1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 247 do_div(val, skb->truesize); 248 tcp_sk(sk)->scaling_ratio = val ? val : 1; 249 } 250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 251 tcp_sk(sk)->advmss); 252 /* Account for possibly-removed options */ 253 if (unlikely(len > icsk->icsk_ack.rcv_mss + 254 MAX_TCP_OPTION_SPACE)) 255 tcp_gro_dev_warn(sk, skb, len); 256 /* If the skb has a len of exactly 1*MSS and has the PSH bit 257 * set then it is likely the end of an application write. So 258 * more data may not be arriving soon, and yet the data sender 259 * may be waiting for an ACK if cwnd-bound or using TX zero 260 * copy. So we set ICSK_ACK_PUSHED here so that 261 * tcp_cleanup_rbuf() will send an ACK immediately if the app 262 * reads all of the data and is not ping-pong. If len > MSS 263 * then this logic does not matter (and does not hurt) because 264 * tcp_cleanup_rbuf() will always ACK immediately if the app 265 * reads data and there is more than an MSS of unACKed data. 266 */ 267 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 268 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 269 } else { 270 /* Otherwise, we make more careful check taking into account, 271 * that SACKs block is variable. 272 * 273 * "len" is invariant segment length, including TCP header. 274 */ 275 len += skb->data - skb_transport_header(skb); 276 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 277 /* If PSH is not set, packet should be 278 * full sized, provided peer TCP is not badly broken. 279 * This observation (if it is correct 8)) allows 280 * to handle super-low mtu links fairly. 281 */ 282 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 283 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 284 /* Subtract also invariant (if peer is RFC compliant), 285 * tcp header plus fixed timestamp option length. 286 * Resulting "len" is MSS free of SACK jitter. 287 */ 288 len -= tcp_sk(sk)->tcp_header_len; 289 icsk->icsk_ack.last_seg_size = len; 290 if (len == lss) { 291 icsk->icsk_ack.rcv_mss = len; 292 return; 293 } 294 } 295 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 296 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 297 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 298 } 299 } 300 301 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 302 { 303 struct inet_connection_sock *icsk = inet_csk(sk); 304 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 305 306 if (quickacks == 0) 307 quickacks = 2; 308 quickacks = min(quickacks, max_quickacks); 309 if (quickacks > icsk->icsk_ack.quick) 310 icsk->icsk_ack.quick = quickacks; 311 } 312 313 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 314 { 315 struct inet_connection_sock *icsk = inet_csk(sk); 316 317 tcp_incr_quickack(sk, max_quickacks); 318 inet_csk_exit_pingpong_mode(sk); 319 icsk->icsk_ack.ato = TCP_ATO_MIN; 320 } 321 322 /* Send ACKs quickly, if "quick" count is not exhausted 323 * and the session is not interactive. 324 */ 325 326 static bool tcp_in_quickack_mode(struct sock *sk) 327 { 328 const struct inet_connection_sock *icsk = inet_csk(sk); 329 const struct dst_entry *dst = __sk_dst_get(sk); 330 331 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 332 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 333 } 334 335 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 336 { 337 if (tp->ecn_flags & TCP_ECN_OK) 338 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 339 } 340 341 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 342 { 343 if (tcp_hdr(skb)->cwr) { 344 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 345 346 /* If the sender is telling us it has entered CWR, then its 347 * cwnd may be very low (even just 1 packet), so we should ACK 348 * immediately. 349 */ 350 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 351 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 352 } 353 } 354 355 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 356 { 357 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 358 } 359 360 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 361 { 362 struct tcp_sock *tp = tcp_sk(sk); 363 364 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 365 case INET_ECN_NOT_ECT: 366 /* Funny extension: if ECT is not set on a segment, 367 * and we already seen ECT on a previous segment, 368 * it is probably a retransmit. 369 */ 370 if (tp->ecn_flags & TCP_ECN_SEEN) 371 tcp_enter_quickack_mode(sk, 2); 372 break; 373 case INET_ECN_CE: 374 if (tcp_ca_needs_ecn(sk)) 375 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 376 377 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 378 /* Better not delay acks, sender can have a very low cwnd */ 379 tcp_enter_quickack_mode(sk, 2); 380 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 381 } 382 tp->ecn_flags |= TCP_ECN_SEEN; 383 break; 384 default: 385 if (tcp_ca_needs_ecn(sk)) 386 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 387 tp->ecn_flags |= TCP_ECN_SEEN; 388 break; 389 } 390 } 391 392 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 393 { 394 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 395 __tcp_ecn_check_ce(sk, skb); 396 } 397 398 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 399 { 400 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 401 tp->ecn_flags &= ~TCP_ECN_OK; 402 } 403 404 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 405 { 406 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 407 tp->ecn_flags &= ~TCP_ECN_OK; 408 } 409 410 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 411 { 412 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 413 return true; 414 return false; 415 } 416 417 /* Buffer size and advertised window tuning. 418 * 419 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 420 */ 421 422 static void tcp_sndbuf_expand(struct sock *sk) 423 { 424 const struct tcp_sock *tp = tcp_sk(sk); 425 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 426 int sndmem, per_mss; 427 u32 nr_segs; 428 429 /* Worst case is non GSO/TSO : each frame consumes one skb 430 * and skb->head is kmalloced using power of two area of memory 431 */ 432 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 433 MAX_TCP_HEADER + 434 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 435 436 per_mss = roundup_pow_of_two(per_mss) + 437 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 438 439 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 440 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 441 442 /* Fast Recovery (RFC 5681 3.2) : 443 * Cubic needs 1.7 factor, rounded to 2 to include 444 * extra cushion (application might react slowly to EPOLLOUT) 445 */ 446 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 447 sndmem *= nr_segs * per_mss; 448 449 if (sk->sk_sndbuf < sndmem) 450 WRITE_ONCE(sk->sk_sndbuf, 451 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 452 } 453 454 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 455 * 456 * All tcp_full_space() is split to two parts: "network" buffer, allocated 457 * forward and advertised in receiver window (tp->rcv_wnd) and 458 * "application buffer", required to isolate scheduling/application 459 * latencies from network. 460 * window_clamp is maximal advertised window. It can be less than 461 * tcp_full_space(), in this case tcp_full_space() - window_clamp 462 * is reserved for "application" buffer. The less window_clamp is 463 * the smoother our behaviour from viewpoint of network, but the lower 464 * throughput and the higher sensitivity of the connection to losses. 8) 465 * 466 * rcv_ssthresh is more strict window_clamp used at "slow start" 467 * phase to predict further behaviour of this connection. 468 * It is used for two goals: 469 * - to enforce header prediction at sender, even when application 470 * requires some significant "application buffer". It is check #1. 471 * - to prevent pruning of receive queue because of misprediction 472 * of receiver window. Check #2. 473 * 474 * The scheme does not work when sender sends good segments opening 475 * window and then starts to feed us spaghetti. But it should work 476 * in common situations. Otherwise, we have to rely on queue collapsing. 477 */ 478 479 /* Slow part of check#2. */ 480 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 481 unsigned int skbtruesize) 482 { 483 const struct tcp_sock *tp = tcp_sk(sk); 484 /* Optimize this! */ 485 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 486 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 487 488 while (tp->rcv_ssthresh <= window) { 489 if (truesize <= skb->len) 490 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 491 492 truesize >>= 1; 493 window >>= 1; 494 } 495 return 0; 496 } 497 498 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 499 * can play nice with us, as sk_buff and skb->head might be either 500 * freed or shared with up to MAX_SKB_FRAGS segments. 501 * Only give a boost to drivers using page frag(s) to hold the frame(s), 502 * and if no payload was pulled in skb->head before reaching us. 503 */ 504 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 505 { 506 u32 truesize = skb->truesize; 507 508 if (adjust && !skb_headlen(skb)) { 509 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 510 /* paranoid check, some drivers might be buggy */ 511 if (unlikely((int)truesize < (int)skb->len)) 512 truesize = skb->truesize; 513 } 514 return truesize; 515 } 516 517 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 518 bool adjust) 519 { 520 struct tcp_sock *tp = tcp_sk(sk); 521 int room; 522 523 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 524 525 if (room <= 0) 526 return; 527 528 /* Check #1 */ 529 if (!tcp_under_memory_pressure(sk)) { 530 unsigned int truesize = truesize_adjust(adjust, skb); 531 int incr; 532 533 /* Check #2. Increase window, if skb with such overhead 534 * will fit to rcvbuf in future. 535 */ 536 if (tcp_win_from_space(sk, truesize) <= skb->len) 537 incr = 2 * tp->advmss; 538 else 539 incr = __tcp_grow_window(sk, skb, truesize); 540 541 if (incr) { 542 incr = max_t(int, incr, 2 * skb->len); 543 tp->rcv_ssthresh += min(room, incr); 544 inet_csk(sk)->icsk_ack.quick |= 1; 545 } 546 } else { 547 /* Under pressure: 548 * Adjust rcv_ssthresh according to reserved mem 549 */ 550 tcp_adjust_rcv_ssthresh(sk); 551 } 552 } 553 554 /* 3. Try to fixup all. It is made immediately after connection enters 555 * established state. 556 */ 557 static void tcp_init_buffer_space(struct sock *sk) 558 { 559 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 560 struct tcp_sock *tp = tcp_sk(sk); 561 int maxwin; 562 563 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 564 tcp_sndbuf_expand(sk); 565 566 tcp_mstamp_refresh(tp); 567 tp->rcvq_space.time = tp->tcp_mstamp; 568 tp->rcvq_space.seq = tp->copied_seq; 569 570 maxwin = tcp_full_space(sk); 571 572 if (tp->window_clamp >= maxwin) { 573 tp->window_clamp = maxwin; 574 575 if (tcp_app_win && maxwin > 4 * tp->advmss) 576 tp->window_clamp = max(maxwin - 577 (maxwin >> tcp_app_win), 578 4 * tp->advmss); 579 } 580 581 /* Force reservation of one segment. */ 582 if (tcp_app_win && 583 tp->window_clamp > 2 * tp->advmss && 584 tp->window_clamp + tp->advmss > maxwin) 585 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 586 587 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 588 tp->snd_cwnd_stamp = tcp_jiffies32; 589 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 590 (u32)TCP_INIT_CWND * tp->advmss); 591 } 592 593 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 594 static void tcp_clamp_window(struct sock *sk) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 struct inet_connection_sock *icsk = inet_csk(sk); 598 struct net *net = sock_net(sk); 599 int rmem2; 600 601 icsk->icsk_ack.quick = 0; 602 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 603 604 if (sk->sk_rcvbuf < rmem2 && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 606 !tcp_under_memory_pressure(sk) && 607 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 608 WRITE_ONCE(sk->sk_rcvbuf, 609 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 610 } 611 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 612 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 613 } 614 615 /* Initialize RCV_MSS value. 616 * RCV_MSS is an our guess about MSS used by the peer. 617 * We haven't any direct information about the MSS. 618 * It's better to underestimate the RCV_MSS rather than overestimate. 619 * Overestimations make us ACKing less frequently than needed. 620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 621 */ 622 void tcp_initialize_rcv_mss(struct sock *sk) 623 { 624 const struct tcp_sock *tp = tcp_sk(sk); 625 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 626 627 hint = min(hint, tp->rcv_wnd / 2); 628 hint = min(hint, TCP_MSS_DEFAULT); 629 hint = max(hint, TCP_MIN_MSS); 630 631 inet_csk(sk)->icsk_ack.rcv_mss = hint; 632 } 633 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 634 635 /* Receiver "autotuning" code. 636 * 637 * The algorithm for RTT estimation w/o timestamps is based on 638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 639 * <https://public.lanl.gov/radiant/pubs.html#DRS> 640 * 641 * More detail on this code can be found at 642 * <http://staff.psc.edu/jheffner/>, 643 * though this reference is out of date. A new paper 644 * is pending. 645 */ 646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 647 { 648 u32 new_sample = tp->rcv_rtt_est.rtt_us; 649 long m = sample; 650 651 if (new_sample != 0) { 652 /* If we sample in larger samples in the non-timestamp 653 * case, we could grossly overestimate the RTT especially 654 * with chatty applications or bulk transfer apps which 655 * are stalled on filesystem I/O. 656 * 657 * Also, since we are only going for a minimum in the 658 * non-timestamp case, we do not smooth things out 659 * else with timestamps disabled convergence takes too 660 * long. 661 */ 662 if (!win_dep) { 663 m -= (new_sample >> 3); 664 new_sample += m; 665 } else { 666 m <<= 3; 667 if (m < new_sample) 668 new_sample = m; 669 } 670 } else { 671 /* No previous measure. */ 672 new_sample = m << 3; 673 } 674 675 tp->rcv_rtt_est.rtt_us = new_sample; 676 } 677 678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 679 { 680 u32 delta_us; 681 682 if (tp->rcv_rtt_est.time == 0) 683 goto new_measure; 684 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 685 return; 686 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 687 if (!delta_us) 688 delta_us = 1; 689 tcp_rcv_rtt_update(tp, delta_us, 1); 690 691 new_measure: 692 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 693 tp->rcv_rtt_est.time = tp->tcp_mstamp; 694 } 695 696 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp) 697 { 698 u32 delta, delta_us; 699 700 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 701 if (tp->tcp_usec_ts) 702 return delta; 703 704 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 705 if (!delta) 706 delta = 1; 707 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 708 return delta_us; 709 } 710 return -1; 711 } 712 713 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 714 const struct sk_buff *skb) 715 { 716 struct tcp_sock *tp = tcp_sk(sk); 717 718 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 719 return; 720 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 721 722 if (TCP_SKB_CB(skb)->end_seq - 723 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 724 s32 delta = tcp_rtt_tsopt_us(tp); 725 726 if (delta >= 0) 727 tcp_rcv_rtt_update(tp, delta, 0); 728 } 729 } 730 731 /* 732 * This function should be called every time data is copied to user space. 733 * It calculates the appropriate TCP receive buffer space. 734 */ 735 void tcp_rcv_space_adjust(struct sock *sk) 736 { 737 struct tcp_sock *tp = tcp_sk(sk); 738 u32 copied; 739 int time; 740 741 trace_tcp_rcv_space_adjust(sk); 742 743 tcp_mstamp_refresh(tp); 744 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 745 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 746 return; 747 748 /* Number of bytes copied to user in last RTT */ 749 copied = tp->copied_seq - tp->rcvq_space.seq; 750 if (copied <= tp->rcvq_space.space) 751 goto new_measure; 752 753 /* A bit of theory : 754 * copied = bytes received in previous RTT, our base window 755 * To cope with packet losses, we need a 2x factor 756 * To cope with slow start, and sender growing its cwin by 100 % 757 * every RTT, we need a 4x factor, because the ACK we are sending 758 * now is for the next RTT, not the current one : 759 * <prev RTT . ><current RTT .. ><next RTT .... > 760 */ 761 762 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 763 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 764 u64 rcvwin, grow; 765 int rcvbuf; 766 767 /* minimal window to cope with packet losses, assuming 768 * steady state. Add some cushion because of small variations. 769 */ 770 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 771 772 /* Accommodate for sender rate increase (eg. slow start) */ 773 grow = rcvwin * (copied - tp->rcvq_space.space); 774 do_div(grow, tp->rcvq_space.space); 775 rcvwin += (grow << 1); 776 777 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 778 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 779 if (rcvbuf > sk->sk_rcvbuf) { 780 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 781 782 /* Make the window clamp follow along. */ 783 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 784 } 785 } 786 tp->rcvq_space.space = copied; 787 788 new_measure: 789 tp->rcvq_space.seq = tp->copied_seq; 790 tp->rcvq_space.time = tp->tcp_mstamp; 791 } 792 793 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 794 { 795 #if IS_ENABLED(CONFIG_IPV6) 796 struct inet_connection_sock *icsk = inet_csk(sk); 797 798 if (skb->protocol == htons(ETH_P_IPV6)) 799 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 800 #endif 801 } 802 803 /* There is something which you must keep in mind when you analyze the 804 * behavior of the tp->ato delayed ack timeout interval. When a 805 * connection starts up, we want to ack as quickly as possible. The 806 * problem is that "good" TCP's do slow start at the beginning of data 807 * transmission. The means that until we send the first few ACK's the 808 * sender will sit on his end and only queue most of his data, because 809 * he can only send snd_cwnd unacked packets at any given time. For 810 * each ACK we send, he increments snd_cwnd and transmits more of his 811 * queue. -DaveM 812 */ 813 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 814 { 815 struct tcp_sock *tp = tcp_sk(sk); 816 struct inet_connection_sock *icsk = inet_csk(sk); 817 u32 now; 818 819 inet_csk_schedule_ack(sk); 820 821 tcp_measure_rcv_mss(sk, skb); 822 823 tcp_rcv_rtt_measure(tp); 824 825 now = tcp_jiffies32; 826 827 if (!icsk->icsk_ack.ato) { 828 /* The _first_ data packet received, initialize 829 * delayed ACK engine. 830 */ 831 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 832 icsk->icsk_ack.ato = TCP_ATO_MIN; 833 } else { 834 int m = now - icsk->icsk_ack.lrcvtime; 835 836 if (m <= TCP_ATO_MIN / 2) { 837 /* The fastest case is the first. */ 838 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 839 } else if (m < icsk->icsk_ack.ato) { 840 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 841 if (icsk->icsk_ack.ato > icsk->icsk_rto) 842 icsk->icsk_ack.ato = icsk->icsk_rto; 843 } else if (m > icsk->icsk_rto) { 844 /* Too long gap. Apparently sender failed to 845 * restart window, so that we send ACKs quickly. 846 */ 847 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 848 } 849 } 850 icsk->icsk_ack.lrcvtime = now; 851 tcp_save_lrcv_flowlabel(sk, skb); 852 853 tcp_ecn_check_ce(sk, skb); 854 855 if (skb->len >= 128) 856 tcp_grow_window(sk, skb, true); 857 } 858 859 /* Called to compute a smoothed rtt estimate. The data fed to this 860 * routine either comes from timestamps, or from segments that were 861 * known _not_ to have been retransmitted [see Karn/Partridge 862 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 863 * piece by Van Jacobson. 864 * NOTE: the next three routines used to be one big routine. 865 * To save cycles in the RFC 1323 implementation it was better to break 866 * it up into three procedures. -- erics 867 */ 868 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 869 { 870 struct tcp_sock *tp = tcp_sk(sk); 871 long m = mrtt_us; /* RTT */ 872 u32 srtt = tp->srtt_us; 873 874 /* The following amusing code comes from Jacobson's 875 * article in SIGCOMM '88. Note that rtt and mdev 876 * are scaled versions of rtt and mean deviation. 877 * This is designed to be as fast as possible 878 * m stands for "measurement". 879 * 880 * On a 1990 paper the rto value is changed to: 881 * RTO = rtt + 4 * mdev 882 * 883 * Funny. This algorithm seems to be very broken. 884 * These formulae increase RTO, when it should be decreased, increase 885 * too slowly, when it should be increased quickly, decrease too quickly 886 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 887 * does not matter how to _calculate_ it. Seems, it was trap 888 * that VJ failed to avoid. 8) 889 */ 890 if (srtt != 0) { 891 m -= (srtt >> 3); /* m is now error in rtt est */ 892 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 893 if (m < 0) { 894 m = -m; /* m is now abs(error) */ 895 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 896 /* This is similar to one of Eifel findings. 897 * Eifel blocks mdev updates when rtt decreases. 898 * This solution is a bit different: we use finer gain 899 * for mdev in this case (alpha*beta). 900 * Like Eifel it also prevents growth of rto, 901 * but also it limits too fast rto decreases, 902 * happening in pure Eifel. 903 */ 904 if (m > 0) 905 m >>= 3; 906 } else { 907 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 908 } 909 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 910 if (tp->mdev_us > tp->mdev_max_us) { 911 tp->mdev_max_us = tp->mdev_us; 912 if (tp->mdev_max_us > tp->rttvar_us) 913 tp->rttvar_us = tp->mdev_max_us; 914 } 915 if (after(tp->snd_una, tp->rtt_seq)) { 916 if (tp->mdev_max_us < tp->rttvar_us) 917 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 918 tp->rtt_seq = tp->snd_nxt; 919 tp->mdev_max_us = tcp_rto_min_us(sk); 920 921 tcp_bpf_rtt(sk); 922 } 923 } else { 924 /* no previous measure. */ 925 srtt = m << 3; /* take the measured time to be rtt */ 926 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 927 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 928 tp->mdev_max_us = tp->rttvar_us; 929 tp->rtt_seq = tp->snd_nxt; 930 931 tcp_bpf_rtt(sk); 932 } 933 tp->srtt_us = max(1U, srtt); 934 } 935 936 static void tcp_update_pacing_rate(struct sock *sk) 937 { 938 const struct tcp_sock *tp = tcp_sk(sk); 939 u64 rate; 940 941 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 942 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 943 944 /* current rate is (cwnd * mss) / srtt 945 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 946 * In Congestion Avoidance phase, set it to 120 % the current rate. 947 * 948 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 949 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 950 * end of slow start and should slow down. 951 */ 952 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 953 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 954 else 955 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 956 957 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 958 959 if (likely(tp->srtt_us)) 960 do_div(rate, tp->srtt_us); 961 962 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 963 * without any lock. We want to make sure compiler wont store 964 * intermediate values in this location. 965 */ 966 WRITE_ONCE(sk->sk_pacing_rate, 967 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 968 } 969 970 /* Calculate rto without backoff. This is the second half of Van Jacobson's 971 * routine referred to above. 972 */ 973 static void tcp_set_rto(struct sock *sk) 974 { 975 const struct tcp_sock *tp = tcp_sk(sk); 976 /* Old crap is replaced with new one. 8) 977 * 978 * More seriously: 979 * 1. If rtt variance happened to be less 50msec, it is hallucination. 980 * It cannot be less due to utterly erratic ACK generation made 981 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 982 * to do with delayed acks, because at cwnd>2 true delack timeout 983 * is invisible. Actually, Linux-2.4 also generates erratic 984 * ACKs in some circumstances. 985 */ 986 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 987 988 /* 2. Fixups made earlier cannot be right. 989 * If we do not estimate RTO correctly without them, 990 * all the algo is pure shit and should be replaced 991 * with correct one. It is exactly, which we pretend to do. 992 */ 993 994 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 995 * guarantees that rto is higher. 996 */ 997 tcp_bound_rto(sk); 998 } 999 1000 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1001 { 1002 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1003 1004 if (!cwnd) 1005 cwnd = TCP_INIT_CWND; 1006 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1007 } 1008 1009 struct tcp_sacktag_state { 1010 /* Timestamps for earliest and latest never-retransmitted segment 1011 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1012 * but congestion control should still get an accurate delay signal. 1013 */ 1014 u64 first_sackt; 1015 u64 last_sackt; 1016 u32 reord; 1017 u32 sack_delivered; 1018 int flag; 1019 unsigned int mss_now; 1020 struct rate_sample *rate; 1021 }; 1022 1023 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1024 * and spurious retransmission information if this DSACK is unlikely caused by 1025 * sender's action: 1026 * - DSACKed sequence range is larger than maximum receiver's window. 1027 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1028 */ 1029 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1030 u32 end_seq, struct tcp_sacktag_state *state) 1031 { 1032 u32 seq_len, dup_segs = 1; 1033 1034 if (!before(start_seq, end_seq)) 1035 return 0; 1036 1037 seq_len = end_seq - start_seq; 1038 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1039 if (seq_len > tp->max_window) 1040 return 0; 1041 if (seq_len > tp->mss_cache) 1042 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1043 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1044 state->flag |= FLAG_DSACK_TLP; 1045 1046 tp->dsack_dups += dup_segs; 1047 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1048 if (tp->dsack_dups > tp->total_retrans) 1049 return 0; 1050 1051 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1052 /* We increase the RACK ordering window in rounds where we receive 1053 * DSACKs that may have been due to reordering causing RACK to trigger 1054 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1055 * without having seen reordering, or that match TLP probes (TLP 1056 * is timer-driven, not triggered by RACK). 1057 */ 1058 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1059 tp->rack.dsack_seen = 1; 1060 1061 state->flag |= FLAG_DSACKING_ACK; 1062 /* A spurious retransmission is delivered */ 1063 state->sack_delivered += dup_segs; 1064 1065 return dup_segs; 1066 } 1067 1068 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1069 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1070 * distance is approximated in full-mss packet distance ("reordering"). 1071 */ 1072 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1073 const int ts) 1074 { 1075 struct tcp_sock *tp = tcp_sk(sk); 1076 const u32 mss = tp->mss_cache; 1077 u32 fack, metric; 1078 1079 fack = tcp_highest_sack_seq(tp); 1080 if (!before(low_seq, fack)) 1081 return; 1082 1083 metric = fack - low_seq; 1084 if ((metric > tp->reordering * mss) && mss) { 1085 #if FASTRETRANS_DEBUG > 1 1086 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1087 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1088 tp->reordering, 1089 0, 1090 tp->sacked_out, 1091 tp->undo_marker ? tp->undo_retrans : 0); 1092 #endif 1093 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1094 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1095 } 1096 1097 /* This exciting event is worth to be remembered. 8) */ 1098 tp->reord_seen++; 1099 NET_INC_STATS(sock_net(sk), 1100 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1101 } 1102 1103 /* This must be called before lost_out or retrans_out are updated 1104 * on a new loss, because we want to know if all skbs previously 1105 * known to be lost have already been retransmitted, indicating 1106 * that this newly lost skb is our next skb to retransmit. 1107 */ 1108 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1109 { 1110 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1111 (tp->retransmit_skb_hint && 1112 before(TCP_SKB_CB(skb)->seq, 1113 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1114 tp->retransmit_skb_hint = skb; 1115 } 1116 1117 /* Sum the number of packets on the wire we have marked as lost, and 1118 * notify the congestion control module that the given skb was marked lost. 1119 */ 1120 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1121 { 1122 tp->lost += tcp_skb_pcount(skb); 1123 } 1124 1125 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1126 { 1127 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1128 struct tcp_sock *tp = tcp_sk(sk); 1129 1130 if (sacked & TCPCB_SACKED_ACKED) 1131 return; 1132 1133 tcp_verify_retransmit_hint(tp, skb); 1134 if (sacked & TCPCB_LOST) { 1135 if (sacked & TCPCB_SACKED_RETRANS) { 1136 /* Account for retransmits that are lost again */ 1137 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1138 tp->retrans_out -= tcp_skb_pcount(skb); 1139 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1140 tcp_skb_pcount(skb)); 1141 tcp_notify_skb_loss_event(tp, skb); 1142 } 1143 } else { 1144 tp->lost_out += tcp_skb_pcount(skb); 1145 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1146 tcp_notify_skb_loss_event(tp, skb); 1147 } 1148 } 1149 1150 /* Updates the delivered and delivered_ce counts */ 1151 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1152 bool ece_ack) 1153 { 1154 tp->delivered += delivered; 1155 if (ece_ack) 1156 tp->delivered_ce += delivered; 1157 } 1158 1159 /* This procedure tags the retransmission queue when SACKs arrive. 1160 * 1161 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1162 * Packets in queue with these bits set are counted in variables 1163 * sacked_out, retrans_out and lost_out, correspondingly. 1164 * 1165 * Valid combinations are: 1166 * Tag InFlight Description 1167 * 0 1 - orig segment is in flight. 1168 * S 0 - nothing flies, orig reached receiver. 1169 * L 0 - nothing flies, orig lost by net. 1170 * R 2 - both orig and retransmit are in flight. 1171 * L|R 1 - orig is lost, retransmit is in flight. 1172 * S|R 1 - orig reached receiver, retrans is still in flight. 1173 * (L|S|R is logically valid, it could occur when L|R is sacked, 1174 * but it is equivalent to plain S and code short-curcuits it to S. 1175 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1176 * 1177 * These 6 states form finite state machine, controlled by the following events: 1178 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1179 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1180 * 3. Loss detection event of two flavors: 1181 * A. Scoreboard estimator decided the packet is lost. 1182 * A'. Reno "three dupacks" marks head of queue lost. 1183 * B. SACK arrives sacking SND.NXT at the moment, when the 1184 * segment was retransmitted. 1185 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1186 * 1187 * It is pleasant to note, that state diagram turns out to be commutative, 1188 * so that we are allowed not to be bothered by order of our actions, 1189 * when multiple events arrive simultaneously. (see the function below). 1190 * 1191 * Reordering detection. 1192 * -------------------- 1193 * Reordering metric is maximal distance, which a packet can be displaced 1194 * in packet stream. With SACKs we can estimate it: 1195 * 1196 * 1. SACK fills old hole and the corresponding segment was not 1197 * ever retransmitted -> reordering. Alas, we cannot use it 1198 * when segment was retransmitted. 1199 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1200 * for retransmitted and already SACKed segment -> reordering.. 1201 * Both of these heuristics are not used in Loss state, when we cannot 1202 * account for retransmits accurately. 1203 * 1204 * SACK block validation. 1205 * ---------------------- 1206 * 1207 * SACK block range validation checks that the received SACK block fits to 1208 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1209 * Note that SND.UNA is not included to the range though being valid because 1210 * it means that the receiver is rather inconsistent with itself reporting 1211 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1212 * perfectly valid, however, in light of RFC2018 which explicitly states 1213 * that "SACK block MUST reflect the newest segment. Even if the newest 1214 * segment is going to be discarded ...", not that it looks very clever 1215 * in case of head skb. Due to potentional receiver driven attacks, we 1216 * choose to avoid immediate execution of a walk in write queue due to 1217 * reneging and defer head skb's loss recovery to standard loss recovery 1218 * procedure that will eventually trigger (nothing forbids us doing this). 1219 * 1220 * Implements also blockage to start_seq wrap-around. Problem lies in the 1221 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1222 * there's no guarantee that it will be before snd_nxt (n). The problem 1223 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1224 * wrap (s_w): 1225 * 1226 * <- outs wnd -> <- wrapzone -> 1227 * u e n u_w e_w s n_w 1228 * | | | | | | | 1229 * |<------------+------+----- TCP seqno space --------------+---------->| 1230 * ...-- <2^31 ->| |<--------... 1231 * ...---- >2^31 ------>| |<--------... 1232 * 1233 * Current code wouldn't be vulnerable but it's better still to discard such 1234 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1235 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1236 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1237 * equal to the ideal case (infinite seqno space without wrap caused issues). 1238 * 1239 * With D-SACK the lower bound is extended to cover sequence space below 1240 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1241 * again, D-SACK block must not to go across snd_una (for the same reason as 1242 * for the normal SACK blocks, explained above). But there all simplicity 1243 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1244 * fully below undo_marker they do not affect behavior in anyway and can 1245 * therefore be safely ignored. In rare cases (which are more or less 1246 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1247 * fragmentation and packet reordering past skb's retransmission. To consider 1248 * them correctly, the acceptable range must be extended even more though 1249 * the exact amount is rather hard to quantify. However, tp->max_window can 1250 * be used as an exaggerated estimate. 1251 */ 1252 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1253 u32 start_seq, u32 end_seq) 1254 { 1255 /* Too far in future, or reversed (interpretation is ambiguous) */ 1256 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1257 return false; 1258 1259 /* Nasty start_seq wrap-around check (see comments above) */ 1260 if (!before(start_seq, tp->snd_nxt)) 1261 return false; 1262 1263 /* In outstanding window? ...This is valid exit for D-SACKs too. 1264 * start_seq == snd_una is non-sensical (see comments above) 1265 */ 1266 if (after(start_seq, tp->snd_una)) 1267 return true; 1268 1269 if (!is_dsack || !tp->undo_marker) 1270 return false; 1271 1272 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1273 if (after(end_seq, tp->snd_una)) 1274 return false; 1275 1276 if (!before(start_seq, tp->undo_marker)) 1277 return true; 1278 1279 /* Too old */ 1280 if (!after(end_seq, tp->undo_marker)) 1281 return false; 1282 1283 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1284 * start_seq < undo_marker and end_seq >= undo_marker. 1285 */ 1286 return !before(start_seq, end_seq - tp->max_window); 1287 } 1288 1289 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1290 struct tcp_sack_block_wire *sp, int num_sacks, 1291 u32 prior_snd_una, struct tcp_sacktag_state *state) 1292 { 1293 struct tcp_sock *tp = tcp_sk(sk); 1294 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1295 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1296 u32 dup_segs; 1297 1298 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1299 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1300 } else if (num_sacks > 1) { 1301 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1302 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1303 1304 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1305 return false; 1306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1307 } else { 1308 return false; 1309 } 1310 1311 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1312 if (!dup_segs) { /* Skip dubious DSACK */ 1313 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1314 return false; 1315 } 1316 1317 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1318 1319 /* D-SACK for already forgotten data... Do dumb counting. */ 1320 if (tp->undo_marker && tp->undo_retrans > 0 && 1321 !after(end_seq_0, prior_snd_una) && 1322 after(end_seq_0, tp->undo_marker)) 1323 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1324 1325 return true; 1326 } 1327 1328 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1329 * the incoming SACK may not exactly match but we can find smaller MSS 1330 * aligned portion of it that matches. Therefore we might need to fragment 1331 * which may fail and creates some hassle (caller must handle error case 1332 * returns). 1333 * 1334 * FIXME: this could be merged to shift decision code 1335 */ 1336 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1337 u32 start_seq, u32 end_seq) 1338 { 1339 int err; 1340 bool in_sack; 1341 unsigned int pkt_len; 1342 unsigned int mss; 1343 1344 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1345 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1346 1347 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1348 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1349 mss = tcp_skb_mss(skb); 1350 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1351 1352 if (!in_sack) { 1353 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1354 if (pkt_len < mss) 1355 pkt_len = mss; 1356 } else { 1357 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1358 if (pkt_len < mss) 1359 return -EINVAL; 1360 } 1361 1362 /* Round if necessary so that SACKs cover only full MSSes 1363 * and/or the remaining small portion (if present) 1364 */ 1365 if (pkt_len > mss) { 1366 unsigned int new_len = (pkt_len / mss) * mss; 1367 if (!in_sack && new_len < pkt_len) 1368 new_len += mss; 1369 pkt_len = new_len; 1370 } 1371 1372 if (pkt_len >= skb->len && !in_sack) 1373 return 0; 1374 1375 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1376 pkt_len, mss, GFP_ATOMIC); 1377 if (err < 0) 1378 return err; 1379 } 1380 1381 return in_sack; 1382 } 1383 1384 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1385 static u8 tcp_sacktag_one(struct sock *sk, 1386 struct tcp_sacktag_state *state, u8 sacked, 1387 u32 start_seq, u32 end_seq, 1388 int dup_sack, int pcount, 1389 u64 xmit_time) 1390 { 1391 struct tcp_sock *tp = tcp_sk(sk); 1392 1393 /* Account D-SACK for retransmitted packet. */ 1394 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1395 if (tp->undo_marker && tp->undo_retrans > 0 && 1396 after(end_seq, tp->undo_marker)) 1397 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1398 if ((sacked & TCPCB_SACKED_ACKED) && 1399 before(start_seq, state->reord)) 1400 state->reord = start_seq; 1401 } 1402 1403 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1404 if (!after(end_seq, tp->snd_una)) 1405 return sacked; 1406 1407 if (!(sacked & TCPCB_SACKED_ACKED)) { 1408 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1409 1410 if (sacked & TCPCB_SACKED_RETRANS) { 1411 /* If the segment is not tagged as lost, 1412 * we do not clear RETRANS, believing 1413 * that retransmission is still in flight. 1414 */ 1415 if (sacked & TCPCB_LOST) { 1416 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1417 tp->lost_out -= pcount; 1418 tp->retrans_out -= pcount; 1419 } 1420 } else { 1421 if (!(sacked & TCPCB_RETRANS)) { 1422 /* New sack for not retransmitted frame, 1423 * which was in hole. It is reordering. 1424 */ 1425 if (before(start_seq, 1426 tcp_highest_sack_seq(tp)) && 1427 before(start_seq, state->reord)) 1428 state->reord = start_seq; 1429 1430 if (!after(end_seq, tp->high_seq)) 1431 state->flag |= FLAG_ORIG_SACK_ACKED; 1432 if (state->first_sackt == 0) 1433 state->first_sackt = xmit_time; 1434 state->last_sackt = xmit_time; 1435 } 1436 1437 if (sacked & TCPCB_LOST) { 1438 sacked &= ~TCPCB_LOST; 1439 tp->lost_out -= pcount; 1440 } 1441 } 1442 1443 sacked |= TCPCB_SACKED_ACKED; 1444 state->flag |= FLAG_DATA_SACKED; 1445 tp->sacked_out += pcount; 1446 /* Out-of-order packets delivered */ 1447 state->sack_delivered += pcount; 1448 1449 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1450 if (tp->lost_skb_hint && 1451 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1452 tp->lost_cnt_hint += pcount; 1453 } 1454 1455 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1456 * frames and clear it. undo_retrans is decreased above, L|R frames 1457 * are accounted above as well. 1458 */ 1459 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1460 sacked &= ~TCPCB_SACKED_RETRANS; 1461 tp->retrans_out -= pcount; 1462 } 1463 1464 return sacked; 1465 } 1466 1467 /* Shift newly-SACKed bytes from this skb to the immediately previous 1468 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1469 */ 1470 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1471 struct sk_buff *skb, 1472 struct tcp_sacktag_state *state, 1473 unsigned int pcount, int shifted, int mss, 1474 bool dup_sack) 1475 { 1476 struct tcp_sock *tp = tcp_sk(sk); 1477 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1478 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1479 1480 BUG_ON(!pcount); 1481 1482 /* Adjust counters and hints for the newly sacked sequence 1483 * range but discard the return value since prev is already 1484 * marked. We must tag the range first because the seq 1485 * advancement below implicitly advances 1486 * tcp_highest_sack_seq() when skb is highest_sack. 1487 */ 1488 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1489 start_seq, end_seq, dup_sack, pcount, 1490 tcp_skb_timestamp_us(skb)); 1491 tcp_rate_skb_delivered(sk, skb, state->rate); 1492 1493 if (skb == tp->lost_skb_hint) 1494 tp->lost_cnt_hint += pcount; 1495 1496 TCP_SKB_CB(prev)->end_seq += shifted; 1497 TCP_SKB_CB(skb)->seq += shifted; 1498 1499 tcp_skb_pcount_add(prev, pcount); 1500 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1501 tcp_skb_pcount_add(skb, -pcount); 1502 1503 /* When we're adding to gso_segs == 1, gso_size will be zero, 1504 * in theory this shouldn't be necessary but as long as DSACK 1505 * code can come after this skb later on it's better to keep 1506 * setting gso_size to something. 1507 */ 1508 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1509 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1510 1511 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1512 if (tcp_skb_pcount(skb) <= 1) 1513 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1514 1515 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1516 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1517 1518 if (skb->len > 0) { 1519 BUG_ON(!tcp_skb_pcount(skb)); 1520 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1521 return false; 1522 } 1523 1524 /* Whole SKB was eaten :-) */ 1525 1526 if (skb == tp->retransmit_skb_hint) 1527 tp->retransmit_skb_hint = prev; 1528 if (skb == tp->lost_skb_hint) { 1529 tp->lost_skb_hint = prev; 1530 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1531 } 1532 1533 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1534 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1535 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1536 TCP_SKB_CB(prev)->end_seq++; 1537 1538 if (skb == tcp_highest_sack(sk)) 1539 tcp_advance_highest_sack(sk, skb); 1540 1541 tcp_skb_collapse_tstamp(prev, skb); 1542 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1543 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1544 1545 tcp_rtx_queue_unlink_and_free(skb, sk); 1546 1547 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1548 1549 return true; 1550 } 1551 1552 /* I wish gso_size would have a bit more sane initialization than 1553 * something-or-zero which complicates things 1554 */ 1555 static int tcp_skb_seglen(const struct sk_buff *skb) 1556 { 1557 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1558 } 1559 1560 /* Shifting pages past head area doesn't work */ 1561 static int skb_can_shift(const struct sk_buff *skb) 1562 { 1563 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1564 } 1565 1566 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1567 int pcount, int shiftlen) 1568 { 1569 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1570 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1571 * to make sure not storing more than 65535 * 8 bytes per skb, 1572 * even if current MSS is bigger. 1573 */ 1574 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1575 return 0; 1576 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1577 return 0; 1578 return skb_shift(to, from, shiftlen); 1579 } 1580 1581 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1582 * skb. 1583 */ 1584 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1585 struct tcp_sacktag_state *state, 1586 u32 start_seq, u32 end_seq, 1587 bool dup_sack) 1588 { 1589 struct tcp_sock *tp = tcp_sk(sk); 1590 struct sk_buff *prev; 1591 int mss; 1592 int pcount = 0; 1593 int len; 1594 int in_sack; 1595 1596 /* Normally R but no L won't result in plain S */ 1597 if (!dup_sack && 1598 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1599 goto fallback; 1600 if (!skb_can_shift(skb)) 1601 goto fallback; 1602 /* This frame is about to be dropped (was ACKed). */ 1603 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1604 goto fallback; 1605 1606 /* Can only happen with delayed DSACK + discard craziness */ 1607 prev = skb_rb_prev(skb); 1608 if (!prev) 1609 goto fallback; 1610 1611 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1612 goto fallback; 1613 1614 if (!tcp_skb_can_collapse(prev, skb)) 1615 goto fallback; 1616 1617 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1618 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1619 1620 if (in_sack) { 1621 len = skb->len; 1622 pcount = tcp_skb_pcount(skb); 1623 mss = tcp_skb_seglen(skb); 1624 1625 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1626 * drop this restriction as unnecessary 1627 */ 1628 if (mss != tcp_skb_seglen(prev)) 1629 goto fallback; 1630 } else { 1631 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1632 goto noop; 1633 /* CHECKME: This is non-MSS split case only?, this will 1634 * cause skipped skbs due to advancing loop btw, original 1635 * has that feature too 1636 */ 1637 if (tcp_skb_pcount(skb) <= 1) 1638 goto noop; 1639 1640 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1641 if (!in_sack) { 1642 /* TODO: head merge to next could be attempted here 1643 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1644 * though it might not be worth of the additional hassle 1645 * 1646 * ...we can probably just fallback to what was done 1647 * previously. We could try merging non-SACKed ones 1648 * as well but it probably isn't going to buy off 1649 * because later SACKs might again split them, and 1650 * it would make skb timestamp tracking considerably 1651 * harder problem. 1652 */ 1653 goto fallback; 1654 } 1655 1656 len = end_seq - TCP_SKB_CB(skb)->seq; 1657 BUG_ON(len < 0); 1658 BUG_ON(len > skb->len); 1659 1660 /* MSS boundaries should be honoured or else pcount will 1661 * severely break even though it makes things bit trickier. 1662 * Optimize common case to avoid most of the divides 1663 */ 1664 mss = tcp_skb_mss(skb); 1665 1666 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1667 * drop this restriction as unnecessary 1668 */ 1669 if (mss != tcp_skb_seglen(prev)) 1670 goto fallback; 1671 1672 if (len == mss) { 1673 pcount = 1; 1674 } else if (len < mss) { 1675 goto noop; 1676 } else { 1677 pcount = len / mss; 1678 len = pcount * mss; 1679 } 1680 } 1681 1682 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1683 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1684 goto fallback; 1685 1686 if (!tcp_skb_shift(prev, skb, pcount, len)) 1687 goto fallback; 1688 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1689 goto out; 1690 1691 /* Hole filled allows collapsing with the next as well, this is very 1692 * useful when hole on every nth skb pattern happens 1693 */ 1694 skb = skb_rb_next(prev); 1695 if (!skb) 1696 goto out; 1697 1698 if (!skb_can_shift(skb) || 1699 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1700 (mss != tcp_skb_seglen(skb))) 1701 goto out; 1702 1703 if (!tcp_skb_can_collapse(prev, skb)) 1704 goto out; 1705 len = skb->len; 1706 pcount = tcp_skb_pcount(skb); 1707 if (tcp_skb_shift(prev, skb, pcount, len)) 1708 tcp_shifted_skb(sk, prev, skb, state, pcount, 1709 len, mss, 0); 1710 1711 out: 1712 return prev; 1713 1714 noop: 1715 return skb; 1716 1717 fallback: 1718 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1719 return NULL; 1720 } 1721 1722 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1723 struct tcp_sack_block *next_dup, 1724 struct tcp_sacktag_state *state, 1725 u32 start_seq, u32 end_seq, 1726 bool dup_sack_in) 1727 { 1728 struct tcp_sock *tp = tcp_sk(sk); 1729 struct sk_buff *tmp; 1730 1731 skb_rbtree_walk_from(skb) { 1732 int in_sack = 0; 1733 bool dup_sack = dup_sack_in; 1734 1735 /* queue is in-order => we can short-circuit the walk early */ 1736 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1737 break; 1738 1739 if (next_dup && 1740 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1741 in_sack = tcp_match_skb_to_sack(sk, skb, 1742 next_dup->start_seq, 1743 next_dup->end_seq); 1744 if (in_sack > 0) 1745 dup_sack = true; 1746 } 1747 1748 /* skb reference here is a bit tricky to get right, since 1749 * shifting can eat and free both this skb and the next, 1750 * so not even _safe variant of the loop is enough. 1751 */ 1752 if (in_sack <= 0) { 1753 tmp = tcp_shift_skb_data(sk, skb, state, 1754 start_seq, end_seq, dup_sack); 1755 if (tmp) { 1756 if (tmp != skb) { 1757 skb = tmp; 1758 continue; 1759 } 1760 1761 in_sack = 0; 1762 } else { 1763 in_sack = tcp_match_skb_to_sack(sk, skb, 1764 start_seq, 1765 end_seq); 1766 } 1767 } 1768 1769 if (unlikely(in_sack < 0)) 1770 break; 1771 1772 if (in_sack) { 1773 TCP_SKB_CB(skb)->sacked = 1774 tcp_sacktag_one(sk, 1775 state, 1776 TCP_SKB_CB(skb)->sacked, 1777 TCP_SKB_CB(skb)->seq, 1778 TCP_SKB_CB(skb)->end_seq, 1779 dup_sack, 1780 tcp_skb_pcount(skb), 1781 tcp_skb_timestamp_us(skb)); 1782 tcp_rate_skb_delivered(sk, skb, state->rate); 1783 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1784 list_del_init(&skb->tcp_tsorted_anchor); 1785 1786 if (!before(TCP_SKB_CB(skb)->seq, 1787 tcp_highest_sack_seq(tp))) 1788 tcp_advance_highest_sack(sk, skb); 1789 } 1790 } 1791 return skb; 1792 } 1793 1794 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1795 { 1796 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1797 struct sk_buff *skb; 1798 1799 while (*p) { 1800 parent = *p; 1801 skb = rb_to_skb(parent); 1802 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1803 p = &parent->rb_left; 1804 continue; 1805 } 1806 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1807 p = &parent->rb_right; 1808 continue; 1809 } 1810 return skb; 1811 } 1812 return NULL; 1813 } 1814 1815 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1816 u32 skip_to_seq) 1817 { 1818 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1819 return skb; 1820 1821 return tcp_sacktag_bsearch(sk, skip_to_seq); 1822 } 1823 1824 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1825 struct sock *sk, 1826 struct tcp_sack_block *next_dup, 1827 struct tcp_sacktag_state *state, 1828 u32 skip_to_seq) 1829 { 1830 if (!next_dup) 1831 return skb; 1832 1833 if (before(next_dup->start_seq, skip_to_seq)) { 1834 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1835 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1836 next_dup->start_seq, next_dup->end_seq, 1837 1); 1838 } 1839 1840 return skb; 1841 } 1842 1843 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1844 { 1845 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1846 } 1847 1848 static int 1849 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1850 u32 prior_snd_una, struct tcp_sacktag_state *state) 1851 { 1852 struct tcp_sock *tp = tcp_sk(sk); 1853 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1854 TCP_SKB_CB(ack_skb)->sacked); 1855 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1856 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1857 struct tcp_sack_block *cache; 1858 struct sk_buff *skb; 1859 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1860 int used_sacks; 1861 bool found_dup_sack = false; 1862 int i, j; 1863 int first_sack_index; 1864 1865 state->flag = 0; 1866 state->reord = tp->snd_nxt; 1867 1868 if (!tp->sacked_out) 1869 tcp_highest_sack_reset(sk); 1870 1871 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1872 num_sacks, prior_snd_una, state); 1873 1874 /* Eliminate too old ACKs, but take into 1875 * account more or less fresh ones, they can 1876 * contain valid SACK info. 1877 */ 1878 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1879 return 0; 1880 1881 if (!tp->packets_out) 1882 goto out; 1883 1884 used_sacks = 0; 1885 first_sack_index = 0; 1886 for (i = 0; i < num_sacks; i++) { 1887 bool dup_sack = !i && found_dup_sack; 1888 1889 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1890 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1891 1892 if (!tcp_is_sackblock_valid(tp, dup_sack, 1893 sp[used_sacks].start_seq, 1894 sp[used_sacks].end_seq)) { 1895 int mib_idx; 1896 1897 if (dup_sack) { 1898 if (!tp->undo_marker) 1899 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1900 else 1901 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1902 } else { 1903 /* Don't count olds caused by ACK reordering */ 1904 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1905 !after(sp[used_sacks].end_seq, tp->snd_una)) 1906 continue; 1907 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1908 } 1909 1910 NET_INC_STATS(sock_net(sk), mib_idx); 1911 if (i == 0) 1912 first_sack_index = -1; 1913 continue; 1914 } 1915 1916 /* Ignore very old stuff early */ 1917 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1918 if (i == 0) 1919 first_sack_index = -1; 1920 continue; 1921 } 1922 1923 used_sacks++; 1924 } 1925 1926 /* order SACK blocks to allow in order walk of the retrans queue */ 1927 for (i = used_sacks - 1; i > 0; i--) { 1928 for (j = 0; j < i; j++) { 1929 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1930 swap(sp[j], sp[j + 1]); 1931 1932 /* Track where the first SACK block goes to */ 1933 if (j == first_sack_index) 1934 first_sack_index = j + 1; 1935 } 1936 } 1937 } 1938 1939 state->mss_now = tcp_current_mss(sk); 1940 skb = NULL; 1941 i = 0; 1942 1943 if (!tp->sacked_out) { 1944 /* It's already past, so skip checking against it */ 1945 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1946 } else { 1947 cache = tp->recv_sack_cache; 1948 /* Skip empty blocks in at head of the cache */ 1949 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1950 !cache->end_seq) 1951 cache++; 1952 } 1953 1954 while (i < used_sacks) { 1955 u32 start_seq = sp[i].start_seq; 1956 u32 end_seq = sp[i].end_seq; 1957 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1958 struct tcp_sack_block *next_dup = NULL; 1959 1960 if (found_dup_sack && ((i + 1) == first_sack_index)) 1961 next_dup = &sp[i + 1]; 1962 1963 /* Skip too early cached blocks */ 1964 while (tcp_sack_cache_ok(tp, cache) && 1965 !before(start_seq, cache->end_seq)) 1966 cache++; 1967 1968 /* Can skip some work by looking recv_sack_cache? */ 1969 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1970 after(end_seq, cache->start_seq)) { 1971 1972 /* Head todo? */ 1973 if (before(start_seq, cache->start_seq)) { 1974 skb = tcp_sacktag_skip(skb, sk, start_seq); 1975 skb = tcp_sacktag_walk(skb, sk, next_dup, 1976 state, 1977 start_seq, 1978 cache->start_seq, 1979 dup_sack); 1980 } 1981 1982 /* Rest of the block already fully processed? */ 1983 if (!after(end_seq, cache->end_seq)) 1984 goto advance_sp; 1985 1986 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1987 state, 1988 cache->end_seq); 1989 1990 /* ...tail remains todo... */ 1991 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1992 /* ...but better entrypoint exists! */ 1993 skb = tcp_highest_sack(sk); 1994 if (!skb) 1995 break; 1996 cache++; 1997 goto walk; 1998 } 1999 2000 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 2001 /* Check overlap against next cached too (past this one already) */ 2002 cache++; 2003 continue; 2004 } 2005 2006 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2007 skb = tcp_highest_sack(sk); 2008 if (!skb) 2009 break; 2010 } 2011 skb = tcp_sacktag_skip(skb, sk, start_seq); 2012 2013 walk: 2014 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2015 start_seq, end_seq, dup_sack); 2016 2017 advance_sp: 2018 i++; 2019 } 2020 2021 /* Clear the head of the cache sack blocks so we can skip it next time */ 2022 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2023 tp->recv_sack_cache[i].start_seq = 0; 2024 tp->recv_sack_cache[i].end_seq = 0; 2025 } 2026 for (j = 0; j < used_sacks; j++) 2027 tp->recv_sack_cache[i++] = sp[j]; 2028 2029 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2030 tcp_check_sack_reordering(sk, state->reord, 0); 2031 2032 tcp_verify_left_out(tp); 2033 out: 2034 2035 #if FASTRETRANS_DEBUG > 0 2036 WARN_ON((int)tp->sacked_out < 0); 2037 WARN_ON((int)tp->lost_out < 0); 2038 WARN_ON((int)tp->retrans_out < 0); 2039 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2040 #endif 2041 return state->flag; 2042 } 2043 2044 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2045 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2046 */ 2047 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2048 { 2049 u32 holes; 2050 2051 holes = max(tp->lost_out, 1U); 2052 holes = min(holes, tp->packets_out); 2053 2054 if ((tp->sacked_out + holes) > tp->packets_out) { 2055 tp->sacked_out = tp->packets_out - holes; 2056 return true; 2057 } 2058 return false; 2059 } 2060 2061 /* If we receive more dupacks than we expected counting segments 2062 * in assumption of absent reordering, interpret this as reordering. 2063 * The only another reason could be bug in receiver TCP. 2064 */ 2065 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2066 { 2067 struct tcp_sock *tp = tcp_sk(sk); 2068 2069 if (!tcp_limit_reno_sacked(tp)) 2070 return; 2071 2072 tp->reordering = min_t(u32, tp->packets_out + addend, 2073 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2074 tp->reord_seen++; 2075 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2076 } 2077 2078 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2079 2080 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2081 { 2082 if (num_dupack) { 2083 struct tcp_sock *tp = tcp_sk(sk); 2084 u32 prior_sacked = tp->sacked_out; 2085 s32 delivered; 2086 2087 tp->sacked_out += num_dupack; 2088 tcp_check_reno_reordering(sk, 0); 2089 delivered = tp->sacked_out - prior_sacked; 2090 if (delivered > 0) 2091 tcp_count_delivered(tp, delivered, ece_ack); 2092 tcp_verify_left_out(tp); 2093 } 2094 } 2095 2096 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2097 2098 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2099 { 2100 struct tcp_sock *tp = tcp_sk(sk); 2101 2102 if (acked > 0) { 2103 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2104 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2105 ece_ack); 2106 if (acked - 1 >= tp->sacked_out) 2107 tp->sacked_out = 0; 2108 else 2109 tp->sacked_out -= acked - 1; 2110 } 2111 tcp_check_reno_reordering(sk, acked); 2112 tcp_verify_left_out(tp); 2113 } 2114 2115 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2116 { 2117 tp->sacked_out = 0; 2118 } 2119 2120 void tcp_clear_retrans(struct tcp_sock *tp) 2121 { 2122 tp->retrans_out = 0; 2123 tp->lost_out = 0; 2124 tp->undo_marker = 0; 2125 tp->undo_retrans = -1; 2126 tp->sacked_out = 0; 2127 tp->rto_stamp = 0; 2128 tp->total_rto = 0; 2129 tp->total_rto_recoveries = 0; 2130 tp->total_rto_time = 0; 2131 } 2132 2133 static inline void tcp_init_undo(struct tcp_sock *tp) 2134 { 2135 tp->undo_marker = tp->snd_una; 2136 /* Retransmission still in flight may cause DSACKs later. */ 2137 tp->undo_retrans = tp->retrans_out ? : -1; 2138 } 2139 2140 static bool tcp_is_rack(const struct sock *sk) 2141 { 2142 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2143 TCP_RACK_LOSS_DETECTION; 2144 } 2145 2146 /* If we detect SACK reneging, forget all SACK information 2147 * and reset tags completely, otherwise preserve SACKs. If receiver 2148 * dropped its ofo queue, we will know this due to reneging detection. 2149 */ 2150 static void tcp_timeout_mark_lost(struct sock *sk) 2151 { 2152 struct tcp_sock *tp = tcp_sk(sk); 2153 struct sk_buff *skb, *head; 2154 bool is_reneg; /* is receiver reneging on SACKs? */ 2155 2156 head = tcp_rtx_queue_head(sk); 2157 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2158 if (is_reneg) { 2159 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2160 tp->sacked_out = 0; 2161 /* Mark SACK reneging until we recover from this loss event. */ 2162 tp->is_sack_reneg = 1; 2163 } else if (tcp_is_reno(tp)) { 2164 tcp_reset_reno_sack(tp); 2165 } 2166 2167 skb = head; 2168 skb_rbtree_walk_from(skb) { 2169 if (is_reneg) 2170 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2171 else if (tcp_is_rack(sk) && skb != head && 2172 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2173 continue; /* Don't mark recently sent ones lost yet */ 2174 tcp_mark_skb_lost(sk, skb); 2175 } 2176 tcp_verify_left_out(tp); 2177 tcp_clear_all_retrans_hints(tp); 2178 } 2179 2180 /* Enter Loss state. */ 2181 void tcp_enter_loss(struct sock *sk) 2182 { 2183 const struct inet_connection_sock *icsk = inet_csk(sk); 2184 struct tcp_sock *tp = tcp_sk(sk); 2185 struct net *net = sock_net(sk); 2186 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2187 u8 reordering; 2188 2189 tcp_timeout_mark_lost(sk); 2190 2191 /* Reduce ssthresh if it has not yet been made inside this window. */ 2192 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2193 !after(tp->high_seq, tp->snd_una) || 2194 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2195 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2196 tp->prior_cwnd = tcp_snd_cwnd(tp); 2197 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2198 tcp_ca_event(sk, CA_EVENT_LOSS); 2199 tcp_init_undo(tp); 2200 } 2201 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2202 tp->snd_cwnd_cnt = 0; 2203 tp->snd_cwnd_stamp = tcp_jiffies32; 2204 2205 /* Timeout in disordered state after receiving substantial DUPACKs 2206 * suggests that the degree of reordering is over-estimated. 2207 */ 2208 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2209 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2210 tp->sacked_out >= reordering) 2211 tp->reordering = min_t(unsigned int, tp->reordering, 2212 reordering); 2213 2214 tcp_set_ca_state(sk, TCP_CA_Loss); 2215 tp->high_seq = tp->snd_nxt; 2216 tcp_ecn_queue_cwr(tp); 2217 2218 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2219 * loss recovery is underway except recurring timeout(s) on 2220 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2221 */ 2222 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2223 (new_recovery || icsk->icsk_retransmits) && 2224 !inet_csk(sk)->icsk_mtup.probe_size; 2225 } 2226 2227 /* If ACK arrived pointing to a remembered SACK, it means that our 2228 * remembered SACKs do not reflect real state of receiver i.e. 2229 * receiver _host_ is heavily congested (or buggy). 2230 * 2231 * To avoid big spurious retransmission bursts due to transient SACK 2232 * scoreboard oddities that look like reneging, we give the receiver a 2233 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2234 * restore sanity to the SACK scoreboard. If the apparent reneging 2235 * persists until this RTO then we'll clear the SACK scoreboard. 2236 */ 2237 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2238 { 2239 if (*ack_flag & FLAG_SACK_RENEGING && 2240 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2241 struct tcp_sock *tp = tcp_sk(sk); 2242 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2243 msecs_to_jiffies(10)); 2244 2245 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2246 delay, TCP_RTO_MAX); 2247 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2248 return true; 2249 } 2250 return false; 2251 } 2252 2253 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2254 * counter when SACK is enabled (without SACK, sacked_out is used for 2255 * that purpose). 2256 * 2257 * With reordering, holes may still be in flight, so RFC3517 recovery 2258 * uses pure sacked_out (total number of SACKed segments) even though 2259 * it violates the RFC that uses duplicate ACKs, often these are equal 2260 * but when e.g. out-of-window ACKs or packet duplication occurs, 2261 * they differ. Since neither occurs due to loss, TCP should really 2262 * ignore them. 2263 */ 2264 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2265 { 2266 return tp->sacked_out + 1; 2267 } 2268 2269 /* Linux NewReno/SACK/ECN state machine. 2270 * -------------------------------------- 2271 * 2272 * "Open" Normal state, no dubious events, fast path. 2273 * "Disorder" In all the respects it is "Open", 2274 * but requires a bit more attention. It is entered when 2275 * we see some SACKs or dupacks. It is split of "Open" 2276 * mainly to move some processing from fast path to slow one. 2277 * "CWR" CWND was reduced due to some Congestion Notification event. 2278 * It can be ECN, ICMP source quench, local device congestion. 2279 * "Recovery" CWND was reduced, we are fast-retransmitting. 2280 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2281 * 2282 * tcp_fastretrans_alert() is entered: 2283 * - each incoming ACK, if state is not "Open" 2284 * - when arrived ACK is unusual, namely: 2285 * * SACK 2286 * * Duplicate ACK. 2287 * * ECN ECE. 2288 * 2289 * Counting packets in flight is pretty simple. 2290 * 2291 * in_flight = packets_out - left_out + retrans_out 2292 * 2293 * packets_out is SND.NXT-SND.UNA counted in packets. 2294 * 2295 * retrans_out is number of retransmitted segments. 2296 * 2297 * left_out is number of segments left network, but not ACKed yet. 2298 * 2299 * left_out = sacked_out + lost_out 2300 * 2301 * sacked_out: Packets, which arrived to receiver out of order 2302 * and hence not ACKed. With SACKs this number is simply 2303 * amount of SACKed data. Even without SACKs 2304 * it is easy to give pretty reliable estimate of this number, 2305 * counting duplicate ACKs. 2306 * 2307 * lost_out: Packets lost by network. TCP has no explicit 2308 * "loss notification" feedback from network (for now). 2309 * It means that this number can be only _guessed_. 2310 * Actually, it is the heuristics to predict lossage that 2311 * distinguishes different algorithms. 2312 * 2313 * F.e. after RTO, when all the queue is considered as lost, 2314 * lost_out = packets_out and in_flight = retrans_out. 2315 * 2316 * Essentially, we have now a few algorithms detecting 2317 * lost packets. 2318 * 2319 * If the receiver supports SACK: 2320 * 2321 * RFC6675/3517: It is the conventional algorithm. A packet is 2322 * considered lost if the number of higher sequence packets 2323 * SACKed is greater than or equal the DUPACK thoreshold 2324 * (reordering). This is implemented in tcp_mark_head_lost and 2325 * tcp_update_scoreboard. 2326 * 2327 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2328 * (2017-) that checks timing instead of counting DUPACKs. 2329 * Essentially a packet is considered lost if it's not S/ACKed 2330 * after RTT + reordering_window, where both metrics are 2331 * dynamically measured and adjusted. This is implemented in 2332 * tcp_rack_mark_lost. 2333 * 2334 * If the receiver does not support SACK: 2335 * 2336 * NewReno (RFC6582): in Recovery we assume that one segment 2337 * is lost (classic Reno). While we are in Recovery and 2338 * a partial ACK arrives, we assume that one more packet 2339 * is lost (NewReno). This heuristics are the same in NewReno 2340 * and SACK. 2341 * 2342 * Really tricky (and requiring careful tuning) part of algorithm 2343 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2344 * The first determines the moment _when_ we should reduce CWND and, 2345 * hence, slow down forward transmission. In fact, it determines the moment 2346 * when we decide that hole is caused by loss, rather than by a reorder. 2347 * 2348 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2349 * holes, caused by lost packets. 2350 * 2351 * And the most logically complicated part of algorithm is undo 2352 * heuristics. We detect false retransmits due to both too early 2353 * fast retransmit (reordering) and underestimated RTO, analyzing 2354 * timestamps and D-SACKs. When we detect that some segments were 2355 * retransmitted by mistake and CWND reduction was wrong, we undo 2356 * window reduction and abort recovery phase. This logic is hidden 2357 * inside several functions named tcp_try_undo_<something>. 2358 */ 2359 2360 /* This function decides, when we should leave Disordered state 2361 * and enter Recovery phase, reducing congestion window. 2362 * 2363 * Main question: may we further continue forward transmission 2364 * with the same cwnd? 2365 */ 2366 static bool tcp_time_to_recover(struct sock *sk, int flag) 2367 { 2368 struct tcp_sock *tp = tcp_sk(sk); 2369 2370 /* Trick#1: The loss is proven. */ 2371 if (tp->lost_out) 2372 return true; 2373 2374 /* Not-A-Trick#2 : Classic rule... */ 2375 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2376 return true; 2377 2378 return false; 2379 } 2380 2381 /* Detect loss in event "A" above by marking head of queue up as lost. 2382 * For RFC3517 SACK, a segment is considered lost if it 2383 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2384 * the maximum SACKed segments to pass before reaching this limit. 2385 */ 2386 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2387 { 2388 struct tcp_sock *tp = tcp_sk(sk); 2389 struct sk_buff *skb; 2390 int cnt; 2391 /* Use SACK to deduce losses of new sequences sent during recovery */ 2392 const u32 loss_high = tp->snd_nxt; 2393 2394 WARN_ON(packets > tp->packets_out); 2395 skb = tp->lost_skb_hint; 2396 if (skb) { 2397 /* Head already handled? */ 2398 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2399 return; 2400 cnt = tp->lost_cnt_hint; 2401 } else { 2402 skb = tcp_rtx_queue_head(sk); 2403 cnt = 0; 2404 } 2405 2406 skb_rbtree_walk_from(skb) { 2407 /* TODO: do this better */ 2408 /* this is not the most efficient way to do this... */ 2409 tp->lost_skb_hint = skb; 2410 tp->lost_cnt_hint = cnt; 2411 2412 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2413 break; 2414 2415 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2416 cnt += tcp_skb_pcount(skb); 2417 2418 if (cnt > packets) 2419 break; 2420 2421 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2422 tcp_mark_skb_lost(sk, skb); 2423 2424 if (mark_head) 2425 break; 2426 } 2427 tcp_verify_left_out(tp); 2428 } 2429 2430 /* Account newly detected lost packet(s) */ 2431 2432 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2433 { 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 2436 if (tcp_is_sack(tp)) { 2437 int sacked_upto = tp->sacked_out - tp->reordering; 2438 if (sacked_upto >= 0) 2439 tcp_mark_head_lost(sk, sacked_upto, 0); 2440 else if (fast_rexmit) 2441 tcp_mark_head_lost(sk, 1, 1); 2442 } 2443 } 2444 2445 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2446 { 2447 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2448 before(tp->rx_opt.rcv_tsecr, when); 2449 } 2450 2451 /* skb is spurious retransmitted if the returned timestamp echo 2452 * reply is prior to the skb transmission time 2453 */ 2454 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2455 const struct sk_buff *skb) 2456 { 2457 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2458 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2459 } 2460 2461 /* Nothing was retransmitted or returned timestamp is less 2462 * than timestamp of the first retransmission. 2463 */ 2464 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2465 { 2466 return tp->retrans_stamp && 2467 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2468 } 2469 2470 /* Undo procedures. */ 2471 2472 /* We can clear retrans_stamp when there are no retransmissions in the 2473 * window. It would seem that it is trivially available for us in 2474 * tp->retrans_out, however, that kind of assumptions doesn't consider 2475 * what will happen if errors occur when sending retransmission for the 2476 * second time. ...It could the that such segment has only 2477 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2478 * the head skb is enough except for some reneging corner cases that 2479 * are not worth the effort. 2480 * 2481 * Main reason for all this complexity is the fact that connection dying 2482 * time now depends on the validity of the retrans_stamp, in particular, 2483 * that successive retransmissions of a segment must not advance 2484 * retrans_stamp under any conditions. 2485 */ 2486 static bool tcp_any_retrans_done(const struct sock *sk) 2487 { 2488 const struct tcp_sock *tp = tcp_sk(sk); 2489 struct sk_buff *skb; 2490 2491 if (tp->retrans_out) 2492 return true; 2493 2494 skb = tcp_rtx_queue_head(sk); 2495 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2496 return true; 2497 2498 return false; 2499 } 2500 2501 static void DBGUNDO(struct sock *sk, const char *msg) 2502 { 2503 #if FASTRETRANS_DEBUG > 1 2504 struct tcp_sock *tp = tcp_sk(sk); 2505 struct inet_sock *inet = inet_sk(sk); 2506 2507 if (sk->sk_family == AF_INET) { 2508 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2509 msg, 2510 &inet->inet_daddr, ntohs(inet->inet_dport), 2511 tcp_snd_cwnd(tp), tcp_left_out(tp), 2512 tp->snd_ssthresh, tp->prior_ssthresh, 2513 tp->packets_out); 2514 } 2515 #if IS_ENABLED(CONFIG_IPV6) 2516 else if (sk->sk_family == AF_INET6) { 2517 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2518 msg, 2519 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2520 tcp_snd_cwnd(tp), tcp_left_out(tp), 2521 tp->snd_ssthresh, tp->prior_ssthresh, 2522 tp->packets_out); 2523 } 2524 #endif 2525 #endif 2526 } 2527 2528 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2529 { 2530 struct tcp_sock *tp = tcp_sk(sk); 2531 2532 if (unmark_loss) { 2533 struct sk_buff *skb; 2534 2535 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2536 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2537 } 2538 tp->lost_out = 0; 2539 tcp_clear_all_retrans_hints(tp); 2540 } 2541 2542 if (tp->prior_ssthresh) { 2543 const struct inet_connection_sock *icsk = inet_csk(sk); 2544 2545 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2546 2547 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2548 tp->snd_ssthresh = tp->prior_ssthresh; 2549 tcp_ecn_withdraw_cwr(tp); 2550 } 2551 } 2552 tp->snd_cwnd_stamp = tcp_jiffies32; 2553 tp->undo_marker = 0; 2554 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2555 } 2556 2557 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2558 { 2559 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2560 } 2561 2562 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2563 { 2564 struct tcp_sock *tp = tcp_sk(sk); 2565 2566 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2567 /* Hold old state until something *above* high_seq 2568 * is ACKed. For Reno it is MUST to prevent false 2569 * fast retransmits (RFC2582). SACK TCP is safe. */ 2570 if (!tcp_any_retrans_done(sk)) 2571 tp->retrans_stamp = 0; 2572 return true; 2573 } 2574 return false; 2575 } 2576 2577 /* People celebrate: "We love our President!" */ 2578 static bool tcp_try_undo_recovery(struct sock *sk) 2579 { 2580 struct tcp_sock *tp = tcp_sk(sk); 2581 2582 if (tcp_may_undo(tp)) { 2583 int mib_idx; 2584 2585 /* Happy end! We did not retransmit anything 2586 * or our original transmission succeeded. 2587 */ 2588 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2589 tcp_undo_cwnd_reduction(sk, false); 2590 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2591 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2592 else 2593 mib_idx = LINUX_MIB_TCPFULLUNDO; 2594 2595 NET_INC_STATS(sock_net(sk), mib_idx); 2596 } else if (tp->rack.reo_wnd_persist) { 2597 tp->rack.reo_wnd_persist--; 2598 } 2599 if (tcp_is_non_sack_preventing_reopen(sk)) 2600 return true; 2601 tcp_set_ca_state(sk, TCP_CA_Open); 2602 tp->is_sack_reneg = 0; 2603 return false; 2604 } 2605 2606 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2607 static bool tcp_try_undo_dsack(struct sock *sk) 2608 { 2609 struct tcp_sock *tp = tcp_sk(sk); 2610 2611 if (tp->undo_marker && !tp->undo_retrans) { 2612 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2613 tp->rack.reo_wnd_persist + 1); 2614 DBGUNDO(sk, "D-SACK"); 2615 tcp_undo_cwnd_reduction(sk, false); 2616 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2617 return true; 2618 } 2619 return false; 2620 } 2621 2622 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2623 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2624 { 2625 struct tcp_sock *tp = tcp_sk(sk); 2626 2627 if (frto_undo || tcp_may_undo(tp)) { 2628 tcp_undo_cwnd_reduction(sk, true); 2629 2630 DBGUNDO(sk, "partial loss"); 2631 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2632 if (frto_undo) 2633 NET_INC_STATS(sock_net(sk), 2634 LINUX_MIB_TCPSPURIOUSRTOS); 2635 inet_csk(sk)->icsk_retransmits = 0; 2636 if (tcp_is_non_sack_preventing_reopen(sk)) 2637 return true; 2638 if (frto_undo || tcp_is_sack(tp)) { 2639 tcp_set_ca_state(sk, TCP_CA_Open); 2640 tp->is_sack_reneg = 0; 2641 } 2642 return true; 2643 } 2644 return false; 2645 } 2646 2647 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2648 * It computes the number of packets to send (sndcnt) based on packets newly 2649 * delivered: 2650 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2651 * cwnd reductions across a full RTT. 2652 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2653 * But when SND_UNA is acked without further losses, 2654 * slow starts cwnd up to ssthresh to speed up the recovery. 2655 */ 2656 static void tcp_init_cwnd_reduction(struct sock *sk) 2657 { 2658 struct tcp_sock *tp = tcp_sk(sk); 2659 2660 tp->high_seq = tp->snd_nxt; 2661 tp->tlp_high_seq = 0; 2662 tp->snd_cwnd_cnt = 0; 2663 tp->prior_cwnd = tcp_snd_cwnd(tp); 2664 tp->prr_delivered = 0; 2665 tp->prr_out = 0; 2666 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2667 tcp_ecn_queue_cwr(tp); 2668 } 2669 2670 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2671 { 2672 struct tcp_sock *tp = tcp_sk(sk); 2673 int sndcnt = 0; 2674 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2675 2676 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2677 return; 2678 2679 tp->prr_delivered += newly_acked_sacked; 2680 if (delta < 0) { 2681 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2682 tp->prior_cwnd - 1; 2683 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2684 } else { 2685 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2686 newly_acked_sacked); 2687 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2688 sndcnt++; 2689 sndcnt = min(delta, sndcnt); 2690 } 2691 /* Force a fast retransmit upon entering fast recovery */ 2692 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2693 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2694 } 2695 2696 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2697 { 2698 struct tcp_sock *tp = tcp_sk(sk); 2699 2700 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2701 return; 2702 2703 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2704 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2705 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2706 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2707 tp->snd_cwnd_stamp = tcp_jiffies32; 2708 } 2709 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2710 } 2711 2712 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2713 void tcp_enter_cwr(struct sock *sk) 2714 { 2715 struct tcp_sock *tp = tcp_sk(sk); 2716 2717 tp->prior_ssthresh = 0; 2718 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2719 tp->undo_marker = 0; 2720 tcp_init_cwnd_reduction(sk); 2721 tcp_set_ca_state(sk, TCP_CA_CWR); 2722 } 2723 } 2724 EXPORT_SYMBOL(tcp_enter_cwr); 2725 2726 static void tcp_try_keep_open(struct sock *sk) 2727 { 2728 struct tcp_sock *tp = tcp_sk(sk); 2729 int state = TCP_CA_Open; 2730 2731 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2732 state = TCP_CA_Disorder; 2733 2734 if (inet_csk(sk)->icsk_ca_state != state) { 2735 tcp_set_ca_state(sk, state); 2736 tp->high_seq = tp->snd_nxt; 2737 } 2738 } 2739 2740 static void tcp_try_to_open(struct sock *sk, int flag) 2741 { 2742 struct tcp_sock *tp = tcp_sk(sk); 2743 2744 tcp_verify_left_out(tp); 2745 2746 if (!tcp_any_retrans_done(sk)) 2747 tp->retrans_stamp = 0; 2748 2749 if (flag & FLAG_ECE) 2750 tcp_enter_cwr(sk); 2751 2752 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2753 tcp_try_keep_open(sk); 2754 } 2755 } 2756 2757 static void tcp_mtup_probe_failed(struct sock *sk) 2758 { 2759 struct inet_connection_sock *icsk = inet_csk(sk); 2760 2761 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2762 icsk->icsk_mtup.probe_size = 0; 2763 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2764 } 2765 2766 static void tcp_mtup_probe_success(struct sock *sk) 2767 { 2768 struct tcp_sock *tp = tcp_sk(sk); 2769 struct inet_connection_sock *icsk = inet_csk(sk); 2770 u64 val; 2771 2772 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2773 2774 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2775 do_div(val, icsk->icsk_mtup.probe_size); 2776 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2777 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2778 2779 tp->snd_cwnd_cnt = 0; 2780 tp->snd_cwnd_stamp = tcp_jiffies32; 2781 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2782 2783 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2784 icsk->icsk_mtup.probe_size = 0; 2785 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2786 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2787 } 2788 2789 /* Do a simple retransmit without using the backoff mechanisms in 2790 * tcp_timer. This is used for path mtu discovery. 2791 * The socket is already locked here. 2792 */ 2793 void tcp_simple_retransmit(struct sock *sk) 2794 { 2795 const struct inet_connection_sock *icsk = inet_csk(sk); 2796 struct tcp_sock *tp = tcp_sk(sk); 2797 struct sk_buff *skb; 2798 int mss; 2799 2800 /* A fastopen SYN request is stored as two separate packets within 2801 * the retransmit queue, this is done by tcp_send_syn_data(). 2802 * As a result simply checking the MSS of the frames in the queue 2803 * will not work for the SYN packet. 2804 * 2805 * Us being here is an indication of a path MTU issue so we can 2806 * assume that the fastopen SYN was lost and just mark all the 2807 * frames in the retransmit queue as lost. We will use an MSS of 2808 * -1 to mark all frames as lost, otherwise compute the current MSS. 2809 */ 2810 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2811 mss = -1; 2812 else 2813 mss = tcp_current_mss(sk); 2814 2815 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2816 if (tcp_skb_seglen(skb) > mss) 2817 tcp_mark_skb_lost(sk, skb); 2818 } 2819 2820 tcp_clear_retrans_hints_partial(tp); 2821 2822 if (!tp->lost_out) 2823 return; 2824 2825 if (tcp_is_reno(tp)) 2826 tcp_limit_reno_sacked(tp); 2827 2828 tcp_verify_left_out(tp); 2829 2830 /* Don't muck with the congestion window here. 2831 * Reason is that we do not increase amount of _data_ 2832 * in network, but units changed and effective 2833 * cwnd/ssthresh really reduced now. 2834 */ 2835 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2836 tp->high_seq = tp->snd_nxt; 2837 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2838 tp->prior_ssthresh = 0; 2839 tp->undo_marker = 0; 2840 tcp_set_ca_state(sk, TCP_CA_Loss); 2841 } 2842 tcp_xmit_retransmit_queue(sk); 2843 } 2844 EXPORT_SYMBOL(tcp_simple_retransmit); 2845 2846 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2847 { 2848 struct tcp_sock *tp = tcp_sk(sk); 2849 int mib_idx; 2850 2851 if (tcp_is_reno(tp)) 2852 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2853 else 2854 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2855 2856 NET_INC_STATS(sock_net(sk), mib_idx); 2857 2858 tp->prior_ssthresh = 0; 2859 tcp_init_undo(tp); 2860 2861 if (!tcp_in_cwnd_reduction(sk)) { 2862 if (!ece_ack) 2863 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2864 tcp_init_cwnd_reduction(sk); 2865 } 2866 tcp_set_ca_state(sk, TCP_CA_Recovery); 2867 } 2868 2869 static void tcp_update_rto_time(struct tcp_sock *tp) 2870 { 2871 if (tp->rto_stamp) { 2872 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2873 tp->rto_stamp = 0; 2874 } 2875 } 2876 2877 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2878 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2879 */ 2880 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2881 int *rexmit) 2882 { 2883 struct tcp_sock *tp = tcp_sk(sk); 2884 bool recovered = !before(tp->snd_una, tp->high_seq); 2885 2886 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2887 tcp_try_undo_loss(sk, false)) 2888 return; 2889 2890 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2891 /* Step 3.b. A timeout is spurious if not all data are 2892 * lost, i.e., never-retransmitted data are (s)acked. 2893 */ 2894 if ((flag & FLAG_ORIG_SACK_ACKED) && 2895 tcp_try_undo_loss(sk, true)) 2896 return; 2897 2898 if (after(tp->snd_nxt, tp->high_seq)) { 2899 if (flag & FLAG_DATA_SACKED || num_dupack) 2900 tp->frto = 0; /* Step 3.a. loss was real */ 2901 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2902 tp->high_seq = tp->snd_nxt; 2903 /* Step 2.b. Try send new data (but deferred until cwnd 2904 * is updated in tcp_ack()). Otherwise fall back to 2905 * the conventional recovery. 2906 */ 2907 if (!tcp_write_queue_empty(sk) && 2908 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2909 *rexmit = REXMIT_NEW; 2910 return; 2911 } 2912 tp->frto = 0; 2913 } 2914 } 2915 2916 if (recovered) { 2917 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2918 tcp_try_undo_recovery(sk); 2919 return; 2920 } 2921 if (tcp_is_reno(tp)) { 2922 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2923 * delivered. Lower inflight to clock out (re)transmissions. 2924 */ 2925 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2926 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2927 else if (flag & FLAG_SND_UNA_ADVANCED) 2928 tcp_reset_reno_sack(tp); 2929 } 2930 *rexmit = REXMIT_LOST; 2931 } 2932 2933 static bool tcp_force_fast_retransmit(struct sock *sk) 2934 { 2935 struct tcp_sock *tp = tcp_sk(sk); 2936 2937 return after(tcp_highest_sack_seq(tp), 2938 tp->snd_una + tp->reordering * tp->mss_cache); 2939 } 2940 2941 /* Undo during fast recovery after partial ACK. */ 2942 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2943 bool *do_lost) 2944 { 2945 struct tcp_sock *tp = tcp_sk(sk); 2946 2947 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2948 /* Plain luck! Hole if filled with delayed 2949 * packet, rather than with a retransmit. Check reordering. 2950 */ 2951 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2952 2953 /* We are getting evidence that the reordering degree is higher 2954 * than we realized. If there are no retransmits out then we 2955 * can undo. Otherwise we clock out new packets but do not 2956 * mark more packets lost or retransmit more. 2957 */ 2958 if (tp->retrans_out) 2959 return true; 2960 2961 if (!tcp_any_retrans_done(sk)) 2962 tp->retrans_stamp = 0; 2963 2964 DBGUNDO(sk, "partial recovery"); 2965 tcp_undo_cwnd_reduction(sk, true); 2966 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2967 tcp_try_keep_open(sk); 2968 } else { 2969 /* Partial ACK arrived. Force fast retransmit. */ 2970 *do_lost = tcp_force_fast_retransmit(sk); 2971 } 2972 return false; 2973 } 2974 2975 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2976 { 2977 struct tcp_sock *tp = tcp_sk(sk); 2978 2979 if (tcp_rtx_queue_empty(sk)) 2980 return; 2981 2982 if (unlikely(tcp_is_reno(tp))) { 2983 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2984 } else if (tcp_is_rack(sk)) { 2985 u32 prior_retrans = tp->retrans_out; 2986 2987 if (tcp_rack_mark_lost(sk)) 2988 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2989 if (prior_retrans > tp->retrans_out) 2990 *ack_flag |= FLAG_LOST_RETRANS; 2991 } 2992 } 2993 2994 /* Process an event, which can update packets-in-flight not trivially. 2995 * Main goal of this function is to calculate new estimate for left_out, 2996 * taking into account both packets sitting in receiver's buffer and 2997 * packets lost by network. 2998 * 2999 * Besides that it updates the congestion state when packet loss or ECN 3000 * is detected. But it does not reduce the cwnd, it is done by the 3001 * congestion control later. 3002 * 3003 * It does _not_ decide what to send, it is made in function 3004 * tcp_xmit_retransmit_queue(). 3005 */ 3006 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3007 int num_dupack, int *ack_flag, int *rexmit) 3008 { 3009 struct inet_connection_sock *icsk = inet_csk(sk); 3010 struct tcp_sock *tp = tcp_sk(sk); 3011 int fast_rexmit = 0, flag = *ack_flag; 3012 bool ece_ack = flag & FLAG_ECE; 3013 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3014 tcp_force_fast_retransmit(sk)); 3015 3016 if (!tp->packets_out && tp->sacked_out) 3017 tp->sacked_out = 0; 3018 3019 /* Now state machine starts. 3020 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3021 if (ece_ack) 3022 tp->prior_ssthresh = 0; 3023 3024 /* B. In all the states check for reneging SACKs. */ 3025 if (tcp_check_sack_reneging(sk, ack_flag)) 3026 return; 3027 3028 /* C. Check consistency of the current state. */ 3029 tcp_verify_left_out(tp); 3030 3031 /* D. Check state exit conditions. State can be terminated 3032 * when high_seq is ACKed. */ 3033 if (icsk->icsk_ca_state == TCP_CA_Open) { 3034 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3035 tp->retrans_stamp = 0; 3036 } else if (!before(tp->snd_una, tp->high_seq)) { 3037 switch (icsk->icsk_ca_state) { 3038 case TCP_CA_CWR: 3039 /* CWR is to be held something *above* high_seq 3040 * is ACKed for CWR bit to reach receiver. */ 3041 if (tp->snd_una != tp->high_seq) { 3042 tcp_end_cwnd_reduction(sk); 3043 tcp_set_ca_state(sk, TCP_CA_Open); 3044 } 3045 break; 3046 3047 case TCP_CA_Recovery: 3048 if (tcp_is_reno(tp)) 3049 tcp_reset_reno_sack(tp); 3050 if (tcp_try_undo_recovery(sk)) 3051 return; 3052 tcp_end_cwnd_reduction(sk); 3053 break; 3054 } 3055 } 3056 3057 /* E. Process state. */ 3058 switch (icsk->icsk_ca_state) { 3059 case TCP_CA_Recovery: 3060 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3061 if (tcp_is_reno(tp)) 3062 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3063 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3064 return; 3065 3066 if (tcp_try_undo_dsack(sk)) 3067 tcp_try_keep_open(sk); 3068 3069 tcp_identify_packet_loss(sk, ack_flag); 3070 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3071 if (!tcp_time_to_recover(sk, flag)) 3072 return; 3073 /* Undo reverts the recovery state. If loss is evident, 3074 * starts a new recovery (e.g. reordering then loss); 3075 */ 3076 tcp_enter_recovery(sk, ece_ack); 3077 } 3078 break; 3079 case TCP_CA_Loss: 3080 tcp_process_loss(sk, flag, num_dupack, rexmit); 3081 if (icsk->icsk_ca_state != TCP_CA_Loss) 3082 tcp_update_rto_time(tp); 3083 tcp_identify_packet_loss(sk, ack_flag); 3084 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3085 (*ack_flag & FLAG_LOST_RETRANS))) 3086 return; 3087 /* Change state if cwnd is undone or retransmits are lost */ 3088 fallthrough; 3089 default: 3090 if (tcp_is_reno(tp)) { 3091 if (flag & FLAG_SND_UNA_ADVANCED) 3092 tcp_reset_reno_sack(tp); 3093 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3094 } 3095 3096 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3097 tcp_try_undo_dsack(sk); 3098 3099 tcp_identify_packet_loss(sk, ack_flag); 3100 if (!tcp_time_to_recover(sk, flag)) { 3101 tcp_try_to_open(sk, flag); 3102 return; 3103 } 3104 3105 /* MTU probe failure: don't reduce cwnd */ 3106 if (icsk->icsk_ca_state < TCP_CA_CWR && 3107 icsk->icsk_mtup.probe_size && 3108 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3109 tcp_mtup_probe_failed(sk); 3110 /* Restores the reduction we did in tcp_mtup_probe() */ 3111 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3112 tcp_simple_retransmit(sk); 3113 return; 3114 } 3115 3116 /* Otherwise enter Recovery state */ 3117 tcp_enter_recovery(sk, ece_ack); 3118 fast_rexmit = 1; 3119 } 3120 3121 if (!tcp_is_rack(sk) && do_lost) 3122 tcp_update_scoreboard(sk, fast_rexmit); 3123 *rexmit = REXMIT_LOST; 3124 } 3125 3126 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3127 { 3128 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3129 struct tcp_sock *tp = tcp_sk(sk); 3130 3131 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3132 /* If the remote keeps returning delayed ACKs, eventually 3133 * the min filter would pick it up and overestimate the 3134 * prop. delay when it expires. Skip suspected delayed ACKs. 3135 */ 3136 return; 3137 } 3138 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3139 rtt_us ? : jiffies_to_usecs(1)); 3140 } 3141 3142 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3143 long seq_rtt_us, long sack_rtt_us, 3144 long ca_rtt_us, struct rate_sample *rs) 3145 { 3146 const struct tcp_sock *tp = tcp_sk(sk); 3147 3148 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3149 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3150 * Karn's algorithm forbids taking RTT if some retransmitted data 3151 * is acked (RFC6298). 3152 */ 3153 if (seq_rtt_us < 0) 3154 seq_rtt_us = sack_rtt_us; 3155 3156 /* RTTM Rule: A TSecr value received in a segment is used to 3157 * update the averaged RTT measurement only if the segment 3158 * acknowledges some new data, i.e., only if it advances the 3159 * left edge of the send window. 3160 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3161 */ 3162 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3163 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3164 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp); 3165 3166 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3167 if (seq_rtt_us < 0) 3168 return false; 3169 3170 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3171 * always taken together with ACK, SACK, or TS-opts. Any negative 3172 * values will be skipped with the seq_rtt_us < 0 check above. 3173 */ 3174 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3175 tcp_rtt_estimator(sk, seq_rtt_us); 3176 tcp_set_rto(sk); 3177 3178 /* RFC6298: only reset backoff on valid RTT measurement. */ 3179 inet_csk(sk)->icsk_backoff = 0; 3180 return true; 3181 } 3182 3183 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3184 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3185 { 3186 struct rate_sample rs; 3187 long rtt_us = -1L; 3188 3189 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3190 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3191 3192 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3193 } 3194 3195 3196 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3197 { 3198 const struct inet_connection_sock *icsk = inet_csk(sk); 3199 3200 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3201 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3202 } 3203 3204 /* Restart timer after forward progress on connection. 3205 * RFC2988 recommends to restart timer to now+rto. 3206 */ 3207 void tcp_rearm_rto(struct sock *sk) 3208 { 3209 const struct inet_connection_sock *icsk = inet_csk(sk); 3210 struct tcp_sock *tp = tcp_sk(sk); 3211 3212 /* If the retrans timer is currently being used by Fast Open 3213 * for SYN-ACK retrans purpose, stay put. 3214 */ 3215 if (rcu_access_pointer(tp->fastopen_rsk)) 3216 return; 3217 3218 if (!tp->packets_out) { 3219 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3220 } else { 3221 u32 rto = inet_csk(sk)->icsk_rto; 3222 /* Offset the time elapsed after installing regular RTO */ 3223 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3224 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3225 s64 delta_us = tcp_rto_delta_us(sk); 3226 /* delta_us may not be positive if the socket is locked 3227 * when the retrans timer fires and is rescheduled. 3228 */ 3229 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3230 } 3231 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3232 TCP_RTO_MAX); 3233 } 3234 } 3235 3236 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3237 static void tcp_set_xmit_timer(struct sock *sk) 3238 { 3239 if (!tcp_schedule_loss_probe(sk, true)) 3240 tcp_rearm_rto(sk); 3241 } 3242 3243 /* If we get here, the whole TSO packet has not been acked. */ 3244 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3245 { 3246 struct tcp_sock *tp = tcp_sk(sk); 3247 u32 packets_acked; 3248 3249 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3250 3251 packets_acked = tcp_skb_pcount(skb); 3252 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3253 return 0; 3254 packets_acked -= tcp_skb_pcount(skb); 3255 3256 if (packets_acked) { 3257 BUG_ON(tcp_skb_pcount(skb) == 0); 3258 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3259 } 3260 3261 return packets_acked; 3262 } 3263 3264 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3265 const struct sk_buff *ack_skb, u32 prior_snd_una) 3266 { 3267 const struct skb_shared_info *shinfo; 3268 3269 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3270 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3271 return; 3272 3273 shinfo = skb_shinfo(skb); 3274 if (!before(shinfo->tskey, prior_snd_una) && 3275 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3276 tcp_skb_tsorted_save(skb) { 3277 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3278 } tcp_skb_tsorted_restore(skb); 3279 } 3280 } 3281 3282 /* Remove acknowledged frames from the retransmission queue. If our packet 3283 * is before the ack sequence we can discard it as it's confirmed to have 3284 * arrived at the other end. 3285 */ 3286 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3287 u32 prior_fack, u32 prior_snd_una, 3288 struct tcp_sacktag_state *sack, bool ece_ack) 3289 { 3290 const struct inet_connection_sock *icsk = inet_csk(sk); 3291 u64 first_ackt, last_ackt; 3292 struct tcp_sock *tp = tcp_sk(sk); 3293 u32 prior_sacked = tp->sacked_out; 3294 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3295 struct sk_buff *skb, *next; 3296 bool fully_acked = true; 3297 long sack_rtt_us = -1L; 3298 long seq_rtt_us = -1L; 3299 long ca_rtt_us = -1L; 3300 u32 pkts_acked = 0; 3301 bool rtt_update; 3302 int flag = 0; 3303 3304 first_ackt = 0; 3305 3306 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3307 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3308 const u32 start_seq = scb->seq; 3309 u8 sacked = scb->sacked; 3310 u32 acked_pcount; 3311 3312 /* Determine how many packets and what bytes were acked, tso and else */ 3313 if (after(scb->end_seq, tp->snd_una)) { 3314 if (tcp_skb_pcount(skb) == 1 || 3315 !after(tp->snd_una, scb->seq)) 3316 break; 3317 3318 acked_pcount = tcp_tso_acked(sk, skb); 3319 if (!acked_pcount) 3320 break; 3321 fully_acked = false; 3322 } else { 3323 acked_pcount = tcp_skb_pcount(skb); 3324 } 3325 3326 if (unlikely(sacked & TCPCB_RETRANS)) { 3327 if (sacked & TCPCB_SACKED_RETRANS) 3328 tp->retrans_out -= acked_pcount; 3329 flag |= FLAG_RETRANS_DATA_ACKED; 3330 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3331 last_ackt = tcp_skb_timestamp_us(skb); 3332 WARN_ON_ONCE(last_ackt == 0); 3333 if (!first_ackt) 3334 first_ackt = last_ackt; 3335 3336 if (before(start_seq, reord)) 3337 reord = start_seq; 3338 if (!after(scb->end_seq, tp->high_seq)) 3339 flag |= FLAG_ORIG_SACK_ACKED; 3340 } 3341 3342 if (sacked & TCPCB_SACKED_ACKED) { 3343 tp->sacked_out -= acked_pcount; 3344 } else if (tcp_is_sack(tp)) { 3345 tcp_count_delivered(tp, acked_pcount, ece_ack); 3346 if (!tcp_skb_spurious_retrans(tp, skb)) 3347 tcp_rack_advance(tp, sacked, scb->end_seq, 3348 tcp_skb_timestamp_us(skb)); 3349 } 3350 if (sacked & TCPCB_LOST) 3351 tp->lost_out -= acked_pcount; 3352 3353 tp->packets_out -= acked_pcount; 3354 pkts_acked += acked_pcount; 3355 tcp_rate_skb_delivered(sk, skb, sack->rate); 3356 3357 /* Initial outgoing SYN's get put onto the write_queue 3358 * just like anything else we transmit. It is not 3359 * true data, and if we misinform our callers that 3360 * this ACK acks real data, we will erroneously exit 3361 * connection startup slow start one packet too 3362 * quickly. This is severely frowned upon behavior. 3363 */ 3364 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3365 flag |= FLAG_DATA_ACKED; 3366 } else { 3367 flag |= FLAG_SYN_ACKED; 3368 tp->retrans_stamp = 0; 3369 } 3370 3371 if (!fully_acked) 3372 break; 3373 3374 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3375 3376 next = skb_rb_next(skb); 3377 if (unlikely(skb == tp->retransmit_skb_hint)) 3378 tp->retransmit_skb_hint = NULL; 3379 if (unlikely(skb == tp->lost_skb_hint)) 3380 tp->lost_skb_hint = NULL; 3381 tcp_highest_sack_replace(sk, skb, next); 3382 tcp_rtx_queue_unlink_and_free(skb, sk); 3383 } 3384 3385 if (!skb) 3386 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3387 3388 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3389 tp->snd_up = tp->snd_una; 3390 3391 if (skb) { 3392 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3393 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3394 flag |= FLAG_SACK_RENEGING; 3395 } 3396 3397 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3398 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3399 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3400 3401 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3402 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3403 sack->rate->prior_delivered + 1 == tp->delivered && 3404 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3405 /* Conservatively mark a delayed ACK. It's typically 3406 * from a lone runt packet over the round trip to 3407 * a receiver w/o out-of-order or CE events. 3408 */ 3409 flag |= FLAG_ACK_MAYBE_DELAYED; 3410 } 3411 } 3412 if (sack->first_sackt) { 3413 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3414 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3415 } 3416 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3417 ca_rtt_us, sack->rate); 3418 3419 if (flag & FLAG_ACKED) { 3420 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3421 if (unlikely(icsk->icsk_mtup.probe_size && 3422 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3423 tcp_mtup_probe_success(sk); 3424 } 3425 3426 if (tcp_is_reno(tp)) { 3427 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3428 3429 /* If any of the cumulatively ACKed segments was 3430 * retransmitted, non-SACK case cannot confirm that 3431 * progress was due to original transmission due to 3432 * lack of TCPCB_SACKED_ACKED bits even if some of 3433 * the packets may have been never retransmitted. 3434 */ 3435 if (flag & FLAG_RETRANS_DATA_ACKED) 3436 flag &= ~FLAG_ORIG_SACK_ACKED; 3437 } else { 3438 int delta; 3439 3440 /* Non-retransmitted hole got filled? That's reordering */ 3441 if (before(reord, prior_fack)) 3442 tcp_check_sack_reordering(sk, reord, 0); 3443 3444 delta = prior_sacked - tp->sacked_out; 3445 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3446 } 3447 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3448 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3449 tcp_skb_timestamp_us(skb))) { 3450 /* Do not re-arm RTO if the sack RTT is measured from data sent 3451 * after when the head was last (re)transmitted. Otherwise the 3452 * timeout may continue to extend in loss recovery. 3453 */ 3454 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3455 } 3456 3457 if (icsk->icsk_ca_ops->pkts_acked) { 3458 struct ack_sample sample = { .pkts_acked = pkts_acked, 3459 .rtt_us = sack->rate->rtt_us }; 3460 3461 sample.in_flight = tp->mss_cache * 3462 (tp->delivered - sack->rate->prior_delivered); 3463 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3464 } 3465 3466 #if FASTRETRANS_DEBUG > 0 3467 WARN_ON((int)tp->sacked_out < 0); 3468 WARN_ON((int)tp->lost_out < 0); 3469 WARN_ON((int)tp->retrans_out < 0); 3470 if (!tp->packets_out && tcp_is_sack(tp)) { 3471 icsk = inet_csk(sk); 3472 if (tp->lost_out) { 3473 pr_debug("Leak l=%u %d\n", 3474 tp->lost_out, icsk->icsk_ca_state); 3475 tp->lost_out = 0; 3476 } 3477 if (tp->sacked_out) { 3478 pr_debug("Leak s=%u %d\n", 3479 tp->sacked_out, icsk->icsk_ca_state); 3480 tp->sacked_out = 0; 3481 } 3482 if (tp->retrans_out) { 3483 pr_debug("Leak r=%u %d\n", 3484 tp->retrans_out, icsk->icsk_ca_state); 3485 tp->retrans_out = 0; 3486 } 3487 } 3488 #endif 3489 return flag; 3490 } 3491 3492 static void tcp_ack_probe(struct sock *sk) 3493 { 3494 struct inet_connection_sock *icsk = inet_csk(sk); 3495 struct sk_buff *head = tcp_send_head(sk); 3496 const struct tcp_sock *tp = tcp_sk(sk); 3497 3498 /* Was it a usable window open? */ 3499 if (!head) 3500 return; 3501 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3502 icsk->icsk_backoff = 0; 3503 icsk->icsk_probes_tstamp = 0; 3504 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3505 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3506 * This function is not for random using! 3507 */ 3508 } else { 3509 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3510 3511 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3512 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3513 } 3514 } 3515 3516 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3517 { 3518 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3519 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3520 } 3521 3522 /* Decide wheather to run the increase function of congestion control. */ 3523 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3524 { 3525 /* If reordering is high then always grow cwnd whenever data is 3526 * delivered regardless of its ordering. Otherwise stay conservative 3527 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3528 * new SACK or ECE mark may first advance cwnd here and later reduce 3529 * cwnd in tcp_fastretrans_alert() based on more states. 3530 */ 3531 if (tcp_sk(sk)->reordering > 3532 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3533 return flag & FLAG_FORWARD_PROGRESS; 3534 3535 return flag & FLAG_DATA_ACKED; 3536 } 3537 3538 /* The "ultimate" congestion control function that aims to replace the rigid 3539 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3540 * It's called toward the end of processing an ACK with precise rate 3541 * information. All transmission or retransmission are delayed afterwards. 3542 */ 3543 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3544 int flag, const struct rate_sample *rs) 3545 { 3546 const struct inet_connection_sock *icsk = inet_csk(sk); 3547 3548 if (icsk->icsk_ca_ops->cong_control) { 3549 icsk->icsk_ca_ops->cong_control(sk, rs); 3550 return; 3551 } 3552 3553 if (tcp_in_cwnd_reduction(sk)) { 3554 /* Reduce cwnd if state mandates */ 3555 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3556 } else if (tcp_may_raise_cwnd(sk, flag)) { 3557 /* Advance cwnd if state allows */ 3558 tcp_cong_avoid(sk, ack, acked_sacked); 3559 } 3560 tcp_update_pacing_rate(sk); 3561 } 3562 3563 /* Check that window update is acceptable. 3564 * The function assumes that snd_una<=ack<=snd_next. 3565 */ 3566 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3567 const u32 ack, const u32 ack_seq, 3568 const u32 nwin) 3569 { 3570 return after(ack, tp->snd_una) || 3571 after(ack_seq, tp->snd_wl1) || 3572 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3573 } 3574 3575 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3576 { 3577 #ifdef CONFIG_TCP_AO 3578 struct tcp_ao_info *ao; 3579 3580 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3581 return; 3582 3583 ao = rcu_dereference_protected(tp->ao_info, 3584 lockdep_sock_is_held((struct sock *)tp)); 3585 if (ao && ack < tp->snd_una) 3586 ao->snd_sne++; 3587 #endif 3588 } 3589 3590 /* If we update tp->snd_una, also update tp->bytes_acked */ 3591 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3592 { 3593 u32 delta = ack - tp->snd_una; 3594 3595 sock_owned_by_me((struct sock *)tp); 3596 tp->bytes_acked += delta; 3597 tcp_snd_sne_update(tp, ack); 3598 tp->snd_una = ack; 3599 } 3600 3601 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3602 { 3603 #ifdef CONFIG_TCP_AO 3604 struct tcp_ao_info *ao; 3605 3606 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3607 return; 3608 3609 ao = rcu_dereference_protected(tp->ao_info, 3610 lockdep_sock_is_held((struct sock *)tp)); 3611 if (ao && seq < tp->rcv_nxt) 3612 ao->rcv_sne++; 3613 #endif 3614 } 3615 3616 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3617 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3618 { 3619 u32 delta = seq - tp->rcv_nxt; 3620 3621 sock_owned_by_me((struct sock *)tp); 3622 tp->bytes_received += delta; 3623 tcp_rcv_sne_update(tp, seq); 3624 WRITE_ONCE(tp->rcv_nxt, seq); 3625 } 3626 3627 /* Update our send window. 3628 * 3629 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3630 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3631 */ 3632 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3633 u32 ack_seq) 3634 { 3635 struct tcp_sock *tp = tcp_sk(sk); 3636 int flag = 0; 3637 u32 nwin = ntohs(tcp_hdr(skb)->window); 3638 3639 if (likely(!tcp_hdr(skb)->syn)) 3640 nwin <<= tp->rx_opt.snd_wscale; 3641 3642 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3643 flag |= FLAG_WIN_UPDATE; 3644 tcp_update_wl(tp, ack_seq); 3645 3646 if (tp->snd_wnd != nwin) { 3647 tp->snd_wnd = nwin; 3648 3649 /* Note, it is the only place, where 3650 * fast path is recovered for sending TCP. 3651 */ 3652 tp->pred_flags = 0; 3653 tcp_fast_path_check(sk); 3654 3655 if (!tcp_write_queue_empty(sk)) 3656 tcp_slow_start_after_idle_check(sk); 3657 3658 if (nwin > tp->max_window) { 3659 tp->max_window = nwin; 3660 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3661 } 3662 } 3663 } 3664 3665 tcp_snd_una_update(tp, ack); 3666 3667 return flag; 3668 } 3669 3670 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3671 u32 *last_oow_ack_time) 3672 { 3673 /* Paired with the WRITE_ONCE() in this function. */ 3674 u32 val = READ_ONCE(*last_oow_ack_time); 3675 3676 if (val) { 3677 s32 elapsed = (s32)(tcp_jiffies32 - val); 3678 3679 if (0 <= elapsed && 3680 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3681 NET_INC_STATS(net, mib_idx); 3682 return true; /* rate-limited: don't send yet! */ 3683 } 3684 } 3685 3686 /* Paired with the prior READ_ONCE() and with itself, 3687 * as we might be lockless. 3688 */ 3689 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3690 3691 return false; /* not rate-limited: go ahead, send dupack now! */ 3692 } 3693 3694 /* Return true if we're currently rate-limiting out-of-window ACKs and 3695 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3696 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3697 * attacks that send repeated SYNs or ACKs for the same connection. To 3698 * do this, we do not send a duplicate SYNACK or ACK if the remote 3699 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3700 */ 3701 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3702 int mib_idx, u32 *last_oow_ack_time) 3703 { 3704 /* Data packets without SYNs are not likely part of an ACK loop. */ 3705 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3706 !tcp_hdr(skb)->syn) 3707 return false; 3708 3709 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3710 } 3711 3712 /* RFC 5961 7 [ACK Throttling] */ 3713 static void tcp_send_challenge_ack(struct sock *sk) 3714 { 3715 struct tcp_sock *tp = tcp_sk(sk); 3716 struct net *net = sock_net(sk); 3717 u32 count, now, ack_limit; 3718 3719 /* First check our per-socket dupack rate limit. */ 3720 if (__tcp_oow_rate_limited(net, 3721 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3722 &tp->last_oow_ack_time)) 3723 return; 3724 3725 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3726 if (ack_limit == INT_MAX) 3727 goto send_ack; 3728 3729 /* Then check host-wide RFC 5961 rate limit. */ 3730 now = jiffies / HZ; 3731 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3732 u32 half = (ack_limit + 1) >> 1; 3733 3734 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3735 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3736 get_random_u32_inclusive(half, ack_limit + half - 1)); 3737 } 3738 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3739 if (count > 0) { 3740 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3741 send_ack: 3742 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3743 tcp_send_ack(sk); 3744 } 3745 } 3746 3747 static void tcp_store_ts_recent(struct tcp_sock *tp) 3748 { 3749 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3750 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3751 } 3752 3753 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3754 { 3755 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3756 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3757 * extra check below makes sure this can only happen 3758 * for pure ACK frames. -DaveM 3759 * 3760 * Not only, also it occurs for expired timestamps. 3761 */ 3762 3763 if (tcp_paws_check(&tp->rx_opt, 0)) 3764 tcp_store_ts_recent(tp); 3765 } 3766 } 3767 3768 /* This routine deals with acks during a TLP episode and ends an episode by 3769 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3770 */ 3771 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3772 { 3773 struct tcp_sock *tp = tcp_sk(sk); 3774 3775 if (before(ack, tp->tlp_high_seq)) 3776 return; 3777 3778 if (!tp->tlp_retrans) { 3779 /* TLP of new data has been acknowledged */ 3780 tp->tlp_high_seq = 0; 3781 } else if (flag & FLAG_DSACK_TLP) { 3782 /* This DSACK means original and TLP probe arrived; no loss */ 3783 tp->tlp_high_seq = 0; 3784 } else if (after(ack, tp->tlp_high_seq)) { 3785 /* ACK advances: there was a loss, so reduce cwnd. Reset 3786 * tlp_high_seq in tcp_init_cwnd_reduction() 3787 */ 3788 tcp_init_cwnd_reduction(sk); 3789 tcp_set_ca_state(sk, TCP_CA_CWR); 3790 tcp_end_cwnd_reduction(sk); 3791 tcp_try_keep_open(sk); 3792 NET_INC_STATS(sock_net(sk), 3793 LINUX_MIB_TCPLOSSPROBERECOVERY); 3794 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3795 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3796 /* Pure dupack: original and TLP probe arrived; no loss */ 3797 tp->tlp_high_seq = 0; 3798 } 3799 } 3800 3801 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3802 { 3803 const struct inet_connection_sock *icsk = inet_csk(sk); 3804 3805 if (icsk->icsk_ca_ops->in_ack_event) 3806 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3807 } 3808 3809 /* Congestion control has updated the cwnd already. So if we're in 3810 * loss recovery then now we do any new sends (for FRTO) or 3811 * retransmits (for CA_Loss or CA_recovery) that make sense. 3812 */ 3813 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3814 { 3815 struct tcp_sock *tp = tcp_sk(sk); 3816 3817 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3818 return; 3819 3820 if (unlikely(rexmit == REXMIT_NEW)) { 3821 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3822 TCP_NAGLE_OFF); 3823 if (after(tp->snd_nxt, tp->high_seq)) 3824 return; 3825 tp->frto = 0; 3826 } 3827 tcp_xmit_retransmit_queue(sk); 3828 } 3829 3830 /* Returns the number of packets newly acked or sacked by the current ACK */ 3831 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3832 { 3833 const struct net *net = sock_net(sk); 3834 struct tcp_sock *tp = tcp_sk(sk); 3835 u32 delivered; 3836 3837 delivered = tp->delivered - prior_delivered; 3838 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3839 if (flag & FLAG_ECE) 3840 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3841 3842 return delivered; 3843 } 3844 3845 /* This routine deals with incoming acks, but not outgoing ones. */ 3846 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3847 { 3848 struct inet_connection_sock *icsk = inet_csk(sk); 3849 struct tcp_sock *tp = tcp_sk(sk); 3850 struct tcp_sacktag_state sack_state; 3851 struct rate_sample rs = { .prior_delivered = 0 }; 3852 u32 prior_snd_una = tp->snd_una; 3853 bool is_sack_reneg = tp->is_sack_reneg; 3854 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3855 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3856 int num_dupack = 0; 3857 int prior_packets = tp->packets_out; 3858 u32 delivered = tp->delivered; 3859 u32 lost = tp->lost; 3860 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3861 u32 prior_fack; 3862 3863 sack_state.first_sackt = 0; 3864 sack_state.rate = &rs; 3865 sack_state.sack_delivered = 0; 3866 3867 /* We very likely will need to access rtx queue. */ 3868 prefetch(sk->tcp_rtx_queue.rb_node); 3869 3870 /* If the ack is older than previous acks 3871 * then we can probably ignore it. 3872 */ 3873 if (before(ack, prior_snd_una)) { 3874 u32 max_window; 3875 3876 /* do not accept ACK for bytes we never sent. */ 3877 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3878 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3879 if (before(ack, prior_snd_una - max_window)) { 3880 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3881 tcp_send_challenge_ack(sk); 3882 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3883 } 3884 goto old_ack; 3885 } 3886 3887 /* If the ack includes data we haven't sent yet, discard 3888 * this segment (RFC793 Section 3.9). 3889 */ 3890 if (after(ack, tp->snd_nxt)) 3891 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3892 3893 if (after(ack, prior_snd_una)) { 3894 flag |= FLAG_SND_UNA_ADVANCED; 3895 icsk->icsk_retransmits = 0; 3896 3897 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3898 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3899 if (icsk->icsk_clean_acked) 3900 icsk->icsk_clean_acked(sk, ack); 3901 #endif 3902 } 3903 3904 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3905 rs.prior_in_flight = tcp_packets_in_flight(tp); 3906 3907 /* ts_recent update must be made after we are sure that the packet 3908 * is in window. 3909 */ 3910 if (flag & FLAG_UPDATE_TS_RECENT) 3911 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3912 3913 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3914 FLAG_SND_UNA_ADVANCED) { 3915 /* Window is constant, pure forward advance. 3916 * No more checks are required. 3917 * Note, we use the fact that SND.UNA>=SND.WL2. 3918 */ 3919 tcp_update_wl(tp, ack_seq); 3920 tcp_snd_una_update(tp, ack); 3921 flag |= FLAG_WIN_UPDATE; 3922 3923 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3924 3925 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3926 } else { 3927 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3928 3929 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3930 flag |= FLAG_DATA; 3931 else 3932 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3933 3934 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3935 3936 if (TCP_SKB_CB(skb)->sacked) 3937 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3938 &sack_state); 3939 3940 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3941 flag |= FLAG_ECE; 3942 ack_ev_flags |= CA_ACK_ECE; 3943 } 3944 3945 if (sack_state.sack_delivered) 3946 tcp_count_delivered(tp, sack_state.sack_delivered, 3947 flag & FLAG_ECE); 3948 3949 if (flag & FLAG_WIN_UPDATE) 3950 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3951 3952 tcp_in_ack_event(sk, ack_ev_flags); 3953 } 3954 3955 /* This is a deviation from RFC3168 since it states that: 3956 * "When the TCP data sender is ready to set the CWR bit after reducing 3957 * the congestion window, it SHOULD set the CWR bit only on the first 3958 * new data packet that it transmits." 3959 * We accept CWR on pure ACKs to be more robust 3960 * with widely-deployed TCP implementations that do this. 3961 */ 3962 tcp_ecn_accept_cwr(sk, skb); 3963 3964 /* We passed data and got it acked, remove any soft error 3965 * log. Something worked... 3966 */ 3967 WRITE_ONCE(sk->sk_err_soft, 0); 3968 icsk->icsk_probes_out = 0; 3969 tp->rcv_tstamp = tcp_jiffies32; 3970 if (!prior_packets) 3971 goto no_queue; 3972 3973 /* See if we can take anything off of the retransmit queue. */ 3974 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3975 &sack_state, flag & FLAG_ECE); 3976 3977 tcp_rack_update_reo_wnd(sk, &rs); 3978 3979 if (tp->tlp_high_seq) 3980 tcp_process_tlp_ack(sk, ack, flag); 3981 3982 if (tcp_ack_is_dubious(sk, flag)) { 3983 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3984 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3985 num_dupack = 1; 3986 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3987 if (!(flag & FLAG_DATA)) 3988 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3989 } 3990 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3991 &rexmit); 3992 } 3993 3994 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3995 if (flag & FLAG_SET_XMIT_TIMER) 3996 tcp_set_xmit_timer(sk); 3997 3998 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3999 sk_dst_confirm(sk); 4000 4001 delivered = tcp_newly_delivered(sk, delivered, flag); 4002 lost = tp->lost - lost; /* freshly marked lost */ 4003 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4004 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4005 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4006 tcp_xmit_recovery(sk, rexmit); 4007 return 1; 4008 4009 no_queue: 4010 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4011 if (flag & FLAG_DSACKING_ACK) { 4012 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4013 &rexmit); 4014 tcp_newly_delivered(sk, delivered, flag); 4015 } 4016 /* If this ack opens up a zero window, clear backoff. It was 4017 * being used to time the probes, and is probably far higher than 4018 * it needs to be for normal retransmission. 4019 */ 4020 tcp_ack_probe(sk); 4021 4022 if (tp->tlp_high_seq) 4023 tcp_process_tlp_ack(sk, ack, flag); 4024 return 1; 4025 4026 old_ack: 4027 /* If data was SACKed, tag it and see if we should send more data. 4028 * If data was DSACKed, see if we can undo a cwnd reduction. 4029 */ 4030 if (TCP_SKB_CB(skb)->sacked) { 4031 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4032 &sack_state); 4033 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4034 &rexmit); 4035 tcp_newly_delivered(sk, delivered, flag); 4036 tcp_xmit_recovery(sk, rexmit); 4037 } 4038 4039 return 0; 4040 } 4041 4042 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4043 bool syn, struct tcp_fastopen_cookie *foc, 4044 bool exp_opt) 4045 { 4046 /* Valid only in SYN or SYN-ACK with an even length. */ 4047 if (!foc || !syn || len < 0 || (len & 1)) 4048 return; 4049 4050 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4051 len <= TCP_FASTOPEN_COOKIE_MAX) 4052 memcpy(foc->val, cookie, len); 4053 else if (len != 0) 4054 len = -1; 4055 foc->len = len; 4056 foc->exp = exp_opt; 4057 } 4058 4059 static bool smc_parse_options(const struct tcphdr *th, 4060 struct tcp_options_received *opt_rx, 4061 const unsigned char *ptr, 4062 int opsize) 4063 { 4064 #if IS_ENABLED(CONFIG_SMC) 4065 if (static_branch_unlikely(&tcp_have_smc)) { 4066 if (th->syn && !(opsize & 1) && 4067 opsize >= TCPOLEN_EXP_SMC_BASE && 4068 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4069 opt_rx->smc_ok = 1; 4070 return true; 4071 } 4072 } 4073 #endif 4074 return false; 4075 } 4076 4077 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4078 * value on success. 4079 */ 4080 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4081 { 4082 const unsigned char *ptr = (const unsigned char *)(th + 1); 4083 int length = (th->doff * 4) - sizeof(struct tcphdr); 4084 u16 mss = 0; 4085 4086 while (length > 0) { 4087 int opcode = *ptr++; 4088 int opsize; 4089 4090 switch (opcode) { 4091 case TCPOPT_EOL: 4092 return mss; 4093 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4094 length--; 4095 continue; 4096 default: 4097 if (length < 2) 4098 return mss; 4099 opsize = *ptr++; 4100 if (opsize < 2) /* "silly options" */ 4101 return mss; 4102 if (opsize > length) 4103 return mss; /* fail on partial options */ 4104 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4105 u16 in_mss = get_unaligned_be16(ptr); 4106 4107 if (in_mss) { 4108 if (user_mss && user_mss < in_mss) 4109 in_mss = user_mss; 4110 mss = in_mss; 4111 } 4112 } 4113 ptr += opsize - 2; 4114 length -= opsize; 4115 } 4116 } 4117 return mss; 4118 } 4119 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4120 4121 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4122 * But, this can also be called on packets in the established flow when 4123 * the fast version below fails. 4124 */ 4125 void tcp_parse_options(const struct net *net, 4126 const struct sk_buff *skb, 4127 struct tcp_options_received *opt_rx, int estab, 4128 struct tcp_fastopen_cookie *foc) 4129 { 4130 const unsigned char *ptr; 4131 const struct tcphdr *th = tcp_hdr(skb); 4132 int length = (th->doff * 4) - sizeof(struct tcphdr); 4133 4134 ptr = (const unsigned char *)(th + 1); 4135 opt_rx->saw_tstamp = 0; 4136 opt_rx->saw_unknown = 0; 4137 4138 while (length > 0) { 4139 int opcode = *ptr++; 4140 int opsize; 4141 4142 switch (opcode) { 4143 case TCPOPT_EOL: 4144 return; 4145 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4146 length--; 4147 continue; 4148 default: 4149 if (length < 2) 4150 return; 4151 opsize = *ptr++; 4152 if (opsize < 2) /* "silly options" */ 4153 return; 4154 if (opsize > length) 4155 return; /* don't parse partial options */ 4156 switch (opcode) { 4157 case TCPOPT_MSS: 4158 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4159 u16 in_mss = get_unaligned_be16(ptr); 4160 if (in_mss) { 4161 if (opt_rx->user_mss && 4162 opt_rx->user_mss < in_mss) 4163 in_mss = opt_rx->user_mss; 4164 opt_rx->mss_clamp = in_mss; 4165 } 4166 } 4167 break; 4168 case TCPOPT_WINDOW: 4169 if (opsize == TCPOLEN_WINDOW && th->syn && 4170 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4171 __u8 snd_wscale = *(__u8 *)ptr; 4172 opt_rx->wscale_ok = 1; 4173 if (snd_wscale > TCP_MAX_WSCALE) { 4174 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4175 __func__, 4176 snd_wscale, 4177 TCP_MAX_WSCALE); 4178 snd_wscale = TCP_MAX_WSCALE; 4179 } 4180 opt_rx->snd_wscale = snd_wscale; 4181 } 4182 break; 4183 case TCPOPT_TIMESTAMP: 4184 if ((opsize == TCPOLEN_TIMESTAMP) && 4185 ((estab && opt_rx->tstamp_ok) || 4186 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4187 opt_rx->saw_tstamp = 1; 4188 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4189 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4190 } 4191 break; 4192 case TCPOPT_SACK_PERM: 4193 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4194 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4195 opt_rx->sack_ok = TCP_SACK_SEEN; 4196 tcp_sack_reset(opt_rx); 4197 } 4198 break; 4199 4200 case TCPOPT_SACK: 4201 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4202 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4203 opt_rx->sack_ok) { 4204 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4205 } 4206 break; 4207 #ifdef CONFIG_TCP_MD5SIG 4208 case TCPOPT_MD5SIG: 4209 /* The MD5 Hash has already been 4210 * checked (see tcp_v{4,6}_rcv()). 4211 */ 4212 break; 4213 #endif 4214 case TCPOPT_FASTOPEN: 4215 tcp_parse_fastopen_option( 4216 opsize - TCPOLEN_FASTOPEN_BASE, 4217 ptr, th->syn, foc, false); 4218 break; 4219 4220 case TCPOPT_EXP: 4221 /* Fast Open option shares code 254 using a 4222 * 16 bits magic number. 4223 */ 4224 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4225 get_unaligned_be16(ptr) == 4226 TCPOPT_FASTOPEN_MAGIC) { 4227 tcp_parse_fastopen_option(opsize - 4228 TCPOLEN_EXP_FASTOPEN_BASE, 4229 ptr + 2, th->syn, foc, true); 4230 break; 4231 } 4232 4233 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4234 break; 4235 4236 opt_rx->saw_unknown = 1; 4237 break; 4238 4239 default: 4240 opt_rx->saw_unknown = 1; 4241 } 4242 ptr += opsize-2; 4243 length -= opsize; 4244 } 4245 } 4246 } 4247 EXPORT_SYMBOL(tcp_parse_options); 4248 4249 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4250 { 4251 const __be32 *ptr = (const __be32 *)(th + 1); 4252 4253 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4254 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4255 tp->rx_opt.saw_tstamp = 1; 4256 ++ptr; 4257 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4258 ++ptr; 4259 if (*ptr) 4260 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4261 else 4262 tp->rx_opt.rcv_tsecr = 0; 4263 return true; 4264 } 4265 return false; 4266 } 4267 4268 /* Fast parse options. This hopes to only see timestamps. 4269 * If it is wrong it falls back on tcp_parse_options(). 4270 */ 4271 static bool tcp_fast_parse_options(const struct net *net, 4272 const struct sk_buff *skb, 4273 const struct tcphdr *th, struct tcp_sock *tp) 4274 { 4275 /* In the spirit of fast parsing, compare doff directly to constant 4276 * values. Because equality is used, short doff can be ignored here. 4277 */ 4278 if (th->doff == (sizeof(*th) / 4)) { 4279 tp->rx_opt.saw_tstamp = 0; 4280 return false; 4281 } else if (tp->rx_opt.tstamp_ok && 4282 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4283 if (tcp_parse_aligned_timestamp(tp, th)) 4284 return true; 4285 } 4286 4287 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4288 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4289 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4290 4291 return true; 4292 } 4293 4294 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4295 /* 4296 * Parse Signature options 4297 */ 4298 int tcp_do_parse_auth_options(const struct tcphdr *th, 4299 const u8 **md5_hash, const u8 **ao_hash) 4300 { 4301 int length = (th->doff << 2) - sizeof(*th); 4302 const u8 *ptr = (const u8 *)(th + 1); 4303 unsigned int minlen = TCPOLEN_MD5SIG; 4304 4305 if (IS_ENABLED(CONFIG_TCP_AO)) 4306 minlen = sizeof(struct tcp_ao_hdr) + 1; 4307 4308 *md5_hash = NULL; 4309 *ao_hash = NULL; 4310 4311 /* If not enough data remaining, we can short cut */ 4312 while (length >= minlen) { 4313 int opcode = *ptr++; 4314 int opsize; 4315 4316 switch (opcode) { 4317 case TCPOPT_EOL: 4318 return 0; 4319 case TCPOPT_NOP: 4320 length--; 4321 continue; 4322 default: 4323 opsize = *ptr++; 4324 if (opsize < 2 || opsize > length) 4325 return -EINVAL; 4326 if (opcode == TCPOPT_MD5SIG) { 4327 if (opsize != TCPOLEN_MD5SIG) 4328 return -EINVAL; 4329 if (unlikely(*md5_hash || *ao_hash)) 4330 return -EEXIST; 4331 *md5_hash = ptr; 4332 } else if (opcode == TCPOPT_AO) { 4333 if (opsize <= sizeof(struct tcp_ao_hdr)) 4334 return -EINVAL; 4335 if (unlikely(*md5_hash || *ao_hash)) 4336 return -EEXIST; 4337 *ao_hash = ptr; 4338 } 4339 } 4340 ptr += opsize - 2; 4341 length -= opsize; 4342 } 4343 return 0; 4344 } 4345 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4346 #endif 4347 4348 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4349 * 4350 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4351 * it can pass through stack. So, the following predicate verifies that 4352 * this segment is not used for anything but congestion avoidance or 4353 * fast retransmit. Moreover, we even are able to eliminate most of such 4354 * second order effects, if we apply some small "replay" window (~RTO) 4355 * to timestamp space. 4356 * 4357 * All these measures still do not guarantee that we reject wrapped ACKs 4358 * on networks with high bandwidth, when sequence space is recycled fastly, 4359 * but it guarantees that such events will be very rare and do not affect 4360 * connection seriously. This doesn't look nice, but alas, PAWS is really 4361 * buggy extension. 4362 * 4363 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4364 * states that events when retransmit arrives after original data are rare. 4365 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4366 * the biggest problem on large power networks even with minor reordering. 4367 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4368 * up to bandwidth of 18Gigabit/sec. 8) ] 4369 */ 4370 4371 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4372 { 4373 const struct tcp_sock *tp = tcp_sk(sk); 4374 const struct tcphdr *th = tcp_hdr(skb); 4375 u32 seq = TCP_SKB_CB(skb)->seq; 4376 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4377 4378 return (/* 1. Pure ACK with correct sequence number. */ 4379 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4380 4381 /* 2. ... and duplicate ACK. */ 4382 ack == tp->snd_una && 4383 4384 /* 3. ... and does not update window. */ 4385 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4386 4387 /* 4. ... and sits in replay window. */ 4388 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4389 } 4390 4391 static inline bool tcp_paws_discard(const struct sock *sk, 4392 const struct sk_buff *skb) 4393 { 4394 const struct tcp_sock *tp = tcp_sk(sk); 4395 4396 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4397 !tcp_disordered_ack(sk, skb); 4398 } 4399 4400 /* Check segment sequence number for validity. 4401 * 4402 * Segment controls are considered valid, if the segment 4403 * fits to the window after truncation to the window. Acceptability 4404 * of data (and SYN, FIN, of course) is checked separately. 4405 * See tcp_data_queue(), for example. 4406 * 4407 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4408 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4409 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4410 * (borrowed from freebsd) 4411 */ 4412 4413 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4414 u32 seq, u32 end_seq) 4415 { 4416 if (before(end_seq, tp->rcv_wup)) 4417 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4418 4419 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4420 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4421 4422 return SKB_NOT_DROPPED_YET; 4423 } 4424 4425 /* When we get a reset we do this. */ 4426 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4427 { 4428 trace_tcp_receive_reset(sk); 4429 4430 /* mptcp can't tell us to ignore reset pkts, 4431 * so just ignore the return value of mptcp_incoming_options(). 4432 */ 4433 if (sk_is_mptcp(sk)) 4434 mptcp_incoming_options(sk, skb); 4435 4436 /* We want the right error as BSD sees it (and indeed as we do). */ 4437 switch (sk->sk_state) { 4438 case TCP_SYN_SENT: 4439 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 4440 break; 4441 case TCP_CLOSE_WAIT: 4442 WRITE_ONCE(sk->sk_err, EPIPE); 4443 break; 4444 case TCP_CLOSE: 4445 return; 4446 default: 4447 WRITE_ONCE(sk->sk_err, ECONNRESET); 4448 } 4449 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4450 smp_wmb(); 4451 4452 tcp_write_queue_purge(sk); 4453 tcp_done(sk); 4454 4455 if (!sock_flag(sk, SOCK_DEAD)) 4456 sk_error_report(sk); 4457 } 4458 4459 /* 4460 * Process the FIN bit. This now behaves as it is supposed to work 4461 * and the FIN takes effect when it is validly part of sequence 4462 * space. Not before when we get holes. 4463 * 4464 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4465 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4466 * TIME-WAIT) 4467 * 4468 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4469 * close and we go into CLOSING (and later onto TIME-WAIT) 4470 * 4471 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4472 */ 4473 void tcp_fin(struct sock *sk) 4474 { 4475 struct tcp_sock *tp = tcp_sk(sk); 4476 4477 inet_csk_schedule_ack(sk); 4478 4479 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4480 sock_set_flag(sk, SOCK_DONE); 4481 4482 switch (sk->sk_state) { 4483 case TCP_SYN_RECV: 4484 case TCP_ESTABLISHED: 4485 /* Move to CLOSE_WAIT */ 4486 tcp_set_state(sk, TCP_CLOSE_WAIT); 4487 inet_csk_enter_pingpong_mode(sk); 4488 break; 4489 4490 case TCP_CLOSE_WAIT: 4491 case TCP_CLOSING: 4492 /* Received a retransmission of the FIN, do 4493 * nothing. 4494 */ 4495 break; 4496 case TCP_LAST_ACK: 4497 /* RFC793: Remain in the LAST-ACK state. */ 4498 break; 4499 4500 case TCP_FIN_WAIT1: 4501 /* This case occurs when a simultaneous close 4502 * happens, we must ack the received FIN and 4503 * enter the CLOSING state. 4504 */ 4505 tcp_send_ack(sk); 4506 tcp_set_state(sk, TCP_CLOSING); 4507 break; 4508 case TCP_FIN_WAIT2: 4509 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4510 tcp_send_ack(sk); 4511 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4512 break; 4513 default: 4514 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4515 * cases we should never reach this piece of code. 4516 */ 4517 pr_err("%s: Impossible, sk->sk_state=%d\n", 4518 __func__, sk->sk_state); 4519 break; 4520 } 4521 4522 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4523 * Probably, we should reset in this case. For now drop them. 4524 */ 4525 skb_rbtree_purge(&tp->out_of_order_queue); 4526 if (tcp_is_sack(tp)) 4527 tcp_sack_reset(&tp->rx_opt); 4528 4529 if (!sock_flag(sk, SOCK_DEAD)) { 4530 sk->sk_state_change(sk); 4531 4532 /* Do not send POLL_HUP for half duplex close. */ 4533 if (sk->sk_shutdown == SHUTDOWN_MASK || 4534 sk->sk_state == TCP_CLOSE) 4535 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4536 else 4537 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4538 } 4539 } 4540 4541 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4542 u32 end_seq) 4543 { 4544 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4545 if (before(seq, sp->start_seq)) 4546 sp->start_seq = seq; 4547 if (after(end_seq, sp->end_seq)) 4548 sp->end_seq = end_seq; 4549 return true; 4550 } 4551 return false; 4552 } 4553 4554 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4555 { 4556 struct tcp_sock *tp = tcp_sk(sk); 4557 4558 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4559 int mib_idx; 4560 4561 if (before(seq, tp->rcv_nxt)) 4562 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4563 else 4564 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4565 4566 NET_INC_STATS(sock_net(sk), mib_idx); 4567 4568 tp->rx_opt.dsack = 1; 4569 tp->duplicate_sack[0].start_seq = seq; 4570 tp->duplicate_sack[0].end_seq = end_seq; 4571 } 4572 } 4573 4574 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4575 { 4576 struct tcp_sock *tp = tcp_sk(sk); 4577 4578 if (!tp->rx_opt.dsack) 4579 tcp_dsack_set(sk, seq, end_seq); 4580 else 4581 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4582 } 4583 4584 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4585 { 4586 /* When the ACK path fails or drops most ACKs, the sender would 4587 * timeout and spuriously retransmit the same segment repeatedly. 4588 * If it seems our ACKs are not reaching the other side, 4589 * based on receiving a duplicate data segment with new flowlabel 4590 * (suggesting the sender suffered an RTO), and we are not already 4591 * repathing due to our own RTO, then rehash the socket to repath our 4592 * packets. 4593 */ 4594 #if IS_ENABLED(CONFIG_IPV6) 4595 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4596 skb->protocol == htons(ETH_P_IPV6) && 4597 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4598 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4599 sk_rethink_txhash(sk)) 4600 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4601 4602 /* Save last flowlabel after a spurious retrans. */ 4603 tcp_save_lrcv_flowlabel(sk, skb); 4604 #endif 4605 } 4606 4607 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4608 { 4609 struct tcp_sock *tp = tcp_sk(sk); 4610 4611 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4612 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4613 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4614 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4615 4616 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4617 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4618 4619 tcp_rcv_spurious_retrans(sk, skb); 4620 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4621 end_seq = tp->rcv_nxt; 4622 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4623 } 4624 } 4625 4626 tcp_send_ack(sk); 4627 } 4628 4629 /* These routines update the SACK block as out-of-order packets arrive or 4630 * in-order packets close up the sequence space. 4631 */ 4632 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4633 { 4634 int this_sack; 4635 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4636 struct tcp_sack_block *swalk = sp + 1; 4637 4638 /* See if the recent change to the first SACK eats into 4639 * or hits the sequence space of other SACK blocks, if so coalesce. 4640 */ 4641 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4642 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4643 int i; 4644 4645 /* Zap SWALK, by moving every further SACK up by one slot. 4646 * Decrease num_sacks. 4647 */ 4648 tp->rx_opt.num_sacks--; 4649 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4650 sp[i] = sp[i + 1]; 4651 continue; 4652 } 4653 this_sack++; 4654 swalk++; 4655 } 4656 } 4657 4658 void tcp_sack_compress_send_ack(struct sock *sk) 4659 { 4660 struct tcp_sock *tp = tcp_sk(sk); 4661 4662 if (!tp->compressed_ack) 4663 return; 4664 4665 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4666 __sock_put(sk); 4667 4668 /* Since we have to send one ack finally, 4669 * substract one from tp->compressed_ack to keep 4670 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4671 */ 4672 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4673 tp->compressed_ack - 1); 4674 4675 tp->compressed_ack = 0; 4676 tcp_send_ack(sk); 4677 } 4678 4679 /* Reasonable amount of sack blocks included in TCP SACK option 4680 * The max is 4, but this becomes 3 if TCP timestamps are there. 4681 * Given that SACK packets might be lost, be conservative and use 2. 4682 */ 4683 #define TCP_SACK_BLOCKS_EXPECTED 2 4684 4685 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4686 { 4687 struct tcp_sock *tp = tcp_sk(sk); 4688 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4689 int cur_sacks = tp->rx_opt.num_sacks; 4690 int this_sack; 4691 4692 if (!cur_sacks) 4693 goto new_sack; 4694 4695 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4696 if (tcp_sack_extend(sp, seq, end_seq)) { 4697 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4698 tcp_sack_compress_send_ack(sk); 4699 /* Rotate this_sack to the first one. */ 4700 for (; this_sack > 0; this_sack--, sp--) 4701 swap(*sp, *(sp - 1)); 4702 if (cur_sacks > 1) 4703 tcp_sack_maybe_coalesce(tp); 4704 return; 4705 } 4706 } 4707 4708 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4709 tcp_sack_compress_send_ack(sk); 4710 4711 /* Could not find an adjacent existing SACK, build a new one, 4712 * put it at the front, and shift everyone else down. We 4713 * always know there is at least one SACK present already here. 4714 * 4715 * If the sack array is full, forget about the last one. 4716 */ 4717 if (this_sack >= TCP_NUM_SACKS) { 4718 this_sack--; 4719 tp->rx_opt.num_sacks--; 4720 sp--; 4721 } 4722 for (; this_sack > 0; this_sack--, sp--) 4723 *sp = *(sp - 1); 4724 4725 new_sack: 4726 /* Build the new head SACK, and we're done. */ 4727 sp->start_seq = seq; 4728 sp->end_seq = end_seq; 4729 tp->rx_opt.num_sacks++; 4730 } 4731 4732 /* RCV.NXT advances, some SACKs should be eaten. */ 4733 4734 static void tcp_sack_remove(struct tcp_sock *tp) 4735 { 4736 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4737 int num_sacks = tp->rx_opt.num_sacks; 4738 int this_sack; 4739 4740 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4741 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4742 tp->rx_opt.num_sacks = 0; 4743 return; 4744 } 4745 4746 for (this_sack = 0; this_sack < num_sacks;) { 4747 /* Check if the start of the sack is covered by RCV.NXT. */ 4748 if (!before(tp->rcv_nxt, sp->start_seq)) { 4749 int i; 4750 4751 /* RCV.NXT must cover all the block! */ 4752 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4753 4754 /* Zap this SACK, by moving forward any other SACKS. */ 4755 for (i = this_sack+1; i < num_sacks; i++) 4756 tp->selective_acks[i-1] = tp->selective_acks[i]; 4757 num_sacks--; 4758 continue; 4759 } 4760 this_sack++; 4761 sp++; 4762 } 4763 tp->rx_opt.num_sacks = num_sacks; 4764 } 4765 4766 /** 4767 * tcp_try_coalesce - try to merge skb to prior one 4768 * @sk: socket 4769 * @to: prior buffer 4770 * @from: buffer to add in queue 4771 * @fragstolen: pointer to boolean 4772 * 4773 * Before queueing skb @from after @to, try to merge them 4774 * to reduce overall memory use and queue lengths, if cost is small. 4775 * Packets in ofo or receive queues can stay a long time. 4776 * Better try to coalesce them right now to avoid future collapses. 4777 * Returns true if caller should free @from instead of queueing it 4778 */ 4779 static bool tcp_try_coalesce(struct sock *sk, 4780 struct sk_buff *to, 4781 struct sk_buff *from, 4782 bool *fragstolen) 4783 { 4784 int delta; 4785 4786 *fragstolen = false; 4787 4788 /* Its possible this segment overlaps with prior segment in queue */ 4789 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4790 return false; 4791 4792 if (!mptcp_skb_can_collapse(to, from)) 4793 return false; 4794 4795 #ifdef CONFIG_TLS_DEVICE 4796 if (from->decrypted != to->decrypted) 4797 return false; 4798 #endif 4799 4800 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4801 return false; 4802 4803 atomic_add(delta, &sk->sk_rmem_alloc); 4804 sk_mem_charge(sk, delta); 4805 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4806 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4807 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4808 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4809 4810 if (TCP_SKB_CB(from)->has_rxtstamp) { 4811 TCP_SKB_CB(to)->has_rxtstamp = true; 4812 to->tstamp = from->tstamp; 4813 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4814 } 4815 4816 return true; 4817 } 4818 4819 static bool tcp_ooo_try_coalesce(struct sock *sk, 4820 struct sk_buff *to, 4821 struct sk_buff *from, 4822 bool *fragstolen) 4823 { 4824 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4825 4826 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4827 if (res) { 4828 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4829 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4830 4831 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4832 } 4833 return res; 4834 } 4835 4836 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4837 enum skb_drop_reason reason) 4838 { 4839 sk_drops_add(sk, skb); 4840 kfree_skb_reason(skb, reason); 4841 } 4842 4843 /* This one checks to see if we can put data from the 4844 * out_of_order queue into the receive_queue. 4845 */ 4846 static void tcp_ofo_queue(struct sock *sk) 4847 { 4848 struct tcp_sock *tp = tcp_sk(sk); 4849 __u32 dsack_high = tp->rcv_nxt; 4850 bool fin, fragstolen, eaten; 4851 struct sk_buff *skb, *tail; 4852 struct rb_node *p; 4853 4854 p = rb_first(&tp->out_of_order_queue); 4855 while (p) { 4856 skb = rb_to_skb(p); 4857 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4858 break; 4859 4860 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4861 __u32 dsack = dsack_high; 4862 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4863 dsack_high = TCP_SKB_CB(skb)->end_seq; 4864 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4865 } 4866 p = rb_next(p); 4867 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4868 4869 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4870 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4871 continue; 4872 } 4873 4874 tail = skb_peek_tail(&sk->sk_receive_queue); 4875 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4876 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4877 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4878 if (!eaten) 4879 __skb_queue_tail(&sk->sk_receive_queue, skb); 4880 else 4881 kfree_skb_partial(skb, fragstolen); 4882 4883 if (unlikely(fin)) { 4884 tcp_fin(sk); 4885 /* tcp_fin() purges tp->out_of_order_queue, 4886 * so we must end this loop right now. 4887 */ 4888 break; 4889 } 4890 } 4891 } 4892 4893 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4894 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4895 4896 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4897 unsigned int size) 4898 { 4899 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4900 !sk_rmem_schedule(sk, skb, size)) { 4901 4902 if (tcp_prune_queue(sk, skb) < 0) 4903 return -1; 4904 4905 while (!sk_rmem_schedule(sk, skb, size)) { 4906 if (!tcp_prune_ofo_queue(sk, skb)) 4907 return -1; 4908 } 4909 } 4910 return 0; 4911 } 4912 4913 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4914 { 4915 struct tcp_sock *tp = tcp_sk(sk); 4916 struct rb_node **p, *parent; 4917 struct sk_buff *skb1; 4918 u32 seq, end_seq; 4919 bool fragstolen; 4920 4921 tcp_save_lrcv_flowlabel(sk, skb); 4922 tcp_ecn_check_ce(sk, skb); 4923 4924 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4925 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4926 sk->sk_data_ready(sk); 4927 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4928 return; 4929 } 4930 4931 /* Disable header prediction. */ 4932 tp->pred_flags = 0; 4933 inet_csk_schedule_ack(sk); 4934 4935 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4936 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4937 seq = TCP_SKB_CB(skb)->seq; 4938 end_seq = TCP_SKB_CB(skb)->end_seq; 4939 4940 p = &tp->out_of_order_queue.rb_node; 4941 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4942 /* Initial out of order segment, build 1 SACK. */ 4943 if (tcp_is_sack(tp)) { 4944 tp->rx_opt.num_sacks = 1; 4945 tp->selective_acks[0].start_seq = seq; 4946 tp->selective_acks[0].end_seq = end_seq; 4947 } 4948 rb_link_node(&skb->rbnode, NULL, p); 4949 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4950 tp->ooo_last_skb = skb; 4951 goto end; 4952 } 4953 4954 /* In the typical case, we are adding an skb to the end of the list. 4955 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4956 */ 4957 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4958 skb, &fragstolen)) { 4959 coalesce_done: 4960 /* For non sack flows, do not grow window to force DUPACK 4961 * and trigger fast retransmit. 4962 */ 4963 if (tcp_is_sack(tp)) 4964 tcp_grow_window(sk, skb, true); 4965 kfree_skb_partial(skb, fragstolen); 4966 skb = NULL; 4967 goto add_sack; 4968 } 4969 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4970 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4971 parent = &tp->ooo_last_skb->rbnode; 4972 p = &parent->rb_right; 4973 goto insert; 4974 } 4975 4976 /* Find place to insert this segment. Handle overlaps on the way. */ 4977 parent = NULL; 4978 while (*p) { 4979 parent = *p; 4980 skb1 = rb_to_skb(parent); 4981 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4982 p = &parent->rb_left; 4983 continue; 4984 } 4985 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4986 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4987 /* All the bits are present. Drop. */ 4988 NET_INC_STATS(sock_net(sk), 4989 LINUX_MIB_TCPOFOMERGE); 4990 tcp_drop_reason(sk, skb, 4991 SKB_DROP_REASON_TCP_OFOMERGE); 4992 skb = NULL; 4993 tcp_dsack_set(sk, seq, end_seq); 4994 goto add_sack; 4995 } 4996 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4997 /* Partial overlap. */ 4998 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4999 } else { 5000 /* skb's seq == skb1's seq and skb covers skb1. 5001 * Replace skb1 with skb. 5002 */ 5003 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5004 &tp->out_of_order_queue); 5005 tcp_dsack_extend(sk, 5006 TCP_SKB_CB(skb1)->seq, 5007 TCP_SKB_CB(skb1)->end_seq); 5008 NET_INC_STATS(sock_net(sk), 5009 LINUX_MIB_TCPOFOMERGE); 5010 tcp_drop_reason(sk, skb1, 5011 SKB_DROP_REASON_TCP_OFOMERGE); 5012 goto merge_right; 5013 } 5014 } else if (tcp_ooo_try_coalesce(sk, skb1, 5015 skb, &fragstolen)) { 5016 goto coalesce_done; 5017 } 5018 p = &parent->rb_right; 5019 } 5020 insert: 5021 /* Insert segment into RB tree. */ 5022 rb_link_node(&skb->rbnode, parent, p); 5023 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5024 5025 merge_right: 5026 /* Remove other segments covered by skb. */ 5027 while ((skb1 = skb_rb_next(skb)) != NULL) { 5028 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5029 break; 5030 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5031 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5032 end_seq); 5033 break; 5034 } 5035 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5036 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5037 TCP_SKB_CB(skb1)->end_seq); 5038 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5039 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5040 } 5041 /* If there is no skb after us, we are the last_skb ! */ 5042 if (!skb1) 5043 tp->ooo_last_skb = skb; 5044 5045 add_sack: 5046 if (tcp_is_sack(tp)) 5047 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5048 end: 5049 if (skb) { 5050 /* For non sack flows, do not grow window to force DUPACK 5051 * and trigger fast retransmit. 5052 */ 5053 if (tcp_is_sack(tp)) 5054 tcp_grow_window(sk, skb, false); 5055 skb_condense(skb); 5056 skb_set_owner_r(skb, sk); 5057 } 5058 } 5059 5060 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5061 bool *fragstolen) 5062 { 5063 int eaten; 5064 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5065 5066 eaten = (tail && 5067 tcp_try_coalesce(sk, tail, 5068 skb, fragstolen)) ? 1 : 0; 5069 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5070 if (!eaten) { 5071 __skb_queue_tail(&sk->sk_receive_queue, skb); 5072 skb_set_owner_r(skb, sk); 5073 } 5074 return eaten; 5075 } 5076 5077 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5078 { 5079 struct sk_buff *skb; 5080 int err = -ENOMEM; 5081 int data_len = 0; 5082 bool fragstolen; 5083 5084 if (size == 0) 5085 return 0; 5086 5087 if (size > PAGE_SIZE) { 5088 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5089 5090 data_len = npages << PAGE_SHIFT; 5091 size = data_len + (size & ~PAGE_MASK); 5092 } 5093 skb = alloc_skb_with_frags(size - data_len, data_len, 5094 PAGE_ALLOC_COSTLY_ORDER, 5095 &err, sk->sk_allocation); 5096 if (!skb) 5097 goto err; 5098 5099 skb_put(skb, size - data_len); 5100 skb->data_len = data_len; 5101 skb->len = size; 5102 5103 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5105 goto err_free; 5106 } 5107 5108 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5109 if (err) 5110 goto err_free; 5111 5112 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5113 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5114 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5115 5116 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5117 WARN_ON_ONCE(fragstolen); /* should not happen */ 5118 __kfree_skb(skb); 5119 } 5120 return size; 5121 5122 err_free: 5123 kfree_skb(skb); 5124 err: 5125 return err; 5126 5127 } 5128 5129 void tcp_data_ready(struct sock *sk) 5130 { 5131 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5132 sk->sk_data_ready(sk); 5133 } 5134 5135 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5136 { 5137 struct tcp_sock *tp = tcp_sk(sk); 5138 enum skb_drop_reason reason; 5139 bool fragstolen; 5140 int eaten; 5141 5142 /* If a subflow has been reset, the packet should not continue 5143 * to be processed, drop the packet. 5144 */ 5145 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5146 __kfree_skb(skb); 5147 return; 5148 } 5149 5150 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5151 __kfree_skb(skb); 5152 return; 5153 } 5154 skb_dst_drop(skb); 5155 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5156 5157 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5158 tp->rx_opt.dsack = 0; 5159 5160 /* Queue data for delivery to the user. 5161 * Packets in sequence go to the receive queue. 5162 * Out of sequence packets to the out_of_order_queue. 5163 */ 5164 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5165 if (tcp_receive_window(tp) == 0) { 5166 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5167 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5168 goto out_of_window; 5169 } 5170 5171 /* Ok. In sequence. In window. */ 5172 queue_and_out: 5173 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5174 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5175 inet_csk(sk)->icsk_ack.pending |= 5176 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5177 inet_csk_schedule_ack(sk); 5178 sk->sk_data_ready(sk); 5179 5180 if (skb_queue_len(&sk->sk_receive_queue)) { 5181 reason = SKB_DROP_REASON_PROTO_MEM; 5182 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5183 goto drop; 5184 } 5185 sk_forced_mem_schedule(sk, skb->truesize); 5186 } 5187 5188 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5189 if (skb->len) 5190 tcp_event_data_recv(sk, skb); 5191 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5192 tcp_fin(sk); 5193 5194 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5195 tcp_ofo_queue(sk); 5196 5197 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5198 * gap in queue is filled. 5199 */ 5200 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5201 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5202 } 5203 5204 if (tp->rx_opt.num_sacks) 5205 tcp_sack_remove(tp); 5206 5207 tcp_fast_path_check(sk); 5208 5209 if (eaten > 0) 5210 kfree_skb_partial(skb, fragstolen); 5211 if (!sock_flag(sk, SOCK_DEAD)) 5212 tcp_data_ready(sk); 5213 return; 5214 } 5215 5216 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5217 tcp_rcv_spurious_retrans(sk, skb); 5218 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5219 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5220 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5221 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5222 5223 out_of_window: 5224 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5225 inet_csk_schedule_ack(sk); 5226 drop: 5227 tcp_drop_reason(sk, skb, reason); 5228 return; 5229 } 5230 5231 /* Out of window. F.e. zero window probe. */ 5232 if (!before(TCP_SKB_CB(skb)->seq, 5233 tp->rcv_nxt + tcp_receive_window(tp))) { 5234 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5235 goto out_of_window; 5236 } 5237 5238 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5239 /* Partial packet, seq < rcv_next < end_seq */ 5240 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5241 5242 /* If window is closed, drop tail of packet. But after 5243 * remembering D-SACK for its head made in previous line. 5244 */ 5245 if (!tcp_receive_window(tp)) { 5246 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5247 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5248 goto out_of_window; 5249 } 5250 goto queue_and_out; 5251 } 5252 5253 tcp_data_queue_ofo(sk, skb); 5254 } 5255 5256 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5257 { 5258 if (list) 5259 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5260 5261 return skb_rb_next(skb); 5262 } 5263 5264 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5265 struct sk_buff_head *list, 5266 struct rb_root *root) 5267 { 5268 struct sk_buff *next = tcp_skb_next(skb, list); 5269 5270 if (list) 5271 __skb_unlink(skb, list); 5272 else 5273 rb_erase(&skb->rbnode, root); 5274 5275 __kfree_skb(skb); 5276 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5277 5278 return next; 5279 } 5280 5281 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5282 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5283 { 5284 struct rb_node **p = &root->rb_node; 5285 struct rb_node *parent = NULL; 5286 struct sk_buff *skb1; 5287 5288 while (*p) { 5289 parent = *p; 5290 skb1 = rb_to_skb(parent); 5291 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5292 p = &parent->rb_left; 5293 else 5294 p = &parent->rb_right; 5295 } 5296 rb_link_node(&skb->rbnode, parent, p); 5297 rb_insert_color(&skb->rbnode, root); 5298 } 5299 5300 /* Collapse contiguous sequence of skbs head..tail with 5301 * sequence numbers start..end. 5302 * 5303 * If tail is NULL, this means until the end of the queue. 5304 * 5305 * Segments with FIN/SYN are not collapsed (only because this 5306 * simplifies code) 5307 */ 5308 static void 5309 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5310 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5311 { 5312 struct sk_buff *skb = head, *n; 5313 struct sk_buff_head tmp; 5314 bool end_of_skbs; 5315 5316 /* First, check that queue is collapsible and find 5317 * the point where collapsing can be useful. 5318 */ 5319 restart: 5320 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5321 n = tcp_skb_next(skb, list); 5322 5323 /* No new bits? It is possible on ofo queue. */ 5324 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5325 skb = tcp_collapse_one(sk, skb, list, root); 5326 if (!skb) 5327 break; 5328 goto restart; 5329 } 5330 5331 /* The first skb to collapse is: 5332 * - not SYN/FIN and 5333 * - bloated or contains data before "start" or 5334 * overlaps to the next one and mptcp allow collapsing. 5335 */ 5336 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5337 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5338 before(TCP_SKB_CB(skb)->seq, start))) { 5339 end_of_skbs = false; 5340 break; 5341 } 5342 5343 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5344 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5345 end_of_skbs = false; 5346 break; 5347 } 5348 5349 /* Decided to skip this, advance start seq. */ 5350 start = TCP_SKB_CB(skb)->end_seq; 5351 } 5352 if (end_of_skbs || 5353 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5354 return; 5355 5356 __skb_queue_head_init(&tmp); 5357 5358 while (before(start, end)) { 5359 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5360 struct sk_buff *nskb; 5361 5362 nskb = alloc_skb(copy, GFP_ATOMIC); 5363 if (!nskb) 5364 break; 5365 5366 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5367 #ifdef CONFIG_TLS_DEVICE 5368 nskb->decrypted = skb->decrypted; 5369 #endif 5370 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5371 if (list) 5372 __skb_queue_before(list, skb, nskb); 5373 else 5374 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5375 skb_set_owner_r(nskb, sk); 5376 mptcp_skb_ext_move(nskb, skb); 5377 5378 /* Copy data, releasing collapsed skbs. */ 5379 while (copy > 0) { 5380 int offset = start - TCP_SKB_CB(skb)->seq; 5381 int size = TCP_SKB_CB(skb)->end_seq - start; 5382 5383 BUG_ON(offset < 0); 5384 if (size > 0) { 5385 size = min(copy, size); 5386 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5387 BUG(); 5388 TCP_SKB_CB(nskb)->end_seq += size; 5389 copy -= size; 5390 start += size; 5391 } 5392 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5393 skb = tcp_collapse_one(sk, skb, list, root); 5394 if (!skb || 5395 skb == tail || 5396 !mptcp_skb_can_collapse(nskb, skb) || 5397 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5398 goto end; 5399 #ifdef CONFIG_TLS_DEVICE 5400 if (skb->decrypted != nskb->decrypted) 5401 goto end; 5402 #endif 5403 } 5404 } 5405 } 5406 end: 5407 skb_queue_walk_safe(&tmp, skb, n) 5408 tcp_rbtree_insert(root, skb); 5409 } 5410 5411 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5412 * and tcp_collapse() them until all the queue is collapsed. 5413 */ 5414 static void tcp_collapse_ofo_queue(struct sock *sk) 5415 { 5416 struct tcp_sock *tp = tcp_sk(sk); 5417 u32 range_truesize, sum_tiny = 0; 5418 struct sk_buff *skb, *head; 5419 u32 start, end; 5420 5421 skb = skb_rb_first(&tp->out_of_order_queue); 5422 new_range: 5423 if (!skb) { 5424 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5425 return; 5426 } 5427 start = TCP_SKB_CB(skb)->seq; 5428 end = TCP_SKB_CB(skb)->end_seq; 5429 range_truesize = skb->truesize; 5430 5431 for (head = skb;;) { 5432 skb = skb_rb_next(skb); 5433 5434 /* Range is terminated when we see a gap or when 5435 * we are at the queue end. 5436 */ 5437 if (!skb || 5438 after(TCP_SKB_CB(skb)->seq, end) || 5439 before(TCP_SKB_CB(skb)->end_seq, start)) { 5440 /* Do not attempt collapsing tiny skbs */ 5441 if (range_truesize != head->truesize || 5442 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5443 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5444 head, skb, start, end); 5445 } else { 5446 sum_tiny += range_truesize; 5447 if (sum_tiny > sk->sk_rcvbuf >> 3) 5448 return; 5449 } 5450 goto new_range; 5451 } 5452 5453 range_truesize += skb->truesize; 5454 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5455 start = TCP_SKB_CB(skb)->seq; 5456 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5457 end = TCP_SKB_CB(skb)->end_seq; 5458 } 5459 } 5460 5461 /* 5462 * Clean the out-of-order queue to make room. 5463 * We drop high sequences packets to : 5464 * 1) Let a chance for holes to be filled. 5465 * This means we do not drop packets from ooo queue if their sequence 5466 * is before incoming packet sequence. 5467 * 2) not add too big latencies if thousands of packets sit there. 5468 * (But if application shrinks SO_RCVBUF, we could still end up 5469 * freeing whole queue here) 5470 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5471 * 5472 * Return true if queue has shrunk. 5473 */ 5474 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5475 { 5476 struct tcp_sock *tp = tcp_sk(sk); 5477 struct rb_node *node, *prev; 5478 bool pruned = false; 5479 int goal; 5480 5481 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5482 return false; 5483 5484 goal = sk->sk_rcvbuf >> 3; 5485 node = &tp->ooo_last_skb->rbnode; 5486 5487 do { 5488 struct sk_buff *skb = rb_to_skb(node); 5489 5490 /* If incoming skb would land last in ofo queue, stop pruning. */ 5491 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5492 break; 5493 pruned = true; 5494 prev = rb_prev(node); 5495 rb_erase(node, &tp->out_of_order_queue); 5496 goal -= skb->truesize; 5497 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5498 tp->ooo_last_skb = rb_to_skb(prev); 5499 if (!prev || goal <= 0) { 5500 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5501 !tcp_under_memory_pressure(sk)) 5502 break; 5503 goal = sk->sk_rcvbuf >> 3; 5504 } 5505 node = prev; 5506 } while (node); 5507 5508 if (pruned) { 5509 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5510 /* Reset SACK state. A conforming SACK implementation will 5511 * do the same at a timeout based retransmit. When a connection 5512 * is in a sad state like this, we care only about integrity 5513 * of the connection not performance. 5514 */ 5515 if (tp->rx_opt.sack_ok) 5516 tcp_sack_reset(&tp->rx_opt); 5517 } 5518 return pruned; 5519 } 5520 5521 /* Reduce allocated memory if we can, trying to get 5522 * the socket within its memory limits again. 5523 * 5524 * Return less than zero if we should start dropping frames 5525 * until the socket owning process reads some of the data 5526 * to stabilize the situation. 5527 */ 5528 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5529 { 5530 struct tcp_sock *tp = tcp_sk(sk); 5531 5532 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5533 5534 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5535 tcp_clamp_window(sk); 5536 else if (tcp_under_memory_pressure(sk)) 5537 tcp_adjust_rcv_ssthresh(sk); 5538 5539 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5540 return 0; 5541 5542 tcp_collapse_ofo_queue(sk); 5543 if (!skb_queue_empty(&sk->sk_receive_queue)) 5544 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5545 skb_peek(&sk->sk_receive_queue), 5546 NULL, 5547 tp->copied_seq, tp->rcv_nxt); 5548 5549 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5550 return 0; 5551 5552 /* Collapsing did not help, destructive actions follow. 5553 * This must not ever occur. */ 5554 5555 tcp_prune_ofo_queue(sk, in_skb); 5556 5557 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5558 return 0; 5559 5560 /* If we are really being abused, tell the caller to silently 5561 * drop receive data on the floor. It will get retransmitted 5562 * and hopefully then we'll have sufficient space. 5563 */ 5564 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5565 5566 /* Massive buffer overcommit. */ 5567 tp->pred_flags = 0; 5568 return -1; 5569 } 5570 5571 static bool tcp_should_expand_sndbuf(struct sock *sk) 5572 { 5573 const struct tcp_sock *tp = tcp_sk(sk); 5574 5575 /* If the user specified a specific send buffer setting, do 5576 * not modify it. 5577 */ 5578 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5579 return false; 5580 5581 /* If we are under global TCP memory pressure, do not expand. */ 5582 if (tcp_under_memory_pressure(sk)) { 5583 int unused_mem = sk_unused_reserved_mem(sk); 5584 5585 /* Adjust sndbuf according to reserved mem. But make sure 5586 * it never goes below SOCK_MIN_SNDBUF. 5587 * See sk_stream_moderate_sndbuf() for more details. 5588 */ 5589 if (unused_mem > SOCK_MIN_SNDBUF) 5590 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5591 5592 return false; 5593 } 5594 5595 /* If we are under soft global TCP memory pressure, do not expand. */ 5596 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5597 return false; 5598 5599 /* If we filled the congestion window, do not expand. */ 5600 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5601 return false; 5602 5603 return true; 5604 } 5605 5606 static void tcp_new_space(struct sock *sk) 5607 { 5608 struct tcp_sock *tp = tcp_sk(sk); 5609 5610 if (tcp_should_expand_sndbuf(sk)) { 5611 tcp_sndbuf_expand(sk); 5612 tp->snd_cwnd_stamp = tcp_jiffies32; 5613 } 5614 5615 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5616 } 5617 5618 /* Caller made space either from: 5619 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5620 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5621 * 5622 * We might be able to generate EPOLLOUT to the application if: 5623 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5624 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5625 * small enough that tcp_stream_memory_free() decides it 5626 * is time to generate EPOLLOUT. 5627 */ 5628 void tcp_check_space(struct sock *sk) 5629 { 5630 /* pairs with tcp_poll() */ 5631 smp_mb(); 5632 if (sk->sk_socket && 5633 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5634 tcp_new_space(sk); 5635 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5636 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5637 } 5638 } 5639 5640 static inline void tcp_data_snd_check(struct sock *sk) 5641 { 5642 tcp_push_pending_frames(sk); 5643 tcp_check_space(sk); 5644 } 5645 5646 /* 5647 * Check if sending an ack is needed. 5648 */ 5649 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5650 { 5651 struct tcp_sock *tp = tcp_sk(sk); 5652 unsigned long rtt, delay; 5653 5654 /* More than one full frame received... */ 5655 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5656 /* ... and right edge of window advances far enough. 5657 * (tcp_recvmsg() will send ACK otherwise). 5658 * If application uses SO_RCVLOWAT, we want send ack now if 5659 * we have not received enough bytes to satisfy the condition. 5660 */ 5661 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5662 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5663 /* We ACK each frame or... */ 5664 tcp_in_quickack_mode(sk) || 5665 /* Protocol state mandates a one-time immediate ACK */ 5666 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5667 /* If we are running from __release_sock() in user context, 5668 * Defer the ack until tcp_release_cb(). 5669 */ 5670 if (sock_owned_by_user_nocheck(sk) && 5671 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5672 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5673 return; 5674 } 5675 send_now: 5676 tcp_send_ack(sk); 5677 return; 5678 } 5679 5680 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5681 tcp_send_delayed_ack(sk); 5682 return; 5683 } 5684 5685 if (!tcp_is_sack(tp) || 5686 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5687 goto send_now; 5688 5689 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5690 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5691 tp->dup_ack_counter = 0; 5692 } 5693 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5694 tp->dup_ack_counter++; 5695 goto send_now; 5696 } 5697 tp->compressed_ack++; 5698 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5699 return; 5700 5701 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5702 5703 rtt = tp->rcv_rtt_est.rtt_us; 5704 if (tp->srtt_us && tp->srtt_us < rtt) 5705 rtt = tp->srtt_us; 5706 5707 delay = min_t(unsigned long, 5708 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5709 rtt * (NSEC_PER_USEC >> 3)/20); 5710 sock_hold(sk); 5711 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5712 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5713 HRTIMER_MODE_REL_PINNED_SOFT); 5714 } 5715 5716 static inline void tcp_ack_snd_check(struct sock *sk) 5717 { 5718 if (!inet_csk_ack_scheduled(sk)) { 5719 /* We sent a data segment already. */ 5720 return; 5721 } 5722 __tcp_ack_snd_check(sk, 1); 5723 } 5724 5725 /* 5726 * This routine is only called when we have urgent data 5727 * signaled. Its the 'slow' part of tcp_urg. It could be 5728 * moved inline now as tcp_urg is only called from one 5729 * place. We handle URGent data wrong. We have to - as 5730 * BSD still doesn't use the correction from RFC961. 5731 * For 1003.1g we should support a new option TCP_STDURG to permit 5732 * either form (or just set the sysctl tcp_stdurg). 5733 */ 5734 5735 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5736 { 5737 struct tcp_sock *tp = tcp_sk(sk); 5738 u32 ptr = ntohs(th->urg_ptr); 5739 5740 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5741 ptr--; 5742 ptr += ntohl(th->seq); 5743 5744 /* Ignore urgent data that we've already seen and read. */ 5745 if (after(tp->copied_seq, ptr)) 5746 return; 5747 5748 /* Do not replay urg ptr. 5749 * 5750 * NOTE: interesting situation not covered by specs. 5751 * Misbehaving sender may send urg ptr, pointing to segment, 5752 * which we already have in ofo queue. We are not able to fetch 5753 * such data and will stay in TCP_URG_NOTYET until will be eaten 5754 * by recvmsg(). Seems, we are not obliged to handle such wicked 5755 * situations. But it is worth to think about possibility of some 5756 * DoSes using some hypothetical application level deadlock. 5757 */ 5758 if (before(ptr, tp->rcv_nxt)) 5759 return; 5760 5761 /* Do we already have a newer (or duplicate) urgent pointer? */ 5762 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5763 return; 5764 5765 /* Tell the world about our new urgent pointer. */ 5766 sk_send_sigurg(sk); 5767 5768 /* We may be adding urgent data when the last byte read was 5769 * urgent. To do this requires some care. We cannot just ignore 5770 * tp->copied_seq since we would read the last urgent byte again 5771 * as data, nor can we alter copied_seq until this data arrives 5772 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5773 * 5774 * NOTE. Double Dutch. Rendering to plain English: author of comment 5775 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5776 * and expect that both A and B disappear from stream. This is _wrong_. 5777 * Though this happens in BSD with high probability, this is occasional. 5778 * Any application relying on this is buggy. Note also, that fix "works" 5779 * only in this artificial test. Insert some normal data between A and B and we will 5780 * decline of BSD again. Verdict: it is better to remove to trap 5781 * buggy users. 5782 */ 5783 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5784 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5785 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5786 tp->copied_seq++; 5787 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5788 __skb_unlink(skb, &sk->sk_receive_queue); 5789 __kfree_skb(skb); 5790 } 5791 } 5792 5793 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5794 WRITE_ONCE(tp->urg_seq, ptr); 5795 5796 /* Disable header prediction. */ 5797 tp->pred_flags = 0; 5798 } 5799 5800 /* This is the 'fast' part of urgent handling. */ 5801 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5802 { 5803 struct tcp_sock *tp = tcp_sk(sk); 5804 5805 /* Check if we get a new urgent pointer - normally not. */ 5806 if (unlikely(th->urg)) 5807 tcp_check_urg(sk, th); 5808 5809 /* Do we wait for any urgent data? - normally not... */ 5810 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5811 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5812 th->syn; 5813 5814 /* Is the urgent pointer pointing into this packet? */ 5815 if (ptr < skb->len) { 5816 u8 tmp; 5817 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5818 BUG(); 5819 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5820 if (!sock_flag(sk, SOCK_DEAD)) 5821 sk->sk_data_ready(sk); 5822 } 5823 } 5824 } 5825 5826 /* Accept RST for rcv_nxt - 1 after a FIN. 5827 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5828 * FIN is sent followed by a RST packet. The RST is sent with the same 5829 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5830 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5831 * ACKs on the closed socket. In addition middleboxes can drop either the 5832 * challenge ACK or a subsequent RST. 5833 */ 5834 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5835 { 5836 const struct tcp_sock *tp = tcp_sk(sk); 5837 5838 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5839 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5840 TCPF_CLOSING)); 5841 } 5842 5843 /* Does PAWS and seqno based validation of an incoming segment, flags will 5844 * play significant role here. 5845 */ 5846 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5847 const struct tcphdr *th, int syn_inerr) 5848 { 5849 struct tcp_sock *tp = tcp_sk(sk); 5850 SKB_DR(reason); 5851 5852 /* RFC1323: H1. Apply PAWS check first. */ 5853 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5854 tp->rx_opt.saw_tstamp && 5855 tcp_paws_discard(sk, skb)) { 5856 if (!th->rst) { 5857 if (unlikely(th->syn)) 5858 goto syn_challenge; 5859 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5860 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5861 LINUX_MIB_TCPACKSKIPPEDPAWS, 5862 &tp->last_oow_ack_time)) 5863 tcp_send_dupack(sk, skb); 5864 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5865 goto discard; 5866 } 5867 /* Reset is accepted even if it did not pass PAWS. */ 5868 } 5869 5870 /* Step 1: check sequence number */ 5871 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5872 if (reason) { 5873 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5874 * (RST) segments are validated by checking their SEQ-fields." 5875 * And page 69: "If an incoming segment is not acceptable, 5876 * an acknowledgment should be sent in reply (unless the RST 5877 * bit is set, if so drop the segment and return)". 5878 */ 5879 if (!th->rst) { 5880 if (th->syn) 5881 goto syn_challenge; 5882 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5883 LINUX_MIB_TCPACKSKIPPEDSEQ, 5884 &tp->last_oow_ack_time)) 5885 tcp_send_dupack(sk, skb); 5886 } else if (tcp_reset_check(sk, skb)) { 5887 goto reset; 5888 } 5889 goto discard; 5890 } 5891 5892 /* Step 2: check RST bit */ 5893 if (th->rst) { 5894 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5895 * FIN and SACK too if available): 5896 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5897 * the right-most SACK block, 5898 * then 5899 * RESET the connection 5900 * else 5901 * Send a challenge ACK 5902 */ 5903 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5904 tcp_reset_check(sk, skb)) 5905 goto reset; 5906 5907 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5908 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5909 int max_sack = sp[0].end_seq; 5910 int this_sack; 5911 5912 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5913 ++this_sack) { 5914 max_sack = after(sp[this_sack].end_seq, 5915 max_sack) ? 5916 sp[this_sack].end_seq : max_sack; 5917 } 5918 5919 if (TCP_SKB_CB(skb)->seq == max_sack) 5920 goto reset; 5921 } 5922 5923 /* Disable TFO if RST is out-of-order 5924 * and no data has been received 5925 * for current active TFO socket 5926 */ 5927 if (tp->syn_fastopen && !tp->data_segs_in && 5928 sk->sk_state == TCP_ESTABLISHED) 5929 tcp_fastopen_active_disable(sk); 5930 tcp_send_challenge_ack(sk); 5931 SKB_DR_SET(reason, TCP_RESET); 5932 goto discard; 5933 } 5934 5935 /* step 3: check security and precedence [ignored] */ 5936 5937 /* step 4: Check for a SYN 5938 * RFC 5961 4.2 : Send a challenge ack 5939 */ 5940 if (th->syn) { 5941 syn_challenge: 5942 if (syn_inerr) 5943 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5944 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5945 tcp_send_challenge_ack(sk); 5946 SKB_DR_SET(reason, TCP_INVALID_SYN); 5947 goto discard; 5948 } 5949 5950 bpf_skops_parse_hdr(sk, skb); 5951 5952 return true; 5953 5954 discard: 5955 tcp_drop_reason(sk, skb, reason); 5956 return false; 5957 5958 reset: 5959 tcp_reset(sk, skb); 5960 __kfree_skb(skb); 5961 return false; 5962 } 5963 5964 /* 5965 * TCP receive function for the ESTABLISHED state. 5966 * 5967 * It is split into a fast path and a slow path. The fast path is 5968 * disabled when: 5969 * - A zero window was announced from us - zero window probing 5970 * is only handled properly in the slow path. 5971 * - Out of order segments arrived. 5972 * - Urgent data is expected. 5973 * - There is no buffer space left 5974 * - Unexpected TCP flags/window values/header lengths are received 5975 * (detected by checking the TCP header against pred_flags) 5976 * - Data is sent in both directions. Fast path only supports pure senders 5977 * or pure receivers (this means either the sequence number or the ack 5978 * value must stay constant) 5979 * - Unexpected TCP option. 5980 * 5981 * When these conditions are not satisfied it drops into a standard 5982 * receive procedure patterned after RFC793 to handle all cases. 5983 * The first three cases are guaranteed by proper pred_flags setting, 5984 * the rest is checked inline. Fast processing is turned on in 5985 * tcp_data_queue when everything is OK. 5986 */ 5987 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5988 { 5989 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5990 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5991 struct tcp_sock *tp = tcp_sk(sk); 5992 unsigned int len = skb->len; 5993 5994 /* TCP congestion window tracking */ 5995 trace_tcp_probe(sk, skb); 5996 5997 tcp_mstamp_refresh(tp); 5998 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5999 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6000 /* 6001 * Header prediction. 6002 * The code loosely follows the one in the famous 6003 * "30 instruction TCP receive" Van Jacobson mail. 6004 * 6005 * Van's trick is to deposit buffers into socket queue 6006 * on a device interrupt, to call tcp_recv function 6007 * on the receive process context and checksum and copy 6008 * the buffer to user space. smart... 6009 * 6010 * Our current scheme is not silly either but we take the 6011 * extra cost of the net_bh soft interrupt processing... 6012 * We do checksum and copy also but from device to kernel. 6013 */ 6014 6015 tp->rx_opt.saw_tstamp = 0; 6016 6017 /* pred_flags is 0xS?10 << 16 + snd_wnd 6018 * if header_prediction is to be made 6019 * 'S' will always be tp->tcp_header_len >> 2 6020 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6021 * turn it off (when there are holes in the receive 6022 * space for instance) 6023 * PSH flag is ignored. 6024 */ 6025 6026 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6027 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6028 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6029 int tcp_header_len = tp->tcp_header_len; 6030 6031 /* Timestamp header prediction: tcp_header_len 6032 * is automatically equal to th->doff*4 due to pred_flags 6033 * match. 6034 */ 6035 6036 /* Check timestamp */ 6037 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6038 /* No? Slow path! */ 6039 if (!tcp_parse_aligned_timestamp(tp, th)) 6040 goto slow_path; 6041 6042 /* If PAWS failed, check it more carefully in slow path */ 6043 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 6044 goto slow_path; 6045 6046 /* DO NOT update ts_recent here, if checksum fails 6047 * and timestamp was corrupted part, it will result 6048 * in a hung connection since we will drop all 6049 * future packets due to the PAWS test. 6050 */ 6051 } 6052 6053 if (len <= tcp_header_len) { 6054 /* Bulk data transfer: sender */ 6055 if (len == tcp_header_len) { 6056 /* Predicted packet is in window by definition. 6057 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6058 * Hence, check seq<=rcv_wup reduces to: 6059 */ 6060 if (tcp_header_len == 6061 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6062 tp->rcv_nxt == tp->rcv_wup) 6063 tcp_store_ts_recent(tp); 6064 6065 /* We know that such packets are checksummed 6066 * on entry. 6067 */ 6068 tcp_ack(sk, skb, 0); 6069 __kfree_skb(skb); 6070 tcp_data_snd_check(sk); 6071 /* When receiving pure ack in fast path, update 6072 * last ts ecr directly instead of calling 6073 * tcp_rcv_rtt_measure_ts() 6074 */ 6075 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6076 return; 6077 } else { /* Header too small */ 6078 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6079 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6080 goto discard; 6081 } 6082 } else { 6083 int eaten = 0; 6084 bool fragstolen = false; 6085 6086 if (tcp_checksum_complete(skb)) 6087 goto csum_error; 6088 6089 if ((int)skb->truesize > sk->sk_forward_alloc) 6090 goto step5; 6091 6092 /* Predicted packet is in window by definition. 6093 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6094 * Hence, check seq<=rcv_wup reduces to: 6095 */ 6096 if (tcp_header_len == 6097 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6098 tp->rcv_nxt == tp->rcv_wup) 6099 tcp_store_ts_recent(tp); 6100 6101 tcp_rcv_rtt_measure_ts(sk, skb); 6102 6103 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6104 6105 /* Bulk data transfer: receiver */ 6106 skb_dst_drop(skb); 6107 __skb_pull(skb, tcp_header_len); 6108 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6109 6110 tcp_event_data_recv(sk, skb); 6111 6112 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6113 /* Well, only one small jumplet in fast path... */ 6114 tcp_ack(sk, skb, FLAG_DATA); 6115 tcp_data_snd_check(sk); 6116 if (!inet_csk_ack_scheduled(sk)) 6117 goto no_ack; 6118 } else { 6119 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6120 } 6121 6122 __tcp_ack_snd_check(sk, 0); 6123 no_ack: 6124 if (eaten) 6125 kfree_skb_partial(skb, fragstolen); 6126 tcp_data_ready(sk); 6127 return; 6128 } 6129 } 6130 6131 slow_path: 6132 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6133 goto csum_error; 6134 6135 if (!th->ack && !th->rst && !th->syn) { 6136 reason = SKB_DROP_REASON_TCP_FLAGS; 6137 goto discard; 6138 } 6139 6140 /* 6141 * Standard slow path. 6142 */ 6143 6144 if (!tcp_validate_incoming(sk, skb, th, 1)) 6145 return; 6146 6147 step5: 6148 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6149 if ((int)reason < 0) { 6150 reason = -reason; 6151 goto discard; 6152 } 6153 tcp_rcv_rtt_measure_ts(sk, skb); 6154 6155 /* Process urgent data. */ 6156 tcp_urg(sk, skb, th); 6157 6158 /* step 7: process the segment text */ 6159 tcp_data_queue(sk, skb); 6160 6161 tcp_data_snd_check(sk); 6162 tcp_ack_snd_check(sk); 6163 return; 6164 6165 csum_error: 6166 reason = SKB_DROP_REASON_TCP_CSUM; 6167 trace_tcp_bad_csum(skb); 6168 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6169 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6170 6171 discard: 6172 tcp_drop_reason(sk, skb, reason); 6173 } 6174 EXPORT_SYMBOL(tcp_rcv_established); 6175 6176 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6177 { 6178 struct inet_connection_sock *icsk = inet_csk(sk); 6179 struct tcp_sock *tp = tcp_sk(sk); 6180 6181 tcp_mtup_init(sk); 6182 icsk->icsk_af_ops->rebuild_header(sk); 6183 tcp_init_metrics(sk); 6184 6185 /* Initialize the congestion window to start the transfer. 6186 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6187 * retransmitted. In light of RFC6298 more aggressive 1sec 6188 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6189 * retransmission has occurred. 6190 */ 6191 if (tp->total_retrans > 1 && tp->undo_marker) 6192 tcp_snd_cwnd_set(tp, 1); 6193 else 6194 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6195 tp->snd_cwnd_stamp = tcp_jiffies32; 6196 6197 bpf_skops_established(sk, bpf_op, skb); 6198 /* Initialize congestion control unless BPF initialized it already: */ 6199 if (!icsk->icsk_ca_initialized) 6200 tcp_init_congestion_control(sk); 6201 tcp_init_buffer_space(sk); 6202 } 6203 6204 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6205 { 6206 struct tcp_sock *tp = tcp_sk(sk); 6207 struct inet_connection_sock *icsk = inet_csk(sk); 6208 6209 tcp_ao_finish_connect(sk, skb); 6210 tcp_set_state(sk, TCP_ESTABLISHED); 6211 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6212 6213 if (skb) { 6214 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6215 security_inet_conn_established(sk, skb); 6216 sk_mark_napi_id(sk, skb); 6217 } 6218 6219 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6220 6221 /* Prevent spurious tcp_cwnd_restart() on first data 6222 * packet. 6223 */ 6224 tp->lsndtime = tcp_jiffies32; 6225 6226 if (sock_flag(sk, SOCK_KEEPOPEN)) 6227 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6228 6229 if (!tp->rx_opt.snd_wscale) 6230 __tcp_fast_path_on(tp, tp->snd_wnd); 6231 else 6232 tp->pred_flags = 0; 6233 } 6234 6235 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6236 struct tcp_fastopen_cookie *cookie) 6237 { 6238 struct tcp_sock *tp = tcp_sk(sk); 6239 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6240 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6241 bool syn_drop = false; 6242 6243 if (mss == tp->rx_opt.user_mss) { 6244 struct tcp_options_received opt; 6245 6246 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6247 tcp_clear_options(&opt); 6248 opt.user_mss = opt.mss_clamp = 0; 6249 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6250 mss = opt.mss_clamp; 6251 } 6252 6253 if (!tp->syn_fastopen) { 6254 /* Ignore an unsolicited cookie */ 6255 cookie->len = -1; 6256 } else if (tp->total_retrans) { 6257 /* SYN timed out and the SYN-ACK neither has a cookie nor 6258 * acknowledges data. Presumably the remote received only 6259 * the retransmitted (regular) SYNs: either the original 6260 * SYN-data or the corresponding SYN-ACK was dropped. 6261 */ 6262 syn_drop = (cookie->len < 0 && data); 6263 } else if (cookie->len < 0 && !tp->syn_data) { 6264 /* We requested a cookie but didn't get it. If we did not use 6265 * the (old) exp opt format then try so next time (try_exp=1). 6266 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6267 */ 6268 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6269 } 6270 6271 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6272 6273 if (data) { /* Retransmit unacked data in SYN */ 6274 if (tp->total_retrans) 6275 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6276 else 6277 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6278 skb_rbtree_walk_from(data) 6279 tcp_mark_skb_lost(sk, data); 6280 tcp_xmit_retransmit_queue(sk); 6281 NET_INC_STATS(sock_net(sk), 6282 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6283 return true; 6284 } 6285 tp->syn_data_acked = tp->syn_data; 6286 if (tp->syn_data_acked) { 6287 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6288 /* SYN-data is counted as two separate packets in tcp_ack() */ 6289 if (tp->delivered > 1) 6290 --tp->delivered; 6291 } 6292 6293 tcp_fastopen_add_skb(sk, synack); 6294 6295 return false; 6296 } 6297 6298 static void smc_check_reset_syn(struct tcp_sock *tp) 6299 { 6300 #if IS_ENABLED(CONFIG_SMC) 6301 if (static_branch_unlikely(&tcp_have_smc)) { 6302 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6303 tp->syn_smc = 0; 6304 } 6305 #endif 6306 } 6307 6308 static void tcp_try_undo_spurious_syn(struct sock *sk) 6309 { 6310 struct tcp_sock *tp = tcp_sk(sk); 6311 u32 syn_stamp; 6312 6313 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6314 * spurious if the ACK's timestamp option echo value matches the 6315 * original SYN timestamp. 6316 */ 6317 syn_stamp = tp->retrans_stamp; 6318 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6319 syn_stamp == tp->rx_opt.rcv_tsecr) 6320 tp->undo_marker = 0; 6321 } 6322 6323 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6324 const struct tcphdr *th) 6325 { 6326 struct inet_connection_sock *icsk = inet_csk(sk); 6327 struct tcp_sock *tp = tcp_sk(sk); 6328 struct tcp_fastopen_cookie foc = { .len = -1 }; 6329 int saved_clamp = tp->rx_opt.mss_clamp; 6330 bool fastopen_fail; 6331 SKB_DR(reason); 6332 6333 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6334 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6335 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6336 6337 if (th->ack) { 6338 /* rfc793: 6339 * "If the state is SYN-SENT then 6340 * first check the ACK bit 6341 * If the ACK bit is set 6342 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6343 * a reset (unless the RST bit is set, if so drop 6344 * the segment and return)" 6345 */ 6346 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6347 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6348 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6349 if (icsk->icsk_retransmits == 0) 6350 inet_csk_reset_xmit_timer(sk, 6351 ICSK_TIME_RETRANS, 6352 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6353 goto reset_and_undo; 6354 } 6355 6356 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6357 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6358 tcp_time_stamp_ts(tp))) { 6359 NET_INC_STATS(sock_net(sk), 6360 LINUX_MIB_PAWSACTIVEREJECTED); 6361 goto reset_and_undo; 6362 } 6363 6364 /* Now ACK is acceptable. 6365 * 6366 * "If the RST bit is set 6367 * If the ACK was acceptable then signal the user "error: 6368 * connection reset", drop the segment, enter CLOSED state, 6369 * delete TCB, and return." 6370 */ 6371 6372 if (th->rst) { 6373 tcp_reset(sk, skb); 6374 consume: 6375 __kfree_skb(skb); 6376 return 0; 6377 } 6378 6379 /* rfc793: 6380 * "fifth, if neither of the SYN or RST bits is set then 6381 * drop the segment and return." 6382 * 6383 * See note below! 6384 * --ANK(990513) 6385 */ 6386 if (!th->syn) { 6387 SKB_DR_SET(reason, TCP_FLAGS); 6388 goto discard_and_undo; 6389 } 6390 /* rfc793: 6391 * "If the SYN bit is on ... 6392 * are acceptable then ... 6393 * (our SYN has been ACKed), change the connection 6394 * state to ESTABLISHED..." 6395 */ 6396 6397 tcp_ecn_rcv_synack(tp, th); 6398 6399 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6400 tcp_try_undo_spurious_syn(sk); 6401 tcp_ack(sk, skb, FLAG_SLOWPATH); 6402 6403 /* Ok.. it's good. Set up sequence numbers and 6404 * move to established. 6405 */ 6406 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6407 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6408 6409 /* RFC1323: The window in SYN & SYN/ACK segments is 6410 * never scaled. 6411 */ 6412 tp->snd_wnd = ntohs(th->window); 6413 6414 if (!tp->rx_opt.wscale_ok) { 6415 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6416 tp->window_clamp = min(tp->window_clamp, 65535U); 6417 } 6418 6419 if (tp->rx_opt.saw_tstamp) { 6420 tp->rx_opt.tstamp_ok = 1; 6421 tp->tcp_header_len = 6422 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6423 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6424 tcp_store_ts_recent(tp); 6425 } else { 6426 tp->tcp_header_len = sizeof(struct tcphdr); 6427 } 6428 6429 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6430 tcp_initialize_rcv_mss(sk); 6431 6432 /* Remember, tcp_poll() does not lock socket! 6433 * Change state from SYN-SENT only after copied_seq 6434 * is initialized. */ 6435 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6436 6437 smc_check_reset_syn(tp); 6438 6439 smp_mb(); 6440 6441 tcp_finish_connect(sk, skb); 6442 6443 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6444 tcp_rcv_fastopen_synack(sk, skb, &foc); 6445 6446 if (!sock_flag(sk, SOCK_DEAD)) { 6447 sk->sk_state_change(sk); 6448 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6449 } 6450 if (fastopen_fail) 6451 return -1; 6452 if (sk->sk_write_pending || 6453 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6454 inet_csk_in_pingpong_mode(sk)) { 6455 /* Save one ACK. Data will be ready after 6456 * several ticks, if write_pending is set. 6457 * 6458 * It may be deleted, but with this feature tcpdumps 6459 * look so _wonderfully_ clever, that I was not able 6460 * to stand against the temptation 8) --ANK 6461 */ 6462 inet_csk_schedule_ack(sk); 6463 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6464 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6465 TCP_DELACK_MAX, TCP_RTO_MAX); 6466 goto consume; 6467 } 6468 tcp_send_ack(sk); 6469 return -1; 6470 } 6471 6472 /* No ACK in the segment */ 6473 6474 if (th->rst) { 6475 /* rfc793: 6476 * "If the RST bit is set 6477 * 6478 * Otherwise (no ACK) drop the segment and return." 6479 */ 6480 SKB_DR_SET(reason, TCP_RESET); 6481 goto discard_and_undo; 6482 } 6483 6484 /* PAWS check. */ 6485 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6486 tcp_paws_reject(&tp->rx_opt, 0)) { 6487 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6488 goto discard_and_undo; 6489 } 6490 if (th->syn) { 6491 /* We see SYN without ACK. It is attempt of 6492 * simultaneous connect with crossed SYNs. 6493 * Particularly, it can be connect to self. 6494 */ 6495 #ifdef CONFIG_TCP_AO 6496 struct tcp_ao_info *ao; 6497 6498 ao = rcu_dereference_protected(tp->ao_info, 6499 lockdep_sock_is_held(sk)); 6500 if (ao) { 6501 WRITE_ONCE(ao->risn, th->seq); 6502 ao->rcv_sne = 0; 6503 } 6504 #endif 6505 tcp_set_state(sk, TCP_SYN_RECV); 6506 6507 if (tp->rx_opt.saw_tstamp) { 6508 tp->rx_opt.tstamp_ok = 1; 6509 tcp_store_ts_recent(tp); 6510 tp->tcp_header_len = 6511 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6512 } else { 6513 tp->tcp_header_len = sizeof(struct tcphdr); 6514 } 6515 6516 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6517 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6518 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6519 6520 /* RFC1323: The window in SYN & SYN/ACK segments is 6521 * never scaled. 6522 */ 6523 tp->snd_wnd = ntohs(th->window); 6524 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6525 tp->max_window = tp->snd_wnd; 6526 6527 tcp_ecn_rcv_syn(tp, th); 6528 6529 tcp_mtup_init(sk); 6530 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6531 tcp_initialize_rcv_mss(sk); 6532 6533 tcp_send_synack(sk); 6534 #if 0 6535 /* Note, we could accept data and URG from this segment. 6536 * There are no obstacles to make this (except that we must 6537 * either change tcp_recvmsg() to prevent it from returning data 6538 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6539 * 6540 * However, if we ignore data in ACKless segments sometimes, 6541 * we have no reasons to accept it sometimes. 6542 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6543 * is not flawless. So, discard packet for sanity. 6544 * Uncomment this return to process the data. 6545 */ 6546 return -1; 6547 #else 6548 goto consume; 6549 #endif 6550 } 6551 /* "fifth, if neither of the SYN or RST bits is set then 6552 * drop the segment and return." 6553 */ 6554 6555 discard_and_undo: 6556 tcp_clear_options(&tp->rx_opt); 6557 tp->rx_opt.mss_clamp = saved_clamp; 6558 tcp_drop_reason(sk, skb, reason); 6559 return 0; 6560 6561 reset_and_undo: 6562 tcp_clear_options(&tp->rx_opt); 6563 tp->rx_opt.mss_clamp = saved_clamp; 6564 return 1; 6565 } 6566 6567 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6568 { 6569 struct tcp_sock *tp = tcp_sk(sk); 6570 struct request_sock *req; 6571 6572 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6573 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6574 */ 6575 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6576 tcp_try_undo_recovery(sk); 6577 6578 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6579 tcp_update_rto_time(tp); 6580 tp->retrans_stamp = 0; 6581 inet_csk(sk)->icsk_retransmits = 0; 6582 6583 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6584 * we no longer need req so release it. 6585 */ 6586 req = rcu_dereference_protected(tp->fastopen_rsk, 6587 lockdep_sock_is_held(sk)); 6588 reqsk_fastopen_remove(sk, req, false); 6589 6590 /* Re-arm the timer because data may have been sent out. 6591 * This is similar to the regular data transmission case 6592 * when new data has just been ack'ed. 6593 * 6594 * (TFO) - we could try to be more aggressive and 6595 * retransmitting any data sooner based on when they 6596 * are sent out. 6597 */ 6598 tcp_rearm_rto(sk); 6599 } 6600 6601 /* 6602 * This function implements the receiving procedure of RFC 793 for 6603 * all states except ESTABLISHED and TIME_WAIT. 6604 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6605 * address independent. 6606 */ 6607 6608 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6609 { 6610 struct tcp_sock *tp = tcp_sk(sk); 6611 struct inet_connection_sock *icsk = inet_csk(sk); 6612 const struct tcphdr *th = tcp_hdr(skb); 6613 struct request_sock *req; 6614 int queued = 0; 6615 bool acceptable; 6616 SKB_DR(reason); 6617 6618 switch (sk->sk_state) { 6619 case TCP_CLOSE: 6620 SKB_DR_SET(reason, TCP_CLOSE); 6621 goto discard; 6622 6623 case TCP_LISTEN: 6624 if (th->ack) 6625 return 1; 6626 6627 if (th->rst) { 6628 SKB_DR_SET(reason, TCP_RESET); 6629 goto discard; 6630 } 6631 if (th->syn) { 6632 if (th->fin) { 6633 SKB_DR_SET(reason, TCP_FLAGS); 6634 goto discard; 6635 } 6636 /* It is possible that we process SYN packets from backlog, 6637 * so we need to make sure to disable BH and RCU right there. 6638 */ 6639 rcu_read_lock(); 6640 local_bh_disable(); 6641 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6642 local_bh_enable(); 6643 rcu_read_unlock(); 6644 6645 if (!acceptable) 6646 return 1; 6647 consume_skb(skb); 6648 return 0; 6649 } 6650 SKB_DR_SET(reason, TCP_FLAGS); 6651 goto discard; 6652 6653 case TCP_SYN_SENT: 6654 tp->rx_opt.saw_tstamp = 0; 6655 tcp_mstamp_refresh(tp); 6656 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6657 if (queued >= 0) 6658 return queued; 6659 6660 /* Do step6 onward by hand. */ 6661 tcp_urg(sk, skb, th); 6662 __kfree_skb(skb); 6663 tcp_data_snd_check(sk); 6664 return 0; 6665 } 6666 6667 tcp_mstamp_refresh(tp); 6668 tp->rx_opt.saw_tstamp = 0; 6669 req = rcu_dereference_protected(tp->fastopen_rsk, 6670 lockdep_sock_is_held(sk)); 6671 if (req) { 6672 bool req_stolen; 6673 6674 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6675 sk->sk_state != TCP_FIN_WAIT1); 6676 6677 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6678 SKB_DR_SET(reason, TCP_FASTOPEN); 6679 goto discard; 6680 } 6681 } 6682 6683 if (!th->ack && !th->rst && !th->syn) { 6684 SKB_DR_SET(reason, TCP_FLAGS); 6685 goto discard; 6686 } 6687 if (!tcp_validate_incoming(sk, skb, th, 0)) 6688 return 0; 6689 6690 /* step 5: check the ACK field */ 6691 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6692 FLAG_UPDATE_TS_RECENT | 6693 FLAG_NO_CHALLENGE_ACK) > 0; 6694 6695 if (!acceptable) { 6696 if (sk->sk_state == TCP_SYN_RECV) 6697 return 1; /* send one RST */ 6698 tcp_send_challenge_ack(sk); 6699 SKB_DR_SET(reason, TCP_OLD_ACK); 6700 goto discard; 6701 } 6702 switch (sk->sk_state) { 6703 case TCP_SYN_RECV: 6704 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6705 if (!tp->srtt_us) 6706 tcp_synack_rtt_meas(sk, req); 6707 6708 if (req) { 6709 tcp_rcv_synrecv_state_fastopen(sk); 6710 } else { 6711 tcp_try_undo_spurious_syn(sk); 6712 tp->retrans_stamp = 0; 6713 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6714 skb); 6715 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6716 } 6717 tcp_ao_established(sk); 6718 smp_mb(); 6719 tcp_set_state(sk, TCP_ESTABLISHED); 6720 sk->sk_state_change(sk); 6721 6722 /* Note, that this wakeup is only for marginal crossed SYN case. 6723 * Passively open sockets are not waked up, because 6724 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6725 */ 6726 if (sk->sk_socket) 6727 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6728 6729 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6730 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6731 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6732 6733 if (tp->rx_opt.tstamp_ok) 6734 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6735 6736 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6737 tcp_update_pacing_rate(sk); 6738 6739 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6740 tp->lsndtime = tcp_jiffies32; 6741 6742 tcp_initialize_rcv_mss(sk); 6743 tcp_fast_path_on(tp); 6744 break; 6745 6746 case TCP_FIN_WAIT1: { 6747 int tmo; 6748 6749 if (req) 6750 tcp_rcv_synrecv_state_fastopen(sk); 6751 6752 if (tp->snd_una != tp->write_seq) 6753 break; 6754 6755 tcp_set_state(sk, TCP_FIN_WAIT2); 6756 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6757 6758 sk_dst_confirm(sk); 6759 6760 if (!sock_flag(sk, SOCK_DEAD)) { 6761 /* Wake up lingering close() */ 6762 sk->sk_state_change(sk); 6763 break; 6764 } 6765 6766 if (READ_ONCE(tp->linger2) < 0) { 6767 tcp_done(sk); 6768 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6769 return 1; 6770 } 6771 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6772 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6773 /* Receive out of order FIN after close() */ 6774 if (tp->syn_fastopen && th->fin) 6775 tcp_fastopen_active_disable(sk); 6776 tcp_done(sk); 6777 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6778 return 1; 6779 } 6780 6781 tmo = tcp_fin_time(sk); 6782 if (tmo > TCP_TIMEWAIT_LEN) { 6783 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6784 } else if (th->fin || sock_owned_by_user(sk)) { 6785 /* Bad case. We could lose such FIN otherwise. 6786 * It is not a big problem, but it looks confusing 6787 * and not so rare event. We still can lose it now, 6788 * if it spins in bh_lock_sock(), but it is really 6789 * marginal case. 6790 */ 6791 inet_csk_reset_keepalive_timer(sk, tmo); 6792 } else { 6793 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6794 goto consume; 6795 } 6796 break; 6797 } 6798 6799 case TCP_CLOSING: 6800 if (tp->snd_una == tp->write_seq) { 6801 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6802 goto consume; 6803 } 6804 break; 6805 6806 case TCP_LAST_ACK: 6807 if (tp->snd_una == tp->write_seq) { 6808 tcp_update_metrics(sk); 6809 tcp_done(sk); 6810 goto consume; 6811 } 6812 break; 6813 } 6814 6815 /* step 6: check the URG bit */ 6816 tcp_urg(sk, skb, th); 6817 6818 /* step 7: process the segment text */ 6819 switch (sk->sk_state) { 6820 case TCP_CLOSE_WAIT: 6821 case TCP_CLOSING: 6822 case TCP_LAST_ACK: 6823 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6824 /* If a subflow has been reset, the packet should not 6825 * continue to be processed, drop the packet. 6826 */ 6827 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6828 goto discard; 6829 break; 6830 } 6831 fallthrough; 6832 case TCP_FIN_WAIT1: 6833 case TCP_FIN_WAIT2: 6834 /* RFC 793 says to queue data in these states, 6835 * RFC 1122 says we MUST send a reset. 6836 * BSD 4.4 also does reset. 6837 */ 6838 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6839 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6840 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6841 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6842 tcp_reset(sk, skb); 6843 return 1; 6844 } 6845 } 6846 fallthrough; 6847 case TCP_ESTABLISHED: 6848 tcp_data_queue(sk, skb); 6849 queued = 1; 6850 break; 6851 } 6852 6853 /* tcp_data could move socket to TIME-WAIT */ 6854 if (sk->sk_state != TCP_CLOSE) { 6855 tcp_data_snd_check(sk); 6856 tcp_ack_snd_check(sk); 6857 } 6858 6859 if (!queued) { 6860 discard: 6861 tcp_drop_reason(sk, skb, reason); 6862 } 6863 return 0; 6864 6865 consume: 6866 __kfree_skb(skb); 6867 return 0; 6868 } 6869 EXPORT_SYMBOL(tcp_rcv_state_process); 6870 6871 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6872 { 6873 struct inet_request_sock *ireq = inet_rsk(req); 6874 6875 if (family == AF_INET) 6876 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6877 &ireq->ir_rmt_addr, port); 6878 #if IS_ENABLED(CONFIG_IPV6) 6879 else if (family == AF_INET6) 6880 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6881 &ireq->ir_v6_rmt_addr, port); 6882 #endif 6883 } 6884 6885 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6886 * 6887 * If we receive a SYN packet with these bits set, it means a 6888 * network is playing bad games with TOS bits. In order to 6889 * avoid possible false congestion notifications, we disable 6890 * TCP ECN negotiation. 6891 * 6892 * Exception: tcp_ca wants ECN. This is required for DCTCP 6893 * congestion control: Linux DCTCP asserts ECT on all packets, 6894 * including SYN, which is most optimal solution; however, 6895 * others, such as FreeBSD do not. 6896 * 6897 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6898 * set, indicating the use of a future TCP extension (such as AccECN). See 6899 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6900 * extensions. 6901 */ 6902 static void tcp_ecn_create_request(struct request_sock *req, 6903 const struct sk_buff *skb, 6904 const struct sock *listen_sk, 6905 const struct dst_entry *dst) 6906 { 6907 const struct tcphdr *th = tcp_hdr(skb); 6908 const struct net *net = sock_net(listen_sk); 6909 bool th_ecn = th->ece && th->cwr; 6910 bool ect, ecn_ok; 6911 u32 ecn_ok_dst; 6912 6913 if (!th_ecn) 6914 return; 6915 6916 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6917 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6918 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6919 6920 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6921 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6922 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6923 inet_rsk(req)->ecn_ok = 1; 6924 } 6925 6926 static void tcp_openreq_init(struct request_sock *req, 6927 const struct tcp_options_received *rx_opt, 6928 struct sk_buff *skb, const struct sock *sk) 6929 { 6930 struct inet_request_sock *ireq = inet_rsk(req); 6931 6932 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6933 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6934 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6935 tcp_rsk(req)->snt_synack = 0; 6936 tcp_rsk(req)->last_oow_ack_time = 0; 6937 req->mss = rx_opt->mss_clamp; 6938 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6939 ireq->tstamp_ok = rx_opt->tstamp_ok; 6940 ireq->sack_ok = rx_opt->sack_ok; 6941 ireq->snd_wscale = rx_opt->snd_wscale; 6942 ireq->wscale_ok = rx_opt->wscale_ok; 6943 ireq->acked = 0; 6944 ireq->ecn_ok = 0; 6945 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6946 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6947 ireq->ir_mark = inet_request_mark(sk, skb); 6948 #if IS_ENABLED(CONFIG_SMC) 6949 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6950 tcp_sk(sk)->smc_hs_congested(sk)); 6951 #endif 6952 } 6953 6954 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6955 struct sock *sk_listener, 6956 bool attach_listener) 6957 { 6958 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6959 attach_listener); 6960 6961 if (req) { 6962 struct inet_request_sock *ireq = inet_rsk(req); 6963 6964 ireq->ireq_opt = NULL; 6965 #if IS_ENABLED(CONFIG_IPV6) 6966 ireq->pktopts = NULL; 6967 #endif 6968 atomic64_set(&ireq->ir_cookie, 0); 6969 ireq->ireq_state = TCP_NEW_SYN_RECV; 6970 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6971 ireq->ireq_family = sk_listener->sk_family; 6972 req->timeout = TCP_TIMEOUT_INIT; 6973 } 6974 6975 return req; 6976 } 6977 EXPORT_SYMBOL(inet_reqsk_alloc); 6978 6979 /* 6980 * Return true if a syncookie should be sent 6981 */ 6982 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6983 { 6984 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6985 const char *msg = "Dropping request"; 6986 struct net *net = sock_net(sk); 6987 bool want_cookie = false; 6988 u8 syncookies; 6989 6990 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6991 6992 #ifdef CONFIG_SYN_COOKIES 6993 if (syncookies) { 6994 msg = "Sending cookies"; 6995 want_cookie = true; 6996 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6997 } else 6998 #endif 6999 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7000 7001 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7002 xchg(&queue->synflood_warned, 1) == 0) { 7003 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7004 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7005 proto, inet6_rcv_saddr(sk), 7006 sk->sk_num, msg); 7007 } else { 7008 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7009 proto, &sk->sk_rcv_saddr, 7010 sk->sk_num, msg); 7011 } 7012 } 7013 7014 return want_cookie; 7015 } 7016 7017 static void tcp_reqsk_record_syn(const struct sock *sk, 7018 struct request_sock *req, 7019 const struct sk_buff *skb) 7020 { 7021 if (tcp_sk(sk)->save_syn) { 7022 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7023 struct saved_syn *saved_syn; 7024 u32 mac_hdrlen; 7025 void *base; 7026 7027 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7028 base = skb_mac_header(skb); 7029 mac_hdrlen = skb_mac_header_len(skb); 7030 len += mac_hdrlen; 7031 } else { 7032 base = skb_network_header(skb); 7033 mac_hdrlen = 0; 7034 } 7035 7036 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7037 GFP_ATOMIC); 7038 if (saved_syn) { 7039 saved_syn->mac_hdrlen = mac_hdrlen; 7040 saved_syn->network_hdrlen = skb_network_header_len(skb); 7041 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7042 memcpy(saved_syn->data, base, len); 7043 req->saved_syn = saved_syn; 7044 } 7045 } 7046 } 7047 7048 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7049 * used for SYN cookie generation. 7050 */ 7051 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7052 const struct tcp_request_sock_ops *af_ops, 7053 struct sock *sk, struct tcphdr *th) 7054 { 7055 struct tcp_sock *tp = tcp_sk(sk); 7056 u16 mss; 7057 7058 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7059 !inet_csk_reqsk_queue_is_full(sk)) 7060 return 0; 7061 7062 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7063 return 0; 7064 7065 if (sk_acceptq_is_full(sk)) { 7066 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7067 return 0; 7068 } 7069 7070 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7071 if (!mss) 7072 mss = af_ops->mss_clamp; 7073 7074 return mss; 7075 } 7076 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7077 7078 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7079 const struct tcp_request_sock_ops *af_ops, 7080 struct sock *sk, struct sk_buff *skb) 7081 { 7082 struct tcp_fastopen_cookie foc = { .len = -1 }; 7083 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 7084 struct tcp_options_received tmp_opt; 7085 struct tcp_sock *tp = tcp_sk(sk); 7086 struct net *net = sock_net(sk); 7087 struct sock *fastopen_sk = NULL; 7088 struct request_sock *req; 7089 bool want_cookie = false; 7090 struct dst_entry *dst; 7091 struct flowi fl; 7092 u8 syncookies; 7093 7094 #ifdef CONFIG_TCP_AO 7095 const struct tcp_ao_hdr *aoh; 7096 #endif 7097 7098 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7099 7100 /* TW buckets are converted to open requests without 7101 * limitations, they conserve resources and peer is 7102 * evidently real one. 7103 */ 7104 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 7105 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 7106 if (!want_cookie) 7107 goto drop; 7108 } 7109 7110 if (sk_acceptq_is_full(sk)) { 7111 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7112 goto drop; 7113 } 7114 7115 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7116 if (!req) 7117 goto drop; 7118 7119 req->syncookie = want_cookie; 7120 tcp_rsk(req)->af_specific = af_ops; 7121 tcp_rsk(req)->ts_off = 0; 7122 tcp_rsk(req)->req_usec_ts = false; 7123 #if IS_ENABLED(CONFIG_MPTCP) 7124 tcp_rsk(req)->is_mptcp = 0; 7125 #endif 7126 7127 tcp_clear_options(&tmp_opt); 7128 tmp_opt.mss_clamp = af_ops->mss_clamp; 7129 tmp_opt.user_mss = tp->rx_opt.user_mss; 7130 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7131 want_cookie ? NULL : &foc); 7132 7133 if (want_cookie && !tmp_opt.saw_tstamp) 7134 tcp_clear_options(&tmp_opt); 7135 7136 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7137 tmp_opt.smc_ok = 0; 7138 7139 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7140 tcp_openreq_init(req, &tmp_opt, skb, sk); 7141 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7142 7143 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7144 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7145 7146 dst = af_ops->route_req(sk, skb, &fl, req); 7147 if (!dst) 7148 goto drop_and_free; 7149 7150 if (tmp_opt.tstamp_ok) { 7151 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7152 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7153 } 7154 if (!want_cookie && !isn) { 7155 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7156 7157 /* Kill the following clause, if you dislike this way. */ 7158 if (!syncookies && 7159 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7160 (max_syn_backlog >> 2)) && 7161 !tcp_peer_is_proven(req, dst)) { 7162 /* Without syncookies last quarter of 7163 * backlog is filled with destinations, 7164 * proven to be alive. 7165 * It means that we continue to communicate 7166 * to destinations, already remembered 7167 * to the moment of synflood. 7168 */ 7169 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7170 rsk_ops->family); 7171 goto drop_and_release; 7172 } 7173 7174 isn = af_ops->init_seq(skb); 7175 } 7176 7177 tcp_ecn_create_request(req, skb, sk, dst); 7178 7179 if (want_cookie) { 7180 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7181 if (!tmp_opt.tstamp_ok) 7182 inet_rsk(req)->ecn_ok = 0; 7183 } 7184 7185 #ifdef CONFIG_TCP_AO 7186 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7187 goto drop_and_release; /* Invalid TCP options */ 7188 if (aoh) { 7189 tcp_rsk(req)->used_tcp_ao = true; 7190 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7191 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7192 7193 } else { 7194 tcp_rsk(req)->used_tcp_ao = false; 7195 } 7196 #endif 7197 tcp_rsk(req)->snt_isn = isn; 7198 tcp_rsk(req)->txhash = net_tx_rndhash(); 7199 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7200 tcp_openreq_init_rwin(req, sk, dst); 7201 sk_rx_queue_set(req_to_sk(req), skb); 7202 if (!want_cookie) { 7203 tcp_reqsk_record_syn(sk, req, skb); 7204 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7205 } 7206 if (fastopen_sk) { 7207 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7208 &foc, TCP_SYNACK_FASTOPEN, skb); 7209 /* Add the child socket directly into the accept queue */ 7210 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7211 reqsk_fastopen_remove(fastopen_sk, req, false); 7212 bh_unlock_sock(fastopen_sk); 7213 sock_put(fastopen_sk); 7214 goto drop_and_free; 7215 } 7216 sk->sk_data_ready(sk); 7217 bh_unlock_sock(fastopen_sk); 7218 sock_put(fastopen_sk); 7219 } else { 7220 tcp_rsk(req)->tfo_listener = false; 7221 if (!want_cookie) { 7222 req->timeout = tcp_timeout_init((struct sock *)req); 7223 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 7224 } 7225 af_ops->send_synack(sk, dst, &fl, req, &foc, 7226 !want_cookie ? TCP_SYNACK_NORMAL : 7227 TCP_SYNACK_COOKIE, 7228 skb); 7229 if (want_cookie) { 7230 reqsk_free(req); 7231 return 0; 7232 } 7233 } 7234 reqsk_put(req); 7235 return 0; 7236 7237 drop_and_release: 7238 dst_release(dst); 7239 drop_and_free: 7240 __reqsk_free(req); 7241 drop: 7242 tcp_listendrop(sk); 7243 return 0; 7244 } 7245 EXPORT_SYMBOL(tcp_conn_request); 7246