1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/proto_memory.h> 76 #include <net/inet_common.h> 77 #include <linux/ipsec.h> 78 #include <linux/unaligned.h> 79 #include <linux/errqueue.h> 80 #include <trace/events/tcp.h> 81 #include <linux/jump_label_ratelimit.h> 82 #include <net/busy_poll.h> 83 #include <net/mptcp.h> 84 85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 86 87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 93 #define FLAG_ECE 0x40 /* ECE in this ACK */ 94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 105 #define FLAG_TS_PROGRESS 0x40000 /* Positive timestamp delta */ 106 107 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 108 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 109 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 110 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 111 112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 114 115 #define REXMIT_NONE 0 /* no loss recovery to do */ 116 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 117 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 118 119 #if IS_ENABLED(CONFIG_TLS_DEVICE) 120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 121 122 void clean_acked_data_enable(struct tcp_sock *tp, 123 void (*cad)(struct sock *sk, u32 ack_seq)) 124 { 125 tp->tcp_clean_acked = cad; 126 static_branch_deferred_inc(&clean_acked_data_enabled); 127 } 128 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 129 130 void clean_acked_data_disable(struct tcp_sock *tp) 131 { 132 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 133 tp->tcp_clean_acked = NULL; 134 } 135 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 136 137 void clean_acked_data_flush(void) 138 { 139 static_key_deferred_flush(&clean_acked_data_enabled); 140 } 141 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 142 #endif 143 144 #ifdef CONFIG_CGROUP_BPF 145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 146 { 147 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 148 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 150 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 151 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 152 struct bpf_sock_ops_kern sock_ops; 153 154 if (likely(!unknown_opt && !parse_all_opt)) 155 return; 156 157 /* The skb will be handled in the 158 * bpf_skops_established() or 159 * bpf_skops_write_hdr_opt(). 160 */ 161 switch (sk->sk_state) { 162 case TCP_SYN_RECV: 163 case TCP_SYN_SENT: 164 case TCP_LISTEN: 165 return; 166 } 167 168 sock_owned_by_me(sk); 169 170 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 171 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 172 sock_ops.is_fullsock = 1; 173 sock_ops.is_locked_tcp_sock = 1; 174 sock_ops.sk = sk; 175 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 176 177 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 178 } 179 180 static void bpf_skops_established(struct sock *sk, int bpf_op, 181 struct sk_buff *skb) 182 { 183 struct bpf_sock_ops_kern sock_ops; 184 185 sock_owned_by_me(sk); 186 187 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 188 sock_ops.op = bpf_op; 189 sock_ops.is_fullsock = 1; 190 sock_ops.is_locked_tcp_sock = 1; 191 sock_ops.sk = sk; 192 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 193 if (skb) 194 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 195 196 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 197 } 198 #else 199 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 200 { 201 } 202 203 static void bpf_skops_established(struct sock *sk, int bpf_op, 204 struct sk_buff *skb) 205 { 206 } 207 #endif 208 209 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 210 unsigned int len) 211 { 212 struct net_device *dev; 213 214 rcu_read_lock(); 215 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 216 if (!dev || len >= READ_ONCE(dev->mtu)) 217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 218 dev ? dev->name : "Unknown driver"); 219 rcu_read_unlock(); 220 } 221 222 /* Adapt the MSS value used to make delayed ack decision to the 223 * real world. 224 */ 225 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 226 { 227 struct inet_connection_sock *icsk = inet_csk(sk); 228 const unsigned int lss = icsk->icsk_ack.last_seg_size; 229 unsigned int len; 230 231 icsk->icsk_ack.last_seg_size = 0; 232 233 /* skb->len may jitter because of SACKs, even if peer 234 * sends good full-sized frames. 235 */ 236 len = skb_shinfo(skb)->gso_size ? : skb->len; 237 if (len >= icsk->icsk_ack.rcv_mss) { 238 /* Note: divides are still a bit expensive. 239 * For the moment, only adjust scaling_ratio 240 * when we update icsk_ack.rcv_mss. 241 */ 242 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 243 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 244 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 245 246 do_div(val, skb->truesize); 247 tcp_sk(sk)->scaling_ratio = val ? val : 1; 248 249 if (old_ratio != tcp_sk(sk)->scaling_ratio) { 250 struct tcp_sock *tp = tcp_sk(sk); 251 252 val = tcp_win_from_space(sk, sk->sk_rcvbuf); 253 tcp_set_window_clamp(sk, val); 254 255 if (tp->window_clamp < tp->rcvq_space.space) 256 tp->rcvq_space.space = tp->window_clamp; 257 } 258 } 259 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 260 tcp_sk(sk)->advmss); 261 /* Account for possibly-removed options */ 262 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 263 tcp_gro_dev_warn, sk, skb, len); 264 /* If the skb has a len of exactly 1*MSS and has the PSH bit 265 * set then it is likely the end of an application write. So 266 * more data may not be arriving soon, and yet the data sender 267 * may be waiting for an ACK if cwnd-bound or using TX zero 268 * copy. So we set ICSK_ACK_PUSHED here so that 269 * tcp_cleanup_rbuf() will send an ACK immediately if the app 270 * reads all of the data and is not ping-pong. If len > MSS 271 * then this logic does not matter (and does not hurt) because 272 * tcp_cleanup_rbuf() will always ACK immediately if the app 273 * reads data and there is more than an MSS of unACKed data. 274 */ 275 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 276 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 277 } else { 278 /* Otherwise, we make more careful check taking into account, 279 * that SACKs block is variable. 280 * 281 * "len" is invariant segment length, including TCP header. 282 */ 283 len += skb->data - skb_transport_header(skb); 284 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 285 /* If PSH is not set, packet should be 286 * full sized, provided peer TCP is not badly broken. 287 * This observation (if it is correct 8)) allows 288 * to handle super-low mtu links fairly. 289 */ 290 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 291 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 292 /* Subtract also invariant (if peer is RFC compliant), 293 * tcp header plus fixed timestamp option length. 294 * Resulting "len" is MSS free of SACK jitter. 295 */ 296 len -= tcp_sk(sk)->tcp_header_len; 297 icsk->icsk_ack.last_seg_size = len; 298 if (len == lss) { 299 icsk->icsk_ack.rcv_mss = len; 300 return; 301 } 302 } 303 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 304 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 305 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 306 } 307 } 308 309 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 310 { 311 struct inet_connection_sock *icsk = inet_csk(sk); 312 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 313 314 if (quickacks == 0) 315 quickacks = 2; 316 quickacks = min(quickacks, max_quickacks); 317 if (quickacks > icsk->icsk_ack.quick) 318 icsk->icsk_ack.quick = quickacks; 319 } 320 321 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 322 { 323 struct inet_connection_sock *icsk = inet_csk(sk); 324 325 tcp_incr_quickack(sk, max_quickacks); 326 inet_csk_exit_pingpong_mode(sk); 327 icsk->icsk_ack.ato = TCP_ATO_MIN; 328 } 329 330 /* Send ACKs quickly, if "quick" count is not exhausted 331 * and the session is not interactive. 332 */ 333 334 static bool tcp_in_quickack_mode(struct sock *sk) 335 { 336 const struct inet_connection_sock *icsk = inet_csk(sk); 337 338 return icsk->icsk_ack.dst_quick_ack || 339 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 340 } 341 342 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 343 { 344 if (tcp_ecn_mode_rfc3168(tp)) 345 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 346 } 347 348 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 349 { 350 if (tcp_hdr(skb)->cwr) { 351 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 352 353 /* If the sender is telling us it has entered CWR, then its 354 * cwnd may be very low (even just 1 packet), so we should ACK 355 * immediately. 356 */ 357 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 358 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 359 } 360 } 361 362 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 363 { 364 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 365 } 366 367 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 371 if (tcp_ecn_disabled(tp)) 372 return; 373 374 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 375 case INET_ECN_NOT_ECT: 376 /* Funny extension: if ECT is not set on a segment, 377 * and we already seen ECT on a previous segment, 378 * it is probably a retransmit. 379 */ 380 if (tp->ecn_flags & TCP_ECN_SEEN) 381 tcp_enter_quickack_mode(sk, 2); 382 break; 383 case INET_ECN_CE: 384 if (tcp_ca_needs_ecn(sk)) 385 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 386 387 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 388 /* Better not delay acks, sender can have a very low cwnd */ 389 tcp_enter_quickack_mode(sk, 2); 390 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 391 } 392 tp->ecn_flags |= TCP_ECN_SEEN; 393 break; 394 default: 395 if (tcp_ca_needs_ecn(sk)) 396 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 397 tp->ecn_flags |= TCP_ECN_SEEN; 398 break; 399 } 400 } 401 402 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 403 { 404 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || th->cwr)) 405 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED); 406 } 407 408 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 409 { 410 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || !th->cwr)) 411 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED); 412 } 413 414 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 415 { 416 if (th->ece && !th->syn && tcp_ecn_mode_rfc3168(tp)) 417 return true; 418 return false; 419 } 420 421 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count) 422 { 423 tp->delivered_ce += ecn_count; 424 } 425 426 /* Updates the delivered and delivered_ce counts */ 427 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 428 bool ece_ack) 429 { 430 tp->delivered += delivered; 431 if (ece_ack) 432 tcp_count_delivered_ce(tp, delivered); 433 } 434 435 /* Buffer size and advertised window tuning. 436 * 437 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 438 */ 439 440 static void tcp_sndbuf_expand(struct sock *sk) 441 { 442 const struct tcp_sock *tp = tcp_sk(sk); 443 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 444 int sndmem, per_mss; 445 u32 nr_segs; 446 447 /* Worst case is non GSO/TSO : each frame consumes one skb 448 * and skb->head is kmalloced using power of two area of memory 449 */ 450 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 451 MAX_TCP_HEADER + 452 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 453 454 per_mss = roundup_pow_of_two(per_mss) + 455 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 456 457 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 458 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 459 460 /* Fast Recovery (RFC 5681 3.2) : 461 * Cubic needs 1.7 factor, rounded to 2 to include 462 * extra cushion (application might react slowly to EPOLLOUT) 463 */ 464 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 465 sndmem *= nr_segs * per_mss; 466 467 if (sk->sk_sndbuf < sndmem) 468 WRITE_ONCE(sk->sk_sndbuf, 469 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 470 } 471 472 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 473 * 474 * All tcp_full_space() is split to two parts: "network" buffer, allocated 475 * forward and advertised in receiver window (tp->rcv_wnd) and 476 * "application buffer", required to isolate scheduling/application 477 * latencies from network. 478 * window_clamp is maximal advertised window. It can be less than 479 * tcp_full_space(), in this case tcp_full_space() - window_clamp 480 * is reserved for "application" buffer. The less window_clamp is 481 * the smoother our behaviour from viewpoint of network, but the lower 482 * throughput and the higher sensitivity of the connection to losses. 8) 483 * 484 * rcv_ssthresh is more strict window_clamp used at "slow start" 485 * phase to predict further behaviour of this connection. 486 * It is used for two goals: 487 * - to enforce header prediction at sender, even when application 488 * requires some significant "application buffer". It is check #1. 489 * - to prevent pruning of receive queue because of misprediction 490 * of receiver window. Check #2. 491 * 492 * The scheme does not work when sender sends good segments opening 493 * window and then starts to feed us spaghetti. But it should work 494 * in common situations. Otherwise, we have to rely on queue collapsing. 495 */ 496 497 /* Slow part of check#2. */ 498 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 499 unsigned int skbtruesize) 500 { 501 const struct tcp_sock *tp = tcp_sk(sk); 502 /* Optimize this! */ 503 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 504 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 505 506 while (tp->rcv_ssthresh <= window) { 507 if (truesize <= skb->len) 508 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 509 510 truesize >>= 1; 511 window >>= 1; 512 } 513 return 0; 514 } 515 516 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 517 * can play nice with us, as sk_buff and skb->head might be either 518 * freed or shared with up to MAX_SKB_FRAGS segments. 519 * Only give a boost to drivers using page frag(s) to hold the frame(s), 520 * and if no payload was pulled in skb->head before reaching us. 521 */ 522 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 523 { 524 u32 truesize = skb->truesize; 525 526 if (adjust && !skb_headlen(skb)) { 527 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 528 /* paranoid check, some drivers might be buggy */ 529 if (unlikely((int)truesize < (int)skb->len)) 530 truesize = skb->truesize; 531 } 532 return truesize; 533 } 534 535 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 536 bool adjust) 537 { 538 struct tcp_sock *tp = tcp_sk(sk); 539 int room; 540 541 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 542 543 if (room <= 0) 544 return; 545 546 /* Check #1 */ 547 if (!tcp_under_memory_pressure(sk)) { 548 unsigned int truesize = truesize_adjust(adjust, skb); 549 int incr; 550 551 /* Check #2. Increase window, if skb with such overhead 552 * will fit to rcvbuf in future. 553 */ 554 if (tcp_win_from_space(sk, truesize) <= skb->len) 555 incr = 2 * tp->advmss; 556 else 557 incr = __tcp_grow_window(sk, skb, truesize); 558 559 if (incr) { 560 incr = max_t(int, incr, 2 * skb->len); 561 tp->rcv_ssthresh += min(room, incr); 562 inet_csk(sk)->icsk_ack.quick |= 1; 563 } 564 } else { 565 /* Under pressure: 566 * Adjust rcv_ssthresh according to reserved mem 567 */ 568 tcp_adjust_rcv_ssthresh(sk); 569 } 570 } 571 572 /* 3. Try to fixup all. It is made immediately after connection enters 573 * established state. 574 */ 575 static void tcp_init_buffer_space(struct sock *sk) 576 { 577 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 578 struct tcp_sock *tp = tcp_sk(sk); 579 int maxwin; 580 581 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 582 tcp_sndbuf_expand(sk); 583 584 tcp_mstamp_refresh(tp); 585 tp->rcvq_space.time = tp->tcp_mstamp; 586 tp->rcvq_space.seq = tp->copied_seq; 587 588 maxwin = tcp_full_space(sk); 589 590 if (tp->window_clamp >= maxwin) { 591 WRITE_ONCE(tp->window_clamp, maxwin); 592 593 if (tcp_app_win && maxwin > 4 * tp->advmss) 594 WRITE_ONCE(tp->window_clamp, 595 max(maxwin - (maxwin >> tcp_app_win), 596 4 * tp->advmss)); 597 } 598 599 /* Force reservation of one segment. */ 600 if (tcp_app_win && 601 tp->window_clamp > 2 * tp->advmss && 602 tp->window_clamp + tp->advmss > maxwin) 603 WRITE_ONCE(tp->window_clamp, 604 max(2 * tp->advmss, maxwin - tp->advmss)); 605 606 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 607 tp->snd_cwnd_stamp = tcp_jiffies32; 608 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 609 (u32)TCP_INIT_CWND * tp->advmss); 610 } 611 612 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 613 static void tcp_clamp_window(struct sock *sk) 614 { 615 struct tcp_sock *tp = tcp_sk(sk); 616 struct inet_connection_sock *icsk = inet_csk(sk); 617 struct net *net = sock_net(sk); 618 int rmem2; 619 620 icsk->icsk_ack.quick = 0; 621 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 622 623 if (sk->sk_rcvbuf < rmem2 && 624 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 625 !tcp_under_memory_pressure(sk) && 626 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 627 WRITE_ONCE(sk->sk_rcvbuf, 628 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 629 } 630 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 631 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 632 } 633 634 /* Initialize RCV_MSS value. 635 * RCV_MSS is an our guess about MSS used by the peer. 636 * We haven't any direct information about the MSS. 637 * It's better to underestimate the RCV_MSS rather than overestimate. 638 * Overestimations make us ACKing less frequently than needed. 639 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 640 */ 641 void tcp_initialize_rcv_mss(struct sock *sk) 642 { 643 const struct tcp_sock *tp = tcp_sk(sk); 644 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 645 646 hint = min(hint, tp->rcv_wnd / 2); 647 hint = min(hint, TCP_MSS_DEFAULT); 648 hint = max(hint, TCP_MIN_MSS); 649 650 inet_csk(sk)->icsk_ack.rcv_mss = hint; 651 } 652 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss); 653 654 /* Receiver "autotuning" code. 655 * 656 * The algorithm for RTT estimation w/o timestamps is based on 657 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 658 * <https://public.lanl.gov/radiant/pubs.html#DRS> 659 * 660 * More detail on this code can be found at 661 * <http://staff.psc.edu/jheffner/>, 662 * though this reference is out of date. A new paper 663 * is pending. 664 */ 665 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 666 { 667 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us; 668 long m = sample << 3; 669 670 if (old_sample == 0 || m < old_sample) { 671 new_sample = m; 672 } else { 673 /* If we sample in larger samples in the non-timestamp 674 * case, we could grossly overestimate the RTT especially 675 * with chatty applications or bulk transfer apps which 676 * are stalled on filesystem I/O. 677 * 678 * Also, since we are only going for a minimum in the 679 * non-timestamp case, we do not smooth things out 680 * else with timestamps disabled convergence takes too 681 * long. 682 */ 683 if (win_dep) 684 return; 685 /* Do not use this sample if receive queue is not empty. */ 686 if (tp->rcv_nxt != tp->copied_seq) 687 return; 688 new_sample = old_sample - (old_sample >> 3) + sample; 689 } 690 691 tp->rcv_rtt_est.rtt_us = new_sample; 692 } 693 694 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 695 { 696 u32 delta_us; 697 698 if (tp->rcv_rtt_est.time == 0) 699 goto new_measure; 700 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 701 return; 702 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 703 if (!delta_us) 704 delta_us = 1; 705 tcp_rcv_rtt_update(tp, delta_us, 1); 706 707 new_measure: 708 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 709 tp->rcv_rtt_est.time = tp->tcp_mstamp; 710 } 711 712 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta) 713 { 714 u32 delta, delta_us; 715 716 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 717 if (tp->tcp_usec_ts) 718 return delta; 719 720 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 721 if (!delta) 722 delta = min_delta; 723 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 724 return delta_us; 725 } 726 return -1; 727 } 728 729 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 730 const struct sk_buff *skb) 731 { 732 struct tcp_sock *tp = tcp_sk(sk); 733 734 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 735 return; 736 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 737 738 if (TCP_SKB_CB(skb)->end_seq - 739 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 740 s32 delta = tcp_rtt_tsopt_us(tp, 0); 741 742 if (delta > 0) 743 tcp_rcv_rtt_update(tp, delta, 0); 744 } 745 } 746 747 static void tcp_rcvbuf_grow(struct sock *sk) 748 { 749 const struct net *net = sock_net(sk); 750 struct tcp_sock *tp = tcp_sk(sk); 751 int rcvwin, rcvbuf, cap; 752 753 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 754 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 755 return; 756 757 /* slow start: allow the sender to double its rate. */ 758 rcvwin = tp->rcvq_space.space << 1; 759 760 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) 761 rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt; 762 763 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 764 765 rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap); 766 if (rcvbuf > sk->sk_rcvbuf) { 767 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 768 /* Make the window clamp follow along. */ 769 WRITE_ONCE(tp->window_clamp, 770 tcp_win_from_space(sk, rcvbuf)); 771 } 772 } 773 /* 774 * This function should be called every time data is copied to user space. 775 * It calculates the appropriate TCP receive buffer space. 776 */ 777 void tcp_rcv_space_adjust(struct sock *sk) 778 { 779 struct tcp_sock *tp = tcp_sk(sk); 780 int time, inq, copied; 781 782 trace_tcp_rcv_space_adjust(sk); 783 784 tcp_mstamp_refresh(tp); 785 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 786 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 787 return; 788 789 /* Number of bytes copied to user in last RTT */ 790 copied = tp->copied_seq - tp->rcvq_space.seq; 791 /* Number of bytes in receive queue. */ 792 inq = tp->rcv_nxt - tp->copied_seq; 793 copied -= inq; 794 if (copied <= tp->rcvq_space.space) 795 goto new_measure; 796 797 trace_tcp_rcvbuf_grow(sk, time); 798 799 tp->rcvq_space.space = copied; 800 801 tcp_rcvbuf_grow(sk); 802 803 new_measure: 804 tp->rcvq_space.seq = tp->copied_seq; 805 tp->rcvq_space.time = tp->tcp_mstamp; 806 } 807 808 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 809 { 810 #if IS_ENABLED(CONFIG_IPV6) 811 struct inet_connection_sock *icsk = inet_csk(sk); 812 813 if (skb->protocol == htons(ETH_P_IPV6)) 814 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 815 #endif 816 } 817 818 /* There is something which you must keep in mind when you analyze the 819 * behavior of the tp->ato delayed ack timeout interval. When a 820 * connection starts up, we want to ack as quickly as possible. The 821 * problem is that "good" TCP's do slow start at the beginning of data 822 * transmission. The means that until we send the first few ACK's the 823 * sender will sit on his end and only queue most of his data, because 824 * he can only send snd_cwnd unacked packets at any given time. For 825 * each ACK we send, he increments snd_cwnd and transmits more of his 826 * queue. -DaveM 827 */ 828 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 829 { 830 struct tcp_sock *tp = tcp_sk(sk); 831 struct inet_connection_sock *icsk = inet_csk(sk); 832 u32 now; 833 834 inet_csk_schedule_ack(sk); 835 836 tcp_measure_rcv_mss(sk, skb); 837 838 tcp_rcv_rtt_measure(tp); 839 840 now = tcp_jiffies32; 841 842 if (!icsk->icsk_ack.ato) { 843 /* The _first_ data packet received, initialize 844 * delayed ACK engine. 845 */ 846 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 847 icsk->icsk_ack.ato = TCP_ATO_MIN; 848 } else { 849 int m = now - icsk->icsk_ack.lrcvtime; 850 851 if (m <= TCP_ATO_MIN / 2) { 852 /* The fastest case is the first. */ 853 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 854 } else if (m < icsk->icsk_ack.ato) { 855 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 856 if (icsk->icsk_ack.ato > icsk->icsk_rto) 857 icsk->icsk_ack.ato = icsk->icsk_rto; 858 } else if (m > icsk->icsk_rto) { 859 /* Too long gap. Apparently sender failed to 860 * restart window, so that we send ACKs quickly. 861 */ 862 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 863 } 864 } 865 icsk->icsk_ack.lrcvtime = now; 866 tcp_save_lrcv_flowlabel(sk, skb); 867 868 tcp_data_ecn_check(sk, skb); 869 870 if (skb->len >= 128) 871 tcp_grow_window(sk, skb, true); 872 } 873 874 /* Called to compute a smoothed rtt estimate. The data fed to this 875 * routine either comes from timestamps, or from segments that were 876 * known _not_ to have been retransmitted [see Karn/Partridge 877 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 878 * piece by Van Jacobson. 879 * NOTE: the next three routines used to be one big routine. 880 * To save cycles in the RFC 1323 implementation it was better to break 881 * it up into three procedures. -- erics 882 */ 883 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 884 { 885 struct tcp_sock *tp = tcp_sk(sk); 886 long m = mrtt_us; /* RTT */ 887 u32 srtt = tp->srtt_us; 888 889 /* The following amusing code comes from Jacobson's 890 * article in SIGCOMM '88. Note that rtt and mdev 891 * are scaled versions of rtt and mean deviation. 892 * This is designed to be as fast as possible 893 * m stands for "measurement". 894 * 895 * On a 1990 paper the rto value is changed to: 896 * RTO = rtt + 4 * mdev 897 * 898 * Funny. This algorithm seems to be very broken. 899 * These formulae increase RTO, when it should be decreased, increase 900 * too slowly, when it should be increased quickly, decrease too quickly 901 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 902 * does not matter how to _calculate_ it. Seems, it was trap 903 * that VJ failed to avoid. 8) 904 */ 905 if (srtt != 0) { 906 m -= (srtt >> 3); /* m is now error in rtt est */ 907 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 908 if (m < 0) { 909 m = -m; /* m is now abs(error) */ 910 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 911 /* This is similar to one of Eifel findings. 912 * Eifel blocks mdev updates when rtt decreases. 913 * This solution is a bit different: we use finer gain 914 * for mdev in this case (alpha*beta). 915 * Like Eifel it also prevents growth of rto, 916 * but also it limits too fast rto decreases, 917 * happening in pure Eifel. 918 */ 919 if (m > 0) 920 m >>= 3; 921 } else { 922 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 923 } 924 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 925 if (tp->mdev_us > tp->mdev_max_us) { 926 tp->mdev_max_us = tp->mdev_us; 927 if (tp->mdev_max_us > tp->rttvar_us) 928 tp->rttvar_us = tp->mdev_max_us; 929 } 930 if (after(tp->snd_una, tp->rtt_seq)) { 931 if (tp->mdev_max_us < tp->rttvar_us) 932 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 933 tp->rtt_seq = tp->snd_nxt; 934 tp->mdev_max_us = tcp_rto_min_us(sk); 935 936 tcp_bpf_rtt(sk, mrtt_us, srtt); 937 } 938 } else { 939 /* no previous measure. */ 940 srtt = m << 3; /* take the measured time to be rtt */ 941 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 942 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 943 tp->mdev_max_us = tp->rttvar_us; 944 tp->rtt_seq = tp->snd_nxt; 945 946 tcp_bpf_rtt(sk, mrtt_us, srtt); 947 } 948 tp->srtt_us = max(1U, srtt); 949 } 950 951 static void tcp_update_pacing_rate(struct sock *sk) 952 { 953 const struct tcp_sock *tp = tcp_sk(sk); 954 u64 rate; 955 956 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 957 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 958 959 /* current rate is (cwnd * mss) / srtt 960 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 961 * In Congestion Avoidance phase, set it to 120 % the current rate. 962 * 963 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 964 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 965 * end of slow start and should slow down. 966 */ 967 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 968 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 969 else 970 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 971 972 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 973 974 if (likely(tp->srtt_us)) 975 do_div(rate, tp->srtt_us); 976 977 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 978 * without any lock. We want to make sure compiler wont store 979 * intermediate values in this location. 980 */ 981 WRITE_ONCE(sk->sk_pacing_rate, 982 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 983 } 984 985 /* Calculate rto without backoff. This is the second half of Van Jacobson's 986 * routine referred to above. 987 */ 988 static void tcp_set_rto(struct sock *sk) 989 { 990 const struct tcp_sock *tp = tcp_sk(sk); 991 /* Old crap is replaced with new one. 8) 992 * 993 * More seriously: 994 * 1. If rtt variance happened to be less 50msec, it is hallucination. 995 * It cannot be less due to utterly erratic ACK generation made 996 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 997 * to do with delayed acks, because at cwnd>2 true delack timeout 998 * is invisible. Actually, Linux-2.4 also generates erratic 999 * ACKs in some circumstances. 1000 */ 1001 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 1002 1003 /* 2. Fixups made earlier cannot be right. 1004 * If we do not estimate RTO correctly without them, 1005 * all the algo is pure shit and should be replaced 1006 * with correct one. It is exactly, which we pretend to do. 1007 */ 1008 1009 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 1010 * guarantees that rto is higher. 1011 */ 1012 tcp_bound_rto(sk); 1013 } 1014 1015 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1016 { 1017 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1018 1019 if (!cwnd) 1020 cwnd = TCP_INIT_CWND; 1021 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1022 } 1023 1024 struct tcp_sacktag_state { 1025 /* Timestamps for earliest and latest never-retransmitted segment 1026 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1027 * but congestion control should still get an accurate delay signal. 1028 */ 1029 u64 first_sackt; 1030 u64 last_sackt; 1031 u32 reord; 1032 u32 sack_delivered; 1033 int flag; 1034 unsigned int mss_now; 1035 struct rate_sample *rate; 1036 }; 1037 1038 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1039 * and spurious retransmission information if this DSACK is unlikely caused by 1040 * sender's action: 1041 * - DSACKed sequence range is larger than maximum receiver's window. 1042 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1043 */ 1044 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1045 u32 end_seq, struct tcp_sacktag_state *state) 1046 { 1047 u32 seq_len, dup_segs = 1; 1048 1049 if (!before(start_seq, end_seq)) 1050 return 0; 1051 1052 seq_len = end_seq - start_seq; 1053 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1054 if (seq_len > tp->max_window) 1055 return 0; 1056 if (seq_len > tp->mss_cache) 1057 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1058 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1059 state->flag |= FLAG_DSACK_TLP; 1060 1061 tp->dsack_dups += dup_segs; 1062 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1063 if (tp->dsack_dups > tp->total_retrans) 1064 return 0; 1065 1066 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1067 /* We increase the RACK ordering window in rounds where we receive 1068 * DSACKs that may have been due to reordering causing RACK to trigger 1069 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1070 * without having seen reordering, or that match TLP probes (TLP 1071 * is timer-driven, not triggered by RACK). 1072 */ 1073 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1074 tp->rack.dsack_seen = 1; 1075 1076 state->flag |= FLAG_DSACKING_ACK; 1077 /* A spurious retransmission is delivered */ 1078 state->sack_delivered += dup_segs; 1079 1080 return dup_segs; 1081 } 1082 1083 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1084 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1085 * distance is approximated in full-mss packet distance ("reordering"). 1086 */ 1087 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1088 const int ts) 1089 { 1090 struct tcp_sock *tp = tcp_sk(sk); 1091 const u32 mss = tp->mss_cache; 1092 u32 fack, metric; 1093 1094 fack = tcp_highest_sack_seq(tp); 1095 if (!before(low_seq, fack)) 1096 return; 1097 1098 metric = fack - low_seq; 1099 if ((metric > tp->reordering * mss) && mss) { 1100 #if FASTRETRANS_DEBUG > 1 1101 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1102 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1103 tp->reordering, 1104 0, 1105 tp->sacked_out, 1106 tp->undo_marker ? tp->undo_retrans : 0); 1107 #endif 1108 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1109 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1110 } 1111 1112 /* This exciting event is worth to be remembered. 8) */ 1113 tp->reord_seen++; 1114 NET_INC_STATS(sock_net(sk), 1115 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1116 } 1117 1118 /* This must be called before lost_out or retrans_out are updated 1119 * on a new loss, because we want to know if all skbs previously 1120 * known to be lost have already been retransmitted, indicating 1121 * that this newly lost skb is our next skb to retransmit. 1122 */ 1123 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1124 { 1125 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1126 (tp->retransmit_skb_hint && 1127 before(TCP_SKB_CB(skb)->seq, 1128 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1129 tp->retransmit_skb_hint = skb; 1130 } 1131 1132 /* Sum the number of packets on the wire we have marked as lost, and 1133 * notify the congestion control module that the given skb was marked lost. 1134 */ 1135 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1136 { 1137 tp->lost += tcp_skb_pcount(skb); 1138 } 1139 1140 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1141 { 1142 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1143 struct tcp_sock *tp = tcp_sk(sk); 1144 1145 if (sacked & TCPCB_SACKED_ACKED) 1146 return; 1147 1148 tcp_verify_retransmit_hint(tp, skb); 1149 if (sacked & TCPCB_LOST) { 1150 if (sacked & TCPCB_SACKED_RETRANS) { 1151 /* Account for retransmits that are lost again */ 1152 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1153 tp->retrans_out -= tcp_skb_pcount(skb); 1154 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1155 tcp_skb_pcount(skb)); 1156 tcp_notify_skb_loss_event(tp, skb); 1157 } 1158 } else { 1159 tp->lost_out += tcp_skb_pcount(skb); 1160 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1161 tcp_notify_skb_loss_event(tp, skb); 1162 } 1163 } 1164 1165 /* This procedure tags the retransmission queue when SACKs arrive. 1166 * 1167 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1168 * Packets in queue with these bits set are counted in variables 1169 * sacked_out, retrans_out and lost_out, correspondingly. 1170 * 1171 * Valid combinations are: 1172 * Tag InFlight Description 1173 * 0 1 - orig segment is in flight. 1174 * S 0 - nothing flies, orig reached receiver. 1175 * L 0 - nothing flies, orig lost by net. 1176 * R 2 - both orig and retransmit are in flight. 1177 * L|R 1 - orig is lost, retransmit is in flight. 1178 * S|R 1 - orig reached receiver, retrans is still in flight. 1179 * (L|S|R is logically valid, it could occur when L|R is sacked, 1180 * but it is equivalent to plain S and code short-circuits it to S. 1181 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1182 * 1183 * These 6 states form finite state machine, controlled by the following events: 1184 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1185 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1186 * 3. Loss detection event of two flavors: 1187 * A. Scoreboard estimator decided the packet is lost. 1188 * A'. Reno "three dupacks" marks head of queue lost. 1189 * B. SACK arrives sacking SND.NXT at the moment, when the 1190 * segment was retransmitted. 1191 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1192 * 1193 * It is pleasant to note, that state diagram turns out to be commutative, 1194 * so that we are allowed not to be bothered by order of our actions, 1195 * when multiple events arrive simultaneously. (see the function below). 1196 * 1197 * Reordering detection. 1198 * -------------------- 1199 * Reordering metric is maximal distance, which a packet can be displaced 1200 * in packet stream. With SACKs we can estimate it: 1201 * 1202 * 1. SACK fills old hole and the corresponding segment was not 1203 * ever retransmitted -> reordering. Alas, we cannot use it 1204 * when segment was retransmitted. 1205 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1206 * for retransmitted and already SACKed segment -> reordering.. 1207 * Both of these heuristics are not used in Loss state, when we cannot 1208 * account for retransmits accurately. 1209 * 1210 * SACK block validation. 1211 * ---------------------- 1212 * 1213 * SACK block range validation checks that the received SACK block fits to 1214 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1215 * Note that SND.UNA is not included to the range though being valid because 1216 * it means that the receiver is rather inconsistent with itself reporting 1217 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1218 * perfectly valid, however, in light of RFC2018 which explicitly states 1219 * that "SACK block MUST reflect the newest segment. Even if the newest 1220 * segment is going to be discarded ...", not that it looks very clever 1221 * in case of head skb. Due to potentional receiver driven attacks, we 1222 * choose to avoid immediate execution of a walk in write queue due to 1223 * reneging and defer head skb's loss recovery to standard loss recovery 1224 * procedure that will eventually trigger (nothing forbids us doing this). 1225 * 1226 * Implements also blockage to start_seq wrap-around. Problem lies in the 1227 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1228 * there's no guarantee that it will be before snd_nxt (n). The problem 1229 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1230 * wrap (s_w): 1231 * 1232 * <- outs wnd -> <- wrapzone -> 1233 * u e n u_w e_w s n_w 1234 * | | | | | | | 1235 * |<------------+------+----- TCP seqno space --------------+---------->| 1236 * ...-- <2^31 ->| |<--------... 1237 * ...---- >2^31 ------>| |<--------... 1238 * 1239 * Current code wouldn't be vulnerable but it's better still to discard such 1240 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1241 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1242 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1243 * equal to the ideal case (infinite seqno space without wrap caused issues). 1244 * 1245 * With D-SACK the lower bound is extended to cover sequence space below 1246 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1247 * again, D-SACK block must not to go across snd_una (for the same reason as 1248 * for the normal SACK blocks, explained above). But there all simplicity 1249 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1250 * fully below undo_marker they do not affect behavior in anyway and can 1251 * therefore be safely ignored. In rare cases (which are more or less 1252 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1253 * fragmentation and packet reordering past skb's retransmission. To consider 1254 * them correctly, the acceptable range must be extended even more though 1255 * the exact amount is rather hard to quantify. However, tp->max_window can 1256 * be used as an exaggerated estimate. 1257 */ 1258 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1259 u32 start_seq, u32 end_seq) 1260 { 1261 /* Too far in future, or reversed (interpretation is ambiguous) */ 1262 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1263 return false; 1264 1265 /* Nasty start_seq wrap-around check (see comments above) */ 1266 if (!before(start_seq, tp->snd_nxt)) 1267 return false; 1268 1269 /* In outstanding window? ...This is valid exit for D-SACKs too. 1270 * start_seq == snd_una is non-sensical (see comments above) 1271 */ 1272 if (after(start_seq, tp->snd_una)) 1273 return true; 1274 1275 if (!is_dsack || !tp->undo_marker) 1276 return false; 1277 1278 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1279 if (after(end_seq, tp->snd_una)) 1280 return false; 1281 1282 if (!before(start_seq, tp->undo_marker)) 1283 return true; 1284 1285 /* Too old */ 1286 if (!after(end_seq, tp->undo_marker)) 1287 return false; 1288 1289 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1290 * start_seq < undo_marker and end_seq >= undo_marker. 1291 */ 1292 return !before(start_seq, end_seq - tp->max_window); 1293 } 1294 1295 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1296 struct tcp_sack_block_wire *sp, int num_sacks, 1297 u32 prior_snd_una, struct tcp_sacktag_state *state) 1298 { 1299 struct tcp_sock *tp = tcp_sk(sk); 1300 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1301 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1302 u32 dup_segs; 1303 1304 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1306 } else if (num_sacks > 1) { 1307 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1308 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1309 1310 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1311 return false; 1312 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1313 } else { 1314 return false; 1315 } 1316 1317 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1318 if (!dup_segs) { /* Skip dubious DSACK */ 1319 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1320 return false; 1321 } 1322 1323 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1324 1325 /* D-SACK for already forgotten data... Do dumb counting. */ 1326 if (tp->undo_marker && tp->undo_retrans > 0 && 1327 !after(end_seq_0, prior_snd_una) && 1328 after(end_seq_0, tp->undo_marker)) 1329 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1330 1331 return true; 1332 } 1333 1334 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1335 * the incoming SACK may not exactly match but we can find smaller MSS 1336 * aligned portion of it that matches. Therefore we might need to fragment 1337 * which may fail and creates some hassle (caller must handle error case 1338 * returns). 1339 * 1340 * FIXME: this could be merged to shift decision code 1341 */ 1342 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1343 u32 start_seq, u32 end_seq) 1344 { 1345 int err; 1346 bool in_sack; 1347 unsigned int pkt_len; 1348 unsigned int mss; 1349 1350 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1351 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1352 1353 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1354 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1355 mss = tcp_skb_mss(skb); 1356 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1357 1358 if (!in_sack) { 1359 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1360 if (pkt_len < mss) 1361 pkt_len = mss; 1362 } else { 1363 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1364 if (pkt_len < mss) 1365 return -EINVAL; 1366 } 1367 1368 /* Round if necessary so that SACKs cover only full MSSes 1369 * and/or the remaining small portion (if present) 1370 */ 1371 if (pkt_len > mss) { 1372 unsigned int new_len = (pkt_len / mss) * mss; 1373 if (!in_sack && new_len < pkt_len) 1374 new_len += mss; 1375 pkt_len = new_len; 1376 } 1377 1378 if (pkt_len >= skb->len && !in_sack) 1379 return 0; 1380 1381 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1382 pkt_len, mss, GFP_ATOMIC); 1383 if (err < 0) 1384 return err; 1385 } 1386 1387 return in_sack; 1388 } 1389 1390 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1391 static u8 tcp_sacktag_one(struct sock *sk, 1392 struct tcp_sacktag_state *state, u8 sacked, 1393 u32 start_seq, u32 end_seq, 1394 int dup_sack, int pcount, 1395 u64 xmit_time) 1396 { 1397 struct tcp_sock *tp = tcp_sk(sk); 1398 1399 /* Account D-SACK for retransmitted packet. */ 1400 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1401 if (tp->undo_marker && tp->undo_retrans > 0 && 1402 after(end_seq, tp->undo_marker)) 1403 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1404 if ((sacked & TCPCB_SACKED_ACKED) && 1405 before(start_seq, state->reord)) 1406 state->reord = start_seq; 1407 } 1408 1409 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1410 if (!after(end_seq, tp->snd_una)) 1411 return sacked; 1412 1413 if (!(sacked & TCPCB_SACKED_ACKED)) { 1414 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1415 1416 if (sacked & TCPCB_SACKED_RETRANS) { 1417 /* If the segment is not tagged as lost, 1418 * we do not clear RETRANS, believing 1419 * that retransmission is still in flight. 1420 */ 1421 if (sacked & TCPCB_LOST) { 1422 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1423 tp->lost_out -= pcount; 1424 tp->retrans_out -= pcount; 1425 } 1426 } else { 1427 if (!(sacked & TCPCB_RETRANS)) { 1428 /* New sack for not retransmitted frame, 1429 * which was in hole. It is reordering. 1430 */ 1431 if (before(start_seq, 1432 tcp_highest_sack_seq(tp)) && 1433 before(start_seq, state->reord)) 1434 state->reord = start_seq; 1435 1436 if (!after(end_seq, tp->high_seq)) 1437 state->flag |= FLAG_ORIG_SACK_ACKED; 1438 if (state->first_sackt == 0) 1439 state->first_sackt = xmit_time; 1440 state->last_sackt = xmit_time; 1441 } 1442 1443 if (sacked & TCPCB_LOST) { 1444 sacked &= ~TCPCB_LOST; 1445 tp->lost_out -= pcount; 1446 } 1447 } 1448 1449 sacked |= TCPCB_SACKED_ACKED; 1450 state->flag |= FLAG_DATA_SACKED; 1451 tp->sacked_out += pcount; 1452 /* Out-of-order packets delivered */ 1453 state->sack_delivered += pcount; 1454 1455 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1456 if (tp->lost_skb_hint && 1457 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1458 tp->lost_cnt_hint += pcount; 1459 } 1460 1461 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1462 * frames and clear it. undo_retrans is decreased above, L|R frames 1463 * are accounted above as well. 1464 */ 1465 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1466 sacked &= ~TCPCB_SACKED_RETRANS; 1467 tp->retrans_out -= pcount; 1468 } 1469 1470 return sacked; 1471 } 1472 1473 /* Shift newly-SACKed bytes from this skb to the immediately previous 1474 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1475 */ 1476 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1477 struct sk_buff *skb, 1478 struct tcp_sacktag_state *state, 1479 unsigned int pcount, int shifted, int mss, 1480 bool dup_sack) 1481 { 1482 struct tcp_sock *tp = tcp_sk(sk); 1483 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1484 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1485 1486 BUG_ON(!pcount); 1487 1488 /* Adjust counters and hints for the newly sacked sequence 1489 * range but discard the return value since prev is already 1490 * marked. We must tag the range first because the seq 1491 * advancement below implicitly advances 1492 * tcp_highest_sack_seq() when skb is highest_sack. 1493 */ 1494 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1495 start_seq, end_seq, dup_sack, pcount, 1496 tcp_skb_timestamp_us(skb)); 1497 tcp_rate_skb_delivered(sk, skb, state->rate); 1498 1499 if (skb == tp->lost_skb_hint) 1500 tp->lost_cnt_hint += pcount; 1501 1502 TCP_SKB_CB(prev)->end_seq += shifted; 1503 TCP_SKB_CB(skb)->seq += shifted; 1504 1505 tcp_skb_pcount_add(prev, pcount); 1506 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1507 tcp_skb_pcount_add(skb, -pcount); 1508 1509 /* When we're adding to gso_segs == 1, gso_size will be zero, 1510 * in theory this shouldn't be necessary but as long as DSACK 1511 * code can come after this skb later on it's better to keep 1512 * setting gso_size to something. 1513 */ 1514 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1515 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1516 1517 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1518 if (tcp_skb_pcount(skb) <= 1) 1519 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1520 1521 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1522 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1523 1524 if (skb->len > 0) { 1525 BUG_ON(!tcp_skb_pcount(skb)); 1526 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1527 return false; 1528 } 1529 1530 /* Whole SKB was eaten :-) */ 1531 1532 if (skb == tp->retransmit_skb_hint) 1533 tp->retransmit_skb_hint = prev; 1534 if (skb == tp->lost_skb_hint) { 1535 tp->lost_skb_hint = prev; 1536 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1537 } 1538 1539 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1540 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1541 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1542 TCP_SKB_CB(prev)->end_seq++; 1543 1544 if (skb == tcp_highest_sack(sk)) 1545 tcp_advance_highest_sack(sk, skb); 1546 1547 tcp_skb_collapse_tstamp(prev, skb); 1548 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1549 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1550 1551 tcp_rtx_queue_unlink_and_free(skb, sk); 1552 1553 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1554 1555 return true; 1556 } 1557 1558 /* I wish gso_size would have a bit more sane initialization than 1559 * something-or-zero which complicates things 1560 */ 1561 static int tcp_skb_seglen(const struct sk_buff *skb) 1562 { 1563 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1564 } 1565 1566 /* Shifting pages past head area doesn't work */ 1567 static int skb_can_shift(const struct sk_buff *skb) 1568 { 1569 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1570 } 1571 1572 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1573 int pcount, int shiftlen) 1574 { 1575 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1576 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1577 * to make sure not storing more than 65535 * 8 bytes per skb, 1578 * even if current MSS is bigger. 1579 */ 1580 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1581 return 0; 1582 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1583 return 0; 1584 return skb_shift(to, from, shiftlen); 1585 } 1586 1587 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1588 * skb. 1589 */ 1590 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1591 struct tcp_sacktag_state *state, 1592 u32 start_seq, u32 end_seq, 1593 bool dup_sack) 1594 { 1595 struct tcp_sock *tp = tcp_sk(sk); 1596 struct sk_buff *prev; 1597 int mss; 1598 int pcount = 0; 1599 int len; 1600 int in_sack; 1601 1602 /* Normally R but no L won't result in plain S */ 1603 if (!dup_sack && 1604 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1605 goto fallback; 1606 if (!skb_can_shift(skb)) 1607 goto fallback; 1608 /* This frame is about to be dropped (was ACKed). */ 1609 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1610 goto fallback; 1611 1612 /* Can only happen with delayed DSACK + discard craziness */ 1613 prev = skb_rb_prev(skb); 1614 if (!prev) 1615 goto fallback; 1616 1617 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1618 goto fallback; 1619 1620 if (!tcp_skb_can_collapse(prev, skb)) 1621 goto fallback; 1622 1623 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1624 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1625 1626 if (in_sack) { 1627 len = skb->len; 1628 pcount = tcp_skb_pcount(skb); 1629 mss = tcp_skb_seglen(skb); 1630 1631 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1632 * drop this restriction as unnecessary 1633 */ 1634 if (mss != tcp_skb_seglen(prev)) 1635 goto fallback; 1636 } else { 1637 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1638 goto noop; 1639 /* CHECKME: This is non-MSS split case only?, this will 1640 * cause skipped skbs due to advancing loop btw, original 1641 * has that feature too 1642 */ 1643 if (tcp_skb_pcount(skb) <= 1) 1644 goto noop; 1645 1646 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1647 if (!in_sack) { 1648 /* TODO: head merge to next could be attempted here 1649 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1650 * though it might not be worth of the additional hassle 1651 * 1652 * ...we can probably just fallback to what was done 1653 * previously. We could try merging non-SACKed ones 1654 * as well but it probably isn't going to buy off 1655 * because later SACKs might again split them, and 1656 * it would make skb timestamp tracking considerably 1657 * harder problem. 1658 */ 1659 goto fallback; 1660 } 1661 1662 len = end_seq - TCP_SKB_CB(skb)->seq; 1663 BUG_ON(len < 0); 1664 BUG_ON(len > skb->len); 1665 1666 /* MSS boundaries should be honoured or else pcount will 1667 * severely break even though it makes things bit trickier. 1668 * Optimize common case to avoid most of the divides 1669 */ 1670 mss = tcp_skb_mss(skb); 1671 1672 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1673 * drop this restriction as unnecessary 1674 */ 1675 if (mss != tcp_skb_seglen(prev)) 1676 goto fallback; 1677 1678 if (len == mss) { 1679 pcount = 1; 1680 } else if (len < mss) { 1681 goto noop; 1682 } else { 1683 pcount = len / mss; 1684 len = pcount * mss; 1685 } 1686 } 1687 1688 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1689 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1690 goto fallback; 1691 1692 if (!tcp_skb_shift(prev, skb, pcount, len)) 1693 goto fallback; 1694 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1695 goto out; 1696 1697 /* Hole filled allows collapsing with the next as well, this is very 1698 * useful when hole on every nth skb pattern happens 1699 */ 1700 skb = skb_rb_next(prev); 1701 if (!skb) 1702 goto out; 1703 1704 if (!skb_can_shift(skb) || 1705 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1706 (mss != tcp_skb_seglen(skb))) 1707 goto out; 1708 1709 if (!tcp_skb_can_collapse(prev, skb)) 1710 goto out; 1711 len = skb->len; 1712 pcount = tcp_skb_pcount(skb); 1713 if (tcp_skb_shift(prev, skb, pcount, len)) 1714 tcp_shifted_skb(sk, prev, skb, state, pcount, 1715 len, mss, 0); 1716 1717 out: 1718 return prev; 1719 1720 noop: 1721 return skb; 1722 1723 fallback: 1724 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1725 return NULL; 1726 } 1727 1728 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1729 struct tcp_sack_block *next_dup, 1730 struct tcp_sacktag_state *state, 1731 u32 start_seq, u32 end_seq, 1732 bool dup_sack_in) 1733 { 1734 struct tcp_sock *tp = tcp_sk(sk); 1735 struct sk_buff *tmp; 1736 1737 skb_rbtree_walk_from(skb) { 1738 int in_sack = 0; 1739 bool dup_sack = dup_sack_in; 1740 1741 /* queue is in-order => we can short-circuit the walk early */ 1742 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1743 break; 1744 1745 if (next_dup && 1746 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1747 in_sack = tcp_match_skb_to_sack(sk, skb, 1748 next_dup->start_seq, 1749 next_dup->end_seq); 1750 if (in_sack > 0) 1751 dup_sack = true; 1752 } 1753 1754 /* skb reference here is a bit tricky to get right, since 1755 * shifting can eat and free both this skb and the next, 1756 * so not even _safe variant of the loop is enough. 1757 */ 1758 if (in_sack <= 0) { 1759 tmp = tcp_shift_skb_data(sk, skb, state, 1760 start_seq, end_seq, dup_sack); 1761 if (tmp) { 1762 if (tmp != skb) { 1763 skb = tmp; 1764 continue; 1765 } 1766 1767 in_sack = 0; 1768 } else { 1769 in_sack = tcp_match_skb_to_sack(sk, skb, 1770 start_seq, 1771 end_seq); 1772 } 1773 } 1774 1775 if (unlikely(in_sack < 0)) 1776 break; 1777 1778 if (in_sack) { 1779 TCP_SKB_CB(skb)->sacked = 1780 tcp_sacktag_one(sk, 1781 state, 1782 TCP_SKB_CB(skb)->sacked, 1783 TCP_SKB_CB(skb)->seq, 1784 TCP_SKB_CB(skb)->end_seq, 1785 dup_sack, 1786 tcp_skb_pcount(skb), 1787 tcp_skb_timestamp_us(skb)); 1788 tcp_rate_skb_delivered(sk, skb, state->rate); 1789 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1790 list_del_init(&skb->tcp_tsorted_anchor); 1791 1792 if (!before(TCP_SKB_CB(skb)->seq, 1793 tcp_highest_sack_seq(tp))) 1794 tcp_advance_highest_sack(sk, skb); 1795 } 1796 } 1797 return skb; 1798 } 1799 1800 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1801 { 1802 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1803 struct sk_buff *skb; 1804 1805 while (*p) { 1806 parent = *p; 1807 skb = rb_to_skb(parent); 1808 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1809 p = &parent->rb_left; 1810 continue; 1811 } 1812 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1813 p = &parent->rb_right; 1814 continue; 1815 } 1816 return skb; 1817 } 1818 return NULL; 1819 } 1820 1821 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1822 u32 skip_to_seq) 1823 { 1824 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1825 return skb; 1826 1827 return tcp_sacktag_bsearch(sk, skip_to_seq); 1828 } 1829 1830 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1831 struct sock *sk, 1832 struct tcp_sack_block *next_dup, 1833 struct tcp_sacktag_state *state, 1834 u32 skip_to_seq) 1835 { 1836 if (!next_dup) 1837 return skb; 1838 1839 if (before(next_dup->start_seq, skip_to_seq)) { 1840 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1841 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1842 next_dup->start_seq, next_dup->end_seq, 1843 1); 1844 } 1845 1846 return skb; 1847 } 1848 1849 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1850 { 1851 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1852 } 1853 1854 static int 1855 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1856 u32 prior_snd_una, struct tcp_sacktag_state *state) 1857 { 1858 struct tcp_sock *tp = tcp_sk(sk); 1859 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1860 TCP_SKB_CB(ack_skb)->sacked); 1861 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1862 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1863 struct tcp_sack_block *cache; 1864 struct sk_buff *skb; 1865 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1866 int used_sacks; 1867 bool found_dup_sack = false; 1868 int i, j; 1869 int first_sack_index; 1870 1871 state->flag = 0; 1872 state->reord = tp->snd_nxt; 1873 1874 if (!tp->sacked_out) 1875 tcp_highest_sack_reset(sk); 1876 1877 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1878 num_sacks, prior_snd_una, state); 1879 1880 /* Eliminate too old ACKs, but take into 1881 * account more or less fresh ones, they can 1882 * contain valid SACK info. 1883 */ 1884 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1885 return 0; 1886 1887 if (!tp->packets_out) 1888 goto out; 1889 1890 used_sacks = 0; 1891 first_sack_index = 0; 1892 for (i = 0; i < num_sacks; i++) { 1893 bool dup_sack = !i && found_dup_sack; 1894 1895 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1896 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1897 1898 if (!tcp_is_sackblock_valid(tp, dup_sack, 1899 sp[used_sacks].start_seq, 1900 sp[used_sacks].end_seq)) { 1901 int mib_idx; 1902 1903 if (dup_sack) { 1904 if (!tp->undo_marker) 1905 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1906 else 1907 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1908 } else { 1909 /* Don't count olds caused by ACK reordering */ 1910 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1911 !after(sp[used_sacks].end_seq, tp->snd_una)) 1912 continue; 1913 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1914 } 1915 1916 NET_INC_STATS(sock_net(sk), mib_idx); 1917 if (i == 0) 1918 first_sack_index = -1; 1919 continue; 1920 } 1921 1922 /* Ignore very old stuff early */ 1923 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1924 if (i == 0) 1925 first_sack_index = -1; 1926 continue; 1927 } 1928 1929 used_sacks++; 1930 } 1931 1932 /* order SACK blocks to allow in order walk of the retrans queue */ 1933 for (i = used_sacks - 1; i > 0; i--) { 1934 for (j = 0; j < i; j++) { 1935 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1936 swap(sp[j], sp[j + 1]); 1937 1938 /* Track where the first SACK block goes to */ 1939 if (j == first_sack_index) 1940 first_sack_index = j + 1; 1941 } 1942 } 1943 } 1944 1945 state->mss_now = tcp_current_mss(sk); 1946 skb = NULL; 1947 i = 0; 1948 1949 if (!tp->sacked_out) { 1950 /* It's already past, so skip checking against it */ 1951 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1952 } else { 1953 cache = tp->recv_sack_cache; 1954 /* Skip empty blocks in at head of the cache */ 1955 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1956 !cache->end_seq) 1957 cache++; 1958 } 1959 1960 while (i < used_sacks) { 1961 u32 start_seq = sp[i].start_seq; 1962 u32 end_seq = sp[i].end_seq; 1963 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1964 struct tcp_sack_block *next_dup = NULL; 1965 1966 if (found_dup_sack && ((i + 1) == first_sack_index)) 1967 next_dup = &sp[i + 1]; 1968 1969 /* Skip too early cached blocks */ 1970 while (tcp_sack_cache_ok(tp, cache) && 1971 !before(start_seq, cache->end_seq)) 1972 cache++; 1973 1974 /* Can skip some work by looking recv_sack_cache? */ 1975 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1976 after(end_seq, cache->start_seq)) { 1977 1978 /* Head todo? */ 1979 if (before(start_seq, cache->start_seq)) { 1980 skb = tcp_sacktag_skip(skb, sk, start_seq); 1981 skb = tcp_sacktag_walk(skb, sk, next_dup, 1982 state, 1983 start_seq, 1984 cache->start_seq, 1985 dup_sack); 1986 } 1987 1988 /* Rest of the block already fully processed? */ 1989 if (!after(end_seq, cache->end_seq)) 1990 goto advance_sp; 1991 1992 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1993 state, 1994 cache->end_seq); 1995 1996 /* ...tail remains todo... */ 1997 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1998 /* ...but better entrypoint exists! */ 1999 skb = tcp_highest_sack(sk); 2000 if (!skb) 2001 break; 2002 cache++; 2003 goto walk; 2004 } 2005 2006 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 2007 /* Check overlap against next cached too (past this one already) */ 2008 cache++; 2009 continue; 2010 } 2011 2012 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2013 skb = tcp_highest_sack(sk); 2014 if (!skb) 2015 break; 2016 } 2017 skb = tcp_sacktag_skip(skb, sk, start_seq); 2018 2019 walk: 2020 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2021 start_seq, end_seq, dup_sack); 2022 2023 advance_sp: 2024 i++; 2025 } 2026 2027 /* Clear the head of the cache sack blocks so we can skip it next time */ 2028 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2029 tp->recv_sack_cache[i].start_seq = 0; 2030 tp->recv_sack_cache[i].end_seq = 0; 2031 } 2032 for (j = 0; j < used_sacks; j++) 2033 tp->recv_sack_cache[i++] = sp[j]; 2034 2035 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2036 tcp_check_sack_reordering(sk, state->reord, 0); 2037 2038 tcp_verify_left_out(tp); 2039 out: 2040 2041 #if FASTRETRANS_DEBUG > 0 2042 WARN_ON((int)tp->sacked_out < 0); 2043 WARN_ON((int)tp->lost_out < 0); 2044 WARN_ON((int)tp->retrans_out < 0); 2045 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2046 #endif 2047 return state->flag; 2048 } 2049 2050 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2051 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2052 */ 2053 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2054 { 2055 u32 holes; 2056 2057 holes = max(tp->lost_out, 1U); 2058 holes = min(holes, tp->packets_out); 2059 2060 if ((tp->sacked_out + holes) > tp->packets_out) { 2061 tp->sacked_out = tp->packets_out - holes; 2062 return true; 2063 } 2064 return false; 2065 } 2066 2067 /* If we receive more dupacks than we expected counting segments 2068 * in assumption of absent reordering, interpret this as reordering. 2069 * The only another reason could be bug in receiver TCP. 2070 */ 2071 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2072 { 2073 struct tcp_sock *tp = tcp_sk(sk); 2074 2075 if (!tcp_limit_reno_sacked(tp)) 2076 return; 2077 2078 tp->reordering = min_t(u32, tp->packets_out + addend, 2079 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2080 tp->reord_seen++; 2081 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2082 } 2083 2084 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2085 2086 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2087 { 2088 if (num_dupack) { 2089 struct tcp_sock *tp = tcp_sk(sk); 2090 u32 prior_sacked = tp->sacked_out; 2091 s32 delivered; 2092 2093 tp->sacked_out += num_dupack; 2094 tcp_check_reno_reordering(sk, 0); 2095 delivered = tp->sacked_out - prior_sacked; 2096 if (delivered > 0) 2097 tcp_count_delivered(tp, delivered, ece_ack); 2098 tcp_verify_left_out(tp); 2099 } 2100 } 2101 2102 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2103 2104 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2105 { 2106 struct tcp_sock *tp = tcp_sk(sk); 2107 2108 if (acked > 0) { 2109 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2110 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2111 ece_ack); 2112 if (acked - 1 >= tp->sacked_out) 2113 tp->sacked_out = 0; 2114 else 2115 tp->sacked_out -= acked - 1; 2116 } 2117 tcp_check_reno_reordering(sk, acked); 2118 tcp_verify_left_out(tp); 2119 } 2120 2121 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2122 { 2123 tp->sacked_out = 0; 2124 } 2125 2126 void tcp_clear_retrans(struct tcp_sock *tp) 2127 { 2128 tp->retrans_out = 0; 2129 tp->lost_out = 0; 2130 tp->undo_marker = 0; 2131 tp->undo_retrans = -1; 2132 tp->sacked_out = 0; 2133 tp->rto_stamp = 0; 2134 tp->total_rto = 0; 2135 tp->total_rto_recoveries = 0; 2136 tp->total_rto_time = 0; 2137 } 2138 2139 static inline void tcp_init_undo(struct tcp_sock *tp) 2140 { 2141 tp->undo_marker = tp->snd_una; 2142 2143 /* Retransmission still in flight may cause DSACKs later. */ 2144 /* First, account for regular retransmits in flight: */ 2145 tp->undo_retrans = tp->retrans_out; 2146 /* Next, account for TLP retransmits in flight: */ 2147 if (tp->tlp_high_seq && tp->tlp_retrans) 2148 tp->undo_retrans++; 2149 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2150 if (!tp->undo_retrans) 2151 tp->undo_retrans = -1; 2152 } 2153 2154 static bool tcp_is_rack(const struct sock *sk) 2155 { 2156 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2157 TCP_RACK_LOSS_DETECTION; 2158 } 2159 2160 /* If we detect SACK reneging, forget all SACK information 2161 * and reset tags completely, otherwise preserve SACKs. If receiver 2162 * dropped its ofo queue, we will know this due to reneging detection. 2163 */ 2164 static void tcp_timeout_mark_lost(struct sock *sk) 2165 { 2166 struct tcp_sock *tp = tcp_sk(sk); 2167 struct sk_buff *skb, *head; 2168 bool is_reneg; /* is receiver reneging on SACKs? */ 2169 2170 head = tcp_rtx_queue_head(sk); 2171 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2172 if (is_reneg) { 2173 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2174 tp->sacked_out = 0; 2175 /* Mark SACK reneging until we recover from this loss event. */ 2176 tp->is_sack_reneg = 1; 2177 } else if (tcp_is_reno(tp)) { 2178 tcp_reset_reno_sack(tp); 2179 } 2180 2181 skb = head; 2182 skb_rbtree_walk_from(skb) { 2183 if (is_reneg) 2184 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2185 else if (tcp_is_rack(sk) && skb != head && 2186 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2187 continue; /* Don't mark recently sent ones lost yet */ 2188 tcp_mark_skb_lost(sk, skb); 2189 } 2190 tcp_verify_left_out(tp); 2191 tcp_clear_all_retrans_hints(tp); 2192 } 2193 2194 /* Enter Loss state. */ 2195 void tcp_enter_loss(struct sock *sk) 2196 { 2197 const struct inet_connection_sock *icsk = inet_csk(sk); 2198 struct tcp_sock *tp = tcp_sk(sk); 2199 struct net *net = sock_net(sk); 2200 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2201 u8 reordering; 2202 2203 tcp_timeout_mark_lost(sk); 2204 2205 /* Reduce ssthresh if it has not yet been made inside this window. */ 2206 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2207 !after(tp->high_seq, tp->snd_una) || 2208 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2209 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2210 tp->prior_cwnd = tcp_snd_cwnd(tp); 2211 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2212 tcp_ca_event(sk, CA_EVENT_LOSS); 2213 tcp_init_undo(tp); 2214 } 2215 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2216 tp->snd_cwnd_cnt = 0; 2217 tp->snd_cwnd_stamp = tcp_jiffies32; 2218 2219 /* Timeout in disordered state after receiving substantial DUPACKs 2220 * suggests that the degree of reordering is over-estimated. 2221 */ 2222 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2223 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2224 tp->sacked_out >= reordering) 2225 tp->reordering = min_t(unsigned int, tp->reordering, 2226 reordering); 2227 2228 tcp_set_ca_state(sk, TCP_CA_Loss); 2229 tp->high_seq = tp->snd_nxt; 2230 tp->tlp_high_seq = 0; 2231 tcp_ecn_queue_cwr(tp); 2232 2233 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2234 * loss recovery is underway except recurring timeout(s) on 2235 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2236 */ 2237 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2238 (new_recovery || icsk->icsk_retransmits) && 2239 !inet_csk(sk)->icsk_mtup.probe_size; 2240 } 2241 2242 /* If ACK arrived pointing to a remembered SACK, it means that our 2243 * remembered SACKs do not reflect real state of receiver i.e. 2244 * receiver _host_ is heavily congested (or buggy). 2245 * 2246 * To avoid big spurious retransmission bursts due to transient SACK 2247 * scoreboard oddities that look like reneging, we give the receiver a 2248 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2249 * restore sanity to the SACK scoreboard. If the apparent reneging 2250 * persists until this RTO then we'll clear the SACK scoreboard. 2251 */ 2252 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2253 { 2254 if (*ack_flag & FLAG_SACK_RENEGING && 2255 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2256 struct tcp_sock *tp = tcp_sk(sk); 2257 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2258 msecs_to_jiffies(10)); 2259 2260 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false); 2261 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2262 return true; 2263 } 2264 return false; 2265 } 2266 2267 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2268 * counter when SACK is enabled (without SACK, sacked_out is used for 2269 * that purpose). 2270 * 2271 * With reordering, holes may still be in flight, so RFC3517 recovery 2272 * uses pure sacked_out (total number of SACKed segments) even though 2273 * it violates the RFC that uses duplicate ACKs, often these are equal 2274 * but when e.g. out-of-window ACKs or packet duplication occurs, 2275 * they differ. Since neither occurs due to loss, TCP should really 2276 * ignore them. 2277 */ 2278 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2279 { 2280 return tp->sacked_out + 1; 2281 } 2282 2283 /* Linux NewReno/SACK/ECN state machine. 2284 * -------------------------------------- 2285 * 2286 * "Open" Normal state, no dubious events, fast path. 2287 * "Disorder" In all the respects it is "Open", 2288 * but requires a bit more attention. It is entered when 2289 * we see some SACKs or dupacks. It is split of "Open" 2290 * mainly to move some processing from fast path to slow one. 2291 * "CWR" CWND was reduced due to some Congestion Notification event. 2292 * It can be ECN, ICMP source quench, local device congestion. 2293 * "Recovery" CWND was reduced, we are fast-retransmitting. 2294 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2295 * 2296 * tcp_fastretrans_alert() is entered: 2297 * - each incoming ACK, if state is not "Open" 2298 * - when arrived ACK is unusual, namely: 2299 * * SACK 2300 * * Duplicate ACK. 2301 * * ECN ECE. 2302 * 2303 * Counting packets in flight is pretty simple. 2304 * 2305 * in_flight = packets_out - left_out + retrans_out 2306 * 2307 * packets_out is SND.NXT-SND.UNA counted in packets. 2308 * 2309 * retrans_out is number of retransmitted segments. 2310 * 2311 * left_out is number of segments left network, but not ACKed yet. 2312 * 2313 * left_out = sacked_out + lost_out 2314 * 2315 * sacked_out: Packets, which arrived to receiver out of order 2316 * and hence not ACKed. With SACKs this number is simply 2317 * amount of SACKed data. Even without SACKs 2318 * it is easy to give pretty reliable estimate of this number, 2319 * counting duplicate ACKs. 2320 * 2321 * lost_out: Packets lost by network. TCP has no explicit 2322 * "loss notification" feedback from network (for now). 2323 * It means that this number can be only _guessed_. 2324 * Actually, it is the heuristics to predict lossage that 2325 * distinguishes different algorithms. 2326 * 2327 * F.e. after RTO, when all the queue is considered as lost, 2328 * lost_out = packets_out and in_flight = retrans_out. 2329 * 2330 * Essentially, we have now a few algorithms detecting 2331 * lost packets. 2332 * 2333 * If the receiver supports SACK: 2334 * 2335 * RFC6675/3517: It is the conventional algorithm. A packet is 2336 * considered lost if the number of higher sequence packets 2337 * SACKed is greater than or equal the DUPACK thoreshold 2338 * (reordering). This is implemented in tcp_mark_head_lost and 2339 * tcp_update_scoreboard. 2340 * 2341 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2342 * (2017-) that checks timing instead of counting DUPACKs. 2343 * Essentially a packet is considered lost if it's not S/ACKed 2344 * after RTT + reordering_window, where both metrics are 2345 * dynamically measured and adjusted. This is implemented in 2346 * tcp_rack_mark_lost. 2347 * 2348 * If the receiver does not support SACK: 2349 * 2350 * NewReno (RFC6582): in Recovery we assume that one segment 2351 * is lost (classic Reno). While we are in Recovery and 2352 * a partial ACK arrives, we assume that one more packet 2353 * is lost (NewReno). This heuristics are the same in NewReno 2354 * and SACK. 2355 * 2356 * Really tricky (and requiring careful tuning) part of algorithm 2357 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2358 * The first determines the moment _when_ we should reduce CWND and, 2359 * hence, slow down forward transmission. In fact, it determines the moment 2360 * when we decide that hole is caused by loss, rather than by a reorder. 2361 * 2362 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2363 * holes, caused by lost packets. 2364 * 2365 * And the most logically complicated part of algorithm is undo 2366 * heuristics. We detect false retransmits due to both too early 2367 * fast retransmit (reordering) and underestimated RTO, analyzing 2368 * timestamps and D-SACKs. When we detect that some segments were 2369 * retransmitted by mistake and CWND reduction was wrong, we undo 2370 * window reduction and abort recovery phase. This logic is hidden 2371 * inside several functions named tcp_try_undo_<something>. 2372 */ 2373 2374 /* This function decides, when we should leave Disordered state 2375 * and enter Recovery phase, reducing congestion window. 2376 * 2377 * Main question: may we further continue forward transmission 2378 * with the same cwnd? 2379 */ 2380 static bool tcp_time_to_recover(struct sock *sk, int flag) 2381 { 2382 struct tcp_sock *tp = tcp_sk(sk); 2383 2384 /* Trick#1: The loss is proven. */ 2385 if (tp->lost_out) 2386 return true; 2387 2388 /* Not-A-Trick#2 : Classic rule... */ 2389 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2390 return true; 2391 2392 return false; 2393 } 2394 2395 /* Detect loss in event "A" above by marking head of queue up as lost. 2396 * For RFC3517 SACK, a segment is considered lost if it 2397 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2398 * the maximum SACKed segments to pass before reaching this limit. 2399 */ 2400 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2401 { 2402 struct tcp_sock *tp = tcp_sk(sk); 2403 struct sk_buff *skb; 2404 int cnt; 2405 /* Use SACK to deduce losses of new sequences sent during recovery */ 2406 const u32 loss_high = tp->snd_nxt; 2407 2408 WARN_ON(packets > tp->packets_out); 2409 skb = tp->lost_skb_hint; 2410 if (skb) { 2411 /* Head already handled? */ 2412 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2413 return; 2414 cnt = tp->lost_cnt_hint; 2415 } else { 2416 skb = tcp_rtx_queue_head(sk); 2417 cnt = 0; 2418 } 2419 2420 skb_rbtree_walk_from(skb) { 2421 /* TODO: do this better */ 2422 /* this is not the most efficient way to do this... */ 2423 tp->lost_skb_hint = skb; 2424 tp->lost_cnt_hint = cnt; 2425 2426 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2427 break; 2428 2429 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2430 cnt += tcp_skb_pcount(skb); 2431 2432 if (cnt > packets) 2433 break; 2434 2435 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2436 tcp_mark_skb_lost(sk, skb); 2437 2438 if (mark_head) 2439 break; 2440 } 2441 tcp_verify_left_out(tp); 2442 } 2443 2444 /* Account newly detected lost packet(s) */ 2445 2446 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2447 { 2448 struct tcp_sock *tp = tcp_sk(sk); 2449 2450 if (tcp_is_sack(tp)) { 2451 int sacked_upto = tp->sacked_out - tp->reordering; 2452 if (sacked_upto >= 0) 2453 tcp_mark_head_lost(sk, sacked_upto, 0); 2454 else if (fast_rexmit) 2455 tcp_mark_head_lost(sk, 1, 1); 2456 } 2457 } 2458 2459 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2460 { 2461 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2462 before(tp->rx_opt.rcv_tsecr, when); 2463 } 2464 2465 /* skb is spurious retransmitted if the returned timestamp echo 2466 * reply is prior to the skb transmission time 2467 */ 2468 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2469 const struct sk_buff *skb) 2470 { 2471 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2472 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2473 } 2474 2475 /* Nothing was retransmitted or returned timestamp is less 2476 * than timestamp of the first retransmission. 2477 */ 2478 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2479 { 2480 const struct sock *sk = (const struct sock *)tp; 2481 2482 /* Received an echoed timestamp before the first retransmission? */ 2483 if (tp->retrans_stamp) 2484 return tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2485 2486 /* We set tp->retrans_stamp upon the first retransmission of a loss 2487 * recovery episode, so normally if tp->retrans_stamp is 0 then no 2488 * retransmission has happened yet (likely due to TSQ, which can cause 2489 * fast retransmits to be delayed). So if snd_una advanced while 2490 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed, 2491 * not lost. But there are exceptions where we retransmit but then 2492 * clear tp->retrans_stamp, so we check for those exceptions. 2493 */ 2494 2495 /* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen() 2496 * clears tp->retrans_stamp when snd_una == high_seq. 2497 */ 2498 if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq)) 2499 return false; 2500 2501 /* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp 2502 * when setting FLAG_SYN_ACKED is set, even if the SYN was 2503 * retransmitted. 2504 */ 2505 if (sk->sk_state == TCP_SYN_SENT) 2506 return false; 2507 2508 return true; /* tp->retrans_stamp is zero; no retransmit yet */ 2509 } 2510 2511 /* Undo procedures. */ 2512 2513 /* We can clear retrans_stamp when there are no retransmissions in the 2514 * window. It would seem that it is trivially available for us in 2515 * tp->retrans_out, however, that kind of assumptions doesn't consider 2516 * what will happen if errors occur when sending retransmission for the 2517 * second time. ...It could the that such segment has only 2518 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2519 * the head skb is enough except for some reneging corner cases that 2520 * are not worth the effort. 2521 * 2522 * Main reason for all this complexity is the fact that connection dying 2523 * time now depends on the validity of the retrans_stamp, in particular, 2524 * that successive retransmissions of a segment must not advance 2525 * retrans_stamp under any conditions. 2526 */ 2527 static bool tcp_any_retrans_done(const struct sock *sk) 2528 { 2529 const struct tcp_sock *tp = tcp_sk(sk); 2530 struct sk_buff *skb; 2531 2532 if (tp->retrans_out) 2533 return true; 2534 2535 skb = tcp_rtx_queue_head(sk); 2536 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2537 return true; 2538 2539 return false; 2540 } 2541 2542 /* If loss recovery is finished and there are no retransmits out in the 2543 * network, then we clear retrans_stamp so that upon the next loss recovery 2544 * retransmits_timed_out() and timestamp-undo are using the correct value. 2545 */ 2546 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2547 { 2548 if (!tcp_any_retrans_done(sk)) 2549 tcp_sk(sk)->retrans_stamp = 0; 2550 } 2551 2552 static void DBGUNDO(struct sock *sk, const char *msg) 2553 { 2554 #if FASTRETRANS_DEBUG > 1 2555 struct tcp_sock *tp = tcp_sk(sk); 2556 struct inet_sock *inet = inet_sk(sk); 2557 2558 if (sk->sk_family == AF_INET) { 2559 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2560 msg, 2561 &inet->inet_daddr, ntohs(inet->inet_dport), 2562 tcp_snd_cwnd(tp), tcp_left_out(tp), 2563 tp->snd_ssthresh, tp->prior_ssthresh, 2564 tp->packets_out); 2565 } 2566 #if IS_ENABLED(CONFIG_IPV6) 2567 else if (sk->sk_family == AF_INET6) { 2568 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2569 msg, 2570 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2571 tcp_snd_cwnd(tp), tcp_left_out(tp), 2572 tp->snd_ssthresh, tp->prior_ssthresh, 2573 tp->packets_out); 2574 } 2575 #endif 2576 #endif 2577 } 2578 2579 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2580 { 2581 struct tcp_sock *tp = tcp_sk(sk); 2582 2583 if (unmark_loss) { 2584 struct sk_buff *skb; 2585 2586 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2587 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2588 } 2589 tp->lost_out = 0; 2590 tcp_clear_all_retrans_hints(tp); 2591 } 2592 2593 if (tp->prior_ssthresh) { 2594 const struct inet_connection_sock *icsk = inet_csk(sk); 2595 2596 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2597 2598 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2599 tp->snd_ssthresh = tp->prior_ssthresh; 2600 tcp_ecn_withdraw_cwr(tp); 2601 } 2602 } 2603 tp->snd_cwnd_stamp = tcp_jiffies32; 2604 tp->undo_marker = 0; 2605 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2606 } 2607 2608 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2609 { 2610 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2611 } 2612 2613 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2614 { 2615 struct tcp_sock *tp = tcp_sk(sk); 2616 2617 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2618 /* Hold old state until something *above* high_seq 2619 * is ACKed. For Reno it is MUST to prevent false 2620 * fast retransmits (RFC2582). SACK TCP is safe. */ 2621 if (!tcp_any_retrans_done(sk)) 2622 tp->retrans_stamp = 0; 2623 return true; 2624 } 2625 return false; 2626 } 2627 2628 /* People celebrate: "We love our President!" */ 2629 static bool tcp_try_undo_recovery(struct sock *sk) 2630 { 2631 struct tcp_sock *tp = tcp_sk(sk); 2632 2633 if (tcp_may_undo(tp)) { 2634 int mib_idx; 2635 2636 /* Happy end! We did not retransmit anything 2637 * or our original transmission succeeded. 2638 */ 2639 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2640 tcp_undo_cwnd_reduction(sk, false); 2641 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2642 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2643 else 2644 mib_idx = LINUX_MIB_TCPFULLUNDO; 2645 2646 NET_INC_STATS(sock_net(sk), mib_idx); 2647 } else if (tp->rack.reo_wnd_persist) { 2648 tp->rack.reo_wnd_persist--; 2649 } 2650 if (tcp_is_non_sack_preventing_reopen(sk)) 2651 return true; 2652 tcp_set_ca_state(sk, TCP_CA_Open); 2653 tp->is_sack_reneg = 0; 2654 return false; 2655 } 2656 2657 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2658 static bool tcp_try_undo_dsack(struct sock *sk) 2659 { 2660 struct tcp_sock *tp = tcp_sk(sk); 2661 2662 if (tp->undo_marker && !tp->undo_retrans) { 2663 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2664 tp->rack.reo_wnd_persist + 1); 2665 DBGUNDO(sk, "D-SACK"); 2666 tcp_undo_cwnd_reduction(sk, false); 2667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2668 return true; 2669 } 2670 return false; 2671 } 2672 2673 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2674 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2675 { 2676 struct tcp_sock *tp = tcp_sk(sk); 2677 2678 if (frto_undo || tcp_may_undo(tp)) { 2679 tcp_undo_cwnd_reduction(sk, true); 2680 2681 DBGUNDO(sk, "partial loss"); 2682 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2683 if (frto_undo) 2684 NET_INC_STATS(sock_net(sk), 2685 LINUX_MIB_TCPSPURIOUSRTOS); 2686 inet_csk(sk)->icsk_retransmits = 0; 2687 if (tcp_is_non_sack_preventing_reopen(sk)) 2688 return true; 2689 if (frto_undo || tcp_is_sack(tp)) { 2690 tcp_set_ca_state(sk, TCP_CA_Open); 2691 tp->is_sack_reneg = 0; 2692 } 2693 return true; 2694 } 2695 return false; 2696 } 2697 2698 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2699 * It computes the number of packets to send (sndcnt) based on packets newly 2700 * delivered: 2701 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2702 * cwnd reductions across a full RTT. 2703 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2704 * But when SND_UNA is acked without further losses, 2705 * slow starts cwnd up to ssthresh to speed up the recovery. 2706 */ 2707 static void tcp_init_cwnd_reduction(struct sock *sk) 2708 { 2709 struct tcp_sock *tp = tcp_sk(sk); 2710 2711 tp->high_seq = tp->snd_nxt; 2712 tp->tlp_high_seq = 0; 2713 tp->snd_cwnd_cnt = 0; 2714 tp->prior_cwnd = tcp_snd_cwnd(tp); 2715 tp->prr_delivered = 0; 2716 tp->prr_out = 0; 2717 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2718 tcp_ecn_queue_cwr(tp); 2719 } 2720 2721 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2722 { 2723 struct tcp_sock *tp = tcp_sk(sk); 2724 int sndcnt = 0; 2725 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2726 2727 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2728 return; 2729 2730 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag); 2731 2732 tp->prr_delivered += newly_acked_sacked; 2733 if (delta < 0) { 2734 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2735 tp->prior_cwnd - 1; 2736 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2737 } else { 2738 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2739 newly_acked_sacked); 2740 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2741 sndcnt++; 2742 sndcnt = min(delta, sndcnt); 2743 } 2744 /* Force a fast retransmit upon entering fast recovery */ 2745 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2746 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2747 } 2748 2749 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2750 { 2751 struct tcp_sock *tp = tcp_sk(sk); 2752 2753 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2754 return; 2755 2756 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2757 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2758 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2759 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2760 tp->snd_cwnd_stamp = tcp_jiffies32; 2761 } 2762 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2763 } 2764 2765 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2766 void tcp_enter_cwr(struct sock *sk) 2767 { 2768 struct tcp_sock *tp = tcp_sk(sk); 2769 2770 tp->prior_ssthresh = 0; 2771 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2772 tp->undo_marker = 0; 2773 tcp_init_cwnd_reduction(sk); 2774 tcp_set_ca_state(sk, TCP_CA_CWR); 2775 } 2776 } 2777 EXPORT_SYMBOL(tcp_enter_cwr); 2778 2779 static void tcp_try_keep_open(struct sock *sk) 2780 { 2781 struct tcp_sock *tp = tcp_sk(sk); 2782 int state = TCP_CA_Open; 2783 2784 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2785 state = TCP_CA_Disorder; 2786 2787 if (inet_csk(sk)->icsk_ca_state != state) { 2788 tcp_set_ca_state(sk, state); 2789 tp->high_seq = tp->snd_nxt; 2790 } 2791 } 2792 2793 static void tcp_try_to_open(struct sock *sk, int flag) 2794 { 2795 struct tcp_sock *tp = tcp_sk(sk); 2796 2797 tcp_verify_left_out(tp); 2798 2799 if (!tcp_any_retrans_done(sk)) 2800 tp->retrans_stamp = 0; 2801 2802 if (flag & FLAG_ECE) 2803 tcp_enter_cwr(sk); 2804 2805 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2806 tcp_try_keep_open(sk); 2807 } 2808 } 2809 2810 static void tcp_mtup_probe_failed(struct sock *sk) 2811 { 2812 struct inet_connection_sock *icsk = inet_csk(sk); 2813 2814 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2815 icsk->icsk_mtup.probe_size = 0; 2816 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2817 } 2818 2819 static void tcp_mtup_probe_success(struct sock *sk) 2820 { 2821 struct tcp_sock *tp = tcp_sk(sk); 2822 struct inet_connection_sock *icsk = inet_csk(sk); 2823 u64 val; 2824 2825 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2826 2827 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2828 do_div(val, icsk->icsk_mtup.probe_size); 2829 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2830 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2831 2832 tp->snd_cwnd_cnt = 0; 2833 tp->snd_cwnd_stamp = tcp_jiffies32; 2834 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2835 2836 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2837 icsk->icsk_mtup.probe_size = 0; 2838 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2839 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2840 } 2841 2842 /* Sometimes we deduce that packets have been dropped due to reasons other than 2843 * congestion, like path MTU reductions or failed client TFO attempts. In these 2844 * cases we call this function to retransmit as many packets as cwnd allows, 2845 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2846 * non-zero value (and may do so in a later calling context due to TSQ), we 2847 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2848 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2849 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2850 * prematurely). 2851 */ 2852 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2853 { 2854 const struct inet_connection_sock *icsk = inet_csk(sk); 2855 struct tcp_sock *tp = tcp_sk(sk); 2856 2857 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2858 tp->high_seq = tp->snd_nxt; 2859 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2860 tp->prior_ssthresh = 0; 2861 tp->undo_marker = 0; 2862 tcp_set_ca_state(sk, TCP_CA_Loss); 2863 } 2864 tcp_xmit_retransmit_queue(sk); 2865 } 2866 2867 /* Do a simple retransmit without using the backoff mechanisms in 2868 * tcp_timer. This is used for path mtu discovery. 2869 * The socket is already locked here. 2870 */ 2871 void tcp_simple_retransmit(struct sock *sk) 2872 { 2873 struct tcp_sock *tp = tcp_sk(sk); 2874 struct sk_buff *skb; 2875 int mss; 2876 2877 /* A fastopen SYN request is stored as two separate packets within 2878 * the retransmit queue, this is done by tcp_send_syn_data(). 2879 * As a result simply checking the MSS of the frames in the queue 2880 * will not work for the SYN packet. 2881 * 2882 * Us being here is an indication of a path MTU issue so we can 2883 * assume that the fastopen SYN was lost and just mark all the 2884 * frames in the retransmit queue as lost. We will use an MSS of 2885 * -1 to mark all frames as lost, otherwise compute the current MSS. 2886 */ 2887 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2888 mss = -1; 2889 else 2890 mss = tcp_current_mss(sk); 2891 2892 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2893 if (tcp_skb_seglen(skb) > mss) 2894 tcp_mark_skb_lost(sk, skb); 2895 } 2896 2897 tcp_clear_retrans_hints_partial(tp); 2898 2899 if (!tp->lost_out) 2900 return; 2901 2902 if (tcp_is_reno(tp)) 2903 tcp_limit_reno_sacked(tp); 2904 2905 tcp_verify_left_out(tp); 2906 2907 /* Don't muck with the congestion window here. 2908 * Reason is that we do not increase amount of _data_ 2909 * in network, but units changed and effective 2910 * cwnd/ssthresh really reduced now. 2911 */ 2912 tcp_non_congestion_loss_retransmit(sk); 2913 } 2914 EXPORT_IPV6_MOD(tcp_simple_retransmit); 2915 2916 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2917 { 2918 struct tcp_sock *tp = tcp_sk(sk); 2919 int mib_idx; 2920 2921 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2922 tcp_retrans_stamp_cleanup(sk); 2923 2924 if (tcp_is_reno(tp)) 2925 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2926 else 2927 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2928 2929 NET_INC_STATS(sock_net(sk), mib_idx); 2930 2931 tp->prior_ssthresh = 0; 2932 tcp_init_undo(tp); 2933 2934 if (!tcp_in_cwnd_reduction(sk)) { 2935 if (!ece_ack) 2936 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2937 tcp_init_cwnd_reduction(sk); 2938 } 2939 tcp_set_ca_state(sk, TCP_CA_Recovery); 2940 } 2941 2942 static void tcp_update_rto_time(struct tcp_sock *tp) 2943 { 2944 if (tp->rto_stamp) { 2945 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2946 tp->rto_stamp = 0; 2947 } 2948 } 2949 2950 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2951 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2952 */ 2953 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2954 int *rexmit) 2955 { 2956 struct tcp_sock *tp = tcp_sk(sk); 2957 bool recovered = !before(tp->snd_una, tp->high_seq); 2958 2959 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2960 tcp_try_undo_loss(sk, false)) 2961 return; 2962 2963 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2964 /* Step 3.b. A timeout is spurious if not all data are 2965 * lost, i.e., never-retransmitted data are (s)acked. 2966 */ 2967 if ((flag & FLAG_ORIG_SACK_ACKED) && 2968 tcp_try_undo_loss(sk, true)) 2969 return; 2970 2971 if (after(tp->snd_nxt, tp->high_seq)) { 2972 if (flag & FLAG_DATA_SACKED || num_dupack) 2973 tp->frto = 0; /* Step 3.a. loss was real */ 2974 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2975 tp->high_seq = tp->snd_nxt; 2976 /* Step 2.b. Try send new data (but deferred until cwnd 2977 * is updated in tcp_ack()). Otherwise fall back to 2978 * the conventional recovery. 2979 */ 2980 if (!tcp_write_queue_empty(sk) && 2981 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2982 *rexmit = REXMIT_NEW; 2983 return; 2984 } 2985 tp->frto = 0; 2986 } 2987 } 2988 2989 if (recovered) { 2990 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2991 tcp_try_undo_recovery(sk); 2992 return; 2993 } 2994 if (tcp_is_reno(tp)) { 2995 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2996 * delivered. Lower inflight to clock out (re)transmissions. 2997 */ 2998 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2999 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 3000 else if (flag & FLAG_SND_UNA_ADVANCED) 3001 tcp_reset_reno_sack(tp); 3002 } 3003 *rexmit = REXMIT_LOST; 3004 } 3005 3006 static bool tcp_force_fast_retransmit(struct sock *sk) 3007 { 3008 struct tcp_sock *tp = tcp_sk(sk); 3009 3010 return after(tcp_highest_sack_seq(tp), 3011 tp->snd_una + tp->reordering * tp->mss_cache); 3012 } 3013 3014 /* Undo during fast recovery after partial ACK. */ 3015 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 3016 bool *do_lost) 3017 { 3018 struct tcp_sock *tp = tcp_sk(sk); 3019 3020 if (tp->undo_marker && tcp_packet_delayed(tp)) { 3021 /* Plain luck! Hole if filled with delayed 3022 * packet, rather than with a retransmit. Check reordering. 3023 */ 3024 tcp_check_sack_reordering(sk, prior_snd_una, 1); 3025 3026 /* We are getting evidence that the reordering degree is higher 3027 * than we realized. If there are no retransmits out then we 3028 * can undo. Otherwise we clock out new packets but do not 3029 * mark more packets lost or retransmit more. 3030 */ 3031 if (tp->retrans_out) 3032 return true; 3033 3034 if (!tcp_any_retrans_done(sk)) 3035 tp->retrans_stamp = 0; 3036 3037 DBGUNDO(sk, "partial recovery"); 3038 tcp_undo_cwnd_reduction(sk, true); 3039 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3040 tcp_try_keep_open(sk); 3041 } else { 3042 /* Partial ACK arrived. Force fast retransmit. */ 3043 *do_lost = tcp_force_fast_retransmit(sk); 3044 } 3045 return false; 3046 } 3047 3048 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3049 { 3050 struct tcp_sock *tp = tcp_sk(sk); 3051 3052 if (tcp_rtx_queue_empty(sk)) 3053 return; 3054 3055 if (unlikely(tcp_is_reno(tp))) { 3056 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3057 } else if (tcp_is_rack(sk)) { 3058 u32 prior_retrans = tp->retrans_out; 3059 3060 if (tcp_rack_mark_lost(sk)) 3061 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3062 if (prior_retrans > tp->retrans_out) 3063 *ack_flag |= FLAG_LOST_RETRANS; 3064 } 3065 } 3066 3067 /* Process an event, which can update packets-in-flight not trivially. 3068 * Main goal of this function is to calculate new estimate for left_out, 3069 * taking into account both packets sitting in receiver's buffer and 3070 * packets lost by network. 3071 * 3072 * Besides that it updates the congestion state when packet loss or ECN 3073 * is detected. But it does not reduce the cwnd, it is done by the 3074 * congestion control later. 3075 * 3076 * It does _not_ decide what to send, it is made in function 3077 * tcp_xmit_retransmit_queue(). 3078 */ 3079 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3080 int num_dupack, int *ack_flag, int *rexmit) 3081 { 3082 struct inet_connection_sock *icsk = inet_csk(sk); 3083 struct tcp_sock *tp = tcp_sk(sk); 3084 int fast_rexmit = 0, flag = *ack_flag; 3085 bool ece_ack = flag & FLAG_ECE; 3086 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3087 tcp_force_fast_retransmit(sk)); 3088 3089 if (!tp->packets_out && tp->sacked_out) 3090 tp->sacked_out = 0; 3091 3092 /* Now state machine starts. 3093 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3094 if (ece_ack) 3095 tp->prior_ssthresh = 0; 3096 3097 /* B. In all the states check for reneging SACKs. */ 3098 if (tcp_check_sack_reneging(sk, ack_flag)) 3099 return; 3100 3101 /* C. Check consistency of the current state. */ 3102 tcp_verify_left_out(tp); 3103 3104 /* D. Check state exit conditions. State can be terminated 3105 * when high_seq is ACKed. */ 3106 if (icsk->icsk_ca_state == TCP_CA_Open) { 3107 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3108 tp->retrans_stamp = 0; 3109 } else if (!before(tp->snd_una, tp->high_seq)) { 3110 switch (icsk->icsk_ca_state) { 3111 case TCP_CA_CWR: 3112 /* CWR is to be held something *above* high_seq 3113 * is ACKed for CWR bit to reach receiver. */ 3114 if (tp->snd_una != tp->high_seq) { 3115 tcp_end_cwnd_reduction(sk); 3116 tcp_set_ca_state(sk, TCP_CA_Open); 3117 } 3118 break; 3119 3120 case TCP_CA_Recovery: 3121 if (tcp_is_reno(tp)) 3122 tcp_reset_reno_sack(tp); 3123 if (tcp_try_undo_recovery(sk)) 3124 return; 3125 tcp_end_cwnd_reduction(sk); 3126 break; 3127 } 3128 } 3129 3130 /* E. Process state. */ 3131 switch (icsk->icsk_ca_state) { 3132 case TCP_CA_Recovery: 3133 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3134 if (tcp_is_reno(tp)) 3135 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3136 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3137 return; 3138 3139 if (tcp_try_undo_dsack(sk)) 3140 tcp_try_to_open(sk, flag); 3141 3142 tcp_identify_packet_loss(sk, ack_flag); 3143 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3144 if (!tcp_time_to_recover(sk, flag)) 3145 return; 3146 /* Undo reverts the recovery state. If loss is evident, 3147 * starts a new recovery (e.g. reordering then loss); 3148 */ 3149 tcp_enter_recovery(sk, ece_ack); 3150 } 3151 break; 3152 case TCP_CA_Loss: 3153 tcp_process_loss(sk, flag, num_dupack, rexmit); 3154 if (icsk->icsk_ca_state != TCP_CA_Loss) 3155 tcp_update_rto_time(tp); 3156 tcp_identify_packet_loss(sk, ack_flag); 3157 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3158 (*ack_flag & FLAG_LOST_RETRANS))) 3159 return; 3160 /* Change state if cwnd is undone or retransmits are lost */ 3161 fallthrough; 3162 default: 3163 if (tcp_is_reno(tp)) { 3164 if (flag & FLAG_SND_UNA_ADVANCED) 3165 tcp_reset_reno_sack(tp); 3166 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3167 } 3168 3169 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3170 tcp_try_undo_dsack(sk); 3171 3172 tcp_identify_packet_loss(sk, ack_flag); 3173 if (!tcp_time_to_recover(sk, flag)) { 3174 tcp_try_to_open(sk, flag); 3175 return; 3176 } 3177 3178 /* MTU probe failure: don't reduce cwnd */ 3179 if (icsk->icsk_ca_state < TCP_CA_CWR && 3180 icsk->icsk_mtup.probe_size && 3181 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3182 tcp_mtup_probe_failed(sk); 3183 /* Restores the reduction we did in tcp_mtup_probe() */ 3184 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3185 tcp_simple_retransmit(sk); 3186 return; 3187 } 3188 3189 /* Otherwise enter Recovery state */ 3190 tcp_enter_recovery(sk, ece_ack); 3191 fast_rexmit = 1; 3192 } 3193 3194 if (!tcp_is_rack(sk) && do_lost) 3195 tcp_update_scoreboard(sk, fast_rexmit); 3196 *rexmit = REXMIT_LOST; 3197 } 3198 3199 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3200 { 3201 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3202 struct tcp_sock *tp = tcp_sk(sk); 3203 3204 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3205 /* If the remote keeps returning delayed ACKs, eventually 3206 * the min filter would pick it up and overestimate the 3207 * prop. delay when it expires. Skip suspected delayed ACKs. 3208 */ 3209 return; 3210 } 3211 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3212 rtt_us ? : jiffies_to_usecs(1)); 3213 } 3214 3215 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3216 long seq_rtt_us, long sack_rtt_us, 3217 long ca_rtt_us, struct rate_sample *rs) 3218 { 3219 const struct tcp_sock *tp = tcp_sk(sk); 3220 3221 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3222 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3223 * Karn's algorithm forbids taking RTT if some retransmitted data 3224 * is acked (RFC6298). 3225 */ 3226 if (seq_rtt_us < 0) 3227 seq_rtt_us = sack_rtt_us; 3228 3229 /* RTTM Rule: A TSecr value received in a segment is used to 3230 * update the averaged RTT measurement only if the segment 3231 * acknowledges some new data, i.e., only if it advances the 3232 * left edge of the send window. 3233 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3234 */ 3235 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3236 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3237 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1); 3238 3239 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3240 if (seq_rtt_us < 0) 3241 return false; 3242 3243 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3244 * always taken together with ACK, SACK, or TS-opts. Any negative 3245 * values will be skipped with the seq_rtt_us < 0 check above. 3246 */ 3247 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3248 tcp_rtt_estimator(sk, seq_rtt_us); 3249 tcp_set_rto(sk); 3250 3251 /* RFC6298: only reset backoff on valid RTT measurement. */ 3252 inet_csk(sk)->icsk_backoff = 0; 3253 return true; 3254 } 3255 3256 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3257 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3258 { 3259 struct rate_sample rs; 3260 long rtt_us = -1L; 3261 3262 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3263 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3264 3265 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3266 } 3267 3268 3269 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3270 { 3271 const struct inet_connection_sock *icsk = inet_csk(sk); 3272 3273 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3274 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3275 } 3276 3277 /* Restart timer after forward progress on connection. 3278 * RFC2988 recommends to restart timer to now+rto. 3279 */ 3280 void tcp_rearm_rto(struct sock *sk) 3281 { 3282 const struct inet_connection_sock *icsk = inet_csk(sk); 3283 struct tcp_sock *tp = tcp_sk(sk); 3284 3285 /* If the retrans timer is currently being used by Fast Open 3286 * for SYN-ACK retrans purpose, stay put. 3287 */ 3288 if (rcu_access_pointer(tp->fastopen_rsk)) 3289 return; 3290 3291 if (!tp->packets_out) { 3292 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3293 } else { 3294 u32 rto = inet_csk(sk)->icsk_rto; 3295 /* Offset the time elapsed after installing regular RTO */ 3296 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3297 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3298 s64 delta_us = tcp_rto_delta_us(sk); 3299 /* delta_us may not be positive if the socket is locked 3300 * when the retrans timer fires and is rescheduled. 3301 */ 3302 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3303 } 3304 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true); 3305 } 3306 } 3307 3308 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3309 static void tcp_set_xmit_timer(struct sock *sk) 3310 { 3311 if (!tcp_schedule_loss_probe(sk, true)) 3312 tcp_rearm_rto(sk); 3313 } 3314 3315 /* If we get here, the whole TSO packet has not been acked. */ 3316 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3317 { 3318 struct tcp_sock *tp = tcp_sk(sk); 3319 u32 packets_acked; 3320 3321 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3322 3323 packets_acked = tcp_skb_pcount(skb); 3324 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3325 return 0; 3326 packets_acked -= tcp_skb_pcount(skb); 3327 3328 if (packets_acked) { 3329 BUG_ON(tcp_skb_pcount(skb) == 0); 3330 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3331 } 3332 3333 return packets_acked; 3334 } 3335 3336 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3337 const struct sk_buff *ack_skb, u32 prior_snd_una) 3338 { 3339 const struct skb_shared_info *shinfo; 3340 3341 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3342 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3343 return; 3344 3345 shinfo = skb_shinfo(skb); 3346 if (!before(shinfo->tskey, prior_snd_una) && 3347 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3348 tcp_skb_tsorted_save(skb) { 3349 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3350 } tcp_skb_tsorted_restore(skb); 3351 } 3352 } 3353 3354 /* Remove acknowledged frames from the retransmission queue. If our packet 3355 * is before the ack sequence we can discard it as it's confirmed to have 3356 * arrived at the other end. 3357 */ 3358 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3359 u32 prior_fack, u32 prior_snd_una, 3360 struct tcp_sacktag_state *sack, bool ece_ack) 3361 { 3362 const struct inet_connection_sock *icsk = inet_csk(sk); 3363 u64 first_ackt, last_ackt; 3364 struct tcp_sock *tp = tcp_sk(sk); 3365 u32 prior_sacked = tp->sacked_out; 3366 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3367 struct sk_buff *skb, *next; 3368 bool fully_acked = true; 3369 long sack_rtt_us = -1L; 3370 long seq_rtt_us = -1L; 3371 long ca_rtt_us = -1L; 3372 u32 pkts_acked = 0; 3373 bool rtt_update; 3374 int flag = 0; 3375 3376 first_ackt = 0; 3377 3378 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3379 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3380 const u32 start_seq = scb->seq; 3381 u8 sacked = scb->sacked; 3382 u32 acked_pcount; 3383 3384 /* Determine how many packets and what bytes were acked, tso and else */ 3385 if (after(scb->end_seq, tp->snd_una)) { 3386 if (tcp_skb_pcount(skb) == 1 || 3387 !after(tp->snd_una, scb->seq)) 3388 break; 3389 3390 acked_pcount = tcp_tso_acked(sk, skb); 3391 if (!acked_pcount) 3392 break; 3393 fully_acked = false; 3394 } else { 3395 acked_pcount = tcp_skb_pcount(skb); 3396 } 3397 3398 if (unlikely(sacked & TCPCB_RETRANS)) { 3399 if (sacked & TCPCB_SACKED_RETRANS) 3400 tp->retrans_out -= acked_pcount; 3401 flag |= FLAG_RETRANS_DATA_ACKED; 3402 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3403 last_ackt = tcp_skb_timestamp_us(skb); 3404 WARN_ON_ONCE(last_ackt == 0); 3405 if (!first_ackt) 3406 first_ackt = last_ackt; 3407 3408 if (before(start_seq, reord)) 3409 reord = start_seq; 3410 if (!after(scb->end_seq, tp->high_seq)) 3411 flag |= FLAG_ORIG_SACK_ACKED; 3412 } 3413 3414 if (sacked & TCPCB_SACKED_ACKED) { 3415 tp->sacked_out -= acked_pcount; 3416 } else if (tcp_is_sack(tp)) { 3417 tcp_count_delivered(tp, acked_pcount, ece_ack); 3418 if (!tcp_skb_spurious_retrans(tp, skb)) 3419 tcp_rack_advance(tp, sacked, scb->end_seq, 3420 tcp_skb_timestamp_us(skb)); 3421 } 3422 if (sacked & TCPCB_LOST) 3423 tp->lost_out -= acked_pcount; 3424 3425 tp->packets_out -= acked_pcount; 3426 pkts_acked += acked_pcount; 3427 tcp_rate_skb_delivered(sk, skb, sack->rate); 3428 3429 /* Initial outgoing SYN's get put onto the write_queue 3430 * just like anything else we transmit. It is not 3431 * true data, and if we misinform our callers that 3432 * this ACK acks real data, we will erroneously exit 3433 * connection startup slow start one packet too 3434 * quickly. This is severely frowned upon behavior. 3435 */ 3436 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3437 flag |= FLAG_DATA_ACKED; 3438 } else { 3439 flag |= FLAG_SYN_ACKED; 3440 tp->retrans_stamp = 0; 3441 } 3442 3443 if (!fully_acked) 3444 break; 3445 3446 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3447 3448 next = skb_rb_next(skb); 3449 if (unlikely(skb == tp->retransmit_skb_hint)) 3450 tp->retransmit_skb_hint = NULL; 3451 if (unlikely(skb == tp->lost_skb_hint)) 3452 tp->lost_skb_hint = NULL; 3453 tcp_highest_sack_replace(sk, skb, next); 3454 tcp_rtx_queue_unlink_and_free(skb, sk); 3455 } 3456 3457 if (!skb) 3458 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3459 3460 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3461 tp->snd_up = tp->snd_una; 3462 3463 if (skb) { 3464 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3465 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3466 flag |= FLAG_SACK_RENEGING; 3467 } 3468 3469 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3470 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3471 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3472 3473 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3474 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3475 sack->rate->prior_delivered + 1 == tp->delivered && 3476 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3477 /* Conservatively mark a delayed ACK. It's typically 3478 * from a lone runt packet over the round trip to 3479 * a receiver w/o out-of-order or CE events. 3480 */ 3481 flag |= FLAG_ACK_MAYBE_DELAYED; 3482 } 3483 } 3484 if (sack->first_sackt) { 3485 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3486 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3487 } 3488 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3489 ca_rtt_us, sack->rate); 3490 3491 if (flag & FLAG_ACKED) { 3492 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3493 if (unlikely(icsk->icsk_mtup.probe_size && 3494 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3495 tcp_mtup_probe_success(sk); 3496 } 3497 3498 if (tcp_is_reno(tp)) { 3499 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3500 3501 /* If any of the cumulatively ACKed segments was 3502 * retransmitted, non-SACK case cannot confirm that 3503 * progress was due to original transmission due to 3504 * lack of TCPCB_SACKED_ACKED bits even if some of 3505 * the packets may have been never retransmitted. 3506 */ 3507 if (flag & FLAG_RETRANS_DATA_ACKED) 3508 flag &= ~FLAG_ORIG_SACK_ACKED; 3509 } else { 3510 int delta; 3511 3512 /* Non-retransmitted hole got filled? That's reordering */ 3513 if (before(reord, prior_fack)) 3514 tcp_check_sack_reordering(sk, reord, 0); 3515 3516 delta = prior_sacked - tp->sacked_out; 3517 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3518 } 3519 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3520 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3521 tcp_skb_timestamp_us(skb))) { 3522 /* Do not re-arm RTO if the sack RTT is measured from data sent 3523 * after when the head was last (re)transmitted. Otherwise the 3524 * timeout may continue to extend in loss recovery. 3525 */ 3526 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3527 } 3528 3529 if (icsk->icsk_ca_ops->pkts_acked) { 3530 struct ack_sample sample = { .pkts_acked = pkts_acked, 3531 .rtt_us = sack->rate->rtt_us }; 3532 3533 sample.in_flight = tp->mss_cache * 3534 (tp->delivered - sack->rate->prior_delivered); 3535 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3536 } 3537 3538 #if FASTRETRANS_DEBUG > 0 3539 WARN_ON((int)tp->sacked_out < 0); 3540 WARN_ON((int)tp->lost_out < 0); 3541 WARN_ON((int)tp->retrans_out < 0); 3542 if (!tp->packets_out && tcp_is_sack(tp)) { 3543 icsk = inet_csk(sk); 3544 if (tp->lost_out) { 3545 pr_debug("Leak l=%u %d\n", 3546 tp->lost_out, icsk->icsk_ca_state); 3547 tp->lost_out = 0; 3548 } 3549 if (tp->sacked_out) { 3550 pr_debug("Leak s=%u %d\n", 3551 tp->sacked_out, icsk->icsk_ca_state); 3552 tp->sacked_out = 0; 3553 } 3554 if (tp->retrans_out) { 3555 pr_debug("Leak r=%u %d\n", 3556 tp->retrans_out, icsk->icsk_ca_state); 3557 tp->retrans_out = 0; 3558 } 3559 } 3560 #endif 3561 return flag; 3562 } 3563 3564 static void tcp_ack_probe(struct sock *sk) 3565 { 3566 struct inet_connection_sock *icsk = inet_csk(sk); 3567 struct sk_buff *head = tcp_send_head(sk); 3568 const struct tcp_sock *tp = tcp_sk(sk); 3569 3570 /* Was it a usable window open? */ 3571 if (!head) 3572 return; 3573 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3574 icsk->icsk_backoff = 0; 3575 icsk->icsk_probes_tstamp = 0; 3576 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3577 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3578 * This function is not for random using! 3579 */ 3580 } else { 3581 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk)); 3582 3583 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3584 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true); 3585 } 3586 } 3587 3588 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3589 { 3590 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3591 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3592 } 3593 3594 /* Decide wheather to run the increase function of congestion control. */ 3595 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3596 { 3597 /* If reordering is high then always grow cwnd whenever data is 3598 * delivered regardless of its ordering. Otherwise stay conservative 3599 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3600 * new SACK or ECE mark may first advance cwnd here and later reduce 3601 * cwnd in tcp_fastretrans_alert() based on more states. 3602 */ 3603 if (tcp_sk(sk)->reordering > 3604 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3605 return flag & FLAG_FORWARD_PROGRESS; 3606 3607 return flag & FLAG_DATA_ACKED; 3608 } 3609 3610 /* The "ultimate" congestion control function that aims to replace the rigid 3611 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3612 * It's called toward the end of processing an ACK with precise rate 3613 * information. All transmission or retransmission are delayed afterwards. 3614 */ 3615 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3616 int flag, const struct rate_sample *rs) 3617 { 3618 const struct inet_connection_sock *icsk = inet_csk(sk); 3619 3620 if (icsk->icsk_ca_ops->cong_control) { 3621 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3622 return; 3623 } 3624 3625 if (tcp_in_cwnd_reduction(sk)) { 3626 /* Reduce cwnd if state mandates */ 3627 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3628 } else if (tcp_may_raise_cwnd(sk, flag)) { 3629 /* Advance cwnd if state allows */ 3630 tcp_cong_avoid(sk, ack, acked_sacked); 3631 } 3632 tcp_update_pacing_rate(sk); 3633 } 3634 3635 /* Check that window update is acceptable. 3636 * The function assumes that snd_una<=ack<=snd_next. 3637 */ 3638 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3639 const u32 ack, const u32 ack_seq, 3640 const u32 nwin) 3641 { 3642 return after(ack, tp->snd_una) || 3643 after(ack_seq, tp->snd_wl1) || 3644 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3645 } 3646 3647 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3648 { 3649 #ifdef CONFIG_TCP_AO 3650 struct tcp_ao_info *ao; 3651 3652 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3653 return; 3654 3655 ao = rcu_dereference_protected(tp->ao_info, 3656 lockdep_sock_is_held((struct sock *)tp)); 3657 if (ao && ack < tp->snd_una) { 3658 ao->snd_sne++; 3659 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne); 3660 } 3661 #endif 3662 } 3663 3664 /* If we update tp->snd_una, also update tp->bytes_acked */ 3665 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3666 { 3667 u32 delta = ack - tp->snd_una; 3668 3669 sock_owned_by_me((struct sock *)tp); 3670 tp->bytes_acked += delta; 3671 tcp_snd_sne_update(tp, ack); 3672 tp->snd_una = ack; 3673 } 3674 3675 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3676 { 3677 #ifdef CONFIG_TCP_AO 3678 struct tcp_ao_info *ao; 3679 3680 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3681 return; 3682 3683 ao = rcu_dereference_protected(tp->ao_info, 3684 lockdep_sock_is_held((struct sock *)tp)); 3685 if (ao && seq < tp->rcv_nxt) { 3686 ao->rcv_sne++; 3687 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne); 3688 } 3689 #endif 3690 } 3691 3692 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3693 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3694 { 3695 u32 delta = seq - tp->rcv_nxt; 3696 3697 sock_owned_by_me((struct sock *)tp); 3698 tp->bytes_received += delta; 3699 tcp_rcv_sne_update(tp, seq); 3700 WRITE_ONCE(tp->rcv_nxt, seq); 3701 } 3702 3703 /* Update our send window. 3704 * 3705 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3706 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3707 */ 3708 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3709 u32 ack_seq) 3710 { 3711 struct tcp_sock *tp = tcp_sk(sk); 3712 int flag = 0; 3713 u32 nwin = ntohs(tcp_hdr(skb)->window); 3714 3715 if (likely(!tcp_hdr(skb)->syn)) 3716 nwin <<= tp->rx_opt.snd_wscale; 3717 3718 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3719 flag |= FLAG_WIN_UPDATE; 3720 tcp_update_wl(tp, ack_seq); 3721 3722 if (tp->snd_wnd != nwin) { 3723 tp->snd_wnd = nwin; 3724 3725 /* Note, it is the only place, where 3726 * fast path is recovered for sending TCP. 3727 */ 3728 tp->pred_flags = 0; 3729 tcp_fast_path_check(sk); 3730 3731 if (!tcp_write_queue_empty(sk)) 3732 tcp_slow_start_after_idle_check(sk); 3733 3734 if (nwin > tp->max_window) { 3735 tp->max_window = nwin; 3736 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3737 } 3738 } 3739 } 3740 3741 tcp_snd_una_update(tp, ack); 3742 3743 return flag; 3744 } 3745 3746 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3747 u32 *last_oow_ack_time) 3748 { 3749 /* Paired with the WRITE_ONCE() in this function. */ 3750 u32 val = READ_ONCE(*last_oow_ack_time); 3751 3752 if (val) { 3753 s32 elapsed = (s32)(tcp_jiffies32 - val); 3754 3755 if (0 <= elapsed && 3756 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3757 NET_INC_STATS(net, mib_idx); 3758 return true; /* rate-limited: don't send yet! */ 3759 } 3760 } 3761 3762 /* Paired with the prior READ_ONCE() and with itself, 3763 * as we might be lockless. 3764 */ 3765 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3766 3767 return false; /* not rate-limited: go ahead, send dupack now! */ 3768 } 3769 3770 /* Return true if we're currently rate-limiting out-of-window ACKs and 3771 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3772 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3773 * attacks that send repeated SYNs or ACKs for the same connection. To 3774 * do this, we do not send a duplicate SYNACK or ACK if the remote 3775 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3776 */ 3777 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3778 int mib_idx, u32 *last_oow_ack_time) 3779 { 3780 /* Data packets without SYNs are not likely part of an ACK loop. */ 3781 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3782 !tcp_hdr(skb)->syn) 3783 return false; 3784 3785 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3786 } 3787 3788 /* RFC 5961 7 [ACK Throttling] */ 3789 static void tcp_send_challenge_ack(struct sock *sk) 3790 { 3791 struct tcp_sock *tp = tcp_sk(sk); 3792 struct net *net = sock_net(sk); 3793 u32 count, now, ack_limit; 3794 3795 /* First check our per-socket dupack rate limit. */ 3796 if (__tcp_oow_rate_limited(net, 3797 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3798 &tp->last_oow_ack_time)) 3799 return; 3800 3801 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3802 if (ack_limit == INT_MAX) 3803 goto send_ack; 3804 3805 /* Then check host-wide RFC 5961 rate limit. */ 3806 now = jiffies / HZ; 3807 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3808 u32 half = (ack_limit + 1) >> 1; 3809 3810 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3811 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3812 get_random_u32_inclusive(half, ack_limit + half - 1)); 3813 } 3814 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3815 if (count > 0) { 3816 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3817 send_ack: 3818 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3819 tcp_send_ack(sk); 3820 } 3821 } 3822 3823 static void tcp_store_ts_recent(struct tcp_sock *tp) 3824 { 3825 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3826 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3827 } 3828 3829 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta) 3830 { 3831 tcp_store_ts_recent(tp); 3832 return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0; 3833 } 3834 3835 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3836 { 3837 s32 delta; 3838 3839 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3840 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3841 * extra check below makes sure this can only happen 3842 * for pure ACK frames. -DaveM 3843 * 3844 * Not only, also it occurs for expired timestamps. 3845 */ 3846 3847 if (tcp_paws_check(&tp->rx_opt, 0)) { 3848 delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent; 3849 return __tcp_replace_ts_recent(tp, delta); 3850 } 3851 } 3852 3853 return 0; 3854 } 3855 3856 /* This routine deals with acks during a TLP episode and ends an episode by 3857 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3858 */ 3859 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3860 { 3861 struct tcp_sock *tp = tcp_sk(sk); 3862 3863 if (before(ack, tp->tlp_high_seq)) 3864 return; 3865 3866 if (!tp->tlp_retrans) { 3867 /* TLP of new data has been acknowledged */ 3868 tp->tlp_high_seq = 0; 3869 } else if (flag & FLAG_DSACK_TLP) { 3870 /* This DSACK means original and TLP probe arrived; no loss */ 3871 tp->tlp_high_seq = 0; 3872 } else if (after(ack, tp->tlp_high_seq)) { 3873 /* ACK advances: there was a loss, so reduce cwnd. Reset 3874 * tlp_high_seq in tcp_init_cwnd_reduction() 3875 */ 3876 tcp_init_cwnd_reduction(sk); 3877 tcp_set_ca_state(sk, TCP_CA_CWR); 3878 tcp_end_cwnd_reduction(sk); 3879 tcp_try_keep_open(sk); 3880 NET_INC_STATS(sock_net(sk), 3881 LINUX_MIB_TCPLOSSPROBERECOVERY); 3882 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3883 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3884 /* Pure dupack: original and TLP probe arrived; no loss */ 3885 tp->tlp_high_seq = 0; 3886 } 3887 } 3888 3889 static void tcp_in_ack_event(struct sock *sk, int flag) 3890 { 3891 const struct inet_connection_sock *icsk = inet_csk(sk); 3892 3893 if (icsk->icsk_ca_ops->in_ack_event) { 3894 u32 ack_ev_flags = 0; 3895 3896 if (flag & FLAG_WIN_UPDATE) 3897 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3898 if (flag & FLAG_SLOWPATH) { 3899 ack_ev_flags |= CA_ACK_SLOWPATH; 3900 if (flag & FLAG_ECE) 3901 ack_ev_flags |= CA_ACK_ECE; 3902 } 3903 3904 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags); 3905 } 3906 } 3907 3908 /* Congestion control has updated the cwnd already. So if we're in 3909 * loss recovery then now we do any new sends (for FRTO) or 3910 * retransmits (for CA_Loss or CA_recovery) that make sense. 3911 */ 3912 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3913 { 3914 struct tcp_sock *tp = tcp_sk(sk); 3915 3916 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3917 return; 3918 3919 if (unlikely(rexmit == REXMIT_NEW)) { 3920 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3921 TCP_NAGLE_OFF); 3922 if (after(tp->snd_nxt, tp->high_seq)) 3923 return; 3924 tp->frto = 0; 3925 } 3926 tcp_xmit_retransmit_queue(sk); 3927 } 3928 3929 /* Returns the number of packets newly acked or sacked by the current ACK */ 3930 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3931 { 3932 const struct net *net = sock_net(sk); 3933 struct tcp_sock *tp = tcp_sk(sk); 3934 u32 delivered; 3935 3936 delivered = tp->delivered - prior_delivered; 3937 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3938 if (flag & FLAG_ECE) 3939 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3940 3941 return delivered; 3942 } 3943 3944 /* This routine deals with incoming acks, but not outgoing ones. */ 3945 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3946 { 3947 struct inet_connection_sock *icsk = inet_csk(sk); 3948 struct tcp_sock *tp = tcp_sk(sk); 3949 struct tcp_sacktag_state sack_state; 3950 struct rate_sample rs = { .prior_delivered = 0 }; 3951 u32 prior_snd_una = tp->snd_una; 3952 bool is_sack_reneg = tp->is_sack_reneg; 3953 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3954 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3955 int num_dupack = 0; 3956 int prior_packets = tp->packets_out; 3957 u32 delivered = tp->delivered; 3958 u32 lost = tp->lost; 3959 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3960 u32 prior_fack; 3961 3962 sack_state.first_sackt = 0; 3963 sack_state.rate = &rs; 3964 sack_state.sack_delivered = 0; 3965 3966 /* We very likely will need to access rtx queue. */ 3967 prefetch(sk->tcp_rtx_queue.rb_node); 3968 3969 /* If the ack is older than previous acks 3970 * then we can probably ignore it. 3971 */ 3972 if (before(ack, prior_snd_una)) { 3973 u32 max_window; 3974 3975 /* do not accept ACK for bytes we never sent. */ 3976 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3977 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3978 if (before(ack, prior_snd_una - max_window)) { 3979 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3980 tcp_send_challenge_ack(sk); 3981 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3982 } 3983 goto old_ack; 3984 } 3985 3986 /* If the ack includes data we haven't sent yet, discard 3987 * this segment (RFC793 Section 3.9). 3988 */ 3989 if (after(ack, tp->snd_nxt)) 3990 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3991 3992 if (after(ack, prior_snd_una)) { 3993 flag |= FLAG_SND_UNA_ADVANCED; 3994 icsk->icsk_retransmits = 0; 3995 3996 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3997 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3998 if (tp->tcp_clean_acked) 3999 tp->tcp_clean_acked(sk, ack); 4000 #endif 4001 } 4002 4003 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 4004 rs.prior_in_flight = tcp_packets_in_flight(tp); 4005 4006 /* ts_recent update must be made after we are sure that the packet 4007 * is in window. 4008 */ 4009 if (flag & FLAG_UPDATE_TS_RECENT) 4010 flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4011 4012 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 4013 FLAG_SND_UNA_ADVANCED) { 4014 /* Window is constant, pure forward advance. 4015 * No more checks are required. 4016 * Note, we use the fact that SND.UNA>=SND.WL2. 4017 */ 4018 tcp_update_wl(tp, ack_seq); 4019 tcp_snd_una_update(tp, ack); 4020 flag |= FLAG_WIN_UPDATE; 4021 4022 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 4023 } else { 4024 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 4025 flag |= FLAG_DATA; 4026 else 4027 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 4028 4029 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 4030 4031 if (TCP_SKB_CB(skb)->sacked) 4032 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4033 &sack_state); 4034 4035 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) 4036 flag |= FLAG_ECE; 4037 4038 if (sack_state.sack_delivered) 4039 tcp_count_delivered(tp, sack_state.sack_delivered, 4040 flag & FLAG_ECE); 4041 } 4042 4043 /* This is a deviation from RFC3168 since it states that: 4044 * "When the TCP data sender is ready to set the CWR bit after reducing 4045 * the congestion window, it SHOULD set the CWR bit only on the first 4046 * new data packet that it transmits." 4047 * We accept CWR on pure ACKs to be more robust 4048 * with widely-deployed TCP implementations that do this. 4049 */ 4050 tcp_ecn_accept_cwr(sk, skb); 4051 4052 /* We passed data and got it acked, remove any soft error 4053 * log. Something worked... 4054 */ 4055 WRITE_ONCE(sk->sk_err_soft, 0); 4056 icsk->icsk_probes_out = 0; 4057 tp->rcv_tstamp = tcp_jiffies32; 4058 if (!prior_packets) 4059 goto no_queue; 4060 4061 /* See if we can take anything off of the retransmit queue. */ 4062 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 4063 &sack_state, flag & FLAG_ECE); 4064 4065 tcp_rack_update_reo_wnd(sk, &rs); 4066 4067 tcp_in_ack_event(sk, flag); 4068 4069 if (tp->tlp_high_seq) 4070 tcp_process_tlp_ack(sk, ack, flag); 4071 4072 if (tcp_ack_is_dubious(sk, flag)) { 4073 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4074 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4075 num_dupack = 1; 4076 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4077 if (!(flag & FLAG_DATA)) 4078 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4079 } 4080 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4081 &rexmit); 4082 } 4083 4084 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4085 if (flag & FLAG_SET_XMIT_TIMER) 4086 tcp_set_xmit_timer(sk); 4087 4088 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4089 sk_dst_confirm(sk); 4090 4091 delivered = tcp_newly_delivered(sk, delivered, flag); 4092 lost = tp->lost - lost; /* freshly marked lost */ 4093 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4094 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4095 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4096 tcp_xmit_recovery(sk, rexmit); 4097 return 1; 4098 4099 no_queue: 4100 tcp_in_ack_event(sk, flag); 4101 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4102 if (flag & FLAG_DSACKING_ACK) { 4103 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4104 &rexmit); 4105 tcp_newly_delivered(sk, delivered, flag); 4106 } 4107 /* If this ack opens up a zero window, clear backoff. It was 4108 * being used to time the probes, and is probably far higher than 4109 * it needs to be for normal retransmission. 4110 */ 4111 tcp_ack_probe(sk); 4112 4113 if (tp->tlp_high_seq) 4114 tcp_process_tlp_ack(sk, ack, flag); 4115 return 1; 4116 4117 old_ack: 4118 /* If data was SACKed, tag it and see if we should send more data. 4119 * If data was DSACKed, see if we can undo a cwnd reduction. 4120 */ 4121 if (TCP_SKB_CB(skb)->sacked) { 4122 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4123 &sack_state); 4124 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4125 &rexmit); 4126 tcp_newly_delivered(sk, delivered, flag); 4127 tcp_xmit_recovery(sk, rexmit); 4128 } 4129 4130 return 0; 4131 } 4132 4133 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4134 bool syn, struct tcp_fastopen_cookie *foc, 4135 bool exp_opt) 4136 { 4137 /* Valid only in SYN or SYN-ACK with an even length. */ 4138 if (!foc || !syn || len < 0 || (len & 1)) 4139 return; 4140 4141 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4142 len <= TCP_FASTOPEN_COOKIE_MAX) 4143 memcpy(foc->val, cookie, len); 4144 else if (len != 0) 4145 len = -1; 4146 foc->len = len; 4147 foc->exp = exp_opt; 4148 } 4149 4150 static bool smc_parse_options(const struct tcphdr *th, 4151 struct tcp_options_received *opt_rx, 4152 const unsigned char *ptr, 4153 int opsize) 4154 { 4155 #if IS_ENABLED(CONFIG_SMC) 4156 if (static_branch_unlikely(&tcp_have_smc)) { 4157 if (th->syn && !(opsize & 1) && 4158 opsize >= TCPOLEN_EXP_SMC_BASE && 4159 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4160 opt_rx->smc_ok = 1; 4161 return true; 4162 } 4163 } 4164 #endif 4165 return false; 4166 } 4167 4168 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4169 * value on success. 4170 */ 4171 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4172 { 4173 const unsigned char *ptr = (const unsigned char *)(th + 1); 4174 int length = (th->doff * 4) - sizeof(struct tcphdr); 4175 u16 mss = 0; 4176 4177 while (length > 0) { 4178 int opcode = *ptr++; 4179 int opsize; 4180 4181 switch (opcode) { 4182 case TCPOPT_EOL: 4183 return mss; 4184 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4185 length--; 4186 continue; 4187 default: 4188 if (length < 2) 4189 return mss; 4190 opsize = *ptr++; 4191 if (opsize < 2) /* "silly options" */ 4192 return mss; 4193 if (opsize > length) 4194 return mss; /* fail on partial options */ 4195 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4196 u16 in_mss = get_unaligned_be16(ptr); 4197 4198 if (in_mss) { 4199 if (user_mss && user_mss < in_mss) 4200 in_mss = user_mss; 4201 mss = in_mss; 4202 } 4203 } 4204 ptr += opsize - 2; 4205 length -= opsize; 4206 } 4207 } 4208 return mss; 4209 } 4210 4211 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4212 * But, this can also be called on packets in the established flow when 4213 * the fast version below fails. 4214 */ 4215 void tcp_parse_options(const struct net *net, 4216 const struct sk_buff *skb, 4217 struct tcp_options_received *opt_rx, int estab, 4218 struct tcp_fastopen_cookie *foc) 4219 { 4220 const unsigned char *ptr; 4221 const struct tcphdr *th = tcp_hdr(skb); 4222 int length = (th->doff * 4) - sizeof(struct tcphdr); 4223 4224 ptr = (const unsigned char *)(th + 1); 4225 opt_rx->saw_tstamp = 0; 4226 opt_rx->saw_unknown = 0; 4227 4228 while (length > 0) { 4229 int opcode = *ptr++; 4230 int opsize; 4231 4232 switch (opcode) { 4233 case TCPOPT_EOL: 4234 return; 4235 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4236 length--; 4237 continue; 4238 default: 4239 if (length < 2) 4240 return; 4241 opsize = *ptr++; 4242 if (opsize < 2) /* "silly options" */ 4243 return; 4244 if (opsize > length) 4245 return; /* don't parse partial options */ 4246 switch (opcode) { 4247 case TCPOPT_MSS: 4248 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4249 u16 in_mss = get_unaligned_be16(ptr); 4250 if (in_mss) { 4251 if (opt_rx->user_mss && 4252 opt_rx->user_mss < in_mss) 4253 in_mss = opt_rx->user_mss; 4254 opt_rx->mss_clamp = in_mss; 4255 } 4256 } 4257 break; 4258 case TCPOPT_WINDOW: 4259 if (opsize == TCPOLEN_WINDOW && th->syn && 4260 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4261 __u8 snd_wscale = *(__u8 *)ptr; 4262 opt_rx->wscale_ok = 1; 4263 if (snd_wscale > TCP_MAX_WSCALE) { 4264 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4265 __func__, 4266 snd_wscale, 4267 TCP_MAX_WSCALE); 4268 snd_wscale = TCP_MAX_WSCALE; 4269 } 4270 opt_rx->snd_wscale = snd_wscale; 4271 } 4272 break; 4273 case TCPOPT_TIMESTAMP: 4274 if ((opsize == TCPOLEN_TIMESTAMP) && 4275 ((estab && opt_rx->tstamp_ok) || 4276 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4277 opt_rx->saw_tstamp = 1; 4278 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4279 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4280 } 4281 break; 4282 case TCPOPT_SACK_PERM: 4283 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4284 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4285 opt_rx->sack_ok = TCP_SACK_SEEN; 4286 tcp_sack_reset(opt_rx); 4287 } 4288 break; 4289 4290 case TCPOPT_SACK: 4291 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4292 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4293 opt_rx->sack_ok) { 4294 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4295 } 4296 break; 4297 #ifdef CONFIG_TCP_MD5SIG 4298 case TCPOPT_MD5SIG: 4299 /* The MD5 Hash has already been 4300 * checked (see tcp_v{4,6}_rcv()). 4301 */ 4302 break; 4303 #endif 4304 #ifdef CONFIG_TCP_AO 4305 case TCPOPT_AO: 4306 /* TCP AO has already been checked 4307 * (see tcp_inbound_ao_hash()). 4308 */ 4309 break; 4310 #endif 4311 case TCPOPT_FASTOPEN: 4312 tcp_parse_fastopen_option( 4313 opsize - TCPOLEN_FASTOPEN_BASE, 4314 ptr, th->syn, foc, false); 4315 break; 4316 4317 case TCPOPT_EXP: 4318 /* Fast Open option shares code 254 using a 4319 * 16 bits magic number. 4320 */ 4321 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4322 get_unaligned_be16(ptr) == 4323 TCPOPT_FASTOPEN_MAGIC) { 4324 tcp_parse_fastopen_option(opsize - 4325 TCPOLEN_EXP_FASTOPEN_BASE, 4326 ptr + 2, th->syn, foc, true); 4327 break; 4328 } 4329 4330 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4331 break; 4332 4333 opt_rx->saw_unknown = 1; 4334 break; 4335 4336 default: 4337 opt_rx->saw_unknown = 1; 4338 } 4339 ptr += opsize-2; 4340 length -= opsize; 4341 } 4342 } 4343 } 4344 EXPORT_SYMBOL(tcp_parse_options); 4345 4346 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4347 { 4348 const __be32 *ptr = (const __be32 *)(th + 1); 4349 4350 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4351 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4352 tp->rx_opt.saw_tstamp = 1; 4353 ++ptr; 4354 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4355 ++ptr; 4356 if (*ptr) 4357 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4358 else 4359 tp->rx_opt.rcv_tsecr = 0; 4360 return true; 4361 } 4362 return false; 4363 } 4364 4365 /* Fast parse options. This hopes to only see timestamps. 4366 * If it is wrong it falls back on tcp_parse_options(). 4367 */ 4368 static bool tcp_fast_parse_options(const struct net *net, 4369 const struct sk_buff *skb, 4370 const struct tcphdr *th, struct tcp_sock *tp) 4371 { 4372 /* In the spirit of fast parsing, compare doff directly to constant 4373 * values. Because equality is used, short doff can be ignored here. 4374 */ 4375 if (th->doff == (sizeof(*th) / 4)) { 4376 tp->rx_opt.saw_tstamp = 0; 4377 return false; 4378 } else if (tp->rx_opt.tstamp_ok && 4379 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4380 if (tcp_parse_aligned_timestamp(tp, th)) 4381 return true; 4382 } 4383 4384 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4385 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4386 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4387 4388 return true; 4389 } 4390 4391 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4392 /* 4393 * Parse Signature options 4394 */ 4395 int tcp_do_parse_auth_options(const struct tcphdr *th, 4396 const u8 **md5_hash, const u8 **ao_hash) 4397 { 4398 int length = (th->doff << 2) - sizeof(*th); 4399 const u8 *ptr = (const u8 *)(th + 1); 4400 unsigned int minlen = TCPOLEN_MD5SIG; 4401 4402 if (IS_ENABLED(CONFIG_TCP_AO)) 4403 minlen = sizeof(struct tcp_ao_hdr) + 1; 4404 4405 *md5_hash = NULL; 4406 *ao_hash = NULL; 4407 4408 /* If not enough data remaining, we can short cut */ 4409 while (length >= minlen) { 4410 int opcode = *ptr++; 4411 int opsize; 4412 4413 switch (opcode) { 4414 case TCPOPT_EOL: 4415 return 0; 4416 case TCPOPT_NOP: 4417 length--; 4418 continue; 4419 default: 4420 opsize = *ptr++; 4421 if (opsize < 2 || opsize > length) 4422 return -EINVAL; 4423 if (opcode == TCPOPT_MD5SIG) { 4424 if (opsize != TCPOLEN_MD5SIG) 4425 return -EINVAL; 4426 if (unlikely(*md5_hash || *ao_hash)) 4427 return -EEXIST; 4428 *md5_hash = ptr; 4429 } else if (opcode == TCPOPT_AO) { 4430 if (opsize <= sizeof(struct tcp_ao_hdr)) 4431 return -EINVAL; 4432 if (unlikely(*md5_hash || *ao_hash)) 4433 return -EEXIST; 4434 *ao_hash = ptr; 4435 } 4436 } 4437 ptr += opsize - 2; 4438 length -= opsize; 4439 } 4440 return 0; 4441 } 4442 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4443 #endif 4444 4445 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4446 * 4447 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4448 * it can pass through stack. So, the following predicate verifies that 4449 * this segment is not used for anything but congestion avoidance or 4450 * fast retransmit. Moreover, we even are able to eliminate most of such 4451 * second order effects, if we apply some small "replay" window (~RTO) 4452 * to timestamp space. 4453 * 4454 * All these measures still do not guarantee that we reject wrapped ACKs 4455 * on networks with high bandwidth, when sequence space is recycled fastly, 4456 * but it guarantees that such events will be very rare and do not affect 4457 * connection seriously. This doesn't look nice, but alas, PAWS is really 4458 * buggy extension. 4459 * 4460 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4461 * states that events when retransmit arrives after original data are rare. 4462 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4463 * the biggest problem on large power networks even with minor reordering. 4464 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4465 * up to bandwidth of 18Gigabit/sec. 8) ] 4466 */ 4467 4468 /* Estimates max number of increments of remote peer TSval in 4469 * a replay window (based on our current RTO estimation). 4470 */ 4471 static u32 tcp_tsval_replay(const struct sock *sk) 4472 { 4473 /* If we use usec TS resolution, 4474 * then expect the remote peer to use the same resolution. 4475 */ 4476 if (tcp_sk(sk)->tcp_usec_ts) 4477 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4478 4479 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4480 * We know that some OS (including old linux) can use 1200 Hz. 4481 */ 4482 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4483 } 4484 4485 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk, 4486 const struct sk_buff *skb) 4487 { 4488 const struct tcp_sock *tp = tcp_sk(sk); 4489 const struct tcphdr *th = tcp_hdr(skb); 4490 SKB_DR_INIT(reason, TCP_RFC7323_PAWS); 4491 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4492 u32 seq = TCP_SKB_CB(skb)->seq; 4493 4494 /* 1. Is this not a pure ACK ? */ 4495 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq) 4496 return reason; 4497 4498 /* 2. Is its sequence not the expected one ? */ 4499 if (seq != tp->rcv_nxt) 4500 return before(seq, tp->rcv_nxt) ? 4501 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK : 4502 reason; 4503 4504 /* 3. Is this not a duplicate ACK ? */ 4505 if (ack != tp->snd_una) 4506 return reason; 4507 4508 /* 4. Is this updating the window ? */ 4509 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) << 4510 tp->rx_opt.snd_wscale)) 4511 return reason; 4512 4513 /* 5. Is this not in the replay window ? */ 4514 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > 4515 tcp_tsval_replay(sk)) 4516 return reason; 4517 4518 return 0; 4519 } 4520 4521 /* Check segment sequence number for validity. 4522 * 4523 * Segment controls are considered valid, if the segment 4524 * fits to the window after truncation to the window. Acceptability 4525 * of data (and SYN, FIN, of course) is checked separately. 4526 * See tcp_data_queue(), for example. 4527 * 4528 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4529 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4530 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4531 * (borrowed from freebsd) 4532 */ 4533 4534 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4535 u32 seq, u32 end_seq) 4536 { 4537 if (before(end_seq, tp->rcv_wup)) 4538 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4539 4540 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4541 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4542 4543 return SKB_NOT_DROPPED_YET; 4544 } 4545 4546 4547 void tcp_done_with_error(struct sock *sk, int err) 4548 { 4549 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4550 WRITE_ONCE(sk->sk_err, err); 4551 smp_wmb(); 4552 4553 tcp_write_queue_purge(sk); 4554 tcp_done(sk); 4555 4556 if (!sock_flag(sk, SOCK_DEAD)) 4557 sk_error_report(sk); 4558 } 4559 EXPORT_IPV6_MOD(tcp_done_with_error); 4560 4561 /* When we get a reset we do this. */ 4562 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4563 { 4564 int err; 4565 4566 trace_tcp_receive_reset(sk); 4567 4568 /* mptcp can't tell us to ignore reset pkts, 4569 * so just ignore the return value of mptcp_incoming_options(). 4570 */ 4571 if (sk_is_mptcp(sk)) 4572 mptcp_incoming_options(sk, skb); 4573 4574 /* We want the right error as BSD sees it (and indeed as we do). */ 4575 switch (sk->sk_state) { 4576 case TCP_SYN_SENT: 4577 err = ECONNREFUSED; 4578 break; 4579 case TCP_CLOSE_WAIT: 4580 err = EPIPE; 4581 break; 4582 case TCP_CLOSE: 4583 return; 4584 default: 4585 err = ECONNRESET; 4586 } 4587 tcp_done_with_error(sk, err); 4588 } 4589 4590 /* 4591 * Process the FIN bit. This now behaves as it is supposed to work 4592 * and the FIN takes effect when it is validly part of sequence 4593 * space. Not before when we get holes. 4594 * 4595 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4596 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4597 * TIME-WAIT) 4598 * 4599 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4600 * close and we go into CLOSING (and later onto TIME-WAIT) 4601 * 4602 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4603 */ 4604 void tcp_fin(struct sock *sk) 4605 { 4606 struct tcp_sock *tp = tcp_sk(sk); 4607 4608 inet_csk_schedule_ack(sk); 4609 4610 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4611 sock_set_flag(sk, SOCK_DONE); 4612 4613 switch (sk->sk_state) { 4614 case TCP_SYN_RECV: 4615 case TCP_ESTABLISHED: 4616 /* Move to CLOSE_WAIT */ 4617 tcp_set_state(sk, TCP_CLOSE_WAIT); 4618 inet_csk_enter_pingpong_mode(sk); 4619 break; 4620 4621 case TCP_CLOSE_WAIT: 4622 case TCP_CLOSING: 4623 /* Received a retransmission of the FIN, do 4624 * nothing. 4625 */ 4626 break; 4627 case TCP_LAST_ACK: 4628 /* RFC793: Remain in the LAST-ACK state. */ 4629 break; 4630 4631 case TCP_FIN_WAIT1: 4632 /* This case occurs when a simultaneous close 4633 * happens, we must ack the received FIN and 4634 * enter the CLOSING state. 4635 */ 4636 tcp_send_ack(sk); 4637 tcp_set_state(sk, TCP_CLOSING); 4638 break; 4639 case TCP_FIN_WAIT2: 4640 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4641 tcp_send_ack(sk); 4642 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4643 break; 4644 default: 4645 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4646 * cases we should never reach this piece of code. 4647 */ 4648 pr_err("%s: Impossible, sk->sk_state=%d\n", 4649 __func__, sk->sk_state); 4650 break; 4651 } 4652 4653 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4654 * Probably, we should reset in this case. For now drop them. 4655 */ 4656 skb_rbtree_purge(&tp->out_of_order_queue); 4657 if (tcp_is_sack(tp)) 4658 tcp_sack_reset(&tp->rx_opt); 4659 4660 if (!sock_flag(sk, SOCK_DEAD)) { 4661 sk->sk_state_change(sk); 4662 4663 /* Do not send POLL_HUP for half duplex close. */ 4664 if (sk->sk_shutdown == SHUTDOWN_MASK || 4665 sk->sk_state == TCP_CLOSE) 4666 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4667 else 4668 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4669 } 4670 } 4671 4672 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4673 u32 end_seq) 4674 { 4675 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4676 if (before(seq, sp->start_seq)) 4677 sp->start_seq = seq; 4678 if (after(end_seq, sp->end_seq)) 4679 sp->end_seq = end_seq; 4680 return true; 4681 } 4682 return false; 4683 } 4684 4685 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4686 { 4687 struct tcp_sock *tp = tcp_sk(sk); 4688 4689 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4690 int mib_idx; 4691 4692 if (before(seq, tp->rcv_nxt)) 4693 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4694 else 4695 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4696 4697 NET_INC_STATS(sock_net(sk), mib_idx); 4698 4699 tp->rx_opt.dsack = 1; 4700 tp->duplicate_sack[0].start_seq = seq; 4701 tp->duplicate_sack[0].end_seq = end_seq; 4702 } 4703 } 4704 4705 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4706 { 4707 struct tcp_sock *tp = tcp_sk(sk); 4708 4709 if (!tp->rx_opt.dsack) 4710 tcp_dsack_set(sk, seq, end_seq); 4711 else 4712 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4713 } 4714 4715 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4716 { 4717 /* When the ACK path fails or drops most ACKs, the sender would 4718 * timeout and spuriously retransmit the same segment repeatedly. 4719 * If it seems our ACKs are not reaching the other side, 4720 * based on receiving a duplicate data segment with new flowlabel 4721 * (suggesting the sender suffered an RTO), and we are not already 4722 * repathing due to our own RTO, then rehash the socket to repath our 4723 * packets. 4724 */ 4725 #if IS_ENABLED(CONFIG_IPV6) 4726 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4727 skb->protocol == htons(ETH_P_IPV6) && 4728 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4729 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4730 sk_rethink_txhash(sk)) 4731 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4732 4733 /* Save last flowlabel after a spurious retrans. */ 4734 tcp_save_lrcv_flowlabel(sk, skb); 4735 #endif 4736 } 4737 4738 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4739 { 4740 struct tcp_sock *tp = tcp_sk(sk); 4741 4742 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4743 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4744 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4745 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4746 4747 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4748 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4749 4750 tcp_rcv_spurious_retrans(sk, skb); 4751 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4752 end_seq = tp->rcv_nxt; 4753 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4754 } 4755 } 4756 4757 tcp_send_ack(sk); 4758 } 4759 4760 /* These routines update the SACK block as out-of-order packets arrive or 4761 * in-order packets close up the sequence space. 4762 */ 4763 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4764 { 4765 int this_sack; 4766 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4767 struct tcp_sack_block *swalk = sp + 1; 4768 4769 /* See if the recent change to the first SACK eats into 4770 * or hits the sequence space of other SACK blocks, if so coalesce. 4771 */ 4772 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4773 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4774 int i; 4775 4776 /* Zap SWALK, by moving every further SACK up by one slot. 4777 * Decrease num_sacks. 4778 */ 4779 tp->rx_opt.num_sacks--; 4780 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4781 sp[i] = sp[i + 1]; 4782 continue; 4783 } 4784 this_sack++; 4785 swalk++; 4786 } 4787 } 4788 4789 void tcp_sack_compress_send_ack(struct sock *sk) 4790 { 4791 struct tcp_sock *tp = tcp_sk(sk); 4792 4793 if (!tp->compressed_ack) 4794 return; 4795 4796 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4797 __sock_put(sk); 4798 4799 /* Since we have to send one ack finally, 4800 * substract one from tp->compressed_ack to keep 4801 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4802 */ 4803 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4804 tp->compressed_ack - 1); 4805 4806 tp->compressed_ack = 0; 4807 tcp_send_ack(sk); 4808 } 4809 4810 /* Reasonable amount of sack blocks included in TCP SACK option 4811 * The max is 4, but this becomes 3 if TCP timestamps are there. 4812 * Given that SACK packets might be lost, be conservative and use 2. 4813 */ 4814 #define TCP_SACK_BLOCKS_EXPECTED 2 4815 4816 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4817 { 4818 struct tcp_sock *tp = tcp_sk(sk); 4819 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4820 int cur_sacks = tp->rx_opt.num_sacks; 4821 int this_sack; 4822 4823 if (!cur_sacks) 4824 goto new_sack; 4825 4826 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4827 if (tcp_sack_extend(sp, seq, end_seq)) { 4828 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4829 tcp_sack_compress_send_ack(sk); 4830 /* Rotate this_sack to the first one. */ 4831 for (; this_sack > 0; this_sack--, sp--) 4832 swap(*sp, *(sp - 1)); 4833 if (cur_sacks > 1) 4834 tcp_sack_maybe_coalesce(tp); 4835 return; 4836 } 4837 } 4838 4839 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4840 tcp_sack_compress_send_ack(sk); 4841 4842 /* Could not find an adjacent existing SACK, build a new one, 4843 * put it at the front, and shift everyone else down. We 4844 * always know there is at least one SACK present already here. 4845 * 4846 * If the sack array is full, forget about the last one. 4847 */ 4848 if (this_sack >= TCP_NUM_SACKS) { 4849 this_sack--; 4850 tp->rx_opt.num_sacks--; 4851 sp--; 4852 } 4853 for (; this_sack > 0; this_sack--, sp--) 4854 *sp = *(sp - 1); 4855 4856 new_sack: 4857 /* Build the new head SACK, and we're done. */ 4858 sp->start_seq = seq; 4859 sp->end_seq = end_seq; 4860 tp->rx_opt.num_sacks++; 4861 } 4862 4863 /* RCV.NXT advances, some SACKs should be eaten. */ 4864 4865 static void tcp_sack_remove(struct tcp_sock *tp) 4866 { 4867 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4868 int num_sacks = tp->rx_opt.num_sacks; 4869 int this_sack; 4870 4871 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4872 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4873 tp->rx_opt.num_sacks = 0; 4874 return; 4875 } 4876 4877 for (this_sack = 0; this_sack < num_sacks;) { 4878 /* Check if the start of the sack is covered by RCV.NXT. */ 4879 if (!before(tp->rcv_nxt, sp->start_seq)) { 4880 int i; 4881 4882 /* RCV.NXT must cover all the block! */ 4883 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4884 4885 /* Zap this SACK, by moving forward any other SACKS. */ 4886 for (i = this_sack+1; i < num_sacks; i++) 4887 tp->selective_acks[i-1] = tp->selective_acks[i]; 4888 num_sacks--; 4889 continue; 4890 } 4891 this_sack++; 4892 sp++; 4893 } 4894 tp->rx_opt.num_sacks = num_sacks; 4895 } 4896 4897 /** 4898 * tcp_try_coalesce - try to merge skb to prior one 4899 * @sk: socket 4900 * @to: prior buffer 4901 * @from: buffer to add in queue 4902 * @fragstolen: pointer to boolean 4903 * 4904 * Before queueing skb @from after @to, try to merge them 4905 * to reduce overall memory use and queue lengths, if cost is small. 4906 * Packets in ofo or receive queues can stay a long time. 4907 * Better try to coalesce them right now to avoid future collapses. 4908 * Returns true if caller should free @from instead of queueing it 4909 */ 4910 static bool tcp_try_coalesce(struct sock *sk, 4911 struct sk_buff *to, 4912 struct sk_buff *from, 4913 bool *fragstolen) 4914 { 4915 int delta; 4916 4917 *fragstolen = false; 4918 4919 /* Its possible this segment overlaps with prior segment in queue */ 4920 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4921 return false; 4922 4923 if (!tcp_skb_can_collapse_rx(to, from)) 4924 return false; 4925 4926 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4927 return false; 4928 4929 atomic_add(delta, &sk->sk_rmem_alloc); 4930 sk_mem_charge(sk, delta); 4931 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4932 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4933 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4934 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4935 4936 if (TCP_SKB_CB(from)->has_rxtstamp) { 4937 TCP_SKB_CB(to)->has_rxtstamp = true; 4938 to->tstamp = from->tstamp; 4939 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4940 } 4941 4942 return true; 4943 } 4944 4945 static bool tcp_ooo_try_coalesce(struct sock *sk, 4946 struct sk_buff *to, 4947 struct sk_buff *from, 4948 bool *fragstolen) 4949 { 4950 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4951 4952 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4953 if (res) { 4954 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4955 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4956 4957 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4958 } 4959 return res; 4960 } 4961 4962 noinline_for_tracing static void 4963 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 4964 { 4965 sk_drops_add(sk, skb); 4966 sk_skb_reason_drop(sk, skb, reason); 4967 } 4968 4969 /* This one checks to see if we can put data from the 4970 * out_of_order queue into the receive_queue. 4971 */ 4972 static void tcp_ofo_queue(struct sock *sk) 4973 { 4974 struct tcp_sock *tp = tcp_sk(sk); 4975 __u32 dsack_high = tp->rcv_nxt; 4976 bool fin, fragstolen, eaten; 4977 struct sk_buff *skb, *tail; 4978 struct rb_node *p; 4979 4980 p = rb_first(&tp->out_of_order_queue); 4981 while (p) { 4982 skb = rb_to_skb(p); 4983 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4984 break; 4985 4986 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4987 __u32 dsack = dsack_high; 4988 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4989 dsack_high = TCP_SKB_CB(skb)->end_seq; 4990 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4991 } 4992 p = rb_next(p); 4993 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4994 4995 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4996 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4997 continue; 4998 } 4999 5000 tail = skb_peek_tail(&sk->sk_receive_queue); 5001 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 5002 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5003 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 5004 if (!eaten) 5005 tcp_add_receive_queue(sk, skb); 5006 else 5007 kfree_skb_partial(skb, fragstolen); 5008 5009 if (unlikely(fin)) { 5010 tcp_fin(sk); 5011 /* tcp_fin() purges tp->out_of_order_queue, 5012 * so we must end this loop right now. 5013 */ 5014 break; 5015 } 5016 } 5017 } 5018 5019 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 5020 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 5021 5022 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 5023 unsigned int size) 5024 { 5025 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 5026 !sk_rmem_schedule(sk, skb, size)) { 5027 5028 if (tcp_prune_queue(sk, skb) < 0) 5029 return -1; 5030 5031 while (!sk_rmem_schedule(sk, skb, size)) { 5032 if (!tcp_prune_ofo_queue(sk, skb)) 5033 return -1; 5034 } 5035 } 5036 return 0; 5037 } 5038 5039 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 5040 { 5041 struct tcp_sock *tp = tcp_sk(sk); 5042 struct rb_node **p, *parent; 5043 struct sk_buff *skb1; 5044 u32 seq, end_seq; 5045 bool fragstolen; 5046 5047 tcp_save_lrcv_flowlabel(sk, skb); 5048 tcp_data_ecn_check(sk, skb); 5049 5050 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 5051 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 5052 sk->sk_data_ready(sk); 5053 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 5054 return; 5055 } 5056 5057 /* Disable header prediction. */ 5058 tp->pred_flags = 0; 5059 inet_csk_schedule_ack(sk); 5060 5061 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 5062 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 5063 seq = TCP_SKB_CB(skb)->seq; 5064 end_seq = TCP_SKB_CB(skb)->end_seq; 5065 5066 p = &tp->out_of_order_queue.rb_node; 5067 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5068 /* Initial out of order segment, build 1 SACK. */ 5069 if (tcp_is_sack(tp)) { 5070 tp->rx_opt.num_sacks = 1; 5071 tp->selective_acks[0].start_seq = seq; 5072 tp->selective_acks[0].end_seq = end_seq; 5073 } 5074 rb_link_node(&skb->rbnode, NULL, p); 5075 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5076 tp->ooo_last_skb = skb; 5077 goto end; 5078 } 5079 5080 /* In the typical case, we are adding an skb to the end of the list. 5081 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 5082 */ 5083 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 5084 skb, &fragstolen)) { 5085 coalesce_done: 5086 /* For non sack flows, do not grow window to force DUPACK 5087 * and trigger fast retransmit. 5088 */ 5089 if (tcp_is_sack(tp)) 5090 tcp_grow_window(sk, skb, true); 5091 kfree_skb_partial(skb, fragstolen); 5092 skb = NULL; 5093 goto add_sack; 5094 } 5095 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 5096 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 5097 parent = &tp->ooo_last_skb->rbnode; 5098 p = &parent->rb_right; 5099 goto insert; 5100 } 5101 5102 /* Find place to insert this segment. Handle overlaps on the way. */ 5103 parent = NULL; 5104 while (*p) { 5105 parent = *p; 5106 skb1 = rb_to_skb(parent); 5107 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 5108 p = &parent->rb_left; 5109 continue; 5110 } 5111 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 5112 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5113 /* All the bits are present. Drop. */ 5114 NET_INC_STATS(sock_net(sk), 5115 LINUX_MIB_TCPOFOMERGE); 5116 tcp_drop_reason(sk, skb, 5117 SKB_DROP_REASON_TCP_OFOMERGE); 5118 skb = NULL; 5119 tcp_dsack_set(sk, seq, end_seq); 5120 goto add_sack; 5121 } 5122 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5123 /* Partial overlap. */ 5124 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5125 } else { 5126 /* skb's seq == skb1's seq and skb covers skb1. 5127 * Replace skb1 with skb. 5128 */ 5129 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5130 &tp->out_of_order_queue); 5131 tcp_dsack_extend(sk, 5132 TCP_SKB_CB(skb1)->seq, 5133 TCP_SKB_CB(skb1)->end_seq); 5134 NET_INC_STATS(sock_net(sk), 5135 LINUX_MIB_TCPOFOMERGE); 5136 tcp_drop_reason(sk, skb1, 5137 SKB_DROP_REASON_TCP_OFOMERGE); 5138 goto merge_right; 5139 } 5140 } else if (tcp_ooo_try_coalesce(sk, skb1, 5141 skb, &fragstolen)) { 5142 goto coalesce_done; 5143 } 5144 p = &parent->rb_right; 5145 } 5146 insert: 5147 /* Insert segment into RB tree. */ 5148 rb_link_node(&skb->rbnode, parent, p); 5149 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5150 5151 merge_right: 5152 /* Remove other segments covered by skb. */ 5153 while ((skb1 = skb_rb_next(skb)) != NULL) { 5154 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5155 break; 5156 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5157 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5158 end_seq); 5159 break; 5160 } 5161 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5162 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5163 TCP_SKB_CB(skb1)->end_seq); 5164 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5165 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5166 } 5167 /* If there is no skb after us, we are the last_skb ! */ 5168 if (!skb1) 5169 tp->ooo_last_skb = skb; 5170 5171 add_sack: 5172 if (tcp_is_sack(tp)) 5173 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5174 end: 5175 if (skb) { 5176 /* For non sack flows, do not grow window to force DUPACK 5177 * and trigger fast retransmit. 5178 */ 5179 if (tcp_is_sack(tp)) 5180 tcp_grow_window(sk, skb, false); 5181 skb_condense(skb); 5182 skb_set_owner_r(skb, sk); 5183 } 5184 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 5185 if (sk->sk_socket) 5186 tcp_rcvbuf_grow(sk); 5187 } 5188 5189 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5190 bool *fragstolen) 5191 { 5192 int eaten; 5193 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5194 5195 eaten = (tail && 5196 tcp_try_coalesce(sk, tail, 5197 skb, fragstolen)) ? 1 : 0; 5198 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5199 if (!eaten) { 5200 tcp_add_receive_queue(sk, skb); 5201 skb_set_owner_r(skb, sk); 5202 } 5203 return eaten; 5204 } 5205 5206 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5207 { 5208 struct sk_buff *skb; 5209 int err = -ENOMEM; 5210 int data_len = 0; 5211 bool fragstolen; 5212 5213 if (size == 0) 5214 return 0; 5215 5216 if (size > PAGE_SIZE) { 5217 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5218 5219 data_len = npages << PAGE_SHIFT; 5220 size = data_len + (size & ~PAGE_MASK); 5221 } 5222 skb = alloc_skb_with_frags(size - data_len, data_len, 5223 PAGE_ALLOC_COSTLY_ORDER, 5224 &err, sk->sk_allocation); 5225 if (!skb) 5226 goto err; 5227 5228 skb_put(skb, size - data_len); 5229 skb->data_len = data_len; 5230 skb->len = size; 5231 5232 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5233 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5234 goto err_free; 5235 } 5236 5237 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5238 if (err) 5239 goto err_free; 5240 5241 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5242 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5243 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5244 5245 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5246 WARN_ON_ONCE(fragstolen); /* should not happen */ 5247 __kfree_skb(skb); 5248 } 5249 return size; 5250 5251 err_free: 5252 kfree_skb(skb); 5253 err: 5254 return err; 5255 5256 } 5257 5258 void tcp_data_ready(struct sock *sk) 5259 { 5260 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5261 sk->sk_data_ready(sk); 5262 } 5263 5264 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5265 { 5266 struct tcp_sock *tp = tcp_sk(sk); 5267 enum skb_drop_reason reason; 5268 bool fragstolen; 5269 int eaten; 5270 5271 /* If a subflow has been reset, the packet should not continue 5272 * to be processed, drop the packet. 5273 */ 5274 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5275 __kfree_skb(skb); 5276 return; 5277 } 5278 5279 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5280 __kfree_skb(skb); 5281 return; 5282 } 5283 tcp_cleanup_skb(skb); 5284 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5285 5286 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5287 tp->rx_opt.dsack = 0; 5288 5289 /* Queue data for delivery to the user. 5290 * Packets in sequence go to the receive queue. 5291 * Out of sequence packets to the out_of_order_queue. 5292 */ 5293 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5294 if (tcp_receive_window(tp) == 0) { 5295 /* Some stacks are known to send bare FIN packets 5296 * in a loop even if we send RWIN 0 in our ACK. 5297 * Accepting this FIN does not hurt memory pressure 5298 * because the FIN flag will simply be merged to the 5299 * receive queue tail skb in most cases. 5300 */ 5301 if (!skb->len && 5302 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5303 goto queue_and_out; 5304 5305 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5307 goto out_of_window; 5308 } 5309 5310 /* Ok. In sequence. In window. */ 5311 queue_and_out: 5312 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5313 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5314 inet_csk(sk)->icsk_ack.pending |= 5315 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5316 inet_csk_schedule_ack(sk); 5317 sk->sk_data_ready(sk); 5318 5319 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5320 reason = SKB_DROP_REASON_PROTO_MEM; 5321 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5322 goto drop; 5323 } 5324 sk_forced_mem_schedule(sk, skb->truesize); 5325 } 5326 5327 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5328 if (skb->len) 5329 tcp_event_data_recv(sk, skb); 5330 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5331 tcp_fin(sk); 5332 5333 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5334 tcp_ofo_queue(sk); 5335 5336 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5337 * gap in queue is filled. 5338 */ 5339 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5340 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5341 } 5342 5343 if (tp->rx_opt.num_sacks) 5344 tcp_sack_remove(tp); 5345 5346 tcp_fast_path_check(sk); 5347 5348 if (eaten > 0) 5349 kfree_skb_partial(skb, fragstolen); 5350 if (!sock_flag(sk, SOCK_DEAD)) 5351 tcp_data_ready(sk); 5352 return; 5353 } 5354 5355 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5356 tcp_rcv_spurious_retrans(sk, skb); 5357 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5358 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5359 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5360 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5361 5362 out_of_window: 5363 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5364 inet_csk_schedule_ack(sk); 5365 drop: 5366 tcp_drop_reason(sk, skb, reason); 5367 return; 5368 } 5369 5370 /* Out of window. F.e. zero window probe. */ 5371 if (!before(TCP_SKB_CB(skb)->seq, 5372 tp->rcv_nxt + tcp_receive_window(tp))) { 5373 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5374 goto out_of_window; 5375 } 5376 5377 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5378 /* Partial packet, seq < rcv_next < end_seq */ 5379 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5380 5381 /* If window is closed, drop tail of packet. But after 5382 * remembering D-SACK for its head made in previous line. 5383 */ 5384 if (!tcp_receive_window(tp)) { 5385 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5386 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5387 goto out_of_window; 5388 } 5389 goto queue_and_out; 5390 } 5391 5392 tcp_data_queue_ofo(sk, skb); 5393 } 5394 5395 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5396 { 5397 if (list) 5398 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5399 5400 return skb_rb_next(skb); 5401 } 5402 5403 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5404 struct sk_buff_head *list, 5405 struct rb_root *root) 5406 { 5407 struct sk_buff *next = tcp_skb_next(skb, list); 5408 5409 if (list) 5410 __skb_unlink(skb, list); 5411 else 5412 rb_erase(&skb->rbnode, root); 5413 5414 __kfree_skb(skb); 5415 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5416 5417 return next; 5418 } 5419 5420 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5421 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5422 { 5423 struct rb_node **p = &root->rb_node; 5424 struct rb_node *parent = NULL; 5425 struct sk_buff *skb1; 5426 5427 while (*p) { 5428 parent = *p; 5429 skb1 = rb_to_skb(parent); 5430 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5431 p = &parent->rb_left; 5432 else 5433 p = &parent->rb_right; 5434 } 5435 rb_link_node(&skb->rbnode, parent, p); 5436 rb_insert_color(&skb->rbnode, root); 5437 } 5438 5439 /* Collapse contiguous sequence of skbs head..tail with 5440 * sequence numbers start..end. 5441 * 5442 * If tail is NULL, this means until the end of the queue. 5443 * 5444 * Segments with FIN/SYN are not collapsed (only because this 5445 * simplifies code) 5446 */ 5447 static void 5448 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5449 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5450 { 5451 struct sk_buff *skb = head, *n; 5452 struct sk_buff_head tmp; 5453 bool end_of_skbs; 5454 5455 /* First, check that queue is collapsible and find 5456 * the point where collapsing can be useful. 5457 */ 5458 restart: 5459 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5460 n = tcp_skb_next(skb, list); 5461 5462 if (!skb_frags_readable(skb)) 5463 goto skip_this; 5464 5465 /* No new bits? It is possible on ofo queue. */ 5466 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5467 skb = tcp_collapse_one(sk, skb, list, root); 5468 if (!skb) 5469 break; 5470 goto restart; 5471 } 5472 5473 /* The first skb to collapse is: 5474 * - not SYN/FIN and 5475 * - bloated or contains data before "start" or 5476 * overlaps to the next one and mptcp allow collapsing. 5477 */ 5478 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5479 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5480 before(TCP_SKB_CB(skb)->seq, start))) { 5481 end_of_skbs = false; 5482 break; 5483 } 5484 5485 if (n && n != tail && skb_frags_readable(n) && 5486 tcp_skb_can_collapse_rx(skb, n) && 5487 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5488 end_of_skbs = false; 5489 break; 5490 } 5491 5492 skip_this: 5493 /* Decided to skip this, advance start seq. */ 5494 start = TCP_SKB_CB(skb)->end_seq; 5495 } 5496 if (end_of_skbs || 5497 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5498 !skb_frags_readable(skb)) 5499 return; 5500 5501 __skb_queue_head_init(&tmp); 5502 5503 while (before(start, end)) { 5504 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5505 struct sk_buff *nskb; 5506 5507 nskb = alloc_skb(copy, GFP_ATOMIC); 5508 if (!nskb) 5509 break; 5510 5511 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5512 skb_copy_decrypted(nskb, skb); 5513 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5514 if (list) 5515 __skb_queue_before(list, skb, nskb); 5516 else 5517 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5518 skb_set_owner_r(nskb, sk); 5519 mptcp_skb_ext_move(nskb, skb); 5520 5521 /* Copy data, releasing collapsed skbs. */ 5522 while (copy > 0) { 5523 int offset = start - TCP_SKB_CB(skb)->seq; 5524 int size = TCP_SKB_CB(skb)->end_seq - start; 5525 5526 BUG_ON(offset < 0); 5527 if (size > 0) { 5528 size = min(copy, size); 5529 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5530 BUG(); 5531 TCP_SKB_CB(nskb)->end_seq += size; 5532 copy -= size; 5533 start += size; 5534 } 5535 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5536 skb = tcp_collapse_one(sk, skb, list, root); 5537 if (!skb || 5538 skb == tail || 5539 !tcp_skb_can_collapse_rx(nskb, skb) || 5540 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5541 !skb_frags_readable(skb)) 5542 goto end; 5543 } 5544 } 5545 } 5546 end: 5547 skb_queue_walk_safe(&tmp, skb, n) 5548 tcp_rbtree_insert(root, skb); 5549 } 5550 5551 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5552 * and tcp_collapse() them until all the queue is collapsed. 5553 */ 5554 static void tcp_collapse_ofo_queue(struct sock *sk) 5555 { 5556 struct tcp_sock *tp = tcp_sk(sk); 5557 u32 range_truesize, sum_tiny = 0; 5558 struct sk_buff *skb, *head; 5559 u32 start, end; 5560 5561 skb = skb_rb_first(&tp->out_of_order_queue); 5562 new_range: 5563 if (!skb) { 5564 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5565 return; 5566 } 5567 start = TCP_SKB_CB(skb)->seq; 5568 end = TCP_SKB_CB(skb)->end_seq; 5569 range_truesize = skb->truesize; 5570 5571 for (head = skb;;) { 5572 skb = skb_rb_next(skb); 5573 5574 /* Range is terminated when we see a gap or when 5575 * we are at the queue end. 5576 */ 5577 if (!skb || 5578 after(TCP_SKB_CB(skb)->seq, end) || 5579 before(TCP_SKB_CB(skb)->end_seq, start)) { 5580 /* Do not attempt collapsing tiny skbs */ 5581 if (range_truesize != head->truesize || 5582 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5583 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5584 head, skb, start, end); 5585 } else { 5586 sum_tiny += range_truesize; 5587 if (sum_tiny > sk->sk_rcvbuf >> 3) 5588 return; 5589 } 5590 goto new_range; 5591 } 5592 5593 range_truesize += skb->truesize; 5594 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5595 start = TCP_SKB_CB(skb)->seq; 5596 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5597 end = TCP_SKB_CB(skb)->end_seq; 5598 } 5599 } 5600 5601 /* 5602 * Clean the out-of-order queue to make room. 5603 * We drop high sequences packets to : 5604 * 1) Let a chance for holes to be filled. 5605 * This means we do not drop packets from ooo queue if their sequence 5606 * is before incoming packet sequence. 5607 * 2) not add too big latencies if thousands of packets sit there. 5608 * (But if application shrinks SO_RCVBUF, we could still end up 5609 * freeing whole queue here) 5610 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5611 * 5612 * Return true if queue has shrunk. 5613 */ 5614 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5615 { 5616 struct tcp_sock *tp = tcp_sk(sk); 5617 struct rb_node *node, *prev; 5618 bool pruned = false; 5619 int goal; 5620 5621 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5622 return false; 5623 5624 goal = sk->sk_rcvbuf >> 3; 5625 node = &tp->ooo_last_skb->rbnode; 5626 5627 do { 5628 struct sk_buff *skb = rb_to_skb(node); 5629 5630 /* If incoming skb would land last in ofo queue, stop pruning. */ 5631 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5632 break; 5633 pruned = true; 5634 prev = rb_prev(node); 5635 rb_erase(node, &tp->out_of_order_queue); 5636 goal -= skb->truesize; 5637 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5638 tp->ooo_last_skb = rb_to_skb(prev); 5639 if (!prev || goal <= 0) { 5640 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5641 !tcp_under_memory_pressure(sk)) 5642 break; 5643 goal = sk->sk_rcvbuf >> 3; 5644 } 5645 node = prev; 5646 } while (node); 5647 5648 if (pruned) { 5649 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5650 /* Reset SACK state. A conforming SACK implementation will 5651 * do the same at a timeout based retransmit. When a connection 5652 * is in a sad state like this, we care only about integrity 5653 * of the connection not performance. 5654 */ 5655 if (tp->rx_opt.sack_ok) 5656 tcp_sack_reset(&tp->rx_opt); 5657 } 5658 return pruned; 5659 } 5660 5661 /* Reduce allocated memory if we can, trying to get 5662 * the socket within its memory limits again. 5663 * 5664 * Return less than zero if we should start dropping frames 5665 * until the socket owning process reads some of the data 5666 * to stabilize the situation. 5667 */ 5668 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5669 { 5670 struct tcp_sock *tp = tcp_sk(sk); 5671 5672 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5673 5674 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5675 tcp_clamp_window(sk); 5676 else if (tcp_under_memory_pressure(sk)) 5677 tcp_adjust_rcv_ssthresh(sk); 5678 5679 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5680 return 0; 5681 5682 tcp_collapse_ofo_queue(sk); 5683 if (!skb_queue_empty(&sk->sk_receive_queue)) 5684 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5685 skb_peek(&sk->sk_receive_queue), 5686 NULL, 5687 tp->copied_seq, tp->rcv_nxt); 5688 5689 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5690 return 0; 5691 5692 /* Collapsing did not help, destructive actions follow. 5693 * This must not ever occur. */ 5694 5695 tcp_prune_ofo_queue(sk, in_skb); 5696 5697 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5698 return 0; 5699 5700 /* If we are really being abused, tell the caller to silently 5701 * drop receive data on the floor. It will get retransmitted 5702 * and hopefully then we'll have sufficient space. 5703 */ 5704 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5705 5706 /* Massive buffer overcommit. */ 5707 tp->pred_flags = 0; 5708 return -1; 5709 } 5710 5711 static bool tcp_should_expand_sndbuf(struct sock *sk) 5712 { 5713 const struct tcp_sock *tp = tcp_sk(sk); 5714 5715 /* If the user specified a specific send buffer setting, do 5716 * not modify it. 5717 */ 5718 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5719 return false; 5720 5721 /* If we are under global TCP memory pressure, do not expand. */ 5722 if (tcp_under_memory_pressure(sk)) { 5723 int unused_mem = sk_unused_reserved_mem(sk); 5724 5725 /* Adjust sndbuf according to reserved mem. But make sure 5726 * it never goes below SOCK_MIN_SNDBUF. 5727 * See sk_stream_moderate_sndbuf() for more details. 5728 */ 5729 if (unused_mem > SOCK_MIN_SNDBUF) 5730 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5731 5732 return false; 5733 } 5734 5735 /* If we are under soft global TCP memory pressure, do not expand. */ 5736 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5737 return false; 5738 5739 /* If we filled the congestion window, do not expand. */ 5740 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5741 return false; 5742 5743 return true; 5744 } 5745 5746 static void tcp_new_space(struct sock *sk) 5747 { 5748 struct tcp_sock *tp = tcp_sk(sk); 5749 5750 if (tcp_should_expand_sndbuf(sk)) { 5751 tcp_sndbuf_expand(sk); 5752 tp->snd_cwnd_stamp = tcp_jiffies32; 5753 } 5754 5755 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5756 } 5757 5758 /* Caller made space either from: 5759 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5760 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5761 * 5762 * We might be able to generate EPOLLOUT to the application if: 5763 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5764 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5765 * small enough that tcp_stream_memory_free() decides it 5766 * is time to generate EPOLLOUT. 5767 */ 5768 void tcp_check_space(struct sock *sk) 5769 { 5770 /* pairs with tcp_poll() */ 5771 smp_mb(); 5772 if (sk->sk_socket && 5773 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5774 tcp_new_space(sk); 5775 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5776 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5777 } 5778 } 5779 5780 static inline void tcp_data_snd_check(struct sock *sk) 5781 { 5782 tcp_push_pending_frames(sk); 5783 tcp_check_space(sk); 5784 } 5785 5786 /* 5787 * Check if sending an ack is needed. 5788 */ 5789 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5790 { 5791 struct tcp_sock *tp = tcp_sk(sk); 5792 unsigned long rtt, delay; 5793 5794 /* More than one full frame received... */ 5795 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5796 /* ... and right edge of window advances far enough. 5797 * (tcp_recvmsg() will send ACK otherwise). 5798 * If application uses SO_RCVLOWAT, we want send ack now if 5799 * we have not received enough bytes to satisfy the condition. 5800 */ 5801 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5802 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5803 /* We ACK each frame or... */ 5804 tcp_in_quickack_mode(sk) || 5805 /* Protocol state mandates a one-time immediate ACK */ 5806 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5807 /* If we are running from __release_sock() in user context, 5808 * Defer the ack until tcp_release_cb(). 5809 */ 5810 if (sock_owned_by_user_nocheck(sk) && 5811 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5812 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5813 return; 5814 } 5815 send_now: 5816 tcp_send_ack(sk); 5817 return; 5818 } 5819 5820 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5821 tcp_send_delayed_ack(sk); 5822 return; 5823 } 5824 5825 if (!tcp_is_sack(tp) || 5826 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5827 goto send_now; 5828 5829 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5830 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5831 tp->dup_ack_counter = 0; 5832 } 5833 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5834 tp->dup_ack_counter++; 5835 goto send_now; 5836 } 5837 tp->compressed_ack++; 5838 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5839 return; 5840 5841 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5842 5843 rtt = tp->rcv_rtt_est.rtt_us; 5844 if (tp->srtt_us && tp->srtt_us < rtt) 5845 rtt = tp->srtt_us; 5846 5847 delay = min_t(unsigned long, 5848 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5849 rtt * (NSEC_PER_USEC >> 3)/20); 5850 sock_hold(sk); 5851 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5852 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5853 HRTIMER_MODE_REL_PINNED_SOFT); 5854 } 5855 5856 static inline void tcp_ack_snd_check(struct sock *sk) 5857 { 5858 if (!inet_csk_ack_scheduled(sk)) { 5859 /* We sent a data segment already. */ 5860 return; 5861 } 5862 __tcp_ack_snd_check(sk, 1); 5863 } 5864 5865 /* 5866 * This routine is only called when we have urgent data 5867 * signaled. Its the 'slow' part of tcp_urg. It could be 5868 * moved inline now as tcp_urg is only called from one 5869 * place. We handle URGent data wrong. We have to - as 5870 * BSD still doesn't use the correction from RFC961. 5871 * For 1003.1g we should support a new option TCP_STDURG to permit 5872 * either form (or just set the sysctl tcp_stdurg). 5873 */ 5874 5875 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5876 { 5877 struct tcp_sock *tp = tcp_sk(sk); 5878 u32 ptr = ntohs(th->urg_ptr); 5879 5880 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5881 ptr--; 5882 ptr += ntohl(th->seq); 5883 5884 /* Ignore urgent data that we've already seen and read. */ 5885 if (after(tp->copied_seq, ptr)) 5886 return; 5887 5888 /* Do not replay urg ptr. 5889 * 5890 * NOTE: interesting situation not covered by specs. 5891 * Misbehaving sender may send urg ptr, pointing to segment, 5892 * which we already have in ofo queue. We are not able to fetch 5893 * such data and will stay in TCP_URG_NOTYET until will be eaten 5894 * by recvmsg(). Seems, we are not obliged to handle such wicked 5895 * situations. But it is worth to think about possibility of some 5896 * DoSes using some hypothetical application level deadlock. 5897 */ 5898 if (before(ptr, tp->rcv_nxt)) 5899 return; 5900 5901 /* Do we already have a newer (or duplicate) urgent pointer? */ 5902 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5903 return; 5904 5905 /* Tell the world about our new urgent pointer. */ 5906 sk_send_sigurg(sk); 5907 5908 /* We may be adding urgent data when the last byte read was 5909 * urgent. To do this requires some care. We cannot just ignore 5910 * tp->copied_seq since we would read the last urgent byte again 5911 * as data, nor can we alter copied_seq until this data arrives 5912 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5913 * 5914 * NOTE. Double Dutch. Rendering to plain English: author of comment 5915 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5916 * and expect that both A and B disappear from stream. This is _wrong_. 5917 * Though this happens in BSD with high probability, this is occasional. 5918 * Any application relying on this is buggy. Note also, that fix "works" 5919 * only in this artificial test. Insert some normal data between A and B and we will 5920 * decline of BSD again. Verdict: it is better to remove to trap 5921 * buggy users. 5922 */ 5923 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5924 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5925 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5926 tp->copied_seq++; 5927 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5928 __skb_unlink(skb, &sk->sk_receive_queue); 5929 __kfree_skb(skb); 5930 } 5931 } 5932 5933 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5934 WRITE_ONCE(tp->urg_seq, ptr); 5935 5936 /* Disable header prediction. */ 5937 tp->pred_flags = 0; 5938 } 5939 5940 /* This is the 'fast' part of urgent handling. */ 5941 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5942 { 5943 struct tcp_sock *tp = tcp_sk(sk); 5944 5945 /* Check if we get a new urgent pointer - normally not. */ 5946 if (unlikely(th->urg)) 5947 tcp_check_urg(sk, th); 5948 5949 /* Do we wait for any urgent data? - normally not... */ 5950 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5951 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5952 th->syn; 5953 5954 /* Is the urgent pointer pointing into this packet? */ 5955 if (ptr < skb->len) { 5956 u8 tmp; 5957 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5958 BUG(); 5959 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5960 if (!sock_flag(sk, SOCK_DEAD)) 5961 sk->sk_data_ready(sk); 5962 } 5963 } 5964 } 5965 5966 /* Accept RST for rcv_nxt - 1 after a FIN. 5967 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5968 * FIN is sent followed by a RST packet. The RST is sent with the same 5969 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5970 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5971 * ACKs on the closed socket. In addition middleboxes can drop either the 5972 * challenge ACK or a subsequent RST. 5973 */ 5974 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5975 { 5976 const struct tcp_sock *tp = tcp_sk(sk); 5977 5978 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5979 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5980 TCPF_CLOSING)); 5981 } 5982 5983 /* Does PAWS and seqno based validation of an incoming segment, flags will 5984 * play significant role here. 5985 */ 5986 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5987 const struct tcphdr *th, int syn_inerr) 5988 { 5989 struct tcp_sock *tp = tcp_sk(sk); 5990 SKB_DR(reason); 5991 5992 /* RFC1323: H1. Apply PAWS check first. */ 5993 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) || 5994 !tp->rx_opt.saw_tstamp || 5995 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW)) 5996 goto step1; 5997 5998 reason = tcp_disordered_ack_check(sk, skb); 5999 if (!reason) 6000 goto step1; 6001 /* Reset is accepted even if it did not pass PAWS. */ 6002 if (th->rst) 6003 goto step1; 6004 if (unlikely(th->syn)) 6005 goto syn_challenge; 6006 6007 /* Old ACK are common, increment PAWS_OLD_ACK 6008 * and do not send a dupack. 6009 */ 6010 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) { 6011 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK); 6012 goto discard; 6013 } 6014 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 6015 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6016 LINUX_MIB_TCPACKSKIPPEDPAWS, 6017 &tp->last_oow_ack_time)) 6018 tcp_send_dupack(sk, skb); 6019 goto discard; 6020 6021 step1: 6022 /* Step 1: check sequence number */ 6023 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 6024 if (reason) { 6025 /* RFC793, page 37: "In all states except SYN-SENT, all reset 6026 * (RST) segments are validated by checking their SEQ-fields." 6027 * And page 69: "If an incoming segment is not acceptable, 6028 * an acknowledgment should be sent in reply (unless the RST 6029 * bit is set, if so drop the segment and return)". 6030 */ 6031 if (!th->rst) { 6032 if (th->syn) 6033 goto syn_challenge; 6034 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6035 LINUX_MIB_TCPACKSKIPPEDSEQ, 6036 &tp->last_oow_ack_time)) 6037 tcp_send_dupack(sk, skb); 6038 } else if (tcp_reset_check(sk, skb)) { 6039 goto reset; 6040 } 6041 goto discard; 6042 } 6043 6044 /* Step 2: check RST bit */ 6045 if (th->rst) { 6046 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 6047 * FIN and SACK too if available): 6048 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 6049 * the right-most SACK block, 6050 * then 6051 * RESET the connection 6052 * else 6053 * Send a challenge ACK 6054 */ 6055 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 6056 tcp_reset_check(sk, skb)) 6057 goto reset; 6058 6059 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 6060 struct tcp_sack_block *sp = &tp->selective_acks[0]; 6061 int max_sack = sp[0].end_seq; 6062 int this_sack; 6063 6064 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 6065 ++this_sack) { 6066 max_sack = after(sp[this_sack].end_seq, 6067 max_sack) ? 6068 sp[this_sack].end_seq : max_sack; 6069 } 6070 6071 if (TCP_SKB_CB(skb)->seq == max_sack) 6072 goto reset; 6073 } 6074 6075 /* Disable TFO if RST is out-of-order 6076 * and no data has been received 6077 * for current active TFO socket 6078 */ 6079 if (tp->syn_fastopen && !tp->data_segs_in && 6080 sk->sk_state == TCP_ESTABLISHED) 6081 tcp_fastopen_active_disable(sk); 6082 tcp_send_challenge_ack(sk); 6083 SKB_DR_SET(reason, TCP_RESET); 6084 goto discard; 6085 } 6086 6087 /* step 3: check security and precedence [ignored] */ 6088 6089 /* step 4: Check for a SYN 6090 * RFC 5961 4.2 : Send a challenge ack 6091 */ 6092 if (th->syn) { 6093 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 6094 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 6095 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 6096 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 6097 goto pass; 6098 syn_challenge: 6099 if (syn_inerr) 6100 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6101 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 6102 tcp_send_challenge_ack(sk); 6103 SKB_DR_SET(reason, TCP_INVALID_SYN); 6104 goto discard; 6105 } 6106 6107 pass: 6108 bpf_skops_parse_hdr(sk, skb); 6109 6110 return true; 6111 6112 discard: 6113 tcp_drop_reason(sk, skb, reason); 6114 return false; 6115 6116 reset: 6117 tcp_reset(sk, skb); 6118 __kfree_skb(skb); 6119 return false; 6120 } 6121 6122 /* 6123 * TCP receive function for the ESTABLISHED state. 6124 * 6125 * It is split into a fast path and a slow path. The fast path is 6126 * disabled when: 6127 * - A zero window was announced from us - zero window probing 6128 * is only handled properly in the slow path. 6129 * - Out of order segments arrived. 6130 * - Urgent data is expected. 6131 * - There is no buffer space left 6132 * - Unexpected TCP flags/window values/header lengths are received 6133 * (detected by checking the TCP header against pred_flags) 6134 * - Data is sent in both directions. Fast path only supports pure senders 6135 * or pure receivers (this means either the sequence number or the ack 6136 * value must stay constant) 6137 * - Unexpected TCP option. 6138 * 6139 * When these conditions are not satisfied it drops into a standard 6140 * receive procedure patterned after RFC793 to handle all cases. 6141 * The first three cases are guaranteed by proper pred_flags setting, 6142 * the rest is checked inline. Fast processing is turned on in 6143 * tcp_data_queue when everything is OK. 6144 */ 6145 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6146 { 6147 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6148 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6149 struct tcp_sock *tp = tcp_sk(sk); 6150 unsigned int len = skb->len; 6151 6152 /* TCP congestion window tracking */ 6153 trace_tcp_probe(sk, skb); 6154 6155 tcp_mstamp_refresh(tp); 6156 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6157 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6158 /* 6159 * Header prediction. 6160 * The code loosely follows the one in the famous 6161 * "30 instruction TCP receive" Van Jacobson mail. 6162 * 6163 * Van's trick is to deposit buffers into socket queue 6164 * on a device interrupt, to call tcp_recv function 6165 * on the receive process context and checksum and copy 6166 * the buffer to user space. smart... 6167 * 6168 * Our current scheme is not silly either but we take the 6169 * extra cost of the net_bh soft interrupt processing... 6170 * We do checksum and copy also but from device to kernel. 6171 */ 6172 6173 tp->rx_opt.saw_tstamp = 0; 6174 6175 /* pred_flags is 0xS?10 << 16 + snd_wnd 6176 * if header_prediction is to be made 6177 * 'S' will always be tp->tcp_header_len >> 2 6178 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6179 * turn it off (when there are holes in the receive 6180 * space for instance) 6181 * PSH flag is ignored. 6182 */ 6183 6184 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6185 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6186 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6187 int tcp_header_len = tp->tcp_header_len; 6188 s32 delta = 0; 6189 int flag = 0; 6190 6191 /* Timestamp header prediction: tcp_header_len 6192 * is automatically equal to th->doff*4 due to pred_flags 6193 * match. 6194 */ 6195 6196 /* Check timestamp */ 6197 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6198 /* No? Slow path! */ 6199 if (!tcp_parse_aligned_timestamp(tp, th)) 6200 goto slow_path; 6201 6202 delta = tp->rx_opt.rcv_tsval - 6203 tp->rx_opt.ts_recent; 6204 /* If PAWS failed, check it more carefully in slow path */ 6205 if (delta < 0) 6206 goto slow_path; 6207 6208 /* DO NOT update ts_recent here, if checksum fails 6209 * and timestamp was corrupted part, it will result 6210 * in a hung connection since we will drop all 6211 * future packets due to the PAWS test. 6212 */ 6213 } 6214 6215 if (len <= tcp_header_len) { 6216 /* Bulk data transfer: sender */ 6217 if (len == tcp_header_len) { 6218 /* Predicted packet is in window by definition. 6219 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6220 * Hence, check seq<=rcv_wup reduces to: 6221 */ 6222 if (tcp_header_len == 6223 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6224 tp->rcv_nxt == tp->rcv_wup) 6225 flag |= __tcp_replace_ts_recent(tp, 6226 delta); 6227 6228 /* We know that such packets are checksummed 6229 * on entry. 6230 */ 6231 tcp_ack(sk, skb, flag); 6232 __kfree_skb(skb); 6233 tcp_data_snd_check(sk); 6234 /* When receiving pure ack in fast path, update 6235 * last ts ecr directly instead of calling 6236 * tcp_rcv_rtt_measure_ts() 6237 */ 6238 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6239 return; 6240 } else { /* Header too small */ 6241 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6242 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6243 goto discard; 6244 } 6245 } else { 6246 int eaten = 0; 6247 bool fragstolen = false; 6248 6249 if (tcp_checksum_complete(skb)) 6250 goto csum_error; 6251 6252 if ((int)skb->truesize > sk->sk_forward_alloc) 6253 goto step5; 6254 6255 /* Predicted packet is in window by definition. 6256 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6257 * Hence, check seq<=rcv_wup reduces to: 6258 */ 6259 if (tcp_header_len == 6260 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6261 tp->rcv_nxt == tp->rcv_wup) 6262 flag |= __tcp_replace_ts_recent(tp, 6263 delta); 6264 6265 tcp_rcv_rtt_measure_ts(sk, skb); 6266 6267 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6268 6269 /* Bulk data transfer: receiver */ 6270 tcp_cleanup_skb(skb); 6271 __skb_pull(skb, tcp_header_len); 6272 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6273 6274 tcp_event_data_recv(sk, skb); 6275 6276 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6277 /* Well, only one small jumplet in fast path... */ 6278 tcp_ack(sk, skb, flag | FLAG_DATA); 6279 tcp_data_snd_check(sk); 6280 if (!inet_csk_ack_scheduled(sk)) 6281 goto no_ack; 6282 } else { 6283 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6284 } 6285 6286 __tcp_ack_snd_check(sk, 0); 6287 no_ack: 6288 if (eaten) 6289 kfree_skb_partial(skb, fragstolen); 6290 tcp_data_ready(sk); 6291 return; 6292 } 6293 } 6294 6295 slow_path: 6296 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6297 goto csum_error; 6298 6299 if (!th->ack && !th->rst && !th->syn) { 6300 reason = SKB_DROP_REASON_TCP_FLAGS; 6301 goto discard; 6302 } 6303 6304 /* 6305 * Standard slow path. 6306 */ 6307 6308 if (!tcp_validate_incoming(sk, skb, th, 1)) 6309 return; 6310 6311 step5: 6312 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6313 if ((int)reason < 0) { 6314 reason = -reason; 6315 goto discard; 6316 } 6317 tcp_rcv_rtt_measure_ts(sk, skb); 6318 6319 /* Process urgent data. */ 6320 tcp_urg(sk, skb, th); 6321 6322 /* step 7: process the segment text */ 6323 tcp_data_queue(sk, skb); 6324 6325 tcp_data_snd_check(sk); 6326 tcp_ack_snd_check(sk); 6327 return; 6328 6329 csum_error: 6330 reason = SKB_DROP_REASON_TCP_CSUM; 6331 trace_tcp_bad_csum(skb); 6332 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6333 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6334 6335 discard: 6336 tcp_drop_reason(sk, skb, reason); 6337 } 6338 EXPORT_IPV6_MOD(tcp_rcv_established); 6339 6340 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6341 { 6342 struct inet_connection_sock *icsk = inet_csk(sk); 6343 struct tcp_sock *tp = tcp_sk(sk); 6344 6345 tcp_mtup_init(sk); 6346 icsk->icsk_af_ops->rebuild_header(sk); 6347 tcp_init_metrics(sk); 6348 6349 /* Initialize the congestion window to start the transfer. 6350 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6351 * retransmitted. In light of RFC6298 more aggressive 1sec 6352 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6353 * retransmission has occurred. 6354 */ 6355 if (tp->total_retrans > 1 && tp->undo_marker) 6356 tcp_snd_cwnd_set(tp, 1); 6357 else 6358 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6359 tp->snd_cwnd_stamp = tcp_jiffies32; 6360 6361 bpf_skops_established(sk, bpf_op, skb); 6362 /* Initialize congestion control unless BPF initialized it already: */ 6363 if (!icsk->icsk_ca_initialized) 6364 tcp_init_congestion_control(sk); 6365 tcp_init_buffer_space(sk); 6366 } 6367 6368 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6369 { 6370 struct tcp_sock *tp = tcp_sk(sk); 6371 struct inet_connection_sock *icsk = inet_csk(sk); 6372 6373 tcp_ao_finish_connect(sk, skb); 6374 tcp_set_state(sk, TCP_ESTABLISHED); 6375 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6376 6377 if (skb) { 6378 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6379 security_inet_conn_established(sk, skb); 6380 sk_mark_napi_id(sk, skb); 6381 } 6382 6383 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6384 6385 /* Prevent spurious tcp_cwnd_restart() on first data 6386 * packet. 6387 */ 6388 tp->lsndtime = tcp_jiffies32; 6389 6390 if (sock_flag(sk, SOCK_KEEPOPEN)) 6391 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6392 6393 if (!tp->rx_opt.snd_wscale) 6394 __tcp_fast_path_on(tp, tp->snd_wnd); 6395 else 6396 tp->pred_flags = 0; 6397 } 6398 6399 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6400 struct tcp_fastopen_cookie *cookie) 6401 { 6402 struct tcp_sock *tp = tcp_sk(sk); 6403 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6404 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6405 bool syn_drop = false; 6406 6407 if (mss == tp->rx_opt.user_mss) { 6408 struct tcp_options_received opt; 6409 6410 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6411 tcp_clear_options(&opt); 6412 opt.user_mss = opt.mss_clamp = 0; 6413 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6414 mss = opt.mss_clamp; 6415 } 6416 6417 if (!tp->syn_fastopen) { 6418 /* Ignore an unsolicited cookie */ 6419 cookie->len = -1; 6420 } else if (tp->total_retrans) { 6421 /* SYN timed out and the SYN-ACK neither has a cookie nor 6422 * acknowledges data. Presumably the remote received only 6423 * the retransmitted (regular) SYNs: either the original 6424 * SYN-data or the corresponding SYN-ACK was dropped. 6425 */ 6426 syn_drop = (cookie->len < 0 && data); 6427 } else if (cookie->len < 0 && !tp->syn_data) { 6428 /* We requested a cookie but didn't get it. If we did not use 6429 * the (old) exp opt format then try so next time (try_exp=1). 6430 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6431 */ 6432 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6433 } 6434 6435 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6436 6437 if (data) { /* Retransmit unacked data in SYN */ 6438 if (tp->total_retrans) 6439 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6440 else 6441 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6442 skb_rbtree_walk_from(data) 6443 tcp_mark_skb_lost(sk, data); 6444 tcp_non_congestion_loss_retransmit(sk); 6445 NET_INC_STATS(sock_net(sk), 6446 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6447 return true; 6448 } 6449 tp->syn_data_acked = tp->syn_data; 6450 if (tp->syn_data_acked) { 6451 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6452 /* SYN-data is counted as two separate packets in tcp_ack() */ 6453 if (tp->delivered > 1) 6454 --tp->delivered; 6455 } 6456 6457 tcp_fastopen_add_skb(sk, synack); 6458 6459 return false; 6460 } 6461 6462 static void smc_check_reset_syn(struct tcp_sock *tp) 6463 { 6464 #if IS_ENABLED(CONFIG_SMC) 6465 if (static_branch_unlikely(&tcp_have_smc)) { 6466 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6467 tp->syn_smc = 0; 6468 } 6469 #endif 6470 } 6471 6472 static void tcp_try_undo_spurious_syn(struct sock *sk) 6473 { 6474 struct tcp_sock *tp = tcp_sk(sk); 6475 u32 syn_stamp; 6476 6477 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6478 * spurious if the ACK's timestamp option echo value matches the 6479 * original SYN timestamp. 6480 */ 6481 syn_stamp = tp->retrans_stamp; 6482 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6483 syn_stamp == tp->rx_opt.rcv_tsecr) 6484 tp->undo_marker = 0; 6485 } 6486 6487 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6488 const struct tcphdr *th) 6489 { 6490 struct inet_connection_sock *icsk = inet_csk(sk); 6491 struct tcp_sock *tp = tcp_sk(sk); 6492 struct tcp_fastopen_cookie foc = { .len = -1 }; 6493 int saved_clamp = tp->rx_opt.mss_clamp; 6494 bool fastopen_fail; 6495 SKB_DR(reason); 6496 6497 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6498 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6499 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6500 6501 if (th->ack) { 6502 /* rfc793: 6503 * "If the state is SYN-SENT then 6504 * first check the ACK bit 6505 * If the ACK bit is set 6506 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6507 * a reset (unless the RST bit is set, if so drop 6508 * the segment and return)" 6509 */ 6510 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6511 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6512 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6513 if (icsk->icsk_retransmits == 0) 6514 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 6515 TCP_TIMEOUT_MIN, false); 6516 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6517 goto reset_and_undo; 6518 } 6519 6520 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6521 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6522 tcp_time_stamp_ts(tp))) { 6523 NET_INC_STATS(sock_net(sk), 6524 LINUX_MIB_PAWSACTIVEREJECTED); 6525 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6526 goto reset_and_undo; 6527 } 6528 6529 /* Now ACK is acceptable. 6530 * 6531 * "If the RST bit is set 6532 * If the ACK was acceptable then signal the user "error: 6533 * connection reset", drop the segment, enter CLOSED state, 6534 * delete TCB, and return." 6535 */ 6536 6537 if (th->rst) { 6538 tcp_reset(sk, skb); 6539 consume: 6540 __kfree_skb(skb); 6541 return 0; 6542 } 6543 6544 /* rfc793: 6545 * "fifth, if neither of the SYN or RST bits is set then 6546 * drop the segment and return." 6547 * 6548 * See note below! 6549 * --ANK(990513) 6550 */ 6551 if (!th->syn) { 6552 SKB_DR_SET(reason, TCP_FLAGS); 6553 goto discard_and_undo; 6554 } 6555 /* rfc793: 6556 * "If the SYN bit is on ... 6557 * are acceptable then ... 6558 * (our SYN has been ACKed), change the connection 6559 * state to ESTABLISHED..." 6560 */ 6561 6562 tcp_ecn_rcv_synack(tp, th); 6563 6564 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6565 tcp_try_undo_spurious_syn(sk); 6566 tcp_ack(sk, skb, FLAG_SLOWPATH); 6567 6568 /* Ok.. it's good. Set up sequence numbers and 6569 * move to established. 6570 */ 6571 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6572 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6573 6574 /* RFC1323: The window in SYN & SYN/ACK segments is 6575 * never scaled. 6576 */ 6577 tp->snd_wnd = ntohs(th->window); 6578 6579 if (!tp->rx_opt.wscale_ok) { 6580 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6581 WRITE_ONCE(tp->window_clamp, 6582 min(tp->window_clamp, 65535U)); 6583 } 6584 6585 if (tp->rx_opt.saw_tstamp) { 6586 tp->rx_opt.tstamp_ok = 1; 6587 tp->tcp_header_len = 6588 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6589 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6590 tcp_store_ts_recent(tp); 6591 } else { 6592 tp->tcp_header_len = sizeof(struct tcphdr); 6593 } 6594 6595 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6596 tcp_initialize_rcv_mss(sk); 6597 6598 /* Remember, tcp_poll() does not lock socket! 6599 * Change state from SYN-SENT only after copied_seq 6600 * is initialized. */ 6601 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6602 6603 smc_check_reset_syn(tp); 6604 6605 smp_mb(); 6606 6607 tcp_finish_connect(sk, skb); 6608 6609 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6610 tcp_rcv_fastopen_synack(sk, skb, &foc); 6611 6612 if (!sock_flag(sk, SOCK_DEAD)) { 6613 sk->sk_state_change(sk); 6614 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6615 } 6616 if (fastopen_fail) 6617 return -1; 6618 if (sk->sk_write_pending || 6619 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6620 inet_csk_in_pingpong_mode(sk)) { 6621 /* Save one ACK. Data will be ready after 6622 * several ticks, if write_pending is set. 6623 * 6624 * It may be deleted, but with this feature tcpdumps 6625 * look so _wonderfully_ clever, that I was not able 6626 * to stand against the temptation 8) --ANK 6627 */ 6628 inet_csk_schedule_ack(sk); 6629 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6630 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, 6631 TCP_DELACK_MAX, false); 6632 goto consume; 6633 } 6634 tcp_send_ack(sk); 6635 return -1; 6636 } 6637 6638 /* No ACK in the segment */ 6639 6640 if (th->rst) { 6641 /* rfc793: 6642 * "If the RST bit is set 6643 * 6644 * Otherwise (no ACK) drop the segment and return." 6645 */ 6646 SKB_DR_SET(reason, TCP_RESET); 6647 goto discard_and_undo; 6648 } 6649 6650 /* PAWS check. */ 6651 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6652 tcp_paws_reject(&tp->rx_opt, 0)) { 6653 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6654 goto discard_and_undo; 6655 } 6656 if (th->syn) { 6657 /* We see SYN without ACK. It is attempt of 6658 * simultaneous connect with crossed SYNs. 6659 * Particularly, it can be connect to self. 6660 */ 6661 #ifdef CONFIG_TCP_AO 6662 struct tcp_ao_info *ao; 6663 6664 ao = rcu_dereference_protected(tp->ao_info, 6665 lockdep_sock_is_held(sk)); 6666 if (ao) { 6667 WRITE_ONCE(ao->risn, th->seq); 6668 ao->rcv_sne = 0; 6669 } 6670 #endif 6671 tcp_set_state(sk, TCP_SYN_RECV); 6672 6673 if (tp->rx_opt.saw_tstamp) { 6674 tp->rx_opt.tstamp_ok = 1; 6675 tcp_store_ts_recent(tp); 6676 tp->tcp_header_len = 6677 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6678 } else { 6679 tp->tcp_header_len = sizeof(struct tcphdr); 6680 } 6681 6682 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6683 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6684 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6685 6686 /* RFC1323: The window in SYN & SYN/ACK segments is 6687 * never scaled. 6688 */ 6689 tp->snd_wnd = ntohs(th->window); 6690 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6691 tp->max_window = tp->snd_wnd; 6692 6693 tcp_ecn_rcv_syn(tp, th); 6694 6695 tcp_mtup_init(sk); 6696 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6697 tcp_initialize_rcv_mss(sk); 6698 6699 tcp_send_synack(sk); 6700 #if 0 6701 /* Note, we could accept data and URG from this segment. 6702 * There are no obstacles to make this (except that we must 6703 * either change tcp_recvmsg() to prevent it from returning data 6704 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6705 * 6706 * However, if we ignore data in ACKless segments sometimes, 6707 * we have no reasons to accept it sometimes. 6708 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6709 * is not flawless. So, discard packet for sanity. 6710 * Uncomment this return to process the data. 6711 */ 6712 return -1; 6713 #else 6714 goto consume; 6715 #endif 6716 } 6717 /* "fifth, if neither of the SYN or RST bits is set then 6718 * drop the segment and return." 6719 */ 6720 6721 discard_and_undo: 6722 tcp_clear_options(&tp->rx_opt); 6723 tp->rx_opt.mss_clamp = saved_clamp; 6724 tcp_drop_reason(sk, skb, reason); 6725 return 0; 6726 6727 reset_and_undo: 6728 tcp_clear_options(&tp->rx_opt); 6729 tp->rx_opt.mss_clamp = saved_clamp; 6730 /* we can reuse/return @reason to its caller to handle the exception */ 6731 return reason; 6732 } 6733 6734 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6735 { 6736 struct tcp_sock *tp = tcp_sk(sk); 6737 struct request_sock *req; 6738 6739 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6740 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6741 */ 6742 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6743 tcp_try_undo_recovery(sk); 6744 6745 tcp_update_rto_time(tp); 6746 inet_csk(sk)->icsk_retransmits = 0; 6747 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6748 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6749 * need to zero retrans_stamp here to prevent spurious 6750 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6751 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6752 * set entering CA_Recovery, for correct retransmits_timed_out() and 6753 * undo behavior. 6754 */ 6755 tcp_retrans_stamp_cleanup(sk); 6756 6757 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6758 * we no longer need req so release it. 6759 */ 6760 req = rcu_dereference_protected(tp->fastopen_rsk, 6761 lockdep_sock_is_held(sk)); 6762 reqsk_fastopen_remove(sk, req, false); 6763 6764 /* Re-arm the timer because data may have been sent out. 6765 * This is similar to the regular data transmission case 6766 * when new data has just been ack'ed. 6767 * 6768 * (TFO) - we could try to be more aggressive and 6769 * retransmitting any data sooner based on when they 6770 * are sent out. 6771 */ 6772 tcp_rearm_rto(sk); 6773 } 6774 6775 /* 6776 * This function implements the receiving procedure of RFC 793 for 6777 * all states except ESTABLISHED and TIME_WAIT. 6778 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6779 * address independent. 6780 */ 6781 6782 enum skb_drop_reason 6783 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6784 { 6785 struct tcp_sock *tp = tcp_sk(sk); 6786 struct inet_connection_sock *icsk = inet_csk(sk); 6787 const struct tcphdr *th = tcp_hdr(skb); 6788 struct request_sock *req; 6789 int queued = 0; 6790 SKB_DR(reason); 6791 6792 switch (sk->sk_state) { 6793 case TCP_CLOSE: 6794 SKB_DR_SET(reason, TCP_CLOSE); 6795 goto discard; 6796 6797 case TCP_LISTEN: 6798 if (th->ack) 6799 return SKB_DROP_REASON_TCP_FLAGS; 6800 6801 if (th->rst) { 6802 SKB_DR_SET(reason, TCP_RESET); 6803 goto discard; 6804 } 6805 if (th->syn) { 6806 if (th->fin) { 6807 SKB_DR_SET(reason, TCP_FLAGS); 6808 goto discard; 6809 } 6810 /* It is possible that we process SYN packets from backlog, 6811 * so we need to make sure to disable BH and RCU right there. 6812 */ 6813 rcu_read_lock(); 6814 local_bh_disable(); 6815 icsk->icsk_af_ops->conn_request(sk, skb); 6816 local_bh_enable(); 6817 rcu_read_unlock(); 6818 6819 consume_skb(skb); 6820 return 0; 6821 } 6822 SKB_DR_SET(reason, TCP_FLAGS); 6823 goto discard; 6824 6825 case TCP_SYN_SENT: 6826 tp->rx_opt.saw_tstamp = 0; 6827 tcp_mstamp_refresh(tp); 6828 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6829 if (queued >= 0) 6830 return queued; 6831 6832 /* Do step6 onward by hand. */ 6833 tcp_urg(sk, skb, th); 6834 __kfree_skb(skb); 6835 tcp_data_snd_check(sk); 6836 return 0; 6837 } 6838 6839 tcp_mstamp_refresh(tp); 6840 tp->rx_opt.saw_tstamp = 0; 6841 req = rcu_dereference_protected(tp->fastopen_rsk, 6842 lockdep_sock_is_held(sk)); 6843 if (req) { 6844 bool req_stolen; 6845 6846 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6847 sk->sk_state != TCP_FIN_WAIT1); 6848 6849 SKB_DR_SET(reason, TCP_FASTOPEN); 6850 if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason)) 6851 goto discard; 6852 } 6853 6854 if (!th->ack && !th->rst && !th->syn) { 6855 SKB_DR_SET(reason, TCP_FLAGS); 6856 goto discard; 6857 } 6858 if (!tcp_validate_incoming(sk, skb, th, 0)) 6859 return 0; 6860 6861 /* step 5: check the ACK field */ 6862 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 6863 FLAG_UPDATE_TS_RECENT | 6864 FLAG_NO_CHALLENGE_ACK); 6865 6866 if ((int)reason <= 0) { 6867 if (sk->sk_state == TCP_SYN_RECV) { 6868 /* send one RST */ 6869 if (!reason) 6870 return SKB_DROP_REASON_TCP_OLD_ACK; 6871 return -reason; 6872 } 6873 /* accept old ack during closing */ 6874 if ((int)reason < 0) { 6875 tcp_send_challenge_ack(sk); 6876 reason = -reason; 6877 goto discard; 6878 } 6879 } 6880 SKB_DR_SET(reason, NOT_SPECIFIED); 6881 switch (sk->sk_state) { 6882 case TCP_SYN_RECV: 6883 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6884 if (!tp->srtt_us) 6885 tcp_synack_rtt_meas(sk, req); 6886 6887 if (tp->rx_opt.tstamp_ok) 6888 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6889 6890 if (req) { 6891 tcp_rcv_synrecv_state_fastopen(sk); 6892 } else { 6893 tcp_try_undo_spurious_syn(sk); 6894 tp->retrans_stamp = 0; 6895 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6896 skb); 6897 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6898 } 6899 tcp_ao_established(sk); 6900 smp_mb(); 6901 tcp_set_state(sk, TCP_ESTABLISHED); 6902 sk->sk_state_change(sk); 6903 6904 /* Note, that this wakeup is only for marginal crossed SYN case. 6905 * Passively open sockets are not waked up, because 6906 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6907 */ 6908 if (sk->sk_socket) 6909 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6910 6911 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6912 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6913 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6914 6915 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6916 tcp_update_pacing_rate(sk); 6917 6918 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6919 tp->lsndtime = tcp_jiffies32; 6920 6921 tcp_initialize_rcv_mss(sk); 6922 tcp_fast_path_on(tp); 6923 if (sk->sk_shutdown & SEND_SHUTDOWN) 6924 tcp_shutdown(sk, SEND_SHUTDOWN); 6925 break; 6926 6927 case TCP_FIN_WAIT1: { 6928 int tmo; 6929 6930 if (req) 6931 tcp_rcv_synrecv_state_fastopen(sk); 6932 6933 if (tp->snd_una != tp->write_seq) 6934 break; 6935 6936 tcp_set_state(sk, TCP_FIN_WAIT2); 6937 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6938 6939 sk_dst_confirm(sk); 6940 6941 if (!sock_flag(sk, SOCK_DEAD)) { 6942 /* Wake up lingering close() */ 6943 sk->sk_state_change(sk); 6944 break; 6945 } 6946 6947 if (READ_ONCE(tp->linger2) < 0) { 6948 tcp_done(sk); 6949 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6950 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6951 } 6952 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6953 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6954 /* Receive out of order FIN after close() */ 6955 if (tp->syn_fastopen && th->fin) 6956 tcp_fastopen_active_disable(sk); 6957 tcp_done(sk); 6958 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6959 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6960 } 6961 6962 tmo = tcp_fin_time(sk); 6963 if (tmo > TCP_TIMEWAIT_LEN) { 6964 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6965 } else if (th->fin || sock_owned_by_user(sk)) { 6966 /* Bad case. We could lose such FIN otherwise. 6967 * It is not a big problem, but it looks confusing 6968 * and not so rare event. We still can lose it now, 6969 * if it spins in bh_lock_sock(), but it is really 6970 * marginal case. 6971 */ 6972 tcp_reset_keepalive_timer(sk, tmo); 6973 } else { 6974 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6975 goto consume; 6976 } 6977 break; 6978 } 6979 6980 case TCP_CLOSING: 6981 if (tp->snd_una == tp->write_seq) { 6982 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6983 goto consume; 6984 } 6985 break; 6986 6987 case TCP_LAST_ACK: 6988 if (tp->snd_una == tp->write_seq) { 6989 tcp_update_metrics(sk); 6990 tcp_done(sk); 6991 goto consume; 6992 } 6993 break; 6994 } 6995 6996 /* step 6: check the URG bit */ 6997 tcp_urg(sk, skb, th); 6998 6999 /* step 7: process the segment text */ 7000 switch (sk->sk_state) { 7001 case TCP_CLOSE_WAIT: 7002 case TCP_CLOSING: 7003 case TCP_LAST_ACK: 7004 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 7005 /* If a subflow has been reset, the packet should not 7006 * continue to be processed, drop the packet. 7007 */ 7008 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 7009 goto discard; 7010 break; 7011 } 7012 fallthrough; 7013 case TCP_FIN_WAIT1: 7014 case TCP_FIN_WAIT2: 7015 /* RFC 793 says to queue data in these states, 7016 * RFC 1122 says we MUST send a reset. 7017 * BSD 4.4 also does reset. 7018 */ 7019 if (sk->sk_shutdown & RCV_SHUTDOWN) { 7020 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 7021 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 7022 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7023 tcp_reset(sk, skb); 7024 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7025 } 7026 } 7027 fallthrough; 7028 case TCP_ESTABLISHED: 7029 tcp_data_queue(sk, skb); 7030 queued = 1; 7031 break; 7032 } 7033 7034 /* tcp_data could move socket to TIME-WAIT */ 7035 if (sk->sk_state != TCP_CLOSE) { 7036 tcp_data_snd_check(sk); 7037 tcp_ack_snd_check(sk); 7038 } 7039 7040 if (!queued) { 7041 discard: 7042 tcp_drop_reason(sk, skb, reason); 7043 } 7044 return 0; 7045 7046 consume: 7047 __kfree_skb(skb); 7048 return 0; 7049 } 7050 EXPORT_IPV6_MOD(tcp_rcv_state_process); 7051 7052 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 7053 { 7054 struct inet_request_sock *ireq = inet_rsk(req); 7055 7056 if (family == AF_INET) 7057 net_dbg_ratelimited("drop open request from %pI4/%u\n", 7058 &ireq->ir_rmt_addr, port); 7059 #if IS_ENABLED(CONFIG_IPV6) 7060 else if (family == AF_INET6) 7061 net_dbg_ratelimited("drop open request from %pI6/%u\n", 7062 &ireq->ir_v6_rmt_addr, port); 7063 #endif 7064 } 7065 7066 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 7067 * 7068 * If we receive a SYN packet with these bits set, it means a 7069 * network is playing bad games with TOS bits. In order to 7070 * avoid possible false congestion notifications, we disable 7071 * TCP ECN negotiation. 7072 * 7073 * Exception: tcp_ca wants ECN. This is required for DCTCP 7074 * congestion control: Linux DCTCP asserts ECT on all packets, 7075 * including SYN, which is most optimal solution; however, 7076 * others, such as FreeBSD do not. 7077 * 7078 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 7079 * set, indicating the use of a future TCP extension (such as AccECN). See 7080 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 7081 * extensions. 7082 */ 7083 static void tcp_ecn_create_request(struct request_sock *req, 7084 const struct sk_buff *skb, 7085 const struct sock *listen_sk, 7086 const struct dst_entry *dst) 7087 { 7088 const struct tcphdr *th = tcp_hdr(skb); 7089 const struct net *net = sock_net(listen_sk); 7090 bool th_ecn = th->ece && th->cwr; 7091 bool ect, ecn_ok; 7092 u32 ecn_ok_dst; 7093 7094 if (!th_ecn) 7095 return; 7096 7097 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 7098 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 7099 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 7100 7101 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 7102 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 7103 tcp_bpf_ca_needs_ecn((struct sock *)req)) 7104 inet_rsk(req)->ecn_ok = 1; 7105 } 7106 7107 static void tcp_openreq_init(struct request_sock *req, 7108 const struct tcp_options_received *rx_opt, 7109 struct sk_buff *skb, const struct sock *sk) 7110 { 7111 struct inet_request_sock *ireq = inet_rsk(req); 7112 7113 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 7114 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 7115 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 7116 tcp_rsk(req)->snt_synack = 0; 7117 tcp_rsk(req)->snt_tsval_first = 0; 7118 tcp_rsk(req)->last_oow_ack_time = 0; 7119 req->mss = rx_opt->mss_clamp; 7120 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 7121 ireq->tstamp_ok = rx_opt->tstamp_ok; 7122 ireq->sack_ok = rx_opt->sack_ok; 7123 ireq->snd_wscale = rx_opt->snd_wscale; 7124 ireq->wscale_ok = rx_opt->wscale_ok; 7125 ireq->acked = 0; 7126 ireq->ecn_ok = 0; 7127 ireq->ir_rmt_port = tcp_hdr(skb)->source; 7128 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 7129 ireq->ir_mark = inet_request_mark(sk, skb); 7130 #if IS_ENABLED(CONFIG_SMC) 7131 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 7132 tcp_sk(sk)->smc_hs_congested(sk)); 7133 #endif 7134 } 7135 7136 /* 7137 * Return true if a syncookie should be sent 7138 */ 7139 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 7140 { 7141 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7142 const char *msg = "Dropping request"; 7143 struct net *net = sock_net(sk); 7144 bool want_cookie = false; 7145 u8 syncookies; 7146 7147 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7148 7149 #ifdef CONFIG_SYN_COOKIES 7150 if (syncookies) { 7151 msg = "Sending cookies"; 7152 want_cookie = true; 7153 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7154 } else 7155 #endif 7156 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7157 7158 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7159 xchg(&queue->synflood_warned, 1) == 0) { 7160 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7161 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7162 proto, inet6_rcv_saddr(sk), 7163 sk->sk_num, msg); 7164 } else { 7165 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7166 proto, &sk->sk_rcv_saddr, 7167 sk->sk_num, msg); 7168 } 7169 } 7170 7171 return want_cookie; 7172 } 7173 7174 static void tcp_reqsk_record_syn(const struct sock *sk, 7175 struct request_sock *req, 7176 const struct sk_buff *skb) 7177 { 7178 if (tcp_sk(sk)->save_syn) { 7179 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7180 struct saved_syn *saved_syn; 7181 u32 mac_hdrlen; 7182 void *base; 7183 7184 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7185 base = skb_mac_header(skb); 7186 mac_hdrlen = skb_mac_header_len(skb); 7187 len += mac_hdrlen; 7188 } else { 7189 base = skb_network_header(skb); 7190 mac_hdrlen = 0; 7191 } 7192 7193 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7194 GFP_ATOMIC); 7195 if (saved_syn) { 7196 saved_syn->mac_hdrlen = mac_hdrlen; 7197 saved_syn->network_hdrlen = skb_network_header_len(skb); 7198 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7199 memcpy(saved_syn->data, base, len); 7200 req->saved_syn = saved_syn; 7201 } 7202 } 7203 } 7204 7205 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7206 * used for SYN cookie generation. 7207 */ 7208 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7209 const struct tcp_request_sock_ops *af_ops, 7210 struct sock *sk, struct tcphdr *th) 7211 { 7212 struct tcp_sock *tp = tcp_sk(sk); 7213 u16 mss; 7214 7215 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7216 !inet_csk_reqsk_queue_is_full(sk)) 7217 return 0; 7218 7219 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7220 return 0; 7221 7222 if (sk_acceptq_is_full(sk)) { 7223 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7224 return 0; 7225 } 7226 7227 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7228 if (!mss) 7229 mss = af_ops->mss_clamp; 7230 7231 return mss; 7232 } 7233 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss); 7234 7235 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7236 const struct tcp_request_sock_ops *af_ops, 7237 struct sock *sk, struct sk_buff *skb) 7238 { 7239 struct tcp_fastopen_cookie foc = { .len = -1 }; 7240 struct tcp_options_received tmp_opt; 7241 struct tcp_sock *tp = tcp_sk(sk); 7242 struct net *net = sock_net(sk); 7243 struct sock *fastopen_sk = NULL; 7244 struct request_sock *req; 7245 bool want_cookie = false; 7246 struct dst_entry *dst; 7247 struct flowi fl; 7248 u8 syncookies; 7249 u32 isn; 7250 7251 #ifdef CONFIG_TCP_AO 7252 const struct tcp_ao_hdr *aoh; 7253 #endif 7254 7255 isn = __this_cpu_read(tcp_tw_isn); 7256 if (isn) { 7257 /* TW buckets are converted to open requests without 7258 * limitations, they conserve resources and peer is 7259 * evidently real one. 7260 */ 7261 __this_cpu_write(tcp_tw_isn, 0); 7262 } else { 7263 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7264 7265 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7266 want_cookie = tcp_syn_flood_action(sk, 7267 rsk_ops->slab_name); 7268 if (!want_cookie) 7269 goto drop; 7270 } 7271 } 7272 7273 if (sk_acceptq_is_full(sk)) { 7274 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7275 goto drop; 7276 } 7277 7278 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7279 if (!req) 7280 goto drop; 7281 7282 req->syncookie = want_cookie; 7283 tcp_rsk(req)->af_specific = af_ops; 7284 tcp_rsk(req)->ts_off = 0; 7285 tcp_rsk(req)->req_usec_ts = false; 7286 #if IS_ENABLED(CONFIG_MPTCP) 7287 tcp_rsk(req)->is_mptcp = 0; 7288 #endif 7289 7290 tcp_clear_options(&tmp_opt); 7291 tmp_opt.mss_clamp = af_ops->mss_clamp; 7292 tmp_opt.user_mss = tp->rx_opt.user_mss; 7293 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7294 want_cookie ? NULL : &foc); 7295 7296 if (want_cookie && !tmp_opt.saw_tstamp) 7297 tcp_clear_options(&tmp_opt); 7298 7299 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7300 tmp_opt.smc_ok = 0; 7301 7302 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7303 tcp_openreq_init(req, &tmp_opt, skb, sk); 7304 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7305 7306 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7307 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7308 7309 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7310 if (!dst) 7311 goto drop_and_free; 7312 7313 if (tmp_opt.tstamp_ok) { 7314 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7315 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7316 } 7317 if (!want_cookie && !isn) { 7318 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7319 7320 /* Kill the following clause, if you dislike this way. */ 7321 if (!syncookies && 7322 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7323 (max_syn_backlog >> 2)) && 7324 !tcp_peer_is_proven(req, dst)) { 7325 /* Without syncookies last quarter of 7326 * backlog is filled with destinations, 7327 * proven to be alive. 7328 * It means that we continue to communicate 7329 * to destinations, already remembered 7330 * to the moment of synflood. 7331 */ 7332 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7333 rsk_ops->family); 7334 goto drop_and_release; 7335 } 7336 7337 isn = af_ops->init_seq(skb); 7338 } 7339 7340 tcp_ecn_create_request(req, skb, sk, dst); 7341 7342 if (want_cookie) { 7343 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7344 if (!tmp_opt.tstamp_ok) 7345 inet_rsk(req)->ecn_ok = 0; 7346 } 7347 7348 #ifdef CONFIG_TCP_AO 7349 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7350 goto drop_and_release; /* Invalid TCP options */ 7351 if (aoh) { 7352 tcp_rsk(req)->used_tcp_ao = true; 7353 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7354 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7355 7356 } else { 7357 tcp_rsk(req)->used_tcp_ao = false; 7358 } 7359 #endif 7360 tcp_rsk(req)->snt_isn = isn; 7361 tcp_rsk(req)->txhash = net_tx_rndhash(); 7362 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7363 tcp_openreq_init_rwin(req, sk, dst); 7364 sk_rx_queue_set(req_to_sk(req), skb); 7365 if (!want_cookie) { 7366 tcp_reqsk_record_syn(sk, req, skb); 7367 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7368 } 7369 if (fastopen_sk) { 7370 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7371 &foc, TCP_SYNACK_FASTOPEN, skb); 7372 /* Add the child socket directly into the accept queue */ 7373 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7374 reqsk_fastopen_remove(fastopen_sk, req, false); 7375 bh_unlock_sock(fastopen_sk); 7376 sock_put(fastopen_sk); 7377 goto drop_and_free; 7378 } 7379 sk->sk_data_ready(sk); 7380 bh_unlock_sock(fastopen_sk); 7381 sock_put(fastopen_sk); 7382 } else { 7383 tcp_rsk(req)->tfo_listener = false; 7384 if (!want_cookie) { 7385 req->timeout = tcp_timeout_init((struct sock *)req); 7386 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7387 req->timeout))) { 7388 reqsk_free(req); 7389 dst_release(dst); 7390 return 0; 7391 } 7392 7393 } 7394 af_ops->send_synack(sk, dst, &fl, req, &foc, 7395 !want_cookie ? TCP_SYNACK_NORMAL : 7396 TCP_SYNACK_COOKIE, 7397 skb); 7398 if (want_cookie) { 7399 reqsk_free(req); 7400 return 0; 7401 } 7402 } 7403 reqsk_put(req); 7404 return 0; 7405 7406 drop_and_release: 7407 dst_release(dst); 7408 drop_and_free: 7409 __reqsk_free(req); 7410 drop: 7411 tcp_listendrop(sk); 7412 return 0; 7413 } 7414 EXPORT_IPV6_MOD(tcp_conn_request); 7415