238 
2239 	if (tcp_is_reno(tp)) {
2240 		tcp_mark_head_lost(sk, 1, 1);
2241 	} else if (tcp_is_fack(tp)) {
2242 		int lost = tp->fackets_out - tp->reordering;
2243 		if (lost <= 0)
2244 			lost = 1;
2245 		tcp_mark_head_lost(sk, lost, 0);
2246 	} else {
2247 		int sacked_upto = tp->sacked_out - tp->reordering;
2248 		if (sacked_upto >= 0)
2249 			tcp_mark_head_lost(sk, sacked_upto, 0);
2250 		else if (fast_rexmit)
2251 			tcp_mark_head_lost(sk, 1, 1);
2252 	}
2253 }
2254 
2255 /* CWND moderation, preventing bursts due to too big ACKs
2256  * in dubious situations.
2257  */
2258 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2259 {
2260 	tp->snd_cwnd = min(tp->snd_cwnd,
2261 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2262 	tp->snd_cwnd_stamp = tcp_time_stamp;
2263 }
2264 
2265 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2266 {
2267 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2268 	       before(tp->rx_opt.rcv_tsecr, when);
2269 }
2270 
2271 /* skb is spurious retransmitted if the returned timestamp echo
2272  * reply is prior to the skb transmission time
2273  */
2274 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2275 				     const struct sk_buff *skb)
2276 {
2277 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2278 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2279 }
2280 
2281 /* Nothing was retransmitted or returned timestamp is less
2282  * than timestamp of the first retransmission.
2283  */
2284 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2285 {
2286 	return !tp->retrans_stamp ||
2287 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2288 }
2289 
2290 /* Undo procedures. */
2291 
2292 /* We can clear retrans_stamp when there are no retransmissions in the
2293  * window. It would seem that it is trivially available for us in
2294  * tp->retrans_out, however, that kind of assumptions doesn't consider
2295  * what will happen if errors occur when sending retransmission for the
2296  * second time. ...It could the that such segment has only
2297  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2298  * the head skb is enough except for some reneging corner cases that
2299  * are not worth the effort.
2300  *
2301  * Main reason for all this complexity is the fact that connection dying
2302  * time now depends on the validity of the retrans_stamp, in particular,
2303  * that successive retransmissions of a segment must not advance
2304  * retrans_stamp under any conditions.
2305  */
2306 static bool tcp_any_retrans_done(const struct sock *sk)
2307 {
2308 	const struct tcp_sock *tp = tcp_sk(sk);
2309 	struct sk_buff *skb;
2310 
2311 	if (tp->retrans_out)
2312 		return true;
2313 
2314 	skb = tcp_write_queue_head(sk);
2315 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2316 		return true;
2317 
2318 	return false;
2319 }
2320 
2321 #if FASTRETRANS_DEBUG > 1
2322 static void DBGUNDO(struct sock *sk, const char *msg)
2323 {
2324 	struct tcp_sock *tp = tcp_sk(sk);
2325 	struct inet_sock *inet = inet_sk(sk);
2326 
2327 	if (sk->sk_family == AF_INET) {
2328 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2329 			 msg,
2330 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2331 			 tp->snd_cwnd, tcp_left_out(tp),
2332 			 tp->snd_ssthresh, tp->prior_ssthresh,
2333 			 tp->packets_out);
2334 	}
2335 #if IS_ENABLED(CONFIG_IPV6)
2336 	else if (sk->sk_family == AF_INET6) {
2337 		struct ipv6_pinfo *np = inet6_sk(sk);
2338 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2339 			 msg,
2340 			 &np->daddr, ntohs(inet->inet_dport),
2341 			 tp->snd_cwnd, tcp_left_out(tp),
2342 			 tp->snd_ssthresh, tp->prior_ssthresh,
2343 			 tp->packets_out);
2344 	}
2345 #endif
2346 }
2347 #else
2348 #define DBGUNDO(x...) do { } while (0)
2349 #endif
2350 
2351 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2352 {
2353 	struct tcp_sock *tp = tcp_sk(sk);
2354 
2355 	if (unmark_loss) {
2356 		struct sk_buff *skb;
2357 
2358 		tcp_for_write_queue(skb, sk) {
2359 			if (skb == tcp_send_head(sk))
2360 				break;
2361 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2362 		}
2363 		tp->lost_out = 0;
2364 		tcp_clear_all_retrans_hints(tp);
2365 	}
2366 
2367 	if (tp->prior_ssthresh) {
2368 		const struct inet_connection_sock *icsk = inet_csk(sk);
2369 
2370 		if (icsk->icsk_ca_ops->undo_cwnd)
2371 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2372 		else
2373 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2374 
2375 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2376 			tp->snd_ssthresh = tp->prior_ssthresh;
2377 			tcp_ecn_withdraw_cwr(tp);
2378 		}
2379 	}
2380 	tp->snd_cwnd_stamp = tcp_time_stamp;
2381 	tp->undo_marker = 0;
2382 }
2383 
2384 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2385 {
2386 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2387 }
2388 
2389 /* People celebrate: "We love our President!" */
2390 static bool tcp_try_undo_recovery(struct sock *sk)
2391 {
2392 	struct tcp_sock *tp = tcp_sk(sk);
2393 
2394 	if (tcp_may_undo(tp)) {
2395 		int mib_idx;
2396 
2397 		/* Happy end! We did not retransmit anything
2398 		 * or our original transmission succeeded.
2399 		 */
2400 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2401 		tcp_undo_cwnd_reduction(sk, false);
2402 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2403 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2404 		else
2405 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2406 
2407 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2408 	}
2409 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2410 		/* Hold old state until something *above* high_seq
2411 		 * is ACKed. For Reno it is MUST to prevent false
2412 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2413 		tcp_moderate_cwnd(tp);
2414 		if (!tcp_any_retrans_done(sk))
2415 			tp->retrans_stamp = 0;
2416 		return true;
2417 	}
2418 	tcp_set_ca_state(sk, TCP_CA_Open);
2419 	return false;
2420 }
2421 
2422 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2423 static bool tcp_try_undo_dsack(struct sock *sk)
2424 {
2425 	struct tcp_sock *tp = tcp_sk(sk);
2426 
2427 	if (tp->undo_marker && !tp->undo_retrans) {
2428 		DBGUNDO(sk, "D-SACK");
2429 		tcp_undo_cwnd_reduction(sk, false);
2430 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2431 		return true;
2432 	}
2433 	return false;
2434 }
2435 
2436 /* Undo during loss recovery after partial ACK or using F-RTO. */
2437 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2438 {
2439 	struct tcp_sock *tp = tcp_sk(sk);
2440 
2441 	if (frto_undo || tcp_may_undo(tp)) {
2442 		tcp_undo_cwnd_reduction(sk, true);
2443 
2444 		DBGUNDO(sk, "partial loss");
2445 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2446 		if (frto_undo)
2447 			NET_INC_STATS_BH(sock_net(sk),
2448 					 LINUX_MIB_TCPSPURIOUSRTOS);
2449 		inet_csk(sk)->icsk_retransmits = 0;
2450 		if (frto_undo || tcp_is_sack(tp))
2451 			tcp_set_ca_state(sk, TCP_CA_Open);
2452 		return true;
2453 	}
2454 	return false;
2455 }
2456 
2457 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2458  * It computes the number of packets to send (sndcnt) based on packets newly
2459  * delivered:
2460  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2461  *	cwnd reductions across a full RTT.
2462  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2463  *      But when the retransmits are acked without further losses, PRR
2464  *      slow starts cwnd up to ssthresh to speed up the recovery.
2465  */
2466 static void tcp_init_cwnd_reduction(struct sock *sk)
2467 {
2468 	struct tcp_sock *tp = tcp_sk(sk);
2469 
2470 	tp->high_seq = tp->snd_nxt;
2471 	tp->tlp_high_seq = 0;
2472 	tp->snd_cwnd_cnt = 0;
2473 	tp->prior_cwnd = tp->snd_cwnd;
2474 	tp->prr_delivered = 0;
2475 	tp->prr_out = 0;
2476 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2477 	tcp_ecn_queue_cwr(tp);
2478 }
2479 
2480 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2481 			       int flag)
2482 {
2483 	struct tcp_sock *tp = tcp_sk(sk);
2484 	int sndcnt = 0;
2485 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2486 
2487 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2488 		return;
2489 
2490 	tp->prr_delivered += newly_acked_sacked;
2491 	if (delta < 0) {
2492 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2493 			       tp->prior_cwnd - 1;
2494 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2495 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2496 		   !(flag & FLAG_LOST_RETRANS)) {
2497 		sndcnt = min_t(int, delta,
2498 			       max_t(int, tp->prr_delivered - tp->prr_out,
2499 				     newly_acked_sacked) + 1);
2500 	} else {
2501 		sndcnt = min(delta, newly_acked_sacked);
2502 	}
2503 	/* Force a fast retransmit upon entering fast recovery */
2504 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2505 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2506 }
2507 
2508 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2509 {
2510 	struct tcp_sock *tp = tcp_sk(sk);
2511 
2512 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2513 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2514 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2515 		tp->snd_cwnd = tp->snd_ssthresh;
2516 		tp->snd_cwnd_stamp = tcp_time_stamp;
2517 	}
2518 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2519 }
2520 
2521 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2522 void tcp_enter_cwr(struct sock *sk)
2523 {
2524 	struct tcp_sock *tp = tcp_sk(sk);
2525 
2526 	tp->prior_ssthresh = 0;
2527 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2528 		tp->undo_marker = 0;
2529 		tcp_init_cwnd_reduction(sk);
2530 		tcp_set_ca_state(sk, TCP_CA_CWR);
2531 	}
2532 }
2533 EXPORT_SYMBOL(tcp_enter_cwr);
2534 
2535 static void tcp_try_keep_open(struct sock *sk)
2536 {
2537 	struct tcp_sock *tp = tcp_sk(sk);
2538 	int state = TCP_CA_Open;
2539 
2540 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2541 		state = TCP_CA_Disorder;
2542 
2543 	if (inet_csk(sk)->icsk_ca_state != state) {
2544 		tcp_set_ca_state(sk, state);
2545 		tp->high_seq = tp->snd_nxt;
2546 	}
2547 }
2548 
2549 static void tcp_try_to_open(struct sock *sk, int flag)
2550 {
2551 	struct tcp_sock *tp = tcp_sk(sk);
2552 
2553 	tcp_verify_left_out(tp);
2554 
2555 	if (!tcp_any_retrans_done(sk))
2556 		tp->retrans_stamp = 0;
2557 
2558 	if (flag & FLAG_ECE)
2559 		tcp_enter_cwr(sk);
2560 
2561 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2562 		tcp_try_keep_open(sk);
2563 	}
2564 }
2565 
2566 static void tcp_mtup_probe_failed(struct sock *sk)
2567 {
2568 	struct inet_connection_sock *icsk = inet_csk(sk);
2569 
2570 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2571 	icsk->icsk_mtup.probe_size = 0;
2572 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2573 }
2574 
2575 static void tcp_mtup_probe_success(struct sock *sk)
2576 {
2577 	struct tcp_sock *tp = tcp_sk(sk);
2578 	struct inet_connection_sock *icsk = inet_csk(sk);
2579 
2580 	/* FIXME: breaks with very large cwnd */
2581 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2582 	tp->snd_cwnd = tp->snd_cwnd *
2583 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2584 		       icsk->icsk_mtup.probe_size;
2585 	tp->snd_cwnd_cnt = 0;
2586 	tp->snd_cwnd_stamp = tcp_time_stamp;
2587 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2588 
2589 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2590 	icsk->icsk_mtup.probe_size = 0;
2591 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2592 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2593 }
2594 
2595 /* Do a simple retransmit without using the backoff mechanisms in
2596  * tcp_timer. This is used for path mtu discovery.
2597  * The socket is already locked here.
2598  */
2599 void tcp_simple_retransmit(struct sock *sk)
2600 {
2601 	const struct inet_connection_sock *icsk = inet_csk(sk);
2602 	struct tcp_sock *tp = tcp_sk(sk);
2603 	struct sk_buff *skb;
2604 	unsigned int mss = tcp_current_mss(sk);
2605 	u32 prior_lost = tp->lost_out;
2606 
2607 	tcp_for_write_queue(skb, sk) {
2608 		if (skb == tcp_send_head(sk))
2609 			break;
2610 		if (tcp_skb_seglen(skb) > mss &&
2611 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2612 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2613 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2614 				tp->retrans_out -= tcp_skb_pcount(skb);
2615 			}
2616 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2617 		}
2618 	}
2619 
2620 	tcp_clear_retrans_hints_partial(tp);
2621 
2622 	if (prior_lost == tp->lost_out)
2623 		return;
2624 
2625 	if (tcp_is_reno(tp))
2626 		tcp_limit_reno_sacked(tp);
2627 
2628 	tcp_verify_left_out(tp);
2629 
2630 	/* Don't muck with the congestion window here.
2631 	 * Reason is that we do not increase amount of _data_
2632 	 * in network, but units changed and effective
2633 	 * cwnd/ssthresh really reduced now.
2634 	 */
2635 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2636 		tp->high_seq = tp->snd_nxt;
2637 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2638 		tp->prior_ssthresh = 0;
2639 		tp->undo_marker = 0;
2640 		tcp_set_ca_state(sk, TCP_CA_Loss);
2641 	}
2642 	tcp_xmit_retransmit_queue(sk);
2643 }
2644 EXPORT_SYMBOL(tcp_simple_retransmit);
2645 
2646 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2647 {
2648 	struct tcp_sock *tp = tcp_sk(sk);
2649 	int mib_idx;
2650 
2651 	if (tcp_is_reno(tp))
2652 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2653 	else
2654 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2655 
2656 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2657 
2658 	tp->prior_ssthresh = 0;
2659 	tcp_init_undo(tp);
2660 
2661 	if (!tcp_in_cwnd_reduction(sk)) {
2662 		if (!ece_ack)
2663 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2664 		tcp_init_cwnd_reduction(sk);
2665 	}
2666 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2667 }
2668 
2669 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2670  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2671  */
2672 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2673 			     int *rexmit)
2674 {
2675 	struct tcp_sock *tp = tcp_sk(sk);
2676 	bool recovered = !before(tp->snd_una, tp->high_seq);
2677 
2678 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2679 	    tcp_try_undo_loss(sk, false))
2680 		return;
2681 
2682 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2683 		/* Step 3.b. A timeout is spurious if not all data are
2684 		 * lost, i.e., never-retransmitted data are (s)acked.
2685 		 */
2686 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2687 		    tcp_try_undo_loss(sk, true))
2688 			return;
2689 
2690 		if (after(tp->snd_nxt, tp->high_seq)) {
2691 			if (flag & FLAG_DATA_SACKED || is_dupack)
2692 				tp->frto = 0; /* Step 3.a. loss was real */
2693 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2694 			tp->high_seq = tp->snd_nxt;
2695 			/* Step 2.b. Try send new data (but deferred until cwnd
2696 			 * is updated in tcp_ack()). Otherwise fall back to
2697 			 * the conventional recovery.
2698 			 */
2699 			if (tcp_send_head(sk) &&
2700 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2701 				*rexmit = REXMIT_NEW;
2702 				return;
2703 			}
2704 			tp->frto = 0;
2705 		}
2706 	}
2707 
2708 	if (recovered) {
2709 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2710 		tcp_try_undo_recovery(sk);
2711 		return;
2712 	}
2713 	if (tcp_is_reno(tp)) {
2714 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2715 		 * delivered. Lower inflight to clock out (re)tranmissions.
2716 		 */
2717 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2718 			tcp_add_reno_sack(sk);
2719 		else if (flag & FLAG_SND_UNA_ADVANCED)
2720 			tcp_reset_reno_sack(tp);
2721 	}
2722 	*rexmit = REXMIT_LOST;
2723 }
2724 
2725 /* Undo during fast recovery after partial ACK. */
2726 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2727 {
2728 	struct tcp_sock *tp = tcp_sk(sk);
2729 
2730 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2731 		/* Plain luck! Hole if filled with delayed
2732 		 * packet, rather than with a retransmit.
2733 		 */
2734 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2735 
2736 		/* We are getting evidence that the reordering degree is higher
2737 		 * than we realized. If there are no retransmits out then we
2738 		 * can undo. Otherwise we clock out new packets but do not
2739 		 * mark more packets lost or retransmit more.
2740 		 */
2741 		if (tp->retrans_out)
2742 			return true;
2743 
2744 		if (!tcp_any_retrans_done(sk))
2745 			tp->retrans_stamp = 0;
2746 
2747 		DBGUNDO(sk, "partial recovery");
2748 		tcp_undo_cwnd_reduction(sk, true);
2749 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2750 		tcp_try_keep_open(sk);
2751 		return true;
2752 	}
2753 	return false;
2754 }
2755 
2756 /* Process an event, which can update packets-in-flight not trivially.
2757  * Main goal of this function is to calculate new estimate for left_out,
2758  * taking into account both packets sitting in receiver's buffer and
2759  * packets lost by network.
2760  *
2761  * Besides that it updates the congestion state when packet loss or ECN
2762  * is detected. But it does not reduce the cwnd, it is done by the
2763  * congestion control later.
2764  *
2765  * It does _not_ decide what to send, it is made in function
2766  * tcp_xmit_retransmit_queue().
2767  */
2768 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2769 				  bool is_dupack, int *ack_flag, int *rexmit)
2770 {
2771 	struct inet_connection_sock *icsk = inet_csk(sk);
2772 	struct tcp_sock *tp = tcp_sk(sk);
2773 	int fast_rexmit = 0, flag = *ack_flag;
2774 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2775 				    (tcp_fackets_out(tp) > tp->reordering));
2776 
2777 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2778 		tp->sacked_out = 0;
2779 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2780 		tp->fackets_out = 0;
2781 
2782 	/* Now state machine starts.
2783 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2784 	if (flag & FLAG_ECE)
2785 		tp->prior_ssthresh = 0;
2786 
2787 	/* B. In all the states check for reneging SACKs. */
2788 	if (tcp_check_sack_reneging(sk, flag))
2789 		return;
2790 
2791 	/* C. Check consistency of the current state. */
2792 	tcp_verify_left_out(tp);
2793 
2794 	/* D. Check state exit conditions. State can be terminated
2795 	 *    when high_seq is ACKed. */
2796 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2797 		WARN_ON(tp->retrans_out != 0);
2798 		tp->retrans_stamp = 0;
2799 	} else if (!before(tp->snd_una, tp->high_seq)) {
2800 		switch (icsk->icsk_ca_state) {
2801 		case TCP_CA_CWR:
2802 			/* CWR is to be held something *above* high_seq
2803 			 * is ACKed for CWR bit to reach receiver. */
2804 			if (tp->snd_una != tp->high_seq) {
2805 				tcp_end_cwnd_reduction(sk);
2806 				tcp_set_ca_state(sk, TCP_CA_Open);
2807 			}
2808 			break;
2809 
2810 		case TCP_CA_Recovery:
2811 			if (tcp_is_reno(tp))
2812 				tcp_reset_reno_sack(tp);
2813 			if (tcp_try_undo_recovery(sk))
2814 				return;
2815 			tcp_end_cwnd_reduction(sk);
2816 			break;
2817 		}
2818 	}
2819 
2820 	/* Use RACK to detect loss */
2821 	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2822 	    tcp_rack_mark_lost(sk)) {
2823 		flag |= FLAG_LOST_RETRANS;
2824 		*ack_flag |= FLAG_LOST_RETRANS;
2825 	}
2826 
2827 	/* E. Process state. */
2828 	switch (icsk->icsk_ca_state) {
2829 	case TCP_CA_Recovery:
2830 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2831 			if (tcp_is_reno(tp) && is_dupack)
2832 				tcp_add_reno_sack(sk);
2833 		} else {
2834 			if (tcp_try_undo_partial(sk, acked))
2835 				return;
2836 			/* Partial ACK arrived. Force fast retransmit. */
2837 			do_lost = tcp_is_reno(tp) ||
2838 				  tcp_fackets_out(tp) > tp->reordering;
2839 		}
2840 		if (tcp_try_undo_dsack(sk)) {
2841 			tcp_try_keep_open(sk);
2842 			return;
2843 		}
2844 		break;
2845 	case TCP_CA_Loss:
2846 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2847 		if (icsk->icsk_ca_state != TCP_CA_Open &&
2848 		    !(flag & FLAG_LOST_RETRANS))
2849 			return;
2850 		/* Change state if cwnd is undone or retransmits are lost */
2851 	default:
2852 		if (tcp_is_reno(tp)) {
2853 			if (flag & FLAG_SND_UNA_ADVANCED)
2854 				tcp_reset_reno_sack(tp);
2855 			if (is_dupack)
2856 				tcp_add_reno_sack(sk);
2857 		}
2858 
2859 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2860 			tcp_try_undo_dsack(sk);
2861 
2862 		if (!tcp_time_to_recover(sk, flag)) {
2863 			tcp_try_to_open(sk, flag);
2864 			return;
2865 		}
2866 
2867 		/* MTU probe failure: don't reduce cwnd */
2868 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2869 		    icsk->icsk_mtup.probe_size &&
2870 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2871 			tcp_mtup_probe_failed(sk);
2872 			/* Restores the reduction we did in tcp_mtup_probe() */
2873 			tp->snd_cwnd++;
2874 			tcp_simple_retransmit(sk);
2875 			return;
2876 		}
2877 
2878 		/* Otherwise enter Recovery state */
2879 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2880 		fast_rexmit = 1;
2881 	}
2882 
2883 	if (do_lost)
2884 		tcp_update_scoreboard(sk, fast_rexmit);
2885 	*rexmit = REXMIT_LOST;
2886 }
2887 
2888 /* Kathleen Nichols' algorithm for tracking the minimum value of
2889  * a data stream over some fixed time interval. (E.g., the minimum
2890  * RTT over the past five minutes.) It uses constant space and constant
2891  * time per update yet almost always delivers the same minimum as an
2892  * implementation that has to keep all the data in the window.
2893  *
2894  * The algorithm keeps track of the best, 2nd best & 3rd best min
2895  * values, maintaining an invariant that the measurement time of the
2896  * n'th best >= n-1'th best. It also makes sure that the three values
2897  * are widely separated in the time window since that bounds the worse
2898  * case error when that data is monotonically increasing over the window.
2899  *
2900  * Upon getting a new min, we can forget everything earlier because it
2901  * has no value - the new min is <= everything else in the window by
2902  * definition and it's the most recent. So we restart fresh on every new min
2903  * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2904  * best.
2905  */
2906 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2907 {
2908 	const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2909 	struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2910 	struct rtt_meas rttm = {
2911 		.rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2912 		.ts = now,
2913 	};
2914 	u32 elapsed;
2915 
2916 	/* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2917 	if (unlikely(rttm.rtt <= m[0].rtt))
2918 		m[0] = m[1] = m[2] = rttm;
2919 	else if (rttm.rtt <= m[1].rtt)
2920 		m[1] = m[2] = rttm;
2921 	else if (rttm.rtt <= m[2].rtt)
2922 		m[2] = rttm;
2923 
2924 	elapsed = now - m[0].ts;
2925 	if (unlikely(elapsed > wlen)) {
2926 		/* Passed entire window without a new min so make 2nd choice
2927 		 * the new min & 3rd choice the new 2nd. So forth and so on.
2928 		 */
2929 		m[0] = m[1];
2930 		m[1] = m[2];
2931 		m[2] = rttm;
2932 		if (now - m[0].ts > wlen) {
2933 			m[0] = m[1];
2934 			m[1] = rttm;
2935 			if (now - m[0].ts > wlen)
2936 				m[0] = rttm;
2937 		}
2938 	} else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2939 		/* Passed a quarter of the window without a new min so
2940 		 * take 2nd choice from the 2nd quarter of the window.
2941 		 */
2942 		m[2] = m[1] = rttm;
2943 	} else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2944 		/* Passed half the window without a new min so take the 3rd
2945 		 * choice from the last half of the window.
2946 		 */
2947 		m[2] = rttm;
2948 	}
2949 }
2950 
2951 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2952 				      long seq_rtt_us, long sack_rtt_us,
2953 				      long ca_rtt_us)
2954 {
2955 	const struct tcp_sock *tp = tcp_sk(sk);
2956 
2957 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2958 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2959 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2960 	 * is acked (RFC6298).
2961 	 */
2962 	if (seq_rtt_us < 0)
2963 		seq_rtt_us = sack_rtt_us;
2964 
2965 	/* RTTM Rule: A TSecr value received in a segment is used to
2966 	 * update the averaged RTT measurement only if the segment
2967 	 * acknowledges some new data, i.e., only if it advances the
2968 	 * left edge of the send window.
2969 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2970 	 */
2971 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2972 	    flag & FLAG_ACKED)
2973 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2974 							  tp->rx_opt.rcv_tsecr);
2975 	if (seq_rtt_us < 0)
2976 		return false;
2977 
2978 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2979 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2980 	 * values will be skipped with the seq_rtt_us < 0 check above.
2981 	 */
2982 	tcp_update_rtt_min(sk, ca_rtt_us);
2983 	tcp_rtt_estimator(sk, seq_rtt_us);
2984 	tcp_set_rto(sk);
2985 
2986 	/* RFC6298: only reset backoff on valid RTT measurement. */
2987 	inet_csk(sk)->icsk_backoff = 0;
2988 	return true;
2989 }
2990 
2991 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2992 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2993 {
2994 	long rtt_us = -1L;
2995 
2996 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2997 		struct skb_mstamp now;
2998 
2999 		skb_mstamp_get(&now);
3000 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3001 	}
3002 
3003 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3004 }
3005 
3006 
3007 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3008 {
3009 	const struct inet_connection_sock *icsk = inet_csk(sk);
3010 
3011 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3012 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3013 }
3014 
3015 /* Restart timer after forward progress on connection.
3016  * RFC2988 recommends to restart timer to now+rto.
3017  */
3018 void tcp_rearm_rto(struct sock *sk)
3019 {
3020 	const struct inet_connection_sock *icsk = inet_csk(sk);
3021 	struct tcp_sock *tp = tcp_sk(sk);
3022 
3023 	/* If the retrans timer is currently being used by Fast Open
3024 	 * for SYN-ACK retrans purpose, stay put.
3025 	 */
3026 	if (tp->fastopen_rsk)
3027 		return;
3028 
3029 	if (!tp->packets_out) {
3030 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3031 	} else {
3032 		u32 rto = inet_csk(sk)->icsk_rto;
3033 		/* Offset the time elapsed after installing regular RTO */
3034 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3035 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3036 			struct sk_buff *skb = tcp_write_queue_head(sk);
3037 			const u32 rto_time_stamp =
3038 				tcp_skb_timestamp(skb) + rto;
3039 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3040 			/* delta may not be positive if the socket is locked
3041 			 * when the retrans timer fires and is rescheduled.
3042 			 */
3043 			if (delta > 0)
3044 				rto = delta;
3045 		}
3046 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3047 					  TCP_RTO_MAX);
3048 	}
3049 }
3050 
3051 /* This function is called when the delayed ER timer fires. TCP enters
3052  * fast recovery and performs fast-retransmit.
3053  */
3054 void tcp_resume_early_retransmit(struct sock *sk)
3055 {
3056 	struct tcp_sock *tp = tcp_sk(sk);
3057 
3058 	tcp_rearm_rto(sk);
3059 
3060 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3061 	if (!tp->do_early_retrans)
3062 		return;
3063 
3064 	tcp_enter_recovery(sk, false);
3065 	tcp_update_scoreboard(sk, 1);
3066 	tcp_xmit_retransmit_queue(sk);
3067 }
3068 
3069 /* If we get here, the whole TSO packet has not been acked. */
3070 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3071 {
3072 	struct tcp_sock *tp = tcp_sk(sk);
3073 	u32 packets_acked;
3074 
3075 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3076 
3077 	packets_acked = tcp_skb_pcount(skb);
3078 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3079 		return 0;
3080 	packets_acked -= tcp_skb_pcount(skb);
3081 
3082 	if (packets_acked) {
3083 		BUG_ON(tcp_skb_pcount(skb) == 0);
3084 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3085 	}
3086 
3087 	return packets_acked;
3088 }
3089 
3090 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3091 			   u32 prior_snd_una)
3092 {
3093 	const struct skb_shared_info *shinfo;
3094 
3095 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3096 	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3097 		return;
3098 
3099 	shinfo = skb_shinfo(skb);
3100 	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3101 	    between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3102 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3103 }
3104 
3105 /* Remove acknowledged frames from the retransmission queue. If our packet
3106  * is before the ack sequence we can discard it as it's confirmed to have
3107  * arrived at the other end.
3108  */
3109 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3110 			       u32 prior_snd_una, int *acked,
3111 			       struct tcp_sacktag_state *sack)
3112 {
3113 	const struct inet_connection_sock *icsk = inet_csk(sk);
3114 	struct skb_mstamp first_ackt, last_ackt, now;
3115 	struct tcp_sock *tp = tcp_sk(sk);
3116 	u32 prior_sacked = tp->sacked_out;
3117 	u32 reord = tp->packets_out;
3118 	bool fully_acked = true;
3119 	long sack_rtt_us = -1L;
3120 	long seq_rtt_us = -1L;
3121 	long ca_rtt_us = -1L;
3122 	struct sk_buff *skb;
3123 	u32 pkts_acked = 0;
3124 	bool rtt_update;
3125 	int flag = 0;
3126 
3127 	first_ackt.v64 = 0;
3128 
3129 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3130 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3131 		u8 sacked = scb->sacked;
3132 		u32 acked_pcount;
3133 
3134 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3135 
3136 		/* Determine how many packets and what bytes were acked, tso and else */
3137 		if (after(scb->end_seq, tp->snd_una)) {
3138 			if (tcp_skb_pcount(skb) == 1 ||
3139 			    !after(tp->snd_una, scb->seq))
3140 				break;
3141 
3142 			acked_pcount = tcp_tso_acked(sk, skb);
3143 			if (!acked_pcount)
3144 				break;
3145 
3146 			fully_acked = false;
3147 		} else {
3148 			/* Speedup tcp_unlink_write_queue() and next loop */
3149 			prefetchw(skb->next);
3150 			acked_pcount = tcp_skb_pcount(skb);
3151 		}
3152 
3153 		if (unlikely(sacked & TCPCB_RETRANS)) {
3154 			if (sacked & TCPCB_SACKED_RETRANS)
3155 				tp->retrans_out -= acked_pcount;
3156 			flag |= FLAG_RETRANS_DATA_ACKED;
3157 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3158 			last_ackt = skb->skb_mstamp;
3159 			WARN_ON_ONCE(last_ackt.v64 == 0);
3160 			if (!first_ackt.v64)
3161 				first_ackt = last_ackt;
3162 
3163 			reord = min(pkts_acked, reord);
3164 			if (!after(scb->end_seq, tp->high_seq))
3165 				flag |= FLAG_ORIG_SACK_ACKED;
3166 		}
3167 
3168 		if (sacked & TCPCB_SACKED_ACKED) {
3169 			tp->sacked_out -= acked_pcount;
3170 		} else if (tcp_is_sack(tp)) {
3171 			tp->delivered += acked_pcount;
3172 			if (!tcp_skb_spurious_retrans(tp, skb))
3173 				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3174 		}
3175 		if (sacked & TCPCB_LOST)
3176 			tp->lost_out -= acked_pcount;
3177 
3178 		tp->packets_out -= acked_pcount;
3179 		pkts_acked += acked_pcount;
3180 
3181 		/* Initial outgoing SYN's get put onto the write_queue
3182 		 * just like anything else we transmit.  It is not
3183 		 * true data, and if we misinform our callers that
3184 		 * this ACK acks real data, we will erroneously exit
3185 		 * connection startup slow start one packet too
3186 		 * quickly.  This is severely frowned upon behavior.
3187 		 */
3188 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3189 			flag |= FLAG_DATA_ACKED;
3190 		} else {
3191 			flag |= FLAG_SYN_ACKED;
3192 			tp->retrans_stamp = 0;
3193 		}
3194 
3195 		if (!fully_acked)
3196 			break;
3197 
3198 		tcp_unlink_write_queue(skb, sk);
3199 		sk_wmem_free_skb(sk, skb);
3200 		if (unlikely(skb == tp->retransmit_skb_hint))
3201 			tp->retransmit_skb_hint = NULL;
3202 		if (unlikely(skb == tp->lost_skb_hint))
3203 			tp->lost_skb_hint = NULL;
3204 	}
3205 
3206 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3207 		tp->snd_up = tp->snd_una;
3208 
3209 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3210 		flag |= FLAG_SACK_RENEGING;
3211 
3212 	skb_mstamp_get(&now);
3213 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3214 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3215 		ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3216 	}
3217 	if (sack->first_sackt.v64) {
3218 		sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3219 		ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3220 	}
3221 
3222 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3223 					ca_rtt_us);
3224 
3225 	if (flag & FLAG_ACKED) {
3226 		tcp_rearm_rto(sk);
3227 		if (unlikely(icsk->icsk_mtup.probe_size &&
3228 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3229 			tcp_mtup_probe_success(sk);
3230 		}
3231 
3232 		if (tcp_is_reno(tp)) {
3233 			tcp_remove_reno_sacks(sk, pkts_acked);
3234 		} else {
3235 			int delta;
3236 
3237 			/* Non-retransmitted hole got filled? That's reordering */
3238 			if (reord < prior_fackets)
3239 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3240 
3241 			delta = tcp_is_fack(tp) ? pkts_acked :
3242 						  prior_sacked - tp->sacked_out;
3243 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3244 		}
3245 
3246 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3247 
3248 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3249 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3250 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3251 		 * after when the head was last (re)transmitted. Otherwise the
3252 		 * timeout may continue to extend in loss recovery.
3253 		 */
3254 		tcp_rearm_rto(sk);
3255 	}
3256 
3257 	if (icsk->icsk_ca_ops->pkts_acked)
3258 		icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3259 
3260 #if FASTRETRANS_DEBUG > 0
3261 	WARN_ON((int)tp->sacked_out < 0);
3262 	WARN_ON((int)tp->lost_out < 0);
3263 	WARN_ON((int)tp->retrans_out < 0);
3264 	if (!tp->packets_out && tcp_is_sack(tp)) {
3265 		icsk = inet_csk(sk);
3266 		if (tp->lost_out) {
3267 			pr_debug("Leak l=%u %d\n",
3268 				 tp->lost_out, icsk->icsk_ca_state);
3269 			tp->lost_out = 0;
3270 		}
3271 		if (tp->sacked_out) {
3272 			pr_debug("Leak s=%u %d\n",
3273 				 tp->sacked_out, icsk->icsk_ca_state);
3274 			tp->sacked_out = 0;
3275 		}
3276 		if (tp->retrans_out) {
3277 			pr_debug("Leak r=%u %d\n",
3278 				 tp->retrans_out, icsk->icsk_ca_state);
3279 			tp->retrans_out = 0;
3280 		}
3281 	}
3282 #endif
3283 	*acked = pkts_acked;
3284 	return flag;
3285 }
3286 
3287 static void tcp_ack_probe(struct sock *sk)
3288 {
3289 	const struct tcp_sock *tp = tcp_sk(sk);
3290 	struct inet_connection_sock *icsk = inet_csk(sk);
3291 
3292 	/* Was it a usable window open? */
3293 
3294 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3295 		icsk->icsk_backoff = 0;
3296 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3297 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3298 		 * This function is not for random using!
3299 		 */
3300 	} else {
3301 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3302 
3303 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3304 					  when, TCP_RTO_MAX);
3305 	}
3306 }
3307 
3308 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3309 {
3310 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3311 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3312 }
3313 
3314 /* Decide wheather to run the increase function of congestion control. */
3315 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3316 {
3317 	/* If reordering is high then always grow cwnd whenever data is
3318 	 * delivered regardless of its ordering. Otherwise stay conservative
3319 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3320 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3321 	 * cwnd in tcp_fastretrans_alert() based on more states.
3322 	 */
3323 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3324 		return flag & FLAG_FORWARD_PROGRESS;
3325 
3326 	return flag & FLAG_DATA_ACKED;
3327 }
3328 
3329 /* The "ultimate" congestion control function that aims to replace the rigid
3330  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3331  * It's called toward the end of processing an ACK with precise rate
3332  * information. All transmission or retransmission are delayed afterwards.
3333  */
3334 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3335 			     int flag)
3336 {
3337 	if (tcp_in_cwnd_reduction(sk)) {
3338 		/* Reduce cwnd if state mandates */
3339 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3340 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3341 		/* Advance cwnd if state allows */
3342 		tcp_cong_avoid(sk, ack, acked_sacked);
3343 	}
3344 	tcp_update_pacing_rate(sk);
3345 }
3346 
3347 /* Check that window update is acceptable.
3348  * The function assumes that snd_una<=ack<=snd_next.
3349  */
3350 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3351 					const u32 ack, const u32 ack_seq,
3352 					const u32 nwin)
3353 {
3354 	return	after(ack, tp->snd_una) ||
3355 		after(ack_seq, tp->snd_wl1) ||
3356 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3357 }
3358 
3359 /* If we update tp->snd_una, also update tp->bytes_acked */
3360 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3361 {
3362 	u32 delta = ack - tp->snd_una;
3363 
3364 	u64_stats_update_begin(&tp->syncp);
3365 	tp->bytes_acked += delta;
3366 	u64_stats_update_end(&tp->syncp);
3367 	tp->snd_una = ack;
3368 }
3369 
3370 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3371 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3372 {
3373 	u32 delta = seq - tp->rcv_nxt;
3374 
3375 	u64_stats_update_begin(&tp->syncp);
3376 	tp->bytes_received += delta;
3377 	u64_stats_update_end(&tp->syncp);
3378 	tp->rcv_nxt = seq;
3379 }
3380 
3381 /* Update our send window.
3382  *
3383  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3384  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3385  */
3386 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3387 				 u32 ack_seq)
3388 {
3389 	struct tcp_sock *tp = tcp_sk(sk);
3390 	int flag = 0;
3391 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3392 
3393 	if (likely(!tcp_hdr(skb)->syn))
3394 		nwin <<= tp->rx_opt.snd_wscale;
3395 
3396 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3397 		flag |= FLAG_WIN_UPDATE;
3398 		tcp_update_wl(tp, ack_seq);
3399 
3400 		if (tp->snd_wnd != nwin) {
3401 			tp->snd_wnd = nwin;
3402 
3403 			/* Note, it is the only place, where
3404 			 * fast path is recovered for sending TCP.
3405 			 */
3406 			tp->pred_flags = 0;
3407 			tcp_fast_path_check(sk);
3408 
3409 			if (tcp_send_head(sk))
3410 				tcp_slow_start_after_idle_check(sk);
3411 
3412 			if (nwin > tp->max_window) {
3413 				tp->max_window = nwin;
3414 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3415 			}
3416 		}
3417 	}
3418 
3419 	tcp_snd_una_update(tp, ack);
3420 
3421 	return flag;
3422 }
3423 
3424 /* Return true if we're currently rate-limiting out-of-window ACKs and
3425  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3426  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3427  * attacks that send repeated SYNs or ACKs for the same connection. To
3428  * do this, we do not send a duplicate SYNACK or ACK if the remote
3429  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3430  */
3431 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3432 			  int mib_idx, u32 *last_oow_ack_time)
3433 {
3434 	/* Data packets without SYNs are not likely part of an ACK loop. */
3435 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3436 	    !tcp_hdr(skb)->syn)
3437 		goto not_rate_limited;
3438 
3439 	if (*last_oow_ack_time) {
3440 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3441 
3442 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3443 			NET_INC_STATS_BH(net, mib_idx);
3444 			return true;	/* rate-limited: don't send yet! */
3445 		}
3446 	}
3447 
3448 	*last_oow_ack_time = tcp_time_stamp;
3449 
3450 not_rate_limited:
3451 	return false;	/* not rate-limited: go ahead, send dupack now! */
3452 }
3453 
3454 /* RFC 5961 7 [ACK Throttling] */
3455 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3456 {
3457 	/* unprotected vars, we dont care of overwrites */
3458 	static u32 challenge_timestamp;
3459 	static unsigned int challenge_count;
3460 	struct tcp_sock *tp = tcp_sk(sk);
3461 	u32 now;
3462 
3463 	/* First check our per-socket dupack rate limit. */
3464 	if (tcp_oow_rate_limited(sock_net(sk), skb,
3465 				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3466 				 &tp->last_oow_ack_time))
3467 		return;
3468 
3469 	/* Then check the check host-wide RFC 5961 rate limit. */
3470 	now = jiffies / HZ;
3471 	if (now != challenge_timestamp) {
3472 		challenge_timestamp = now;
3473 		challenge_count = 0;
3474 	}
3475 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3476 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3477 		tcp_send_ack(sk);
3478 	}
3479 }
3480 
3481 static void tcp_store_ts_recent(struct tcp_sock *tp)
3482 {
3483 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3484 	tp->rx_opt.ts_recent_stamp = get_seconds();
3485 }
3486 
3487 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3488 {
3489 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3490 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3491 		 * extra check below makes sure this can only happen
3492 		 * for pure ACK frames.  -DaveM
3493 		 *
3494 		 * Not only, also it occurs for expired timestamps.
3495 		 */
3496 
3497 		if (tcp_paws_check(&tp->rx_opt, 0))
3498 			tcp_store_ts_recent(tp);
3499 	}
3500 }
3501 
3502 /* This routine deals with acks during a TLP episode.
3503  * We mark the end of a TLP episode on receiving TLP dupack or when
3504  * ack is after tlp_high_seq.
3505  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3506  */
3507 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3508 {
3509 	struct tcp_sock *tp = tcp_sk(sk);
3510 
3511 	if (before(ack, tp->tlp_high_seq))
3512 		return;
3513 
3514 	if (flag & FLAG_DSACKING_ACK) {
3515 		/* This DSACK means original and TLP probe arrived; no loss */
3516 		tp->tlp_high_seq = 0;
3517 	} else if (after(ack, tp->tlp_high_seq)) {
3518 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3519 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3520 		 */
3521 		tcp_init_cwnd_reduction(sk);
3522 		tcp_set_ca_state(sk, TCP_CA_CWR);
3523 		tcp_end_cwnd_reduction(sk);
3524 		tcp_try_keep_open(sk);
3525 		NET_INC_STATS_BH(sock_net(sk),
3526 				 LINUX_MIB_TCPLOSSPROBERECOVERY);
3527 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3528 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3529 		/* Pure dupack: original and TLP probe arrived; no loss */
3530 		tp->tlp_high_seq = 0;
3531 	}
3532 }
3533 
3534 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3535 {
3536 	const struct inet_connection_sock *icsk = inet_csk(sk);
3537 
3538 	if (icsk->icsk_ca_ops->in_ack_event)
3539 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3540 }
3541 
3542 /* Congestion control has updated the cwnd already. So if we're in
3543  * loss recovery then now we do any new sends (for FRTO) or
3544  * retransmits (for CA_Loss or CA_recovery) that make sense.
3545  */
3546 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3547 {
3548 	struct tcp_sock *tp = tcp_sk(sk);
3549 
3550 	if (rexmit == REXMIT_NONE)
3551 		return;
3552 
3553 	if (unlikely(rexmit == 2)) {
3554 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3555 					  TCP_NAGLE_OFF);
3556 		if (after(tp->snd_nxt, tp->high_seq))
3557 			return;
3558 		tp->frto = 0;
3559 	}
3560 	tcp_xmit_retransmit_queue(sk);
3561 }
3562 
3563 /* This routine deals with incoming acks, but not outgoing ones. */
3564 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3565 {
3566 	struct inet_connection_sock *icsk = inet_csk(sk);
3567 	struct tcp_sock *tp = tcp_sk(sk);
3568 	struct tcp_sacktag_state sack_state;
3569 	u32 prior_snd_una = tp->snd_una;
3570 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3571 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3572 	bool is_dupack = false;
3573 	u32 prior_fackets;
3574 	int prior_packets = tp->packets_out;
3575 	u32 prior_delivered = tp->delivered;
3576 	int acked = 0; /* Number of packets newly acked */
3577 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3578 
3579 	sack_state.first_sackt.v64 = 0;
3580 
3581 	/* We very likely will need to access write queue head. */
3582 	prefetchw(sk->sk_write_queue.next);
3583 
3584 	/* If the ack is older than previous acks
3585 	 * then we can probably ignore it.
3586 	 */
3587 	if (before(ack, prior_snd_una)) {
3588 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3589 		if (before(ack, prior_snd_una - tp->max_window)) {
3590 			tcp_send_challenge_ack(sk, skb);
3591 			return -1;
3592 		}
3593 		goto old_ack;
3594 	}
3595 
3596 	/* If the ack includes data we haven't sent yet, discard
3597 	 * this segment (RFC793 Section 3.9).
3598 	 */
3599 	if (after(ack, tp->snd_nxt))
3600 		goto invalid_ack;
3601 
3602 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3603 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3604 		tcp_rearm_rto(sk);
3605 
3606 	if (after(ack, prior_snd_una)) {
3607 		flag |= FLAG_SND_UNA_ADVANCED;
3608 		icsk->icsk_retransmits = 0;
3609 	}
3610 
3611 	prior_fackets = tp->fackets_out;
3612 
3613 	/* ts_recent update must be made after we are sure that the packet
3614 	 * is in window.
3615 	 */
3616 	if (flag & FLAG_UPDATE_TS_RECENT)
3617 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3618 
3619 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3620 		/* Window is constant, pure forward advance.
3621 		 * No more checks are required.
3622 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3623 		 */
3624 		tcp_update_wl(tp, ack_seq);
3625 		tcp_snd_una_update(tp, ack);
3626 		flag |= FLAG_WIN_UPDATE;
3627 
3628 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3629 
3630 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3631 	} else {
3632 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3633 
3634 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3635 			flag |= FLAG_DATA;
3636 		else
3637 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3638 
3639 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3640 
3641 		if (TCP_SKB_CB(skb)->sacked)
3642 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3643 							&sack_state);
3644 
3645 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3646 			flag |= FLAG_ECE;
3647 			ack_ev_flags |= CA_ACK_ECE;
3648 		}
3649 
3650 		if (flag & FLAG_WIN_UPDATE)
3651 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3652 
3653 		tcp_in_ack_event(sk, ack_ev_flags);
3654 	}
3655 
3656 	/* We passed data and got it acked, remove any soft error
3657 	 * log. Something worked...
3658 	 */
3659 	sk->sk_err_soft = 0;
3660 	icsk->icsk_probes_out = 0;
3661 	tp->rcv_tstamp = tcp_time_stamp;
3662 	if (!prior_packets)
3663 		goto no_queue;
3664 
3665 	/* See if we can take anything off of the retransmit queue. */
3666 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3667 				    &sack_state);
3668 
3669 	if (tcp_ack_is_dubious(sk, flag)) {
3670 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3671 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3672 	}
3673 	if (tp->tlp_high_seq)
3674 		tcp_process_tlp_ack(sk, ack, flag);
3675 
3676 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3677 		struct dst_entry *dst = __sk_dst_get(sk);
3678 		if (dst)
3679 			dst_confirm(dst);
3680 	}
3681 
3682 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3683 		tcp_schedule_loss_probe(sk);
3684 	tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
3685 	tcp_xmit_recovery(sk, rexmit);
3686 	return 1;
3687 
3688 no_queue:
3689 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3690 	if (flag & FLAG_DSACKING_ACK)
3691 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3692 	/* If this ack opens up a zero window, clear backoff.  It was
3693 	 * being used to time the probes, and is probably far higher than
3694 	 * it needs to be for normal retransmission.
3695 	 */
3696 	if (tcp_send_head(sk))
3697 		tcp_ack_probe(sk);
3698 
3699 	if (tp->tlp_high_seq)
3700 		tcp_process_tlp_ack(sk, ack, flag);
3701 	return 1;
3702 
3703 invalid_ack:
3704 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3705 	return -1;
3706 
3707 old_ack:
3708 	/* If data was SACKed, tag it and see if we should send more data.
3709 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3710 	 */
3711 	if (TCP_SKB_CB(skb)->sacked) {
3712 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3713 						&sack_state);
3714 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3715 		tcp_xmit_recovery(sk, rexmit);
3716 	}
3717 
3718 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3719 	return 0;
3720 }
3721 
3722 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3723 				      bool syn, struct tcp_fastopen_cookie *foc,
3724 				      bool exp_opt)
3725 {
3726 	/* Valid only in SYN or SYN-ACK with an even length.  */
3727 	if (!foc || !syn || len < 0 || (len & 1))
3728 		return;
3729 
3730 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3731 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3732 		memcpy(foc->val, cookie, len);
3733 	else if (len != 0)
3734 		len = -1;
3735 	foc->len = len;
3736 	foc->exp = exp_opt;
3737 }
3738 
3739 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3740  * But, this can also be called on packets in the established flow when
3741  * the fast version below fails.
3742  */
3743 void tcp_parse_options(const struct sk_buff *skb,
3744 		       struct tcp_options_received *opt_rx, int estab,
3745 		       struct tcp_fastopen_cookie *foc)
3746 {
3747 	const unsigned char *ptr;
3748 	const struct tcphdr *th = tcp_hdr(skb);
3749 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3750 
3751 	ptr = (const unsigned char *)(th + 1);
3752 	opt_rx->saw_tstamp = 0;
3753 
3754 	while (length > 0) {
3755 		int opcode = *ptr++;
3756 		int opsize;
3757 
3758 		switch (opcode) {
3759 		case TCPOPT_EOL:
3760 			return;
3761 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3762 			length--;
3763 			continue;
3764 		default:
3765 			opsize = *ptr++;
3766 			if (opsize < 2) /* "silly options" */
3767 				return;
3768 			if (opsize > length)
3769 				return;	/* don't parse partial options */
3770 			switch (opcode) {
3771 			case TCPOPT_MSS:
3772 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3773 					u16 in_mss = get_unaligned_be16(ptr);
3774 					if (in_mss) {
3775 						if (opt_rx->user_mss &&
3776 						    opt_rx->user_mss < in_mss)
3777 							in_mss = opt_rx->user_mss;
3778 						opt_rx->mss_clamp = in_mss;
3779 					}
3780 				}
3781 				break;
3782 			case TCPOPT_WINDOW:
3783 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3784 				    !estab && sysctl_tcp_window_scaling) {
3785 					__u8 snd_wscale = *(__u8 *)ptr;
3786 					opt_rx->wscale_ok = 1;
3787 					if (snd_wscale > 14) {
3788 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3789 								     __func__,
3790 								     snd_wscale);
3791 						snd_wscale = 14;
3792 					}
3793 					opt_rx->snd_wscale = snd_wscale;
3794 				}
3795 				break;
3796 			case TCPOPT_TIMESTAMP:
3797 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3798 				    ((estab && opt_rx->tstamp_ok) ||
3799 				     (!estab && sysctl_tcp_timestamps))) {
3800 					opt_rx->saw_tstamp = 1;
3801 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3802 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3803 				}
3804 				break;
3805 			case TCPOPT_SACK_PERM:
3806 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3807 				    !estab && sysctl_tcp_sack) {
3808 					opt_rx->sack_ok = TCP_SACK_SEEN;
3809 					tcp_sack_reset(opt_rx);
3810 				}
3811 				break;
3812 
3813 			case TCPOPT_SACK:
3814 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3815 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3816 				   opt_rx->sack_ok) {
3817 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3818 				}
3819 				break;
3820 #ifdef CONFIG_TCP_MD5SIG
3821 			case TCPOPT_MD5SIG:
3822 				/*
3823 				 * The MD5 Hash has already been
3824 				 * checked (see tcp_v{4,6}_do_rcv()).
3825 				 */
3826 				break;
3827 #endif
3828 			case TCPOPT_FASTOPEN:
3829 				tcp_parse_fastopen_option(
3830 					opsize - TCPOLEN_FASTOPEN_BASE,
3831 					ptr, th->syn, foc, false);
3832 				break;
3833 
3834 			case TCPOPT_EXP:
3835 				/* Fast Open option shares code 254 using a
3836 				 * 16 bits magic number.
3837 				 */
3838 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3839 				    get_unaligned_be16(ptr) ==
3840 				    TCPOPT_FASTOPEN_MAGIC)
3841 					tcp_parse_fastopen_option(opsize -
3842 						TCPOLEN_EXP_FASTOPEN_BASE,
3843 						ptr + 2, th->syn, foc, true);
3844 				break;
3845 
3846 			}
3847 			ptr += opsize-2;
3848 			length -= opsize;
3849 		}
3850 	}
3851 }
3852 EXPORT_SYMBOL(tcp_parse_options);
3853 
3854 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3855 {
3856 	const __be32 *ptr = (const __be32 *)(th + 1);
3857 
3858 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3859 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3860 		tp->rx_opt.saw_tstamp = 1;
3861 		++ptr;
3862 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3863 		++ptr;
3864 		if (*ptr)
3865 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3866 		else
3867 			tp->rx_opt.rcv_tsecr = 0;
3868 		return true;
3869 	}
3870 	return false;
3871 }
3872 
3873 /* Fast parse options. This hopes to only see timestamps.
3874  * If it is wrong it falls back on tcp_parse_options().
3875  */
3876 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3877 				   const struct tcphdr *th, struct tcp_sock *tp)
3878 {
3879 	/* In the spirit of fast parsing, compare doff directly to constant
3880 	 * values.  Because equality is used, short doff can be ignored here.
3881 	 */
3882 	if (th->doff == (sizeof(*th) / 4)) {
3883 		tp->rx_opt.saw_tstamp = 0;
3884 		return false;
3885 	} else if (tp->rx_opt.tstamp_ok &&
3886 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3887 		if (tcp_parse_aligned_timestamp(tp, th))
3888 			return true;
3889 	}
3890 
3891 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3892 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3893 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3894 
3895 	return true;
3896 }
3897 
3898 #ifdef CONFIG_TCP_MD5SIG
3899 /*
3900  * Parse MD5 Signature option
3901  */
3902 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3903 {
3904 	int length = (th->doff << 2) - sizeof(*th);
3905 	const u8 *ptr = (const u8 *)(th + 1);
3906 
3907 	/* If the TCP option is too short, we can short cut */
3908 	if (length < TCPOLEN_MD5SIG)
3909 		return NULL;
3910 
3911 	while (length > 0) {
3912 		int opcode = *ptr++;
3913 		int opsize;
3914 
3915 		switch (opcode) {
3916 		case TCPOPT_EOL:
3917 			return NULL;
3918 		case TCPOPT_NOP:
3919 			length--;
3920 			continue;
3921 		default:
3922 			opsize = *ptr++;
3923 			if (opsize < 2 || opsize > length)
3924 				return NULL;
3925 			if (opcode == TCPOPT_MD5SIG)
3926 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3927 		}
3928 		ptr += opsize - 2;
3929 		length -= opsize;
3930 	}
3931 	return NULL;
3932 }
3933 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3934 #endif
3935 
3936 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3937  *
3938  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3939  * it can pass through stack. So, the following predicate verifies that
3940  * this segment is not used for anything but congestion avoidance or
3941  * fast retransmit. Moreover, we even are able to eliminate most of such
3942  * second order effects, if we apply some small "replay" window (~RTO)
3943  * to timestamp space.
3944  *
3945  * All these measures still do not guarantee that we reject wrapped ACKs
3946  * on networks with high bandwidth, when sequence space is recycled fastly,
3947  * but it guarantees that such events will be very rare and do not affect
3948  * connection seriously. This doesn't look nice, but alas, PAWS is really
3949  * buggy extension.
3950  *
3951  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3952  * states that events when retransmit arrives after original data are rare.
3953  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3954  * the biggest problem on large power networks even with minor reordering.
3955  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3956  * up to bandwidth of 18Gigabit/sec. 8) ]
3957  */
3958 
3959 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3960 {
3961 	const struct tcp_sock *tp = tcp_sk(sk);
3962 	const struct tcphdr *th = tcp_hdr(skb);
3963 	u32 seq = TCP_SKB_CB(skb)->seq;
3964 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3965 
3966 	return (/* 1. Pure ACK with correct sequence number. */
3967 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3968 
3969 		/* 2. ... and duplicate ACK. */
3970 		ack == tp->snd_una &&
3971 
3972 		/* 3. ... and does not update window. */
3973 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3974 
3975 		/* 4. ... and sits in replay window. */
3976 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3977 }
3978 
3979 static inline bool tcp_paws_discard(const struct sock *sk,
3980 				   const struct sk_buff *skb)
3981 {
3982 	const struct tcp_sock *tp = tcp_sk(sk);
3983 
3984 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3985 	       !tcp_disordered_ack(sk, skb);
3986 }
3987 
3988 /* Check segment sequence number for validity.
3989  *
3990  * Segment controls are considered valid, if the segment
3991  * fits to the window after truncation to the window. Acceptability
3992  * of data (and SYN, FIN, of course) is checked separately.
3993  * See tcp_data_queue(), for example.
3994  *
3995  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3996  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3997  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3998  * (borrowed from freebsd)
3999  */
4000 
4001 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4002 {
4003 	return	!before(end_seq, tp->rcv_wup) &&
4004 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4005 }
4006 
4007 /* When we get a reset we do this. */
4008 void tcp_reset(struct sock *sk)
4009 {
4010 	/* We want the right error as BSD sees it (and indeed as we do). */
4011 	switch (sk->sk_state) {
4012 	case TCP_SYN_SENT:
4013 		sk->sk_err = ECONNREFUSED;
4014 		break;
4015 	case TCP_CLOSE_WAIT:
4016 		sk->sk_err = EPIPE;
4017 		break;
4018 	case TCP_CLOSE:
4019 		return;
4020 	default:
4021 		sk->sk_err = ECONNRESET;
4022 	}
4023 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4024 	smp_wmb();
4025 
4026 	if (!sock_flag(sk, SOCK_DEAD))
4027 		sk->sk_error_report(sk);
4028 
4029 	tcp_done(sk);
4030 }
4031 
4032 /*
4033  * 	Process the FIN bit. This now behaves as it is supposed to work
4034  *	and the FIN takes effect when it is validly part of sequence
4035  *	space. Not before when we get holes.
4036  *
4037  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4038  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4039  *	TIME-WAIT)
4040  *
4041  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4042  *	close and we go into CLOSING (and later onto TIME-WAIT)
4043  *
4044  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4045  */
4046 void tcp_fin(struct sock *sk)
4047 {
4048 	struct tcp_sock *tp = tcp_sk(sk);
4049 
4050 	inet_csk_schedule_ack(sk);
4051 
4052 	sk->sk_shutdown |= RCV_SHUTDOWN;
4053 	sock_set_flag(sk, SOCK_DONE);
4054 
4055 	switch (sk->sk_state) {
4056 	case TCP_SYN_RECV:
4057 	case TCP_ESTABLISHED:
4058 		/* Move to CLOSE_WAIT */
4059 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4060 		inet_csk(sk)->icsk_ack.pingpong = 1;
4061 		break;
4062 
4063 	case TCP_CLOSE_WAIT:
4064 	case TCP_CLOSING:
4065 		/* Received a retransmission of the FIN, do
4066 		 * nothing.
4067 		 */
4068 		break;
4069 	case TCP_LAST_ACK:
4070 		/* RFC793: Remain in the LAST-ACK state. */
4071 		break;
4072 
4073 	case TCP_FIN_WAIT1:
4074 		/* This case occurs when a simultaneous close
4075 		 * happens, we must ack the received FIN and
4076 		 * enter the CLOSING state.
4077 		 */
4078 		tcp_send_ack(sk);
4079 		tcp_set_state(sk, TCP_CLOSING);
4080 		break;
4081 	case TCP_FIN_WAIT2:
4082 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4083 		tcp_send_ack(sk);
4084 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4085 		break;
4086 	default:
4087 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4088 		 * cases we should never reach this piece of code.
4089 		 */
4090 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4091 		       __func__, sk->sk_state);
4092 		break;
4093 	}
4094 
4095 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4096 	 * Probably, we should reset in this case. For now drop them.
4097 	 */
4098 	__skb_queue_purge(&tp->out_of_order_queue);
4099 	if (tcp_is_sack(tp))
4100 		tcp_sack_reset(&tp->rx_opt);
4101 	sk_mem_reclaim(sk);
4102 
4103 	if (!sock_flag(sk, SOCK_DEAD)) {
4104 		sk->sk_state_change(sk);
4105 
4106 		/* Do not send POLL_HUP for half duplex close. */
4107 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4108 		    sk->sk_state == TCP_CLOSE)
4109 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4110 		else
4111 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4112 	}
4113 }
4114 
4115 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4116 				  u32 end_seq)
4117 {
4118 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4119 		if (before(seq, sp->start_seq))
4120 			sp->start_seq = seq;
4121 		if (after(end_seq, sp->end_seq))
4122 			sp->end_seq = end_seq;
4123 		return true;
4124 	}
4125 	return false;
4126 }
4127 
4128 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4129 {
4130 	struct tcp_sock *tp = tcp_sk(sk);
4131 
4132 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4133 		int mib_idx;
4134 
4135 		if (before(seq, tp->rcv_nxt))
4136 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4137 		else
4138 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4139 
4140 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4141 
4142 		tp->rx_opt.dsack = 1;
4143 		tp->duplicate_sack[0].start_seq = seq;
4144 		tp->duplicate_sack[0].end_seq = end_seq;
4145 	}
4146 }
4147 
4148 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4149 {
4150 	struct tcp_sock *tp = tcp_sk(sk);
4151 
4152 	if (!tp->rx_opt.dsack)
4153 		tcp_dsack_set(sk, seq, end_seq);
4154 	else
4155 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4156 }
4157 
4158 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4159 {
4160 	struct tcp_sock *tp = tcp_sk(sk);
4161 
4162 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4163 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4164 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4165 		tcp_enter_quickack_mode(sk);
4166 
4167 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4168 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4169 
4170 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4171 				end_seq = tp->rcv_nxt;
4172 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4173 		}
4174 	}
4175 
4176 	tcp_send_ack(sk);
4177 }
4178 
4179 /* These routines update the SACK block as out-of-order packets arrive or
4180  * in-order packets close up the sequence space.
4181  */
4182 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4183 {
4184 	int this_sack;
4185 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4186 	struct tcp_sack_block *swalk = sp + 1;
4187 
4188 	/* See if the recent change to the first SACK eats into
4189 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4190 	 */
4191 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4192 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4193 			int i;
4194 
4195 			/* Zap SWALK, by moving every further SACK up by one slot.
4196 			 * Decrease num_sacks.
4197 			 */
4198 			tp->rx_opt.num_sacks--;
4199 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4200 				sp[i] = sp[i + 1];
4201 			continue;
4202 		}
4203 		this_sack++, swalk++;
4204 	}
4205 }
4206 
4207 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4208 {
4209 	struct tcp_sock *tp = tcp_sk(sk);
4210 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4211 	int cur_sacks = tp->rx_opt.num_sacks;
4212 	int this_sack;
4213 
4214 	if (!cur_sacks)
4215 		goto new_sack;
4216 
4217 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4218 		if (tcp_sack_extend(sp, seq, end_seq)) {
4219 			/* Rotate this_sack to the first one. */
4220 			for (; this_sack > 0; this_sack--, sp--)
4221 				swap(*sp, *(sp - 1));
4222 			if (cur_sacks > 1)
4223 				tcp_sack_maybe_coalesce(tp);
4224 			return;
4225 		}
4226 	}
4227 
4228 	/* Could not find an adjacent existing SACK, build a new one,
4229 	 * put it at the front, and shift everyone else down.  We
4230 	 * always know there is at least one SACK present already here.
4231 	 *
4232 	 * If the sack array is full, forget about the last one.
4233 	 */
4234 	if (this_sack >= TCP_NUM_SACKS) {
4235 		this_sack--;
4236 		tp->rx_opt.num_sacks--;
4237 		sp--;
4238 	}
4239 	for (; this_sack > 0; this_sack--, sp--)
4240 		*sp = *(sp - 1);
4241 
4242 new_sack:
4243 	/* Build the new head SACK, and we're done. */
4244 	sp->start_seq = seq;
4245 	sp->end_seq = end_seq;
4246 	tp->rx_opt.num_sacks++;
4247 }
4248 
4249 /* RCV.NXT advances, some SACKs should be eaten. */
4250 
4251 static void tcp_sack_remove(struct tcp_sock *tp)
4252 {
4253 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4254 	int num_sacks = tp->rx_opt.num_sacks;
4255 	int this_sack;
4256 
4257 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4258 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4259 		tp->rx_opt.num_sacks = 0;
4260 		return;
4261 	}
4262 
4263 	for (this_sack = 0; this_sack < num_sacks;) {
4264 		/* Check if the start of the sack is covered by RCV.NXT. */
4265 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4266 			int i;
4267 
4268 			/* RCV.NXT must cover all the block! */
4269 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4270 
4271 			/* Zap this SACK, by moving forward any other SACKS. */
4272 			for (i = this_sack+1; i < num_sacks; i++)
4273 				tp->selective_acks[i-1] = tp->selective_acks[i];
4274 			num_sacks--;
4275 			continue;
4276 		}
4277 		this_sack++;
4278 		sp++;
4279 	}
4280 	tp->rx_opt.num_sacks = num_sacks;
4281 }
4282 
4283 /**
4284  * tcp_try_coalesce - try to merge skb to prior one
4285  * @sk: socket
4286  * @to: prior buffer
4287  * @from: buffer to add in queue
4288  * @fragstolen: pointer to boolean
4289  *
4290  * Before queueing skb @from after @to, try to merge them
4291  * to reduce overall memory use and queue lengths, if cost is small.
4292  * Packets in ofo or receive queues can stay a long time.
4293  * Better try to coalesce them right now to avoid future collapses.
4294  * Returns true if caller should free @from instead of queueing it
4295  */
4296 static bool tcp_try_coalesce(struct sock *sk,
4297 			     struct sk_buff *to,
4298 			     struct sk_buff *from,
4299 			     bool *fragstolen)
4300 {
4301 	int delta;
4302 
4303 	*fragstolen = false;
4304 
4305 	/* Its possible this segment overlaps with prior segment in queue */
4306 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4307 		return false;
4308 
4309 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4310 		return false;
4311 
4312 	atomic_add(delta, &sk->sk_rmem_alloc);
4313 	sk_mem_charge(sk, delta);
4314 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4315 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4316 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4317 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4318 	return true;
4319 }
4320 
4321 /* This one checks to see if we can put data from the
4322  * out_of_order queue into the receive_queue.
4323  */
4324 static void tcp_ofo_queue(struct sock *sk)
4325 {
4326 	struct tcp_sock *tp = tcp_sk(sk);
4327 	__u32 dsack_high = tp->rcv_nxt;
4328 	struct sk_buff *skb, *tail;
4329 	bool fragstolen, eaten;
4330 
4331 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4332 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4333 			break;
4334 
4335 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4336 			__u32 dsack = dsack_high;
4337 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4338 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4339 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4340 		}
4341 
4342 		__skb_unlink(skb, &tp->out_of_order_queue);
4343 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4344 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4345 			__kfree_skb(skb);
4346 			continue;
4347 		}
4348 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4349 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4350 			   TCP_SKB_CB(skb)->end_seq);
4351 
4352 		tail = skb_peek_tail(&sk->sk_receive_queue);
4353 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4354 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4355 		if (!eaten)
4356 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4357 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4358 			tcp_fin(sk);
4359 		if (eaten)
4360 			kfree_skb_partial(skb, fragstolen);
4361 	}
4362 }
4363 
4364 static bool tcp_prune_ofo_queue(struct sock *sk);
4365 static int tcp_prune_queue(struct sock *sk);
4366 
4367 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4368 				 unsigned int size)
4369 {
4370 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4371 	    !sk_rmem_schedule(sk, skb, size)) {
4372 
4373 		if (tcp_prune_queue(sk) < 0)
4374 			return -1;
4375 
4376 		if (!sk_rmem_schedule(sk, skb, size)) {
4377 			if (!tcp_prune_ofo_queue(sk))
4378 				return -1;
4379 
4380 			if (!sk_rmem_schedule(sk, skb, size))
4381 				return -1;
4382 		}
4383 	}
4384 	return 0;
4385 }
4386 
4387 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4388 {
4389 	struct tcp_sock *tp = tcp_sk(sk);
4390 	struct sk_buff *skb1;
4391 	u32 seq, end_seq;
4392 
4393 	tcp_ecn_check_ce(tp, skb);
4394 
4395 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4396 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4397 		__kfree_skb(skb);
4398 		return;
4399 	}
4400 
4401 	/* Disable header prediction. */
4402 	tp->pred_flags = 0;
4403 	inet_csk_schedule_ack(sk);
4404 
4405 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4406 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4407 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4408 
4409 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4410 	if (!skb1) {
4411 		/* Initial out of order segment, build 1 SACK. */
4412 		if (tcp_is_sack(tp)) {
4413 			tp->rx_opt.num_sacks = 1;
4414 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4415 			tp->selective_acks[0].end_seq =
4416 						TCP_SKB_CB(skb)->end_seq;
4417 		}
4418 		__skb_queue_head(&tp->out_of_order_queue, skb);
4419 		goto end;
4420 	}
4421 
4422 	seq = TCP_SKB_CB(skb)->seq;
4423 	end_seq = TCP_SKB_CB(skb)->end_seq;
4424 
4425 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4426 		bool fragstolen;
4427 
4428 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4429 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4430 		} else {
4431 			tcp_grow_window(sk, skb);
4432 			kfree_skb_partial(skb, fragstolen);
4433 			skb = NULL;
4434 		}
4435 
4436 		if (!tp->rx_opt.num_sacks ||
4437 		    tp->selective_acks[0].end_seq != seq)
4438 			goto add_sack;
4439 
4440 		/* Common case: data arrive in order after hole. */
4441 		tp->selective_acks[0].end_seq = end_seq;
4442 		goto end;
4443 	}
4444 
4445 	/* Find place to insert this segment. */
4446 	while (1) {
4447 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4448 			break;
4449 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4450 			skb1 = NULL;
4451 			break;
4452 		}
4453 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4454 	}
4455 
4456 	/* Do skb overlap to previous one? */
4457 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4458 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4459 			/* All the bits are present. Drop. */
4460 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4461 			__kfree_skb(skb);
4462 			skb = NULL;
4463 			tcp_dsack_set(sk, seq, end_seq);
4464 			goto add_sack;
4465 		}
4466 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4467 			/* Partial overlap. */
4468 			tcp_dsack_set(sk, seq,
4469 				      TCP_SKB_CB(skb1)->end_seq);
4470 		} else {
4471 			if (skb_queue_is_first(&tp->out_of_order_queue,
4472 					       skb1))
4473 				skb1 = NULL;
4474 			else
4475 				skb1 = skb_queue_prev(
4476 					&tp->out_of_order_queue,
4477 					skb1);
4478 		}
4479 	}
4480 	if (!skb1)
4481 		__skb_queue_head(&tp->out_of_order_queue, skb);
4482 	else
4483 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4484 
4485 	/* And clean segments covered by new one as whole. */
4486 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4487 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4488 
4489 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4490 			break;
4491 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4492 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4493 					 end_seq);
4494 			break;
4495 		}
4496 		__skb_unlink(skb1, &tp->out_of_order_queue);
4497 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4498 				 TCP_SKB_CB(skb1)->end_seq);
4499 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4500 		__kfree_skb(skb1);
4501 	}
4502 
4503 add_sack:
4504 	if (tcp_is_sack(tp))
4505 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4506 end:
4507 	if (skb) {
4508 		tcp_grow_window(sk, skb);
4509 		skb_set_owner_r(skb, sk);
4510 	}
4511 }
4512 
4513 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4514 		  bool *fragstolen)
4515 {
4516 	int eaten;
4517 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4518 
4519 	__skb_pull(skb, hdrlen);
4520 	eaten = (tail &&
4521 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4522 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4523 	if (!eaten) {
4524 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4525 		skb_set_owner_r(skb, sk);
4526 	}
4527 	return eaten;
4528 }
4529 
4530 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4531 {
4532 	struct sk_buff *skb;
4533 	int err = -ENOMEM;
4534 	int data_len = 0;
4535 	bool fragstolen;
4536 
4537 	if (size == 0)
4538 		return 0;
4539 
4540 	if (size > PAGE_SIZE) {
4541 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4542 
4543 		data_len = npages << PAGE_SHIFT;
4544 		size = data_len + (size & ~PAGE_MASK);
4545 	}
4546 	skb = alloc_skb_with_frags(size - data_len, data_len,
4547 				   PAGE_ALLOC_COSTLY_ORDER,
4548 				   &err, sk->sk_allocation);
4549 	if (!skb)
4550 		goto err;
4551 
4552 	skb_put(skb, size - data_len);
4553 	skb->data_len = data_len;
4554 	skb->len = size;
4555 
4556 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4557 		goto err_free;
4558 
4559 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4560 	if (err)
4561 		goto err_free;
4562 
4563 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4564 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4565 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4566 
4567 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4568 		WARN_ON_ONCE(fragstolen); /* should not happen */
4569 		__kfree_skb(skb);
4570 	}
4571 	return size;
4572 
4573 err_free:
4574 	kfree_skb(skb);
4575 err:
4576 	return err;
4577 
4578 }
4579 
4580 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4581 {
4582 	struct tcp_sock *tp = tcp_sk(sk);
4583 	int eaten = -1;
4584 	bool fragstolen = false;
4585 
4586 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4587 		goto drop;
4588 
4589 	skb_dst_drop(skb);
4590 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4591 
4592 	tcp_ecn_accept_cwr(tp, skb);
4593 
4594 	tp->rx_opt.dsack = 0;
4595 
4596 	/*  Queue data for delivery to the user.
4597 	 *  Packets in sequence go to the receive queue.
4598 	 *  Out of sequence packets to the out_of_order_queue.
4599 	 */
4600 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4601 		if (tcp_receive_window(tp) == 0)
4602 			goto out_of_window;
4603 
4604 		/* Ok. In sequence. In window. */
4605 		if (tp->ucopy.task == current &&
4606 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4607 		    sock_owned_by_user(sk) && !tp->urg_data) {
4608 			int chunk = min_t(unsigned int, skb->len,
4609 					  tp->ucopy.len);
4610 
4611 			__set_current_state(TASK_RUNNING);
4612 
4613 			local_bh_enable();
4614 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4615 				tp->ucopy.len -= chunk;
4616 				tp->copied_seq += chunk;
4617 				eaten = (chunk == skb->len);
4618 				tcp_rcv_space_adjust(sk);
4619 			}
4620 			local_bh_disable();
4621 		}
4622 
4623 		if (eaten <= 0) {
4624 queue_and_out:
4625 			if (eaten < 0) {
4626 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4627 					sk_forced_mem_schedule(sk, skb->truesize);
4628 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4629 					goto drop;
4630 			}
4631 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4632 		}
4633 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4634 		if (skb->len)
4635 			tcp_event_data_recv(sk, skb);
4636 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4637 			tcp_fin(sk);
4638 
4639 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4640 			tcp_ofo_queue(sk);
4641 
4642 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4643 			 * gap in queue is filled.
4644 			 */
4645 			if (skb_queue_empty(&tp->out_of_order_queue))
4646 				inet_csk(sk)->icsk_ack.pingpong = 0;
4647 		}
4648 
4649 		if (tp->rx_opt.num_sacks)
4650 			tcp_sack_remove(tp);
4651 
4652 		tcp_fast_path_check(sk);
4653 
4654 		if (eaten > 0)
4655 			kfree_skb_partial(skb, fragstolen);
4656 		if (!sock_flag(sk, SOCK_DEAD))
4657 			sk->sk_data_ready(sk);
4658 		return;
4659 	}
4660 
4661 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4662 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4663 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4664 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4665 
4666 out_of_window:
4667 		tcp_enter_quickack_mode(sk);
4668 		inet_csk_schedule_ack(sk);
4669 drop:
4670 		__kfree_skb(skb);
4671 		return;
4672 	}
4673 
4674 	/* Out of window. F.e. zero window probe. */
4675 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4676 		goto out_of_window;
4677 
4678 	tcp_enter_quickack_mode(sk);
4679 
4680 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4681 		/* Partial packet, seq < rcv_next < end_seq */
4682 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4683 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4684 			   TCP_SKB_CB(skb)->end_seq);
4685 
4686 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4687 
4688 		/* If window is closed, drop tail of packet. But after
4689 		 * remembering D-SACK for its head made in previous line.
4690 		 */
4691 		if (!tcp_receive_window(tp))
4692 			goto out_of_window;
4693 		goto queue_and_out;
4694 	}
4695 
4696 	tcp_data_queue_ofo(sk, skb);
4697 }
4698 
4699 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4700 					struct sk_buff_head *list)
4701 {
4702 	struct sk_buff *next = NULL;
4703 
4704 	if (!skb_queue_is_last(list, skb))
4705 		next = skb_queue_next(list, skb);
4706 
4707 	__skb_unlink(skb, list);
4708 	__kfree_skb(skb);
4709 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4710 
4711 	return next;
4712 }
4713 
4714 /* Collapse contiguous sequence of skbs head..tail with
4715  * sequence numbers start..end.
4716  *
4717  * If tail is NULL, this means until the end of the list.
4718  *
4719  * Segments with FIN/SYN are not collapsed (only because this
4720  * simplifies code)
4721  */
4722 static void
4723 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4724 	     struct sk_buff *head, struct sk_buff *tail,
4725 	     u32 start, u32 end)
4726 {
4727 	struct sk_buff *skb, *n;
4728 	bool end_of_skbs;
4729 
4730 	/* First, check that queue is collapsible and find
4731 	 * the point where collapsing can be useful. */
4732 	skb = head;
4733 restart:
4734 	end_of_skbs = true;
4735 	skb_queue_walk_from_safe(list, skb, n) {
4736 		if (skb == tail)
4737 			break;
4738 		/* No new bits? It is possible on ofo queue. */
4739 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4740 			skb = tcp_collapse_one(sk, skb, list);
4741 			if (!skb)
4742 				break;
4743 			goto restart;
4744 		}
4745 
4746 		/* The first skb to collapse is:
4747 		 * - not SYN/FIN and
4748 		 * - bloated or contains data before "start" or
4749 		 *   overlaps to the next one.
4750 		 */
4751 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4752 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4753 		     before(TCP_SKB_CB(skb)->seq, start))) {
4754 			end_of_skbs = false;
4755 			break;
4756 		}
4757 
4758 		if (!skb_queue_is_last(list, skb)) {
4759 			struct sk_buff *next = skb_queue_next(list, skb);
4760 			if (next != tail &&
4761 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4762 				end_of_skbs = false;
4763 				break;
4764 			}
4765 		}
4766 
4767 		/* Decided to skip this, advance start seq. */
4768 		start = TCP_SKB_CB(skb)->end_seq;
4769 	}
4770 	if (end_of_skbs ||
4771 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4772 		return;
4773 
4774 	while (before(start, end)) {
4775 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4776 		struct sk_buff *nskb;
4777 
4778 		nskb = alloc_skb(copy, GFP_ATOMIC);
4779 		if (!nskb)
4780 			return;
4781 
4782 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4783 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4784 		__skb_queue_before(list, skb, nskb);
4785 		skb_set_owner_r(nskb, sk);
4786 
4787 		/* Copy data, releasing collapsed skbs. */
4788 		while (copy > 0) {
4789 			int offset = start - TCP_SKB_CB(skb)->seq;
4790 			int size = TCP_SKB_CB(skb)->end_seq - start;
4791 
4792 			BUG_ON(offset < 0);
4793 			if (size > 0) {
4794 				size = min(copy, size);
4795 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4796 					BUG();
4797 				TCP_SKB_CB(nskb)->end_seq += size;
4798 				copy -= size;
4799 				start += size;
4800 			}
4801 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4802 				skb = tcp_collapse_one(sk, skb, list);
4803 				if (!skb ||
4804 				    skb == tail ||
4805 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4806 					return;
4807 			}
4808 		}
4809 	}
4810 }
4811 
4812 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4813  * and tcp_collapse() them until all the queue is collapsed.
4814  */
4815 static void tcp_collapse_ofo_queue(struct sock *sk)
4816 {
4817 	struct tcp_sock *tp = tcp_sk(sk);
4818 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4819 	struct sk_buff *head;
4820 	u32 start, end;
4821 
4822 	if (!skb)
4823 		return;
4824 
4825 	start = TCP_SKB_CB(skb)->seq;
4826 	end = TCP_SKB_CB(skb)->end_seq;
4827 	head = skb;
4828 
4829 	for (;;) {
4830 		struct sk_buff *next = NULL;
4831 
4832 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4833 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4834 		skb = next;
4835 
4836 		/* Segment is terminated when we see gap or when
4837 		 * we are at the end of all the queue. */
4838 		if (!skb ||
4839 		    after(TCP_SKB_CB(skb)->seq, end) ||
4840 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4841 			tcp_collapse(sk, &tp->out_of_order_queue,
4842 				     head, skb, start, end);
4843 			head = skb;
4844 			if (!skb)
4845 				break;
4846 			/* Start new segment */
4847 			start = TCP_SKB_CB(skb)->seq;
4848 			end = TCP_SKB_CB(skb)->end_seq;
4849 		} else {
4850 			if (before(TCP_SKB_CB(skb)->seq, start))
4851 				start = TCP_SKB_CB(skb)->seq;
4852 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4853 				end = TCP_SKB_CB(skb)->end_seq;
4854 		}
4855 	}
4856 }
4857 
4858 /*
4859  * Purge the out-of-order queue.
4860  * Return true if queue was pruned.
4861  */
4862 static bool tcp_prune_ofo_queue(struct sock *sk)
4863 {
4864 	struct tcp_sock *tp = tcp_sk(sk);
4865 	bool res = false;
4866 
4867 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4868 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4869 		__skb_queue_purge(&tp->out_of_order_queue);
4870 
4871 		/* Reset SACK state.  A conforming SACK implementation will
4872 		 * do the same at a timeout based retransmit.  When a connection
4873 		 * is in a sad state like this, we care only about integrity
4874 		 * of the connection not performance.
4875 		 */
4876 		if (tp->rx_opt.sack_ok)
4877 			tcp_sack_reset(&tp->rx_opt);
4878 		sk_mem_reclaim(sk);
4879 		res = true;
4880 	}
4881 	return res;
4882 }
4883 
4884 /* Reduce allocated memory if we can, trying to get
4885  * the socket within its memory limits again.
4886  *
4887  * Return less than zero if we should start dropping frames
4888  * until the socket owning process reads some of the data
4889  * to stabilize the situation.
4890  */
4891 static int tcp_prune_queue(struct sock *sk)
4892 {
4893 	struct tcp_sock *tp = tcp_sk(sk);
4894 
4895 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4896 
4897 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4898 
4899 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4900 		tcp_clamp_window(sk);
4901 	else if (tcp_under_memory_pressure(sk))
4902 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4903 
4904 	tcp_collapse_ofo_queue(sk);
4905 	if (!skb_queue_empty(&sk->sk_receive_queue))
4906 		tcp_collapse(sk, &sk->sk_receive_queue,
4907 			     skb_peek(&sk->sk_receive_queue),
4908 			     NULL,
4909 			     tp->copied_seq, tp->rcv_nxt);
4910 	sk_mem_reclaim(sk);
4911 
4912 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4913 		return 0;
4914 
4915 	/* Collapsing did not help, destructive actions follow.
4916 	 * This must not ever occur. */
4917 
4918 	tcp_prune_ofo_queue(sk);
4919 
4920 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4921 		return 0;
4922 
4923 	/* If we are really being abused, tell the caller to silently
4924 	 * drop receive data on the floor.  It will get retransmitted
4925 	 * and hopefully then we'll have sufficient space.
4926 	 */
4927 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4928 
4929 	/* Massive buffer overcommit. */
4930 	tp->pred_flags = 0;
4931 	return -1;
4932 }
4933 
4934 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4935 {
4936 	const struct tcp_sock *tp = tcp_sk(sk);
4937 
4938 	/* If the user specified a specific send buffer setting, do
4939 	 * not modify it.
4940 	 */
4941 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4942 		return false;
4943 
4944 	/* If we are under global TCP memory pressure, do not expand.  */
4945 	if (tcp_under_memory_pressure(sk))
4946 		return false;
4947 
4948 	/* If we are under soft global TCP memory pressure, do not expand.  */
4949 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4950 		return false;
4951 
4952 	/* If we filled the congestion window, do not expand.  */
4953 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4954 		return false;
4955 
4956 	return true;
4957 }
4958 
4959 /* When incoming ACK allowed to free some skb from write_queue,
4960  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4961  * on the exit from tcp input handler.
4962  *
4963  * PROBLEM: sndbuf expansion does not work well with largesend.
4964  */
4965 static void tcp_new_space(struct sock *sk)
4966 {
4967 	struct tcp_sock *tp = tcp_sk(sk);
4968 
4969 	if (tcp_should_expand_sndbuf(sk)) {
4970 		tcp_sndbuf_expand(sk);
4971 		tp->snd_cwnd_stamp = tcp_time_stamp;
4972 	}
4973 
4974 	sk->sk_write_space(sk);
4975 }
4976 
4977 static void tcp_check_space(struct sock *sk)
4978 {
4979 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4980 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4981 		/* pairs with tcp_poll() */
4982 		smp_mb__after_atomic();
4983 		if (sk->sk_socket &&
4984 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4985 			tcp_new_space(sk);
4986 	}
4987 }
4988 
4989 static inline void tcp_data_snd_check(struct sock *sk)
4990 {
4991 	tcp_push_pending_frames(sk);
4992 	tcp_check_space(sk);
4993 }
4994 
4995 /*
4996  * Check if sending an ack is needed.
4997  */
4998 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4999 {
5000 	struct tcp_sock *tp = tcp_sk(sk);
5001 
5002 	    /* More than one full frame received... */
5003 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5004 	     /* ... and right edge of window advances far enough.
5005 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5006 	      */
5007 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5008 	    /* We ACK each frame or... */
5009 	    tcp_in_quickack_mode(sk) ||
5010 	    /* We have out of order data. */
5011 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5012 		/* Then ack it now */
5013 		tcp_send_ack(sk);
5014 	} else {
5015 		/* Else, send delayed ack. */
5016 		tcp_send_delayed_ack(sk);
5017 	}
5018 }
5019 
5020 static inline void tcp_ack_snd_check(struct sock *sk)
5021 {
5022 	if (!inet_csk_ack_scheduled(sk)) {
5023 		/* We sent a data segment already. */
5024 		return;
5025 	}
5026 	__tcp_ack_snd_check(sk, 1);
5027 }
5028 
5029 /*
5030  *	This routine is only called when we have urgent data
5031  *	signaled. Its the 'slow' part of tcp_urg. It could be
5032  *	moved inline now as tcp_urg is only called from one
5033  *	place. We handle URGent data wrong. We have to - as
5034  *	BSD still doesn't use the correction from RFC961.
5035  *	For 1003.1g we should support a new option TCP_STDURG to permit
5036  *	either form (or just set the sysctl tcp_stdurg).
5037  */
5038 
5039 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5040 {
5041 	struct tcp_sock *tp = tcp_sk(sk);
5042 	u32 ptr = ntohs(th->urg_ptr);
5043 
5044 	if (ptr && !sysctl_tcp_stdurg)
5045 		ptr--;
5046 	ptr += ntohl(th->seq);
5047 
5048 	/* Ignore urgent data that we've already seen and read. */
5049 	if (after(tp->copied_seq, ptr))
5050 		return;
5051 
5052 	/* Do not replay urg ptr.
5053 	 *
5054 	 * NOTE: interesting situation not covered by specs.
5055 	 * Misbehaving sender may send urg ptr, pointing to segment,
5056 	 * which we already have in ofo queue. We are not able to fetch
5057 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5058 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5059 	 * situations. But it is worth to think about possibility of some
5060 	 * DoSes using some hypothetical application level deadlock.
5061 	 */
5062 	if (before(ptr, tp->rcv_nxt))
5063 		return;
5064 
5065 	/* Do we already have a newer (or duplicate) urgent pointer? */
5066 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5067 		return;
5068 
5069 	/* Tell the world about our new urgent pointer. */
5070 	sk_send_sigurg(sk);
5071 
5072 	/* We may be adding urgent data when the last byte read was
5073 	 * urgent. To do this requires some care. We cannot just ignore
5074 	 * tp->copied_seq since we would read the last urgent byte again
5075 	 * as data, nor can we alter copied_seq until this data arrives
5076 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5077 	 *
5078 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5079 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5080 	 * and expect that both A and B disappear from stream. This is _wrong_.
5081 	 * Though this happens in BSD with high probability, this is occasional.
5082 	 * Any application relying on this is buggy. Note also, that fix "works"
5083 	 * only in this artificial test. Insert some normal data between A and B and we will
5084 	 * decline of BSD again. Verdict: it is better to remove to trap
5085 	 * buggy users.
5086 	 */
5087 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5088 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5089 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5090 		tp->copied_seq++;
5091 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5092 			__skb_unlink(skb, &sk->sk_receive_queue);
5093 			__kfree_skb(skb);
5094 		}
5095 	}
5096 
5097 	tp->urg_data = TCP_URG_NOTYET;
5098 	tp->urg_seq = ptr;
5099 
5100 	/* Disable header prediction. */
5101 	tp->pred_flags = 0;
5102 }
5103 
5104 /* This is the 'fast' part of urgent handling. */
5105 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5106 {
5107 	struct tcp_sock *tp = tcp_sk(sk);
5108 
5109 	/* Check if we get a new urgent pointer - normally not. */
5110 	if (th->urg)
5111 		tcp_check_urg(sk, th);
5112 
5113 	/* Do we wait for any urgent data? - normally not... */
5114 	if (tp->urg_data == TCP_URG_NOTYET) {
5115 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5116 			  th->syn;
5117 
5118 		/* Is the urgent pointer pointing into this packet? */
5119 		if (ptr < skb->len) {
5120 			u8 tmp;
5121 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5122 				BUG();
5123 			tp->urg_data = TCP_URG_VALID | tmp;
5124 			if (!sock_flag(sk, SOCK_DEAD))
5125 				sk->sk_data_ready(sk);
5126 		}
5127 	}
5128 }
5129 
5130 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5131 {
5132 	struct tcp_sock *tp = tcp_sk(sk);
5133 	int chunk = skb->len - hlen;
5134 	int err;
5135 
5136 	local_bh_enable();
5137 	if (skb_csum_unnecessary(skb))
5138 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5139 	else
5140 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5141 
5142 	if (!err) {
5143 		tp->ucopy.len -= chunk;
5144 		tp->copied_seq += chunk;
5145 		tcp_rcv_space_adjust(sk);
5146 	}
5147 
5148 	local_bh_disable();
5149 	return err;
5150 }
5151 
5152 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5153 					    struct sk_buff *skb)
5154 {
5155 	__sum16 result;
5156 
5157 	if (sock_owned_by_user(sk)) {
5158 		local_bh_enable();
5159 		result = __tcp_checksum_complete(skb);
5160 		local_bh_disable();
5161 	} else {
5162 		result = __tcp_checksum_complete(skb);
5163 	}
5164 	return result;
5165 }
5166 
5167 static inline bool tcp_checksum_complete_user(struct sock *sk,
5168 					     struct sk_buff *skb)
5169 {
5170 	return !skb_csum_unnecessary(skb) &&
5171 	       __tcp_checksum_complete_user(sk, skb);
5172 }
5173 
5174 /* Does PAWS and seqno based validation of an incoming segment, flags will
5175  * play significant role here.
5176  */
5177 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5178 				  const struct tcphdr *th, int syn_inerr)
5179 {
5180 	struct tcp_sock *tp = tcp_sk(sk);
5181 
5182 	/* RFC1323: H1. Apply PAWS check first. */
5183 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5184 	    tcp_paws_discard(sk, skb)) {
5185 		if (!th->rst) {
5186 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5187 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5188 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5189 						  &tp->last_oow_ack_time))
5190 				tcp_send_dupack(sk, skb);
5191 			goto discard;
5192 		}
5193 		/* Reset is accepted even if it did not pass PAWS. */
5194 	}
5195 
5196 	/* Step 1: check sequence number */
5197 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5198 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5199 		 * (RST) segments are validated by checking their SEQ-fields."
5200 		 * And page 69: "If an incoming segment is not acceptable,
5201 		 * an acknowledgment should be sent in reply (unless the RST
5202 		 * bit is set, if so drop the segment and return)".
5203 		 */
5204 		if (!th->rst) {
5205 			if (th->syn)
5206 				goto syn_challenge;
5207 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5208 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5209 						  &tp->last_oow_ack_time))
5210 				tcp_send_dupack(sk, skb);
5211 		}
5212 		goto discard;
5213 	}
5214 
5215 	/* Step 2: check RST bit */
5216 	if (th->rst) {
5217 		/* RFC 5961 3.2 :
5218 		 * If sequence number exactly matches RCV.NXT, then
5219 		 *     RESET the connection
5220 		 * else
5221 		 *     Send a challenge ACK
5222 		 */
5223 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5224 			tcp_reset(sk);
5225 		else
5226 			tcp_send_challenge_ack(sk, skb);
5227 		goto discard;
5228 	}
5229 
5230 	/* step 3: check security and precedence [ignored] */
5231 
5232 	/* step 4: Check for a SYN
5233 	 * RFC 5961 4.2 : Send a challenge ack
5234 	 */
5235 	if (th->syn) {
5236 syn_challenge:
5237 		if (syn_inerr)
5238 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5239 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5240 		tcp_send_challenge_ack(sk, skb);
5241 		goto discard;
5242 	}
5243 
5244 	return true;
5245 
5246 discard:
5247 	__kfree_skb(skb);
5248 	return false;
5249 }
5250 
5251 /*
5252  *	TCP receive function for the ESTABLISHED state.
5253  *
5254  *	It is split into a fast path and a slow path. The fast path is
5255  * 	disabled when:
5256  *	- A zero window was announced from us - zero window probing
5257  *        is only handled properly in the slow path.
5258  *	- Out of order segments arrived.
5259  *	- Urgent data is expected.
5260  *	- There is no buffer space left
5261  *	- Unexpected TCP flags/window values/header lengths are received
5262  *	  (detected by checking the TCP header against pred_flags)
5263  *	- Data is sent in both directions. Fast path only supports pure senders
5264  *	  or pure receivers (this means either the sequence number or the ack
5265  *	  value must stay constant)
5266  *	- Unexpected TCP option.
5267  *
5268  *	When these conditions are not satisfied it drops into a standard
5269  *	receive procedure patterned after RFC793 to handle all cases.
5270  *	The first three cases are guaranteed by proper pred_flags setting,
5271  *	the rest is checked inline. Fast processing is turned on in
5272  *	tcp_data_queue when everything is OK.
5273  */
5274 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5275 			 const struct tcphdr *th, unsigned int len)
5276 {
5277 	struct tcp_sock *tp = tcp_sk(sk);
5278 
5279 	if (unlikely(!sk->sk_rx_dst))
5280 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5281 	/*
5282 	 *	Header prediction.
5283 	 *	The code loosely follows the one in the famous
5284 	 *	"30 instruction TCP receive" Van Jacobson mail.
5285 	 *
5286 	 *	Van's trick is to deposit buffers into socket queue
5287 	 *	on a device interrupt, to call tcp_recv function
5288 	 *	on the receive process context and checksum and copy
5289 	 *	the buffer to user space. smart...
5290 	 *
5291 	 *	Our current scheme is not silly either but we take the
5292 	 *	extra cost of the net_bh soft interrupt processing...
5293 	 *	We do checksum and copy also but from device to kernel.
5294 	 */
5295 
5296 	tp->rx_opt.saw_tstamp = 0;
5297 
5298 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5299 	 *	if header_prediction is to be made
5300 	 *	'S' will always be tp->tcp_header_len >> 2
5301 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5302 	 *  turn it off	(when there are holes in the receive
5303 	 *	 space for instance)
5304 	 *	PSH flag is ignored.
5305 	 */
5306 
5307 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5308 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5309 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5310 		int tcp_header_len = tp->tcp_header_len;
5311 
5312 		/* Timestamp header prediction: tcp_header_len
5313 		 * is automatically equal to th->doff*4 due to pred_flags
5314 		 * match.
5315 		 */
5316 
5317 		/* Check timestamp */
5318 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5319 			/* No? Slow path! */
5320 			if (!tcp_parse_aligned_timestamp(tp, th))
5321 				goto slow_path;
5322 
5323 			/* If PAWS failed, check it more carefully in slow path */
5324 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5325 				goto slow_path;
5326 
5327 			/* DO NOT update ts_recent here, if checksum fails
5328 			 * and timestamp was corrupted part, it will result
5329 			 * in a hung connection since we will drop all
5330 			 * future packets due to the PAWS test.
5331 			 */
5332 		}
5333 
5334 		if (len <= tcp_header_len) {
5335 			/* Bulk data transfer: sender */
5336 			if (len == tcp_header_len) {
5337 				/* Predicted packet is in window by definition.
5338 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5339 				 * Hence, check seq<=rcv_wup reduces to:
5340 				 */
5341 				if (tcp_header_len ==
5342 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5343 				    tp->rcv_nxt == tp->rcv_wup)
5344 					tcp_store_ts_recent(tp);
5345 
5346 				/* We know that such packets are checksummed
5347 				 * on entry.
5348 				 */
5349 				tcp_ack(sk, skb, 0);
5350 				__kfree_skb(skb);
5351 				tcp_data_snd_check(sk);
5352 				return;
5353 			} else { /* Header too small */
5354 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5355 				goto discard;
5356 			}
5357 		} else {
5358 			int eaten = 0;
5359 			bool fragstolen = false;
5360 
5361 			if (tp->ucopy.task == current &&
5362 			    tp->copied_seq == tp->rcv_nxt &&
5363 			    len - tcp_header_len <= tp->ucopy.len &&
5364 			    sock_owned_by_user(sk)) {
5365 				__set_current_state(TASK_RUNNING);
5366 
5367 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5368 					/* Predicted packet is in window by definition.
5369 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5370 					 * Hence, check seq<=rcv_wup reduces to:
5371 					 */
5372 					if (tcp_header_len ==
5373 					    (sizeof(struct tcphdr) +
5374 					     TCPOLEN_TSTAMP_ALIGNED) &&
5375 					    tp->rcv_nxt == tp->rcv_wup)
5376 						tcp_store_ts_recent(tp);
5377 
5378 					tcp_rcv_rtt_measure_ts(sk, skb);
5379 
5380 					__skb_pull(skb, tcp_header_len);
5381 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5382 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5383 					eaten = 1;
5384 				}
5385 			}
5386 			if (!eaten) {
5387 				if (tcp_checksum_complete_user(sk, skb))
5388 					goto csum_error;
5389 
5390 				if ((int)skb->truesize > sk->sk_forward_alloc)
5391 					goto step5;
5392 
5393 				/* Predicted packet is in window by definition.
5394 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5395 				 * Hence, check seq<=rcv_wup reduces to:
5396 				 */
5397 				if (tcp_header_len ==
5398 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5399 				    tp->rcv_nxt == tp->rcv_wup)
5400 					tcp_store_ts_recent(tp);
5401 
5402 				tcp_rcv_rtt_measure_ts(sk, skb);
5403 
5404 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5405 
5406 				/* Bulk data transfer: receiver */
5407 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5408 						      &fragstolen);
5409 			}
5410 
5411 			tcp_event_data_recv(sk, skb);
5412 
5413 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5414 				/* Well, only one small jumplet in fast path... */
5415 				tcp_ack(sk, skb, FLAG_DATA);
5416 				tcp_data_snd_check(sk);
5417 				if (!inet_csk_ack_scheduled(sk))
5418 					goto no_ack;
5419 			}
5420 
5421 			__tcp_ack_snd_check(sk, 0);
5422 no_ack:
5423 			if (eaten)
5424 				kfree_skb_partial(skb, fragstolen);
5425 			sk->sk_data_ready(sk);
5426 			return;
5427 		}
5428 	}
5429 
5430 slow_path:
5431 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5432 		goto csum_error;
5433 
5434 	if (!th->ack && !th->rst && !th->syn)
5435 		goto discard;
5436 
5437 	/*
5438 	 *	Standard slow path.
5439 	 */
5440 
5441 	if (!tcp_validate_incoming(sk, skb, th, 1))
5442 		return;
5443 
5444 step5:
5445 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5446 		goto discard;
5447 
5448 	tcp_rcv_rtt_measure_ts(sk, skb);
5449 
5450 	/* Process urgent data. */
5451 	tcp_urg(sk, skb, th);
5452 
5453 	/* step 7: process the segment text */
5454 	tcp_data_queue(sk, skb);
5455 
5456 	tcp_data_snd_check(sk);
5457 	tcp_ack_snd_check(sk);
5458 	return;
5459 
5460 csum_error:
5461 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5462 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5463 
5464 discard:
5465 	__kfree_skb(skb);
5466 }
5467 EXPORT_SYMBOL(tcp_rcv_established);
5468 
5469 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5470 {
5471 	struct tcp_sock *tp = tcp_sk(sk);
5472 	struct inet_connection_sock *icsk = inet_csk(sk);
5473 
5474 	tcp_set_state(sk, TCP_ESTABLISHED);
5475 
5476 	if (skb) {
5477 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5478 		security_inet_conn_established(sk, skb);
5479 	}
5480 
5481 	/* Make sure socket is routed, for correct metrics.  */
5482 	icsk->icsk_af_ops->rebuild_header(sk);
5483 
5484 	tcp_init_metrics(sk);
5485 
5486 	tcp_init_congestion_control(sk);
5487 
5488 	/* Prevent spurious tcp_cwnd_restart() on first data
5489 	 * packet.
5490 	 */
5491 	tp->lsndtime = tcp_time_stamp;
5492 
5493 	tcp_init_buffer_space(sk);
5494 
5495 	if (sock_flag(sk, SOCK_KEEPOPEN))
5496 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5497 
5498 	if (!tp->rx_opt.snd_wscale)
5499 		__tcp_fast_path_on(tp, tp->snd_wnd);
5500 	else
5501 		tp->pred_flags = 0;
5502 
5503 	if (!sock_flag(sk, SOCK_DEAD)) {
5504 		sk->sk_state_change(sk);
5505 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5506 	}
5507 }
5508 
5509 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5510 				    struct tcp_fastopen_cookie *cookie)
5511 {
5512 	struct tcp_sock *tp = tcp_sk(sk);
5513 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5514 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5515 	bool syn_drop = false;
5516 
5517 	if (mss == tp->rx_opt.user_mss) {
5518 		struct tcp_options_received opt;
5519 
5520 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5521 		tcp_clear_options(&opt);
5522 		opt.user_mss = opt.mss_clamp = 0;
5523 		tcp_parse_options(synack, &opt, 0, NULL);
5524 		mss = opt.mss_clamp;
5525 	}
5526 
5527 	if (!tp->syn_fastopen) {
5528 		/* Ignore an unsolicited cookie */
5529 		cookie->len = -1;
5530 	} else if (tp->total_retrans) {
5531 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5532 		 * acknowledges data. Presumably the remote received only
5533 		 * the retransmitted (regular) SYNs: either the original
5534 		 * SYN-data or the corresponding SYN-ACK was dropped.
5535 		 */
5536 		syn_drop = (cookie->len < 0 && data);
5537 	} else if (cookie->len < 0 && !tp->syn_data) {
5538 		/* We requested a cookie but didn't get it. If we did not use
5539 		 * the (old) exp opt format then try so next time (try_exp=1).
5540 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5541 		 */
5542 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5543 	}
5544 
5545 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5546 
5547 	if (data) { /* Retransmit unacked data in SYN */
5548 		tcp_for_write_queue_from(data, sk) {
5549 			if (data == tcp_send_head(sk) ||
5550 			    __tcp_retransmit_skb(sk, data))
5551 				break;
5552 		}
5553 		tcp_rearm_rto(sk);
5554 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5555 		return true;
5556 	}
5557 	tp->syn_data_acked = tp->syn_data;
5558 	if (tp->syn_data_acked)
5559 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5560 
5561 	tcp_fastopen_add_skb(sk, synack);
5562 
5563 	return false;
5564 }
5565 
5566 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5567 					 const struct tcphdr *th)
5568 {
5569 	struct inet_connection_sock *icsk = inet_csk(sk);
5570 	struct tcp_sock *tp = tcp_sk(sk);
5571 	struct tcp_fastopen_cookie foc = { .len = -1 };
5572 	int saved_clamp = tp->rx_opt.mss_clamp;
5573 
5574 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5575 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5576 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5577 
5578 	if (th->ack) {
5579 		/* rfc793:
5580 		 * "If the state is SYN-SENT then
5581 		 *    first check the ACK bit
5582 		 *      If the ACK bit is set
5583 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5584 		 *        a reset (unless the RST bit is set, if so drop
5585 		 *        the segment and return)"
5586 		 */
5587 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5588 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5589 			goto reset_and_undo;
5590 
5591 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5592 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5593 			     tcp_time_stamp)) {
5594 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5595 			goto reset_and_undo;
5596 		}
5597 
5598 		/* Now ACK is acceptable.
5599 		 *
5600 		 * "If the RST bit is set
5601 		 *    If the ACK was acceptable then signal the user "error:
5602 		 *    connection reset", drop the segment, enter CLOSED state,
5603 		 *    delete TCB, and return."
5604 		 */
5605 
5606 		if (th->rst) {
5607 			tcp_reset(sk);
5608 			goto discard;
5609 		}
5610 
5611 		/* rfc793:
5612 		 *   "fifth, if neither of the SYN or RST bits is set then
5613 		 *    drop the segment and return."
5614 		 *
5615 		 *    See note below!
5616 		 *                                        --ANK(990513)
5617 		 */
5618 		if (!th->syn)
5619 			goto discard_and_undo;
5620 
5621 		/* rfc793:
5622 		 *   "If the SYN bit is on ...
5623 		 *    are acceptable then ...
5624 		 *    (our SYN has been ACKed), change the connection
5625 		 *    state to ESTABLISHED..."
5626 		 */
5627 
5628 		tcp_ecn_rcv_synack(tp, th);
5629 
5630 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5631 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5632 
5633 		/* Ok.. it's good. Set up sequence numbers and
5634 		 * move to established.
5635 		 */
5636 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5637 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5638 
5639 		/* RFC1323: The window in SYN & SYN/ACK segments is
5640 		 * never scaled.
5641 		 */
5642 		tp->snd_wnd = ntohs(th->window);
5643 
5644 		if (!tp->rx_opt.wscale_ok) {
5645 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5646 			tp->window_clamp = min(tp->window_clamp, 65535U);
5647 		}
5648 
5649 		if (tp->rx_opt.saw_tstamp) {
5650 			tp->rx_opt.tstamp_ok	   = 1;
5651 			tp->tcp_header_len =
5652 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5653 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5654 			tcp_store_ts_recent(tp);
5655 		} else {
5656 			tp->tcp_header_len = sizeof(struct tcphdr);
5657 		}
5658 
5659 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5660 			tcp_enable_fack(tp);
5661 
5662 		tcp_mtup_init(sk);
5663 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5664 		tcp_initialize_rcv_mss(sk);
5665 
5666 		/* Remember, tcp_poll() does not lock socket!
5667 		 * Change state from SYN-SENT only after copied_seq
5668 		 * is initialized. */
5669 		tp->copied_seq = tp->rcv_nxt;
5670 
5671 		smp_mb();
5672 
5673 		tcp_finish_connect(sk, skb);
5674 
5675 		if ((tp->syn_fastopen || tp->syn_data) &&
5676 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5677 			return -1;
5678 
5679 		if (sk->sk_write_pending ||
5680 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5681 		    icsk->icsk_ack.pingpong) {
5682 			/* Save one ACK. Data will be ready after
5683 			 * several ticks, if write_pending is set.
5684 			 *
5685 			 * It may be deleted, but with this feature tcpdumps
5686 			 * look so _wonderfully_ clever, that I was not able
5687 			 * to stand against the temptation 8)     --ANK
5688 			 */
5689 			inet_csk_schedule_ack(sk);
5690 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5691 			tcp_enter_quickack_mode(sk);
5692 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5693 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5694 
5695 discard:
5696 			__kfree_skb(skb);
5697 			return 0;
5698 		} else {
5699 			tcp_send_ack(sk);
5700 		}
5701 		return -1;
5702 	}
5703 
5704 	/* No ACK in the segment */
5705 
5706 	if (th->rst) {
5707 		/* rfc793:
5708 		 * "If the RST bit is set
5709 		 *
5710 		 *      Otherwise (no ACK) drop the segment and return."
5711 		 */
5712 
5713 		goto discard_and_undo;
5714 	}
5715 
5716 	/* PAWS check. */
5717 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5718 	    tcp_paws_reject(&tp->rx_opt, 0))
5719 		goto discard_and_undo;
5720 
5721 	if (th->syn) {
5722 		/* We see SYN without ACK. It is attempt of
5723 		 * simultaneous connect with crossed SYNs.
5724 		 * Particularly, it can be connect to self.
5725 		 */
5726 		tcp_set_state(sk, TCP_SYN_RECV);
5727 
5728 		if (tp->rx_opt.saw_tstamp) {
5729 			tp->rx_opt.tstamp_ok = 1;
5730 			tcp_store_ts_recent(tp);
5731 			tp->tcp_header_len =
5732 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5733 		} else {
5734 			tp->tcp_header_len = sizeof(struct tcphdr);
5735 		}
5736 
5737 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5738 		tp->copied_seq = tp->rcv_nxt;
5739 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5740 
5741 		/* RFC1323: The window in SYN & SYN/ACK segments is
5742 		 * never scaled.
5743 		 */
5744 		tp->snd_wnd    = ntohs(th->window);
5745 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5746 		tp->max_window = tp->snd_wnd;
5747 
5748 		tcp_ecn_rcv_syn(tp, th);
5749 
5750 		tcp_mtup_init(sk);
5751 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5752 		tcp_initialize_rcv_mss(sk);
5753 
5754 		tcp_send_synack(sk);
5755 #if 0
5756 		/* Note, we could accept data and URG from this segment.
5757 		 * There are no obstacles to make this (except that we must
5758 		 * either change tcp_recvmsg() to prevent it from returning data
5759 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5760 		 *
5761 		 * However, if we ignore data in ACKless segments sometimes,
5762 		 * we have no reasons to accept it sometimes.
5763 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5764 		 * is not flawless. So, discard packet for sanity.
5765 		 * Uncomment this return to process the data.
5766 		 */
5767 		return -1;
5768 #else
5769 		goto discard;
5770 #endif
5771 	}
5772 	/* "fifth, if neither of the SYN or RST bits is set then
5773 	 * drop the segment and return."
5774 	 */
5775 
5776 discard_and_undo:
5777 	tcp_clear_options(&tp->rx_opt);
5778 	tp->rx_opt.mss_clamp = saved_clamp;
5779 	goto discard;
5780 
5781 reset_and_undo:
5782 	tcp_clear_options(&tp->rx_opt);
5783 	tp->rx_opt.mss_clamp = saved_clamp;
5784 	return 1;
5785 }
5786 
5787 /*
5788  *	This function implements the receiving procedure of RFC 793 for
5789  *	all states except ESTABLISHED and TIME_WAIT.
5790  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5791  *	address independent.
5792  */
5793 
5794 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5795 {
5796 	struct tcp_sock *tp = tcp_sk(sk);
5797 	struct inet_connection_sock *icsk = inet_csk(sk);
5798 	const struct tcphdr *th = tcp_hdr(skb);
5799 	struct request_sock *req;
5800 	int queued = 0;
5801 	bool acceptable;
5802 
5803 	tp->rx_opt.saw_tstamp = 0;
5804 
5805 	switch (sk->sk_state) {
5806 	case TCP_CLOSE:
5807 		goto discard;
5808 
5809 	case TCP_LISTEN:
5810 		if (th->ack)
5811 			return 1;
5812 
5813 		if (th->rst)
5814 			goto discard;
5815 
5816 		if (th->syn) {
5817 			if (th->fin)
5818 				goto discard;
5819 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5820 				return 1;
5821 
5822 			/* Now we have several options: In theory there is
5823 			 * nothing else in the frame. KA9Q has an option to
5824 			 * send data with the syn, BSD accepts data with the
5825 			 * syn up to the [to be] advertised window and
5826 			 * Solaris 2.1 gives you a protocol error. For now
5827 			 * we just ignore it, that fits the spec precisely
5828 			 * and avoids incompatibilities. It would be nice in
5829 			 * future to drop through and process the data.
5830 			 *
5831 			 * Now that TTCP is starting to be used we ought to
5832 			 * queue this data.
5833 			 * But, this leaves one open to an easy denial of
5834 			 * service attack, and SYN cookies can't defend
5835 			 * against this problem. So, we drop the data
5836 			 * in the interest of security over speed unless
5837 			 * it's still in use.
5838 			 */
5839 			kfree_skb(skb);
5840 			return 0;
5841 		}
5842 		goto discard;
5843 
5844 	case TCP_SYN_SENT:
5845 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5846 		if (queued >= 0)
5847 			return queued;
5848 
5849 		/* Do step6 onward by hand. */
5850 		tcp_urg(sk, skb, th);
5851 		__kfree_skb(skb);
5852 		tcp_data_snd_check(sk);
5853 		return 0;
5854 	}
5855 
5856 	req = tp->fastopen_rsk;
5857 	if (req) {
5858 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5859 		    sk->sk_state != TCP_FIN_WAIT1);
5860 
5861 		if (!tcp_check_req(sk, skb, req, true))
5862 			goto discard;
5863 	}
5864 
5865 	if (!th->ack && !th->rst && !th->syn)
5866 		goto discard;
5867 
5868 	if (!tcp_validate_incoming(sk, skb, th, 0))
5869 		return 0;
5870 
5871 	/* step 5: check the ACK field */
5872 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5873 				      FLAG_UPDATE_TS_RECENT) > 0;
5874 
5875 	switch (sk->sk_state) {
5876 	case TCP_SYN_RECV:
5877 		if (!acceptable)
5878 			return 1;
5879 
5880 		if (!tp->srtt_us)
5881 			tcp_synack_rtt_meas(sk, req);
5882 
5883 		/* Once we leave TCP_SYN_RECV, we no longer need req
5884 		 * so release it.
5885 		 */
5886 		if (req) {
5887 			tp->total_retrans = req->num_retrans;
5888 			reqsk_fastopen_remove(sk, req, false);
5889 		} else {
5890 			/* Make sure socket is routed, for correct metrics. */
5891 			icsk->icsk_af_ops->rebuild_header(sk);
5892 			tcp_init_congestion_control(sk);
5893 
5894 			tcp_mtup_init(sk);
5895 			tp->copied_seq = tp->rcv_nxt;
5896 			tcp_init_buffer_space(sk);
5897 		}
5898 		smp_mb();
5899 		tcp_set_state(sk, TCP_ESTABLISHED);
5900 		sk->sk_state_change(sk);
5901 
5902 		/* Note, that this wakeup is only for marginal crossed SYN case.
5903 		 * Passively open sockets are not waked up, because
5904 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5905 		 */
5906 		if (sk->sk_socket)
5907 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5908 
5909 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5910 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5911 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5912 
5913 		if (tp->rx_opt.tstamp_ok)
5914 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5915 
5916 		if (req) {
5917 			/* Re-arm the timer because data may have been sent out.
5918 			 * This is similar to the regular data transmission case
5919 			 * when new data has just been ack'ed.
5920 			 *
5921 			 * (TFO) - we could try to be more aggressive and
5922 			 * retransmitting any data sooner based on when they
5923 			 * are sent out.
5924 			 */
5925 			tcp_rearm_rto(sk);
5926 		} else
5927 			tcp_init_metrics(sk);
5928 
5929 		tcp_update_pacing_rate(sk);
5930 
5931 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5932 		tp->lsndtime = tcp_time_stamp;
5933 
5934 		tcp_initialize_rcv_mss(sk);
5935 		tcp_fast_path_on(tp);
5936 		break;
5937 
5938 	case TCP_FIN_WAIT1: {
5939 		struct dst_entry *dst;
5940 		int tmo;
5941 
5942 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5943 		 * Fast Open socket and this is the first acceptable
5944 		 * ACK we have received, this would have acknowledged
5945 		 * our SYNACK so stop the SYNACK timer.
5946 		 */
5947 		if (req) {
5948 			/* Return RST if ack_seq is invalid.
5949 			 * Note that RFC793 only says to generate a
5950 			 * DUPACK for it but for TCP Fast Open it seems
5951 			 * better to treat this case like TCP_SYN_RECV
5952 			 * above.
5953 			 */
5954 			if (!acceptable)
5955 				return 1;
5956 			/* We no longer need the request sock. */
5957 			reqsk_fastopen_remove(sk, req, false);
5958 			tcp_rearm_rto(sk);
5959 		}
5960 		if (tp->snd_una != tp->write_seq)
5961 			break;
5962 
5963 		tcp_set_state(sk, TCP_FIN_WAIT2);
5964 		sk->sk_shutdown |= SEND_SHUTDOWN;
5965 
5966 		dst = __sk_dst_get(sk);
5967 		if (dst)
5968 			dst_confirm(dst);
5969 
5970 		if (!sock_flag(sk, SOCK_DEAD)) {
5971 			/* Wake up lingering close() */
5972 			sk->sk_state_change(sk);
5973 			break;
5974 		}
5975 
5976 		if (tp->linger2 < 0 ||
5977 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5978 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5979 			tcp_done(sk);
5980 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5981 			return 1;
5982 		}
5983 
5984 		tmo = tcp_fin_time(sk);
5985 		if (tmo > TCP_TIMEWAIT_LEN) {
5986 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5987 		} else if (th->fin || sock_owned_by_user(sk)) {
5988 			/* Bad case. We could lose such FIN otherwise.
5989 			 * It is not a big problem, but it looks confusing
5990 			 * and not so rare event. We still can lose it now,
5991 			 * if it spins in bh_lock_sock(), but it is really
5992 			 * marginal case.
5993 			 */
5994 			inet_csk_reset_keepalive_timer(sk, tmo);
5995 		} else {
5996 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5997 			goto discard;
5998 		}
5999 		break;
6000 	}
6001 
6002 	case TCP_CLOSING:
6003 		if (tp->snd_una == tp->write_seq) {
6004 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6005 			goto discard;
6006 		}
6007 		break;
6008 
6009 	case TCP_LAST_ACK:
6010 		if (tp->snd_una == tp->write_seq) {
6011 			tcp_update_metrics(sk);
6012 			tcp_done(sk);
6013 			goto discard;
6014 		}
6015 		break;
6016 	}
6017 
6018 	/* step 6: check the URG bit */
6019 	tcp_urg(sk, skb, th);
6020 
6021 	/* step 7: process the segment text */
6022 	switch (sk->sk_state) {
6023 	case TCP_CLOSE_WAIT:
6024 	case TCP_CLOSING:
6025 	case TCP_LAST_ACK:
6026 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6027 			break;
6028 	case TCP_FIN_WAIT1:
6029 	case TCP_FIN_WAIT2:
6030 		/* RFC 793 says to queue data in these states,
6031 		 * RFC 1122 says we MUST send a reset.
6032 		 * BSD 4.4 also does reset.
6033 		 */
6034 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6035 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6036 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6037 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6038 				tcp_reset(sk);
6039 				return 1;
6040 			}
6041 		}
6042 		/* Fall through */
6043 	case TCP_ESTABLISHED:
6044 		tcp_data_queue(sk, skb);
6045 		queued = 1;
6046 		break;
6047 	}
6048 
6049 	/* tcp_data could move socket to TIME-WAIT */
6050 	if (sk->sk_state != TCP_CLOSE) {
6051 		tcp_data_snd_check(sk);
6052 		tcp_ack_snd_check(sk);
6053 	}
6054 
6055 	if (!queued) {
6056 discard:
6057 		__kfree_skb(skb);
6058 	}
6059 	return 0;
6060 }
6061 EXPORT_SYMBOL(tcp_rcv_state_process);
6062 
6063 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6064 {
6065 	struct inet_request_sock *ireq = inet_rsk(req);
6066 
6067 	if (family == AF_INET)
6068 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6069 				    &ireq->ir_rmt_addr, port);
6070 #if IS_ENABLED(CONFIG_IPV6)
6071 	else if (family == AF_INET6)
6072 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6073 				    &ireq->ir_v6_rmt_addr, port);
6074 #endif
6075 }
6076 
6077 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6078  *
6079  * If we receive a SYN packet with these bits set, it means a
6080  * network is playing bad games with TOS bits. In order to
6081  * avoid possible false congestion notifications, we disable
6082  * TCP ECN negotiation.
6083  *
6084  * Exception: tcp_ca wants ECN. This is required for DCTCP
6085  * congestion control: Linux DCTCP asserts ECT on all packets,
6086  * including SYN, which is most optimal solution; however,
6087  * others, such as FreeBSD do not.
6088  */
6089 static void tcp_ecn_create_request(struct request_sock *req,
6090 				   const struct sk_buff *skb,
6091 				   const struct sock *listen_sk,
6092 				   const struct dst_entry *dst)
6093 {
6094 	const struct tcphdr *th = tcp_hdr(skb);
6095 	const struct net *net = sock_net(listen_sk);
6096 	bool th_ecn = th->ece && th->cwr;
6097 	bool ect, ecn_ok;
6098 	u32 ecn_ok_dst;
6099 
6100 	if (!th_ecn)
6101 		return;
6102 
6103 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6104 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6105 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6106 
6107 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6108 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6109 		inet_rsk(req)->ecn_ok = 1;
6110 }
6111 
6112 static void tcp_openreq_init(struct request_sock *req,
6113 			     const struct tcp_options_received *rx_opt,
6114 			     struct sk_buff *skb, const struct sock *sk)
6115 {
6116 	struct inet_request_sock *ireq = inet_rsk(req);
6117 
6118 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6119 	req->cookie_ts = 0;
6120 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6121 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6122 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6123 	tcp_rsk(req)->last_oow_ack_time = 0;
6124 	req->mss = rx_opt->mss_clamp;
6125 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6126 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6127 	ireq->sack_ok = rx_opt->sack_ok;
6128 	ireq->snd_wscale = rx_opt->snd_wscale;
6129 	ireq->wscale_ok = rx_opt->wscale_ok;
6130 	ireq->acked = 0;
6131 	ireq->ecn_ok = 0;
6132 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6133 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6134 	ireq->ir_mark = inet_request_mark(sk, skb);
6135 }
6136 
6137 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6138 				      struct sock *sk_listener,
6139 				      bool attach_listener)
6140 {
6141 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6142 					       attach_listener);
6143 
6144 	if (req) {
6145 		struct inet_request_sock *ireq = inet_rsk(req);
6146 
6147 		kmemcheck_annotate_bitfield(ireq, flags);
6148 		ireq->opt = NULL;
6149 		atomic64_set(&ireq->ir_cookie, 0);
6150 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6151 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6152 		ireq->ireq_family = sk_listener->sk_family;
6153 	}
6154 
6155 	return req;
6156 }
6157 EXPORT_SYMBOL(inet_reqsk_alloc);
6158 
6159 /*
6160  * Return true if a syncookie should be sent
6161  */
6162 static bool tcp_syn_flood_action(const struct sock *sk,
6163 				 const struct sk_buff *skb,
6164 				 const char *proto)
6165 {
6166 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6167 	const char *msg = "Dropping request";
6168 	bool want_cookie = false;
6169 	struct net *net = sock_net(sk);
6170 
6171 #ifdef CONFIG_SYN_COOKIES
6172 	if (net->ipv4.sysctl_tcp_syncookies) {
6173 		msg = "Sending cookies";
6174 		want_cookie = true;
6175 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6176 	} else
6177 #endif
6178 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6179 
6180 	if (!queue->synflood_warned &&
6181 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6182 	    xchg(&queue->synflood_warned, 1) == 0)
6183 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6184 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6185 
6186 	return want_cookie;
6187 }
6188 
6189 static void tcp_reqsk_record_syn(const struct sock *sk,
6190 				 struct request_sock *req,
6191 				 const struct sk_buff *skb)
6192 {
6193 	if (tcp_sk(sk)->save_syn) {
6194 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6195 		u32 *copy;
6196 
6197 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6198 		if (copy) {
6199 			copy[0] = len;
6200 			memcpy(&copy[1], skb_network_header(skb), len);
6201 			req->saved_syn = copy;
6202 		}
6203 	}
6204 }
6205 
6206 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6207 		     const struct tcp_request_sock_ops *af_ops,
6208 		     struct sock *sk, struct sk_buff *skb)
6209 {
6210 	struct tcp_fastopen_cookie foc = { .len = -1 };
6211 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6212 	struct tcp_options_received tmp_opt;
6213 	struct tcp_sock *tp = tcp_sk(sk);
6214 	struct net *net = sock_net(sk);
6215 	struct sock *fastopen_sk = NULL;
6216 	struct dst_entry *dst = NULL;
6217 	struct request_sock *req;
6218 	bool want_cookie = false;
6219 	struct flowi fl;
6220 
6221 	/* TW buckets are converted to open requests without
6222 	 * limitations, they conserve resources and peer is
6223 	 * evidently real one.
6224 	 */
6225 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6226 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6227 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6228 		if (!want_cookie)
6229 			goto drop;
6230 	}
6231 
6232 
6233 	/* Accept backlog is full. If we have already queued enough
6234 	 * of warm entries in syn queue, drop request. It is better than
6235 	 * clogging syn queue with openreqs with exponentially increasing
6236 	 * timeout.
6237 	 */
6238 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6239 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6240 		goto drop;
6241 	}
6242 
6243 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6244 	if (!req)
6245 		goto drop;
6246 
6247 	tcp_rsk(req)->af_specific = af_ops;
6248 
6249 	tcp_clear_options(&tmp_opt);
6250 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6251 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6252 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6253 
6254 	if (want_cookie && !tmp_opt.saw_tstamp)
6255 		tcp_clear_options(&tmp_opt);
6256 
6257 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6258 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6259 
6260 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6261 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6262 
6263 	af_ops->init_req(req, sk, skb);
6264 
6265 	if (security_inet_conn_request(sk, skb, req))
6266 		goto drop_and_free;
6267 
6268 	if (!want_cookie && !isn) {
6269 		/* VJ's idea. We save last timestamp seen
6270 		 * from the destination in peer table, when entering
6271 		 * state TIME-WAIT, and check against it before
6272 		 * accepting new connection request.
6273 		 *
6274 		 * If "isn" is not zero, this request hit alive
6275 		 * timewait bucket, so that all the necessary checks
6276 		 * are made in the function processing timewait state.
6277 		 */
6278 		if (tcp_death_row.sysctl_tw_recycle) {
6279 			bool strict;
6280 
6281 			dst = af_ops->route_req(sk, &fl, req, &strict);
6282 
6283 			if (dst && strict &&
6284 			    !tcp_peer_is_proven(req, dst, true,
6285 						tmp_opt.saw_tstamp)) {
6286 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6287 				goto drop_and_release;
6288 			}
6289 		}
6290 		/* Kill the following clause, if you dislike this way. */
6291 		else if (!net->ipv4.sysctl_tcp_syncookies &&
6292 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6293 			  (sysctl_max_syn_backlog >> 2)) &&
6294 			 !tcp_peer_is_proven(req, dst, false,
6295 					     tmp_opt.saw_tstamp)) {
6296 			/* Without syncookies last quarter of
6297 			 * backlog is filled with destinations,
6298 			 * proven to be alive.
6299 			 * It means that we continue to communicate
6300 			 * to destinations, already remembered
6301 			 * to the moment of synflood.
6302 			 */
6303 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6304 				    rsk_ops->family);
6305 			goto drop_and_release;
6306 		}
6307 
6308 		isn = af_ops->init_seq(skb);
6309 	}
6310 	if (!dst) {
6311 		dst = af_ops->route_req(sk, &fl, req, NULL);
6312 		if (!dst)
6313 			goto drop_and_free;
6314 	}
6315 
6316 	tcp_ecn_create_request(req, skb, sk, dst);
6317 
6318 	if (want_cookie) {
6319 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6320 		req->cookie_ts = tmp_opt.tstamp_ok;
6321 		if (!tmp_opt.tstamp_ok)
6322 			inet_rsk(req)->ecn_ok = 0;
6323 	}
6324 
6325 	tcp_rsk(req)->snt_isn = isn;
6326 	tcp_rsk(req)->txhash = net_tx_rndhash();
6327 	tcp_openreq_init_rwin(req, sk, dst);
6328 	if (!want_cookie) {
6329 		tcp_reqsk_record_syn(sk, req, skb);
6330 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6331 	}
6332 	if (fastopen_sk) {
6333 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6334 				    &foc, false);
6335 		/* Add the child socket directly into the accept queue */
6336 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6337 		sk->sk_data_ready(sk);
6338 		bh_unlock_sock(fastopen_sk);
6339 		sock_put(fastopen_sk);
6340 	} else {
6341 		tcp_rsk(req)->tfo_listener = false;
6342 		if (!want_cookie)
6343 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6344 		af_ops->send_synack(sk, dst, &fl, req,
6345 				    &foc, !want_cookie);
6346 		if (want_cookie)
6347 			goto drop_and_free;
6348 	}
6349 	reqsk_put(req);
6350 	return 0;
6351 
6352 drop_and_release:
6353 	dst_release(dst);
6354 drop_and_free:
6355 	reqsk_free(req);
6356 drop:
6357 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6358 	return 0;
6359 }
6360 EXPORT_SYMBOL(tcp_conn_request);
6361