xref: /linux/net/ipv4/tcp_input.c (revision 0f657938e4345a77be871d906f3e0de3c58a7a49)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		/* Note: divides are still a bit expensive.
241 		 * For the moment, only adjust scaling_ratio
242 		 * when we update icsk_ack.rcv_mss.
243 		 */
244 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 
247 			do_div(val, skb->truesize);
248 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
249 		}
250 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
251 					       tcp_sk(sk)->advmss);
252 		/* Account for possibly-removed options */
253 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
254 				   MAX_TCP_OPTION_SPACE))
255 			tcp_gro_dev_warn(sk, skb, len);
256 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
257 		 * set then it is likely the end of an application write. So
258 		 * more data may not be arriving soon, and yet the data sender
259 		 * may be waiting for an ACK if cwnd-bound or using TX zero
260 		 * copy. So we set ICSK_ACK_PUSHED here so that
261 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
262 		 * reads all of the data and is not ping-pong. If len > MSS
263 		 * then this logic does not matter (and does not hurt) because
264 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
265 		 * reads data and there is more than an MSS of unACKed data.
266 		 */
267 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
268 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
269 	} else {
270 		/* Otherwise, we make more careful check taking into account,
271 		 * that SACKs block is variable.
272 		 *
273 		 * "len" is invariant segment length, including TCP header.
274 		 */
275 		len += skb->data - skb_transport_header(skb);
276 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
277 		    /* If PSH is not set, packet should be
278 		     * full sized, provided peer TCP is not badly broken.
279 		     * This observation (if it is correct 8)) allows
280 		     * to handle super-low mtu links fairly.
281 		     */
282 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
283 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
284 			/* Subtract also invariant (if peer is RFC compliant),
285 			 * tcp header plus fixed timestamp option length.
286 			 * Resulting "len" is MSS free of SACK jitter.
287 			 */
288 			len -= tcp_sk(sk)->tcp_header_len;
289 			icsk->icsk_ack.last_seg_size = len;
290 			if (len == lss) {
291 				icsk->icsk_ack.rcv_mss = len;
292 				return;
293 			}
294 		}
295 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
296 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
297 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
298 	}
299 }
300 
301 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
302 {
303 	struct inet_connection_sock *icsk = inet_csk(sk);
304 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
305 
306 	if (quickacks == 0)
307 		quickacks = 2;
308 	quickacks = min(quickacks, max_quickacks);
309 	if (quickacks > icsk->icsk_ack.quick)
310 		icsk->icsk_ack.quick = quickacks;
311 }
312 
313 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
314 {
315 	struct inet_connection_sock *icsk = inet_csk(sk);
316 
317 	tcp_incr_quickack(sk, max_quickacks);
318 	inet_csk_exit_pingpong_mode(sk);
319 	icsk->icsk_ack.ato = TCP_ATO_MIN;
320 }
321 
322 /* Send ACKs quickly, if "quick" count is not exhausted
323  * and the session is not interactive.
324  */
325 
326 static bool tcp_in_quickack_mode(struct sock *sk)
327 {
328 	const struct inet_connection_sock *icsk = inet_csk(sk);
329 	const struct dst_entry *dst = __sk_dst_get(sk);
330 
331 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
332 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
333 }
334 
335 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
336 {
337 	if (tp->ecn_flags & TCP_ECN_OK)
338 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
339 }
340 
341 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
342 {
343 	if (tcp_hdr(skb)->cwr) {
344 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
345 
346 		/* If the sender is telling us it has entered CWR, then its
347 		 * cwnd may be very low (even just 1 packet), so we should ACK
348 		 * immediately.
349 		 */
350 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
351 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
352 	}
353 }
354 
355 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
356 {
357 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
358 }
359 
360 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
361 {
362 	struct tcp_sock *tp = tcp_sk(sk);
363 
364 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
365 	case INET_ECN_NOT_ECT:
366 		/* Funny extension: if ECT is not set on a segment,
367 		 * and we already seen ECT on a previous segment,
368 		 * it is probably a retransmit.
369 		 */
370 		if (tp->ecn_flags & TCP_ECN_SEEN)
371 			tcp_enter_quickack_mode(sk, 2);
372 		break;
373 	case INET_ECN_CE:
374 		if (tcp_ca_needs_ecn(sk))
375 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
376 
377 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
378 			/* Better not delay acks, sender can have a very low cwnd */
379 			tcp_enter_quickack_mode(sk, 2);
380 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
381 		}
382 		tp->ecn_flags |= TCP_ECN_SEEN;
383 		break;
384 	default:
385 		if (tcp_ca_needs_ecn(sk))
386 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
387 		tp->ecn_flags |= TCP_ECN_SEEN;
388 		break;
389 	}
390 }
391 
392 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
393 {
394 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
395 		__tcp_ecn_check_ce(sk, skb);
396 }
397 
398 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
399 {
400 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
401 		tp->ecn_flags &= ~TCP_ECN_OK;
402 }
403 
404 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
405 {
406 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
407 		tp->ecn_flags &= ~TCP_ECN_OK;
408 }
409 
410 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
411 {
412 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
413 		return true;
414 	return false;
415 }
416 
417 /* Buffer size and advertised window tuning.
418  *
419  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
420  */
421 
422 static void tcp_sndbuf_expand(struct sock *sk)
423 {
424 	const struct tcp_sock *tp = tcp_sk(sk);
425 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
426 	int sndmem, per_mss;
427 	u32 nr_segs;
428 
429 	/* Worst case is non GSO/TSO : each frame consumes one skb
430 	 * and skb->head is kmalloced using power of two area of memory
431 	 */
432 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
433 		  MAX_TCP_HEADER +
434 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 
436 	per_mss = roundup_pow_of_two(per_mss) +
437 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
438 
439 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
440 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
441 
442 	/* Fast Recovery (RFC 5681 3.2) :
443 	 * Cubic needs 1.7 factor, rounded to 2 to include
444 	 * extra cushion (application might react slowly to EPOLLOUT)
445 	 */
446 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
447 	sndmem *= nr_segs * per_mss;
448 
449 	if (sk->sk_sndbuf < sndmem)
450 		WRITE_ONCE(sk->sk_sndbuf,
451 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
452 }
453 
454 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
455  *
456  * All tcp_full_space() is split to two parts: "network" buffer, allocated
457  * forward and advertised in receiver window (tp->rcv_wnd) and
458  * "application buffer", required to isolate scheduling/application
459  * latencies from network.
460  * window_clamp is maximal advertised window. It can be less than
461  * tcp_full_space(), in this case tcp_full_space() - window_clamp
462  * is reserved for "application" buffer. The less window_clamp is
463  * the smoother our behaviour from viewpoint of network, but the lower
464  * throughput and the higher sensitivity of the connection to losses. 8)
465  *
466  * rcv_ssthresh is more strict window_clamp used at "slow start"
467  * phase to predict further behaviour of this connection.
468  * It is used for two goals:
469  * - to enforce header prediction at sender, even when application
470  *   requires some significant "application buffer". It is check #1.
471  * - to prevent pruning of receive queue because of misprediction
472  *   of receiver window. Check #2.
473  *
474  * The scheme does not work when sender sends good segments opening
475  * window and then starts to feed us spaghetti. But it should work
476  * in common situations. Otherwise, we have to rely on queue collapsing.
477  */
478 
479 /* Slow part of check#2. */
480 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
481 			     unsigned int skbtruesize)
482 {
483 	const struct tcp_sock *tp = tcp_sk(sk);
484 	/* Optimize this! */
485 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
486 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
487 
488 	while (tp->rcv_ssthresh <= window) {
489 		if (truesize <= skb->len)
490 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
491 
492 		truesize >>= 1;
493 		window >>= 1;
494 	}
495 	return 0;
496 }
497 
498 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
499  * can play nice with us, as sk_buff and skb->head might be either
500  * freed or shared with up to MAX_SKB_FRAGS segments.
501  * Only give a boost to drivers using page frag(s) to hold the frame(s),
502  * and if no payload was pulled in skb->head before reaching us.
503  */
504 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
505 {
506 	u32 truesize = skb->truesize;
507 
508 	if (adjust && !skb_headlen(skb)) {
509 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
510 		/* paranoid check, some drivers might be buggy */
511 		if (unlikely((int)truesize < (int)skb->len))
512 			truesize = skb->truesize;
513 	}
514 	return truesize;
515 }
516 
517 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
518 			    bool adjust)
519 {
520 	struct tcp_sock *tp = tcp_sk(sk);
521 	int room;
522 
523 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
524 
525 	if (room <= 0)
526 		return;
527 
528 	/* Check #1 */
529 	if (!tcp_under_memory_pressure(sk)) {
530 		unsigned int truesize = truesize_adjust(adjust, skb);
531 		int incr;
532 
533 		/* Check #2. Increase window, if skb with such overhead
534 		 * will fit to rcvbuf in future.
535 		 */
536 		if (tcp_win_from_space(sk, truesize) <= skb->len)
537 			incr = 2 * tp->advmss;
538 		else
539 			incr = __tcp_grow_window(sk, skb, truesize);
540 
541 		if (incr) {
542 			incr = max_t(int, incr, 2 * skb->len);
543 			tp->rcv_ssthresh += min(room, incr);
544 			inet_csk(sk)->icsk_ack.quick |= 1;
545 		}
546 	} else {
547 		/* Under pressure:
548 		 * Adjust rcv_ssthresh according to reserved mem
549 		 */
550 		tcp_adjust_rcv_ssthresh(sk);
551 	}
552 }
553 
554 /* 3. Try to fixup all. It is made immediately after connection enters
555  *    established state.
556  */
557 static void tcp_init_buffer_space(struct sock *sk)
558 {
559 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
560 	struct tcp_sock *tp = tcp_sk(sk);
561 	int maxwin;
562 
563 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
564 		tcp_sndbuf_expand(sk);
565 
566 	tcp_mstamp_refresh(tp);
567 	tp->rcvq_space.time = tp->tcp_mstamp;
568 	tp->rcvq_space.seq = tp->copied_seq;
569 
570 	maxwin = tcp_full_space(sk);
571 
572 	if (tp->window_clamp >= maxwin) {
573 		tp->window_clamp = maxwin;
574 
575 		if (tcp_app_win && maxwin > 4 * tp->advmss)
576 			tp->window_clamp = max(maxwin -
577 					       (maxwin >> tcp_app_win),
578 					       4 * tp->advmss);
579 	}
580 
581 	/* Force reservation of one segment. */
582 	if (tcp_app_win &&
583 	    tp->window_clamp > 2 * tp->advmss &&
584 	    tp->window_clamp + tp->advmss > maxwin)
585 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
586 
587 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
588 	tp->snd_cwnd_stamp = tcp_jiffies32;
589 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
590 				    (u32)TCP_INIT_CWND * tp->advmss);
591 }
592 
593 /* 4. Recalculate window clamp after socket hit its memory bounds. */
594 static void tcp_clamp_window(struct sock *sk)
595 {
596 	struct tcp_sock *tp = tcp_sk(sk);
597 	struct inet_connection_sock *icsk = inet_csk(sk);
598 	struct net *net = sock_net(sk);
599 	int rmem2;
600 
601 	icsk->icsk_ack.quick = 0;
602 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
603 
604 	if (sk->sk_rcvbuf < rmem2 &&
605 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
606 	    !tcp_under_memory_pressure(sk) &&
607 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
608 		WRITE_ONCE(sk->sk_rcvbuf,
609 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
610 	}
611 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
612 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
613 }
614 
615 /* Initialize RCV_MSS value.
616  * RCV_MSS is an our guess about MSS used by the peer.
617  * We haven't any direct information about the MSS.
618  * It's better to underestimate the RCV_MSS rather than overestimate.
619  * Overestimations make us ACKing less frequently than needed.
620  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
621  */
622 void tcp_initialize_rcv_mss(struct sock *sk)
623 {
624 	const struct tcp_sock *tp = tcp_sk(sk);
625 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
626 
627 	hint = min(hint, tp->rcv_wnd / 2);
628 	hint = min(hint, TCP_MSS_DEFAULT);
629 	hint = max(hint, TCP_MIN_MSS);
630 
631 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
632 }
633 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
634 
635 /* Receiver "autotuning" code.
636  *
637  * The algorithm for RTT estimation w/o timestamps is based on
638  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
639  * <https://public.lanl.gov/radiant/pubs.html#DRS>
640  *
641  * More detail on this code can be found at
642  * <http://staff.psc.edu/jheffner/>,
643  * though this reference is out of date.  A new paper
644  * is pending.
645  */
646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
647 {
648 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
649 	long m = sample;
650 
651 	if (new_sample != 0) {
652 		/* If we sample in larger samples in the non-timestamp
653 		 * case, we could grossly overestimate the RTT especially
654 		 * with chatty applications or bulk transfer apps which
655 		 * are stalled on filesystem I/O.
656 		 *
657 		 * Also, since we are only going for a minimum in the
658 		 * non-timestamp case, we do not smooth things out
659 		 * else with timestamps disabled convergence takes too
660 		 * long.
661 		 */
662 		if (!win_dep) {
663 			m -= (new_sample >> 3);
664 			new_sample += m;
665 		} else {
666 			m <<= 3;
667 			if (m < new_sample)
668 				new_sample = m;
669 		}
670 	} else {
671 		/* No previous measure. */
672 		new_sample = m << 3;
673 	}
674 
675 	tp->rcv_rtt_est.rtt_us = new_sample;
676 }
677 
678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
679 {
680 	u32 delta_us;
681 
682 	if (tp->rcv_rtt_est.time == 0)
683 		goto new_measure;
684 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
685 		return;
686 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
687 	if (!delta_us)
688 		delta_us = 1;
689 	tcp_rcv_rtt_update(tp, delta_us, 1);
690 
691 new_measure:
692 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
693 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
694 }
695 
696 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
697 {
698 	u32 delta, delta_us;
699 
700 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
701 	if (tp->tcp_usec_ts)
702 		return delta;
703 
704 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
705 		if (!delta)
706 			delta = 1;
707 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
708 		return delta_us;
709 	}
710 	return -1;
711 }
712 
713 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
714 					  const struct sk_buff *skb)
715 {
716 	struct tcp_sock *tp = tcp_sk(sk);
717 
718 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
719 		return;
720 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
721 
722 	if (TCP_SKB_CB(skb)->end_seq -
723 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
724 		s32 delta = tcp_rtt_tsopt_us(tp);
725 
726 		if (delta >= 0)
727 			tcp_rcv_rtt_update(tp, delta, 0);
728 	}
729 }
730 
731 /*
732  * This function should be called every time data is copied to user space.
733  * It calculates the appropriate TCP receive buffer space.
734  */
735 void tcp_rcv_space_adjust(struct sock *sk)
736 {
737 	struct tcp_sock *tp = tcp_sk(sk);
738 	u32 copied;
739 	int time;
740 
741 	trace_tcp_rcv_space_adjust(sk);
742 
743 	tcp_mstamp_refresh(tp);
744 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
745 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
746 		return;
747 
748 	/* Number of bytes copied to user in last RTT */
749 	copied = tp->copied_seq - tp->rcvq_space.seq;
750 	if (copied <= tp->rcvq_space.space)
751 		goto new_measure;
752 
753 	/* A bit of theory :
754 	 * copied = bytes received in previous RTT, our base window
755 	 * To cope with packet losses, we need a 2x factor
756 	 * To cope with slow start, and sender growing its cwin by 100 %
757 	 * every RTT, we need a 4x factor, because the ACK we are sending
758 	 * now is for the next RTT, not the current one :
759 	 * <prev RTT . ><current RTT .. ><next RTT .... >
760 	 */
761 
762 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
763 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
764 		u64 rcvwin, grow;
765 		int rcvbuf;
766 
767 		/* minimal window to cope with packet losses, assuming
768 		 * steady state. Add some cushion because of small variations.
769 		 */
770 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
771 
772 		/* Accommodate for sender rate increase (eg. slow start) */
773 		grow = rcvwin * (copied - tp->rcvq_space.space);
774 		do_div(grow, tp->rcvq_space.space);
775 		rcvwin += (grow << 1);
776 
777 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
778 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
779 		if (rcvbuf > sk->sk_rcvbuf) {
780 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
781 
782 			/* Make the window clamp follow along.  */
783 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
784 		}
785 	}
786 	tp->rcvq_space.space = copied;
787 
788 new_measure:
789 	tp->rcvq_space.seq = tp->copied_seq;
790 	tp->rcvq_space.time = tp->tcp_mstamp;
791 }
792 
793 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
794 {
795 #if IS_ENABLED(CONFIG_IPV6)
796 	struct inet_connection_sock *icsk = inet_csk(sk);
797 
798 	if (skb->protocol == htons(ETH_P_IPV6))
799 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
800 #endif
801 }
802 
803 /* There is something which you must keep in mind when you analyze the
804  * behavior of the tp->ato delayed ack timeout interval.  When a
805  * connection starts up, we want to ack as quickly as possible.  The
806  * problem is that "good" TCP's do slow start at the beginning of data
807  * transmission.  The means that until we send the first few ACK's the
808  * sender will sit on his end and only queue most of his data, because
809  * he can only send snd_cwnd unacked packets at any given time.  For
810  * each ACK we send, he increments snd_cwnd and transmits more of his
811  * queue.  -DaveM
812  */
813 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
814 {
815 	struct tcp_sock *tp = tcp_sk(sk);
816 	struct inet_connection_sock *icsk = inet_csk(sk);
817 	u32 now;
818 
819 	inet_csk_schedule_ack(sk);
820 
821 	tcp_measure_rcv_mss(sk, skb);
822 
823 	tcp_rcv_rtt_measure(tp);
824 
825 	now = tcp_jiffies32;
826 
827 	if (!icsk->icsk_ack.ato) {
828 		/* The _first_ data packet received, initialize
829 		 * delayed ACK engine.
830 		 */
831 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
832 		icsk->icsk_ack.ato = TCP_ATO_MIN;
833 	} else {
834 		int m = now - icsk->icsk_ack.lrcvtime;
835 
836 		if (m <= TCP_ATO_MIN / 2) {
837 			/* The fastest case is the first. */
838 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
839 		} else if (m < icsk->icsk_ack.ato) {
840 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
841 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
842 				icsk->icsk_ack.ato = icsk->icsk_rto;
843 		} else if (m > icsk->icsk_rto) {
844 			/* Too long gap. Apparently sender failed to
845 			 * restart window, so that we send ACKs quickly.
846 			 */
847 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
848 		}
849 	}
850 	icsk->icsk_ack.lrcvtime = now;
851 	tcp_save_lrcv_flowlabel(sk, skb);
852 
853 	tcp_ecn_check_ce(sk, skb);
854 
855 	if (skb->len >= 128)
856 		tcp_grow_window(sk, skb, true);
857 }
858 
859 /* Called to compute a smoothed rtt estimate. The data fed to this
860  * routine either comes from timestamps, or from segments that were
861  * known _not_ to have been retransmitted [see Karn/Partridge
862  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
863  * piece by Van Jacobson.
864  * NOTE: the next three routines used to be one big routine.
865  * To save cycles in the RFC 1323 implementation it was better to break
866  * it up into three procedures. -- erics
867  */
868 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
869 {
870 	struct tcp_sock *tp = tcp_sk(sk);
871 	long m = mrtt_us; /* RTT */
872 	u32 srtt = tp->srtt_us;
873 
874 	/*	The following amusing code comes from Jacobson's
875 	 *	article in SIGCOMM '88.  Note that rtt and mdev
876 	 *	are scaled versions of rtt and mean deviation.
877 	 *	This is designed to be as fast as possible
878 	 *	m stands for "measurement".
879 	 *
880 	 *	On a 1990 paper the rto value is changed to:
881 	 *	RTO = rtt + 4 * mdev
882 	 *
883 	 * Funny. This algorithm seems to be very broken.
884 	 * These formulae increase RTO, when it should be decreased, increase
885 	 * too slowly, when it should be increased quickly, decrease too quickly
886 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
887 	 * does not matter how to _calculate_ it. Seems, it was trap
888 	 * that VJ failed to avoid. 8)
889 	 */
890 	if (srtt != 0) {
891 		m -= (srtt >> 3);	/* m is now error in rtt est */
892 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
893 		if (m < 0) {
894 			m = -m;		/* m is now abs(error) */
895 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
896 			/* This is similar to one of Eifel findings.
897 			 * Eifel blocks mdev updates when rtt decreases.
898 			 * This solution is a bit different: we use finer gain
899 			 * for mdev in this case (alpha*beta).
900 			 * Like Eifel it also prevents growth of rto,
901 			 * but also it limits too fast rto decreases,
902 			 * happening in pure Eifel.
903 			 */
904 			if (m > 0)
905 				m >>= 3;
906 		} else {
907 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
908 		}
909 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
910 		if (tp->mdev_us > tp->mdev_max_us) {
911 			tp->mdev_max_us = tp->mdev_us;
912 			if (tp->mdev_max_us > tp->rttvar_us)
913 				tp->rttvar_us = tp->mdev_max_us;
914 		}
915 		if (after(tp->snd_una, tp->rtt_seq)) {
916 			if (tp->mdev_max_us < tp->rttvar_us)
917 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
918 			tp->rtt_seq = tp->snd_nxt;
919 			tp->mdev_max_us = tcp_rto_min_us(sk);
920 
921 			tcp_bpf_rtt(sk);
922 		}
923 	} else {
924 		/* no previous measure. */
925 		srtt = m << 3;		/* take the measured time to be rtt */
926 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
927 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
928 		tp->mdev_max_us = tp->rttvar_us;
929 		tp->rtt_seq = tp->snd_nxt;
930 
931 		tcp_bpf_rtt(sk);
932 	}
933 	tp->srtt_us = max(1U, srtt);
934 }
935 
936 static void tcp_update_pacing_rate(struct sock *sk)
937 {
938 	const struct tcp_sock *tp = tcp_sk(sk);
939 	u64 rate;
940 
941 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
942 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
943 
944 	/* current rate is (cwnd * mss) / srtt
945 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
946 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
947 	 *
948 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
949 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
950 	 *	 end of slow start and should slow down.
951 	 */
952 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
953 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
954 	else
955 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
956 
957 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
958 
959 	if (likely(tp->srtt_us))
960 		do_div(rate, tp->srtt_us);
961 
962 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
963 	 * without any lock. We want to make sure compiler wont store
964 	 * intermediate values in this location.
965 	 */
966 	WRITE_ONCE(sk->sk_pacing_rate,
967 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
968 }
969 
970 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
971  * routine referred to above.
972  */
973 static void tcp_set_rto(struct sock *sk)
974 {
975 	const struct tcp_sock *tp = tcp_sk(sk);
976 	/* Old crap is replaced with new one. 8)
977 	 *
978 	 * More seriously:
979 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
980 	 *    It cannot be less due to utterly erratic ACK generation made
981 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
982 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
983 	 *    is invisible. Actually, Linux-2.4 also generates erratic
984 	 *    ACKs in some circumstances.
985 	 */
986 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
987 
988 	/* 2. Fixups made earlier cannot be right.
989 	 *    If we do not estimate RTO correctly without them,
990 	 *    all the algo is pure shit and should be replaced
991 	 *    with correct one. It is exactly, which we pretend to do.
992 	 */
993 
994 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
995 	 * guarantees that rto is higher.
996 	 */
997 	tcp_bound_rto(sk);
998 }
999 
1000 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1001 {
1002 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1003 
1004 	if (!cwnd)
1005 		cwnd = TCP_INIT_CWND;
1006 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1007 }
1008 
1009 struct tcp_sacktag_state {
1010 	/* Timestamps for earliest and latest never-retransmitted segment
1011 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1012 	 * but congestion control should still get an accurate delay signal.
1013 	 */
1014 	u64	first_sackt;
1015 	u64	last_sackt;
1016 	u32	reord;
1017 	u32	sack_delivered;
1018 	int	flag;
1019 	unsigned int mss_now;
1020 	struct rate_sample *rate;
1021 };
1022 
1023 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1024  * and spurious retransmission information if this DSACK is unlikely caused by
1025  * sender's action:
1026  * - DSACKed sequence range is larger than maximum receiver's window.
1027  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1028  */
1029 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1030 			  u32 end_seq, struct tcp_sacktag_state *state)
1031 {
1032 	u32 seq_len, dup_segs = 1;
1033 
1034 	if (!before(start_seq, end_seq))
1035 		return 0;
1036 
1037 	seq_len = end_seq - start_seq;
1038 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1039 	if (seq_len > tp->max_window)
1040 		return 0;
1041 	if (seq_len > tp->mss_cache)
1042 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1043 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1044 		state->flag |= FLAG_DSACK_TLP;
1045 
1046 	tp->dsack_dups += dup_segs;
1047 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1048 	if (tp->dsack_dups > tp->total_retrans)
1049 		return 0;
1050 
1051 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1052 	/* We increase the RACK ordering window in rounds where we receive
1053 	 * DSACKs that may have been due to reordering causing RACK to trigger
1054 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1055 	 * without having seen reordering, or that match TLP probes (TLP
1056 	 * is timer-driven, not triggered by RACK).
1057 	 */
1058 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1059 		tp->rack.dsack_seen = 1;
1060 
1061 	state->flag |= FLAG_DSACKING_ACK;
1062 	/* A spurious retransmission is delivered */
1063 	state->sack_delivered += dup_segs;
1064 
1065 	return dup_segs;
1066 }
1067 
1068 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1069  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1070  * distance is approximated in full-mss packet distance ("reordering").
1071  */
1072 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1073 				      const int ts)
1074 {
1075 	struct tcp_sock *tp = tcp_sk(sk);
1076 	const u32 mss = tp->mss_cache;
1077 	u32 fack, metric;
1078 
1079 	fack = tcp_highest_sack_seq(tp);
1080 	if (!before(low_seq, fack))
1081 		return;
1082 
1083 	metric = fack - low_seq;
1084 	if ((metric > tp->reordering * mss) && mss) {
1085 #if FASTRETRANS_DEBUG > 1
1086 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1087 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1088 			 tp->reordering,
1089 			 0,
1090 			 tp->sacked_out,
1091 			 tp->undo_marker ? tp->undo_retrans : 0);
1092 #endif
1093 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1094 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1095 	}
1096 
1097 	/* This exciting event is worth to be remembered. 8) */
1098 	tp->reord_seen++;
1099 	NET_INC_STATS(sock_net(sk),
1100 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1101 }
1102 
1103  /* This must be called before lost_out or retrans_out are updated
1104   * on a new loss, because we want to know if all skbs previously
1105   * known to be lost have already been retransmitted, indicating
1106   * that this newly lost skb is our next skb to retransmit.
1107   */
1108 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1109 {
1110 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1111 	    (tp->retransmit_skb_hint &&
1112 	     before(TCP_SKB_CB(skb)->seq,
1113 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1114 		tp->retransmit_skb_hint = skb;
1115 }
1116 
1117 /* Sum the number of packets on the wire we have marked as lost, and
1118  * notify the congestion control module that the given skb was marked lost.
1119  */
1120 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1121 {
1122 	tp->lost += tcp_skb_pcount(skb);
1123 }
1124 
1125 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1126 {
1127 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1128 	struct tcp_sock *tp = tcp_sk(sk);
1129 
1130 	if (sacked & TCPCB_SACKED_ACKED)
1131 		return;
1132 
1133 	tcp_verify_retransmit_hint(tp, skb);
1134 	if (sacked & TCPCB_LOST) {
1135 		if (sacked & TCPCB_SACKED_RETRANS) {
1136 			/* Account for retransmits that are lost again */
1137 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1138 			tp->retrans_out -= tcp_skb_pcount(skb);
1139 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1140 				      tcp_skb_pcount(skb));
1141 			tcp_notify_skb_loss_event(tp, skb);
1142 		}
1143 	} else {
1144 		tp->lost_out += tcp_skb_pcount(skb);
1145 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1146 		tcp_notify_skb_loss_event(tp, skb);
1147 	}
1148 }
1149 
1150 /* Updates the delivered and delivered_ce counts */
1151 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1152 				bool ece_ack)
1153 {
1154 	tp->delivered += delivered;
1155 	if (ece_ack)
1156 		tp->delivered_ce += delivered;
1157 }
1158 
1159 /* This procedure tags the retransmission queue when SACKs arrive.
1160  *
1161  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1162  * Packets in queue with these bits set are counted in variables
1163  * sacked_out, retrans_out and lost_out, correspondingly.
1164  *
1165  * Valid combinations are:
1166  * Tag  InFlight	Description
1167  * 0	1		- orig segment is in flight.
1168  * S	0		- nothing flies, orig reached receiver.
1169  * L	0		- nothing flies, orig lost by net.
1170  * R	2		- both orig and retransmit are in flight.
1171  * L|R	1		- orig is lost, retransmit is in flight.
1172  * S|R  1		- orig reached receiver, retrans is still in flight.
1173  * (L|S|R is logically valid, it could occur when L|R is sacked,
1174  *  but it is equivalent to plain S and code short-curcuits it to S.
1175  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1176  *
1177  * These 6 states form finite state machine, controlled by the following events:
1178  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1179  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1180  * 3. Loss detection event of two flavors:
1181  *	A. Scoreboard estimator decided the packet is lost.
1182  *	   A'. Reno "three dupacks" marks head of queue lost.
1183  *	B. SACK arrives sacking SND.NXT at the moment, when the
1184  *	   segment was retransmitted.
1185  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1186  *
1187  * It is pleasant to note, that state diagram turns out to be commutative,
1188  * so that we are allowed not to be bothered by order of our actions,
1189  * when multiple events arrive simultaneously. (see the function below).
1190  *
1191  * Reordering detection.
1192  * --------------------
1193  * Reordering metric is maximal distance, which a packet can be displaced
1194  * in packet stream. With SACKs we can estimate it:
1195  *
1196  * 1. SACK fills old hole and the corresponding segment was not
1197  *    ever retransmitted -> reordering. Alas, we cannot use it
1198  *    when segment was retransmitted.
1199  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1200  *    for retransmitted and already SACKed segment -> reordering..
1201  * Both of these heuristics are not used in Loss state, when we cannot
1202  * account for retransmits accurately.
1203  *
1204  * SACK block validation.
1205  * ----------------------
1206  *
1207  * SACK block range validation checks that the received SACK block fits to
1208  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1209  * Note that SND.UNA is not included to the range though being valid because
1210  * it means that the receiver is rather inconsistent with itself reporting
1211  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1212  * perfectly valid, however, in light of RFC2018 which explicitly states
1213  * that "SACK block MUST reflect the newest segment.  Even if the newest
1214  * segment is going to be discarded ...", not that it looks very clever
1215  * in case of head skb. Due to potentional receiver driven attacks, we
1216  * choose to avoid immediate execution of a walk in write queue due to
1217  * reneging and defer head skb's loss recovery to standard loss recovery
1218  * procedure that will eventually trigger (nothing forbids us doing this).
1219  *
1220  * Implements also blockage to start_seq wrap-around. Problem lies in the
1221  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1222  * there's no guarantee that it will be before snd_nxt (n). The problem
1223  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1224  * wrap (s_w):
1225  *
1226  *         <- outs wnd ->                          <- wrapzone ->
1227  *         u     e      n                         u_w   e_w  s n_w
1228  *         |     |      |                          |     |   |  |
1229  * |<------------+------+----- TCP seqno space --------------+---------->|
1230  * ...-- <2^31 ->|                                           |<--------...
1231  * ...---- >2^31 ------>|                                    |<--------...
1232  *
1233  * Current code wouldn't be vulnerable but it's better still to discard such
1234  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1235  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1236  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1237  * equal to the ideal case (infinite seqno space without wrap caused issues).
1238  *
1239  * With D-SACK the lower bound is extended to cover sequence space below
1240  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1241  * again, D-SACK block must not to go across snd_una (for the same reason as
1242  * for the normal SACK blocks, explained above). But there all simplicity
1243  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1244  * fully below undo_marker they do not affect behavior in anyway and can
1245  * therefore be safely ignored. In rare cases (which are more or less
1246  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1247  * fragmentation and packet reordering past skb's retransmission. To consider
1248  * them correctly, the acceptable range must be extended even more though
1249  * the exact amount is rather hard to quantify. However, tp->max_window can
1250  * be used as an exaggerated estimate.
1251  */
1252 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1253 				   u32 start_seq, u32 end_seq)
1254 {
1255 	/* Too far in future, or reversed (interpretation is ambiguous) */
1256 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1257 		return false;
1258 
1259 	/* Nasty start_seq wrap-around check (see comments above) */
1260 	if (!before(start_seq, tp->snd_nxt))
1261 		return false;
1262 
1263 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1264 	 * start_seq == snd_una is non-sensical (see comments above)
1265 	 */
1266 	if (after(start_seq, tp->snd_una))
1267 		return true;
1268 
1269 	if (!is_dsack || !tp->undo_marker)
1270 		return false;
1271 
1272 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1273 	if (after(end_seq, tp->snd_una))
1274 		return false;
1275 
1276 	if (!before(start_seq, tp->undo_marker))
1277 		return true;
1278 
1279 	/* Too old */
1280 	if (!after(end_seq, tp->undo_marker))
1281 		return false;
1282 
1283 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1284 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1285 	 */
1286 	return !before(start_seq, end_seq - tp->max_window);
1287 }
1288 
1289 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1290 			    struct tcp_sack_block_wire *sp, int num_sacks,
1291 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1292 {
1293 	struct tcp_sock *tp = tcp_sk(sk);
1294 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1295 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1296 	u32 dup_segs;
1297 
1298 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1299 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1300 	} else if (num_sacks > 1) {
1301 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1302 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1303 
1304 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1305 			return false;
1306 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1307 	} else {
1308 		return false;
1309 	}
1310 
1311 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1312 	if (!dup_segs) {	/* Skip dubious DSACK */
1313 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1314 		return false;
1315 	}
1316 
1317 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1318 
1319 	/* D-SACK for already forgotten data... Do dumb counting. */
1320 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1321 	    !after(end_seq_0, prior_snd_una) &&
1322 	    after(end_seq_0, tp->undo_marker))
1323 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1324 
1325 	return true;
1326 }
1327 
1328 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1329  * the incoming SACK may not exactly match but we can find smaller MSS
1330  * aligned portion of it that matches. Therefore we might need to fragment
1331  * which may fail and creates some hassle (caller must handle error case
1332  * returns).
1333  *
1334  * FIXME: this could be merged to shift decision code
1335  */
1336 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1337 				  u32 start_seq, u32 end_seq)
1338 {
1339 	int err;
1340 	bool in_sack;
1341 	unsigned int pkt_len;
1342 	unsigned int mss;
1343 
1344 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1345 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1346 
1347 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1348 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1349 		mss = tcp_skb_mss(skb);
1350 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1351 
1352 		if (!in_sack) {
1353 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1354 			if (pkt_len < mss)
1355 				pkt_len = mss;
1356 		} else {
1357 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1358 			if (pkt_len < mss)
1359 				return -EINVAL;
1360 		}
1361 
1362 		/* Round if necessary so that SACKs cover only full MSSes
1363 		 * and/or the remaining small portion (if present)
1364 		 */
1365 		if (pkt_len > mss) {
1366 			unsigned int new_len = (pkt_len / mss) * mss;
1367 			if (!in_sack && new_len < pkt_len)
1368 				new_len += mss;
1369 			pkt_len = new_len;
1370 		}
1371 
1372 		if (pkt_len >= skb->len && !in_sack)
1373 			return 0;
1374 
1375 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1376 				   pkt_len, mss, GFP_ATOMIC);
1377 		if (err < 0)
1378 			return err;
1379 	}
1380 
1381 	return in_sack;
1382 }
1383 
1384 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1385 static u8 tcp_sacktag_one(struct sock *sk,
1386 			  struct tcp_sacktag_state *state, u8 sacked,
1387 			  u32 start_seq, u32 end_seq,
1388 			  int dup_sack, int pcount,
1389 			  u64 xmit_time)
1390 {
1391 	struct tcp_sock *tp = tcp_sk(sk);
1392 
1393 	/* Account D-SACK for retransmitted packet. */
1394 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1395 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1396 		    after(end_seq, tp->undo_marker))
1397 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1398 		if ((sacked & TCPCB_SACKED_ACKED) &&
1399 		    before(start_seq, state->reord))
1400 				state->reord = start_seq;
1401 	}
1402 
1403 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1404 	if (!after(end_seq, tp->snd_una))
1405 		return sacked;
1406 
1407 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1408 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1409 
1410 		if (sacked & TCPCB_SACKED_RETRANS) {
1411 			/* If the segment is not tagged as lost,
1412 			 * we do not clear RETRANS, believing
1413 			 * that retransmission is still in flight.
1414 			 */
1415 			if (sacked & TCPCB_LOST) {
1416 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1417 				tp->lost_out -= pcount;
1418 				tp->retrans_out -= pcount;
1419 			}
1420 		} else {
1421 			if (!(sacked & TCPCB_RETRANS)) {
1422 				/* New sack for not retransmitted frame,
1423 				 * which was in hole. It is reordering.
1424 				 */
1425 				if (before(start_seq,
1426 					   tcp_highest_sack_seq(tp)) &&
1427 				    before(start_seq, state->reord))
1428 					state->reord = start_seq;
1429 
1430 				if (!after(end_seq, tp->high_seq))
1431 					state->flag |= FLAG_ORIG_SACK_ACKED;
1432 				if (state->first_sackt == 0)
1433 					state->first_sackt = xmit_time;
1434 				state->last_sackt = xmit_time;
1435 			}
1436 
1437 			if (sacked & TCPCB_LOST) {
1438 				sacked &= ~TCPCB_LOST;
1439 				tp->lost_out -= pcount;
1440 			}
1441 		}
1442 
1443 		sacked |= TCPCB_SACKED_ACKED;
1444 		state->flag |= FLAG_DATA_SACKED;
1445 		tp->sacked_out += pcount;
1446 		/* Out-of-order packets delivered */
1447 		state->sack_delivered += pcount;
1448 
1449 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1450 		if (tp->lost_skb_hint &&
1451 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1452 			tp->lost_cnt_hint += pcount;
1453 	}
1454 
1455 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1456 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1457 	 * are accounted above as well.
1458 	 */
1459 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1460 		sacked &= ~TCPCB_SACKED_RETRANS;
1461 		tp->retrans_out -= pcount;
1462 	}
1463 
1464 	return sacked;
1465 }
1466 
1467 /* Shift newly-SACKed bytes from this skb to the immediately previous
1468  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1469  */
1470 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1471 			    struct sk_buff *skb,
1472 			    struct tcp_sacktag_state *state,
1473 			    unsigned int pcount, int shifted, int mss,
1474 			    bool dup_sack)
1475 {
1476 	struct tcp_sock *tp = tcp_sk(sk);
1477 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1478 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1479 
1480 	BUG_ON(!pcount);
1481 
1482 	/* Adjust counters and hints for the newly sacked sequence
1483 	 * range but discard the return value since prev is already
1484 	 * marked. We must tag the range first because the seq
1485 	 * advancement below implicitly advances
1486 	 * tcp_highest_sack_seq() when skb is highest_sack.
1487 	 */
1488 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1489 			start_seq, end_seq, dup_sack, pcount,
1490 			tcp_skb_timestamp_us(skb));
1491 	tcp_rate_skb_delivered(sk, skb, state->rate);
1492 
1493 	if (skb == tp->lost_skb_hint)
1494 		tp->lost_cnt_hint += pcount;
1495 
1496 	TCP_SKB_CB(prev)->end_seq += shifted;
1497 	TCP_SKB_CB(skb)->seq += shifted;
1498 
1499 	tcp_skb_pcount_add(prev, pcount);
1500 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1501 	tcp_skb_pcount_add(skb, -pcount);
1502 
1503 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1504 	 * in theory this shouldn't be necessary but as long as DSACK
1505 	 * code can come after this skb later on it's better to keep
1506 	 * setting gso_size to something.
1507 	 */
1508 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1509 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1510 
1511 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1512 	if (tcp_skb_pcount(skb) <= 1)
1513 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1514 
1515 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1516 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1517 
1518 	if (skb->len > 0) {
1519 		BUG_ON(!tcp_skb_pcount(skb));
1520 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1521 		return false;
1522 	}
1523 
1524 	/* Whole SKB was eaten :-) */
1525 
1526 	if (skb == tp->retransmit_skb_hint)
1527 		tp->retransmit_skb_hint = prev;
1528 	if (skb == tp->lost_skb_hint) {
1529 		tp->lost_skb_hint = prev;
1530 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1531 	}
1532 
1533 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1534 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1535 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1536 		TCP_SKB_CB(prev)->end_seq++;
1537 
1538 	if (skb == tcp_highest_sack(sk))
1539 		tcp_advance_highest_sack(sk, skb);
1540 
1541 	tcp_skb_collapse_tstamp(prev, skb);
1542 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1543 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1544 
1545 	tcp_rtx_queue_unlink_and_free(skb, sk);
1546 
1547 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1548 
1549 	return true;
1550 }
1551 
1552 /* I wish gso_size would have a bit more sane initialization than
1553  * something-or-zero which complicates things
1554  */
1555 static int tcp_skb_seglen(const struct sk_buff *skb)
1556 {
1557 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1558 }
1559 
1560 /* Shifting pages past head area doesn't work */
1561 static int skb_can_shift(const struct sk_buff *skb)
1562 {
1563 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1564 }
1565 
1566 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1567 		  int pcount, int shiftlen)
1568 {
1569 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1570 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1571 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1572 	 * even if current MSS is bigger.
1573 	 */
1574 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1575 		return 0;
1576 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1577 		return 0;
1578 	return skb_shift(to, from, shiftlen);
1579 }
1580 
1581 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1582  * skb.
1583  */
1584 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1585 					  struct tcp_sacktag_state *state,
1586 					  u32 start_seq, u32 end_seq,
1587 					  bool dup_sack)
1588 {
1589 	struct tcp_sock *tp = tcp_sk(sk);
1590 	struct sk_buff *prev;
1591 	int mss;
1592 	int pcount = 0;
1593 	int len;
1594 	int in_sack;
1595 
1596 	/* Normally R but no L won't result in plain S */
1597 	if (!dup_sack &&
1598 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1599 		goto fallback;
1600 	if (!skb_can_shift(skb))
1601 		goto fallback;
1602 	/* This frame is about to be dropped (was ACKed). */
1603 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1604 		goto fallback;
1605 
1606 	/* Can only happen with delayed DSACK + discard craziness */
1607 	prev = skb_rb_prev(skb);
1608 	if (!prev)
1609 		goto fallback;
1610 
1611 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1612 		goto fallback;
1613 
1614 	if (!tcp_skb_can_collapse(prev, skb))
1615 		goto fallback;
1616 
1617 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1618 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1619 
1620 	if (in_sack) {
1621 		len = skb->len;
1622 		pcount = tcp_skb_pcount(skb);
1623 		mss = tcp_skb_seglen(skb);
1624 
1625 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1626 		 * drop this restriction as unnecessary
1627 		 */
1628 		if (mss != tcp_skb_seglen(prev))
1629 			goto fallback;
1630 	} else {
1631 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1632 			goto noop;
1633 		/* CHECKME: This is non-MSS split case only?, this will
1634 		 * cause skipped skbs due to advancing loop btw, original
1635 		 * has that feature too
1636 		 */
1637 		if (tcp_skb_pcount(skb) <= 1)
1638 			goto noop;
1639 
1640 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1641 		if (!in_sack) {
1642 			/* TODO: head merge to next could be attempted here
1643 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1644 			 * though it might not be worth of the additional hassle
1645 			 *
1646 			 * ...we can probably just fallback to what was done
1647 			 * previously. We could try merging non-SACKed ones
1648 			 * as well but it probably isn't going to buy off
1649 			 * because later SACKs might again split them, and
1650 			 * it would make skb timestamp tracking considerably
1651 			 * harder problem.
1652 			 */
1653 			goto fallback;
1654 		}
1655 
1656 		len = end_seq - TCP_SKB_CB(skb)->seq;
1657 		BUG_ON(len < 0);
1658 		BUG_ON(len > skb->len);
1659 
1660 		/* MSS boundaries should be honoured or else pcount will
1661 		 * severely break even though it makes things bit trickier.
1662 		 * Optimize common case to avoid most of the divides
1663 		 */
1664 		mss = tcp_skb_mss(skb);
1665 
1666 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1667 		 * drop this restriction as unnecessary
1668 		 */
1669 		if (mss != tcp_skb_seglen(prev))
1670 			goto fallback;
1671 
1672 		if (len == mss) {
1673 			pcount = 1;
1674 		} else if (len < mss) {
1675 			goto noop;
1676 		} else {
1677 			pcount = len / mss;
1678 			len = pcount * mss;
1679 		}
1680 	}
1681 
1682 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1683 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1684 		goto fallback;
1685 
1686 	if (!tcp_skb_shift(prev, skb, pcount, len))
1687 		goto fallback;
1688 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1689 		goto out;
1690 
1691 	/* Hole filled allows collapsing with the next as well, this is very
1692 	 * useful when hole on every nth skb pattern happens
1693 	 */
1694 	skb = skb_rb_next(prev);
1695 	if (!skb)
1696 		goto out;
1697 
1698 	if (!skb_can_shift(skb) ||
1699 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1700 	    (mss != tcp_skb_seglen(skb)))
1701 		goto out;
1702 
1703 	if (!tcp_skb_can_collapse(prev, skb))
1704 		goto out;
1705 	len = skb->len;
1706 	pcount = tcp_skb_pcount(skb);
1707 	if (tcp_skb_shift(prev, skb, pcount, len))
1708 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1709 				len, mss, 0);
1710 
1711 out:
1712 	return prev;
1713 
1714 noop:
1715 	return skb;
1716 
1717 fallback:
1718 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1719 	return NULL;
1720 }
1721 
1722 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1723 					struct tcp_sack_block *next_dup,
1724 					struct tcp_sacktag_state *state,
1725 					u32 start_seq, u32 end_seq,
1726 					bool dup_sack_in)
1727 {
1728 	struct tcp_sock *tp = tcp_sk(sk);
1729 	struct sk_buff *tmp;
1730 
1731 	skb_rbtree_walk_from(skb) {
1732 		int in_sack = 0;
1733 		bool dup_sack = dup_sack_in;
1734 
1735 		/* queue is in-order => we can short-circuit the walk early */
1736 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1737 			break;
1738 
1739 		if (next_dup  &&
1740 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1741 			in_sack = tcp_match_skb_to_sack(sk, skb,
1742 							next_dup->start_seq,
1743 							next_dup->end_seq);
1744 			if (in_sack > 0)
1745 				dup_sack = true;
1746 		}
1747 
1748 		/* skb reference here is a bit tricky to get right, since
1749 		 * shifting can eat and free both this skb and the next,
1750 		 * so not even _safe variant of the loop is enough.
1751 		 */
1752 		if (in_sack <= 0) {
1753 			tmp = tcp_shift_skb_data(sk, skb, state,
1754 						 start_seq, end_seq, dup_sack);
1755 			if (tmp) {
1756 				if (tmp != skb) {
1757 					skb = tmp;
1758 					continue;
1759 				}
1760 
1761 				in_sack = 0;
1762 			} else {
1763 				in_sack = tcp_match_skb_to_sack(sk, skb,
1764 								start_seq,
1765 								end_seq);
1766 			}
1767 		}
1768 
1769 		if (unlikely(in_sack < 0))
1770 			break;
1771 
1772 		if (in_sack) {
1773 			TCP_SKB_CB(skb)->sacked =
1774 				tcp_sacktag_one(sk,
1775 						state,
1776 						TCP_SKB_CB(skb)->sacked,
1777 						TCP_SKB_CB(skb)->seq,
1778 						TCP_SKB_CB(skb)->end_seq,
1779 						dup_sack,
1780 						tcp_skb_pcount(skb),
1781 						tcp_skb_timestamp_us(skb));
1782 			tcp_rate_skb_delivered(sk, skb, state->rate);
1783 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1784 				list_del_init(&skb->tcp_tsorted_anchor);
1785 
1786 			if (!before(TCP_SKB_CB(skb)->seq,
1787 				    tcp_highest_sack_seq(tp)))
1788 				tcp_advance_highest_sack(sk, skb);
1789 		}
1790 	}
1791 	return skb;
1792 }
1793 
1794 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1795 {
1796 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1797 	struct sk_buff *skb;
1798 
1799 	while (*p) {
1800 		parent = *p;
1801 		skb = rb_to_skb(parent);
1802 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1803 			p = &parent->rb_left;
1804 			continue;
1805 		}
1806 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1807 			p = &parent->rb_right;
1808 			continue;
1809 		}
1810 		return skb;
1811 	}
1812 	return NULL;
1813 }
1814 
1815 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1816 					u32 skip_to_seq)
1817 {
1818 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1819 		return skb;
1820 
1821 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1822 }
1823 
1824 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1825 						struct sock *sk,
1826 						struct tcp_sack_block *next_dup,
1827 						struct tcp_sacktag_state *state,
1828 						u32 skip_to_seq)
1829 {
1830 	if (!next_dup)
1831 		return skb;
1832 
1833 	if (before(next_dup->start_seq, skip_to_seq)) {
1834 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1835 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1836 				       next_dup->start_seq, next_dup->end_seq,
1837 				       1);
1838 	}
1839 
1840 	return skb;
1841 }
1842 
1843 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1844 {
1845 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1846 }
1847 
1848 static int
1849 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1850 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1851 {
1852 	struct tcp_sock *tp = tcp_sk(sk);
1853 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1854 				    TCP_SKB_CB(ack_skb)->sacked);
1855 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1856 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1857 	struct tcp_sack_block *cache;
1858 	struct sk_buff *skb;
1859 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1860 	int used_sacks;
1861 	bool found_dup_sack = false;
1862 	int i, j;
1863 	int first_sack_index;
1864 
1865 	state->flag = 0;
1866 	state->reord = tp->snd_nxt;
1867 
1868 	if (!tp->sacked_out)
1869 		tcp_highest_sack_reset(sk);
1870 
1871 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1872 					 num_sacks, prior_snd_una, state);
1873 
1874 	/* Eliminate too old ACKs, but take into
1875 	 * account more or less fresh ones, they can
1876 	 * contain valid SACK info.
1877 	 */
1878 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1879 		return 0;
1880 
1881 	if (!tp->packets_out)
1882 		goto out;
1883 
1884 	used_sacks = 0;
1885 	first_sack_index = 0;
1886 	for (i = 0; i < num_sacks; i++) {
1887 		bool dup_sack = !i && found_dup_sack;
1888 
1889 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1890 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1891 
1892 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1893 					    sp[used_sacks].start_seq,
1894 					    sp[used_sacks].end_seq)) {
1895 			int mib_idx;
1896 
1897 			if (dup_sack) {
1898 				if (!tp->undo_marker)
1899 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1900 				else
1901 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1902 			} else {
1903 				/* Don't count olds caused by ACK reordering */
1904 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1905 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1906 					continue;
1907 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1908 			}
1909 
1910 			NET_INC_STATS(sock_net(sk), mib_idx);
1911 			if (i == 0)
1912 				first_sack_index = -1;
1913 			continue;
1914 		}
1915 
1916 		/* Ignore very old stuff early */
1917 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1918 			if (i == 0)
1919 				first_sack_index = -1;
1920 			continue;
1921 		}
1922 
1923 		used_sacks++;
1924 	}
1925 
1926 	/* order SACK blocks to allow in order walk of the retrans queue */
1927 	for (i = used_sacks - 1; i > 0; i--) {
1928 		for (j = 0; j < i; j++) {
1929 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1930 				swap(sp[j], sp[j + 1]);
1931 
1932 				/* Track where the first SACK block goes to */
1933 				if (j == first_sack_index)
1934 					first_sack_index = j + 1;
1935 			}
1936 		}
1937 	}
1938 
1939 	state->mss_now = tcp_current_mss(sk);
1940 	skb = NULL;
1941 	i = 0;
1942 
1943 	if (!tp->sacked_out) {
1944 		/* It's already past, so skip checking against it */
1945 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1946 	} else {
1947 		cache = tp->recv_sack_cache;
1948 		/* Skip empty blocks in at head of the cache */
1949 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1950 		       !cache->end_seq)
1951 			cache++;
1952 	}
1953 
1954 	while (i < used_sacks) {
1955 		u32 start_seq = sp[i].start_seq;
1956 		u32 end_seq = sp[i].end_seq;
1957 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1958 		struct tcp_sack_block *next_dup = NULL;
1959 
1960 		if (found_dup_sack && ((i + 1) == first_sack_index))
1961 			next_dup = &sp[i + 1];
1962 
1963 		/* Skip too early cached blocks */
1964 		while (tcp_sack_cache_ok(tp, cache) &&
1965 		       !before(start_seq, cache->end_seq))
1966 			cache++;
1967 
1968 		/* Can skip some work by looking recv_sack_cache? */
1969 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1970 		    after(end_seq, cache->start_seq)) {
1971 
1972 			/* Head todo? */
1973 			if (before(start_seq, cache->start_seq)) {
1974 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1975 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1976 						       state,
1977 						       start_seq,
1978 						       cache->start_seq,
1979 						       dup_sack);
1980 			}
1981 
1982 			/* Rest of the block already fully processed? */
1983 			if (!after(end_seq, cache->end_seq))
1984 				goto advance_sp;
1985 
1986 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1987 						       state,
1988 						       cache->end_seq);
1989 
1990 			/* ...tail remains todo... */
1991 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1992 				/* ...but better entrypoint exists! */
1993 				skb = tcp_highest_sack(sk);
1994 				if (!skb)
1995 					break;
1996 				cache++;
1997 				goto walk;
1998 			}
1999 
2000 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2001 			/* Check overlap against next cached too (past this one already) */
2002 			cache++;
2003 			continue;
2004 		}
2005 
2006 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2007 			skb = tcp_highest_sack(sk);
2008 			if (!skb)
2009 				break;
2010 		}
2011 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2012 
2013 walk:
2014 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2015 				       start_seq, end_seq, dup_sack);
2016 
2017 advance_sp:
2018 		i++;
2019 	}
2020 
2021 	/* Clear the head of the cache sack blocks so we can skip it next time */
2022 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2023 		tp->recv_sack_cache[i].start_seq = 0;
2024 		tp->recv_sack_cache[i].end_seq = 0;
2025 	}
2026 	for (j = 0; j < used_sacks; j++)
2027 		tp->recv_sack_cache[i++] = sp[j];
2028 
2029 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2030 		tcp_check_sack_reordering(sk, state->reord, 0);
2031 
2032 	tcp_verify_left_out(tp);
2033 out:
2034 
2035 #if FASTRETRANS_DEBUG > 0
2036 	WARN_ON((int)tp->sacked_out < 0);
2037 	WARN_ON((int)tp->lost_out < 0);
2038 	WARN_ON((int)tp->retrans_out < 0);
2039 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2040 #endif
2041 	return state->flag;
2042 }
2043 
2044 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2045  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2046  */
2047 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2048 {
2049 	u32 holes;
2050 
2051 	holes = max(tp->lost_out, 1U);
2052 	holes = min(holes, tp->packets_out);
2053 
2054 	if ((tp->sacked_out + holes) > tp->packets_out) {
2055 		tp->sacked_out = tp->packets_out - holes;
2056 		return true;
2057 	}
2058 	return false;
2059 }
2060 
2061 /* If we receive more dupacks than we expected counting segments
2062  * in assumption of absent reordering, interpret this as reordering.
2063  * The only another reason could be bug in receiver TCP.
2064  */
2065 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2066 {
2067 	struct tcp_sock *tp = tcp_sk(sk);
2068 
2069 	if (!tcp_limit_reno_sacked(tp))
2070 		return;
2071 
2072 	tp->reordering = min_t(u32, tp->packets_out + addend,
2073 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2074 	tp->reord_seen++;
2075 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2076 }
2077 
2078 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2079 
2080 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2081 {
2082 	if (num_dupack) {
2083 		struct tcp_sock *tp = tcp_sk(sk);
2084 		u32 prior_sacked = tp->sacked_out;
2085 		s32 delivered;
2086 
2087 		tp->sacked_out += num_dupack;
2088 		tcp_check_reno_reordering(sk, 0);
2089 		delivered = tp->sacked_out - prior_sacked;
2090 		if (delivered > 0)
2091 			tcp_count_delivered(tp, delivered, ece_ack);
2092 		tcp_verify_left_out(tp);
2093 	}
2094 }
2095 
2096 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2097 
2098 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2099 {
2100 	struct tcp_sock *tp = tcp_sk(sk);
2101 
2102 	if (acked > 0) {
2103 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2104 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2105 				    ece_ack);
2106 		if (acked - 1 >= tp->sacked_out)
2107 			tp->sacked_out = 0;
2108 		else
2109 			tp->sacked_out -= acked - 1;
2110 	}
2111 	tcp_check_reno_reordering(sk, acked);
2112 	tcp_verify_left_out(tp);
2113 }
2114 
2115 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2116 {
2117 	tp->sacked_out = 0;
2118 }
2119 
2120 void tcp_clear_retrans(struct tcp_sock *tp)
2121 {
2122 	tp->retrans_out = 0;
2123 	tp->lost_out = 0;
2124 	tp->undo_marker = 0;
2125 	tp->undo_retrans = -1;
2126 	tp->sacked_out = 0;
2127 	tp->rto_stamp = 0;
2128 	tp->total_rto = 0;
2129 	tp->total_rto_recoveries = 0;
2130 	tp->total_rto_time = 0;
2131 }
2132 
2133 static inline void tcp_init_undo(struct tcp_sock *tp)
2134 {
2135 	tp->undo_marker = tp->snd_una;
2136 	/* Retransmission still in flight may cause DSACKs later. */
2137 	tp->undo_retrans = tp->retrans_out ? : -1;
2138 }
2139 
2140 static bool tcp_is_rack(const struct sock *sk)
2141 {
2142 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2143 		TCP_RACK_LOSS_DETECTION;
2144 }
2145 
2146 /* If we detect SACK reneging, forget all SACK information
2147  * and reset tags completely, otherwise preserve SACKs. If receiver
2148  * dropped its ofo queue, we will know this due to reneging detection.
2149  */
2150 static void tcp_timeout_mark_lost(struct sock *sk)
2151 {
2152 	struct tcp_sock *tp = tcp_sk(sk);
2153 	struct sk_buff *skb, *head;
2154 	bool is_reneg;			/* is receiver reneging on SACKs? */
2155 
2156 	head = tcp_rtx_queue_head(sk);
2157 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2158 	if (is_reneg) {
2159 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2160 		tp->sacked_out = 0;
2161 		/* Mark SACK reneging until we recover from this loss event. */
2162 		tp->is_sack_reneg = 1;
2163 	} else if (tcp_is_reno(tp)) {
2164 		tcp_reset_reno_sack(tp);
2165 	}
2166 
2167 	skb = head;
2168 	skb_rbtree_walk_from(skb) {
2169 		if (is_reneg)
2170 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2171 		else if (tcp_is_rack(sk) && skb != head &&
2172 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2173 			continue; /* Don't mark recently sent ones lost yet */
2174 		tcp_mark_skb_lost(sk, skb);
2175 	}
2176 	tcp_verify_left_out(tp);
2177 	tcp_clear_all_retrans_hints(tp);
2178 }
2179 
2180 /* Enter Loss state. */
2181 void tcp_enter_loss(struct sock *sk)
2182 {
2183 	const struct inet_connection_sock *icsk = inet_csk(sk);
2184 	struct tcp_sock *tp = tcp_sk(sk);
2185 	struct net *net = sock_net(sk);
2186 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2187 	u8 reordering;
2188 
2189 	tcp_timeout_mark_lost(sk);
2190 
2191 	/* Reduce ssthresh if it has not yet been made inside this window. */
2192 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2193 	    !after(tp->high_seq, tp->snd_una) ||
2194 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2195 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2196 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2197 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2198 		tcp_ca_event(sk, CA_EVENT_LOSS);
2199 		tcp_init_undo(tp);
2200 	}
2201 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2202 	tp->snd_cwnd_cnt   = 0;
2203 	tp->snd_cwnd_stamp = tcp_jiffies32;
2204 
2205 	/* Timeout in disordered state after receiving substantial DUPACKs
2206 	 * suggests that the degree of reordering is over-estimated.
2207 	 */
2208 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2209 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2210 	    tp->sacked_out >= reordering)
2211 		tp->reordering = min_t(unsigned int, tp->reordering,
2212 				       reordering);
2213 
2214 	tcp_set_ca_state(sk, TCP_CA_Loss);
2215 	tp->high_seq = tp->snd_nxt;
2216 	tcp_ecn_queue_cwr(tp);
2217 
2218 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2219 	 * loss recovery is underway except recurring timeout(s) on
2220 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2221 	 */
2222 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2223 		   (new_recovery || icsk->icsk_retransmits) &&
2224 		   !inet_csk(sk)->icsk_mtup.probe_size;
2225 }
2226 
2227 /* If ACK arrived pointing to a remembered SACK, it means that our
2228  * remembered SACKs do not reflect real state of receiver i.e.
2229  * receiver _host_ is heavily congested (or buggy).
2230  *
2231  * To avoid big spurious retransmission bursts due to transient SACK
2232  * scoreboard oddities that look like reneging, we give the receiver a
2233  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2234  * restore sanity to the SACK scoreboard. If the apparent reneging
2235  * persists until this RTO then we'll clear the SACK scoreboard.
2236  */
2237 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2238 {
2239 	if (*ack_flag & FLAG_SACK_RENEGING &&
2240 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2241 		struct tcp_sock *tp = tcp_sk(sk);
2242 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2243 					  msecs_to_jiffies(10));
2244 
2245 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2246 					  delay, TCP_RTO_MAX);
2247 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2248 		return true;
2249 	}
2250 	return false;
2251 }
2252 
2253 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2254  * counter when SACK is enabled (without SACK, sacked_out is used for
2255  * that purpose).
2256  *
2257  * With reordering, holes may still be in flight, so RFC3517 recovery
2258  * uses pure sacked_out (total number of SACKed segments) even though
2259  * it violates the RFC that uses duplicate ACKs, often these are equal
2260  * but when e.g. out-of-window ACKs or packet duplication occurs,
2261  * they differ. Since neither occurs due to loss, TCP should really
2262  * ignore them.
2263  */
2264 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2265 {
2266 	return tp->sacked_out + 1;
2267 }
2268 
2269 /* Linux NewReno/SACK/ECN state machine.
2270  * --------------------------------------
2271  *
2272  * "Open"	Normal state, no dubious events, fast path.
2273  * "Disorder"   In all the respects it is "Open",
2274  *		but requires a bit more attention. It is entered when
2275  *		we see some SACKs or dupacks. It is split of "Open"
2276  *		mainly to move some processing from fast path to slow one.
2277  * "CWR"	CWND was reduced due to some Congestion Notification event.
2278  *		It can be ECN, ICMP source quench, local device congestion.
2279  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2280  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2281  *
2282  * tcp_fastretrans_alert() is entered:
2283  * - each incoming ACK, if state is not "Open"
2284  * - when arrived ACK is unusual, namely:
2285  *	* SACK
2286  *	* Duplicate ACK.
2287  *	* ECN ECE.
2288  *
2289  * Counting packets in flight is pretty simple.
2290  *
2291  *	in_flight = packets_out - left_out + retrans_out
2292  *
2293  *	packets_out is SND.NXT-SND.UNA counted in packets.
2294  *
2295  *	retrans_out is number of retransmitted segments.
2296  *
2297  *	left_out is number of segments left network, but not ACKed yet.
2298  *
2299  *		left_out = sacked_out + lost_out
2300  *
2301  *     sacked_out: Packets, which arrived to receiver out of order
2302  *		   and hence not ACKed. With SACKs this number is simply
2303  *		   amount of SACKed data. Even without SACKs
2304  *		   it is easy to give pretty reliable estimate of this number,
2305  *		   counting duplicate ACKs.
2306  *
2307  *       lost_out: Packets lost by network. TCP has no explicit
2308  *		   "loss notification" feedback from network (for now).
2309  *		   It means that this number can be only _guessed_.
2310  *		   Actually, it is the heuristics to predict lossage that
2311  *		   distinguishes different algorithms.
2312  *
2313  *	F.e. after RTO, when all the queue is considered as lost,
2314  *	lost_out = packets_out and in_flight = retrans_out.
2315  *
2316  *		Essentially, we have now a few algorithms detecting
2317  *		lost packets.
2318  *
2319  *		If the receiver supports SACK:
2320  *
2321  *		RFC6675/3517: It is the conventional algorithm. A packet is
2322  *		considered lost if the number of higher sequence packets
2323  *		SACKed is greater than or equal the DUPACK thoreshold
2324  *		(reordering). This is implemented in tcp_mark_head_lost and
2325  *		tcp_update_scoreboard.
2326  *
2327  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2328  *		(2017-) that checks timing instead of counting DUPACKs.
2329  *		Essentially a packet is considered lost if it's not S/ACKed
2330  *		after RTT + reordering_window, where both metrics are
2331  *		dynamically measured and adjusted. This is implemented in
2332  *		tcp_rack_mark_lost.
2333  *
2334  *		If the receiver does not support SACK:
2335  *
2336  *		NewReno (RFC6582): in Recovery we assume that one segment
2337  *		is lost (classic Reno). While we are in Recovery and
2338  *		a partial ACK arrives, we assume that one more packet
2339  *		is lost (NewReno). This heuristics are the same in NewReno
2340  *		and SACK.
2341  *
2342  * Really tricky (and requiring careful tuning) part of algorithm
2343  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2344  * The first determines the moment _when_ we should reduce CWND and,
2345  * hence, slow down forward transmission. In fact, it determines the moment
2346  * when we decide that hole is caused by loss, rather than by a reorder.
2347  *
2348  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2349  * holes, caused by lost packets.
2350  *
2351  * And the most logically complicated part of algorithm is undo
2352  * heuristics. We detect false retransmits due to both too early
2353  * fast retransmit (reordering) and underestimated RTO, analyzing
2354  * timestamps and D-SACKs. When we detect that some segments were
2355  * retransmitted by mistake and CWND reduction was wrong, we undo
2356  * window reduction and abort recovery phase. This logic is hidden
2357  * inside several functions named tcp_try_undo_<something>.
2358  */
2359 
2360 /* This function decides, when we should leave Disordered state
2361  * and enter Recovery phase, reducing congestion window.
2362  *
2363  * Main question: may we further continue forward transmission
2364  * with the same cwnd?
2365  */
2366 static bool tcp_time_to_recover(struct sock *sk, int flag)
2367 {
2368 	struct tcp_sock *tp = tcp_sk(sk);
2369 
2370 	/* Trick#1: The loss is proven. */
2371 	if (tp->lost_out)
2372 		return true;
2373 
2374 	/* Not-A-Trick#2 : Classic rule... */
2375 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2376 		return true;
2377 
2378 	return false;
2379 }
2380 
2381 /* Detect loss in event "A" above by marking head of queue up as lost.
2382  * For RFC3517 SACK, a segment is considered lost if it
2383  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2384  * the maximum SACKed segments to pass before reaching this limit.
2385  */
2386 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2387 {
2388 	struct tcp_sock *tp = tcp_sk(sk);
2389 	struct sk_buff *skb;
2390 	int cnt;
2391 	/* Use SACK to deduce losses of new sequences sent during recovery */
2392 	const u32 loss_high = tp->snd_nxt;
2393 
2394 	WARN_ON(packets > tp->packets_out);
2395 	skb = tp->lost_skb_hint;
2396 	if (skb) {
2397 		/* Head already handled? */
2398 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2399 			return;
2400 		cnt = tp->lost_cnt_hint;
2401 	} else {
2402 		skb = tcp_rtx_queue_head(sk);
2403 		cnt = 0;
2404 	}
2405 
2406 	skb_rbtree_walk_from(skb) {
2407 		/* TODO: do this better */
2408 		/* this is not the most efficient way to do this... */
2409 		tp->lost_skb_hint = skb;
2410 		tp->lost_cnt_hint = cnt;
2411 
2412 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2413 			break;
2414 
2415 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2416 			cnt += tcp_skb_pcount(skb);
2417 
2418 		if (cnt > packets)
2419 			break;
2420 
2421 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2422 			tcp_mark_skb_lost(sk, skb);
2423 
2424 		if (mark_head)
2425 			break;
2426 	}
2427 	tcp_verify_left_out(tp);
2428 }
2429 
2430 /* Account newly detected lost packet(s) */
2431 
2432 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2433 {
2434 	struct tcp_sock *tp = tcp_sk(sk);
2435 
2436 	if (tcp_is_sack(tp)) {
2437 		int sacked_upto = tp->sacked_out - tp->reordering;
2438 		if (sacked_upto >= 0)
2439 			tcp_mark_head_lost(sk, sacked_upto, 0);
2440 		else if (fast_rexmit)
2441 			tcp_mark_head_lost(sk, 1, 1);
2442 	}
2443 }
2444 
2445 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2446 {
2447 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2448 	       before(tp->rx_opt.rcv_tsecr, when);
2449 }
2450 
2451 /* skb is spurious retransmitted if the returned timestamp echo
2452  * reply is prior to the skb transmission time
2453  */
2454 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2455 				     const struct sk_buff *skb)
2456 {
2457 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2458 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2459 }
2460 
2461 /* Nothing was retransmitted or returned timestamp is less
2462  * than timestamp of the first retransmission.
2463  */
2464 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2465 {
2466 	return tp->retrans_stamp &&
2467 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2468 }
2469 
2470 /* Undo procedures. */
2471 
2472 /* We can clear retrans_stamp when there are no retransmissions in the
2473  * window. It would seem that it is trivially available for us in
2474  * tp->retrans_out, however, that kind of assumptions doesn't consider
2475  * what will happen if errors occur when sending retransmission for the
2476  * second time. ...It could the that such segment has only
2477  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2478  * the head skb is enough except for some reneging corner cases that
2479  * are not worth the effort.
2480  *
2481  * Main reason for all this complexity is the fact that connection dying
2482  * time now depends on the validity of the retrans_stamp, in particular,
2483  * that successive retransmissions of a segment must not advance
2484  * retrans_stamp under any conditions.
2485  */
2486 static bool tcp_any_retrans_done(const struct sock *sk)
2487 {
2488 	const struct tcp_sock *tp = tcp_sk(sk);
2489 	struct sk_buff *skb;
2490 
2491 	if (tp->retrans_out)
2492 		return true;
2493 
2494 	skb = tcp_rtx_queue_head(sk);
2495 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2496 		return true;
2497 
2498 	return false;
2499 }
2500 
2501 static void DBGUNDO(struct sock *sk, const char *msg)
2502 {
2503 #if FASTRETRANS_DEBUG > 1
2504 	struct tcp_sock *tp = tcp_sk(sk);
2505 	struct inet_sock *inet = inet_sk(sk);
2506 
2507 	if (sk->sk_family == AF_INET) {
2508 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2509 			 msg,
2510 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2511 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2512 			 tp->snd_ssthresh, tp->prior_ssthresh,
2513 			 tp->packets_out);
2514 	}
2515 #if IS_ENABLED(CONFIG_IPV6)
2516 	else if (sk->sk_family == AF_INET6) {
2517 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2518 			 msg,
2519 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2520 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2521 			 tp->snd_ssthresh, tp->prior_ssthresh,
2522 			 tp->packets_out);
2523 	}
2524 #endif
2525 #endif
2526 }
2527 
2528 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2529 {
2530 	struct tcp_sock *tp = tcp_sk(sk);
2531 
2532 	if (unmark_loss) {
2533 		struct sk_buff *skb;
2534 
2535 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2536 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2537 		}
2538 		tp->lost_out = 0;
2539 		tcp_clear_all_retrans_hints(tp);
2540 	}
2541 
2542 	if (tp->prior_ssthresh) {
2543 		const struct inet_connection_sock *icsk = inet_csk(sk);
2544 
2545 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2546 
2547 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2548 			tp->snd_ssthresh = tp->prior_ssthresh;
2549 			tcp_ecn_withdraw_cwr(tp);
2550 		}
2551 	}
2552 	tp->snd_cwnd_stamp = tcp_jiffies32;
2553 	tp->undo_marker = 0;
2554 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2555 }
2556 
2557 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2558 {
2559 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2560 }
2561 
2562 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2563 {
2564 	struct tcp_sock *tp = tcp_sk(sk);
2565 
2566 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2567 		/* Hold old state until something *above* high_seq
2568 		 * is ACKed. For Reno it is MUST to prevent false
2569 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2570 		if (!tcp_any_retrans_done(sk))
2571 			tp->retrans_stamp = 0;
2572 		return true;
2573 	}
2574 	return false;
2575 }
2576 
2577 /* People celebrate: "We love our President!" */
2578 static bool tcp_try_undo_recovery(struct sock *sk)
2579 {
2580 	struct tcp_sock *tp = tcp_sk(sk);
2581 
2582 	if (tcp_may_undo(tp)) {
2583 		int mib_idx;
2584 
2585 		/* Happy end! We did not retransmit anything
2586 		 * or our original transmission succeeded.
2587 		 */
2588 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2589 		tcp_undo_cwnd_reduction(sk, false);
2590 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2591 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2592 		else
2593 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2594 
2595 		NET_INC_STATS(sock_net(sk), mib_idx);
2596 	} else if (tp->rack.reo_wnd_persist) {
2597 		tp->rack.reo_wnd_persist--;
2598 	}
2599 	if (tcp_is_non_sack_preventing_reopen(sk))
2600 		return true;
2601 	tcp_set_ca_state(sk, TCP_CA_Open);
2602 	tp->is_sack_reneg = 0;
2603 	return false;
2604 }
2605 
2606 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2607 static bool tcp_try_undo_dsack(struct sock *sk)
2608 {
2609 	struct tcp_sock *tp = tcp_sk(sk);
2610 
2611 	if (tp->undo_marker && !tp->undo_retrans) {
2612 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2613 					       tp->rack.reo_wnd_persist + 1);
2614 		DBGUNDO(sk, "D-SACK");
2615 		tcp_undo_cwnd_reduction(sk, false);
2616 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2617 		return true;
2618 	}
2619 	return false;
2620 }
2621 
2622 /* Undo during loss recovery after partial ACK or using F-RTO. */
2623 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2624 {
2625 	struct tcp_sock *tp = tcp_sk(sk);
2626 
2627 	if (frto_undo || tcp_may_undo(tp)) {
2628 		tcp_undo_cwnd_reduction(sk, true);
2629 
2630 		DBGUNDO(sk, "partial loss");
2631 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2632 		if (frto_undo)
2633 			NET_INC_STATS(sock_net(sk),
2634 					LINUX_MIB_TCPSPURIOUSRTOS);
2635 		inet_csk(sk)->icsk_retransmits = 0;
2636 		if (tcp_is_non_sack_preventing_reopen(sk))
2637 			return true;
2638 		if (frto_undo || tcp_is_sack(tp)) {
2639 			tcp_set_ca_state(sk, TCP_CA_Open);
2640 			tp->is_sack_reneg = 0;
2641 		}
2642 		return true;
2643 	}
2644 	return false;
2645 }
2646 
2647 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2648  * It computes the number of packets to send (sndcnt) based on packets newly
2649  * delivered:
2650  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2651  *	cwnd reductions across a full RTT.
2652  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2653  *      But when SND_UNA is acked without further losses,
2654  *      slow starts cwnd up to ssthresh to speed up the recovery.
2655  */
2656 static void tcp_init_cwnd_reduction(struct sock *sk)
2657 {
2658 	struct tcp_sock *tp = tcp_sk(sk);
2659 
2660 	tp->high_seq = tp->snd_nxt;
2661 	tp->tlp_high_seq = 0;
2662 	tp->snd_cwnd_cnt = 0;
2663 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2664 	tp->prr_delivered = 0;
2665 	tp->prr_out = 0;
2666 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2667 	tcp_ecn_queue_cwr(tp);
2668 }
2669 
2670 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2671 {
2672 	struct tcp_sock *tp = tcp_sk(sk);
2673 	int sndcnt = 0;
2674 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2675 
2676 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2677 		return;
2678 
2679 	tp->prr_delivered += newly_acked_sacked;
2680 	if (delta < 0) {
2681 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2682 			       tp->prior_cwnd - 1;
2683 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2684 	} else {
2685 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2686 			       newly_acked_sacked);
2687 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2688 			sndcnt++;
2689 		sndcnt = min(delta, sndcnt);
2690 	}
2691 	/* Force a fast retransmit upon entering fast recovery */
2692 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2693 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2694 }
2695 
2696 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2697 {
2698 	struct tcp_sock *tp = tcp_sk(sk);
2699 
2700 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2701 		return;
2702 
2703 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2704 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2705 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2706 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2707 		tp->snd_cwnd_stamp = tcp_jiffies32;
2708 	}
2709 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2710 }
2711 
2712 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2713 void tcp_enter_cwr(struct sock *sk)
2714 {
2715 	struct tcp_sock *tp = tcp_sk(sk);
2716 
2717 	tp->prior_ssthresh = 0;
2718 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2719 		tp->undo_marker = 0;
2720 		tcp_init_cwnd_reduction(sk);
2721 		tcp_set_ca_state(sk, TCP_CA_CWR);
2722 	}
2723 }
2724 EXPORT_SYMBOL(tcp_enter_cwr);
2725 
2726 static void tcp_try_keep_open(struct sock *sk)
2727 {
2728 	struct tcp_sock *tp = tcp_sk(sk);
2729 	int state = TCP_CA_Open;
2730 
2731 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2732 		state = TCP_CA_Disorder;
2733 
2734 	if (inet_csk(sk)->icsk_ca_state != state) {
2735 		tcp_set_ca_state(sk, state);
2736 		tp->high_seq = tp->snd_nxt;
2737 	}
2738 }
2739 
2740 static void tcp_try_to_open(struct sock *sk, int flag)
2741 {
2742 	struct tcp_sock *tp = tcp_sk(sk);
2743 
2744 	tcp_verify_left_out(tp);
2745 
2746 	if (!tcp_any_retrans_done(sk))
2747 		tp->retrans_stamp = 0;
2748 
2749 	if (flag & FLAG_ECE)
2750 		tcp_enter_cwr(sk);
2751 
2752 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2753 		tcp_try_keep_open(sk);
2754 	}
2755 }
2756 
2757 static void tcp_mtup_probe_failed(struct sock *sk)
2758 {
2759 	struct inet_connection_sock *icsk = inet_csk(sk);
2760 
2761 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2762 	icsk->icsk_mtup.probe_size = 0;
2763 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2764 }
2765 
2766 static void tcp_mtup_probe_success(struct sock *sk)
2767 {
2768 	struct tcp_sock *tp = tcp_sk(sk);
2769 	struct inet_connection_sock *icsk = inet_csk(sk);
2770 	u64 val;
2771 
2772 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2773 
2774 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2775 	do_div(val, icsk->icsk_mtup.probe_size);
2776 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2777 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2778 
2779 	tp->snd_cwnd_cnt = 0;
2780 	tp->snd_cwnd_stamp = tcp_jiffies32;
2781 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2782 
2783 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2784 	icsk->icsk_mtup.probe_size = 0;
2785 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2786 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2787 }
2788 
2789 /* Do a simple retransmit without using the backoff mechanisms in
2790  * tcp_timer. This is used for path mtu discovery.
2791  * The socket is already locked here.
2792  */
2793 void tcp_simple_retransmit(struct sock *sk)
2794 {
2795 	const struct inet_connection_sock *icsk = inet_csk(sk);
2796 	struct tcp_sock *tp = tcp_sk(sk);
2797 	struct sk_buff *skb;
2798 	int mss;
2799 
2800 	/* A fastopen SYN request is stored as two separate packets within
2801 	 * the retransmit queue, this is done by tcp_send_syn_data().
2802 	 * As a result simply checking the MSS of the frames in the queue
2803 	 * will not work for the SYN packet.
2804 	 *
2805 	 * Us being here is an indication of a path MTU issue so we can
2806 	 * assume that the fastopen SYN was lost and just mark all the
2807 	 * frames in the retransmit queue as lost. We will use an MSS of
2808 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2809 	 */
2810 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2811 		mss = -1;
2812 	else
2813 		mss = tcp_current_mss(sk);
2814 
2815 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2816 		if (tcp_skb_seglen(skb) > mss)
2817 			tcp_mark_skb_lost(sk, skb);
2818 	}
2819 
2820 	tcp_clear_retrans_hints_partial(tp);
2821 
2822 	if (!tp->lost_out)
2823 		return;
2824 
2825 	if (tcp_is_reno(tp))
2826 		tcp_limit_reno_sacked(tp);
2827 
2828 	tcp_verify_left_out(tp);
2829 
2830 	/* Don't muck with the congestion window here.
2831 	 * Reason is that we do not increase amount of _data_
2832 	 * in network, but units changed and effective
2833 	 * cwnd/ssthresh really reduced now.
2834 	 */
2835 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2836 		tp->high_seq = tp->snd_nxt;
2837 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2838 		tp->prior_ssthresh = 0;
2839 		tp->undo_marker = 0;
2840 		tcp_set_ca_state(sk, TCP_CA_Loss);
2841 	}
2842 	tcp_xmit_retransmit_queue(sk);
2843 }
2844 EXPORT_SYMBOL(tcp_simple_retransmit);
2845 
2846 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2847 {
2848 	struct tcp_sock *tp = tcp_sk(sk);
2849 	int mib_idx;
2850 
2851 	if (tcp_is_reno(tp))
2852 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2853 	else
2854 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2855 
2856 	NET_INC_STATS(sock_net(sk), mib_idx);
2857 
2858 	tp->prior_ssthresh = 0;
2859 	tcp_init_undo(tp);
2860 
2861 	if (!tcp_in_cwnd_reduction(sk)) {
2862 		if (!ece_ack)
2863 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2864 		tcp_init_cwnd_reduction(sk);
2865 	}
2866 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2867 }
2868 
2869 static void tcp_update_rto_time(struct tcp_sock *tp)
2870 {
2871 	if (tp->rto_stamp) {
2872 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2873 		tp->rto_stamp = 0;
2874 	}
2875 }
2876 
2877 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2878  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2879  */
2880 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2881 			     int *rexmit)
2882 {
2883 	struct tcp_sock *tp = tcp_sk(sk);
2884 	bool recovered = !before(tp->snd_una, tp->high_seq);
2885 
2886 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2887 	    tcp_try_undo_loss(sk, false))
2888 		return;
2889 
2890 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2891 		/* Step 3.b. A timeout is spurious if not all data are
2892 		 * lost, i.e., never-retransmitted data are (s)acked.
2893 		 */
2894 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2895 		    tcp_try_undo_loss(sk, true))
2896 			return;
2897 
2898 		if (after(tp->snd_nxt, tp->high_seq)) {
2899 			if (flag & FLAG_DATA_SACKED || num_dupack)
2900 				tp->frto = 0; /* Step 3.a. loss was real */
2901 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2902 			tp->high_seq = tp->snd_nxt;
2903 			/* Step 2.b. Try send new data (but deferred until cwnd
2904 			 * is updated in tcp_ack()). Otherwise fall back to
2905 			 * the conventional recovery.
2906 			 */
2907 			if (!tcp_write_queue_empty(sk) &&
2908 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2909 				*rexmit = REXMIT_NEW;
2910 				return;
2911 			}
2912 			tp->frto = 0;
2913 		}
2914 	}
2915 
2916 	if (recovered) {
2917 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2918 		tcp_try_undo_recovery(sk);
2919 		return;
2920 	}
2921 	if (tcp_is_reno(tp)) {
2922 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2923 		 * delivered. Lower inflight to clock out (re)transmissions.
2924 		 */
2925 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2926 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2927 		else if (flag & FLAG_SND_UNA_ADVANCED)
2928 			tcp_reset_reno_sack(tp);
2929 	}
2930 	*rexmit = REXMIT_LOST;
2931 }
2932 
2933 static bool tcp_force_fast_retransmit(struct sock *sk)
2934 {
2935 	struct tcp_sock *tp = tcp_sk(sk);
2936 
2937 	return after(tcp_highest_sack_seq(tp),
2938 		     tp->snd_una + tp->reordering * tp->mss_cache);
2939 }
2940 
2941 /* Undo during fast recovery after partial ACK. */
2942 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2943 				 bool *do_lost)
2944 {
2945 	struct tcp_sock *tp = tcp_sk(sk);
2946 
2947 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2948 		/* Plain luck! Hole if filled with delayed
2949 		 * packet, rather than with a retransmit. Check reordering.
2950 		 */
2951 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2952 
2953 		/* We are getting evidence that the reordering degree is higher
2954 		 * than we realized. If there are no retransmits out then we
2955 		 * can undo. Otherwise we clock out new packets but do not
2956 		 * mark more packets lost or retransmit more.
2957 		 */
2958 		if (tp->retrans_out)
2959 			return true;
2960 
2961 		if (!tcp_any_retrans_done(sk))
2962 			tp->retrans_stamp = 0;
2963 
2964 		DBGUNDO(sk, "partial recovery");
2965 		tcp_undo_cwnd_reduction(sk, true);
2966 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2967 		tcp_try_keep_open(sk);
2968 	} else {
2969 		/* Partial ACK arrived. Force fast retransmit. */
2970 		*do_lost = tcp_force_fast_retransmit(sk);
2971 	}
2972 	return false;
2973 }
2974 
2975 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2976 {
2977 	struct tcp_sock *tp = tcp_sk(sk);
2978 
2979 	if (tcp_rtx_queue_empty(sk))
2980 		return;
2981 
2982 	if (unlikely(tcp_is_reno(tp))) {
2983 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2984 	} else if (tcp_is_rack(sk)) {
2985 		u32 prior_retrans = tp->retrans_out;
2986 
2987 		if (tcp_rack_mark_lost(sk))
2988 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2989 		if (prior_retrans > tp->retrans_out)
2990 			*ack_flag |= FLAG_LOST_RETRANS;
2991 	}
2992 }
2993 
2994 /* Process an event, which can update packets-in-flight not trivially.
2995  * Main goal of this function is to calculate new estimate for left_out,
2996  * taking into account both packets sitting in receiver's buffer and
2997  * packets lost by network.
2998  *
2999  * Besides that it updates the congestion state when packet loss or ECN
3000  * is detected. But it does not reduce the cwnd, it is done by the
3001  * congestion control later.
3002  *
3003  * It does _not_ decide what to send, it is made in function
3004  * tcp_xmit_retransmit_queue().
3005  */
3006 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3007 				  int num_dupack, int *ack_flag, int *rexmit)
3008 {
3009 	struct inet_connection_sock *icsk = inet_csk(sk);
3010 	struct tcp_sock *tp = tcp_sk(sk);
3011 	int fast_rexmit = 0, flag = *ack_flag;
3012 	bool ece_ack = flag & FLAG_ECE;
3013 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3014 				      tcp_force_fast_retransmit(sk));
3015 
3016 	if (!tp->packets_out && tp->sacked_out)
3017 		tp->sacked_out = 0;
3018 
3019 	/* Now state machine starts.
3020 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3021 	if (ece_ack)
3022 		tp->prior_ssthresh = 0;
3023 
3024 	/* B. In all the states check for reneging SACKs. */
3025 	if (tcp_check_sack_reneging(sk, ack_flag))
3026 		return;
3027 
3028 	/* C. Check consistency of the current state. */
3029 	tcp_verify_left_out(tp);
3030 
3031 	/* D. Check state exit conditions. State can be terminated
3032 	 *    when high_seq is ACKed. */
3033 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3034 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3035 		tp->retrans_stamp = 0;
3036 	} else if (!before(tp->snd_una, tp->high_seq)) {
3037 		switch (icsk->icsk_ca_state) {
3038 		case TCP_CA_CWR:
3039 			/* CWR is to be held something *above* high_seq
3040 			 * is ACKed for CWR bit to reach receiver. */
3041 			if (tp->snd_una != tp->high_seq) {
3042 				tcp_end_cwnd_reduction(sk);
3043 				tcp_set_ca_state(sk, TCP_CA_Open);
3044 			}
3045 			break;
3046 
3047 		case TCP_CA_Recovery:
3048 			if (tcp_is_reno(tp))
3049 				tcp_reset_reno_sack(tp);
3050 			if (tcp_try_undo_recovery(sk))
3051 				return;
3052 			tcp_end_cwnd_reduction(sk);
3053 			break;
3054 		}
3055 	}
3056 
3057 	/* E. Process state. */
3058 	switch (icsk->icsk_ca_state) {
3059 	case TCP_CA_Recovery:
3060 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3061 			if (tcp_is_reno(tp))
3062 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3063 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3064 			return;
3065 
3066 		if (tcp_try_undo_dsack(sk))
3067 			tcp_try_keep_open(sk);
3068 
3069 		tcp_identify_packet_loss(sk, ack_flag);
3070 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3071 			if (!tcp_time_to_recover(sk, flag))
3072 				return;
3073 			/* Undo reverts the recovery state. If loss is evident,
3074 			 * starts a new recovery (e.g. reordering then loss);
3075 			 */
3076 			tcp_enter_recovery(sk, ece_ack);
3077 		}
3078 		break;
3079 	case TCP_CA_Loss:
3080 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3081 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3082 			tcp_update_rto_time(tp);
3083 		tcp_identify_packet_loss(sk, ack_flag);
3084 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3085 		      (*ack_flag & FLAG_LOST_RETRANS)))
3086 			return;
3087 		/* Change state if cwnd is undone or retransmits are lost */
3088 		fallthrough;
3089 	default:
3090 		if (tcp_is_reno(tp)) {
3091 			if (flag & FLAG_SND_UNA_ADVANCED)
3092 				tcp_reset_reno_sack(tp);
3093 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3094 		}
3095 
3096 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3097 			tcp_try_undo_dsack(sk);
3098 
3099 		tcp_identify_packet_loss(sk, ack_flag);
3100 		if (!tcp_time_to_recover(sk, flag)) {
3101 			tcp_try_to_open(sk, flag);
3102 			return;
3103 		}
3104 
3105 		/* MTU probe failure: don't reduce cwnd */
3106 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3107 		    icsk->icsk_mtup.probe_size &&
3108 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3109 			tcp_mtup_probe_failed(sk);
3110 			/* Restores the reduction we did in tcp_mtup_probe() */
3111 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3112 			tcp_simple_retransmit(sk);
3113 			return;
3114 		}
3115 
3116 		/* Otherwise enter Recovery state */
3117 		tcp_enter_recovery(sk, ece_ack);
3118 		fast_rexmit = 1;
3119 	}
3120 
3121 	if (!tcp_is_rack(sk) && do_lost)
3122 		tcp_update_scoreboard(sk, fast_rexmit);
3123 	*rexmit = REXMIT_LOST;
3124 }
3125 
3126 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3127 {
3128 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3129 	struct tcp_sock *tp = tcp_sk(sk);
3130 
3131 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3132 		/* If the remote keeps returning delayed ACKs, eventually
3133 		 * the min filter would pick it up and overestimate the
3134 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3135 		 */
3136 		return;
3137 	}
3138 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3139 			   rtt_us ? : jiffies_to_usecs(1));
3140 }
3141 
3142 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3143 			       long seq_rtt_us, long sack_rtt_us,
3144 			       long ca_rtt_us, struct rate_sample *rs)
3145 {
3146 	const struct tcp_sock *tp = tcp_sk(sk);
3147 
3148 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3149 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3150 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3151 	 * is acked (RFC6298).
3152 	 */
3153 	if (seq_rtt_us < 0)
3154 		seq_rtt_us = sack_rtt_us;
3155 
3156 	/* RTTM Rule: A TSecr value received in a segment is used to
3157 	 * update the averaged RTT measurement only if the segment
3158 	 * acknowledges some new data, i.e., only if it advances the
3159 	 * left edge of the send window.
3160 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3161 	 */
3162 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3163 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3164 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3165 
3166 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3167 	if (seq_rtt_us < 0)
3168 		return false;
3169 
3170 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3171 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3172 	 * values will be skipped with the seq_rtt_us < 0 check above.
3173 	 */
3174 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3175 	tcp_rtt_estimator(sk, seq_rtt_us);
3176 	tcp_set_rto(sk);
3177 
3178 	/* RFC6298: only reset backoff on valid RTT measurement. */
3179 	inet_csk(sk)->icsk_backoff = 0;
3180 	return true;
3181 }
3182 
3183 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3184 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3185 {
3186 	struct rate_sample rs;
3187 	long rtt_us = -1L;
3188 
3189 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3190 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3191 
3192 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3193 }
3194 
3195 
3196 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3197 {
3198 	const struct inet_connection_sock *icsk = inet_csk(sk);
3199 
3200 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3201 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3202 }
3203 
3204 /* Restart timer after forward progress on connection.
3205  * RFC2988 recommends to restart timer to now+rto.
3206  */
3207 void tcp_rearm_rto(struct sock *sk)
3208 {
3209 	const struct inet_connection_sock *icsk = inet_csk(sk);
3210 	struct tcp_sock *tp = tcp_sk(sk);
3211 
3212 	/* If the retrans timer is currently being used by Fast Open
3213 	 * for SYN-ACK retrans purpose, stay put.
3214 	 */
3215 	if (rcu_access_pointer(tp->fastopen_rsk))
3216 		return;
3217 
3218 	if (!tp->packets_out) {
3219 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3220 	} else {
3221 		u32 rto = inet_csk(sk)->icsk_rto;
3222 		/* Offset the time elapsed after installing regular RTO */
3223 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3224 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3225 			s64 delta_us = tcp_rto_delta_us(sk);
3226 			/* delta_us may not be positive if the socket is locked
3227 			 * when the retrans timer fires and is rescheduled.
3228 			 */
3229 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3230 		}
3231 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3232 				     TCP_RTO_MAX);
3233 	}
3234 }
3235 
3236 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3237 static void tcp_set_xmit_timer(struct sock *sk)
3238 {
3239 	if (!tcp_schedule_loss_probe(sk, true))
3240 		tcp_rearm_rto(sk);
3241 }
3242 
3243 /* If we get here, the whole TSO packet has not been acked. */
3244 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3245 {
3246 	struct tcp_sock *tp = tcp_sk(sk);
3247 	u32 packets_acked;
3248 
3249 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3250 
3251 	packets_acked = tcp_skb_pcount(skb);
3252 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3253 		return 0;
3254 	packets_acked -= tcp_skb_pcount(skb);
3255 
3256 	if (packets_acked) {
3257 		BUG_ON(tcp_skb_pcount(skb) == 0);
3258 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3259 	}
3260 
3261 	return packets_acked;
3262 }
3263 
3264 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3265 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3266 {
3267 	const struct skb_shared_info *shinfo;
3268 
3269 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3270 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3271 		return;
3272 
3273 	shinfo = skb_shinfo(skb);
3274 	if (!before(shinfo->tskey, prior_snd_una) &&
3275 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3276 		tcp_skb_tsorted_save(skb) {
3277 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3278 		} tcp_skb_tsorted_restore(skb);
3279 	}
3280 }
3281 
3282 /* Remove acknowledged frames from the retransmission queue. If our packet
3283  * is before the ack sequence we can discard it as it's confirmed to have
3284  * arrived at the other end.
3285  */
3286 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3287 			       u32 prior_fack, u32 prior_snd_una,
3288 			       struct tcp_sacktag_state *sack, bool ece_ack)
3289 {
3290 	const struct inet_connection_sock *icsk = inet_csk(sk);
3291 	u64 first_ackt, last_ackt;
3292 	struct tcp_sock *tp = tcp_sk(sk);
3293 	u32 prior_sacked = tp->sacked_out;
3294 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3295 	struct sk_buff *skb, *next;
3296 	bool fully_acked = true;
3297 	long sack_rtt_us = -1L;
3298 	long seq_rtt_us = -1L;
3299 	long ca_rtt_us = -1L;
3300 	u32 pkts_acked = 0;
3301 	bool rtt_update;
3302 	int flag = 0;
3303 
3304 	first_ackt = 0;
3305 
3306 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3307 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3308 		const u32 start_seq = scb->seq;
3309 		u8 sacked = scb->sacked;
3310 		u32 acked_pcount;
3311 
3312 		/* Determine how many packets and what bytes were acked, tso and else */
3313 		if (after(scb->end_seq, tp->snd_una)) {
3314 			if (tcp_skb_pcount(skb) == 1 ||
3315 			    !after(tp->snd_una, scb->seq))
3316 				break;
3317 
3318 			acked_pcount = tcp_tso_acked(sk, skb);
3319 			if (!acked_pcount)
3320 				break;
3321 			fully_acked = false;
3322 		} else {
3323 			acked_pcount = tcp_skb_pcount(skb);
3324 		}
3325 
3326 		if (unlikely(sacked & TCPCB_RETRANS)) {
3327 			if (sacked & TCPCB_SACKED_RETRANS)
3328 				tp->retrans_out -= acked_pcount;
3329 			flag |= FLAG_RETRANS_DATA_ACKED;
3330 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3331 			last_ackt = tcp_skb_timestamp_us(skb);
3332 			WARN_ON_ONCE(last_ackt == 0);
3333 			if (!first_ackt)
3334 				first_ackt = last_ackt;
3335 
3336 			if (before(start_seq, reord))
3337 				reord = start_seq;
3338 			if (!after(scb->end_seq, tp->high_seq))
3339 				flag |= FLAG_ORIG_SACK_ACKED;
3340 		}
3341 
3342 		if (sacked & TCPCB_SACKED_ACKED) {
3343 			tp->sacked_out -= acked_pcount;
3344 		} else if (tcp_is_sack(tp)) {
3345 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3346 			if (!tcp_skb_spurious_retrans(tp, skb))
3347 				tcp_rack_advance(tp, sacked, scb->end_seq,
3348 						 tcp_skb_timestamp_us(skb));
3349 		}
3350 		if (sacked & TCPCB_LOST)
3351 			tp->lost_out -= acked_pcount;
3352 
3353 		tp->packets_out -= acked_pcount;
3354 		pkts_acked += acked_pcount;
3355 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3356 
3357 		/* Initial outgoing SYN's get put onto the write_queue
3358 		 * just like anything else we transmit.  It is not
3359 		 * true data, and if we misinform our callers that
3360 		 * this ACK acks real data, we will erroneously exit
3361 		 * connection startup slow start one packet too
3362 		 * quickly.  This is severely frowned upon behavior.
3363 		 */
3364 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3365 			flag |= FLAG_DATA_ACKED;
3366 		} else {
3367 			flag |= FLAG_SYN_ACKED;
3368 			tp->retrans_stamp = 0;
3369 		}
3370 
3371 		if (!fully_acked)
3372 			break;
3373 
3374 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3375 
3376 		next = skb_rb_next(skb);
3377 		if (unlikely(skb == tp->retransmit_skb_hint))
3378 			tp->retransmit_skb_hint = NULL;
3379 		if (unlikely(skb == tp->lost_skb_hint))
3380 			tp->lost_skb_hint = NULL;
3381 		tcp_highest_sack_replace(sk, skb, next);
3382 		tcp_rtx_queue_unlink_and_free(skb, sk);
3383 	}
3384 
3385 	if (!skb)
3386 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3387 
3388 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3389 		tp->snd_up = tp->snd_una;
3390 
3391 	if (skb) {
3392 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3393 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3394 			flag |= FLAG_SACK_RENEGING;
3395 	}
3396 
3397 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3398 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3399 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3400 
3401 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3402 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3403 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3404 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3405 			/* Conservatively mark a delayed ACK. It's typically
3406 			 * from a lone runt packet over the round trip to
3407 			 * a receiver w/o out-of-order or CE events.
3408 			 */
3409 			flag |= FLAG_ACK_MAYBE_DELAYED;
3410 		}
3411 	}
3412 	if (sack->first_sackt) {
3413 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3414 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3415 	}
3416 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3417 					ca_rtt_us, sack->rate);
3418 
3419 	if (flag & FLAG_ACKED) {
3420 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3421 		if (unlikely(icsk->icsk_mtup.probe_size &&
3422 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3423 			tcp_mtup_probe_success(sk);
3424 		}
3425 
3426 		if (tcp_is_reno(tp)) {
3427 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3428 
3429 			/* If any of the cumulatively ACKed segments was
3430 			 * retransmitted, non-SACK case cannot confirm that
3431 			 * progress was due to original transmission due to
3432 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3433 			 * the packets may have been never retransmitted.
3434 			 */
3435 			if (flag & FLAG_RETRANS_DATA_ACKED)
3436 				flag &= ~FLAG_ORIG_SACK_ACKED;
3437 		} else {
3438 			int delta;
3439 
3440 			/* Non-retransmitted hole got filled? That's reordering */
3441 			if (before(reord, prior_fack))
3442 				tcp_check_sack_reordering(sk, reord, 0);
3443 
3444 			delta = prior_sacked - tp->sacked_out;
3445 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3446 		}
3447 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3448 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3449 						    tcp_skb_timestamp_us(skb))) {
3450 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3451 		 * after when the head was last (re)transmitted. Otherwise the
3452 		 * timeout may continue to extend in loss recovery.
3453 		 */
3454 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3455 	}
3456 
3457 	if (icsk->icsk_ca_ops->pkts_acked) {
3458 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3459 					     .rtt_us = sack->rate->rtt_us };
3460 
3461 		sample.in_flight = tp->mss_cache *
3462 			(tp->delivered - sack->rate->prior_delivered);
3463 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3464 	}
3465 
3466 #if FASTRETRANS_DEBUG > 0
3467 	WARN_ON((int)tp->sacked_out < 0);
3468 	WARN_ON((int)tp->lost_out < 0);
3469 	WARN_ON((int)tp->retrans_out < 0);
3470 	if (!tp->packets_out && tcp_is_sack(tp)) {
3471 		icsk = inet_csk(sk);
3472 		if (tp->lost_out) {
3473 			pr_debug("Leak l=%u %d\n",
3474 				 tp->lost_out, icsk->icsk_ca_state);
3475 			tp->lost_out = 0;
3476 		}
3477 		if (tp->sacked_out) {
3478 			pr_debug("Leak s=%u %d\n",
3479 				 tp->sacked_out, icsk->icsk_ca_state);
3480 			tp->sacked_out = 0;
3481 		}
3482 		if (tp->retrans_out) {
3483 			pr_debug("Leak r=%u %d\n",
3484 				 tp->retrans_out, icsk->icsk_ca_state);
3485 			tp->retrans_out = 0;
3486 		}
3487 	}
3488 #endif
3489 	return flag;
3490 }
3491 
3492 static void tcp_ack_probe(struct sock *sk)
3493 {
3494 	struct inet_connection_sock *icsk = inet_csk(sk);
3495 	struct sk_buff *head = tcp_send_head(sk);
3496 	const struct tcp_sock *tp = tcp_sk(sk);
3497 
3498 	/* Was it a usable window open? */
3499 	if (!head)
3500 		return;
3501 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3502 		icsk->icsk_backoff = 0;
3503 		icsk->icsk_probes_tstamp = 0;
3504 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3505 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3506 		 * This function is not for random using!
3507 		 */
3508 	} else {
3509 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3510 
3511 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3512 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3513 	}
3514 }
3515 
3516 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3517 {
3518 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3519 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3520 }
3521 
3522 /* Decide wheather to run the increase function of congestion control. */
3523 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3524 {
3525 	/* If reordering is high then always grow cwnd whenever data is
3526 	 * delivered regardless of its ordering. Otherwise stay conservative
3527 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3528 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3529 	 * cwnd in tcp_fastretrans_alert() based on more states.
3530 	 */
3531 	if (tcp_sk(sk)->reordering >
3532 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3533 		return flag & FLAG_FORWARD_PROGRESS;
3534 
3535 	return flag & FLAG_DATA_ACKED;
3536 }
3537 
3538 /* The "ultimate" congestion control function that aims to replace the rigid
3539  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3540  * It's called toward the end of processing an ACK with precise rate
3541  * information. All transmission or retransmission are delayed afterwards.
3542  */
3543 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3544 			     int flag, const struct rate_sample *rs)
3545 {
3546 	const struct inet_connection_sock *icsk = inet_csk(sk);
3547 
3548 	if (icsk->icsk_ca_ops->cong_control) {
3549 		icsk->icsk_ca_ops->cong_control(sk, rs);
3550 		return;
3551 	}
3552 
3553 	if (tcp_in_cwnd_reduction(sk)) {
3554 		/* Reduce cwnd if state mandates */
3555 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3556 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3557 		/* Advance cwnd if state allows */
3558 		tcp_cong_avoid(sk, ack, acked_sacked);
3559 	}
3560 	tcp_update_pacing_rate(sk);
3561 }
3562 
3563 /* Check that window update is acceptable.
3564  * The function assumes that snd_una<=ack<=snd_next.
3565  */
3566 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3567 					const u32 ack, const u32 ack_seq,
3568 					const u32 nwin)
3569 {
3570 	return	after(ack, tp->snd_una) ||
3571 		after(ack_seq, tp->snd_wl1) ||
3572 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3573 }
3574 
3575 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3576 {
3577 #ifdef CONFIG_TCP_AO
3578 	struct tcp_ao_info *ao;
3579 
3580 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3581 		return;
3582 
3583 	ao = rcu_dereference_protected(tp->ao_info,
3584 				       lockdep_sock_is_held((struct sock *)tp));
3585 	if (ao && ack < tp->snd_una)
3586 		ao->snd_sne++;
3587 #endif
3588 }
3589 
3590 /* If we update tp->snd_una, also update tp->bytes_acked */
3591 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3592 {
3593 	u32 delta = ack - tp->snd_una;
3594 
3595 	sock_owned_by_me((struct sock *)tp);
3596 	tp->bytes_acked += delta;
3597 	tcp_snd_sne_update(tp, ack);
3598 	tp->snd_una = ack;
3599 }
3600 
3601 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3602 {
3603 #ifdef CONFIG_TCP_AO
3604 	struct tcp_ao_info *ao;
3605 
3606 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3607 		return;
3608 
3609 	ao = rcu_dereference_protected(tp->ao_info,
3610 				       lockdep_sock_is_held((struct sock *)tp));
3611 	if (ao && seq < tp->rcv_nxt)
3612 		ao->rcv_sne++;
3613 #endif
3614 }
3615 
3616 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3617 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3618 {
3619 	u32 delta = seq - tp->rcv_nxt;
3620 
3621 	sock_owned_by_me((struct sock *)tp);
3622 	tp->bytes_received += delta;
3623 	tcp_rcv_sne_update(tp, seq);
3624 	WRITE_ONCE(tp->rcv_nxt, seq);
3625 }
3626 
3627 /* Update our send window.
3628  *
3629  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3630  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3631  */
3632 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3633 				 u32 ack_seq)
3634 {
3635 	struct tcp_sock *tp = tcp_sk(sk);
3636 	int flag = 0;
3637 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3638 
3639 	if (likely(!tcp_hdr(skb)->syn))
3640 		nwin <<= tp->rx_opt.snd_wscale;
3641 
3642 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3643 		flag |= FLAG_WIN_UPDATE;
3644 		tcp_update_wl(tp, ack_seq);
3645 
3646 		if (tp->snd_wnd != nwin) {
3647 			tp->snd_wnd = nwin;
3648 
3649 			/* Note, it is the only place, where
3650 			 * fast path is recovered for sending TCP.
3651 			 */
3652 			tp->pred_flags = 0;
3653 			tcp_fast_path_check(sk);
3654 
3655 			if (!tcp_write_queue_empty(sk))
3656 				tcp_slow_start_after_idle_check(sk);
3657 
3658 			if (nwin > tp->max_window) {
3659 				tp->max_window = nwin;
3660 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3661 			}
3662 		}
3663 	}
3664 
3665 	tcp_snd_una_update(tp, ack);
3666 
3667 	return flag;
3668 }
3669 
3670 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3671 				   u32 *last_oow_ack_time)
3672 {
3673 	/* Paired with the WRITE_ONCE() in this function. */
3674 	u32 val = READ_ONCE(*last_oow_ack_time);
3675 
3676 	if (val) {
3677 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3678 
3679 		if (0 <= elapsed &&
3680 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3681 			NET_INC_STATS(net, mib_idx);
3682 			return true;	/* rate-limited: don't send yet! */
3683 		}
3684 	}
3685 
3686 	/* Paired with the prior READ_ONCE() and with itself,
3687 	 * as we might be lockless.
3688 	 */
3689 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3690 
3691 	return false;	/* not rate-limited: go ahead, send dupack now! */
3692 }
3693 
3694 /* Return true if we're currently rate-limiting out-of-window ACKs and
3695  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3696  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3697  * attacks that send repeated SYNs or ACKs for the same connection. To
3698  * do this, we do not send a duplicate SYNACK or ACK if the remote
3699  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3700  */
3701 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3702 			  int mib_idx, u32 *last_oow_ack_time)
3703 {
3704 	/* Data packets without SYNs are not likely part of an ACK loop. */
3705 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3706 	    !tcp_hdr(skb)->syn)
3707 		return false;
3708 
3709 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3710 }
3711 
3712 /* RFC 5961 7 [ACK Throttling] */
3713 static void tcp_send_challenge_ack(struct sock *sk)
3714 {
3715 	struct tcp_sock *tp = tcp_sk(sk);
3716 	struct net *net = sock_net(sk);
3717 	u32 count, now, ack_limit;
3718 
3719 	/* First check our per-socket dupack rate limit. */
3720 	if (__tcp_oow_rate_limited(net,
3721 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3722 				   &tp->last_oow_ack_time))
3723 		return;
3724 
3725 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3726 	if (ack_limit == INT_MAX)
3727 		goto send_ack;
3728 
3729 	/* Then check host-wide RFC 5961 rate limit. */
3730 	now = jiffies / HZ;
3731 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3732 		u32 half = (ack_limit + 1) >> 1;
3733 
3734 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3735 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3736 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3737 	}
3738 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3739 	if (count > 0) {
3740 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3741 send_ack:
3742 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3743 		tcp_send_ack(sk);
3744 	}
3745 }
3746 
3747 static void tcp_store_ts_recent(struct tcp_sock *tp)
3748 {
3749 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3750 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3751 }
3752 
3753 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3754 {
3755 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3756 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3757 		 * extra check below makes sure this can only happen
3758 		 * for pure ACK frames.  -DaveM
3759 		 *
3760 		 * Not only, also it occurs for expired timestamps.
3761 		 */
3762 
3763 		if (tcp_paws_check(&tp->rx_opt, 0))
3764 			tcp_store_ts_recent(tp);
3765 	}
3766 }
3767 
3768 /* This routine deals with acks during a TLP episode and ends an episode by
3769  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3770  */
3771 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3772 {
3773 	struct tcp_sock *tp = tcp_sk(sk);
3774 
3775 	if (before(ack, tp->tlp_high_seq))
3776 		return;
3777 
3778 	if (!tp->tlp_retrans) {
3779 		/* TLP of new data has been acknowledged */
3780 		tp->tlp_high_seq = 0;
3781 	} else if (flag & FLAG_DSACK_TLP) {
3782 		/* This DSACK means original and TLP probe arrived; no loss */
3783 		tp->tlp_high_seq = 0;
3784 	} else if (after(ack, tp->tlp_high_seq)) {
3785 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3786 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3787 		 */
3788 		tcp_init_cwnd_reduction(sk);
3789 		tcp_set_ca_state(sk, TCP_CA_CWR);
3790 		tcp_end_cwnd_reduction(sk);
3791 		tcp_try_keep_open(sk);
3792 		NET_INC_STATS(sock_net(sk),
3793 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3794 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3795 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3796 		/* Pure dupack: original and TLP probe arrived; no loss */
3797 		tp->tlp_high_seq = 0;
3798 	}
3799 }
3800 
3801 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3802 {
3803 	const struct inet_connection_sock *icsk = inet_csk(sk);
3804 
3805 	if (icsk->icsk_ca_ops->in_ack_event)
3806 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3807 }
3808 
3809 /* Congestion control has updated the cwnd already. So if we're in
3810  * loss recovery then now we do any new sends (for FRTO) or
3811  * retransmits (for CA_Loss or CA_recovery) that make sense.
3812  */
3813 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3814 {
3815 	struct tcp_sock *tp = tcp_sk(sk);
3816 
3817 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3818 		return;
3819 
3820 	if (unlikely(rexmit == REXMIT_NEW)) {
3821 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3822 					  TCP_NAGLE_OFF);
3823 		if (after(tp->snd_nxt, tp->high_seq))
3824 			return;
3825 		tp->frto = 0;
3826 	}
3827 	tcp_xmit_retransmit_queue(sk);
3828 }
3829 
3830 /* Returns the number of packets newly acked or sacked by the current ACK */
3831 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3832 {
3833 	const struct net *net = sock_net(sk);
3834 	struct tcp_sock *tp = tcp_sk(sk);
3835 	u32 delivered;
3836 
3837 	delivered = tp->delivered - prior_delivered;
3838 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3839 	if (flag & FLAG_ECE)
3840 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3841 
3842 	return delivered;
3843 }
3844 
3845 /* This routine deals with incoming acks, but not outgoing ones. */
3846 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3847 {
3848 	struct inet_connection_sock *icsk = inet_csk(sk);
3849 	struct tcp_sock *tp = tcp_sk(sk);
3850 	struct tcp_sacktag_state sack_state;
3851 	struct rate_sample rs = { .prior_delivered = 0 };
3852 	u32 prior_snd_una = tp->snd_una;
3853 	bool is_sack_reneg = tp->is_sack_reneg;
3854 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3855 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3856 	int num_dupack = 0;
3857 	int prior_packets = tp->packets_out;
3858 	u32 delivered = tp->delivered;
3859 	u32 lost = tp->lost;
3860 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3861 	u32 prior_fack;
3862 
3863 	sack_state.first_sackt = 0;
3864 	sack_state.rate = &rs;
3865 	sack_state.sack_delivered = 0;
3866 
3867 	/* We very likely will need to access rtx queue. */
3868 	prefetch(sk->tcp_rtx_queue.rb_node);
3869 
3870 	/* If the ack is older than previous acks
3871 	 * then we can probably ignore it.
3872 	 */
3873 	if (before(ack, prior_snd_una)) {
3874 		u32 max_window;
3875 
3876 		/* do not accept ACK for bytes we never sent. */
3877 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3878 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3879 		if (before(ack, prior_snd_una - max_window)) {
3880 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3881 				tcp_send_challenge_ack(sk);
3882 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3883 		}
3884 		goto old_ack;
3885 	}
3886 
3887 	/* If the ack includes data we haven't sent yet, discard
3888 	 * this segment (RFC793 Section 3.9).
3889 	 */
3890 	if (after(ack, tp->snd_nxt))
3891 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3892 
3893 	if (after(ack, prior_snd_una)) {
3894 		flag |= FLAG_SND_UNA_ADVANCED;
3895 		icsk->icsk_retransmits = 0;
3896 
3897 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3898 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3899 			if (icsk->icsk_clean_acked)
3900 				icsk->icsk_clean_acked(sk, ack);
3901 #endif
3902 	}
3903 
3904 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3905 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3906 
3907 	/* ts_recent update must be made after we are sure that the packet
3908 	 * is in window.
3909 	 */
3910 	if (flag & FLAG_UPDATE_TS_RECENT)
3911 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3912 
3913 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3914 	    FLAG_SND_UNA_ADVANCED) {
3915 		/* Window is constant, pure forward advance.
3916 		 * No more checks are required.
3917 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3918 		 */
3919 		tcp_update_wl(tp, ack_seq);
3920 		tcp_snd_una_update(tp, ack);
3921 		flag |= FLAG_WIN_UPDATE;
3922 
3923 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3924 
3925 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3926 	} else {
3927 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3928 
3929 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3930 			flag |= FLAG_DATA;
3931 		else
3932 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3933 
3934 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3935 
3936 		if (TCP_SKB_CB(skb)->sacked)
3937 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3938 							&sack_state);
3939 
3940 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3941 			flag |= FLAG_ECE;
3942 			ack_ev_flags |= CA_ACK_ECE;
3943 		}
3944 
3945 		if (sack_state.sack_delivered)
3946 			tcp_count_delivered(tp, sack_state.sack_delivered,
3947 					    flag & FLAG_ECE);
3948 
3949 		if (flag & FLAG_WIN_UPDATE)
3950 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3951 
3952 		tcp_in_ack_event(sk, ack_ev_flags);
3953 	}
3954 
3955 	/* This is a deviation from RFC3168 since it states that:
3956 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3957 	 * the congestion window, it SHOULD set the CWR bit only on the first
3958 	 * new data packet that it transmits."
3959 	 * We accept CWR on pure ACKs to be more robust
3960 	 * with widely-deployed TCP implementations that do this.
3961 	 */
3962 	tcp_ecn_accept_cwr(sk, skb);
3963 
3964 	/* We passed data and got it acked, remove any soft error
3965 	 * log. Something worked...
3966 	 */
3967 	WRITE_ONCE(sk->sk_err_soft, 0);
3968 	icsk->icsk_probes_out = 0;
3969 	tp->rcv_tstamp = tcp_jiffies32;
3970 	if (!prior_packets)
3971 		goto no_queue;
3972 
3973 	/* See if we can take anything off of the retransmit queue. */
3974 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3975 				    &sack_state, flag & FLAG_ECE);
3976 
3977 	tcp_rack_update_reo_wnd(sk, &rs);
3978 
3979 	if (tp->tlp_high_seq)
3980 		tcp_process_tlp_ack(sk, ack, flag);
3981 
3982 	if (tcp_ack_is_dubious(sk, flag)) {
3983 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3984 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3985 			num_dupack = 1;
3986 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3987 			if (!(flag & FLAG_DATA))
3988 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3989 		}
3990 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3991 				      &rexmit);
3992 	}
3993 
3994 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3995 	if (flag & FLAG_SET_XMIT_TIMER)
3996 		tcp_set_xmit_timer(sk);
3997 
3998 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3999 		sk_dst_confirm(sk);
4000 
4001 	delivered = tcp_newly_delivered(sk, delivered, flag);
4002 	lost = tp->lost - lost;			/* freshly marked lost */
4003 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4004 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4005 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4006 	tcp_xmit_recovery(sk, rexmit);
4007 	return 1;
4008 
4009 no_queue:
4010 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4011 	if (flag & FLAG_DSACKING_ACK) {
4012 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4013 				      &rexmit);
4014 		tcp_newly_delivered(sk, delivered, flag);
4015 	}
4016 	/* If this ack opens up a zero window, clear backoff.  It was
4017 	 * being used to time the probes, and is probably far higher than
4018 	 * it needs to be for normal retransmission.
4019 	 */
4020 	tcp_ack_probe(sk);
4021 
4022 	if (tp->tlp_high_seq)
4023 		tcp_process_tlp_ack(sk, ack, flag);
4024 	return 1;
4025 
4026 old_ack:
4027 	/* If data was SACKed, tag it and see if we should send more data.
4028 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4029 	 */
4030 	if (TCP_SKB_CB(skb)->sacked) {
4031 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4032 						&sack_state);
4033 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4034 				      &rexmit);
4035 		tcp_newly_delivered(sk, delivered, flag);
4036 		tcp_xmit_recovery(sk, rexmit);
4037 	}
4038 
4039 	return 0;
4040 }
4041 
4042 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4043 				      bool syn, struct tcp_fastopen_cookie *foc,
4044 				      bool exp_opt)
4045 {
4046 	/* Valid only in SYN or SYN-ACK with an even length.  */
4047 	if (!foc || !syn || len < 0 || (len & 1))
4048 		return;
4049 
4050 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4051 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4052 		memcpy(foc->val, cookie, len);
4053 	else if (len != 0)
4054 		len = -1;
4055 	foc->len = len;
4056 	foc->exp = exp_opt;
4057 }
4058 
4059 static bool smc_parse_options(const struct tcphdr *th,
4060 			      struct tcp_options_received *opt_rx,
4061 			      const unsigned char *ptr,
4062 			      int opsize)
4063 {
4064 #if IS_ENABLED(CONFIG_SMC)
4065 	if (static_branch_unlikely(&tcp_have_smc)) {
4066 		if (th->syn && !(opsize & 1) &&
4067 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4068 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4069 			opt_rx->smc_ok = 1;
4070 			return true;
4071 		}
4072 	}
4073 #endif
4074 	return false;
4075 }
4076 
4077 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4078  * value on success.
4079  */
4080 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4081 {
4082 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4083 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4084 	u16 mss = 0;
4085 
4086 	while (length > 0) {
4087 		int opcode = *ptr++;
4088 		int opsize;
4089 
4090 		switch (opcode) {
4091 		case TCPOPT_EOL:
4092 			return mss;
4093 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4094 			length--;
4095 			continue;
4096 		default:
4097 			if (length < 2)
4098 				return mss;
4099 			opsize = *ptr++;
4100 			if (opsize < 2) /* "silly options" */
4101 				return mss;
4102 			if (opsize > length)
4103 				return mss;	/* fail on partial options */
4104 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4105 				u16 in_mss = get_unaligned_be16(ptr);
4106 
4107 				if (in_mss) {
4108 					if (user_mss && user_mss < in_mss)
4109 						in_mss = user_mss;
4110 					mss = in_mss;
4111 				}
4112 			}
4113 			ptr += opsize - 2;
4114 			length -= opsize;
4115 		}
4116 	}
4117 	return mss;
4118 }
4119 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4120 
4121 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4122  * But, this can also be called on packets in the established flow when
4123  * the fast version below fails.
4124  */
4125 void tcp_parse_options(const struct net *net,
4126 		       const struct sk_buff *skb,
4127 		       struct tcp_options_received *opt_rx, int estab,
4128 		       struct tcp_fastopen_cookie *foc)
4129 {
4130 	const unsigned char *ptr;
4131 	const struct tcphdr *th = tcp_hdr(skb);
4132 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4133 
4134 	ptr = (const unsigned char *)(th + 1);
4135 	opt_rx->saw_tstamp = 0;
4136 	opt_rx->saw_unknown = 0;
4137 
4138 	while (length > 0) {
4139 		int opcode = *ptr++;
4140 		int opsize;
4141 
4142 		switch (opcode) {
4143 		case TCPOPT_EOL:
4144 			return;
4145 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4146 			length--;
4147 			continue;
4148 		default:
4149 			if (length < 2)
4150 				return;
4151 			opsize = *ptr++;
4152 			if (opsize < 2) /* "silly options" */
4153 				return;
4154 			if (opsize > length)
4155 				return;	/* don't parse partial options */
4156 			switch (opcode) {
4157 			case TCPOPT_MSS:
4158 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4159 					u16 in_mss = get_unaligned_be16(ptr);
4160 					if (in_mss) {
4161 						if (opt_rx->user_mss &&
4162 						    opt_rx->user_mss < in_mss)
4163 							in_mss = opt_rx->user_mss;
4164 						opt_rx->mss_clamp = in_mss;
4165 					}
4166 				}
4167 				break;
4168 			case TCPOPT_WINDOW:
4169 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4170 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4171 					__u8 snd_wscale = *(__u8 *)ptr;
4172 					opt_rx->wscale_ok = 1;
4173 					if (snd_wscale > TCP_MAX_WSCALE) {
4174 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4175 								     __func__,
4176 								     snd_wscale,
4177 								     TCP_MAX_WSCALE);
4178 						snd_wscale = TCP_MAX_WSCALE;
4179 					}
4180 					opt_rx->snd_wscale = snd_wscale;
4181 				}
4182 				break;
4183 			case TCPOPT_TIMESTAMP:
4184 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4185 				    ((estab && opt_rx->tstamp_ok) ||
4186 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4187 					opt_rx->saw_tstamp = 1;
4188 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4189 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4190 				}
4191 				break;
4192 			case TCPOPT_SACK_PERM:
4193 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4194 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4195 					opt_rx->sack_ok = TCP_SACK_SEEN;
4196 					tcp_sack_reset(opt_rx);
4197 				}
4198 				break;
4199 
4200 			case TCPOPT_SACK:
4201 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4202 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4203 				   opt_rx->sack_ok) {
4204 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4205 				}
4206 				break;
4207 #ifdef CONFIG_TCP_MD5SIG
4208 			case TCPOPT_MD5SIG:
4209 				/* The MD5 Hash has already been
4210 				 * checked (see tcp_v{4,6}_rcv()).
4211 				 */
4212 				break;
4213 #endif
4214 			case TCPOPT_FASTOPEN:
4215 				tcp_parse_fastopen_option(
4216 					opsize - TCPOLEN_FASTOPEN_BASE,
4217 					ptr, th->syn, foc, false);
4218 				break;
4219 
4220 			case TCPOPT_EXP:
4221 				/* Fast Open option shares code 254 using a
4222 				 * 16 bits magic number.
4223 				 */
4224 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4225 				    get_unaligned_be16(ptr) ==
4226 				    TCPOPT_FASTOPEN_MAGIC) {
4227 					tcp_parse_fastopen_option(opsize -
4228 						TCPOLEN_EXP_FASTOPEN_BASE,
4229 						ptr + 2, th->syn, foc, true);
4230 					break;
4231 				}
4232 
4233 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4234 					break;
4235 
4236 				opt_rx->saw_unknown = 1;
4237 				break;
4238 
4239 			default:
4240 				opt_rx->saw_unknown = 1;
4241 			}
4242 			ptr += opsize-2;
4243 			length -= opsize;
4244 		}
4245 	}
4246 }
4247 EXPORT_SYMBOL(tcp_parse_options);
4248 
4249 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4250 {
4251 	const __be32 *ptr = (const __be32 *)(th + 1);
4252 
4253 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4254 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4255 		tp->rx_opt.saw_tstamp = 1;
4256 		++ptr;
4257 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4258 		++ptr;
4259 		if (*ptr)
4260 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4261 		else
4262 			tp->rx_opt.rcv_tsecr = 0;
4263 		return true;
4264 	}
4265 	return false;
4266 }
4267 
4268 /* Fast parse options. This hopes to only see timestamps.
4269  * If it is wrong it falls back on tcp_parse_options().
4270  */
4271 static bool tcp_fast_parse_options(const struct net *net,
4272 				   const struct sk_buff *skb,
4273 				   const struct tcphdr *th, struct tcp_sock *tp)
4274 {
4275 	/* In the spirit of fast parsing, compare doff directly to constant
4276 	 * values.  Because equality is used, short doff can be ignored here.
4277 	 */
4278 	if (th->doff == (sizeof(*th) / 4)) {
4279 		tp->rx_opt.saw_tstamp = 0;
4280 		return false;
4281 	} else if (tp->rx_opt.tstamp_ok &&
4282 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4283 		if (tcp_parse_aligned_timestamp(tp, th))
4284 			return true;
4285 	}
4286 
4287 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4288 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4289 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4290 
4291 	return true;
4292 }
4293 
4294 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4295 /*
4296  * Parse Signature options
4297  */
4298 int tcp_do_parse_auth_options(const struct tcphdr *th,
4299 			      const u8 **md5_hash, const u8 **ao_hash)
4300 {
4301 	int length = (th->doff << 2) - sizeof(*th);
4302 	const u8 *ptr = (const u8 *)(th + 1);
4303 	unsigned int minlen = TCPOLEN_MD5SIG;
4304 
4305 	if (IS_ENABLED(CONFIG_TCP_AO))
4306 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4307 
4308 	*md5_hash = NULL;
4309 	*ao_hash = NULL;
4310 
4311 	/* If not enough data remaining, we can short cut */
4312 	while (length >= minlen) {
4313 		int opcode = *ptr++;
4314 		int opsize;
4315 
4316 		switch (opcode) {
4317 		case TCPOPT_EOL:
4318 			return 0;
4319 		case TCPOPT_NOP:
4320 			length--;
4321 			continue;
4322 		default:
4323 			opsize = *ptr++;
4324 			if (opsize < 2 || opsize > length)
4325 				return -EINVAL;
4326 			if (opcode == TCPOPT_MD5SIG) {
4327 				if (opsize != TCPOLEN_MD5SIG)
4328 					return -EINVAL;
4329 				if (unlikely(*md5_hash || *ao_hash))
4330 					return -EEXIST;
4331 				*md5_hash = ptr;
4332 			} else if (opcode == TCPOPT_AO) {
4333 				if (opsize <= sizeof(struct tcp_ao_hdr))
4334 					return -EINVAL;
4335 				if (unlikely(*md5_hash || *ao_hash))
4336 					return -EEXIST;
4337 				*ao_hash = ptr;
4338 			}
4339 		}
4340 		ptr += opsize - 2;
4341 		length -= opsize;
4342 	}
4343 	return 0;
4344 }
4345 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4346 #endif
4347 
4348 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4349  *
4350  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4351  * it can pass through stack. So, the following predicate verifies that
4352  * this segment is not used for anything but congestion avoidance or
4353  * fast retransmit. Moreover, we even are able to eliminate most of such
4354  * second order effects, if we apply some small "replay" window (~RTO)
4355  * to timestamp space.
4356  *
4357  * All these measures still do not guarantee that we reject wrapped ACKs
4358  * on networks with high bandwidth, when sequence space is recycled fastly,
4359  * but it guarantees that such events will be very rare and do not affect
4360  * connection seriously. This doesn't look nice, but alas, PAWS is really
4361  * buggy extension.
4362  *
4363  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4364  * states that events when retransmit arrives after original data are rare.
4365  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4366  * the biggest problem on large power networks even with minor reordering.
4367  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4368  * up to bandwidth of 18Gigabit/sec. 8) ]
4369  */
4370 
4371 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4372 {
4373 	const struct tcp_sock *tp = tcp_sk(sk);
4374 	const struct tcphdr *th = tcp_hdr(skb);
4375 	u32 seq = TCP_SKB_CB(skb)->seq;
4376 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4377 
4378 	return (/* 1. Pure ACK with correct sequence number. */
4379 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4380 
4381 		/* 2. ... and duplicate ACK. */
4382 		ack == tp->snd_una &&
4383 
4384 		/* 3. ... and does not update window. */
4385 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4386 
4387 		/* 4. ... and sits in replay window. */
4388 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4389 }
4390 
4391 static inline bool tcp_paws_discard(const struct sock *sk,
4392 				   const struct sk_buff *skb)
4393 {
4394 	const struct tcp_sock *tp = tcp_sk(sk);
4395 
4396 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4397 	       !tcp_disordered_ack(sk, skb);
4398 }
4399 
4400 /* Check segment sequence number for validity.
4401  *
4402  * Segment controls are considered valid, if the segment
4403  * fits to the window after truncation to the window. Acceptability
4404  * of data (and SYN, FIN, of course) is checked separately.
4405  * See tcp_data_queue(), for example.
4406  *
4407  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4408  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4409  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4410  * (borrowed from freebsd)
4411  */
4412 
4413 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4414 					 u32 seq, u32 end_seq)
4415 {
4416 	if (before(end_seq, tp->rcv_wup))
4417 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4418 
4419 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4420 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4421 
4422 	return SKB_NOT_DROPPED_YET;
4423 }
4424 
4425 /* When we get a reset we do this. */
4426 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4427 {
4428 	trace_tcp_receive_reset(sk);
4429 
4430 	/* mptcp can't tell us to ignore reset pkts,
4431 	 * so just ignore the return value of mptcp_incoming_options().
4432 	 */
4433 	if (sk_is_mptcp(sk))
4434 		mptcp_incoming_options(sk, skb);
4435 
4436 	/* We want the right error as BSD sees it (and indeed as we do). */
4437 	switch (sk->sk_state) {
4438 	case TCP_SYN_SENT:
4439 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
4440 		break;
4441 	case TCP_CLOSE_WAIT:
4442 		WRITE_ONCE(sk->sk_err, EPIPE);
4443 		break;
4444 	case TCP_CLOSE:
4445 		return;
4446 	default:
4447 		WRITE_ONCE(sk->sk_err, ECONNRESET);
4448 	}
4449 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4450 	smp_wmb();
4451 
4452 	tcp_write_queue_purge(sk);
4453 	tcp_done(sk);
4454 
4455 	if (!sock_flag(sk, SOCK_DEAD))
4456 		sk_error_report(sk);
4457 }
4458 
4459 /*
4460  * 	Process the FIN bit. This now behaves as it is supposed to work
4461  *	and the FIN takes effect when it is validly part of sequence
4462  *	space. Not before when we get holes.
4463  *
4464  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4465  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4466  *	TIME-WAIT)
4467  *
4468  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4469  *	close and we go into CLOSING (and later onto TIME-WAIT)
4470  *
4471  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4472  */
4473 void tcp_fin(struct sock *sk)
4474 {
4475 	struct tcp_sock *tp = tcp_sk(sk);
4476 
4477 	inet_csk_schedule_ack(sk);
4478 
4479 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4480 	sock_set_flag(sk, SOCK_DONE);
4481 
4482 	switch (sk->sk_state) {
4483 	case TCP_SYN_RECV:
4484 	case TCP_ESTABLISHED:
4485 		/* Move to CLOSE_WAIT */
4486 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4487 		inet_csk_enter_pingpong_mode(sk);
4488 		break;
4489 
4490 	case TCP_CLOSE_WAIT:
4491 	case TCP_CLOSING:
4492 		/* Received a retransmission of the FIN, do
4493 		 * nothing.
4494 		 */
4495 		break;
4496 	case TCP_LAST_ACK:
4497 		/* RFC793: Remain in the LAST-ACK state. */
4498 		break;
4499 
4500 	case TCP_FIN_WAIT1:
4501 		/* This case occurs when a simultaneous close
4502 		 * happens, we must ack the received FIN and
4503 		 * enter the CLOSING state.
4504 		 */
4505 		tcp_send_ack(sk);
4506 		tcp_set_state(sk, TCP_CLOSING);
4507 		break;
4508 	case TCP_FIN_WAIT2:
4509 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4510 		tcp_send_ack(sk);
4511 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4512 		break;
4513 	default:
4514 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4515 		 * cases we should never reach this piece of code.
4516 		 */
4517 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4518 		       __func__, sk->sk_state);
4519 		break;
4520 	}
4521 
4522 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4523 	 * Probably, we should reset in this case. For now drop them.
4524 	 */
4525 	skb_rbtree_purge(&tp->out_of_order_queue);
4526 	if (tcp_is_sack(tp))
4527 		tcp_sack_reset(&tp->rx_opt);
4528 
4529 	if (!sock_flag(sk, SOCK_DEAD)) {
4530 		sk->sk_state_change(sk);
4531 
4532 		/* Do not send POLL_HUP for half duplex close. */
4533 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4534 		    sk->sk_state == TCP_CLOSE)
4535 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4536 		else
4537 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4538 	}
4539 }
4540 
4541 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4542 				  u32 end_seq)
4543 {
4544 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4545 		if (before(seq, sp->start_seq))
4546 			sp->start_seq = seq;
4547 		if (after(end_seq, sp->end_seq))
4548 			sp->end_seq = end_seq;
4549 		return true;
4550 	}
4551 	return false;
4552 }
4553 
4554 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4555 {
4556 	struct tcp_sock *tp = tcp_sk(sk);
4557 
4558 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4559 		int mib_idx;
4560 
4561 		if (before(seq, tp->rcv_nxt))
4562 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4563 		else
4564 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4565 
4566 		NET_INC_STATS(sock_net(sk), mib_idx);
4567 
4568 		tp->rx_opt.dsack = 1;
4569 		tp->duplicate_sack[0].start_seq = seq;
4570 		tp->duplicate_sack[0].end_seq = end_seq;
4571 	}
4572 }
4573 
4574 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4575 {
4576 	struct tcp_sock *tp = tcp_sk(sk);
4577 
4578 	if (!tp->rx_opt.dsack)
4579 		tcp_dsack_set(sk, seq, end_seq);
4580 	else
4581 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4582 }
4583 
4584 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4585 {
4586 	/* When the ACK path fails or drops most ACKs, the sender would
4587 	 * timeout and spuriously retransmit the same segment repeatedly.
4588 	 * If it seems our ACKs are not reaching the other side,
4589 	 * based on receiving a duplicate data segment with new flowlabel
4590 	 * (suggesting the sender suffered an RTO), and we are not already
4591 	 * repathing due to our own RTO, then rehash the socket to repath our
4592 	 * packets.
4593 	 */
4594 #if IS_ENABLED(CONFIG_IPV6)
4595 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4596 	    skb->protocol == htons(ETH_P_IPV6) &&
4597 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4598 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4599 	    sk_rethink_txhash(sk))
4600 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4601 
4602 	/* Save last flowlabel after a spurious retrans. */
4603 	tcp_save_lrcv_flowlabel(sk, skb);
4604 #endif
4605 }
4606 
4607 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4608 {
4609 	struct tcp_sock *tp = tcp_sk(sk);
4610 
4611 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4612 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4613 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4614 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4615 
4616 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4617 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4618 
4619 			tcp_rcv_spurious_retrans(sk, skb);
4620 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4621 				end_seq = tp->rcv_nxt;
4622 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4623 		}
4624 	}
4625 
4626 	tcp_send_ack(sk);
4627 }
4628 
4629 /* These routines update the SACK block as out-of-order packets arrive or
4630  * in-order packets close up the sequence space.
4631  */
4632 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4633 {
4634 	int this_sack;
4635 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4636 	struct tcp_sack_block *swalk = sp + 1;
4637 
4638 	/* See if the recent change to the first SACK eats into
4639 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4640 	 */
4641 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4642 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4643 			int i;
4644 
4645 			/* Zap SWALK, by moving every further SACK up by one slot.
4646 			 * Decrease num_sacks.
4647 			 */
4648 			tp->rx_opt.num_sacks--;
4649 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4650 				sp[i] = sp[i + 1];
4651 			continue;
4652 		}
4653 		this_sack++;
4654 		swalk++;
4655 	}
4656 }
4657 
4658 void tcp_sack_compress_send_ack(struct sock *sk)
4659 {
4660 	struct tcp_sock *tp = tcp_sk(sk);
4661 
4662 	if (!tp->compressed_ack)
4663 		return;
4664 
4665 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4666 		__sock_put(sk);
4667 
4668 	/* Since we have to send one ack finally,
4669 	 * substract one from tp->compressed_ack to keep
4670 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4671 	 */
4672 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4673 		      tp->compressed_ack - 1);
4674 
4675 	tp->compressed_ack = 0;
4676 	tcp_send_ack(sk);
4677 }
4678 
4679 /* Reasonable amount of sack blocks included in TCP SACK option
4680  * The max is 4, but this becomes 3 if TCP timestamps are there.
4681  * Given that SACK packets might be lost, be conservative and use 2.
4682  */
4683 #define TCP_SACK_BLOCKS_EXPECTED 2
4684 
4685 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4686 {
4687 	struct tcp_sock *tp = tcp_sk(sk);
4688 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4689 	int cur_sacks = tp->rx_opt.num_sacks;
4690 	int this_sack;
4691 
4692 	if (!cur_sacks)
4693 		goto new_sack;
4694 
4695 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4696 		if (tcp_sack_extend(sp, seq, end_seq)) {
4697 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4698 				tcp_sack_compress_send_ack(sk);
4699 			/* Rotate this_sack to the first one. */
4700 			for (; this_sack > 0; this_sack--, sp--)
4701 				swap(*sp, *(sp - 1));
4702 			if (cur_sacks > 1)
4703 				tcp_sack_maybe_coalesce(tp);
4704 			return;
4705 		}
4706 	}
4707 
4708 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4709 		tcp_sack_compress_send_ack(sk);
4710 
4711 	/* Could not find an adjacent existing SACK, build a new one,
4712 	 * put it at the front, and shift everyone else down.  We
4713 	 * always know there is at least one SACK present already here.
4714 	 *
4715 	 * If the sack array is full, forget about the last one.
4716 	 */
4717 	if (this_sack >= TCP_NUM_SACKS) {
4718 		this_sack--;
4719 		tp->rx_opt.num_sacks--;
4720 		sp--;
4721 	}
4722 	for (; this_sack > 0; this_sack--, sp--)
4723 		*sp = *(sp - 1);
4724 
4725 new_sack:
4726 	/* Build the new head SACK, and we're done. */
4727 	sp->start_seq = seq;
4728 	sp->end_seq = end_seq;
4729 	tp->rx_opt.num_sacks++;
4730 }
4731 
4732 /* RCV.NXT advances, some SACKs should be eaten. */
4733 
4734 static void tcp_sack_remove(struct tcp_sock *tp)
4735 {
4736 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4737 	int num_sacks = tp->rx_opt.num_sacks;
4738 	int this_sack;
4739 
4740 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4741 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4742 		tp->rx_opt.num_sacks = 0;
4743 		return;
4744 	}
4745 
4746 	for (this_sack = 0; this_sack < num_sacks;) {
4747 		/* Check if the start of the sack is covered by RCV.NXT. */
4748 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4749 			int i;
4750 
4751 			/* RCV.NXT must cover all the block! */
4752 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4753 
4754 			/* Zap this SACK, by moving forward any other SACKS. */
4755 			for (i = this_sack+1; i < num_sacks; i++)
4756 				tp->selective_acks[i-1] = tp->selective_acks[i];
4757 			num_sacks--;
4758 			continue;
4759 		}
4760 		this_sack++;
4761 		sp++;
4762 	}
4763 	tp->rx_opt.num_sacks = num_sacks;
4764 }
4765 
4766 /**
4767  * tcp_try_coalesce - try to merge skb to prior one
4768  * @sk: socket
4769  * @to: prior buffer
4770  * @from: buffer to add in queue
4771  * @fragstolen: pointer to boolean
4772  *
4773  * Before queueing skb @from after @to, try to merge them
4774  * to reduce overall memory use and queue lengths, if cost is small.
4775  * Packets in ofo or receive queues can stay a long time.
4776  * Better try to coalesce them right now to avoid future collapses.
4777  * Returns true if caller should free @from instead of queueing it
4778  */
4779 static bool tcp_try_coalesce(struct sock *sk,
4780 			     struct sk_buff *to,
4781 			     struct sk_buff *from,
4782 			     bool *fragstolen)
4783 {
4784 	int delta;
4785 
4786 	*fragstolen = false;
4787 
4788 	/* Its possible this segment overlaps with prior segment in queue */
4789 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4790 		return false;
4791 
4792 	if (!mptcp_skb_can_collapse(to, from))
4793 		return false;
4794 
4795 #ifdef CONFIG_TLS_DEVICE
4796 	if (from->decrypted != to->decrypted)
4797 		return false;
4798 #endif
4799 
4800 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4801 		return false;
4802 
4803 	atomic_add(delta, &sk->sk_rmem_alloc);
4804 	sk_mem_charge(sk, delta);
4805 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4806 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4807 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4808 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4809 
4810 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4811 		TCP_SKB_CB(to)->has_rxtstamp = true;
4812 		to->tstamp = from->tstamp;
4813 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4814 	}
4815 
4816 	return true;
4817 }
4818 
4819 static bool tcp_ooo_try_coalesce(struct sock *sk,
4820 			     struct sk_buff *to,
4821 			     struct sk_buff *from,
4822 			     bool *fragstolen)
4823 {
4824 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4825 
4826 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4827 	if (res) {
4828 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4829 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4830 
4831 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4832 	}
4833 	return res;
4834 }
4835 
4836 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4837 			    enum skb_drop_reason reason)
4838 {
4839 	sk_drops_add(sk, skb);
4840 	kfree_skb_reason(skb, reason);
4841 }
4842 
4843 /* This one checks to see if we can put data from the
4844  * out_of_order queue into the receive_queue.
4845  */
4846 static void tcp_ofo_queue(struct sock *sk)
4847 {
4848 	struct tcp_sock *tp = tcp_sk(sk);
4849 	__u32 dsack_high = tp->rcv_nxt;
4850 	bool fin, fragstolen, eaten;
4851 	struct sk_buff *skb, *tail;
4852 	struct rb_node *p;
4853 
4854 	p = rb_first(&tp->out_of_order_queue);
4855 	while (p) {
4856 		skb = rb_to_skb(p);
4857 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4858 			break;
4859 
4860 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4861 			__u32 dsack = dsack_high;
4862 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4863 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4864 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4865 		}
4866 		p = rb_next(p);
4867 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4868 
4869 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4870 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4871 			continue;
4872 		}
4873 
4874 		tail = skb_peek_tail(&sk->sk_receive_queue);
4875 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4876 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4877 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4878 		if (!eaten)
4879 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4880 		else
4881 			kfree_skb_partial(skb, fragstolen);
4882 
4883 		if (unlikely(fin)) {
4884 			tcp_fin(sk);
4885 			/* tcp_fin() purges tp->out_of_order_queue,
4886 			 * so we must end this loop right now.
4887 			 */
4888 			break;
4889 		}
4890 	}
4891 }
4892 
4893 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4894 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4895 
4896 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4897 				 unsigned int size)
4898 {
4899 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4900 	    !sk_rmem_schedule(sk, skb, size)) {
4901 
4902 		if (tcp_prune_queue(sk, skb) < 0)
4903 			return -1;
4904 
4905 		while (!sk_rmem_schedule(sk, skb, size)) {
4906 			if (!tcp_prune_ofo_queue(sk, skb))
4907 				return -1;
4908 		}
4909 	}
4910 	return 0;
4911 }
4912 
4913 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4914 {
4915 	struct tcp_sock *tp = tcp_sk(sk);
4916 	struct rb_node **p, *parent;
4917 	struct sk_buff *skb1;
4918 	u32 seq, end_seq;
4919 	bool fragstolen;
4920 
4921 	tcp_save_lrcv_flowlabel(sk, skb);
4922 	tcp_ecn_check_ce(sk, skb);
4923 
4924 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4925 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4926 		sk->sk_data_ready(sk);
4927 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4928 		return;
4929 	}
4930 
4931 	/* Disable header prediction. */
4932 	tp->pred_flags = 0;
4933 	inet_csk_schedule_ack(sk);
4934 
4935 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4936 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4937 	seq = TCP_SKB_CB(skb)->seq;
4938 	end_seq = TCP_SKB_CB(skb)->end_seq;
4939 
4940 	p = &tp->out_of_order_queue.rb_node;
4941 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4942 		/* Initial out of order segment, build 1 SACK. */
4943 		if (tcp_is_sack(tp)) {
4944 			tp->rx_opt.num_sacks = 1;
4945 			tp->selective_acks[0].start_seq = seq;
4946 			tp->selective_acks[0].end_seq = end_seq;
4947 		}
4948 		rb_link_node(&skb->rbnode, NULL, p);
4949 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4950 		tp->ooo_last_skb = skb;
4951 		goto end;
4952 	}
4953 
4954 	/* In the typical case, we are adding an skb to the end of the list.
4955 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4956 	 */
4957 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4958 				 skb, &fragstolen)) {
4959 coalesce_done:
4960 		/* For non sack flows, do not grow window to force DUPACK
4961 		 * and trigger fast retransmit.
4962 		 */
4963 		if (tcp_is_sack(tp))
4964 			tcp_grow_window(sk, skb, true);
4965 		kfree_skb_partial(skb, fragstolen);
4966 		skb = NULL;
4967 		goto add_sack;
4968 	}
4969 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4970 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4971 		parent = &tp->ooo_last_skb->rbnode;
4972 		p = &parent->rb_right;
4973 		goto insert;
4974 	}
4975 
4976 	/* Find place to insert this segment. Handle overlaps on the way. */
4977 	parent = NULL;
4978 	while (*p) {
4979 		parent = *p;
4980 		skb1 = rb_to_skb(parent);
4981 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4982 			p = &parent->rb_left;
4983 			continue;
4984 		}
4985 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4986 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4987 				/* All the bits are present. Drop. */
4988 				NET_INC_STATS(sock_net(sk),
4989 					      LINUX_MIB_TCPOFOMERGE);
4990 				tcp_drop_reason(sk, skb,
4991 						SKB_DROP_REASON_TCP_OFOMERGE);
4992 				skb = NULL;
4993 				tcp_dsack_set(sk, seq, end_seq);
4994 				goto add_sack;
4995 			}
4996 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4997 				/* Partial overlap. */
4998 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4999 			} else {
5000 				/* skb's seq == skb1's seq and skb covers skb1.
5001 				 * Replace skb1 with skb.
5002 				 */
5003 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5004 						&tp->out_of_order_queue);
5005 				tcp_dsack_extend(sk,
5006 						 TCP_SKB_CB(skb1)->seq,
5007 						 TCP_SKB_CB(skb1)->end_seq);
5008 				NET_INC_STATS(sock_net(sk),
5009 					      LINUX_MIB_TCPOFOMERGE);
5010 				tcp_drop_reason(sk, skb1,
5011 						SKB_DROP_REASON_TCP_OFOMERGE);
5012 				goto merge_right;
5013 			}
5014 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5015 						skb, &fragstolen)) {
5016 			goto coalesce_done;
5017 		}
5018 		p = &parent->rb_right;
5019 	}
5020 insert:
5021 	/* Insert segment into RB tree. */
5022 	rb_link_node(&skb->rbnode, parent, p);
5023 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5024 
5025 merge_right:
5026 	/* Remove other segments covered by skb. */
5027 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5028 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5029 			break;
5030 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5031 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5032 					 end_seq);
5033 			break;
5034 		}
5035 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5036 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5037 				 TCP_SKB_CB(skb1)->end_seq);
5038 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5039 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5040 	}
5041 	/* If there is no skb after us, we are the last_skb ! */
5042 	if (!skb1)
5043 		tp->ooo_last_skb = skb;
5044 
5045 add_sack:
5046 	if (tcp_is_sack(tp))
5047 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5048 end:
5049 	if (skb) {
5050 		/* For non sack flows, do not grow window to force DUPACK
5051 		 * and trigger fast retransmit.
5052 		 */
5053 		if (tcp_is_sack(tp))
5054 			tcp_grow_window(sk, skb, false);
5055 		skb_condense(skb);
5056 		skb_set_owner_r(skb, sk);
5057 	}
5058 }
5059 
5060 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5061 				      bool *fragstolen)
5062 {
5063 	int eaten;
5064 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5065 
5066 	eaten = (tail &&
5067 		 tcp_try_coalesce(sk, tail,
5068 				  skb, fragstolen)) ? 1 : 0;
5069 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5070 	if (!eaten) {
5071 		__skb_queue_tail(&sk->sk_receive_queue, skb);
5072 		skb_set_owner_r(skb, sk);
5073 	}
5074 	return eaten;
5075 }
5076 
5077 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5078 {
5079 	struct sk_buff *skb;
5080 	int err = -ENOMEM;
5081 	int data_len = 0;
5082 	bool fragstolen;
5083 
5084 	if (size == 0)
5085 		return 0;
5086 
5087 	if (size > PAGE_SIZE) {
5088 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5089 
5090 		data_len = npages << PAGE_SHIFT;
5091 		size = data_len + (size & ~PAGE_MASK);
5092 	}
5093 	skb = alloc_skb_with_frags(size - data_len, data_len,
5094 				   PAGE_ALLOC_COSTLY_ORDER,
5095 				   &err, sk->sk_allocation);
5096 	if (!skb)
5097 		goto err;
5098 
5099 	skb_put(skb, size - data_len);
5100 	skb->data_len = data_len;
5101 	skb->len = size;
5102 
5103 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5104 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5105 		goto err_free;
5106 	}
5107 
5108 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5109 	if (err)
5110 		goto err_free;
5111 
5112 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5113 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5114 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5115 
5116 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5117 		WARN_ON_ONCE(fragstolen); /* should not happen */
5118 		__kfree_skb(skb);
5119 	}
5120 	return size;
5121 
5122 err_free:
5123 	kfree_skb(skb);
5124 err:
5125 	return err;
5126 
5127 }
5128 
5129 void tcp_data_ready(struct sock *sk)
5130 {
5131 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5132 		sk->sk_data_ready(sk);
5133 }
5134 
5135 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5136 {
5137 	struct tcp_sock *tp = tcp_sk(sk);
5138 	enum skb_drop_reason reason;
5139 	bool fragstolen;
5140 	int eaten;
5141 
5142 	/* If a subflow has been reset, the packet should not continue
5143 	 * to be processed, drop the packet.
5144 	 */
5145 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5146 		__kfree_skb(skb);
5147 		return;
5148 	}
5149 
5150 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5151 		__kfree_skb(skb);
5152 		return;
5153 	}
5154 	skb_dst_drop(skb);
5155 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5156 
5157 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5158 	tp->rx_opt.dsack = 0;
5159 
5160 	/*  Queue data for delivery to the user.
5161 	 *  Packets in sequence go to the receive queue.
5162 	 *  Out of sequence packets to the out_of_order_queue.
5163 	 */
5164 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5165 		if (tcp_receive_window(tp) == 0) {
5166 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5167 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5168 			goto out_of_window;
5169 		}
5170 
5171 		/* Ok. In sequence. In window. */
5172 queue_and_out:
5173 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5174 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5175 			inet_csk(sk)->icsk_ack.pending |=
5176 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5177 			inet_csk_schedule_ack(sk);
5178 			sk->sk_data_ready(sk);
5179 
5180 			if (skb_queue_len(&sk->sk_receive_queue)) {
5181 				reason = SKB_DROP_REASON_PROTO_MEM;
5182 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5183 				goto drop;
5184 			}
5185 			sk_forced_mem_schedule(sk, skb->truesize);
5186 		}
5187 
5188 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5189 		if (skb->len)
5190 			tcp_event_data_recv(sk, skb);
5191 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5192 			tcp_fin(sk);
5193 
5194 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5195 			tcp_ofo_queue(sk);
5196 
5197 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5198 			 * gap in queue is filled.
5199 			 */
5200 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5201 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5202 		}
5203 
5204 		if (tp->rx_opt.num_sacks)
5205 			tcp_sack_remove(tp);
5206 
5207 		tcp_fast_path_check(sk);
5208 
5209 		if (eaten > 0)
5210 			kfree_skb_partial(skb, fragstolen);
5211 		if (!sock_flag(sk, SOCK_DEAD))
5212 			tcp_data_ready(sk);
5213 		return;
5214 	}
5215 
5216 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5217 		tcp_rcv_spurious_retrans(sk, skb);
5218 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5219 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5220 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5221 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5222 
5223 out_of_window:
5224 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5225 		inet_csk_schedule_ack(sk);
5226 drop:
5227 		tcp_drop_reason(sk, skb, reason);
5228 		return;
5229 	}
5230 
5231 	/* Out of window. F.e. zero window probe. */
5232 	if (!before(TCP_SKB_CB(skb)->seq,
5233 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5234 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5235 		goto out_of_window;
5236 	}
5237 
5238 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5239 		/* Partial packet, seq < rcv_next < end_seq */
5240 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5241 
5242 		/* If window is closed, drop tail of packet. But after
5243 		 * remembering D-SACK for its head made in previous line.
5244 		 */
5245 		if (!tcp_receive_window(tp)) {
5246 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5247 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5248 			goto out_of_window;
5249 		}
5250 		goto queue_and_out;
5251 	}
5252 
5253 	tcp_data_queue_ofo(sk, skb);
5254 }
5255 
5256 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5257 {
5258 	if (list)
5259 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5260 
5261 	return skb_rb_next(skb);
5262 }
5263 
5264 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5265 					struct sk_buff_head *list,
5266 					struct rb_root *root)
5267 {
5268 	struct sk_buff *next = tcp_skb_next(skb, list);
5269 
5270 	if (list)
5271 		__skb_unlink(skb, list);
5272 	else
5273 		rb_erase(&skb->rbnode, root);
5274 
5275 	__kfree_skb(skb);
5276 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5277 
5278 	return next;
5279 }
5280 
5281 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5282 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5283 {
5284 	struct rb_node **p = &root->rb_node;
5285 	struct rb_node *parent = NULL;
5286 	struct sk_buff *skb1;
5287 
5288 	while (*p) {
5289 		parent = *p;
5290 		skb1 = rb_to_skb(parent);
5291 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5292 			p = &parent->rb_left;
5293 		else
5294 			p = &parent->rb_right;
5295 	}
5296 	rb_link_node(&skb->rbnode, parent, p);
5297 	rb_insert_color(&skb->rbnode, root);
5298 }
5299 
5300 /* Collapse contiguous sequence of skbs head..tail with
5301  * sequence numbers start..end.
5302  *
5303  * If tail is NULL, this means until the end of the queue.
5304  *
5305  * Segments with FIN/SYN are not collapsed (only because this
5306  * simplifies code)
5307  */
5308 static void
5309 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5310 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5311 {
5312 	struct sk_buff *skb = head, *n;
5313 	struct sk_buff_head tmp;
5314 	bool end_of_skbs;
5315 
5316 	/* First, check that queue is collapsible and find
5317 	 * the point where collapsing can be useful.
5318 	 */
5319 restart:
5320 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5321 		n = tcp_skb_next(skb, list);
5322 
5323 		/* No new bits? It is possible on ofo queue. */
5324 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5325 			skb = tcp_collapse_one(sk, skb, list, root);
5326 			if (!skb)
5327 				break;
5328 			goto restart;
5329 		}
5330 
5331 		/* The first skb to collapse is:
5332 		 * - not SYN/FIN and
5333 		 * - bloated or contains data before "start" or
5334 		 *   overlaps to the next one and mptcp allow collapsing.
5335 		 */
5336 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5337 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5338 		     before(TCP_SKB_CB(skb)->seq, start))) {
5339 			end_of_skbs = false;
5340 			break;
5341 		}
5342 
5343 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5344 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5345 			end_of_skbs = false;
5346 			break;
5347 		}
5348 
5349 		/* Decided to skip this, advance start seq. */
5350 		start = TCP_SKB_CB(skb)->end_seq;
5351 	}
5352 	if (end_of_skbs ||
5353 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5354 		return;
5355 
5356 	__skb_queue_head_init(&tmp);
5357 
5358 	while (before(start, end)) {
5359 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5360 		struct sk_buff *nskb;
5361 
5362 		nskb = alloc_skb(copy, GFP_ATOMIC);
5363 		if (!nskb)
5364 			break;
5365 
5366 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5367 #ifdef CONFIG_TLS_DEVICE
5368 		nskb->decrypted = skb->decrypted;
5369 #endif
5370 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5371 		if (list)
5372 			__skb_queue_before(list, skb, nskb);
5373 		else
5374 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5375 		skb_set_owner_r(nskb, sk);
5376 		mptcp_skb_ext_move(nskb, skb);
5377 
5378 		/* Copy data, releasing collapsed skbs. */
5379 		while (copy > 0) {
5380 			int offset = start - TCP_SKB_CB(skb)->seq;
5381 			int size = TCP_SKB_CB(skb)->end_seq - start;
5382 
5383 			BUG_ON(offset < 0);
5384 			if (size > 0) {
5385 				size = min(copy, size);
5386 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5387 					BUG();
5388 				TCP_SKB_CB(nskb)->end_seq += size;
5389 				copy -= size;
5390 				start += size;
5391 			}
5392 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5393 				skb = tcp_collapse_one(sk, skb, list, root);
5394 				if (!skb ||
5395 				    skb == tail ||
5396 				    !mptcp_skb_can_collapse(nskb, skb) ||
5397 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5398 					goto end;
5399 #ifdef CONFIG_TLS_DEVICE
5400 				if (skb->decrypted != nskb->decrypted)
5401 					goto end;
5402 #endif
5403 			}
5404 		}
5405 	}
5406 end:
5407 	skb_queue_walk_safe(&tmp, skb, n)
5408 		tcp_rbtree_insert(root, skb);
5409 }
5410 
5411 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5412  * and tcp_collapse() them until all the queue is collapsed.
5413  */
5414 static void tcp_collapse_ofo_queue(struct sock *sk)
5415 {
5416 	struct tcp_sock *tp = tcp_sk(sk);
5417 	u32 range_truesize, sum_tiny = 0;
5418 	struct sk_buff *skb, *head;
5419 	u32 start, end;
5420 
5421 	skb = skb_rb_first(&tp->out_of_order_queue);
5422 new_range:
5423 	if (!skb) {
5424 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5425 		return;
5426 	}
5427 	start = TCP_SKB_CB(skb)->seq;
5428 	end = TCP_SKB_CB(skb)->end_seq;
5429 	range_truesize = skb->truesize;
5430 
5431 	for (head = skb;;) {
5432 		skb = skb_rb_next(skb);
5433 
5434 		/* Range is terminated when we see a gap or when
5435 		 * we are at the queue end.
5436 		 */
5437 		if (!skb ||
5438 		    after(TCP_SKB_CB(skb)->seq, end) ||
5439 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5440 			/* Do not attempt collapsing tiny skbs */
5441 			if (range_truesize != head->truesize ||
5442 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5443 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5444 					     head, skb, start, end);
5445 			} else {
5446 				sum_tiny += range_truesize;
5447 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5448 					return;
5449 			}
5450 			goto new_range;
5451 		}
5452 
5453 		range_truesize += skb->truesize;
5454 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5455 			start = TCP_SKB_CB(skb)->seq;
5456 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5457 			end = TCP_SKB_CB(skb)->end_seq;
5458 	}
5459 }
5460 
5461 /*
5462  * Clean the out-of-order queue to make room.
5463  * We drop high sequences packets to :
5464  * 1) Let a chance for holes to be filled.
5465  *    This means we do not drop packets from ooo queue if their sequence
5466  *    is before incoming packet sequence.
5467  * 2) not add too big latencies if thousands of packets sit there.
5468  *    (But if application shrinks SO_RCVBUF, we could still end up
5469  *     freeing whole queue here)
5470  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5471  *
5472  * Return true if queue has shrunk.
5473  */
5474 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5475 {
5476 	struct tcp_sock *tp = tcp_sk(sk);
5477 	struct rb_node *node, *prev;
5478 	bool pruned = false;
5479 	int goal;
5480 
5481 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5482 		return false;
5483 
5484 	goal = sk->sk_rcvbuf >> 3;
5485 	node = &tp->ooo_last_skb->rbnode;
5486 
5487 	do {
5488 		struct sk_buff *skb = rb_to_skb(node);
5489 
5490 		/* If incoming skb would land last in ofo queue, stop pruning. */
5491 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5492 			break;
5493 		pruned = true;
5494 		prev = rb_prev(node);
5495 		rb_erase(node, &tp->out_of_order_queue);
5496 		goal -= skb->truesize;
5497 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5498 		tp->ooo_last_skb = rb_to_skb(prev);
5499 		if (!prev || goal <= 0) {
5500 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5501 			    !tcp_under_memory_pressure(sk))
5502 				break;
5503 			goal = sk->sk_rcvbuf >> 3;
5504 		}
5505 		node = prev;
5506 	} while (node);
5507 
5508 	if (pruned) {
5509 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5510 		/* Reset SACK state.  A conforming SACK implementation will
5511 		 * do the same at a timeout based retransmit.  When a connection
5512 		 * is in a sad state like this, we care only about integrity
5513 		 * of the connection not performance.
5514 		 */
5515 		if (tp->rx_opt.sack_ok)
5516 			tcp_sack_reset(&tp->rx_opt);
5517 	}
5518 	return pruned;
5519 }
5520 
5521 /* Reduce allocated memory if we can, trying to get
5522  * the socket within its memory limits again.
5523  *
5524  * Return less than zero if we should start dropping frames
5525  * until the socket owning process reads some of the data
5526  * to stabilize the situation.
5527  */
5528 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5529 {
5530 	struct tcp_sock *tp = tcp_sk(sk);
5531 
5532 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5533 
5534 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5535 		tcp_clamp_window(sk);
5536 	else if (tcp_under_memory_pressure(sk))
5537 		tcp_adjust_rcv_ssthresh(sk);
5538 
5539 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5540 		return 0;
5541 
5542 	tcp_collapse_ofo_queue(sk);
5543 	if (!skb_queue_empty(&sk->sk_receive_queue))
5544 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5545 			     skb_peek(&sk->sk_receive_queue),
5546 			     NULL,
5547 			     tp->copied_seq, tp->rcv_nxt);
5548 
5549 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5550 		return 0;
5551 
5552 	/* Collapsing did not help, destructive actions follow.
5553 	 * This must not ever occur. */
5554 
5555 	tcp_prune_ofo_queue(sk, in_skb);
5556 
5557 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5558 		return 0;
5559 
5560 	/* If we are really being abused, tell the caller to silently
5561 	 * drop receive data on the floor.  It will get retransmitted
5562 	 * and hopefully then we'll have sufficient space.
5563 	 */
5564 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5565 
5566 	/* Massive buffer overcommit. */
5567 	tp->pred_flags = 0;
5568 	return -1;
5569 }
5570 
5571 static bool tcp_should_expand_sndbuf(struct sock *sk)
5572 {
5573 	const struct tcp_sock *tp = tcp_sk(sk);
5574 
5575 	/* If the user specified a specific send buffer setting, do
5576 	 * not modify it.
5577 	 */
5578 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5579 		return false;
5580 
5581 	/* If we are under global TCP memory pressure, do not expand.  */
5582 	if (tcp_under_memory_pressure(sk)) {
5583 		int unused_mem = sk_unused_reserved_mem(sk);
5584 
5585 		/* Adjust sndbuf according to reserved mem. But make sure
5586 		 * it never goes below SOCK_MIN_SNDBUF.
5587 		 * See sk_stream_moderate_sndbuf() for more details.
5588 		 */
5589 		if (unused_mem > SOCK_MIN_SNDBUF)
5590 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5591 
5592 		return false;
5593 	}
5594 
5595 	/* If we are under soft global TCP memory pressure, do not expand.  */
5596 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5597 		return false;
5598 
5599 	/* If we filled the congestion window, do not expand.  */
5600 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5601 		return false;
5602 
5603 	return true;
5604 }
5605 
5606 static void tcp_new_space(struct sock *sk)
5607 {
5608 	struct tcp_sock *tp = tcp_sk(sk);
5609 
5610 	if (tcp_should_expand_sndbuf(sk)) {
5611 		tcp_sndbuf_expand(sk);
5612 		tp->snd_cwnd_stamp = tcp_jiffies32;
5613 	}
5614 
5615 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5616 }
5617 
5618 /* Caller made space either from:
5619  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5620  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5621  *
5622  * We might be able to generate EPOLLOUT to the application if:
5623  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5624  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5625  *    small enough that tcp_stream_memory_free() decides it
5626  *    is time to generate EPOLLOUT.
5627  */
5628 void tcp_check_space(struct sock *sk)
5629 {
5630 	/* pairs with tcp_poll() */
5631 	smp_mb();
5632 	if (sk->sk_socket &&
5633 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5634 		tcp_new_space(sk);
5635 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5636 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5637 	}
5638 }
5639 
5640 static inline void tcp_data_snd_check(struct sock *sk)
5641 {
5642 	tcp_push_pending_frames(sk);
5643 	tcp_check_space(sk);
5644 }
5645 
5646 /*
5647  * Check if sending an ack is needed.
5648  */
5649 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5650 {
5651 	struct tcp_sock *tp = tcp_sk(sk);
5652 	unsigned long rtt, delay;
5653 
5654 	    /* More than one full frame received... */
5655 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5656 	     /* ... and right edge of window advances far enough.
5657 	      * (tcp_recvmsg() will send ACK otherwise).
5658 	      * If application uses SO_RCVLOWAT, we want send ack now if
5659 	      * we have not received enough bytes to satisfy the condition.
5660 	      */
5661 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5662 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5663 	    /* We ACK each frame or... */
5664 	    tcp_in_quickack_mode(sk) ||
5665 	    /* Protocol state mandates a one-time immediate ACK */
5666 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5667 		/* If we are running from __release_sock() in user context,
5668 		 * Defer the ack until tcp_release_cb().
5669 		 */
5670 		if (sock_owned_by_user_nocheck(sk) &&
5671 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5672 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5673 			return;
5674 		}
5675 send_now:
5676 		tcp_send_ack(sk);
5677 		return;
5678 	}
5679 
5680 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5681 		tcp_send_delayed_ack(sk);
5682 		return;
5683 	}
5684 
5685 	if (!tcp_is_sack(tp) ||
5686 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5687 		goto send_now;
5688 
5689 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5690 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5691 		tp->dup_ack_counter = 0;
5692 	}
5693 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5694 		tp->dup_ack_counter++;
5695 		goto send_now;
5696 	}
5697 	tp->compressed_ack++;
5698 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5699 		return;
5700 
5701 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5702 
5703 	rtt = tp->rcv_rtt_est.rtt_us;
5704 	if (tp->srtt_us && tp->srtt_us < rtt)
5705 		rtt = tp->srtt_us;
5706 
5707 	delay = min_t(unsigned long,
5708 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5709 		      rtt * (NSEC_PER_USEC >> 3)/20);
5710 	sock_hold(sk);
5711 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5712 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5713 			       HRTIMER_MODE_REL_PINNED_SOFT);
5714 }
5715 
5716 static inline void tcp_ack_snd_check(struct sock *sk)
5717 {
5718 	if (!inet_csk_ack_scheduled(sk)) {
5719 		/* We sent a data segment already. */
5720 		return;
5721 	}
5722 	__tcp_ack_snd_check(sk, 1);
5723 }
5724 
5725 /*
5726  *	This routine is only called when we have urgent data
5727  *	signaled. Its the 'slow' part of tcp_urg. It could be
5728  *	moved inline now as tcp_urg is only called from one
5729  *	place. We handle URGent data wrong. We have to - as
5730  *	BSD still doesn't use the correction from RFC961.
5731  *	For 1003.1g we should support a new option TCP_STDURG to permit
5732  *	either form (or just set the sysctl tcp_stdurg).
5733  */
5734 
5735 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5736 {
5737 	struct tcp_sock *tp = tcp_sk(sk);
5738 	u32 ptr = ntohs(th->urg_ptr);
5739 
5740 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5741 		ptr--;
5742 	ptr += ntohl(th->seq);
5743 
5744 	/* Ignore urgent data that we've already seen and read. */
5745 	if (after(tp->copied_seq, ptr))
5746 		return;
5747 
5748 	/* Do not replay urg ptr.
5749 	 *
5750 	 * NOTE: interesting situation not covered by specs.
5751 	 * Misbehaving sender may send urg ptr, pointing to segment,
5752 	 * which we already have in ofo queue. We are not able to fetch
5753 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5754 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5755 	 * situations. But it is worth to think about possibility of some
5756 	 * DoSes using some hypothetical application level deadlock.
5757 	 */
5758 	if (before(ptr, tp->rcv_nxt))
5759 		return;
5760 
5761 	/* Do we already have a newer (or duplicate) urgent pointer? */
5762 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5763 		return;
5764 
5765 	/* Tell the world about our new urgent pointer. */
5766 	sk_send_sigurg(sk);
5767 
5768 	/* We may be adding urgent data when the last byte read was
5769 	 * urgent. To do this requires some care. We cannot just ignore
5770 	 * tp->copied_seq since we would read the last urgent byte again
5771 	 * as data, nor can we alter copied_seq until this data arrives
5772 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5773 	 *
5774 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5775 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5776 	 * and expect that both A and B disappear from stream. This is _wrong_.
5777 	 * Though this happens in BSD with high probability, this is occasional.
5778 	 * Any application relying on this is buggy. Note also, that fix "works"
5779 	 * only in this artificial test. Insert some normal data between A and B and we will
5780 	 * decline of BSD again. Verdict: it is better to remove to trap
5781 	 * buggy users.
5782 	 */
5783 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5784 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5785 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5786 		tp->copied_seq++;
5787 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5788 			__skb_unlink(skb, &sk->sk_receive_queue);
5789 			__kfree_skb(skb);
5790 		}
5791 	}
5792 
5793 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5794 	WRITE_ONCE(tp->urg_seq, ptr);
5795 
5796 	/* Disable header prediction. */
5797 	tp->pred_flags = 0;
5798 }
5799 
5800 /* This is the 'fast' part of urgent handling. */
5801 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5802 {
5803 	struct tcp_sock *tp = tcp_sk(sk);
5804 
5805 	/* Check if we get a new urgent pointer - normally not. */
5806 	if (unlikely(th->urg))
5807 		tcp_check_urg(sk, th);
5808 
5809 	/* Do we wait for any urgent data? - normally not... */
5810 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5811 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5812 			  th->syn;
5813 
5814 		/* Is the urgent pointer pointing into this packet? */
5815 		if (ptr < skb->len) {
5816 			u8 tmp;
5817 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5818 				BUG();
5819 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5820 			if (!sock_flag(sk, SOCK_DEAD))
5821 				sk->sk_data_ready(sk);
5822 		}
5823 	}
5824 }
5825 
5826 /* Accept RST for rcv_nxt - 1 after a FIN.
5827  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5828  * FIN is sent followed by a RST packet. The RST is sent with the same
5829  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5830  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5831  * ACKs on the closed socket. In addition middleboxes can drop either the
5832  * challenge ACK or a subsequent RST.
5833  */
5834 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5835 {
5836 	const struct tcp_sock *tp = tcp_sk(sk);
5837 
5838 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5839 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5840 					       TCPF_CLOSING));
5841 }
5842 
5843 /* Does PAWS and seqno based validation of an incoming segment, flags will
5844  * play significant role here.
5845  */
5846 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5847 				  const struct tcphdr *th, int syn_inerr)
5848 {
5849 	struct tcp_sock *tp = tcp_sk(sk);
5850 	SKB_DR(reason);
5851 
5852 	/* RFC1323: H1. Apply PAWS check first. */
5853 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5854 	    tp->rx_opt.saw_tstamp &&
5855 	    tcp_paws_discard(sk, skb)) {
5856 		if (!th->rst) {
5857 			if (unlikely(th->syn))
5858 				goto syn_challenge;
5859 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5860 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5861 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5862 						  &tp->last_oow_ack_time))
5863 				tcp_send_dupack(sk, skb);
5864 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5865 			goto discard;
5866 		}
5867 		/* Reset is accepted even if it did not pass PAWS. */
5868 	}
5869 
5870 	/* Step 1: check sequence number */
5871 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5872 	if (reason) {
5873 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5874 		 * (RST) segments are validated by checking their SEQ-fields."
5875 		 * And page 69: "If an incoming segment is not acceptable,
5876 		 * an acknowledgment should be sent in reply (unless the RST
5877 		 * bit is set, if so drop the segment and return)".
5878 		 */
5879 		if (!th->rst) {
5880 			if (th->syn)
5881 				goto syn_challenge;
5882 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5883 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5884 						  &tp->last_oow_ack_time))
5885 				tcp_send_dupack(sk, skb);
5886 		} else if (tcp_reset_check(sk, skb)) {
5887 			goto reset;
5888 		}
5889 		goto discard;
5890 	}
5891 
5892 	/* Step 2: check RST bit */
5893 	if (th->rst) {
5894 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5895 		 * FIN and SACK too if available):
5896 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5897 		 * the right-most SACK block,
5898 		 * then
5899 		 *     RESET the connection
5900 		 * else
5901 		 *     Send a challenge ACK
5902 		 */
5903 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5904 		    tcp_reset_check(sk, skb))
5905 			goto reset;
5906 
5907 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5908 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5909 			int max_sack = sp[0].end_seq;
5910 			int this_sack;
5911 
5912 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5913 			     ++this_sack) {
5914 				max_sack = after(sp[this_sack].end_seq,
5915 						 max_sack) ?
5916 					sp[this_sack].end_seq : max_sack;
5917 			}
5918 
5919 			if (TCP_SKB_CB(skb)->seq == max_sack)
5920 				goto reset;
5921 		}
5922 
5923 		/* Disable TFO if RST is out-of-order
5924 		 * and no data has been received
5925 		 * for current active TFO socket
5926 		 */
5927 		if (tp->syn_fastopen && !tp->data_segs_in &&
5928 		    sk->sk_state == TCP_ESTABLISHED)
5929 			tcp_fastopen_active_disable(sk);
5930 		tcp_send_challenge_ack(sk);
5931 		SKB_DR_SET(reason, TCP_RESET);
5932 		goto discard;
5933 	}
5934 
5935 	/* step 3: check security and precedence [ignored] */
5936 
5937 	/* step 4: Check for a SYN
5938 	 * RFC 5961 4.2 : Send a challenge ack
5939 	 */
5940 	if (th->syn) {
5941 syn_challenge:
5942 		if (syn_inerr)
5943 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5944 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5945 		tcp_send_challenge_ack(sk);
5946 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5947 		goto discard;
5948 	}
5949 
5950 	bpf_skops_parse_hdr(sk, skb);
5951 
5952 	return true;
5953 
5954 discard:
5955 	tcp_drop_reason(sk, skb, reason);
5956 	return false;
5957 
5958 reset:
5959 	tcp_reset(sk, skb);
5960 	__kfree_skb(skb);
5961 	return false;
5962 }
5963 
5964 /*
5965  *	TCP receive function for the ESTABLISHED state.
5966  *
5967  *	It is split into a fast path and a slow path. The fast path is
5968  * 	disabled when:
5969  *	- A zero window was announced from us - zero window probing
5970  *        is only handled properly in the slow path.
5971  *	- Out of order segments arrived.
5972  *	- Urgent data is expected.
5973  *	- There is no buffer space left
5974  *	- Unexpected TCP flags/window values/header lengths are received
5975  *	  (detected by checking the TCP header against pred_flags)
5976  *	- Data is sent in both directions. Fast path only supports pure senders
5977  *	  or pure receivers (this means either the sequence number or the ack
5978  *	  value must stay constant)
5979  *	- Unexpected TCP option.
5980  *
5981  *	When these conditions are not satisfied it drops into a standard
5982  *	receive procedure patterned after RFC793 to handle all cases.
5983  *	The first three cases are guaranteed by proper pred_flags setting,
5984  *	the rest is checked inline. Fast processing is turned on in
5985  *	tcp_data_queue when everything is OK.
5986  */
5987 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5988 {
5989 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5990 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5991 	struct tcp_sock *tp = tcp_sk(sk);
5992 	unsigned int len = skb->len;
5993 
5994 	/* TCP congestion window tracking */
5995 	trace_tcp_probe(sk, skb);
5996 
5997 	tcp_mstamp_refresh(tp);
5998 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5999 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6000 	/*
6001 	 *	Header prediction.
6002 	 *	The code loosely follows the one in the famous
6003 	 *	"30 instruction TCP receive" Van Jacobson mail.
6004 	 *
6005 	 *	Van's trick is to deposit buffers into socket queue
6006 	 *	on a device interrupt, to call tcp_recv function
6007 	 *	on the receive process context and checksum and copy
6008 	 *	the buffer to user space. smart...
6009 	 *
6010 	 *	Our current scheme is not silly either but we take the
6011 	 *	extra cost of the net_bh soft interrupt processing...
6012 	 *	We do checksum and copy also but from device to kernel.
6013 	 */
6014 
6015 	tp->rx_opt.saw_tstamp = 0;
6016 
6017 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6018 	 *	if header_prediction is to be made
6019 	 *	'S' will always be tp->tcp_header_len >> 2
6020 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6021 	 *  turn it off	(when there are holes in the receive
6022 	 *	 space for instance)
6023 	 *	PSH flag is ignored.
6024 	 */
6025 
6026 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6027 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6028 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6029 		int tcp_header_len = tp->tcp_header_len;
6030 
6031 		/* Timestamp header prediction: tcp_header_len
6032 		 * is automatically equal to th->doff*4 due to pred_flags
6033 		 * match.
6034 		 */
6035 
6036 		/* Check timestamp */
6037 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6038 			/* No? Slow path! */
6039 			if (!tcp_parse_aligned_timestamp(tp, th))
6040 				goto slow_path;
6041 
6042 			/* If PAWS failed, check it more carefully in slow path */
6043 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6044 				goto slow_path;
6045 
6046 			/* DO NOT update ts_recent here, if checksum fails
6047 			 * and timestamp was corrupted part, it will result
6048 			 * in a hung connection since we will drop all
6049 			 * future packets due to the PAWS test.
6050 			 */
6051 		}
6052 
6053 		if (len <= tcp_header_len) {
6054 			/* Bulk data transfer: sender */
6055 			if (len == tcp_header_len) {
6056 				/* Predicted packet is in window by definition.
6057 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6058 				 * Hence, check seq<=rcv_wup reduces to:
6059 				 */
6060 				if (tcp_header_len ==
6061 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6062 				    tp->rcv_nxt == tp->rcv_wup)
6063 					tcp_store_ts_recent(tp);
6064 
6065 				/* We know that such packets are checksummed
6066 				 * on entry.
6067 				 */
6068 				tcp_ack(sk, skb, 0);
6069 				__kfree_skb(skb);
6070 				tcp_data_snd_check(sk);
6071 				/* When receiving pure ack in fast path, update
6072 				 * last ts ecr directly instead of calling
6073 				 * tcp_rcv_rtt_measure_ts()
6074 				 */
6075 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6076 				return;
6077 			} else { /* Header too small */
6078 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6079 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6080 				goto discard;
6081 			}
6082 		} else {
6083 			int eaten = 0;
6084 			bool fragstolen = false;
6085 
6086 			if (tcp_checksum_complete(skb))
6087 				goto csum_error;
6088 
6089 			if ((int)skb->truesize > sk->sk_forward_alloc)
6090 				goto step5;
6091 
6092 			/* Predicted packet is in window by definition.
6093 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6094 			 * Hence, check seq<=rcv_wup reduces to:
6095 			 */
6096 			if (tcp_header_len ==
6097 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6098 			    tp->rcv_nxt == tp->rcv_wup)
6099 				tcp_store_ts_recent(tp);
6100 
6101 			tcp_rcv_rtt_measure_ts(sk, skb);
6102 
6103 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6104 
6105 			/* Bulk data transfer: receiver */
6106 			skb_dst_drop(skb);
6107 			__skb_pull(skb, tcp_header_len);
6108 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6109 
6110 			tcp_event_data_recv(sk, skb);
6111 
6112 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6113 				/* Well, only one small jumplet in fast path... */
6114 				tcp_ack(sk, skb, FLAG_DATA);
6115 				tcp_data_snd_check(sk);
6116 				if (!inet_csk_ack_scheduled(sk))
6117 					goto no_ack;
6118 			} else {
6119 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6120 			}
6121 
6122 			__tcp_ack_snd_check(sk, 0);
6123 no_ack:
6124 			if (eaten)
6125 				kfree_skb_partial(skb, fragstolen);
6126 			tcp_data_ready(sk);
6127 			return;
6128 		}
6129 	}
6130 
6131 slow_path:
6132 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6133 		goto csum_error;
6134 
6135 	if (!th->ack && !th->rst && !th->syn) {
6136 		reason = SKB_DROP_REASON_TCP_FLAGS;
6137 		goto discard;
6138 	}
6139 
6140 	/*
6141 	 *	Standard slow path.
6142 	 */
6143 
6144 	if (!tcp_validate_incoming(sk, skb, th, 1))
6145 		return;
6146 
6147 step5:
6148 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6149 	if ((int)reason < 0) {
6150 		reason = -reason;
6151 		goto discard;
6152 	}
6153 	tcp_rcv_rtt_measure_ts(sk, skb);
6154 
6155 	/* Process urgent data. */
6156 	tcp_urg(sk, skb, th);
6157 
6158 	/* step 7: process the segment text */
6159 	tcp_data_queue(sk, skb);
6160 
6161 	tcp_data_snd_check(sk);
6162 	tcp_ack_snd_check(sk);
6163 	return;
6164 
6165 csum_error:
6166 	reason = SKB_DROP_REASON_TCP_CSUM;
6167 	trace_tcp_bad_csum(skb);
6168 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6169 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6170 
6171 discard:
6172 	tcp_drop_reason(sk, skb, reason);
6173 }
6174 EXPORT_SYMBOL(tcp_rcv_established);
6175 
6176 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6177 {
6178 	struct inet_connection_sock *icsk = inet_csk(sk);
6179 	struct tcp_sock *tp = tcp_sk(sk);
6180 
6181 	tcp_mtup_init(sk);
6182 	icsk->icsk_af_ops->rebuild_header(sk);
6183 	tcp_init_metrics(sk);
6184 
6185 	/* Initialize the congestion window to start the transfer.
6186 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6187 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6188 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6189 	 * retransmission has occurred.
6190 	 */
6191 	if (tp->total_retrans > 1 && tp->undo_marker)
6192 		tcp_snd_cwnd_set(tp, 1);
6193 	else
6194 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6195 	tp->snd_cwnd_stamp = tcp_jiffies32;
6196 
6197 	bpf_skops_established(sk, bpf_op, skb);
6198 	/* Initialize congestion control unless BPF initialized it already: */
6199 	if (!icsk->icsk_ca_initialized)
6200 		tcp_init_congestion_control(sk);
6201 	tcp_init_buffer_space(sk);
6202 }
6203 
6204 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6205 {
6206 	struct tcp_sock *tp = tcp_sk(sk);
6207 	struct inet_connection_sock *icsk = inet_csk(sk);
6208 
6209 	tcp_ao_finish_connect(sk, skb);
6210 	tcp_set_state(sk, TCP_ESTABLISHED);
6211 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6212 
6213 	if (skb) {
6214 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6215 		security_inet_conn_established(sk, skb);
6216 		sk_mark_napi_id(sk, skb);
6217 	}
6218 
6219 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6220 
6221 	/* Prevent spurious tcp_cwnd_restart() on first data
6222 	 * packet.
6223 	 */
6224 	tp->lsndtime = tcp_jiffies32;
6225 
6226 	if (sock_flag(sk, SOCK_KEEPOPEN))
6227 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6228 
6229 	if (!tp->rx_opt.snd_wscale)
6230 		__tcp_fast_path_on(tp, tp->snd_wnd);
6231 	else
6232 		tp->pred_flags = 0;
6233 }
6234 
6235 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6236 				    struct tcp_fastopen_cookie *cookie)
6237 {
6238 	struct tcp_sock *tp = tcp_sk(sk);
6239 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6240 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6241 	bool syn_drop = false;
6242 
6243 	if (mss == tp->rx_opt.user_mss) {
6244 		struct tcp_options_received opt;
6245 
6246 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6247 		tcp_clear_options(&opt);
6248 		opt.user_mss = opt.mss_clamp = 0;
6249 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6250 		mss = opt.mss_clamp;
6251 	}
6252 
6253 	if (!tp->syn_fastopen) {
6254 		/* Ignore an unsolicited cookie */
6255 		cookie->len = -1;
6256 	} else if (tp->total_retrans) {
6257 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6258 		 * acknowledges data. Presumably the remote received only
6259 		 * the retransmitted (regular) SYNs: either the original
6260 		 * SYN-data or the corresponding SYN-ACK was dropped.
6261 		 */
6262 		syn_drop = (cookie->len < 0 && data);
6263 	} else if (cookie->len < 0 && !tp->syn_data) {
6264 		/* We requested a cookie but didn't get it. If we did not use
6265 		 * the (old) exp opt format then try so next time (try_exp=1).
6266 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6267 		 */
6268 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6269 	}
6270 
6271 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6272 
6273 	if (data) { /* Retransmit unacked data in SYN */
6274 		if (tp->total_retrans)
6275 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6276 		else
6277 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6278 		skb_rbtree_walk_from(data)
6279 			 tcp_mark_skb_lost(sk, data);
6280 		tcp_xmit_retransmit_queue(sk);
6281 		NET_INC_STATS(sock_net(sk),
6282 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6283 		return true;
6284 	}
6285 	tp->syn_data_acked = tp->syn_data;
6286 	if (tp->syn_data_acked) {
6287 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6288 		/* SYN-data is counted as two separate packets in tcp_ack() */
6289 		if (tp->delivered > 1)
6290 			--tp->delivered;
6291 	}
6292 
6293 	tcp_fastopen_add_skb(sk, synack);
6294 
6295 	return false;
6296 }
6297 
6298 static void smc_check_reset_syn(struct tcp_sock *tp)
6299 {
6300 #if IS_ENABLED(CONFIG_SMC)
6301 	if (static_branch_unlikely(&tcp_have_smc)) {
6302 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6303 			tp->syn_smc = 0;
6304 	}
6305 #endif
6306 }
6307 
6308 static void tcp_try_undo_spurious_syn(struct sock *sk)
6309 {
6310 	struct tcp_sock *tp = tcp_sk(sk);
6311 	u32 syn_stamp;
6312 
6313 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6314 	 * spurious if the ACK's timestamp option echo value matches the
6315 	 * original SYN timestamp.
6316 	 */
6317 	syn_stamp = tp->retrans_stamp;
6318 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6319 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6320 		tp->undo_marker = 0;
6321 }
6322 
6323 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6324 					 const struct tcphdr *th)
6325 {
6326 	struct inet_connection_sock *icsk = inet_csk(sk);
6327 	struct tcp_sock *tp = tcp_sk(sk);
6328 	struct tcp_fastopen_cookie foc = { .len = -1 };
6329 	int saved_clamp = tp->rx_opt.mss_clamp;
6330 	bool fastopen_fail;
6331 	SKB_DR(reason);
6332 
6333 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6334 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6335 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6336 
6337 	if (th->ack) {
6338 		/* rfc793:
6339 		 * "If the state is SYN-SENT then
6340 		 *    first check the ACK bit
6341 		 *      If the ACK bit is set
6342 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6343 		 *        a reset (unless the RST bit is set, if so drop
6344 		 *        the segment and return)"
6345 		 */
6346 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6347 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6348 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6349 			if (icsk->icsk_retransmits == 0)
6350 				inet_csk_reset_xmit_timer(sk,
6351 						ICSK_TIME_RETRANS,
6352 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6353 			goto reset_and_undo;
6354 		}
6355 
6356 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6357 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6358 			     tcp_time_stamp_ts(tp))) {
6359 			NET_INC_STATS(sock_net(sk),
6360 					LINUX_MIB_PAWSACTIVEREJECTED);
6361 			goto reset_and_undo;
6362 		}
6363 
6364 		/* Now ACK is acceptable.
6365 		 *
6366 		 * "If the RST bit is set
6367 		 *    If the ACK was acceptable then signal the user "error:
6368 		 *    connection reset", drop the segment, enter CLOSED state,
6369 		 *    delete TCB, and return."
6370 		 */
6371 
6372 		if (th->rst) {
6373 			tcp_reset(sk, skb);
6374 consume:
6375 			__kfree_skb(skb);
6376 			return 0;
6377 		}
6378 
6379 		/* rfc793:
6380 		 *   "fifth, if neither of the SYN or RST bits is set then
6381 		 *    drop the segment and return."
6382 		 *
6383 		 *    See note below!
6384 		 *                                        --ANK(990513)
6385 		 */
6386 		if (!th->syn) {
6387 			SKB_DR_SET(reason, TCP_FLAGS);
6388 			goto discard_and_undo;
6389 		}
6390 		/* rfc793:
6391 		 *   "If the SYN bit is on ...
6392 		 *    are acceptable then ...
6393 		 *    (our SYN has been ACKed), change the connection
6394 		 *    state to ESTABLISHED..."
6395 		 */
6396 
6397 		tcp_ecn_rcv_synack(tp, th);
6398 
6399 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6400 		tcp_try_undo_spurious_syn(sk);
6401 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6402 
6403 		/* Ok.. it's good. Set up sequence numbers and
6404 		 * move to established.
6405 		 */
6406 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6407 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6408 
6409 		/* RFC1323: The window in SYN & SYN/ACK segments is
6410 		 * never scaled.
6411 		 */
6412 		tp->snd_wnd = ntohs(th->window);
6413 
6414 		if (!tp->rx_opt.wscale_ok) {
6415 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6416 			tp->window_clamp = min(tp->window_clamp, 65535U);
6417 		}
6418 
6419 		if (tp->rx_opt.saw_tstamp) {
6420 			tp->rx_opt.tstamp_ok	   = 1;
6421 			tp->tcp_header_len =
6422 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6423 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6424 			tcp_store_ts_recent(tp);
6425 		} else {
6426 			tp->tcp_header_len = sizeof(struct tcphdr);
6427 		}
6428 
6429 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6430 		tcp_initialize_rcv_mss(sk);
6431 
6432 		/* Remember, tcp_poll() does not lock socket!
6433 		 * Change state from SYN-SENT only after copied_seq
6434 		 * is initialized. */
6435 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6436 
6437 		smc_check_reset_syn(tp);
6438 
6439 		smp_mb();
6440 
6441 		tcp_finish_connect(sk, skb);
6442 
6443 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6444 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6445 
6446 		if (!sock_flag(sk, SOCK_DEAD)) {
6447 			sk->sk_state_change(sk);
6448 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6449 		}
6450 		if (fastopen_fail)
6451 			return -1;
6452 		if (sk->sk_write_pending ||
6453 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6454 		    inet_csk_in_pingpong_mode(sk)) {
6455 			/* Save one ACK. Data will be ready after
6456 			 * several ticks, if write_pending is set.
6457 			 *
6458 			 * It may be deleted, but with this feature tcpdumps
6459 			 * look so _wonderfully_ clever, that I was not able
6460 			 * to stand against the temptation 8)     --ANK
6461 			 */
6462 			inet_csk_schedule_ack(sk);
6463 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6464 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6465 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6466 			goto consume;
6467 		}
6468 		tcp_send_ack(sk);
6469 		return -1;
6470 	}
6471 
6472 	/* No ACK in the segment */
6473 
6474 	if (th->rst) {
6475 		/* rfc793:
6476 		 * "If the RST bit is set
6477 		 *
6478 		 *      Otherwise (no ACK) drop the segment and return."
6479 		 */
6480 		SKB_DR_SET(reason, TCP_RESET);
6481 		goto discard_and_undo;
6482 	}
6483 
6484 	/* PAWS check. */
6485 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6486 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6487 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6488 		goto discard_and_undo;
6489 	}
6490 	if (th->syn) {
6491 		/* We see SYN without ACK. It is attempt of
6492 		 * simultaneous connect with crossed SYNs.
6493 		 * Particularly, it can be connect to self.
6494 		 */
6495 #ifdef CONFIG_TCP_AO
6496 		struct tcp_ao_info *ao;
6497 
6498 		ao = rcu_dereference_protected(tp->ao_info,
6499 					       lockdep_sock_is_held(sk));
6500 		if (ao) {
6501 			WRITE_ONCE(ao->risn, th->seq);
6502 			ao->rcv_sne = 0;
6503 		}
6504 #endif
6505 		tcp_set_state(sk, TCP_SYN_RECV);
6506 
6507 		if (tp->rx_opt.saw_tstamp) {
6508 			tp->rx_opt.tstamp_ok = 1;
6509 			tcp_store_ts_recent(tp);
6510 			tp->tcp_header_len =
6511 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6512 		} else {
6513 			tp->tcp_header_len = sizeof(struct tcphdr);
6514 		}
6515 
6516 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6517 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6518 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6519 
6520 		/* RFC1323: The window in SYN & SYN/ACK segments is
6521 		 * never scaled.
6522 		 */
6523 		tp->snd_wnd    = ntohs(th->window);
6524 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6525 		tp->max_window = tp->snd_wnd;
6526 
6527 		tcp_ecn_rcv_syn(tp, th);
6528 
6529 		tcp_mtup_init(sk);
6530 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6531 		tcp_initialize_rcv_mss(sk);
6532 
6533 		tcp_send_synack(sk);
6534 #if 0
6535 		/* Note, we could accept data and URG from this segment.
6536 		 * There are no obstacles to make this (except that we must
6537 		 * either change tcp_recvmsg() to prevent it from returning data
6538 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6539 		 *
6540 		 * However, if we ignore data in ACKless segments sometimes,
6541 		 * we have no reasons to accept it sometimes.
6542 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6543 		 * is not flawless. So, discard packet for sanity.
6544 		 * Uncomment this return to process the data.
6545 		 */
6546 		return -1;
6547 #else
6548 		goto consume;
6549 #endif
6550 	}
6551 	/* "fifth, if neither of the SYN or RST bits is set then
6552 	 * drop the segment and return."
6553 	 */
6554 
6555 discard_and_undo:
6556 	tcp_clear_options(&tp->rx_opt);
6557 	tp->rx_opt.mss_clamp = saved_clamp;
6558 	tcp_drop_reason(sk, skb, reason);
6559 	return 0;
6560 
6561 reset_and_undo:
6562 	tcp_clear_options(&tp->rx_opt);
6563 	tp->rx_opt.mss_clamp = saved_clamp;
6564 	return 1;
6565 }
6566 
6567 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6568 {
6569 	struct tcp_sock *tp = tcp_sk(sk);
6570 	struct request_sock *req;
6571 
6572 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6573 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6574 	 */
6575 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6576 		tcp_try_undo_recovery(sk);
6577 
6578 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6579 	tcp_update_rto_time(tp);
6580 	tp->retrans_stamp = 0;
6581 	inet_csk(sk)->icsk_retransmits = 0;
6582 
6583 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6584 	 * we no longer need req so release it.
6585 	 */
6586 	req = rcu_dereference_protected(tp->fastopen_rsk,
6587 					lockdep_sock_is_held(sk));
6588 	reqsk_fastopen_remove(sk, req, false);
6589 
6590 	/* Re-arm the timer because data may have been sent out.
6591 	 * This is similar to the regular data transmission case
6592 	 * when new data has just been ack'ed.
6593 	 *
6594 	 * (TFO) - we could try to be more aggressive and
6595 	 * retransmitting any data sooner based on when they
6596 	 * are sent out.
6597 	 */
6598 	tcp_rearm_rto(sk);
6599 }
6600 
6601 /*
6602  *	This function implements the receiving procedure of RFC 793 for
6603  *	all states except ESTABLISHED and TIME_WAIT.
6604  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6605  *	address independent.
6606  */
6607 
6608 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6609 {
6610 	struct tcp_sock *tp = tcp_sk(sk);
6611 	struct inet_connection_sock *icsk = inet_csk(sk);
6612 	const struct tcphdr *th = tcp_hdr(skb);
6613 	struct request_sock *req;
6614 	int queued = 0;
6615 	bool acceptable;
6616 	SKB_DR(reason);
6617 
6618 	switch (sk->sk_state) {
6619 	case TCP_CLOSE:
6620 		SKB_DR_SET(reason, TCP_CLOSE);
6621 		goto discard;
6622 
6623 	case TCP_LISTEN:
6624 		if (th->ack)
6625 			return 1;
6626 
6627 		if (th->rst) {
6628 			SKB_DR_SET(reason, TCP_RESET);
6629 			goto discard;
6630 		}
6631 		if (th->syn) {
6632 			if (th->fin) {
6633 				SKB_DR_SET(reason, TCP_FLAGS);
6634 				goto discard;
6635 			}
6636 			/* It is possible that we process SYN packets from backlog,
6637 			 * so we need to make sure to disable BH and RCU right there.
6638 			 */
6639 			rcu_read_lock();
6640 			local_bh_disable();
6641 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6642 			local_bh_enable();
6643 			rcu_read_unlock();
6644 
6645 			if (!acceptable)
6646 				return 1;
6647 			consume_skb(skb);
6648 			return 0;
6649 		}
6650 		SKB_DR_SET(reason, TCP_FLAGS);
6651 		goto discard;
6652 
6653 	case TCP_SYN_SENT:
6654 		tp->rx_opt.saw_tstamp = 0;
6655 		tcp_mstamp_refresh(tp);
6656 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6657 		if (queued >= 0)
6658 			return queued;
6659 
6660 		/* Do step6 onward by hand. */
6661 		tcp_urg(sk, skb, th);
6662 		__kfree_skb(skb);
6663 		tcp_data_snd_check(sk);
6664 		return 0;
6665 	}
6666 
6667 	tcp_mstamp_refresh(tp);
6668 	tp->rx_opt.saw_tstamp = 0;
6669 	req = rcu_dereference_protected(tp->fastopen_rsk,
6670 					lockdep_sock_is_held(sk));
6671 	if (req) {
6672 		bool req_stolen;
6673 
6674 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6675 		    sk->sk_state != TCP_FIN_WAIT1);
6676 
6677 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6678 			SKB_DR_SET(reason, TCP_FASTOPEN);
6679 			goto discard;
6680 		}
6681 	}
6682 
6683 	if (!th->ack && !th->rst && !th->syn) {
6684 		SKB_DR_SET(reason, TCP_FLAGS);
6685 		goto discard;
6686 	}
6687 	if (!tcp_validate_incoming(sk, skb, th, 0))
6688 		return 0;
6689 
6690 	/* step 5: check the ACK field */
6691 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6692 				      FLAG_UPDATE_TS_RECENT |
6693 				      FLAG_NO_CHALLENGE_ACK) > 0;
6694 
6695 	if (!acceptable) {
6696 		if (sk->sk_state == TCP_SYN_RECV)
6697 			return 1;	/* send one RST */
6698 		tcp_send_challenge_ack(sk);
6699 		SKB_DR_SET(reason, TCP_OLD_ACK);
6700 		goto discard;
6701 	}
6702 	switch (sk->sk_state) {
6703 	case TCP_SYN_RECV:
6704 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6705 		if (!tp->srtt_us)
6706 			tcp_synack_rtt_meas(sk, req);
6707 
6708 		if (req) {
6709 			tcp_rcv_synrecv_state_fastopen(sk);
6710 		} else {
6711 			tcp_try_undo_spurious_syn(sk);
6712 			tp->retrans_stamp = 0;
6713 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6714 					  skb);
6715 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6716 		}
6717 		tcp_ao_established(sk);
6718 		smp_mb();
6719 		tcp_set_state(sk, TCP_ESTABLISHED);
6720 		sk->sk_state_change(sk);
6721 
6722 		/* Note, that this wakeup is only for marginal crossed SYN case.
6723 		 * Passively open sockets are not waked up, because
6724 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6725 		 */
6726 		if (sk->sk_socket)
6727 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6728 
6729 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6730 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6731 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6732 
6733 		if (tp->rx_opt.tstamp_ok)
6734 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6735 
6736 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6737 			tcp_update_pacing_rate(sk);
6738 
6739 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6740 		tp->lsndtime = tcp_jiffies32;
6741 
6742 		tcp_initialize_rcv_mss(sk);
6743 		tcp_fast_path_on(tp);
6744 		break;
6745 
6746 	case TCP_FIN_WAIT1: {
6747 		int tmo;
6748 
6749 		if (req)
6750 			tcp_rcv_synrecv_state_fastopen(sk);
6751 
6752 		if (tp->snd_una != tp->write_seq)
6753 			break;
6754 
6755 		tcp_set_state(sk, TCP_FIN_WAIT2);
6756 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6757 
6758 		sk_dst_confirm(sk);
6759 
6760 		if (!sock_flag(sk, SOCK_DEAD)) {
6761 			/* Wake up lingering close() */
6762 			sk->sk_state_change(sk);
6763 			break;
6764 		}
6765 
6766 		if (READ_ONCE(tp->linger2) < 0) {
6767 			tcp_done(sk);
6768 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6769 			return 1;
6770 		}
6771 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6772 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6773 			/* Receive out of order FIN after close() */
6774 			if (tp->syn_fastopen && th->fin)
6775 				tcp_fastopen_active_disable(sk);
6776 			tcp_done(sk);
6777 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6778 			return 1;
6779 		}
6780 
6781 		tmo = tcp_fin_time(sk);
6782 		if (tmo > TCP_TIMEWAIT_LEN) {
6783 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6784 		} else if (th->fin || sock_owned_by_user(sk)) {
6785 			/* Bad case. We could lose such FIN otherwise.
6786 			 * It is not a big problem, but it looks confusing
6787 			 * and not so rare event. We still can lose it now,
6788 			 * if it spins in bh_lock_sock(), but it is really
6789 			 * marginal case.
6790 			 */
6791 			inet_csk_reset_keepalive_timer(sk, tmo);
6792 		} else {
6793 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6794 			goto consume;
6795 		}
6796 		break;
6797 	}
6798 
6799 	case TCP_CLOSING:
6800 		if (tp->snd_una == tp->write_seq) {
6801 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6802 			goto consume;
6803 		}
6804 		break;
6805 
6806 	case TCP_LAST_ACK:
6807 		if (tp->snd_una == tp->write_seq) {
6808 			tcp_update_metrics(sk);
6809 			tcp_done(sk);
6810 			goto consume;
6811 		}
6812 		break;
6813 	}
6814 
6815 	/* step 6: check the URG bit */
6816 	tcp_urg(sk, skb, th);
6817 
6818 	/* step 7: process the segment text */
6819 	switch (sk->sk_state) {
6820 	case TCP_CLOSE_WAIT:
6821 	case TCP_CLOSING:
6822 	case TCP_LAST_ACK:
6823 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6824 			/* If a subflow has been reset, the packet should not
6825 			 * continue to be processed, drop the packet.
6826 			 */
6827 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6828 				goto discard;
6829 			break;
6830 		}
6831 		fallthrough;
6832 	case TCP_FIN_WAIT1:
6833 	case TCP_FIN_WAIT2:
6834 		/* RFC 793 says to queue data in these states,
6835 		 * RFC 1122 says we MUST send a reset.
6836 		 * BSD 4.4 also does reset.
6837 		 */
6838 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6839 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6840 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6841 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6842 				tcp_reset(sk, skb);
6843 				return 1;
6844 			}
6845 		}
6846 		fallthrough;
6847 	case TCP_ESTABLISHED:
6848 		tcp_data_queue(sk, skb);
6849 		queued = 1;
6850 		break;
6851 	}
6852 
6853 	/* tcp_data could move socket to TIME-WAIT */
6854 	if (sk->sk_state != TCP_CLOSE) {
6855 		tcp_data_snd_check(sk);
6856 		tcp_ack_snd_check(sk);
6857 	}
6858 
6859 	if (!queued) {
6860 discard:
6861 		tcp_drop_reason(sk, skb, reason);
6862 	}
6863 	return 0;
6864 
6865 consume:
6866 	__kfree_skb(skb);
6867 	return 0;
6868 }
6869 EXPORT_SYMBOL(tcp_rcv_state_process);
6870 
6871 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6872 {
6873 	struct inet_request_sock *ireq = inet_rsk(req);
6874 
6875 	if (family == AF_INET)
6876 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6877 				    &ireq->ir_rmt_addr, port);
6878 #if IS_ENABLED(CONFIG_IPV6)
6879 	else if (family == AF_INET6)
6880 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6881 				    &ireq->ir_v6_rmt_addr, port);
6882 #endif
6883 }
6884 
6885 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6886  *
6887  * If we receive a SYN packet with these bits set, it means a
6888  * network is playing bad games with TOS bits. In order to
6889  * avoid possible false congestion notifications, we disable
6890  * TCP ECN negotiation.
6891  *
6892  * Exception: tcp_ca wants ECN. This is required for DCTCP
6893  * congestion control: Linux DCTCP asserts ECT on all packets,
6894  * including SYN, which is most optimal solution; however,
6895  * others, such as FreeBSD do not.
6896  *
6897  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6898  * set, indicating the use of a future TCP extension (such as AccECN). See
6899  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6900  * extensions.
6901  */
6902 static void tcp_ecn_create_request(struct request_sock *req,
6903 				   const struct sk_buff *skb,
6904 				   const struct sock *listen_sk,
6905 				   const struct dst_entry *dst)
6906 {
6907 	const struct tcphdr *th = tcp_hdr(skb);
6908 	const struct net *net = sock_net(listen_sk);
6909 	bool th_ecn = th->ece && th->cwr;
6910 	bool ect, ecn_ok;
6911 	u32 ecn_ok_dst;
6912 
6913 	if (!th_ecn)
6914 		return;
6915 
6916 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6917 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6918 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6919 
6920 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6921 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6922 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6923 		inet_rsk(req)->ecn_ok = 1;
6924 }
6925 
6926 static void tcp_openreq_init(struct request_sock *req,
6927 			     const struct tcp_options_received *rx_opt,
6928 			     struct sk_buff *skb, const struct sock *sk)
6929 {
6930 	struct inet_request_sock *ireq = inet_rsk(req);
6931 
6932 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6933 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6934 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6935 	tcp_rsk(req)->snt_synack = 0;
6936 	tcp_rsk(req)->last_oow_ack_time = 0;
6937 	req->mss = rx_opt->mss_clamp;
6938 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6939 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6940 	ireq->sack_ok = rx_opt->sack_ok;
6941 	ireq->snd_wscale = rx_opt->snd_wscale;
6942 	ireq->wscale_ok = rx_opt->wscale_ok;
6943 	ireq->acked = 0;
6944 	ireq->ecn_ok = 0;
6945 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6946 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6947 	ireq->ir_mark = inet_request_mark(sk, skb);
6948 #if IS_ENABLED(CONFIG_SMC)
6949 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6950 			tcp_sk(sk)->smc_hs_congested(sk));
6951 #endif
6952 }
6953 
6954 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6955 				      struct sock *sk_listener,
6956 				      bool attach_listener)
6957 {
6958 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6959 					       attach_listener);
6960 
6961 	if (req) {
6962 		struct inet_request_sock *ireq = inet_rsk(req);
6963 
6964 		ireq->ireq_opt = NULL;
6965 #if IS_ENABLED(CONFIG_IPV6)
6966 		ireq->pktopts = NULL;
6967 #endif
6968 		atomic64_set(&ireq->ir_cookie, 0);
6969 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6970 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6971 		ireq->ireq_family = sk_listener->sk_family;
6972 		req->timeout = TCP_TIMEOUT_INIT;
6973 	}
6974 
6975 	return req;
6976 }
6977 EXPORT_SYMBOL(inet_reqsk_alloc);
6978 
6979 /*
6980  * Return true if a syncookie should be sent
6981  */
6982 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6983 {
6984 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6985 	const char *msg = "Dropping request";
6986 	struct net *net = sock_net(sk);
6987 	bool want_cookie = false;
6988 	u8 syncookies;
6989 
6990 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6991 
6992 #ifdef CONFIG_SYN_COOKIES
6993 	if (syncookies) {
6994 		msg = "Sending cookies";
6995 		want_cookie = true;
6996 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6997 	} else
6998 #endif
6999 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7000 
7001 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7002 	    xchg(&queue->synflood_warned, 1) == 0) {
7003 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7004 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7005 					proto, inet6_rcv_saddr(sk),
7006 					sk->sk_num, msg);
7007 		} else {
7008 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7009 					proto, &sk->sk_rcv_saddr,
7010 					sk->sk_num, msg);
7011 		}
7012 	}
7013 
7014 	return want_cookie;
7015 }
7016 
7017 static void tcp_reqsk_record_syn(const struct sock *sk,
7018 				 struct request_sock *req,
7019 				 const struct sk_buff *skb)
7020 {
7021 	if (tcp_sk(sk)->save_syn) {
7022 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7023 		struct saved_syn *saved_syn;
7024 		u32 mac_hdrlen;
7025 		void *base;
7026 
7027 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7028 			base = skb_mac_header(skb);
7029 			mac_hdrlen = skb_mac_header_len(skb);
7030 			len += mac_hdrlen;
7031 		} else {
7032 			base = skb_network_header(skb);
7033 			mac_hdrlen = 0;
7034 		}
7035 
7036 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7037 				    GFP_ATOMIC);
7038 		if (saved_syn) {
7039 			saved_syn->mac_hdrlen = mac_hdrlen;
7040 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7041 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7042 			memcpy(saved_syn->data, base, len);
7043 			req->saved_syn = saved_syn;
7044 		}
7045 	}
7046 }
7047 
7048 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7049  * used for SYN cookie generation.
7050  */
7051 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7052 			  const struct tcp_request_sock_ops *af_ops,
7053 			  struct sock *sk, struct tcphdr *th)
7054 {
7055 	struct tcp_sock *tp = tcp_sk(sk);
7056 	u16 mss;
7057 
7058 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7059 	    !inet_csk_reqsk_queue_is_full(sk))
7060 		return 0;
7061 
7062 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7063 		return 0;
7064 
7065 	if (sk_acceptq_is_full(sk)) {
7066 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7067 		return 0;
7068 	}
7069 
7070 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7071 	if (!mss)
7072 		mss = af_ops->mss_clamp;
7073 
7074 	return mss;
7075 }
7076 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7077 
7078 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7079 		     const struct tcp_request_sock_ops *af_ops,
7080 		     struct sock *sk, struct sk_buff *skb)
7081 {
7082 	struct tcp_fastopen_cookie foc = { .len = -1 };
7083 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7084 	struct tcp_options_received tmp_opt;
7085 	struct tcp_sock *tp = tcp_sk(sk);
7086 	struct net *net = sock_net(sk);
7087 	struct sock *fastopen_sk = NULL;
7088 	struct request_sock *req;
7089 	bool want_cookie = false;
7090 	struct dst_entry *dst;
7091 	struct flowi fl;
7092 	u8 syncookies;
7093 
7094 #ifdef CONFIG_TCP_AO
7095 	const struct tcp_ao_hdr *aoh;
7096 #endif
7097 
7098 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7099 
7100 	/* TW buckets are converted to open requests without
7101 	 * limitations, they conserve resources and peer is
7102 	 * evidently real one.
7103 	 */
7104 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7105 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7106 		if (!want_cookie)
7107 			goto drop;
7108 	}
7109 
7110 	if (sk_acceptq_is_full(sk)) {
7111 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7112 		goto drop;
7113 	}
7114 
7115 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7116 	if (!req)
7117 		goto drop;
7118 
7119 	req->syncookie = want_cookie;
7120 	tcp_rsk(req)->af_specific = af_ops;
7121 	tcp_rsk(req)->ts_off = 0;
7122 	tcp_rsk(req)->req_usec_ts = false;
7123 #if IS_ENABLED(CONFIG_MPTCP)
7124 	tcp_rsk(req)->is_mptcp = 0;
7125 #endif
7126 
7127 	tcp_clear_options(&tmp_opt);
7128 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7129 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7130 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7131 			  want_cookie ? NULL : &foc);
7132 
7133 	if (want_cookie && !tmp_opt.saw_tstamp)
7134 		tcp_clear_options(&tmp_opt);
7135 
7136 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7137 		tmp_opt.smc_ok = 0;
7138 
7139 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7140 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7141 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7142 
7143 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7144 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7145 
7146 	dst = af_ops->route_req(sk, skb, &fl, req);
7147 	if (!dst)
7148 		goto drop_and_free;
7149 
7150 	if (tmp_opt.tstamp_ok) {
7151 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7152 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7153 	}
7154 	if (!want_cookie && !isn) {
7155 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7156 
7157 		/* Kill the following clause, if you dislike this way. */
7158 		if (!syncookies &&
7159 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7160 		     (max_syn_backlog >> 2)) &&
7161 		    !tcp_peer_is_proven(req, dst)) {
7162 			/* Without syncookies last quarter of
7163 			 * backlog is filled with destinations,
7164 			 * proven to be alive.
7165 			 * It means that we continue to communicate
7166 			 * to destinations, already remembered
7167 			 * to the moment of synflood.
7168 			 */
7169 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7170 				    rsk_ops->family);
7171 			goto drop_and_release;
7172 		}
7173 
7174 		isn = af_ops->init_seq(skb);
7175 	}
7176 
7177 	tcp_ecn_create_request(req, skb, sk, dst);
7178 
7179 	if (want_cookie) {
7180 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7181 		if (!tmp_opt.tstamp_ok)
7182 			inet_rsk(req)->ecn_ok = 0;
7183 	}
7184 
7185 #ifdef CONFIG_TCP_AO
7186 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7187 		goto drop_and_release; /* Invalid TCP options */
7188 	if (aoh) {
7189 		tcp_rsk(req)->used_tcp_ao = true;
7190 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7191 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7192 
7193 	} else {
7194 		tcp_rsk(req)->used_tcp_ao = false;
7195 	}
7196 #endif
7197 	tcp_rsk(req)->snt_isn = isn;
7198 	tcp_rsk(req)->txhash = net_tx_rndhash();
7199 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7200 	tcp_openreq_init_rwin(req, sk, dst);
7201 	sk_rx_queue_set(req_to_sk(req), skb);
7202 	if (!want_cookie) {
7203 		tcp_reqsk_record_syn(sk, req, skb);
7204 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7205 	}
7206 	if (fastopen_sk) {
7207 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7208 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7209 		/* Add the child socket directly into the accept queue */
7210 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7211 			reqsk_fastopen_remove(fastopen_sk, req, false);
7212 			bh_unlock_sock(fastopen_sk);
7213 			sock_put(fastopen_sk);
7214 			goto drop_and_free;
7215 		}
7216 		sk->sk_data_ready(sk);
7217 		bh_unlock_sock(fastopen_sk);
7218 		sock_put(fastopen_sk);
7219 	} else {
7220 		tcp_rsk(req)->tfo_listener = false;
7221 		if (!want_cookie) {
7222 			req->timeout = tcp_timeout_init((struct sock *)req);
7223 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7224 		}
7225 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7226 				    !want_cookie ? TCP_SYNACK_NORMAL :
7227 						   TCP_SYNACK_COOKIE,
7228 				    skb);
7229 		if (want_cookie) {
7230 			reqsk_free(req);
7231 			return 0;
7232 		}
7233 	}
7234 	reqsk_put(req);
7235 	return 0;
7236 
7237 drop_and_release:
7238 	dst_release(dst);
7239 drop_and_free:
7240 	__reqsk_free(req);
7241 drop:
7242 	tcp_listendrop(sk);
7243 	return 0;
7244 }
7245 EXPORT_SYMBOL(tcp_conn_request);
7246