1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/module.h> 66 #include <linux/sysctl.h> 67 #include <net/dst.h> 68 #include <net/tcp.h> 69 #include <net/inet_common.h> 70 #include <linux/ipsec.h> 71 #include <asm/unaligned.h> 72 #include <net/netdma.h> 73 74 int sysctl_tcp_timestamps __read_mostly = 1; 75 int sysctl_tcp_window_scaling __read_mostly = 1; 76 int sysctl_tcp_sack __read_mostly = 1; 77 int sysctl_tcp_fack __read_mostly = 1; 78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 79 int sysctl_tcp_ecn __read_mostly; 80 int sysctl_tcp_dsack __read_mostly = 1; 81 int sysctl_tcp_app_win __read_mostly = 31; 82 int sysctl_tcp_adv_win_scale __read_mostly = 2; 83 84 int sysctl_tcp_stdurg __read_mostly; 85 int sysctl_tcp_rfc1337 __read_mostly; 86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 87 int sysctl_tcp_frto __read_mostly = 2; 88 int sysctl_tcp_frto_response __read_mostly; 89 int sysctl_tcp_nometrics_save __read_mostly; 90 91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 92 int sysctl_tcp_abc __read_mostly; 93 94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 100 #define FLAG_ECE 0x40 /* ECE in this ACK */ 101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 108 109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 114 115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 117 118 /* Adapt the MSS value used to make delayed ack decision to the 119 * real world. 120 */ 121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 122 { 123 struct inet_connection_sock *icsk = inet_csk(sk); 124 const unsigned int lss = icsk->icsk_ack.last_seg_size; 125 unsigned int len; 126 127 icsk->icsk_ack.last_seg_size = 0; 128 129 /* skb->len may jitter because of SACKs, even if peer 130 * sends good full-sized frames. 131 */ 132 len = skb_shinfo(skb)->gso_size ? : skb->len; 133 if (len >= icsk->icsk_ack.rcv_mss) { 134 icsk->icsk_ack.rcv_mss = len; 135 } else { 136 /* Otherwise, we make more careful check taking into account, 137 * that SACKs block is variable. 138 * 139 * "len" is invariant segment length, including TCP header. 140 */ 141 len += skb->data - skb_transport_header(skb); 142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 143 /* If PSH is not set, packet should be 144 * full sized, provided peer TCP is not badly broken. 145 * This observation (if it is correct 8)) allows 146 * to handle super-low mtu links fairly. 147 */ 148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 150 /* Subtract also invariant (if peer is RFC compliant), 151 * tcp header plus fixed timestamp option length. 152 * Resulting "len" is MSS free of SACK jitter. 153 */ 154 len -= tcp_sk(sk)->tcp_header_len; 155 icsk->icsk_ack.last_seg_size = len; 156 if (len == lss) { 157 icsk->icsk_ack.rcv_mss = len; 158 return; 159 } 160 } 161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 164 } 165 } 166 167 static void tcp_incr_quickack(struct sock *sk) 168 { 169 struct inet_connection_sock *icsk = inet_csk(sk); 170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 171 172 if (quickacks == 0) 173 quickacks = 2; 174 if (quickacks > icsk->icsk_ack.quick) 175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 176 } 177 178 void tcp_enter_quickack_mode(struct sock *sk) 179 { 180 struct inet_connection_sock *icsk = inet_csk(sk); 181 tcp_incr_quickack(sk); 182 icsk->icsk_ack.pingpong = 0; 183 icsk->icsk_ack.ato = TCP_ATO_MIN; 184 } 185 186 /* Send ACKs quickly, if "quick" count is not exhausted 187 * and the session is not interactive. 188 */ 189 190 static inline int tcp_in_quickack_mode(const struct sock *sk) 191 { 192 const struct inet_connection_sock *icsk = inet_csk(sk); 193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 194 } 195 196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 197 { 198 if (tp->ecn_flags & TCP_ECN_OK) 199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 200 } 201 202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 203 { 204 if (tcp_hdr(skb)->cwr) 205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 206 } 207 208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 209 { 210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 211 } 212 213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 214 { 215 if (tp->ecn_flags & TCP_ECN_OK) { 216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 218 /* Funny extension: if ECT is not set on a segment, 219 * it is surely retransmit. It is not in ECN RFC, 220 * but Linux follows this rule. */ 221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 222 tcp_enter_quickack_mode((struct sock *)tp); 223 } 224 } 225 226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 227 { 228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 229 tp->ecn_flags &= ~TCP_ECN_OK; 230 } 231 232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 233 { 234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 235 tp->ecn_flags &= ~TCP_ECN_OK; 236 } 237 238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 239 { 240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 241 return 1; 242 return 0; 243 } 244 245 /* Buffer size and advertised window tuning. 246 * 247 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 248 */ 249 250 static void tcp_fixup_sndbuf(struct sock *sk) 251 { 252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 253 sizeof(struct sk_buff); 254 255 if (sk->sk_sndbuf < 3 * sndmem) 256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 257 } 258 259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 260 * 261 * All tcp_full_space() is split to two parts: "network" buffer, allocated 262 * forward and advertised in receiver window (tp->rcv_wnd) and 263 * "application buffer", required to isolate scheduling/application 264 * latencies from network. 265 * window_clamp is maximal advertised window. It can be less than 266 * tcp_full_space(), in this case tcp_full_space() - window_clamp 267 * is reserved for "application" buffer. The less window_clamp is 268 * the smoother our behaviour from viewpoint of network, but the lower 269 * throughput and the higher sensitivity of the connection to losses. 8) 270 * 271 * rcv_ssthresh is more strict window_clamp used at "slow start" 272 * phase to predict further behaviour of this connection. 273 * It is used for two goals: 274 * - to enforce header prediction at sender, even when application 275 * requires some significant "application buffer". It is check #1. 276 * - to prevent pruning of receive queue because of misprediction 277 * of receiver window. Check #2. 278 * 279 * The scheme does not work when sender sends good segments opening 280 * window and then starts to feed us spaghetti. But it should work 281 * in common situations. Otherwise, we have to rely on queue collapsing. 282 */ 283 284 /* Slow part of check#2. */ 285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 286 { 287 struct tcp_sock *tp = tcp_sk(sk); 288 /* Optimize this! */ 289 int truesize = tcp_win_from_space(skb->truesize) >> 1; 290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 291 292 while (tp->rcv_ssthresh <= window) { 293 if (truesize <= skb->len) 294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 295 296 truesize >>= 1; 297 window >>= 1; 298 } 299 return 0; 300 } 301 302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 303 { 304 struct tcp_sock *tp = tcp_sk(sk); 305 306 /* Check #1 */ 307 if (tp->rcv_ssthresh < tp->window_clamp && 308 (int)tp->rcv_ssthresh < tcp_space(sk) && 309 !tcp_memory_pressure) { 310 int incr; 311 312 /* Check #2. Increase window, if skb with such overhead 313 * will fit to rcvbuf in future. 314 */ 315 if (tcp_win_from_space(skb->truesize) <= skb->len) 316 incr = 2 * tp->advmss; 317 else 318 incr = __tcp_grow_window(sk, skb); 319 320 if (incr) { 321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 322 tp->window_clamp); 323 inet_csk(sk)->icsk_ack.quick |= 1; 324 } 325 } 326 } 327 328 /* 3. Tuning rcvbuf, when connection enters established state. */ 329 330 static void tcp_fixup_rcvbuf(struct sock *sk) 331 { 332 struct tcp_sock *tp = tcp_sk(sk); 333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 334 335 /* Try to select rcvbuf so that 4 mss-sized segments 336 * will fit to window and corresponding skbs will fit to our rcvbuf. 337 * (was 3; 4 is minimum to allow fast retransmit to work.) 338 */ 339 while (tcp_win_from_space(rcvmem) < tp->advmss) 340 rcvmem += 128; 341 if (sk->sk_rcvbuf < 4 * rcvmem) 342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 343 } 344 345 /* 4. Try to fixup all. It is made immediately after connection enters 346 * established state. 347 */ 348 static void tcp_init_buffer_space(struct sock *sk) 349 { 350 struct tcp_sock *tp = tcp_sk(sk); 351 int maxwin; 352 353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 354 tcp_fixup_rcvbuf(sk); 355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 356 tcp_fixup_sndbuf(sk); 357 358 tp->rcvq_space.space = tp->rcv_wnd; 359 360 maxwin = tcp_full_space(sk); 361 362 if (tp->window_clamp >= maxwin) { 363 tp->window_clamp = maxwin; 364 365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 366 tp->window_clamp = max(maxwin - 367 (maxwin >> sysctl_tcp_app_win), 368 4 * tp->advmss); 369 } 370 371 /* Force reservation of one segment. */ 372 if (sysctl_tcp_app_win && 373 tp->window_clamp > 2 * tp->advmss && 374 tp->window_clamp + tp->advmss > maxwin) 375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 376 377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 378 tp->snd_cwnd_stamp = tcp_time_stamp; 379 } 380 381 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 382 static void tcp_clamp_window(struct sock *sk) 383 { 384 struct tcp_sock *tp = tcp_sk(sk); 385 struct inet_connection_sock *icsk = inet_csk(sk); 386 387 icsk->icsk_ack.quick = 0; 388 389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 391 !tcp_memory_pressure && 392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 394 sysctl_tcp_rmem[2]); 395 } 396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 398 } 399 400 /* Initialize RCV_MSS value. 401 * RCV_MSS is an our guess about MSS used by the peer. 402 * We haven't any direct information about the MSS. 403 * It's better to underestimate the RCV_MSS rather than overestimate. 404 * Overestimations make us ACKing less frequently than needed. 405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 406 */ 407 void tcp_initialize_rcv_mss(struct sock *sk) 408 { 409 struct tcp_sock *tp = tcp_sk(sk); 410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 411 412 hint = min(hint, tp->rcv_wnd / 2); 413 hint = min(hint, TCP_MIN_RCVMSS); 414 hint = max(hint, TCP_MIN_MSS); 415 416 inet_csk(sk)->icsk_ack.rcv_mss = hint; 417 } 418 419 /* Receiver "autotuning" code. 420 * 421 * The algorithm for RTT estimation w/o timestamps is based on 422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 424 * 425 * More detail on this code can be found at 426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 427 * though this reference is out of date. A new paper 428 * is pending. 429 */ 430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 431 { 432 u32 new_sample = tp->rcv_rtt_est.rtt; 433 long m = sample; 434 435 if (m == 0) 436 m = 1; 437 438 if (new_sample != 0) { 439 /* If we sample in larger samples in the non-timestamp 440 * case, we could grossly overestimate the RTT especially 441 * with chatty applications or bulk transfer apps which 442 * are stalled on filesystem I/O. 443 * 444 * Also, since we are only going for a minimum in the 445 * non-timestamp case, we do not smooth things out 446 * else with timestamps disabled convergence takes too 447 * long. 448 */ 449 if (!win_dep) { 450 m -= (new_sample >> 3); 451 new_sample += m; 452 } else if (m < new_sample) 453 new_sample = m << 3; 454 } else { 455 /* No previous measure. */ 456 new_sample = m << 3; 457 } 458 459 if (tp->rcv_rtt_est.rtt != new_sample) 460 tp->rcv_rtt_est.rtt = new_sample; 461 } 462 463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 464 { 465 if (tp->rcv_rtt_est.time == 0) 466 goto new_measure; 467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 468 return; 469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 470 471 new_measure: 472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 473 tp->rcv_rtt_est.time = tcp_time_stamp; 474 } 475 476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 477 const struct sk_buff *skb) 478 { 479 struct tcp_sock *tp = tcp_sk(sk); 480 if (tp->rx_opt.rcv_tsecr && 481 (TCP_SKB_CB(skb)->end_seq - 482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 484 } 485 486 /* 487 * This function should be called every time data is copied to user space. 488 * It calculates the appropriate TCP receive buffer space. 489 */ 490 void tcp_rcv_space_adjust(struct sock *sk) 491 { 492 struct tcp_sock *tp = tcp_sk(sk); 493 int time; 494 int space; 495 496 if (tp->rcvq_space.time == 0) 497 goto new_measure; 498 499 time = tcp_time_stamp - tp->rcvq_space.time; 500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 501 return; 502 503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 504 505 space = max(tp->rcvq_space.space, space); 506 507 if (tp->rcvq_space.space != space) { 508 int rcvmem; 509 510 tp->rcvq_space.space = space; 511 512 if (sysctl_tcp_moderate_rcvbuf && 513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 514 int new_clamp = space; 515 516 /* Receive space grows, normalize in order to 517 * take into account packet headers and sk_buff 518 * structure overhead. 519 */ 520 space /= tp->advmss; 521 if (!space) 522 space = 1; 523 rcvmem = (tp->advmss + MAX_TCP_HEADER + 524 16 + sizeof(struct sk_buff)); 525 while (tcp_win_from_space(rcvmem) < tp->advmss) 526 rcvmem += 128; 527 space *= rcvmem; 528 space = min(space, sysctl_tcp_rmem[2]); 529 if (space > sk->sk_rcvbuf) { 530 sk->sk_rcvbuf = space; 531 532 /* Make the window clamp follow along. */ 533 tp->window_clamp = new_clamp; 534 } 535 } 536 } 537 538 new_measure: 539 tp->rcvq_space.seq = tp->copied_seq; 540 tp->rcvq_space.time = tcp_time_stamp; 541 } 542 543 /* There is something which you must keep in mind when you analyze the 544 * behavior of the tp->ato delayed ack timeout interval. When a 545 * connection starts up, we want to ack as quickly as possible. The 546 * problem is that "good" TCP's do slow start at the beginning of data 547 * transmission. The means that until we send the first few ACK's the 548 * sender will sit on his end and only queue most of his data, because 549 * he can only send snd_cwnd unacked packets at any given time. For 550 * each ACK we send, he increments snd_cwnd and transmits more of his 551 * queue. -DaveM 552 */ 553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 554 { 555 struct tcp_sock *tp = tcp_sk(sk); 556 struct inet_connection_sock *icsk = inet_csk(sk); 557 u32 now; 558 559 inet_csk_schedule_ack(sk); 560 561 tcp_measure_rcv_mss(sk, skb); 562 563 tcp_rcv_rtt_measure(tp); 564 565 now = tcp_time_stamp; 566 567 if (!icsk->icsk_ack.ato) { 568 /* The _first_ data packet received, initialize 569 * delayed ACK engine. 570 */ 571 tcp_incr_quickack(sk); 572 icsk->icsk_ack.ato = TCP_ATO_MIN; 573 } else { 574 int m = now - icsk->icsk_ack.lrcvtime; 575 576 if (m <= TCP_ATO_MIN / 2) { 577 /* The fastest case is the first. */ 578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 579 } else if (m < icsk->icsk_ack.ato) { 580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 581 if (icsk->icsk_ack.ato > icsk->icsk_rto) 582 icsk->icsk_ack.ato = icsk->icsk_rto; 583 } else if (m > icsk->icsk_rto) { 584 /* Too long gap. Apparently sender failed to 585 * restart window, so that we send ACKs quickly. 586 */ 587 tcp_incr_quickack(sk); 588 sk_mem_reclaim(sk); 589 } 590 } 591 icsk->icsk_ack.lrcvtime = now; 592 593 TCP_ECN_check_ce(tp, skb); 594 595 if (skb->len >= 128) 596 tcp_grow_window(sk, skb); 597 } 598 599 static u32 tcp_rto_min(struct sock *sk) 600 { 601 struct dst_entry *dst = __sk_dst_get(sk); 602 u32 rto_min = TCP_RTO_MIN; 603 604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 606 return rto_min; 607 } 608 609 /* Called to compute a smoothed rtt estimate. The data fed to this 610 * routine either comes from timestamps, or from segments that were 611 * known _not_ to have been retransmitted [see Karn/Partridge 612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 613 * piece by Van Jacobson. 614 * NOTE: the next three routines used to be one big routine. 615 * To save cycles in the RFC 1323 implementation it was better to break 616 * it up into three procedures. -- erics 617 */ 618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 619 { 620 struct tcp_sock *tp = tcp_sk(sk); 621 long m = mrtt; /* RTT */ 622 623 /* The following amusing code comes from Jacobson's 624 * article in SIGCOMM '88. Note that rtt and mdev 625 * are scaled versions of rtt and mean deviation. 626 * This is designed to be as fast as possible 627 * m stands for "measurement". 628 * 629 * On a 1990 paper the rto value is changed to: 630 * RTO = rtt + 4 * mdev 631 * 632 * Funny. This algorithm seems to be very broken. 633 * These formulae increase RTO, when it should be decreased, increase 634 * too slowly, when it should be increased quickly, decrease too quickly 635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 636 * does not matter how to _calculate_ it. Seems, it was trap 637 * that VJ failed to avoid. 8) 638 */ 639 if (m == 0) 640 m = 1; 641 if (tp->srtt != 0) { 642 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 644 if (m < 0) { 645 m = -m; /* m is now abs(error) */ 646 m -= (tp->mdev >> 2); /* similar update on mdev */ 647 /* This is similar to one of Eifel findings. 648 * Eifel blocks mdev updates when rtt decreases. 649 * This solution is a bit different: we use finer gain 650 * for mdev in this case (alpha*beta). 651 * Like Eifel it also prevents growth of rto, 652 * but also it limits too fast rto decreases, 653 * happening in pure Eifel. 654 */ 655 if (m > 0) 656 m >>= 3; 657 } else { 658 m -= (tp->mdev >> 2); /* similar update on mdev */ 659 } 660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 661 if (tp->mdev > tp->mdev_max) { 662 tp->mdev_max = tp->mdev; 663 if (tp->mdev_max > tp->rttvar) 664 tp->rttvar = tp->mdev_max; 665 } 666 if (after(tp->snd_una, tp->rtt_seq)) { 667 if (tp->mdev_max < tp->rttvar) 668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 669 tp->rtt_seq = tp->snd_nxt; 670 tp->mdev_max = tcp_rto_min(sk); 671 } 672 } else { 673 /* no previous measure. */ 674 tp->srtt = m << 3; /* take the measured time to be rtt */ 675 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 677 tp->rtt_seq = tp->snd_nxt; 678 } 679 } 680 681 /* Calculate rto without backoff. This is the second half of Van Jacobson's 682 * routine referred to above. 683 */ 684 static inline void tcp_set_rto(struct sock *sk) 685 { 686 const struct tcp_sock *tp = tcp_sk(sk); 687 /* Old crap is replaced with new one. 8) 688 * 689 * More seriously: 690 * 1. If rtt variance happened to be less 50msec, it is hallucination. 691 * It cannot be less due to utterly erratic ACK generation made 692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 693 * to do with delayed acks, because at cwnd>2 true delack timeout 694 * is invisible. Actually, Linux-2.4 also generates erratic 695 * ACKs in some circumstances. 696 */ 697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 698 699 /* 2. Fixups made earlier cannot be right. 700 * If we do not estimate RTO correctly without them, 701 * all the algo is pure shit and should be replaced 702 * with correct one. It is exactly, which we pretend to do. 703 */ 704 705 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 706 * guarantees that rto is higher. 707 */ 708 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 709 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 710 } 711 712 /* Save metrics learned by this TCP session. 713 This function is called only, when TCP finishes successfully 714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 715 */ 716 void tcp_update_metrics(struct sock *sk) 717 { 718 struct tcp_sock *tp = tcp_sk(sk); 719 struct dst_entry *dst = __sk_dst_get(sk); 720 721 if (sysctl_tcp_nometrics_save) 722 return; 723 724 dst_confirm(dst); 725 726 if (dst && (dst->flags & DST_HOST)) { 727 const struct inet_connection_sock *icsk = inet_csk(sk); 728 int m; 729 unsigned long rtt; 730 731 if (icsk->icsk_backoff || !tp->srtt) { 732 /* This session failed to estimate rtt. Why? 733 * Probably, no packets returned in time. 734 * Reset our results. 735 */ 736 if (!(dst_metric_locked(dst, RTAX_RTT))) 737 dst->metrics[RTAX_RTT - 1] = 0; 738 return; 739 } 740 741 rtt = dst_metric_rtt(dst, RTAX_RTT); 742 m = rtt - tp->srtt; 743 744 /* If newly calculated rtt larger than stored one, 745 * store new one. Otherwise, use EWMA. Remember, 746 * rtt overestimation is always better than underestimation. 747 */ 748 if (!(dst_metric_locked(dst, RTAX_RTT))) { 749 if (m <= 0) 750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 751 else 752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 753 } 754 755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 756 unsigned long var; 757 if (m < 0) 758 m = -m; 759 760 /* Scale deviation to rttvar fixed point */ 761 m >>= 1; 762 if (m < tp->mdev) 763 m = tp->mdev; 764 765 var = dst_metric_rtt(dst, RTAX_RTTVAR); 766 if (m >= var) 767 var = m; 768 else 769 var -= (var - m) >> 2; 770 771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 772 } 773 774 if (tp->snd_ssthresh >= 0xFFFF) { 775 /* Slow start still did not finish. */ 776 if (dst_metric(dst, RTAX_SSTHRESH) && 777 !dst_metric_locked(dst, RTAX_SSTHRESH) && 778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 779 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 780 if (!dst_metric_locked(dst, RTAX_CWND) && 781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 782 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd; 783 } else if (tp->snd_cwnd > tp->snd_ssthresh && 784 icsk->icsk_ca_state == TCP_CA_Open) { 785 /* Cong. avoidance phase, cwnd is reliable. */ 786 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 787 dst->metrics[RTAX_SSTHRESH-1] = 788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 789 if (!dst_metric_locked(dst, RTAX_CWND)) 790 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1; 791 } else { 792 /* Else slow start did not finish, cwnd is non-sense, 793 ssthresh may be also invalid. 794 */ 795 if (!dst_metric_locked(dst, RTAX_CWND)) 796 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1; 797 if (dst_metric(dst, RTAX_SSTHRESH) && 798 !dst_metric_locked(dst, RTAX_SSTHRESH) && 799 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 800 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 801 } 802 803 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 804 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 805 tp->reordering != sysctl_tcp_reordering) 806 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 807 } 808 } 809 } 810 811 /* Numbers are taken from RFC3390. 812 * 813 * John Heffner states: 814 * 815 * The RFC specifies a window of no more than 4380 bytes 816 * unless 2*MSS > 4380. Reading the pseudocode in the RFC 817 * is a bit misleading because they use a clamp at 4380 bytes 818 * rather than use a multiplier in the relevant range. 819 */ 820 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 821 { 822 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 823 824 if (!cwnd) { 825 if (tp->mss_cache > 1460) 826 cwnd = 2; 827 else 828 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 829 } 830 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 831 } 832 833 /* Set slow start threshold and cwnd not falling to slow start */ 834 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 835 { 836 struct tcp_sock *tp = tcp_sk(sk); 837 const struct inet_connection_sock *icsk = inet_csk(sk); 838 839 tp->prior_ssthresh = 0; 840 tp->bytes_acked = 0; 841 if (icsk->icsk_ca_state < TCP_CA_CWR) { 842 tp->undo_marker = 0; 843 if (set_ssthresh) 844 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 845 tp->snd_cwnd = min(tp->snd_cwnd, 846 tcp_packets_in_flight(tp) + 1U); 847 tp->snd_cwnd_cnt = 0; 848 tp->high_seq = tp->snd_nxt; 849 tp->snd_cwnd_stamp = tcp_time_stamp; 850 TCP_ECN_queue_cwr(tp); 851 852 tcp_set_ca_state(sk, TCP_CA_CWR); 853 } 854 } 855 856 /* 857 * Packet counting of FACK is based on in-order assumptions, therefore TCP 858 * disables it when reordering is detected 859 */ 860 static void tcp_disable_fack(struct tcp_sock *tp) 861 { 862 /* RFC3517 uses different metric in lost marker => reset on change */ 863 if (tcp_is_fack(tp)) 864 tp->lost_skb_hint = NULL; 865 tp->rx_opt.sack_ok &= ~2; 866 } 867 868 /* Take a notice that peer is sending D-SACKs */ 869 static void tcp_dsack_seen(struct tcp_sock *tp) 870 { 871 tp->rx_opt.sack_ok |= 4; 872 } 873 874 /* Initialize metrics on socket. */ 875 876 static void tcp_init_metrics(struct sock *sk) 877 { 878 struct tcp_sock *tp = tcp_sk(sk); 879 struct dst_entry *dst = __sk_dst_get(sk); 880 881 if (dst == NULL) 882 goto reset; 883 884 dst_confirm(dst); 885 886 if (dst_metric_locked(dst, RTAX_CWND)) 887 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 888 if (dst_metric(dst, RTAX_SSTHRESH)) { 889 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 890 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 891 tp->snd_ssthresh = tp->snd_cwnd_clamp; 892 } 893 if (dst_metric(dst, RTAX_REORDERING) && 894 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 895 tcp_disable_fack(tp); 896 tp->reordering = dst_metric(dst, RTAX_REORDERING); 897 } 898 899 if (dst_metric(dst, RTAX_RTT) == 0) 900 goto reset; 901 902 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 903 goto reset; 904 905 /* Initial rtt is determined from SYN,SYN-ACK. 906 * The segment is small and rtt may appear much 907 * less than real one. Use per-dst memory 908 * to make it more realistic. 909 * 910 * A bit of theory. RTT is time passed after "normal" sized packet 911 * is sent until it is ACKed. In normal circumstances sending small 912 * packets force peer to delay ACKs and calculation is correct too. 913 * The algorithm is adaptive and, provided we follow specs, it 914 * NEVER underestimate RTT. BUT! If peer tries to make some clever 915 * tricks sort of "quick acks" for time long enough to decrease RTT 916 * to low value, and then abruptly stops to do it and starts to delay 917 * ACKs, wait for troubles. 918 */ 919 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 920 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 921 tp->rtt_seq = tp->snd_nxt; 922 } 923 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 924 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 925 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 926 } 927 tcp_set_rto(sk); 928 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 929 goto reset; 930 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 931 tp->snd_cwnd_stamp = tcp_time_stamp; 932 return; 933 934 reset: 935 /* Play conservative. If timestamps are not 936 * supported, TCP will fail to recalculate correct 937 * rtt, if initial rto is too small. FORGET ALL AND RESET! 938 */ 939 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 940 tp->srtt = 0; 941 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 942 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 943 } 944 } 945 946 static void tcp_update_reordering(struct sock *sk, const int metric, 947 const int ts) 948 { 949 struct tcp_sock *tp = tcp_sk(sk); 950 if (metric > tp->reordering) { 951 int mib_idx; 952 953 tp->reordering = min(TCP_MAX_REORDERING, metric); 954 955 /* This exciting event is worth to be remembered. 8) */ 956 if (ts) 957 mib_idx = LINUX_MIB_TCPTSREORDER; 958 else if (tcp_is_reno(tp)) 959 mib_idx = LINUX_MIB_TCPRENOREORDER; 960 else if (tcp_is_fack(tp)) 961 mib_idx = LINUX_MIB_TCPFACKREORDER; 962 else 963 mib_idx = LINUX_MIB_TCPSACKREORDER; 964 965 NET_INC_STATS_BH(sock_net(sk), mib_idx); 966 #if FASTRETRANS_DEBUG > 1 967 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 968 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 969 tp->reordering, 970 tp->fackets_out, 971 tp->sacked_out, 972 tp->undo_marker ? tp->undo_retrans : 0); 973 #endif 974 tcp_disable_fack(tp); 975 } 976 } 977 978 /* This must be called before lost_out is incremented */ 979 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 980 { 981 if ((tp->retransmit_skb_hint == NULL) || 982 before(TCP_SKB_CB(skb)->seq, 983 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 984 tp->retransmit_skb_hint = skb; 985 986 if (!tp->lost_out || 987 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 988 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 989 } 990 991 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 992 { 993 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 994 tcp_verify_retransmit_hint(tp, skb); 995 996 tp->lost_out += tcp_skb_pcount(skb); 997 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 998 } 999 } 1000 1001 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 1002 struct sk_buff *skb) 1003 { 1004 tcp_verify_retransmit_hint(tp, skb); 1005 1006 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1007 tp->lost_out += tcp_skb_pcount(skb); 1008 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1009 } 1010 } 1011 1012 /* This procedure tags the retransmission queue when SACKs arrive. 1013 * 1014 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1015 * Packets in queue with these bits set are counted in variables 1016 * sacked_out, retrans_out and lost_out, correspondingly. 1017 * 1018 * Valid combinations are: 1019 * Tag InFlight Description 1020 * 0 1 - orig segment is in flight. 1021 * S 0 - nothing flies, orig reached receiver. 1022 * L 0 - nothing flies, orig lost by net. 1023 * R 2 - both orig and retransmit are in flight. 1024 * L|R 1 - orig is lost, retransmit is in flight. 1025 * S|R 1 - orig reached receiver, retrans is still in flight. 1026 * (L|S|R is logically valid, it could occur when L|R is sacked, 1027 * but it is equivalent to plain S and code short-curcuits it to S. 1028 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1029 * 1030 * These 6 states form finite state machine, controlled by the following events: 1031 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1032 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1033 * 3. Loss detection event of one of three flavors: 1034 * A. Scoreboard estimator decided the packet is lost. 1035 * A'. Reno "three dupacks" marks head of queue lost. 1036 * A''. Its FACK modfication, head until snd.fack is lost. 1037 * B. SACK arrives sacking data transmitted after never retransmitted 1038 * hole was sent out. 1039 * C. SACK arrives sacking SND.NXT at the moment, when the 1040 * segment was retransmitted. 1041 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1042 * 1043 * It is pleasant to note, that state diagram turns out to be commutative, 1044 * so that we are allowed not to be bothered by order of our actions, 1045 * when multiple events arrive simultaneously. (see the function below). 1046 * 1047 * Reordering detection. 1048 * -------------------- 1049 * Reordering metric is maximal distance, which a packet can be displaced 1050 * in packet stream. With SACKs we can estimate it: 1051 * 1052 * 1. SACK fills old hole and the corresponding segment was not 1053 * ever retransmitted -> reordering. Alas, we cannot use it 1054 * when segment was retransmitted. 1055 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1056 * for retransmitted and already SACKed segment -> reordering.. 1057 * Both of these heuristics are not used in Loss state, when we cannot 1058 * account for retransmits accurately. 1059 * 1060 * SACK block validation. 1061 * ---------------------- 1062 * 1063 * SACK block range validation checks that the received SACK block fits to 1064 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1065 * Note that SND.UNA is not included to the range though being valid because 1066 * it means that the receiver is rather inconsistent with itself reporting 1067 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1068 * perfectly valid, however, in light of RFC2018 which explicitly states 1069 * that "SACK block MUST reflect the newest segment. Even if the newest 1070 * segment is going to be discarded ...", not that it looks very clever 1071 * in case of head skb. Due to potentional receiver driven attacks, we 1072 * choose to avoid immediate execution of a walk in write queue due to 1073 * reneging and defer head skb's loss recovery to standard loss recovery 1074 * procedure that will eventually trigger (nothing forbids us doing this). 1075 * 1076 * Implements also blockage to start_seq wrap-around. Problem lies in the 1077 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1078 * there's no guarantee that it will be before snd_nxt (n). The problem 1079 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1080 * wrap (s_w): 1081 * 1082 * <- outs wnd -> <- wrapzone -> 1083 * u e n u_w e_w s n_w 1084 * | | | | | | | 1085 * |<------------+------+----- TCP seqno space --------------+---------->| 1086 * ...-- <2^31 ->| |<--------... 1087 * ...---- >2^31 ------>| |<--------... 1088 * 1089 * Current code wouldn't be vulnerable but it's better still to discard such 1090 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1091 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1092 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1093 * equal to the ideal case (infinite seqno space without wrap caused issues). 1094 * 1095 * With D-SACK the lower bound is extended to cover sequence space below 1096 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1097 * again, D-SACK block must not to go across snd_una (for the same reason as 1098 * for the normal SACK blocks, explained above). But there all simplicity 1099 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1100 * fully below undo_marker they do not affect behavior in anyway and can 1101 * therefore be safely ignored. In rare cases (which are more or less 1102 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1103 * fragmentation and packet reordering past skb's retransmission. To consider 1104 * them correctly, the acceptable range must be extended even more though 1105 * the exact amount is rather hard to quantify. However, tp->max_window can 1106 * be used as an exaggerated estimate. 1107 */ 1108 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1109 u32 start_seq, u32 end_seq) 1110 { 1111 /* Too far in future, or reversed (interpretation is ambiguous) */ 1112 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1113 return 0; 1114 1115 /* Nasty start_seq wrap-around check (see comments above) */ 1116 if (!before(start_seq, tp->snd_nxt)) 1117 return 0; 1118 1119 /* In outstanding window? ...This is valid exit for D-SACKs too. 1120 * start_seq == snd_una is non-sensical (see comments above) 1121 */ 1122 if (after(start_seq, tp->snd_una)) 1123 return 1; 1124 1125 if (!is_dsack || !tp->undo_marker) 1126 return 0; 1127 1128 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1129 if (!after(end_seq, tp->snd_una)) 1130 return 0; 1131 1132 if (!before(start_seq, tp->undo_marker)) 1133 return 1; 1134 1135 /* Too old */ 1136 if (!after(end_seq, tp->undo_marker)) 1137 return 0; 1138 1139 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1140 * start_seq < undo_marker and end_seq >= undo_marker. 1141 */ 1142 return !before(start_seq, end_seq - tp->max_window); 1143 } 1144 1145 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1146 * Event "C". Later note: FACK people cheated me again 8), we have to account 1147 * for reordering! Ugly, but should help. 1148 * 1149 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1150 * less than what is now known to be received by the other end (derived from 1151 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1152 * retransmitted skbs to avoid some costly processing per ACKs. 1153 */ 1154 static void tcp_mark_lost_retrans(struct sock *sk) 1155 { 1156 const struct inet_connection_sock *icsk = inet_csk(sk); 1157 struct tcp_sock *tp = tcp_sk(sk); 1158 struct sk_buff *skb; 1159 int cnt = 0; 1160 u32 new_low_seq = tp->snd_nxt; 1161 u32 received_upto = tcp_highest_sack_seq(tp); 1162 1163 if (!tcp_is_fack(tp) || !tp->retrans_out || 1164 !after(received_upto, tp->lost_retrans_low) || 1165 icsk->icsk_ca_state != TCP_CA_Recovery) 1166 return; 1167 1168 tcp_for_write_queue(skb, sk) { 1169 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1170 1171 if (skb == tcp_send_head(sk)) 1172 break; 1173 if (cnt == tp->retrans_out) 1174 break; 1175 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1176 continue; 1177 1178 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1179 continue; 1180 1181 if (after(received_upto, ack_seq) && 1182 (tcp_is_fack(tp) || 1183 !before(received_upto, 1184 ack_seq + tp->reordering * tp->mss_cache))) { 1185 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1186 tp->retrans_out -= tcp_skb_pcount(skb); 1187 1188 tcp_skb_mark_lost_uncond_verify(tp, skb); 1189 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1190 } else { 1191 if (before(ack_seq, new_low_seq)) 1192 new_low_seq = ack_seq; 1193 cnt += tcp_skb_pcount(skb); 1194 } 1195 } 1196 1197 if (tp->retrans_out) 1198 tp->lost_retrans_low = new_low_seq; 1199 } 1200 1201 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1202 struct tcp_sack_block_wire *sp, int num_sacks, 1203 u32 prior_snd_una) 1204 { 1205 struct tcp_sock *tp = tcp_sk(sk); 1206 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1207 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1208 int dup_sack = 0; 1209 1210 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1211 dup_sack = 1; 1212 tcp_dsack_seen(tp); 1213 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1214 } else if (num_sacks > 1) { 1215 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1216 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1217 1218 if (!after(end_seq_0, end_seq_1) && 1219 !before(start_seq_0, start_seq_1)) { 1220 dup_sack = 1; 1221 tcp_dsack_seen(tp); 1222 NET_INC_STATS_BH(sock_net(sk), 1223 LINUX_MIB_TCPDSACKOFORECV); 1224 } 1225 } 1226 1227 /* D-SACK for already forgotten data... Do dumb counting. */ 1228 if (dup_sack && 1229 !after(end_seq_0, prior_snd_una) && 1230 after(end_seq_0, tp->undo_marker)) 1231 tp->undo_retrans--; 1232 1233 return dup_sack; 1234 } 1235 1236 struct tcp_sacktag_state { 1237 int reord; 1238 int fack_count; 1239 int flag; 1240 }; 1241 1242 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1243 * the incoming SACK may not exactly match but we can find smaller MSS 1244 * aligned portion of it that matches. Therefore we might need to fragment 1245 * which may fail and creates some hassle (caller must handle error case 1246 * returns). 1247 * 1248 * FIXME: this could be merged to shift decision code 1249 */ 1250 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1251 u32 start_seq, u32 end_seq) 1252 { 1253 int in_sack, err; 1254 unsigned int pkt_len; 1255 unsigned int mss; 1256 1257 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1258 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1259 1260 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1261 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1262 mss = tcp_skb_mss(skb); 1263 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1264 1265 if (!in_sack) { 1266 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1267 if (pkt_len < mss) 1268 pkt_len = mss; 1269 } else { 1270 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1271 if (pkt_len < mss) 1272 return -EINVAL; 1273 } 1274 1275 /* Round if necessary so that SACKs cover only full MSSes 1276 * and/or the remaining small portion (if present) 1277 */ 1278 if (pkt_len > mss) { 1279 unsigned int new_len = (pkt_len / mss) * mss; 1280 if (!in_sack && new_len < pkt_len) { 1281 new_len += mss; 1282 if (new_len > skb->len) 1283 return 0; 1284 } 1285 pkt_len = new_len; 1286 } 1287 err = tcp_fragment(sk, skb, pkt_len, mss); 1288 if (err < 0) 1289 return err; 1290 } 1291 1292 return in_sack; 1293 } 1294 1295 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1296 struct tcp_sacktag_state *state, 1297 int dup_sack, int pcount) 1298 { 1299 struct tcp_sock *tp = tcp_sk(sk); 1300 u8 sacked = TCP_SKB_CB(skb)->sacked; 1301 int fack_count = state->fack_count; 1302 1303 /* Account D-SACK for retransmitted packet. */ 1304 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1305 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1306 tp->undo_retrans--; 1307 if (sacked & TCPCB_SACKED_ACKED) 1308 state->reord = min(fack_count, state->reord); 1309 } 1310 1311 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1312 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1313 return sacked; 1314 1315 if (!(sacked & TCPCB_SACKED_ACKED)) { 1316 if (sacked & TCPCB_SACKED_RETRANS) { 1317 /* If the segment is not tagged as lost, 1318 * we do not clear RETRANS, believing 1319 * that retransmission is still in flight. 1320 */ 1321 if (sacked & TCPCB_LOST) { 1322 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1323 tp->lost_out -= pcount; 1324 tp->retrans_out -= pcount; 1325 } 1326 } else { 1327 if (!(sacked & TCPCB_RETRANS)) { 1328 /* New sack for not retransmitted frame, 1329 * which was in hole. It is reordering. 1330 */ 1331 if (before(TCP_SKB_CB(skb)->seq, 1332 tcp_highest_sack_seq(tp))) 1333 state->reord = min(fack_count, 1334 state->reord); 1335 1336 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1337 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1338 state->flag |= FLAG_ONLY_ORIG_SACKED; 1339 } 1340 1341 if (sacked & TCPCB_LOST) { 1342 sacked &= ~TCPCB_LOST; 1343 tp->lost_out -= pcount; 1344 } 1345 } 1346 1347 sacked |= TCPCB_SACKED_ACKED; 1348 state->flag |= FLAG_DATA_SACKED; 1349 tp->sacked_out += pcount; 1350 1351 fack_count += pcount; 1352 1353 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1354 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1355 before(TCP_SKB_CB(skb)->seq, 1356 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1357 tp->lost_cnt_hint += pcount; 1358 1359 if (fack_count > tp->fackets_out) 1360 tp->fackets_out = fack_count; 1361 } 1362 1363 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1364 * frames and clear it. undo_retrans is decreased above, L|R frames 1365 * are accounted above as well. 1366 */ 1367 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1368 sacked &= ~TCPCB_SACKED_RETRANS; 1369 tp->retrans_out -= pcount; 1370 } 1371 1372 return sacked; 1373 } 1374 1375 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1376 struct tcp_sacktag_state *state, 1377 unsigned int pcount, int shifted, int mss, 1378 int dup_sack) 1379 { 1380 struct tcp_sock *tp = tcp_sk(sk); 1381 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1382 1383 BUG_ON(!pcount); 1384 1385 /* Tweak before seqno plays */ 1386 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint && 1387 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq)) 1388 tp->lost_cnt_hint += pcount; 1389 1390 TCP_SKB_CB(prev)->end_seq += shifted; 1391 TCP_SKB_CB(skb)->seq += shifted; 1392 1393 skb_shinfo(prev)->gso_segs += pcount; 1394 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1395 skb_shinfo(skb)->gso_segs -= pcount; 1396 1397 /* When we're adding to gso_segs == 1, gso_size will be zero, 1398 * in theory this shouldn't be necessary but as long as DSACK 1399 * code can come after this skb later on it's better to keep 1400 * setting gso_size to something. 1401 */ 1402 if (!skb_shinfo(prev)->gso_size) { 1403 skb_shinfo(prev)->gso_size = mss; 1404 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1405 } 1406 1407 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1408 if (skb_shinfo(skb)->gso_segs <= 1) { 1409 skb_shinfo(skb)->gso_size = 0; 1410 skb_shinfo(skb)->gso_type = 0; 1411 } 1412 1413 /* We discard results */ 1414 tcp_sacktag_one(skb, sk, state, dup_sack, pcount); 1415 1416 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1417 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1418 1419 if (skb->len > 0) { 1420 BUG_ON(!tcp_skb_pcount(skb)); 1421 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1422 return 0; 1423 } 1424 1425 /* Whole SKB was eaten :-) */ 1426 1427 if (skb == tp->retransmit_skb_hint) 1428 tp->retransmit_skb_hint = prev; 1429 if (skb == tp->scoreboard_skb_hint) 1430 tp->scoreboard_skb_hint = prev; 1431 if (skb == tp->lost_skb_hint) { 1432 tp->lost_skb_hint = prev; 1433 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1434 } 1435 1436 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags; 1437 if (skb == tcp_highest_sack(sk)) 1438 tcp_advance_highest_sack(sk, skb); 1439 1440 tcp_unlink_write_queue(skb, sk); 1441 sk_wmem_free_skb(sk, skb); 1442 1443 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1444 1445 return 1; 1446 } 1447 1448 /* I wish gso_size would have a bit more sane initialization than 1449 * something-or-zero which complicates things 1450 */ 1451 static int tcp_skb_seglen(struct sk_buff *skb) 1452 { 1453 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1454 } 1455 1456 /* Shifting pages past head area doesn't work */ 1457 static int skb_can_shift(struct sk_buff *skb) 1458 { 1459 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1460 } 1461 1462 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1463 * skb. 1464 */ 1465 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1466 struct tcp_sacktag_state *state, 1467 u32 start_seq, u32 end_seq, 1468 int dup_sack) 1469 { 1470 struct tcp_sock *tp = tcp_sk(sk); 1471 struct sk_buff *prev; 1472 int mss; 1473 int pcount = 0; 1474 int len; 1475 int in_sack; 1476 1477 if (!sk_can_gso(sk)) 1478 goto fallback; 1479 1480 /* Normally R but no L won't result in plain S */ 1481 if (!dup_sack && 1482 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1483 goto fallback; 1484 if (!skb_can_shift(skb)) 1485 goto fallback; 1486 /* This frame is about to be dropped (was ACKed). */ 1487 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1488 goto fallback; 1489 1490 /* Can only happen with delayed DSACK + discard craziness */ 1491 if (unlikely(skb == tcp_write_queue_head(sk))) 1492 goto fallback; 1493 prev = tcp_write_queue_prev(sk, skb); 1494 1495 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1496 goto fallback; 1497 1498 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1499 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1500 1501 if (in_sack) { 1502 len = skb->len; 1503 pcount = tcp_skb_pcount(skb); 1504 mss = tcp_skb_seglen(skb); 1505 1506 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1507 * drop this restriction as unnecessary 1508 */ 1509 if (mss != tcp_skb_seglen(prev)) 1510 goto fallback; 1511 } else { 1512 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1513 goto noop; 1514 /* CHECKME: This is non-MSS split case only?, this will 1515 * cause skipped skbs due to advancing loop btw, original 1516 * has that feature too 1517 */ 1518 if (tcp_skb_pcount(skb) <= 1) 1519 goto noop; 1520 1521 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1522 if (!in_sack) { 1523 /* TODO: head merge to next could be attempted here 1524 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1525 * though it might not be worth of the additional hassle 1526 * 1527 * ...we can probably just fallback to what was done 1528 * previously. We could try merging non-SACKed ones 1529 * as well but it probably isn't going to buy off 1530 * because later SACKs might again split them, and 1531 * it would make skb timestamp tracking considerably 1532 * harder problem. 1533 */ 1534 goto fallback; 1535 } 1536 1537 len = end_seq - TCP_SKB_CB(skb)->seq; 1538 BUG_ON(len < 0); 1539 BUG_ON(len > skb->len); 1540 1541 /* MSS boundaries should be honoured or else pcount will 1542 * severely break even though it makes things bit trickier. 1543 * Optimize common case to avoid most of the divides 1544 */ 1545 mss = tcp_skb_mss(skb); 1546 1547 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1548 * drop this restriction as unnecessary 1549 */ 1550 if (mss != tcp_skb_seglen(prev)) 1551 goto fallback; 1552 1553 if (len == mss) { 1554 pcount = 1; 1555 } else if (len < mss) { 1556 goto noop; 1557 } else { 1558 pcount = len / mss; 1559 len = pcount * mss; 1560 } 1561 } 1562 1563 if (!skb_shift(prev, skb, len)) 1564 goto fallback; 1565 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1566 goto out; 1567 1568 /* Hole filled allows collapsing with the next as well, this is very 1569 * useful when hole on every nth skb pattern happens 1570 */ 1571 if (prev == tcp_write_queue_tail(sk)) 1572 goto out; 1573 skb = tcp_write_queue_next(sk, prev); 1574 1575 if (!skb_can_shift(skb) || 1576 (skb == tcp_send_head(sk)) || 1577 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1578 (mss != tcp_skb_seglen(skb))) 1579 goto out; 1580 1581 len = skb->len; 1582 if (skb_shift(prev, skb, len)) { 1583 pcount += tcp_skb_pcount(skb); 1584 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1585 } 1586 1587 out: 1588 state->fack_count += pcount; 1589 return prev; 1590 1591 noop: 1592 return skb; 1593 1594 fallback: 1595 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1596 return NULL; 1597 } 1598 1599 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1600 struct tcp_sack_block *next_dup, 1601 struct tcp_sacktag_state *state, 1602 u32 start_seq, u32 end_seq, 1603 int dup_sack_in) 1604 { 1605 struct tcp_sock *tp = tcp_sk(sk); 1606 struct sk_buff *tmp; 1607 1608 tcp_for_write_queue_from(skb, sk) { 1609 int in_sack = 0; 1610 int dup_sack = dup_sack_in; 1611 1612 if (skb == tcp_send_head(sk)) 1613 break; 1614 1615 /* queue is in-order => we can short-circuit the walk early */ 1616 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1617 break; 1618 1619 if ((next_dup != NULL) && 1620 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1621 in_sack = tcp_match_skb_to_sack(sk, skb, 1622 next_dup->start_seq, 1623 next_dup->end_seq); 1624 if (in_sack > 0) 1625 dup_sack = 1; 1626 } 1627 1628 /* skb reference here is a bit tricky to get right, since 1629 * shifting can eat and free both this skb and the next, 1630 * so not even _safe variant of the loop is enough. 1631 */ 1632 if (in_sack <= 0) { 1633 tmp = tcp_shift_skb_data(sk, skb, state, 1634 start_seq, end_seq, dup_sack); 1635 if (tmp != NULL) { 1636 if (tmp != skb) { 1637 skb = tmp; 1638 continue; 1639 } 1640 1641 in_sack = 0; 1642 } else { 1643 in_sack = tcp_match_skb_to_sack(sk, skb, 1644 start_seq, 1645 end_seq); 1646 } 1647 } 1648 1649 if (unlikely(in_sack < 0)) 1650 break; 1651 1652 if (in_sack) { 1653 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk, 1654 state, 1655 dup_sack, 1656 tcp_skb_pcount(skb)); 1657 1658 if (!before(TCP_SKB_CB(skb)->seq, 1659 tcp_highest_sack_seq(tp))) 1660 tcp_advance_highest_sack(sk, skb); 1661 } 1662 1663 state->fack_count += tcp_skb_pcount(skb); 1664 } 1665 return skb; 1666 } 1667 1668 /* Avoid all extra work that is being done by sacktag while walking in 1669 * a normal way 1670 */ 1671 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1672 struct tcp_sacktag_state *state, 1673 u32 skip_to_seq) 1674 { 1675 tcp_for_write_queue_from(skb, sk) { 1676 if (skb == tcp_send_head(sk)) 1677 break; 1678 1679 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1680 break; 1681 1682 state->fack_count += tcp_skb_pcount(skb); 1683 } 1684 return skb; 1685 } 1686 1687 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1688 struct sock *sk, 1689 struct tcp_sack_block *next_dup, 1690 struct tcp_sacktag_state *state, 1691 u32 skip_to_seq) 1692 { 1693 if (next_dup == NULL) 1694 return skb; 1695 1696 if (before(next_dup->start_seq, skip_to_seq)) { 1697 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1698 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1699 next_dup->start_seq, next_dup->end_seq, 1700 1); 1701 } 1702 1703 return skb; 1704 } 1705 1706 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1707 { 1708 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1709 } 1710 1711 static int 1712 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1713 u32 prior_snd_una) 1714 { 1715 const struct inet_connection_sock *icsk = inet_csk(sk); 1716 struct tcp_sock *tp = tcp_sk(sk); 1717 unsigned char *ptr = (skb_transport_header(ack_skb) + 1718 TCP_SKB_CB(ack_skb)->sacked); 1719 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1720 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1721 struct tcp_sack_block *cache; 1722 struct tcp_sacktag_state state; 1723 struct sk_buff *skb; 1724 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1725 int used_sacks; 1726 int found_dup_sack = 0; 1727 int i, j; 1728 int first_sack_index; 1729 1730 state.flag = 0; 1731 state.reord = tp->packets_out; 1732 1733 if (!tp->sacked_out) { 1734 if (WARN_ON(tp->fackets_out)) 1735 tp->fackets_out = 0; 1736 tcp_highest_sack_reset(sk); 1737 } 1738 1739 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1740 num_sacks, prior_snd_una); 1741 if (found_dup_sack) 1742 state.flag |= FLAG_DSACKING_ACK; 1743 1744 /* Eliminate too old ACKs, but take into 1745 * account more or less fresh ones, they can 1746 * contain valid SACK info. 1747 */ 1748 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1749 return 0; 1750 1751 if (!tp->packets_out) 1752 goto out; 1753 1754 used_sacks = 0; 1755 first_sack_index = 0; 1756 for (i = 0; i < num_sacks; i++) { 1757 int dup_sack = !i && found_dup_sack; 1758 1759 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1760 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1761 1762 if (!tcp_is_sackblock_valid(tp, dup_sack, 1763 sp[used_sacks].start_seq, 1764 sp[used_sacks].end_seq)) { 1765 int mib_idx; 1766 1767 if (dup_sack) { 1768 if (!tp->undo_marker) 1769 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1770 else 1771 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1772 } else { 1773 /* Don't count olds caused by ACK reordering */ 1774 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1775 !after(sp[used_sacks].end_seq, tp->snd_una)) 1776 continue; 1777 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1778 } 1779 1780 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1781 if (i == 0) 1782 first_sack_index = -1; 1783 continue; 1784 } 1785 1786 /* Ignore very old stuff early */ 1787 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1788 continue; 1789 1790 used_sacks++; 1791 } 1792 1793 /* order SACK blocks to allow in order walk of the retrans queue */ 1794 for (i = used_sacks - 1; i > 0; i--) { 1795 for (j = 0; j < i; j++) { 1796 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1797 struct tcp_sack_block tmp; 1798 1799 tmp = sp[j]; 1800 sp[j] = sp[j + 1]; 1801 sp[j + 1] = tmp; 1802 1803 /* Track where the first SACK block goes to */ 1804 if (j == first_sack_index) 1805 first_sack_index = j + 1; 1806 } 1807 } 1808 } 1809 1810 skb = tcp_write_queue_head(sk); 1811 state.fack_count = 0; 1812 i = 0; 1813 1814 if (!tp->sacked_out) { 1815 /* It's already past, so skip checking against it */ 1816 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1817 } else { 1818 cache = tp->recv_sack_cache; 1819 /* Skip empty blocks in at head of the cache */ 1820 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1821 !cache->end_seq) 1822 cache++; 1823 } 1824 1825 while (i < used_sacks) { 1826 u32 start_seq = sp[i].start_seq; 1827 u32 end_seq = sp[i].end_seq; 1828 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1829 struct tcp_sack_block *next_dup = NULL; 1830 1831 if (found_dup_sack && ((i + 1) == first_sack_index)) 1832 next_dup = &sp[i + 1]; 1833 1834 /* Event "B" in the comment above. */ 1835 if (after(end_seq, tp->high_seq)) 1836 state.flag |= FLAG_DATA_LOST; 1837 1838 /* Skip too early cached blocks */ 1839 while (tcp_sack_cache_ok(tp, cache) && 1840 !before(start_seq, cache->end_seq)) 1841 cache++; 1842 1843 /* Can skip some work by looking recv_sack_cache? */ 1844 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1845 after(end_seq, cache->start_seq)) { 1846 1847 /* Head todo? */ 1848 if (before(start_seq, cache->start_seq)) { 1849 skb = tcp_sacktag_skip(skb, sk, &state, 1850 start_seq); 1851 skb = tcp_sacktag_walk(skb, sk, next_dup, 1852 &state, 1853 start_seq, 1854 cache->start_seq, 1855 dup_sack); 1856 } 1857 1858 /* Rest of the block already fully processed? */ 1859 if (!after(end_seq, cache->end_seq)) 1860 goto advance_sp; 1861 1862 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1863 &state, 1864 cache->end_seq); 1865 1866 /* ...tail remains todo... */ 1867 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1868 /* ...but better entrypoint exists! */ 1869 skb = tcp_highest_sack(sk); 1870 if (skb == NULL) 1871 break; 1872 state.fack_count = tp->fackets_out; 1873 cache++; 1874 goto walk; 1875 } 1876 1877 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1878 /* Check overlap against next cached too (past this one already) */ 1879 cache++; 1880 continue; 1881 } 1882 1883 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1884 skb = tcp_highest_sack(sk); 1885 if (skb == NULL) 1886 break; 1887 state.fack_count = tp->fackets_out; 1888 } 1889 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1890 1891 walk: 1892 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1893 start_seq, end_seq, dup_sack); 1894 1895 advance_sp: 1896 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1897 * due to in-order walk 1898 */ 1899 if (after(end_seq, tp->frto_highmark)) 1900 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1901 1902 i++; 1903 } 1904 1905 /* Clear the head of the cache sack blocks so we can skip it next time */ 1906 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1907 tp->recv_sack_cache[i].start_seq = 0; 1908 tp->recv_sack_cache[i].end_seq = 0; 1909 } 1910 for (j = 0; j < used_sacks; j++) 1911 tp->recv_sack_cache[i++] = sp[j]; 1912 1913 tcp_mark_lost_retrans(sk); 1914 1915 tcp_verify_left_out(tp); 1916 1917 if ((state.reord < tp->fackets_out) && 1918 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1919 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1920 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1921 1922 out: 1923 1924 #if FASTRETRANS_DEBUG > 0 1925 WARN_ON((int)tp->sacked_out < 0); 1926 WARN_ON((int)tp->lost_out < 0); 1927 WARN_ON((int)tp->retrans_out < 0); 1928 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1929 #endif 1930 return state.flag; 1931 } 1932 1933 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1934 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1935 */ 1936 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1937 { 1938 u32 holes; 1939 1940 holes = max(tp->lost_out, 1U); 1941 holes = min(holes, tp->packets_out); 1942 1943 if ((tp->sacked_out + holes) > tp->packets_out) { 1944 tp->sacked_out = tp->packets_out - holes; 1945 return 1; 1946 } 1947 return 0; 1948 } 1949 1950 /* If we receive more dupacks than we expected counting segments 1951 * in assumption of absent reordering, interpret this as reordering. 1952 * The only another reason could be bug in receiver TCP. 1953 */ 1954 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1955 { 1956 struct tcp_sock *tp = tcp_sk(sk); 1957 if (tcp_limit_reno_sacked(tp)) 1958 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1959 } 1960 1961 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1962 1963 static void tcp_add_reno_sack(struct sock *sk) 1964 { 1965 struct tcp_sock *tp = tcp_sk(sk); 1966 tp->sacked_out++; 1967 tcp_check_reno_reordering(sk, 0); 1968 tcp_verify_left_out(tp); 1969 } 1970 1971 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1972 1973 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1974 { 1975 struct tcp_sock *tp = tcp_sk(sk); 1976 1977 if (acked > 0) { 1978 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1979 if (acked - 1 >= tp->sacked_out) 1980 tp->sacked_out = 0; 1981 else 1982 tp->sacked_out -= acked - 1; 1983 } 1984 tcp_check_reno_reordering(sk, acked); 1985 tcp_verify_left_out(tp); 1986 } 1987 1988 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1989 { 1990 tp->sacked_out = 0; 1991 } 1992 1993 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1994 { 1995 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1996 } 1997 1998 /* F-RTO can only be used if TCP has never retransmitted anything other than 1999 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 2000 */ 2001 int tcp_use_frto(struct sock *sk) 2002 { 2003 const struct tcp_sock *tp = tcp_sk(sk); 2004 const struct inet_connection_sock *icsk = inet_csk(sk); 2005 struct sk_buff *skb; 2006 2007 if (!sysctl_tcp_frto) 2008 return 0; 2009 2010 /* MTU probe and F-RTO won't really play nicely along currently */ 2011 if (icsk->icsk_mtup.probe_size) 2012 return 0; 2013 2014 if (tcp_is_sackfrto(tp)) 2015 return 1; 2016 2017 /* Avoid expensive walking of rexmit queue if possible */ 2018 if (tp->retrans_out > 1) 2019 return 0; 2020 2021 skb = tcp_write_queue_head(sk); 2022 if (tcp_skb_is_last(sk, skb)) 2023 return 1; 2024 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2025 tcp_for_write_queue_from(skb, sk) { 2026 if (skb == tcp_send_head(sk)) 2027 break; 2028 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2029 return 0; 2030 /* Short-circuit when first non-SACKed skb has been checked */ 2031 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2032 break; 2033 } 2034 return 1; 2035 } 2036 2037 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2038 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2039 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2040 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2041 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2042 * bits are handled if the Loss state is really to be entered (in 2043 * tcp_enter_frto_loss). 2044 * 2045 * Do like tcp_enter_loss() would; when RTO expires the second time it 2046 * does: 2047 * "Reduce ssthresh if it has not yet been made inside this window." 2048 */ 2049 void tcp_enter_frto(struct sock *sk) 2050 { 2051 const struct inet_connection_sock *icsk = inet_csk(sk); 2052 struct tcp_sock *tp = tcp_sk(sk); 2053 struct sk_buff *skb; 2054 2055 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2056 tp->snd_una == tp->high_seq || 2057 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2058 !icsk->icsk_retransmits)) { 2059 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2060 /* Our state is too optimistic in ssthresh() call because cwnd 2061 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2062 * recovery has not yet completed. Pattern would be this: RTO, 2063 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2064 * up here twice). 2065 * RFC4138 should be more specific on what to do, even though 2066 * RTO is quite unlikely to occur after the first Cumulative ACK 2067 * due to back-off and complexity of triggering events ... 2068 */ 2069 if (tp->frto_counter) { 2070 u32 stored_cwnd; 2071 stored_cwnd = tp->snd_cwnd; 2072 tp->snd_cwnd = 2; 2073 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2074 tp->snd_cwnd = stored_cwnd; 2075 } else { 2076 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2077 } 2078 /* ... in theory, cong.control module could do "any tricks" in 2079 * ssthresh(), which means that ca_state, lost bits and lost_out 2080 * counter would have to be faked before the call occurs. We 2081 * consider that too expensive, unlikely and hacky, so modules 2082 * using these in ssthresh() must deal these incompatibility 2083 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2084 */ 2085 tcp_ca_event(sk, CA_EVENT_FRTO); 2086 } 2087 2088 tp->undo_marker = tp->snd_una; 2089 tp->undo_retrans = 0; 2090 2091 skb = tcp_write_queue_head(sk); 2092 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2093 tp->undo_marker = 0; 2094 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2095 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2096 tp->retrans_out -= tcp_skb_pcount(skb); 2097 } 2098 tcp_verify_left_out(tp); 2099 2100 /* Too bad if TCP was application limited */ 2101 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2102 2103 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2104 * The last condition is necessary at least in tp->frto_counter case. 2105 */ 2106 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2107 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2108 after(tp->high_seq, tp->snd_una)) { 2109 tp->frto_highmark = tp->high_seq; 2110 } else { 2111 tp->frto_highmark = tp->snd_nxt; 2112 } 2113 tcp_set_ca_state(sk, TCP_CA_Disorder); 2114 tp->high_seq = tp->snd_nxt; 2115 tp->frto_counter = 1; 2116 } 2117 2118 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2119 * which indicates that we should follow the traditional RTO recovery, 2120 * i.e. mark everything lost and do go-back-N retransmission. 2121 */ 2122 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2123 { 2124 struct tcp_sock *tp = tcp_sk(sk); 2125 struct sk_buff *skb; 2126 2127 tp->lost_out = 0; 2128 tp->retrans_out = 0; 2129 if (tcp_is_reno(tp)) 2130 tcp_reset_reno_sack(tp); 2131 2132 tcp_for_write_queue(skb, sk) { 2133 if (skb == tcp_send_head(sk)) 2134 break; 2135 2136 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2137 /* 2138 * Count the retransmission made on RTO correctly (only when 2139 * waiting for the first ACK and did not get it)... 2140 */ 2141 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2142 /* For some reason this R-bit might get cleared? */ 2143 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2144 tp->retrans_out += tcp_skb_pcount(skb); 2145 /* ...enter this if branch just for the first segment */ 2146 flag |= FLAG_DATA_ACKED; 2147 } else { 2148 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2149 tp->undo_marker = 0; 2150 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2151 } 2152 2153 /* Marking forward transmissions that were made after RTO lost 2154 * can cause unnecessary retransmissions in some scenarios, 2155 * SACK blocks will mitigate that in some but not in all cases. 2156 * We used to not mark them but it was causing break-ups with 2157 * receivers that do only in-order receival. 2158 * 2159 * TODO: we could detect presence of such receiver and select 2160 * different behavior per flow. 2161 */ 2162 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2163 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2164 tp->lost_out += tcp_skb_pcount(skb); 2165 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2166 } 2167 } 2168 tcp_verify_left_out(tp); 2169 2170 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2171 tp->snd_cwnd_cnt = 0; 2172 tp->snd_cwnd_stamp = tcp_time_stamp; 2173 tp->frto_counter = 0; 2174 tp->bytes_acked = 0; 2175 2176 tp->reordering = min_t(unsigned int, tp->reordering, 2177 sysctl_tcp_reordering); 2178 tcp_set_ca_state(sk, TCP_CA_Loss); 2179 tp->high_seq = tp->snd_nxt; 2180 TCP_ECN_queue_cwr(tp); 2181 2182 tcp_clear_all_retrans_hints(tp); 2183 } 2184 2185 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2186 { 2187 tp->retrans_out = 0; 2188 tp->lost_out = 0; 2189 2190 tp->undo_marker = 0; 2191 tp->undo_retrans = 0; 2192 } 2193 2194 void tcp_clear_retrans(struct tcp_sock *tp) 2195 { 2196 tcp_clear_retrans_partial(tp); 2197 2198 tp->fackets_out = 0; 2199 tp->sacked_out = 0; 2200 } 2201 2202 /* Enter Loss state. If "how" is not zero, forget all SACK information 2203 * and reset tags completely, otherwise preserve SACKs. If receiver 2204 * dropped its ofo queue, we will know this due to reneging detection. 2205 */ 2206 void tcp_enter_loss(struct sock *sk, int how) 2207 { 2208 const struct inet_connection_sock *icsk = inet_csk(sk); 2209 struct tcp_sock *tp = tcp_sk(sk); 2210 struct sk_buff *skb; 2211 2212 /* Reduce ssthresh if it has not yet been made inside this window. */ 2213 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2214 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2215 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2216 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2217 tcp_ca_event(sk, CA_EVENT_LOSS); 2218 } 2219 tp->snd_cwnd = 1; 2220 tp->snd_cwnd_cnt = 0; 2221 tp->snd_cwnd_stamp = tcp_time_stamp; 2222 2223 tp->bytes_acked = 0; 2224 tcp_clear_retrans_partial(tp); 2225 2226 if (tcp_is_reno(tp)) 2227 tcp_reset_reno_sack(tp); 2228 2229 if (!how) { 2230 /* Push undo marker, if it was plain RTO and nothing 2231 * was retransmitted. */ 2232 tp->undo_marker = tp->snd_una; 2233 } else { 2234 tp->sacked_out = 0; 2235 tp->fackets_out = 0; 2236 } 2237 tcp_clear_all_retrans_hints(tp); 2238 2239 tcp_for_write_queue(skb, sk) { 2240 if (skb == tcp_send_head(sk)) 2241 break; 2242 2243 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2244 tp->undo_marker = 0; 2245 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2246 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2247 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2248 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2249 tp->lost_out += tcp_skb_pcount(skb); 2250 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2251 } 2252 } 2253 tcp_verify_left_out(tp); 2254 2255 tp->reordering = min_t(unsigned int, tp->reordering, 2256 sysctl_tcp_reordering); 2257 tcp_set_ca_state(sk, TCP_CA_Loss); 2258 tp->high_seq = tp->snd_nxt; 2259 TCP_ECN_queue_cwr(tp); 2260 /* Abort F-RTO algorithm if one is in progress */ 2261 tp->frto_counter = 0; 2262 } 2263 2264 /* If ACK arrived pointing to a remembered SACK, it means that our 2265 * remembered SACKs do not reflect real state of receiver i.e. 2266 * receiver _host_ is heavily congested (or buggy). 2267 * 2268 * Do processing similar to RTO timeout. 2269 */ 2270 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2271 { 2272 if (flag & FLAG_SACK_RENEGING) { 2273 struct inet_connection_sock *icsk = inet_csk(sk); 2274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2275 2276 tcp_enter_loss(sk, 1); 2277 icsk->icsk_retransmits++; 2278 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2279 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2280 icsk->icsk_rto, TCP_RTO_MAX); 2281 return 1; 2282 } 2283 return 0; 2284 } 2285 2286 static inline int tcp_fackets_out(struct tcp_sock *tp) 2287 { 2288 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2289 } 2290 2291 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2292 * counter when SACK is enabled (without SACK, sacked_out is used for 2293 * that purpose). 2294 * 2295 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2296 * segments up to the highest received SACK block so far and holes in 2297 * between them. 2298 * 2299 * With reordering, holes may still be in flight, so RFC3517 recovery 2300 * uses pure sacked_out (total number of SACKed segments) even though 2301 * it violates the RFC that uses duplicate ACKs, often these are equal 2302 * but when e.g. out-of-window ACKs or packet duplication occurs, 2303 * they differ. Since neither occurs due to loss, TCP should really 2304 * ignore them. 2305 */ 2306 static inline int tcp_dupack_heurestics(struct tcp_sock *tp) 2307 { 2308 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2309 } 2310 2311 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2312 { 2313 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 2314 } 2315 2316 static inline int tcp_head_timedout(struct sock *sk) 2317 { 2318 struct tcp_sock *tp = tcp_sk(sk); 2319 2320 return tp->packets_out && 2321 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2322 } 2323 2324 /* Linux NewReno/SACK/FACK/ECN state machine. 2325 * -------------------------------------- 2326 * 2327 * "Open" Normal state, no dubious events, fast path. 2328 * "Disorder" In all the respects it is "Open", 2329 * but requires a bit more attention. It is entered when 2330 * we see some SACKs or dupacks. It is split of "Open" 2331 * mainly to move some processing from fast path to slow one. 2332 * "CWR" CWND was reduced due to some Congestion Notification event. 2333 * It can be ECN, ICMP source quench, local device congestion. 2334 * "Recovery" CWND was reduced, we are fast-retransmitting. 2335 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2336 * 2337 * tcp_fastretrans_alert() is entered: 2338 * - each incoming ACK, if state is not "Open" 2339 * - when arrived ACK is unusual, namely: 2340 * * SACK 2341 * * Duplicate ACK. 2342 * * ECN ECE. 2343 * 2344 * Counting packets in flight is pretty simple. 2345 * 2346 * in_flight = packets_out - left_out + retrans_out 2347 * 2348 * packets_out is SND.NXT-SND.UNA counted in packets. 2349 * 2350 * retrans_out is number of retransmitted segments. 2351 * 2352 * left_out is number of segments left network, but not ACKed yet. 2353 * 2354 * left_out = sacked_out + lost_out 2355 * 2356 * sacked_out: Packets, which arrived to receiver out of order 2357 * and hence not ACKed. With SACKs this number is simply 2358 * amount of SACKed data. Even without SACKs 2359 * it is easy to give pretty reliable estimate of this number, 2360 * counting duplicate ACKs. 2361 * 2362 * lost_out: Packets lost by network. TCP has no explicit 2363 * "loss notification" feedback from network (for now). 2364 * It means that this number can be only _guessed_. 2365 * Actually, it is the heuristics to predict lossage that 2366 * distinguishes different algorithms. 2367 * 2368 * F.e. after RTO, when all the queue is considered as lost, 2369 * lost_out = packets_out and in_flight = retrans_out. 2370 * 2371 * Essentially, we have now two algorithms counting 2372 * lost packets. 2373 * 2374 * FACK: It is the simplest heuristics. As soon as we decided 2375 * that something is lost, we decide that _all_ not SACKed 2376 * packets until the most forward SACK are lost. I.e. 2377 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2378 * It is absolutely correct estimate, if network does not reorder 2379 * packets. And it loses any connection to reality when reordering 2380 * takes place. We use FACK by default until reordering 2381 * is suspected on the path to this destination. 2382 * 2383 * NewReno: when Recovery is entered, we assume that one segment 2384 * is lost (classic Reno). While we are in Recovery and 2385 * a partial ACK arrives, we assume that one more packet 2386 * is lost (NewReno). This heuristics are the same in NewReno 2387 * and SACK. 2388 * 2389 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2390 * deflation etc. CWND is real congestion window, never inflated, changes 2391 * only according to classic VJ rules. 2392 * 2393 * Really tricky (and requiring careful tuning) part of algorithm 2394 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2395 * The first determines the moment _when_ we should reduce CWND and, 2396 * hence, slow down forward transmission. In fact, it determines the moment 2397 * when we decide that hole is caused by loss, rather than by a reorder. 2398 * 2399 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2400 * holes, caused by lost packets. 2401 * 2402 * And the most logically complicated part of algorithm is undo 2403 * heuristics. We detect false retransmits due to both too early 2404 * fast retransmit (reordering) and underestimated RTO, analyzing 2405 * timestamps and D-SACKs. When we detect that some segments were 2406 * retransmitted by mistake and CWND reduction was wrong, we undo 2407 * window reduction and abort recovery phase. This logic is hidden 2408 * inside several functions named tcp_try_undo_<something>. 2409 */ 2410 2411 /* This function decides, when we should leave Disordered state 2412 * and enter Recovery phase, reducing congestion window. 2413 * 2414 * Main question: may we further continue forward transmission 2415 * with the same cwnd? 2416 */ 2417 static int tcp_time_to_recover(struct sock *sk) 2418 { 2419 struct tcp_sock *tp = tcp_sk(sk); 2420 __u32 packets_out; 2421 2422 /* Do not perform any recovery during F-RTO algorithm */ 2423 if (tp->frto_counter) 2424 return 0; 2425 2426 /* Trick#1: The loss is proven. */ 2427 if (tp->lost_out) 2428 return 1; 2429 2430 /* Not-A-Trick#2 : Classic rule... */ 2431 if (tcp_dupack_heurestics(tp) > tp->reordering) 2432 return 1; 2433 2434 /* Trick#3 : when we use RFC2988 timer restart, fast 2435 * retransmit can be triggered by timeout of queue head. 2436 */ 2437 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2438 return 1; 2439 2440 /* Trick#4: It is still not OK... But will it be useful to delay 2441 * recovery more? 2442 */ 2443 packets_out = tp->packets_out; 2444 if (packets_out <= tp->reordering && 2445 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2446 !tcp_may_send_now(sk)) { 2447 /* We have nothing to send. This connection is limited 2448 * either by receiver window or by application. 2449 */ 2450 return 1; 2451 } 2452 2453 return 0; 2454 } 2455 2456 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2457 * is against sacked "cnt", otherwise it's against facked "cnt" 2458 */ 2459 static void tcp_mark_head_lost(struct sock *sk, int packets) 2460 { 2461 struct tcp_sock *tp = tcp_sk(sk); 2462 struct sk_buff *skb; 2463 int cnt, oldcnt; 2464 int err; 2465 unsigned int mss; 2466 2467 WARN_ON(packets > tp->packets_out); 2468 if (tp->lost_skb_hint) { 2469 skb = tp->lost_skb_hint; 2470 cnt = tp->lost_cnt_hint; 2471 } else { 2472 skb = tcp_write_queue_head(sk); 2473 cnt = 0; 2474 } 2475 2476 tcp_for_write_queue_from(skb, sk) { 2477 if (skb == tcp_send_head(sk)) 2478 break; 2479 /* TODO: do this better */ 2480 /* this is not the most efficient way to do this... */ 2481 tp->lost_skb_hint = skb; 2482 tp->lost_cnt_hint = cnt; 2483 2484 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2485 break; 2486 2487 oldcnt = cnt; 2488 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2489 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2490 cnt += tcp_skb_pcount(skb); 2491 2492 if (cnt > packets) { 2493 if (tcp_is_sack(tp) || (oldcnt >= packets)) 2494 break; 2495 2496 mss = skb_shinfo(skb)->gso_size; 2497 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2498 if (err < 0) 2499 break; 2500 cnt = packets; 2501 } 2502 2503 tcp_skb_mark_lost(tp, skb); 2504 } 2505 tcp_verify_left_out(tp); 2506 } 2507 2508 /* Account newly detected lost packet(s) */ 2509 2510 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2511 { 2512 struct tcp_sock *tp = tcp_sk(sk); 2513 2514 if (tcp_is_reno(tp)) { 2515 tcp_mark_head_lost(sk, 1); 2516 } else if (tcp_is_fack(tp)) { 2517 int lost = tp->fackets_out - tp->reordering; 2518 if (lost <= 0) 2519 lost = 1; 2520 tcp_mark_head_lost(sk, lost); 2521 } else { 2522 int sacked_upto = tp->sacked_out - tp->reordering; 2523 if (sacked_upto < fast_rexmit) 2524 sacked_upto = fast_rexmit; 2525 tcp_mark_head_lost(sk, sacked_upto); 2526 } 2527 2528 /* New heuristics: it is possible only after we switched 2529 * to restart timer each time when something is ACKed. 2530 * Hence, we can detect timed out packets during fast 2531 * retransmit without falling to slow start. 2532 */ 2533 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) { 2534 struct sk_buff *skb; 2535 2536 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 2537 : tcp_write_queue_head(sk); 2538 2539 tcp_for_write_queue_from(skb, sk) { 2540 if (skb == tcp_send_head(sk)) 2541 break; 2542 if (!tcp_skb_timedout(sk, skb)) 2543 break; 2544 2545 tcp_skb_mark_lost(tp, skb); 2546 } 2547 2548 tp->scoreboard_skb_hint = skb; 2549 2550 tcp_verify_left_out(tp); 2551 } 2552 } 2553 2554 /* CWND moderation, preventing bursts due to too big ACKs 2555 * in dubious situations. 2556 */ 2557 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2558 { 2559 tp->snd_cwnd = min(tp->snd_cwnd, 2560 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2561 tp->snd_cwnd_stamp = tcp_time_stamp; 2562 } 2563 2564 /* Lower bound on congestion window is slow start threshold 2565 * unless congestion avoidance choice decides to overide it. 2566 */ 2567 static inline u32 tcp_cwnd_min(const struct sock *sk) 2568 { 2569 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2570 2571 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2572 } 2573 2574 /* Decrease cwnd each second ack. */ 2575 static void tcp_cwnd_down(struct sock *sk, int flag) 2576 { 2577 struct tcp_sock *tp = tcp_sk(sk); 2578 int decr = tp->snd_cwnd_cnt + 1; 2579 2580 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2581 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2582 tp->snd_cwnd_cnt = decr & 1; 2583 decr >>= 1; 2584 2585 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2586 tp->snd_cwnd -= decr; 2587 2588 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2589 tp->snd_cwnd_stamp = tcp_time_stamp; 2590 } 2591 } 2592 2593 /* Nothing was retransmitted or returned timestamp is less 2594 * than timestamp of the first retransmission. 2595 */ 2596 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2597 { 2598 return !tp->retrans_stamp || 2599 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2600 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2601 } 2602 2603 /* Undo procedures. */ 2604 2605 #if FASTRETRANS_DEBUG > 1 2606 static void DBGUNDO(struct sock *sk, const char *msg) 2607 { 2608 struct tcp_sock *tp = tcp_sk(sk); 2609 struct inet_sock *inet = inet_sk(sk); 2610 2611 if (sk->sk_family == AF_INET) { 2612 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2613 msg, 2614 &inet->daddr, ntohs(inet->dport), 2615 tp->snd_cwnd, tcp_left_out(tp), 2616 tp->snd_ssthresh, tp->prior_ssthresh, 2617 tp->packets_out); 2618 } 2619 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2620 else if (sk->sk_family == AF_INET6) { 2621 struct ipv6_pinfo *np = inet6_sk(sk); 2622 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2623 msg, 2624 &np->daddr, ntohs(inet->dport), 2625 tp->snd_cwnd, tcp_left_out(tp), 2626 tp->snd_ssthresh, tp->prior_ssthresh, 2627 tp->packets_out); 2628 } 2629 #endif 2630 } 2631 #else 2632 #define DBGUNDO(x...) do { } while (0) 2633 #endif 2634 2635 static void tcp_undo_cwr(struct sock *sk, const int undo) 2636 { 2637 struct tcp_sock *tp = tcp_sk(sk); 2638 2639 if (tp->prior_ssthresh) { 2640 const struct inet_connection_sock *icsk = inet_csk(sk); 2641 2642 if (icsk->icsk_ca_ops->undo_cwnd) 2643 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2644 else 2645 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2646 2647 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2648 tp->snd_ssthresh = tp->prior_ssthresh; 2649 TCP_ECN_withdraw_cwr(tp); 2650 } 2651 } else { 2652 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2653 } 2654 tcp_moderate_cwnd(tp); 2655 tp->snd_cwnd_stamp = tcp_time_stamp; 2656 } 2657 2658 static inline int tcp_may_undo(struct tcp_sock *tp) 2659 { 2660 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2661 } 2662 2663 /* People celebrate: "We love our President!" */ 2664 static int tcp_try_undo_recovery(struct sock *sk) 2665 { 2666 struct tcp_sock *tp = tcp_sk(sk); 2667 2668 if (tcp_may_undo(tp)) { 2669 int mib_idx; 2670 2671 /* Happy end! We did not retransmit anything 2672 * or our original transmission succeeded. 2673 */ 2674 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2675 tcp_undo_cwr(sk, 1); 2676 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2677 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2678 else 2679 mib_idx = LINUX_MIB_TCPFULLUNDO; 2680 2681 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2682 tp->undo_marker = 0; 2683 } 2684 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2685 /* Hold old state until something *above* high_seq 2686 * is ACKed. For Reno it is MUST to prevent false 2687 * fast retransmits (RFC2582). SACK TCP is safe. */ 2688 tcp_moderate_cwnd(tp); 2689 return 1; 2690 } 2691 tcp_set_ca_state(sk, TCP_CA_Open); 2692 return 0; 2693 } 2694 2695 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2696 static void tcp_try_undo_dsack(struct sock *sk) 2697 { 2698 struct tcp_sock *tp = tcp_sk(sk); 2699 2700 if (tp->undo_marker && !tp->undo_retrans) { 2701 DBGUNDO(sk, "D-SACK"); 2702 tcp_undo_cwr(sk, 1); 2703 tp->undo_marker = 0; 2704 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2705 } 2706 } 2707 2708 /* Undo during fast recovery after partial ACK. */ 2709 2710 static int tcp_try_undo_partial(struct sock *sk, int acked) 2711 { 2712 struct tcp_sock *tp = tcp_sk(sk); 2713 /* Partial ACK arrived. Force Hoe's retransmit. */ 2714 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2715 2716 if (tcp_may_undo(tp)) { 2717 /* Plain luck! Hole if filled with delayed 2718 * packet, rather than with a retransmit. 2719 */ 2720 if (tp->retrans_out == 0) 2721 tp->retrans_stamp = 0; 2722 2723 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2724 2725 DBGUNDO(sk, "Hoe"); 2726 tcp_undo_cwr(sk, 0); 2727 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2728 2729 /* So... Do not make Hoe's retransmit yet. 2730 * If the first packet was delayed, the rest 2731 * ones are most probably delayed as well. 2732 */ 2733 failed = 0; 2734 } 2735 return failed; 2736 } 2737 2738 /* Undo during loss recovery after partial ACK. */ 2739 static int tcp_try_undo_loss(struct sock *sk) 2740 { 2741 struct tcp_sock *tp = tcp_sk(sk); 2742 2743 if (tcp_may_undo(tp)) { 2744 struct sk_buff *skb; 2745 tcp_for_write_queue(skb, sk) { 2746 if (skb == tcp_send_head(sk)) 2747 break; 2748 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2749 } 2750 2751 tcp_clear_all_retrans_hints(tp); 2752 2753 DBGUNDO(sk, "partial loss"); 2754 tp->lost_out = 0; 2755 tcp_undo_cwr(sk, 1); 2756 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2757 inet_csk(sk)->icsk_retransmits = 0; 2758 tp->undo_marker = 0; 2759 if (tcp_is_sack(tp)) 2760 tcp_set_ca_state(sk, TCP_CA_Open); 2761 return 1; 2762 } 2763 return 0; 2764 } 2765 2766 static inline void tcp_complete_cwr(struct sock *sk) 2767 { 2768 struct tcp_sock *tp = tcp_sk(sk); 2769 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2770 tp->snd_cwnd_stamp = tcp_time_stamp; 2771 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2772 } 2773 2774 static void tcp_try_keep_open(struct sock *sk) 2775 { 2776 struct tcp_sock *tp = tcp_sk(sk); 2777 int state = TCP_CA_Open; 2778 2779 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker) 2780 state = TCP_CA_Disorder; 2781 2782 if (inet_csk(sk)->icsk_ca_state != state) { 2783 tcp_set_ca_state(sk, state); 2784 tp->high_seq = tp->snd_nxt; 2785 } 2786 } 2787 2788 static void tcp_try_to_open(struct sock *sk, int flag) 2789 { 2790 struct tcp_sock *tp = tcp_sk(sk); 2791 2792 tcp_verify_left_out(tp); 2793 2794 if (!tp->frto_counter && tp->retrans_out == 0) 2795 tp->retrans_stamp = 0; 2796 2797 if (flag & FLAG_ECE) 2798 tcp_enter_cwr(sk, 1); 2799 2800 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2801 tcp_try_keep_open(sk); 2802 tcp_moderate_cwnd(tp); 2803 } else { 2804 tcp_cwnd_down(sk, flag); 2805 } 2806 } 2807 2808 static void tcp_mtup_probe_failed(struct sock *sk) 2809 { 2810 struct inet_connection_sock *icsk = inet_csk(sk); 2811 2812 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2813 icsk->icsk_mtup.probe_size = 0; 2814 } 2815 2816 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 2817 { 2818 struct tcp_sock *tp = tcp_sk(sk); 2819 struct inet_connection_sock *icsk = inet_csk(sk); 2820 2821 /* FIXME: breaks with very large cwnd */ 2822 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2823 tp->snd_cwnd = tp->snd_cwnd * 2824 tcp_mss_to_mtu(sk, tp->mss_cache) / 2825 icsk->icsk_mtup.probe_size; 2826 tp->snd_cwnd_cnt = 0; 2827 tp->snd_cwnd_stamp = tcp_time_stamp; 2828 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2829 2830 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2831 icsk->icsk_mtup.probe_size = 0; 2832 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2833 } 2834 2835 /* Do a simple retransmit without using the backoff mechanisms in 2836 * tcp_timer. This is used for path mtu discovery. 2837 * The socket is already locked here. 2838 */ 2839 void tcp_simple_retransmit(struct sock *sk) 2840 { 2841 const struct inet_connection_sock *icsk = inet_csk(sk); 2842 struct tcp_sock *tp = tcp_sk(sk); 2843 struct sk_buff *skb; 2844 unsigned int mss = tcp_current_mss(sk, 0); 2845 u32 prior_lost = tp->lost_out; 2846 2847 tcp_for_write_queue(skb, sk) { 2848 if (skb == tcp_send_head(sk)) 2849 break; 2850 if (tcp_skb_seglen(skb) > mss && 2851 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2852 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2853 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2854 tp->retrans_out -= tcp_skb_pcount(skb); 2855 } 2856 tcp_skb_mark_lost_uncond_verify(tp, skb); 2857 } 2858 } 2859 2860 tcp_clear_retrans_hints_partial(tp); 2861 2862 if (prior_lost == tp->lost_out) 2863 return; 2864 2865 if (tcp_is_reno(tp)) 2866 tcp_limit_reno_sacked(tp); 2867 2868 tcp_verify_left_out(tp); 2869 2870 /* Don't muck with the congestion window here. 2871 * Reason is that we do not increase amount of _data_ 2872 * in network, but units changed and effective 2873 * cwnd/ssthresh really reduced now. 2874 */ 2875 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2876 tp->high_seq = tp->snd_nxt; 2877 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2878 tp->prior_ssthresh = 0; 2879 tp->undo_marker = 0; 2880 tcp_set_ca_state(sk, TCP_CA_Loss); 2881 } 2882 tcp_xmit_retransmit_queue(sk); 2883 } 2884 2885 /* Process an event, which can update packets-in-flight not trivially. 2886 * Main goal of this function is to calculate new estimate for left_out, 2887 * taking into account both packets sitting in receiver's buffer and 2888 * packets lost by network. 2889 * 2890 * Besides that it does CWND reduction, when packet loss is detected 2891 * and changes state of machine. 2892 * 2893 * It does _not_ decide what to send, it is made in function 2894 * tcp_xmit_retransmit_queue(). 2895 */ 2896 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2897 { 2898 struct inet_connection_sock *icsk = inet_csk(sk); 2899 struct tcp_sock *tp = tcp_sk(sk); 2900 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2901 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2902 (tcp_fackets_out(tp) > tp->reordering)); 2903 int fast_rexmit = 0, mib_idx; 2904 2905 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2906 tp->sacked_out = 0; 2907 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2908 tp->fackets_out = 0; 2909 2910 /* Now state machine starts. 2911 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2912 if (flag & FLAG_ECE) 2913 tp->prior_ssthresh = 0; 2914 2915 /* B. In all the states check for reneging SACKs. */ 2916 if (tcp_check_sack_reneging(sk, flag)) 2917 return; 2918 2919 /* C. Process data loss notification, provided it is valid. */ 2920 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2921 before(tp->snd_una, tp->high_seq) && 2922 icsk->icsk_ca_state != TCP_CA_Open && 2923 tp->fackets_out > tp->reordering) { 2924 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering); 2925 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2926 } 2927 2928 /* D. Check consistency of the current state. */ 2929 tcp_verify_left_out(tp); 2930 2931 /* E. Check state exit conditions. State can be terminated 2932 * when high_seq is ACKed. */ 2933 if (icsk->icsk_ca_state == TCP_CA_Open) { 2934 WARN_ON(tp->retrans_out != 0); 2935 tp->retrans_stamp = 0; 2936 } else if (!before(tp->snd_una, tp->high_seq)) { 2937 switch (icsk->icsk_ca_state) { 2938 case TCP_CA_Loss: 2939 icsk->icsk_retransmits = 0; 2940 if (tcp_try_undo_recovery(sk)) 2941 return; 2942 break; 2943 2944 case TCP_CA_CWR: 2945 /* CWR is to be held something *above* high_seq 2946 * is ACKed for CWR bit to reach receiver. */ 2947 if (tp->snd_una != tp->high_seq) { 2948 tcp_complete_cwr(sk); 2949 tcp_set_ca_state(sk, TCP_CA_Open); 2950 } 2951 break; 2952 2953 case TCP_CA_Disorder: 2954 tcp_try_undo_dsack(sk); 2955 if (!tp->undo_marker || 2956 /* For SACK case do not Open to allow to undo 2957 * catching for all duplicate ACKs. */ 2958 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 2959 tp->undo_marker = 0; 2960 tcp_set_ca_state(sk, TCP_CA_Open); 2961 } 2962 break; 2963 2964 case TCP_CA_Recovery: 2965 if (tcp_is_reno(tp)) 2966 tcp_reset_reno_sack(tp); 2967 if (tcp_try_undo_recovery(sk)) 2968 return; 2969 tcp_complete_cwr(sk); 2970 break; 2971 } 2972 } 2973 2974 /* F. Process state. */ 2975 switch (icsk->icsk_ca_state) { 2976 case TCP_CA_Recovery: 2977 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2978 if (tcp_is_reno(tp) && is_dupack) 2979 tcp_add_reno_sack(sk); 2980 } else 2981 do_lost = tcp_try_undo_partial(sk, pkts_acked); 2982 break; 2983 case TCP_CA_Loss: 2984 if (flag & FLAG_DATA_ACKED) 2985 icsk->icsk_retransmits = 0; 2986 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 2987 tcp_reset_reno_sack(tp); 2988 if (!tcp_try_undo_loss(sk)) { 2989 tcp_moderate_cwnd(tp); 2990 tcp_xmit_retransmit_queue(sk); 2991 return; 2992 } 2993 if (icsk->icsk_ca_state != TCP_CA_Open) 2994 return; 2995 /* Loss is undone; fall through to processing in Open state. */ 2996 default: 2997 if (tcp_is_reno(tp)) { 2998 if (flag & FLAG_SND_UNA_ADVANCED) 2999 tcp_reset_reno_sack(tp); 3000 if (is_dupack) 3001 tcp_add_reno_sack(sk); 3002 } 3003 3004 if (icsk->icsk_ca_state == TCP_CA_Disorder) 3005 tcp_try_undo_dsack(sk); 3006 3007 if (!tcp_time_to_recover(sk)) { 3008 tcp_try_to_open(sk, flag); 3009 return; 3010 } 3011 3012 /* MTU probe failure: don't reduce cwnd */ 3013 if (icsk->icsk_ca_state < TCP_CA_CWR && 3014 icsk->icsk_mtup.probe_size && 3015 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3016 tcp_mtup_probe_failed(sk); 3017 /* Restores the reduction we did in tcp_mtup_probe() */ 3018 tp->snd_cwnd++; 3019 tcp_simple_retransmit(sk); 3020 return; 3021 } 3022 3023 /* Otherwise enter Recovery state */ 3024 3025 if (tcp_is_reno(tp)) 3026 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3027 else 3028 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3029 3030 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3031 3032 tp->high_seq = tp->snd_nxt; 3033 tp->prior_ssthresh = 0; 3034 tp->undo_marker = tp->snd_una; 3035 tp->undo_retrans = tp->retrans_out; 3036 3037 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3038 if (!(flag & FLAG_ECE)) 3039 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3040 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3041 TCP_ECN_queue_cwr(tp); 3042 } 3043 3044 tp->bytes_acked = 0; 3045 tp->snd_cwnd_cnt = 0; 3046 tcp_set_ca_state(sk, TCP_CA_Recovery); 3047 fast_rexmit = 1; 3048 } 3049 3050 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3051 tcp_update_scoreboard(sk, fast_rexmit); 3052 tcp_cwnd_down(sk, flag); 3053 tcp_xmit_retransmit_queue(sk); 3054 } 3055 3056 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3057 { 3058 tcp_rtt_estimator(sk, seq_rtt); 3059 tcp_set_rto(sk); 3060 inet_csk(sk)->icsk_backoff = 0; 3061 } 3062 3063 /* Read draft-ietf-tcplw-high-performance before mucking 3064 * with this code. (Supersedes RFC1323) 3065 */ 3066 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3067 { 3068 /* RTTM Rule: A TSecr value received in a segment is used to 3069 * update the averaged RTT measurement only if the segment 3070 * acknowledges some new data, i.e., only if it advances the 3071 * left edge of the send window. 3072 * 3073 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3074 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3075 * 3076 * Changed: reset backoff as soon as we see the first valid sample. 3077 * If we do not, we get strongly overestimated rto. With timestamps 3078 * samples are accepted even from very old segments: f.e., when rtt=1 3079 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3080 * answer arrives rto becomes 120 seconds! If at least one of segments 3081 * in window is lost... Voila. --ANK (010210) 3082 */ 3083 struct tcp_sock *tp = tcp_sk(sk); 3084 3085 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3086 } 3087 3088 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3089 { 3090 /* We don't have a timestamp. Can only use 3091 * packets that are not retransmitted to determine 3092 * rtt estimates. Also, we must not reset the 3093 * backoff for rto until we get a non-retransmitted 3094 * packet. This allows us to deal with a situation 3095 * where the network delay has increased suddenly. 3096 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3097 */ 3098 3099 if (flag & FLAG_RETRANS_DATA_ACKED) 3100 return; 3101 3102 tcp_valid_rtt_meas(sk, seq_rtt); 3103 } 3104 3105 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3106 const s32 seq_rtt) 3107 { 3108 const struct tcp_sock *tp = tcp_sk(sk); 3109 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3110 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3111 tcp_ack_saw_tstamp(sk, flag); 3112 else if (seq_rtt >= 0) 3113 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3114 } 3115 3116 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3117 { 3118 const struct inet_connection_sock *icsk = inet_csk(sk); 3119 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3120 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3121 } 3122 3123 /* Restart timer after forward progress on connection. 3124 * RFC2988 recommends to restart timer to now+rto. 3125 */ 3126 static void tcp_rearm_rto(struct sock *sk) 3127 { 3128 struct tcp_sock *tp = tcp_sk(sk); 3129 3130 if (!tp->packets_out) { 3131 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3132 } else { 3133 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3134 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3135 } 3136 } 3137 3138 /* If we get here, the whole TSO packet has not been acked. */ 3139 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3140 { 3141 struct tcp_sock *tp = tcp_sk(sk); 3142 u32 packets_acked; 3143 3144 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3145 3146 packets_acked = tcp_skb_pcount(skb); 3147 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3148 return 0; 3149 packets_acked -= tcp_skb_pcount(skb); 3150 3151 if (packets_acked) { 3152 BUG_ON(tcp_skb_pcount(skb) == 0); 3153 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3154 } 3155 3156 return packets_acked; 3157 } 3158 3159 /* Remove acknowledged frames from the retransmission queue. If our packet 3160 * is before the ack sequence we can discard it as it's confirmed to have 3161 * arrived at the other end. 3162 */ 3163 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3164 u32 prior_snd_una) 3165 { 3166 struct tcp_sock *tp = tcp_sk(sk); 3167 const struct inet_connection_sock *icsk = inet_csk(sk); 3168 struct sk_buff *skb; 3169 u32 now = tcp_time_stamp; 3170 int fully_acked = 1; 3171 int flag = 0; 3172 u32 pkts_acked = 0; 3173 u32 reord = tp->packets_out; 3174 u32 prior_sacked = tp->sacked_out; 3175 s32 seq_rtt = -1; 3176 s32 ca_seq_rtt = -1; 3177 ktime_t last_ackt = net_invalid_timestamp(); 3178 3179 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3180 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3181 u32 end_seq; 3182 u32 acked_pcount; 3183 u8 sacked = scb->sacked; 3184 3185 /* Determine how many packets and what bytes were acked, tso and else */ 3186 if (after(scb->end_seq, tp->snd_una)) { 3187 if (tcp_skb_pcount(skb) == 1 || 3188 !after(tp->snd_una, scb->seq)) 3189 break; 3190 3191 acked_pcount = tcp_tso_acked(sk, skb); 3192 if (!acked_pcount) 3193 break; 3194 3195 fully_acked = 0; 3196 end_seq = tp->snd_una; 3197 } else { 3198 acked_pcount = tcp_skb_pcount(skb); 3199 end_seq = scb->end_seq; 3200 } 3201 3202 /* MTU probing checks */ 3203 if (fully_acked && icsk->icsk_mtup.probe_size && 3204 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) { 3205 tcp_mtup_probe_success(sk, skb); 3206 } 3207 3208 if (sacked & TCPCB_RETRANS) { 3209 if (sacked & TCPCB_SACKED_RETRANS) 3210 tp->retrans_out -= acked_pcount; 3211 flag |= FLAG_RETRANS_DATA_ACKED; 3212 ca_seq_rtt = -1; 3213 seq_rtt = -1; 3214 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3215 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3216 } else { 3217 ca_seq_rtt = now - scb->when; 3218 last_ackt = skb->tstamp; 3219 if (seq_rtt < 0) { 3220 seq_rtt = ca_seq_rtt; 3221 } 3222 if (!(sacked & TCPCB_SACKED_ACKED)) 3223 reord = min(pkts_acked, reord); 3224 } 3225 3226 if (sacked & TCPCB_SACKED_ACKED) 3227 tp->sacked_out -= acked_pcount; 3228 if (sacked & TCPCB_LOST) 3229 tp->lost_out -= acked_pcount; 3230 3231 tp->packets_out -= acked_pcount; 3232 pkts_acked += acked_pcount; 3233 3234 /* Initial outgoing SYN's get put onto the write_queue 3235 * just like anything else we transmit. It is not 3236 * true data, and if we misinform our callers that 3237 * this ACK acks real data, we will erroneously exit 3238 * connection startup slow start one packet too 3239 * quickly. This is severely frowned upon behavior. 3240 */ 3241 if (!(scb->flags & TCPCB_FLAG_SYN)) { 3242 flag |= FLAG_DATA_ACKED; 3243 } else { 3244 flag |= FLAG_SYN_ACKED; 3245 tp->retrans_stamp = 0; 3246 } 3247 3248 if (!fully_acked) 3249 break; 3250 3251 tcp_unlink_write_queue(skb, sk); 3252 sk_wmem_free_skb(sk, skb); 3253 tp->scoreboard_skb_hint = NULL; 3254 if (skb == tp->retransmit_skb_hint) 3255 tp->retransmit_skb_hint = NULL; 3256 if (skb == tp->lost_skb_hint) 3257 tp->lost_skb_hint = NULL; 3258 } 3259 3260 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3261 tp->snd_up = tp->snd_una; 3262 3263 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3264 flag |= FLAG_SACK_RENEGING; 3265 3266 if (flag & FLAG_ACKED) { 3267 const struct tcp_congestion_ops *ca_ops 3268 = inet_csk(sk)->icsk_ca_ops; 3269 3270 tcp_ack_update_rtt(sk, flag, seq_rtt); 3271 tcp_rearm_rto(sk); 3272 3273 if (tcp_is_reno(tp)) { 3274 tcp_remove_reno_sacks(sk, pkts_acked); 3275 } else { 3276 /* Non-retransmitted hole got filled? That's reordering */ 3277 if (reord < prior_fackets) 3278 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3279 3280 /* No need to care for underflows here because 3281 * the lost_skb_hint gets NULLed if we're past it 3282 * (or something non-trivial happened) 3283 */ 3284 if (tcp_is_fack(tp)) 3285 tp->lost_cnt_hint -= pkts_acked; 3286 else 3287 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out; 3288 } 3289 3290 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3291 3292 if (ca_ops->pkts_acked) { 3293 s32 rtt_us = -1; 3294 3295 /* Is the ACK triggering packet unambiguous? */ 3296 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3297 /* High resolution needed and available? */ 3298 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3299 !ktime_equal(last_ackt, 3300 net_invalid_timestamp())) 3301 rtt_us = ktime_us_delta(ktime_get_real(), 3302 last_ackt); 3303 else if (ca_seq_rtt > 0) 3304 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3305 } 3306 3307 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3308 } 3309 } 3310 3311 #if FASTRETRANS_DEBUG > 0 3312 WARN_ON((int)tp->sacked_out < 0); 3313 WARN_ON((int)tp->lost_out < 0); 3314 WARN_ON((int)tp->retrans_out < 0); 3315 if (!tp->packets_out && tcp_is_sack(tp)) { 3316 icsk = inet_csk(sk); 3317 if (tp->lost_out) { 3318 printk(KERN_DEBUG "Leak l=%u %d\n", 3319 tp->lost_out, icsk->icsk_ca_state); 3320 tp->lost_out = 0; 3321 } 3322 if (tp->sacked_out) { 3323 printk(KERN_DEBUG "Leak s=%u %d\n", 3324 tp->sacked_out, icsk->icsk_ca_state); 3325 tp->sacked_out = 0; 3326 } 3327 if (tp->retrans_out) { 3328 printk(KERN_DEBUG "Leak r=%u %d\n", 3329 tp->retrans_out, icsk->icsk_ca_state); 3330 tp->retrans_out = 0; 3331 } 3332 } 3333 #endif 3334 return flag; 3335 } 3336 3337 static void tcp_ack_probe(struct sock *sk) 3338 { 3339 const struct tcp_sock *tp = tcp_sk(sk); 3340 struct inet_connection_sock *icsk = inet_csk(sk); 3341 3342 /* Was it a usable window open? */ 3343 3344 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3345 icsk->icsk_backoff = 0; 3346 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3347 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3348 * This function is not for random using! 3349 */ 3350 } else { 3351 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3352 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3353 TCP_RTO_MAX); 3354 } 3355 } 3356 3357 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3358 { 3359 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3360 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 3361 } 3362 3363 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3364 { 3365 const struct tcp_sock *tp = tcp_sk(sk); 3366 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3367 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3368 } 3369 3370 /* Check that window update is acceptable. 3371 * The function assumes that snd_una<=ack<=snd_next. 3372 */ 3373 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3374 const u32 ack, const u32 ack_seq, 3375 const u32 nwin) 3376 { 3377 return (after(ack, tp->snd_una) || 3378 after(ack_seq, tp->snd_wl1) || 3379 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 3380 } 3381 3382 /* Update our send window. 3383 * 3384 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3385 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3386 */ 3387 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3388 u32 ack_seq) 3389 { 3390 struct tcp_sock *tp = tcp_sk(sk); 3391 int flag = 0; 3392 u32 nwin = ntohs(tcp_hdr(skb)->window); 3393 3394 if (likely(!tcp_hdr(skb)->syn)) 3395 nwin <<= tp->rx_opt.snd_wscale; 3396 3397 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3398 flag |= FLAG_WIN_UPDATE; 3399 tcp_update_wl(tp, ack, ack_seq); 3400 3401 if (tp->snd_wnd != nwin) { 3402 tp->snd_wnd = nwin; 3403 3404 /* Note, it is the only place, where 3405 * fast path is recovered for sending TCP. 3406 */ 3407 tp->pred_flags = 0; 3408 tcp_fast_path_check(sk); 3409 3410 if (nwin > tp->max_window) { 3411 tp->max_window = nwin; 3412 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3413 } 3414 } 3415 } 3416 3417 tp->snd_una = ack; 3418 3419 return flag; 3420 } 3421 3422 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3423 * continue in congestion avoidance. 3424 */ 3425 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3426 { 3427 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3428 tp->snd_cwnd_cnt = 0; 3429 tp->bytes_acked = 0; 3430 TCP_ECN_queue_cwr(tp); 3431 tcp_moderate_cwnd(tp); 3432 } 3433 3434 /* A conservative spurious RTO response algorithm: reduce cwnd using 3435 * rate halving and continue in congestion avoidance. 3436 */ 3437 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3438 { 3439 tcp_enter_cwr(sk, 0); 3440 } 3441 3442 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3443 { 3444 if (flag & FLAG_ECE) 3445 tcp_ratehalving_spur_to_response(sk); 3446 else 3447 tcp_undo_cwr(sk, 1); 3448 } 3449 3450 /* F-RTO spurious RTO detection algorithm (RFC4138) 3451 * 3452 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3453 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3454 * window (but not to or beyond highest sequence sent before RTO): 3455 * On First ACK, send two new segments out. 3456 * On Second ACK, RTO was likely spurious. Do spurious response (response 3457 * algorithm is not part of the F-RTO detection algorithm 3458 * given in RFC4138 but can be selected separately). 3459 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3460 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3461 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3462 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3463 * 3464 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3465 * original window even after we transmit two new data segments. 3466 * 3467 * SACK version: 3468 * on first step, wait until first cumulative ACK arrives, then move to 3469 * the second step. In second step, the next ACK decides. 3470 * 3471 * F-RTO is implemented (mainly) in four functions: 3472 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3473 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3474 * called when tcp_use_frto() showed green light 3475 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3476 * - tcp_enter_frto_loss() is called if there is not enough evidence 3477 * to prove that the RTO is indeed spurious. It transfers the control 3478 * from F-RTO to the conventional RTO recovery 3479 */ 3480 static int tcp_process_frto(struct sock *sk, int flag) 3481 { 3482 struct tcp_sock *tp = tcp_sk(sk); 3483 3484 tcp_verify_left_out(tp); 3485 3486 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3487 if (flag & FLAG_DATA_ACKED) 3488 inet_csk(sk)->icsk_retransmits = 0; 3489 3490 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3491 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3492 tp->undo_marker = 0; 3493 3494 if (!before(tp->snd_una, tp->frto_highmark)) { 3495 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3496 return 1; 3497 } 3498 3499 if (!tcp_is_sackfrto(tp)) { 3500 /* RFC4138 shortcoming in step 2; should also have case c): 3501 * ACK isn't duplicate nor advances window, e.g., opposite dir 3502 * data, winupdate 3503 */ 3504 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3505 return 1; 3506 3507 if (!(flag & FLAG_DATA_ACKED)) { 3508 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3509 flag); 3510 return 1; 3511 } 3512 } else { 3513 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3514 /* Prevent sending of new data. */ 3515 tp->snd_cwnd = min(tp->snd_cwnd, 3516 tcp_packets_in_flight(tp)); 3517 return 1; 3518 } 3519 3520 if ((tp->frto_counter >= 2) && 3521 (!(flag & FLAG_FORWARD_PROGRESS) || 3522 ((flag & FLAG_DATA_SACKED) && 3523 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3524 /* RFC4138 shortcoming (see comment above) */ 3525 if (!(flag & FLAG_FORWARD_PROGRESS) && 3526 (flag & FLAG_NOT_DUP)) 3527 return 1; 3528 3529 tcp_enter_frto_loss(sk, 3, flag); 3530 return 1; 3531 } 3532 } 3533 3534 if (tp->frto_counter == 1) { 3535 /* tcp_may_send_now needs to see updated state */ 3536 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3537 tp->frto_counter = 2; 3538 3539 if (!tcp_may_send_now(sk)) 3540 tcp_enter_frto_loss(sk, 2, flag); 3541 3542 return 1; 3543 } else { 3544 switch (sysctl_tcp_frto_response) { 3545 case 2: 3546 tcp_undo_spur_to_response(sk, flag); 3547 break; 3548 case 1: 3549 tcp_conservative_spur_to_response(tp); 3550 break; 3551 default: 3552 tcp_ratehalving_spur_to_response(sk); 3553 break; 3554 } 3555 tp->frto_counter = 0; 3556 tp->undo_marker = 0; 3557 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3558 } 3559 return 0; 3560 } 3561 3562 /* This routine deals with incoming acks, but not outgoing ones. */ 3563 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3564 { 3565 struct inet_connection_sock *icsk = inet_csk(sk); 3566 struct tcp_sock *tp = tcp_sk(sk); 3567 u32 prior_snd_una = tp->snd_una; 3568 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3569 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3570 u32 prior_in_flight; 3571 u32 prior_fackets; 3572 int prior_packets; 3573 int frto_cwnd = 0; 3574 3575 /* If the ack is newer than sent or older than previous acks 3576 * then we can probably ignore it. 3577 */ 3578 if (after(ack, tp->snd_nxt)) 3579 goto uninteresting_ack; 3580 3581 if (before(ack, prior_snd_una)) 3582 goto old_ack; 3583 3584 if (after(ack, prior_snd_una)) 3585 flag |= FLAG_SND_UNA_ADVANCED; 3586 3587 if (sysctl_tcp_abc) { 3588 if (icsk->icsk_ca_state < TCP_CA_CWR) 3589 tp->bytes_acked += ack - prior_snd_una; 3590 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3591 /* we assume just one segment left network */ 3592 tp->bytes_acked += min(ack - prior_snd_una, 3593 tp->mss_cache); 3594 } 3595 3596 prior_fackets = tp->fackets_out; 3597 prior_in_flight = tcp_packets_in_flight(tp); 3598 3599 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3600 /* Window is constant, pure forward advance. 3601 * No more checks are required. 3602 * Note, we use the fact that SND.UNA>=SND.WL2. 3603 */ 3604 tcp_update_wl(tp, ack, ack_seq); 3605 tp->snd_una = ack; 3606 flag |= FLAG_WIN_UPDATE; 3607 3608 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3609 3610 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3611 } else { 3612 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3613 flag |= FLAG_DATA; 3614 else 3615 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3616 3617 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3618 3619 if (TCP_SKB_CB(skb)->sacked) 3620 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3621 3622 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3623 flag |= FLAG_ECE; 3624 3625 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3626 } 3627 3628 /* We passed data and got it acked, remove any soft error 3629 * log. Something worked... 3630 */ 3631 sk->sk_err_soft = 0; 3632 icsk->icsk_probes_out = 0; 3633 tp->rcv_tstamp = tcp_time_stamp; 3634 prior_packets = tp->packets_out; 3635 if (!prior_packets) 3636 goto no_queue; 3637 3638 /* See if we can take anything off of the retransmit queue. */ 3639 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3640 3641 if (tp->frto_counter) 3642 frto_cwnd = tcp_process_frto(sk, flag); 3643 /* Guarantee sacktag reordering detection against wrap-arounds */ 3644 if (before(tp->frto_highmark, tp->snd_una)) 3645 tp->frto_highmark = 0; 3646 3647 if (tcp_ack_is_dubious(sk, flag)) { 3648 /* Advance CWND, if state allows this. */ 3649 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3650 tcp_may_raise_cwnd(sk, flag)) 3651 tcp_cong_avoid(sk, ack, prior_in_flight); 3652 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3653 flag); 3654 } else { 3655 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3656 tcp_cong_avoid(sk, ack, prior_in_flight); 3657 } 3658 3659 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3660 dst_confirm(sk->sk_dst_cache); 3661 3662 return 1; 3663 3664 no_queue: 3665 /* If this ack opens up a zero window, clear backoff. It was 3666 * being used to time the probes, and is probably far higher than 3667 * it needs to be for normal retransmission. 3668 */ 3669 if (tcp_send_head(sk)) 3670 tcp_ack_probe(sk); 3671 return 1; 3672 3673 old_ack: 3674 if (TCP_SKB_CB(skb)->sacked) { 3675 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3676 if (icsk->icsk_ca_state == TCP_CA_Open) 3677 tcp_try_keep_open(sk); 3678 } 3679 3680 uninteresting_ack: 3681 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3682 return 0; 3683 } 3684 3685 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3686 * But, this can also be called on packets in the established flow when 3687 * the fast version below fails. 3688 */ 3689 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3690 int estab) 3691 { 3692 unsigned char *ptr; 3693 struct tcphdr *th = tcp_hdr(skb); 3694 int length = (th->doff * 4) - sizeof(struct tcphdr); 3695 3696 ptr = (unsigned char *)(th + 1); 3697 opt_rx->saw_tstamp = 0; 3698 3699 while (length > 0) { 3700 int opcode = *ptr++; 3701 int opsize; 3702 3703 switch (opcode) { 3704 case TCPOPT_EOL: 3705 return; 3706 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3707 length--; 3708 continue; 3709 default: 3710 opsize = *ptr++; 3711 if (opsize < 2) /* "silly options" */ 3712 return; 3713 if (opsize > length) 3714 return; /* don't parse partial options */ 3715 switch (opcode) { 3716 case TCPOPT_MSS: 3717 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3718 u16 in_mss = get_unaligned_be16(ptr); 3719 if (in_mss) { 3720 if (opt_rx->user_mss && 3721 opt_rx->user_mss < in_mss) 3722 in_mss = opt_rx->user_mss; 3723 opt_rx->mss_clamp = in_mss; 3724 } 3725 } 3726 break; 3727 case TCPOPT_WINDOW: 3728 if (opsize == TCPOLEN_WINDOW && th->syn && 3729 !estab && sysctl_tcp_window_scaling) { 3730 __u8 snd_wscale = *(__u8 *)ptr; 3731 opt_rx->wscale_ok = 1; 3732 if (snd_wscale > 14) { 3733 if (net_ratelimit()) 3734 printk(KERN_INFO "tcp_parse_options: Illegal window " 3735 "scaling value %d >14 received.\n", 3736 snd_wscale); 3737 snd_wscale = 14; 3738 } 3739 opt_rx->snd_wscale = snd_wscale; 3740 } 3741 break; 3742 case TCPOPT_TIMESTAMP: 3743 if ((opsize == TCPOLEN_TIMESTAMP) && 3744 ((estab && opt_rx->tstamp_ok) || 3745 (!estab && sysctl_tcp_timestamps))) { 3746 opt_rx->saw_tstamp = 1; 3747 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3748 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3749 } 3750 break; 3751 case TCPOPT_SACK_PERM: 3752 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3753 !estab && sysctl_tcp_sack) { 3754 opt_rx->sack_ok = 1; 3755 tcp_sack_reset(opt_rx); 3756 } 3757 break; 3758 3759 case TCPOPT_SACK: 3760 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3761 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3762 opt_rx->sack_ok) { 3763 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3764 } 3765 break; 3766 #ifdef CONFIG_TCP_MD5SIG 3767 case TCPOPT_MD5SIG: 3768 /* 3769 * The MD5 Hash has already been 3770 * checked (see tcp_v{4,6}_do_rcv()). 3771 */ 3772 break; 3773 #endif 3774 } 3775 3776 ptr += opsize-2; 3777 length -= opsize; 3778 } 3779 } 3780 } 3781 3782 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3783 { 3784 __be32 *ptr = (__be32 *)(th + 1); 3785 3786 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3787 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3788 tp->rx_opt.saw_tstamp = 1; 3789 ++ptr; 3790 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3791 ++ptr; 3792 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3793 return 1; 3794 } 3795 return 0; 3796 } 3797 3798 /* Fast parse options. This hopes to only see timestamps. 3799 * If it is wrong it falls back on tcp_parse_options(). 3800 */ 3801 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3802 struct tcp_sock *tp) 3803 { 3804 if (th->doff == sizeof(struct tcphdr) >> 2) { 3805 tp->rx_opt.saw_tstamp = 0; 3806 return 0; 3807 } else if (tp->rx_opt.tstamp_ok && 3808 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 3809 if (tcp_parse_aligned_timestamp(tp, th)) 3810 return 1; 3811 } 3812 tcp_parse_options(skb, &tp->rx_opt, 1); 3813 return 1; 3814 } 3815 3816 #ifdef CONFIG_TCP_MD5SIG 3817 /* 3818 * Parse MD5 Signature option 3819 */ 3820 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3821 { 3822 int length = (th->doff << 2) - sizeof (*th); 3823 u8 *ptr = (u8*)(th + 1); 3824 3825 /* If the TCP option is too short, we can short cut */ 3826 if (length < TCPOLEN_MD5SIG) 3827 return NULL; 3828 3829 while (length > 0) { 3830 int opcode = *ptr++; 3831 int opsize; 3832 3833 switch(opcode) { 3834 case TCPOPT_EOL: 3835 return NULL; 3836 case TCPOPT_NOP: 3837 length--; 3838 continue; 3839 default: 3840 opsize = *ptr++; 3841 if (opsize < 2 || opsize > length) 3842 return NULL; 3843 if (opcode == TCPOPT_MD5SIG) 3844 return ptr; 3845 } 3846 ptr += opsize - 2; 3847 length -= opsize; 3848 } 3849 return NULL; 3850 } 3851 #endif 3852 3853 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3854 { 3855 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3856 tp->rx_opt.ts_recent_stamp = get_seconds(); 3857 } 3858 3859 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3860 { 3861 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3862 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3863 * extra check below makes sure this can only happen 3864 * for pure ACK frames. -DaveM 3865 * 3866 * Not only, also it occurs for expired timestamps. 3867 */ 3868 3869 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 3870 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 3871 tcp_store_ts_recent(tp); 3872 } 3873 } 3874 3875 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3876 * 3877 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3878 * it can pass through stack. So, the following predicate verifies that 3879 * this segment is not used for anything but congestion avoidance or 3880 * fast retransmit. Moreover, we even are able to eliminate most of such 3881 * second order effects, if we apply some small "replay" window (~RTO) 3882 * to timestamp space. 3883 * 3884 * All these measures still do not guarantee that we reject wrapped ACKs 3885 * on networks with high bandwidth, when sequence space is recycled fastly, 3886 * but it guarantees that such events will be very rare and do not affect 3887 * connection seriously. This doesn't look nice, but alas, PAWS is really 3888 * buggy extension. 3889 * 3890 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3891 * states that events when retransmit arrives after original data are rare. 3892 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3893 * the biggest problem on large power networks even with minor reordering. 3894 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3895 * up to bandwidth of 18Gigabit/sec. 8) ] 3896 */ 3897 3898 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3899 { 3900 struct tcp_sock *tp = tcp_sk(sk); 3901 struct tcphdr *th = tcp_hdr(skb); 3902 u32 seq = TCP_SKB_CB(skb)->seq; 3903 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3904 3905 return (/* 1. Pure ACK with correct sequence number. */ 3906 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3907 3908 /* 2. ... and duplicate ACK. */ 3909 ack == tp->snd_una && 3910 3911 /* 3. ... and does not update window. */ 3912 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3913 3914 /* 4. ... and sits in replay window. */ 3915 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3916 } 3917 3918 static inline int tcp_paws_discard(const struct sock *sk, 3919 const struct sk_buff *skb) 3920 { 3921 const struct tcp_sock *tp = tcp_sk(sk); 3922 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 3923 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 3924 !tcp_disordered_ack(sk, skb)); 3925 } 3926 3927 /* Check segment sequence number for validity. 3928 * 3929 * Segment controls are considered valid, if the segment 3930 * fits to the window after truncation to the window. Acceptability 3931 * of data (and SYN, FIN, of course) is checked separately. 3932 * See tcp_data_queue(), for example. 3933 * 3934 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3935 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3936 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3937 * (borrowed from freebsd) 3938 */ 3939 3940 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3941 { 3942 return !before(end_seq, tp->rcv_wup) && 3943 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3944 } 3945 3946 /* When we get a reset we do this. */ 3947 static void tcp_reset(struct sock *sk) 3948 { 3949 /* We want the right error as BSD sees it (and indeed as we do). */ 3950 switch (sk->sk_state) { 3951 case TCP_SYN_SENT: 3952 sk->sk_err = ECONNREFUSED; 3953 break; 3954 case TCP_CLOSE_WAIT: 3955 sk->sk_err = EPIPE; 3956 break; 3957 case TCP_CLOSE: 3958 return; 3959 default: 3960 sk->sk_err = ECONNRESET; 3961 } 3962 3963 if (!sock_flag(sk, SOCK_DEAD)) 3964 sk->sk_error_report(sk); 3965 3966 tcp_done(sk); 3967 } 3968 3969 /* 3970 * Process the FIN bit. This now behaves as it is supposed to work 3971 * and the FIN takes effect when it is validly part of sequence 3972 * space. Not before when we get holes. 3973 * 3974 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3975 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3976 * TIME-WAIT) 3977 * 3978 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3979 * close and we go into CLOSING (and later onto TIME-WAIT) 3980 * 3981 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3982 */ 3983 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 3984 { 3985 struct tcp_sock *tp = tcp_sk(sk); 3986 3987 inet_csk_schedule_ack(sk); 3988 3989 sk->sk_shutdown |= RCV_SHUTDOWN; 3990 sock_set_flag(sk, SOCK_DONE); 3991 3992 switch (sk->sk_state) { 3993 case TCP_SYN_RECV: 3994 case TCP_ESTABLISHED: 3995 /* Move to CLOSE_WAIT */ 3996 tcp_set_state(sk, TCP_CLOSE_WAIT); 3997 inet_csk(sk)->icsk_ack.pingpong = 1; 3998 break; 3999 4000 case TCP_CLOSE_WAIT: 4001 case TCP_CLOSING: 4002 /* Received a retransmission of the FIN, do 4003 * nothing. 4004 */ 4005 break; 4006 case TCP_LAST_ACK: 4007 /* RFC793: Remain in the LAST-ACK state. */ 4008 break; 4009 4010 case TCP_FIN_WAIT1: 4011 /* This case occurs when a simultaneous close 4012 * happens, we must ack the received FIN and 4013 * enter the CLOSING state. 4014 */ 4015 tcp_send_ack(sk); 4016 tcp_set_state(sk, TCP_CLOSING); 4017 break; 4018 case TCP_FIN_WAIT2: 4019 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4020 tcp_send_ack(sk); 4021 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4022 break; 4023 default: 4024 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4025 * cases we should never reach this piece of code. 4026 */ 4027 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4028 __func__, sk->sk_state); 4029 break; 4030 } 4031 4032 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4033 * Probably, we should reset in this case. For now drop them. 4034 */ 4035 __skb_queue_purge(&tp->out_of_order_queue); 4036 if (tcp_is_sack(tp)) 4037 tcp_sack_reset(&tp->rx_opt); 4038 sk_mem_reclaim(sk); 4039 4040 if (!sock_flag(sk, SOCK_DEAD)) { 4041 sk->sk_state_change(sk); 4042 4043 /* Do not send POLL_HUP for half duplex close. */ 4044 if (sk->sk_shutdown == SHUTDOWN_MASK || 4045 sk->sk_state == TCP_CLOSE) 4046 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4047 else 4048 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4049 } 4050 } 4051 4052 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4053 u32 end_seq) 4054 { 4055 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4056 if (before(seq, sp->start_seq)) 4057 sp->start_seq = seq; 4058 if (after(end_seq, sp->end_seq)) 4059 sp->end_seq = end_seq; 4060 return 1; 4061 } 4062 return 0; 4063 } 4064 4065 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4066 { 4067 struct tcp_sock *tp = tcp_sk(sk); 4068 4069 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4070 int mib_idx; 4071 4072 if (before(seq, tp->rcv_nxt)) 4073 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4074 else 4075 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4076 4077 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4078 4079 tp->rx_opt.dsack = 1; 4080 tp->duplicate_sack[0].start_seq = seq; 4081 tp->duplicate_sack[0].end_seq = end_seq; 4082 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1; 4083 } 4084 } 4085 4086 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4087 { 4088 struct tcp_sock *tp = tcp_sk(sk); 4089 4090 if (!tp->rx_opt.dsack) 4091 tcp_dsack_set(sk, seq, end_seq); 4092 else 4093 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4094 } 4095 4096 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 4097 { 4098 struct tcp_sock *tp = tcp_sk(sk); 4099 4100 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4101 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4102 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4103 tcp_enter_quickack_mode(sk); 4104 4105 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4106 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4107 4108 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4109 end_seq = tp->rcv_nxt; 4110 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4111 } 4112 } 4113 4114 tcp_send_ack(sk); 4115 } 4116 4117 /* These routines update the SACK block as out-of-order packets arrive or 4118 * in-order packets close up the sequence space. 4119 */ 4120 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4121 { 4122 int this_sack; 4123 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4124 struct tcp_sack_block *swalk = sp + 1; 4125 4126 /* See if the recent change to the first SACK eats into 4127 * or hits the sequence space of other SACK blocks, if so coalesce. 4128 */ 4129 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4130 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4131 int i; 4132 4133 /* Zap SWALK, by moving every further SACK up by one slot. 4134 * Decrease num_sacks. 4135 */ 4136 tp->rx_opt.num_sacks--; 4137 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 4138 tp->rx_opt.dsack; 4139 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4140 sp[i] = sp[i + 1]; 4141 continue; 4142 } 4143 this_sack++, swalk++; 4144 } 4145 } 4146 4147 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, 4148 struct tcp_sack_block *sack2) 4149 { 4150 __u32 tmp; 4151 4152 tmp = sack1->start_seq; 4153 sack1->start_seq = sack2->start_seq; 4154 sack2->start_seq = tmp; 4155 4156 tmp = sack1->end_seq; 4157 sack1->end_seq = sack2->end_seq; 4158 sack2->end_seq = tmp; 4159 } 4160 4161 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4162 { 4163 struct tcp_sock *tp = tcp_sk(sk); 4164 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4165 int cur_sacks = tp->rx_opt.num_sacks; 4166 int this_sack; 4167 4168 if (!cur_sacks) 4169 goto new_sack; 4170 4171 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4172 if (tcp_sack_extend(sp, seq, end_seq)) { 4173 /* Rotate this_sack to the first one. */ 4174 for (; this_sack > 0; this_sack--, sp--) 4175 tcp_sack_swap(sp, sp - 1); 4176 if (cur_sacks > 1) 4177 tcp_sack_maybe_coalesce(tp); 4178 return; 4179 } 4180 } 4181 4182 /* Could not find an adjacent existing SACK, build a new one, 4183 * put it at the front, and shift everyone else down. We 4184 * always know there is at least one SACK present already here. 4185 * 4186 * If the sack array is full, forget about the last one. 4187 */ 4188 if (this_sack >= TCP_NUM_SACKS) { 4189 this_sack--; 4190 tp->rx_opt.num_sacks--; 4191 sp--; 4192 } 4193 for (; this_sack > 0; this_sack--, sp--) 4194 *sp = *(sp - 1); 4195 4196 new_sack: 4197 /* Build the new head SACK, and we're done. */ 4198 sp->start_seq = seq; 4199 sp->end_seq = end_seq; 4200 tp->rx_opt.num_sacks++; 4201 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 4202 } 4203 4204 /* RCV.NXT advances, some SACKs should be eaten. */ 4205 4206 static void tcp_sack_remove(struct tcp_sock *tp) 4207 { 4208 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4209 int num_sacks = tp->rx_opt.num_sacks; 4210 int this_sack; 4211 4212 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4213 if (skb_queue_empty(&tp->out_of_order_queue)) { 4214 tp->rx_opt.num_sacks = 0; 4215 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 4216 return; 4217 } 4218 4219 for (this_sack = 0; this_sack < num_sacks;) { 4220 /* Check if the start of the sack is covered by RCV.NXT. */ 4221 if (!before(tp->rcv_nxt, sp->start_seq)) { 4222 int i; 4223 4224 /* RCV.NXT must cover all the block! */ 4225 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4226 4227 /* Zap this SACK, by moving forward any other SACKS. */ 4228 for (i=this_sack+1; i < num_sacks; i++) 4229 tp->selective_acks[i-1] = tp->selective_acks[i]; 4230 num_sacks--; 4231 continue; 4232 } 4233 this_sack++; 4234 sp++; 4235 } 4236 if (num_sacks != tp->rx_opt.num_sacks) { 4237 tp->rx_opt.num_sacks = num_sacks; 4238 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 4239 tp->rx_opt.dsack; 4240 } 4241 } 4242 4243 /* This one checks to see if we can put data from the 4244 * out_of_order queue into the receive_queue. 4245 */ 4246 static void tcp_ofo_queue(struct sock *sk) 4247 { 4248 struct tcp_sock *tp = tcp_sk(sk); 4249 __u32 dsack_high = tp->rcv_nxt; 4250 struct sk_buff *skb; 4251 4252 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4253 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4254 break; 4255 4256 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4257 __u32 dsack = dsack_high; 4258 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4259 dsack_high = TCP_SKB_CB(skb)->end_seq; 4260 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4261 } 4262 4263 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4264 SOCK_DEBUG(sk, "ofo packet was already received \n"); 4265 __skb_unlink(skb, &tp->out_of_order_queue); 4266 __kfree_skb(skb); 4267 continue; 4268 } 4269 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4270 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4271 TCP_SKB_CB(skb)->end_seq); 4272 4273 __skb_unlink(skb, &tp->out_of_order_queue); 4274 __skb_queue_tail(&sk->sk_receive_queue, skb); 4275 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4276 if (tcp_hdr(skb)->fin) 4277 tcp_fin(skb, sk, tcp_hdr(skb)); 4278 } 4279 } 4280 4281 static int tcp_prune_ofo_queue(struct sock *sk); 4282 static int tcp_prune_queue(struct sock *sk); 4283 4284 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4285 { 4286 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4287 !sk_rmem_schedule(sk, size)) { 4288 4289 if (tcp_prune_queue(sk) < 0) 4290 return -1; 4291 4292 if (!sk_rmem_schedule(sk, size)) { 4293 if (!tcp_prune_ofo_queue(sk)) 4294 return -1; 4295 4296 if (!sk_rmem_schedule(sk, size)) 4297 return -1; 4298 } 4299 } 4300 return 0; 4301 } 4302 4303 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4304 { 4305 struct tcphdr *th = tcp_hdr(skb); 4306 struct tcp_sock *tp = tcp_sk(sk); 4307 int eaten = -1; 4308 4309 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4310 goto drop; 4311 4312 __skb_pull(skb, th->doff * 4); 4313 4314 TCP_ECN_accept_cwr(tp, skb); 4315 4316 if (tp->rx_opt.dsack) { 4317 tp->rx_opt.dsack = 0; 4318 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks; 4319 } 4320 4321 /* Queue data for delivery to the user. 4322 * Packets in sequence go to the receive queue. 4323 * Out of sequence packets to the out_of_order_queue. 4324 */ 4325 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4326 if (tcp_receive_window(tp) == 0) 4327 goto out_of_window; 4328 4329 /* Ok. In sequence. In window. */ 4330 if (tp->ucopy.task == current && 4331 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4332 sock_owned_by_user(sk) && !tp->urg_data) { 4333 int chunk = min_t(unsigned int, skb->len, 4334 tp->ucopy.len); 4335 4336 __set_current_state(TASK_RUNNING); 4337 4338 local_bh_enable(); 4339 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4340 tp->ucopy.len -= chunk; 4341 tp->copied_seq += chunk; 4342 eaten = (chunk == skb->len && !th->fin); 4343 tcp_rcv_space_adjust(sk); 4344 } 4345 local_bh_disable(); 4346 } 4347 4348 if (eaten <= 0) { 4349 queue_and_out: 4350 if (eaten < 0 && 4351 tcp_try_rmem_schedule(sk, skb->truesize)) 4352 goto drop; 4353 4354 skb_set_owner_r(skb, sk); 4355 __skb_queue_tail(&sk->sk_receive_queue, skb); 4356 } 4357 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4358 if (skb->len) 4359 tcp_event_data_recv(sk, skb); 4360 if (th->fin) 4361 tcp_fin(skb, sk, th); 4362 4363 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4364 tcp_ofo_queue(sk); 4365 4366 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4367 * gap in queue is filled. 4368 */ 4369 if (skb_queue_empty(&tp->out_of_order_queue)) 4370 inet_csk(sk)->icsk_ack.pingpong = 0; 4371 } 4372 4373 if (tp->rx_opt.num_sacks) 4374 tcp_sack_remove(tp); 4375 4376 tcp_fast_path_check(sk); 4377 4378 if (eaten > 0) 4379 __kfree_skb(skb); 4380 else if (!sock_flag(sk, SOCK_DEAD)) 4381 sk->sk_data_ready(sk, 0); 4382 return; 4383 } 4384 4385 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4386 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4387 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4388 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4389 4390 out_of_window: 4391 tcp_enter_quickack_mode(sk); 4392 inet_csk_schedule_ack(sk); 4393 drop: 4394 __kfree_skb(skb); 4395 return; 4396 } 4397 4398 /* Out of window. F.e. zero window probe. */ 4399 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4400 goto out_of_window; 4401 4402 tcp_enter_quickack_mode(sk); 4403 4404 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4405 /* Partial packet, seq < rcv_next < end_seq */ 4406 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4407 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4408 TCP_SKB_CB(skb)->end_seq); 4409 4410 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4411 4412 /* If window is closed, drop tail of packet. But after 4413 * remembering D-SACK for its head made in previous line. 4414 */ 4415 if (!tcp_receive_window(tp)) 4416 goto out_of_window; 4417 goto queue_and_out; 4418 } 4419 4420 TCP_ECN_check_ce(tp, skb); 4421 4422 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4423 goto drop; 4424 4425 /* Disable header prediction. */ 4426 tp->pred_flags = 0; 4427 inet_csk_schedule_ack(sk); 4428 4429 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4430 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4431 4432 skb_set_owner_r(skb, sk); 4433 4434 if (!skb_peek(&tp->out_of_order_queue)) { 4435 /* Initial out of order segment, build 1 SACK. */ 4436 if (tcp_is_sack(tp)) { 4437 tp->rx_opt.num_sacks = 1; 4438 tp->rx_opt.dsack = 0; 4439 tp->rx_opt.eff_sacks = 1; 4440 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4441 tp->selective_acks[0].end_seq = 4442 TCP_SKB_CB(skb)->end_seq; 4443 } 4444 __skb_queue_head(&tp->out_of_order_queue, skb); 4445 } else { 4446 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 4447 u32 seq = TCP_SKB_CB(skb)->seq; 4448 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4449 4450 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4451 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4452 4453 if (!tp->rx_opt.num_sacks || 4454 tp->selective_acks[0].end_seq != seq) 4455 goto add_sack; 4456 4457 /* Common case: data arrive in order after hole. */ 4458 tp->selective_acks[0].end_seq = end_seq; 4459 return; 4460 } 4461 4462 /* Find place to insert this segment. */ 4463 do { 4464 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4465 break; 4466 } while ((skb1 = skb1->prev) != 4467 (struct sk_buff *)&tp->out_of_order_queue); 4468 4469 /* Do skb overlap to previous one? */ 4470 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue && 4471 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4472 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4473 /* All the bits are present. Drop. */ 4474 __kfree_skb(skb); 4475 tcp_dsack_set(sk, seq, end_seq); 4476 goto add_sack; 4477 } 4478 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4479 /* Partial overlap. */ 4480 tcp_dsack_set(sk, seq, 4481 TCP_SKB_CB(skb1)->end_seq); 4482 } else { 4483 skb1 = skb1->prev; 4484 } 4485 } 4486 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4487 4488 /* And clean segments covered by new one as whole. */ 4489 while ((skb1 = skb->next) != 4490 (struct sk_buff *)&tp->out_of_order_queue && 4491 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 4492 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4493 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4494 end_seq); 4495 break; 4496 } 4497 __skb_unlink(skb1, &tp->out_of_order_queue); 4498 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4499 TCP_SKB_CB(skb1)->end_seq); 4500 __kfree_skb(skb1); 4501 } 4502 4503 add_sack: 4504 if (tcp_is_sack(tp)) 4505 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4506 } 4507 } 4508 4509 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4510 struct sk_buff_head *list) 4511 { 4512 struct sk_buff *next = skb->next; 4513 4514 __skb_unlink(skb, list); 4515 __kfree_skb(skb); 4516 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4517 4518 return next; 4519 } 4520 4521 /* Collapse contiguous sequence of skbs head..tail with 4522 * sequence numbers start..end. 4523 * Segments with FIN/SYN are not collapsed (only because this 4524 * simplifies code) 4525 */ 4526 static void 4527 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4528 struct sk_buff *head, struct sk_buff *tail, 4529 u32 start, u32 end) 4530 { 4531 struct sk_buff *skb; 4532 4533 /* First, check that queue is collapsible and find 4534 * the point where collapsing can be useful. */ 4535 for (skb = head; skb != tail;) { 4536 /* No new bits? It is possible on ofo queue. */ 4537 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4538 skb = tcp_collapse_one(sk, skb, list); 4539 continue; 4540 } 4541 4542 /* The first skb to collapse is: 4543 * - not SYN/FIN and 4544 * - bloated or contains data before "start" or 4545 * overlaps to the next one. 4546 */ 4547 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4548 (tcp_win_from_space(skb->truesize) > skb->len || 4549 before(TCP_SKB_CB(skb)->seq, start) || 4550 (skb->next != tail && 4551 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 4552 break; 4553 4554 /* Decided to skip this, advance start seq. */ 4555 start = TCP_SKB_CB(skb)->end_seq; 4556 skb = skb->next; 4557 } 4558 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4559 return; 4560 4561 while (before(start, end)) { 4562 struct sk_buff *nskb; 4563 unsigned int header = skb_headroom(skb); 4564 int copy = SKB_MAX_ORDER(header, 0); 4565 4566 /* Too big header? This can happen with IPv6. */ 4567 if (copy < 0) 4568 return; 4569 if (end - start < copy) 4570 copy = end - start; 4571 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4572 if (!nskb) 4573 return; 4574 4575 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4576 skb_set_network_header(nskb, (skb_network_header(skb) - 4577 skb->head)); 4578 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4579 skb->head)); 4580 skb_reserve(nskb, header); 4581 memcpy(nskb->head, skb->head, header); 4582 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4583 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4584 __skb_queue_before(list, skb, nskb); 4585 skb_set_owner_r(nskb, sk); 4586 4587 /* Copy data, releasing collapsed skbs. */ 4588 while (copy > 0) { 4589 int offset = start - TCP_SKB_CB(skb)->seq; 4590 int size = TCP_SKB_CB(skb)->end_seq - start; 4591 4592 BUG_ON(offset < 0); 4593 if (size > 0) { 4594 size = min(copy, size); 4595 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4596 BUG(); 4597 TCP_SKB_CB(nskb)->end_seq += size; 4598 copy -= size; 4599 start += size; 4600 } 4601 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4602 skb = tcp_collapse_one(sk, skb, list); 4603 if (skb == tail || 4604 tcp_hdr(skb)->syn || 4605 tcp_hdr(skb)->fin) 4606 return; 4607 } 4608 } 4609 } 4610 } 4611 4612 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4613 * and tcp_collapse() them until all the queue is collapsed. 4614 */ 4615 static void tcp_collapse_ofo_queue(struct sock *sk) 4616 { 4617 struct tcp_sock *tp = tcp_sk(sk); 4618 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4619 struct sk_buff *head; 4620 u32 start, end; 4621 4622 if (skb == NULL) 4623 return; 4624 4625 start = TCP_SKB_CB(skb)->seq; 4626 end = TCP_SKB_CB(skb)->end_seq; 4627 head = skb; 4628 4629 for (;;) { 4630 skb = skb->next; 4631 4632 /* Segment is terminated when we see gap or when 4633 * we are at the end of all the queue. */ 4634 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 4635 after(TCP_SKB_CB(skb)->seq, end) || 4636 before(TCP_SKB_CB(skb)->end_seq, start)) { 4637 tcp_collapse(sk, &tp->out_of_order_queue, 4638 head, skb, start, end); 4639 head = skb; 4640 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 4641 break; 4642 /* Start new segment */ 4643 start = TCP_SKB_CB(skb)->seq; 4644 end = TCP_SKB_CB(skb)->end_seq; 4645 } else { 4646 if (before(TCP_SKB_CB(skb)->seq, start)) 4647 start = TCP_SKB_CB(skb)->seq; 4648 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4649 end = TCP_SKB_CB(skb)->end_seq; 4650 } 4651 } 4652 } 4653 4654 /* 4655 * Purge the out-of-order queue. 4656 * Return true if queue was pruned. 4657 */ 4658 static int tcp_prune_ofo_queue(struct sock *sk) 4659 { 4660 struct tcp_sock *tp = tcp_sk(sk); 4661 int res = 0; 4662 4663 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4664 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4665 __skb_queue_purge(&tp->out_of_order_queue); 4666 4667 /* Reset SACK state. A conforming SACK implementation will 4668 * do the same at a timeout based retransmit. When a connection 4669 * is in a sad state like this, we care only about integrity 4670 * of the connection not performance. 4671 */ 4672 if (tp->rx_opt.sack_ok) 4673 tcp_sack_reset(&tp->rx_opt); 4674 sk_mem_reclaim(sk); 4675 res = 1; 4676 } 4677 return res; 4678 } 4679 4680 /* Reduce allocated memory if we can, trying to get 4681 * the socket within its memory limits again. 4682 * 4683 * Return less than zero if we should start dropping frames 4684 * until the socket owning process reads some of the data 4685 * to stabilize the situation. 4686 */ 4687 static int tcp_prune_queue(struct sock *sk) 4688 { 4689 struct tcp_sock *tp = tcp_sk(sk); 4690 4691 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4692 4693 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4694 4695 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4696 tcp_clamp_window(sk); 4697 else if (tcp_memory_pressure) 4698 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4699 4700 tcp_collapse_ofo_queue(sk); 4701 tcp_collapse(sk, &sk->sk_receive_queue, 4702 sk->sk_receive_queue.next, 4703 (struct sk_buff *)&sk->sk_receive_queue, 4704 tp->copied_seq, tp->rcv_nxt); 4705 sk_mem_reclaim(sk); 4706 4707 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4708 return 0; 4709 4710 /* Collapsing did not help, destructive actions follow. 4711 * This must not ever occur. */ 4712 4713 tcp_prune_ofo_queue(sk); 4714 4715 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4716 return 0; 4717 4718 /* If we are really being abused, tell the caller to silently 4719 * drop receive data on the floor. It will get retransmitted 4720 * and hopefully then we'll have sufficient space. 4721 */ 4722 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4723 4724 /* Massive buffer overcommit. */ 4725 tp->pred_flags = 0; 4726 return -1; 4727 } 4728 4729 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4730 * As additional protections, we do not touch cwnd in retransmission phases, 4731 * and if application hit its sndbuf limit recently. 4732 */ 4733 void tcp_cwnd_application_limited(struct sock *sk) 4734 { 4735 struct tcp_sock *tp = tcp_sk(sk); 4736 4737 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4738 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4739 /* Limited by application or receiver window. */ 4740 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4741 u32 win_used = max(tp->snd_cwnd_used, init_win); 4742 if (win_used < tp->snd_cwnd) { 4743 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4744 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4745 } 4746 tp->snd_cwnd_used = 0; 4747 } 4748 tp->snd_cwnd_stamp = tcp_time_stamp; 4749 } 4750 4751 static int tcp_should_expand_sndbuf(struct sock *sk) 4752 { 4753 struct tcp_sock *tp = tcp_sk(sk); 4754 4755 /* If the user specified a specific send buffer setting, do 4756 * not modify it. 4757 */ 4758 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4759 return 0; 4760 4761 /* If we are under global TCP memory pressure, do not expand. */ 4762 if (tcp_memory_pressure) 4763 return 0; 4764 4765 /* If we are under soft global TCP memory pressure, do not expand. */ 4766 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4767 return 0; 4768 4769 /* If we filled the congestion window, do not expand. */ 4770 if (tp->packets_out >= tp->snd_cwnd) 4771 return 0; 4772 4773 return 1; 4774 } 4775 4776 /* When incoming ACK allowed to free some skb from write_queue, 4777 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4778 * on the exit from tcp input handler. 4779 * 4780 * PROBLEM: sndbuf expansion does not work well with largesend. 4781 */ 4782 static void tcp_new_space(struct sock *sk) 4783 { 4784 struct tcp_sock *tp = tcp_sk(sk); 4785 4786 if (tcp_should_expand_sndbuf(sk)) { 4787 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4788 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4789 int demanded = max_t(unsigned int, tp->snd_cwnd, 4790 tp->reordering + 1); 4791 sndmem *= 2 * demanded; 4792 if (sndmem > sk->sk_sndbuf) 4793 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4794 tp->snd_cwnd_stamp = tcp_time_stamp; 4795 } 4796 4797 sk->sk_write_space(sk); 4798 } 4799 4800 static void tcp_check_space(struct sock *sk) 4801 { 4802 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4803 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4804 if (sk->sk_socket && 4805 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4806 tcp_new_space(sk); 4807 } 4808 } 4809 4810 static inline void tcp_data_snd_check(struct sock *sk) 4811 { 4812 tcp_push_pending_frames(sk); 4813 tcp_check_space(sk); 4814 } 4815 4816 /* 4817 * Check if sending an ack is needed. 4818 */ 4819 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4820 { 4821 struct tcp_sock *tp = tcp_sk(sk); 4822 4823 /* More than one full frame received... */ 4824 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 4825 /* ... and right edge of window advances far enough. 4826 * (tcp_recvmsg() will send ACK otherwise). Or... 4827 */ 4828 && __tcp_select_window(sk) >= tp->rcv_wnd) || 4829 /* We ACK each frame or... */ 4830 tcp_in_quickack_mode(sk) || 4831 /* We have out of order data. */ 4832 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4833 /* Then ack it now */ 4834 tcp_send_ack(sk); 4835 } else { 4836 /* Else, send delayed ack. */ 4837 tcp_send_delayed_ack(sk); 4838 } 4839 } 4840 4841 static inline void tcp_ack_snd_check(struct sock *sk) 4842 { 4843 if (!inet_csk_ack_scheduled(sk)) { 4844 /* We sent a data segment already. */ 4845 return; 4846 } 4847 __tcp_ack_snd_check(sk, 1); 4848 } 4849 4850 /* 4851 * This routine is only called when we have urgent data 4852 * signaled. Its the 'slow' part of tcp_urg. It could be 4853 * moved inline now as tcp_urg is only called from one 4854 * place. We handle URGent data wrong. We have to - as 4855 * BSD still doesn't use the correction from RFC961. 4856 * For 1003.1g we should support a new option TCP_STDURG to permit 4857 * either form (or just set the sysctl tcp_stdurg). 4858 */ 4859 4860 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4861 { 4862 struct tcp_sock *tp = tcp_sk(sk); 4863 u32 ptr = ntohs(th->urg_ptr); 4864 4865 if (ptr && !sysctl_tcp_stdurg) 4866 ptr--; 4867 ptr += ntohl(th->seq); 4868 4869 /* Ignore urgent data that we've already seen and read. */ 4870 if (after(tp->copied_seq, ptr)) 4871 return; 4872 4873 /* Do not replay urg ptr. 4874 * 4875 * NOTE: interesting situation not covered by specs. 4876 * Misbehaving sender may send urg ptr, pointing to segment, 4877 * which we already have in ofo queue. We are not able to fetch 4878 * such data and will stay in TCP_URG_NOTYET until will be eaten 4879 * by recvmsg(). Seems, we are not obliged to handle such wicked 4880 * situations. But it is worth to think about possibility of some 4881 * DoSes using some hypothetical application level deadlock. 4882 */ 4883 if (before(ptr, tp->rcv_nxt)) 4884 return; 4885 4886 /* Do we already have a newer (or duplicate) urgent pointer? */ 4887 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4888 return; 4889 4890 /* Tell the world about our new urgent pointer. */ 4891 sk_send_sigurg(sk); 4892 4893 /* We may be adding urgent data when the last byte read was 4894 * urgent. To do this requires some care. We cannot just ignore 4895 * tp->copied_seq since we would read the last urgent byte again 4896 * as data, nor can we alter copied_seq until this data arrives 4897 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4898 * 4899 * NOTE. Double Dutch. Rendering to plain English: author of comment 4900 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4901 * and expect that both A and B disappear from stream. This is _wrong_. 4902 * Though this happens in BSD with high probability, this is occasional. 4903 * Any application relying on this is buggy. Note also, that fix "works" 4904 * only in this artificial test. Insert some normal data between A and B and we will 4905 * decline of BSD again. Verdict: it is better to remove to trap 4906 * buggy users. 4907 */ 4908 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4909 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4910 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4911 tp->copied_seq++; 4912 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4913 __skb_unlink(skb, &sk->sk_receive_queue); 4914 __kfree_skb(skb); 4915 } 4916 } 4917 4918 tp->urg_data = TCP_URG_NOTYET; 4919 tp->urg_seq = ptr; 4920 4921 /* Disable header prediction. */ 4922 tp->pred_flags = 0; 4923 } 4924 4925 /* This is the 'fast' part of urgent handling. */ 4926 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4927 { 4928 struct tcp_sock *tp = tcp_sk(sk); 4929 4930 /* Check if we get a new urgent pointer - normally not. */ 4931 if (th->urg) 4932 tcp_check_urg(sk, th); 4933 4934 /* Do we wait for any urgent data? - normally not... */ 4935 if (tp->urg_data == TCP_URG_NOTYET) { 4936 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4937 th->syn; 4938 4939 /* Is the urgent pointer pointing into this packet? */ 4940 if (ptr < skb->len) { 4941 u8 tmp; 4942 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4943 BUG(); 4944 tp->urg_data = TCP_URG_VALID | tmp; 4945 if (!sock_flag(sk, SOCK_DEAD)) 4946 sk->sk_data_ready(sk, 0); 4947 } 4948 } 4949 } 4950 4951 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4952 { 4953 struct tcp_sock *tp = tcp_sk(sk); 4954 int chunk = skb->len - hlen; 4955 int err; 4956 4957 local_bh_enable(); 4958 if (skb_csum_unnecessary(skb)) 4959 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4960 else 4961 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4962 tp->ucopy.iov); 4963 4964 if (!err) { 4965 tp->ucopy.len -= chunk; 4966 tp->copied_seq += chunk; 4967 tcp_rcv_space_adjust(sk); 4968 } 4969 4970 local_bh_disable(); 4971 return err; 4972 } 4973 4974 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4975 struct sk_buff *skb) 4976 { 4977 __sum16 result; 4978 4979 if (sock_owned_by_user(sk)) { 4980 local_bh_enable(); 4981 result = __tcp_checksum_complete(skb); 4982 local_bh_disable(); 4983 } else { 4984 result = __tcp_checksum_complete(skb); 4985 } 4986 return result; 4987 } 4988 4989 static inline int tcp_checksum_complete_user(struct sock *sk, 4990 struct sk_buff *skb) 4991 { 4992 return !skb_csum_unnecessary(skb) && 4993 __tcp_checksum_complete_user(sk, skb); 4994 } 4995 4996 #ifdef CONFIG_NET_DMA 4997 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4998 int hlen) 4999 { 5000 struct tcp_sock *tp = tcp_sk(sk); 5001 int chunk = skb->len - hlen; 5002 int dma_cookie; 5003 int copied_early = 0; 5004 5005 if (tp->ucopy.wakeup) 5006 return 0; 5007 5008 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5009 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 5010 5011 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5012 5013 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5014 skb, hlen, 5015 tp->ucopy.iov, chunk, 5016 tp->ucopy.pinned_list); 5017 5018 if (dma_cookie < 0) 5019 goto out; 5020 5021 tp->ucopy.dma_cookie = dma_cookie; 5022 copied_early = 1; 5023 5024 tp->ucopy.len -= chunk; 5025 tp->copied_seq += chunk; 5026 tcp_rcv_space_adjust(sk); 5027 5028 if ((tp->ucopy.len == 0) || 5029 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5030 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5031 tp->ucopy.wakeup = 1; 5032 sk->sk_data_ready(sk, 0); 5033 } 5034 } else if (chunk > 0) { 5035 tp->ucopy.wakeup = 1; 5036 sk->sk_data_ready(sk, 0); 5037 } 5038 out: 5039 return copied_early; 5040 } 5041 #endif /* CONFIG_NET_DMA */ 5042 5043 /* Does PAWS and seqno based validation of an incoming segment, flags will 5044 * play significant role here. 5045 */ 5046 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5047 struct tcphdr *th, int syn_inerr) 5048 { 5049 struct tcp_sock *tp = tcp_sk(sk); 5050 5051 /* RFC1323: H1. Apply PAWS check first. */ 5052 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5053 tcp_paws_discard(sk, skb)) { 5054 if (!th->rst) { 5055 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5056 tcp_send_dupack(sk, skb); 5057 goto discard; 5058 } 5059 /* Reset is accepted even if it did not pass PAWS. */ 5060 } 5061 5062 /* Step 1: check sequence number */ 5063 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5064 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5065 * (RST) segments are validated by checking their SEQ-fields." 5066 * And page 69: "If an incoming segment is not acceptable, 5067 * an acknowledgment should be sent in reply (unless the RST 5068 * bit is set, if so drop the segment and return)". 5069 */ 5070 if (!th->rst) 5071 tcp_send_dupack(sk, skb); 5072 goto discard; 5073 } 5074 5075 /* Step 2: check RST bit */ 5076 if (th->rst) { 5077 tcp_reset(sk); 5078 goto discard; 5079 } 5080 5081 /* ts_recent update must be made after we are sure that the packet 5082 * is in window. 5083 */ 5084 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5085 5086 /* step 3: check security and precedence [ignored] */ 5087 5088 /* step 4: Check for a SYN in window. */ 5089 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5090 if (syn_inerr) 5091 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5092 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5093 tcp_reset(sk); 5094 return -1; 5095 } 5096 5097 return 1; 5098 5099 discard: 5100 __kfree_skb(skb); 5101 return 0; 5102 } 5103 5104 /* 5105 * TCP receive function for the ESTABLISHED state. 5106 * 5107 * It is split into a fast path and a slow path. The fast path is 5108 * disabled when: 5109 * - A zero window was announced from us - zero window probing 5110 * is only handled properly in the slow path. 5111 * - Out of order segments arrived. 5112 * - Urgent data is expected. 5113 * - There is no buffer space left 5114 * - Unexpected TCP flags/window values/header lengths are received 5115 * (detected by checking the TCP header against pred_flags) 5116 * - Data is sent in both directions. Fast path only supports pure senders 5117 * or pure receivers (this means either the sequence number or the ack 5118 * value must stay constant) 5119 * - Unexpected TCP option. 5120 * 5121 * When these conditions are not satisfied it drops into a standard 5122 * receive procedure patterned after RFC793 to handle all cases. 5123 * The first three cases are guaranteed by proper pred_flags setting, 5124 * the rest is checked inline. Fast processing is turned on in 5125 * tcp_data_queue when everything is OK. 5126 */ 5127 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5128 struct tcphdr *th, unsigned len) 5129 { 5130 struct tcp_sock *tp = tcp_sk(sk); 5131 int res; 5132 5133 /* 5134 * Header prediction. 5135 * The code loosely follows the one in the famous 5136 * "30 instruction TCP receive" Van Jacobson mail. 5137 * 5138 * Van's trick is to deposit buffers into socket queue 5139 * on a device interrupt, to call tcp_recv function 5140 * on the receive process context and checksum and copy 5141 * the buffer to user space. smart... 5142 * 5143 * Our current scheme is not silly either but we take the 5144 * extra cost of the net_bh soft interrupt processing... 5145 * We do checksum and copy also but from device to kernel. 5146 */ 5147 5148 tp->rx_opt.saw_tstamp = 0; 5149 5150 /* pred_flags is 0xS?10 << 16 + snd_wnd 5151 * if header_prediction is to be made 5152 * 'S' will always be tp->tcp_header_len >> 2 5153 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5154 * turn it off (when there are holes in the receive 5155 * space for instance) 5156 * PSH flag is ignored. 5157 */ 5158 5159 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5160 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5161 int tcp_header_len = tp->tcp_header_len; 5162 5163 /* Timestamp header prediction: tcp_header_len 5164 * is automatically equal to th->doff*4 due to pred_flags 5165 * match. 5166 */ 5167 5168 /* Check timestamp */ 5169 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5170 /* No? Slow path! */ 5171 if (!tcp_parse_aligned_timestamp(tp, th)) 5172 goto slow_path; 5173 5174 /* If PAWS failed, check it more carefully in slow path */ 5175 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5176 goto slow_path; 5177 5178 /* DO NOT update ts_recent here, if checksum fails 5179 * and timestamp was corrupted part, it will result 5180 * in a hung connection since we will drop all 5181 * future packets due to the PAWS test. 5182 */ 5183 } 5184 5185 if (len <= tcp_header_len) { 5186 /* Bulk data transfer: sender */ 5187 if (len == tcp_header_len) { 5188 /* Predicted packet is in window by definition. 5189 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5190 * Hence, check seq<=rcv_wup reduces to: 5191 */ 5192 if (tcp_header_len == 5193 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5194 tp->rcv_nxt == tp->rcv_wup) 5195 tcp_store_ts_recent(tp); 5196 5197 /* We know that such packets are checksummed 5198 * on entry. 5199 */ 5200 tcp_ack(sk, skb, 0); 5201 __kfree_skb(skb); 5202 tcp_data_snd_check(sk); 5203 return 0; 5204 } else { /* Header too small */ 5205 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5206 goto discard; 5207 } 5208 } else { 5209 int eaten = 0; 5210 int copied_early = 0; 5211 5212 if (tp->copied_seq == tp->rcv_nxt && 5213 len - tcp_header_len <= tp->ucopy.len) { 5214 #ifdef CONFIG_NET_DMA 5215 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5216 copied_early = 1; 5217 eaten = 1; 5218 } 5219 #endif 5220 if (tp->ucopy.task == current && 5221 sock_owned_by_user(sk) && !copied_early) { 5222 __set_current_state(TASK_RUNNING); 5223 5224 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5225 eaten = 1; 5226 } 5227 if (eaten) { 5228 /* Predicted packet is in window by definition. 5229 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5230 * Hence, check seq<=rcv_wup reduces to: 5231 */ 5232 if (tcp_header_len == 5233 (sizeof(struct tcphdr) + 5234 TCPOLEN_TSTAMP_ALIGNED) && 5235 tp->rcv_nxt == tp->rcv_wup) 5236 tcp_store_ts_recent(tp); 5237 5238 tcp_rcv_rtt_measure_ts(sk, skb); 5239 5240 __skb_pull(skb, tcp_header_len); 5241 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5242 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5243 } 5244 if (copied_early) 5245 tcp_cleanup_rbuf(sk, skb->len); 5246 } 5247 if (!eaten) { 5248 if (tcp_checksum_complete_user(sk, skb)) 5249 goto csum_error; 5250 5251 /* Predicted packet is in window by definition. 5252 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5253 * Hence, check seq<=rcv_wup reduces to: 5254 */ 5255 if (tcp_header_len == 5256 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5257 tp->rcv_nxt == tp->rcv_wup) 5258 tcp_store_ts_recent(tp); 5259 5260 tcp_rcv_rtt_measure_ts(sk, skb); 5261 5262 if ((int)skb->truesize > sk->sk_forward_alloc) 5263 goto step5; 5264 5265 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5266 5267 /* Bulk data transfer: receiver */ 5268 __skb_pull(skb, tcp_header_len); 5269 __skb_queue_tail(&sk->sk_receive_queue, skb); 5270 skb_set_owner_r(skb, sk); 5271 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5272 } 5273 5274 tcp_event_data_recv(sk, skb); 5275 5276 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5277 /* Well, only one small jumplet in fast path... */ 5278 tcp_ack(sk, skb, FLAG_DATA); 5279 tcp_data_snd_check(sk); 5280 if (!inet_csk_ack_scheduled(sk)) 5281 goto no_ack; 5282 } 5283 5284 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5285 __tcp_ack_snd_check(sk, 0); 5286 no_ack: 5287 #ifdef CONFIG_NET_DMA 5288 if (copied_early) 5289 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5290 else 5291 #endif 5292 if (eaten) 5293 __kfree_skb(skb); 5294 else 5295 sk->sk_data_ready(sk, 0); 5296 return 0; 5297 } 5298 } 5299 5300 slow_path: 5301 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5302 goto csum_error; 5303 5304 /* 5305 * Standard slow path. 5306 */ 5307 5308 res = tcp_validate_incoming(sk, skb, th, 1); 5309 if (res <= 0) 5310 return -res; 5311 5312 step5: 5313 if (th->ack) 5314 tcp_ack(sk, skb, FLAG_SLOWPATH); 5315 5316 tcp_rcv_rtt_measure_ts(sk, skb); 5317 5318 /* Process urgent data. */ 5319 tcp_urg(sk, skb, th); 5320 5321 /* step 7: process the segment text */ 5322 tcp_data_queue(sk, skb); 5323 5324 tcp_data_snd_check(sk); 5325 tcp_ack_snd_check(sk); 5326 return 0; 5327 5328 csum_error: 5329 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5330 5331 discard: 5332 __kfree_skb(skb); 5333 return 0; 5334 } 5335 5336 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5337 struct tcphdr *th, unsigned len) 5338 { 5339 struct tcp_sock *tp = tcp_sk(sk); 5340 struct inet_connection_sock *icsk = inet_csk(sk); 5341 int saved_clamp = tp->rx_opt.mss_clamp; 5342 5343 tcp_parse_options(skb, &tp->rx_opt, 0); 5344 5345 if (th->ack) { 5346 /* rfc793: 5347 * "If the state is SYN-SENT then 5348 * first check the ACK bit 5349 * If the ACK bit is set 5350 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5351 * a reset (unless the RST bit is set, if so drop 5352 * the segment and return)" 5353 * 5354 * We do not send data with SYN, so that RFC-correct 5355 * test reduces to: 5356 */ 5357 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5358 goto reset_and_undo; 5359 5360 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5361 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5362 tcp_time_stamp)) { 5363 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5364 goto reset_and_undo; 5365 } 5366 5367 /* Now ACK is acceptable. 5368 * 5369 * "If the RST bit is set 5370 * If the ACK was acceptable then signal the user "error: 5371 * connection reset", drop the segment, enter CLOSED state, 5372 * delete TCB, and return." 5373 */ 5374 5375 if (th->rst) { 5376 tcp_reset(sk); 5377 goto discard; 5378 } 5379 5380 /* rfc793: 5381 * "fifth, if neither of the SYN or RST bits is set then 5382 * drop the segment and return." 5383 * 5384 * See note below! 5385 * --ANK(990513) 5386 */ 5387 if (!th->syn) 5388 goto discard_and_undo; 5389 5390 /* rfc793: 5391 * "If the SYN bit is on ... 5392 * are acceptable then ... 5393 * (our SYN has been ACKed), change the connection 5394 * state to ESTABLISHED..." 5395 */ 5396 5397 TCP_ECN_rcv_synack(tp, th); 5398 5399 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5400 tcp_ack(sk, skb, FLAG_SLOWPATH); 5401 5402 /* Ok.. it's good. Set up sequence numbers and 5403 * move to established. 5404 */ 5405 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5406 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5407 5408 /* RFC1323: The window in SYN & SYN/ACK segments is 5409 * never scaled. 5410 */ 5411 tp->snd_wnd = ntohs(th->window); 5412 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 5413 5414 if (!tp->rx_opt.wscale_ok) { 5415 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5416 tp->window_clamp = min(tp->window_clamp, 65535U); 5417 } 5418 5419 if (tp->rx_opt.saw_tstamp) { 5420 tp->rx_opt.tstamp_ok = 1; 5421 tp->tcp_header_len = 5422 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5423 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5424 tcp_store_ts_recent(tp); 5425 } else { 5426 tp->tcp_header_len = sizeof(struct tcphdr); 5427 } 5428 5429 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5430 tcp_enable_fack(tp); 5431 5432 tcp_mtup_init(sk); 5433 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5434 tcp_initialize_rcv_mss(sk); 5435 5436 /* Remember, tcp_poll() does not lock socket! 5437 * Change state from SYN-SENT only after copied_seq 5438 * is initialized. */ 5439 tp->copied_seq = tp->rcv_nxt; 5440 smp_mb(); 5441 tcp_set_state(sk, TCP_ESTABLISHED); 5442 5443 security_inet_conn_established(sk, skb); 5444 5445 /* Make sure socket is routed, for correct metrics. */ 5446 icsk->icsk_af_ops->rebuild_header(sk); 5447 5448 tcp_init_metrics(sk); 5449 5450 tcp_init_congestion_control(sk); 5451 5452 /* Prevent spurious tcp_cwnd_restart() on first data 5453 * packet. 5454 */ 5455 tp->lsndtime = tcp_time_stamp; 5456 5457 tcp_init_buffer_space(sk); 5458 5459 if (sock_flag(sk, SOCK_KEEPOPEN)) 5460 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5461 5462 if (!tp->rx_opt.snd_wscale) 5463 __tcp_fast_path_on(tp, tp->snd_wnd); 5464 else 5465 tp->pred_flags = 0; 5466 5467 if (!sock_flag(sk, SOCK_DEAD)) { 5468 sk->sk_state_change(sk); 5469 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5470 } 5471 5472 if (sk->sk_write_pending || 5473 icsk->icsk_accept_queue.rskq_defer_accept || 5474 icsk->icsk_ack.pingpong) { 5475 /* Save one ACK. Data will be ready after 5476 * several ticks, if write_pending is set. 5477 * 5478 * It may be deleted, but with this feature tcpdumps 5479 * look so _wonderfully_ clever, that I was not able 5480 * to stand against the temptation 8) --ANK 5481 */ 5482 inet_csk_schedule_ack(sk); 5483 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5484 icsk->icsk_ack.ato = TCP_ATO_MIN; 5485 tcp_incr_quickack(sk); 5486 tcp_enter_quickack_mode(sk); 5487 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5488 TCP_DELACK_MAX, TCP_RTO_MAX); 5489 5490 discard: 5491 __kfree_skb(skb); 5492 return 0; 5493 } else { 5494 tcp_send_ack(sk); 5495 } 5496 return -1; 5497 } 5498 5499 /* No ACK in the segment */ 5500 5501 if (th->rst) { 5502 /* rfc793: 5503 * "If the RST bit is set 5504 * 5505 * Otherwise (no ACK) drop the segment and return." 5506 */ 5507 5508 goto discard_and_undo; 5509 } 5510 5511 /* PAWS check. */ 5512 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5513 tcp_paws_check(&tp->rx_opt, 0)) 5514 goto discard_and_undo; 5515 5516 if (th->syn) { 5517 /* We see SYN without ACK. It is attempt of 5518 * simultaneous connect with crossed SYNs. 5519 * Particularly, it can be connect to self. 5520 */ 5521 tcp_set_state(sk, TCP_SYN_RECV); 5522 5523 if (tp->rx_opt.saw_tstamp) { 5524 tp->rx_opt.tstamp_ok = 1; 5525 tcp_store_ts_recent(tp); 5526 tp->tcp_header_len = 5527 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5528 } else { 5529 tp->tcp_header_len = sizeof(struct tcphdr); 5530 } 5531 5532 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5533 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5534 5535 /* RFC1323: The window in SYN & SYN/ACK segments is 5536 * never scaled. 5537 */ 5538 tp->snd_wnd = ntohs(th->window); 5539 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5540 tp->max_window = tp->snd_wnd; 5541 5542 TCP_ECN_rcv_syn(tp, th); 5543 5544 tcp_mtup_init(sk); 5545 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5546 tcp_initialize_rcv_mss(sk); 5547 5548 tcp_send_synack(sk); 5549 #if 0 5550 /* Note, we could accept data and URG from this segment. 5551 * There are no obstacles to make this. 5552 * 5553 * However, if we ignore data in ACKless segments sometimes, 5554 * we have no reasons to accept it sometimes. 5555 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5556 * is not flawless. So, discard packet for sanity. 5557 * Uncomment this return to process the data. 5558 */ 5559 return -1; 5560 #else 5561 goto discard; 5562 #endif 5563 } 5564 /* "fifth, if neither of the SYN or RST bits is set then 5565 * drop the segment and return." 5566 */ 5567 5568 discard_and_undo: 5569 tcp_clear_options(&tp->rx_opt); 5570 tp->rx_opt.mss_clamp = saved_clamp; 5571 goto discard; 5572 5573 reset_and_undo: 5574 tcp_clear_options(&tp->rx_opt); 5575 tp->rx_opt.mss_clamp = saved_clamp; 5576 return 1; 5577 } 5578 5579 /* 5580 * This function implements the receiving procedure of RFC 793 for 5581 * all states except ESTABLISHED and TIME_WAIT. 5582 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5583 * address independent. 5584 */ 5585 5586 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5587 struct tcphdr *th, unsigned len) 5588 { 5589 struct tcp_sock *tp = tcp_sk(sk); 5590 struct inet_connection_sock *icsk = inet_csk(sk); 5591 int queued = 0; 5592 int res; 5593 5594 tp->rx_opt.saw_tstamp = 0; 5595 5596 switch (sk->sk_state) { 5597 case TCP_CLOSE: 5598 goto discard; 5599 5600 case TCP_LISTEN: 5601 if (th->ack) 5602 return 1; 5603 5604 if (th->rst) 5605 goto discard; 5606 5607 if (th->syn) { 5608 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5609 return 1; 5610 5611 /* Now we have several options: In theory there is 5612 * nothing else in the frame. KA9Q has an option to 5613 * send data with the syn, BSD accepts data with the 5614 * syn up to the [to be] advertised window and 5615 * Solaris 2.1 gives you a protocol error. For now 5616 * we just ignore it, that fits the spec precisely 5617 * and avoids incompatibilities. It would be nice in 5618 * future to drop through and process the data. 5619 * 5620 * Now that TTCP is starting to be used we ought to 5621 * queue this data. 5622 * But, this leaves one open to an easy denial of 5623 * service attack, and SYN cookies can't defend 5624 * against this problem. So, we drop the data 5625 * in the interest of security over speed unless 5626 * it's still in use. 5627 */ 5628 kfree_skb(skb); 5629 return 0; 5630 } 5631 goto discard; 5632 5633 case TCP_SYN_SENT: 5634 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5635 if (queued >= 0) 5636 return queued; 5637 5638 /* Do step6 onward by hand. */ 5639 tcp_urg(sk, skb, th); 5640 __kfree_skb(skb); 5641 tcp_data_snd_check(sk); 5642 return 0; 5643 } 5644 5645 res = tcp_validate_incoming(sk, skb, th, 0); 5646 if (res <= 0) 5647 return -res; 5648 5649 /* step 5: check the ACK field */ 5650 if (th->ack) { 5651 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 5652 5653 switch (sk->sk_state) { 5654 case TCP_SYN_RECV: 5655 if (acceptable) { 5656 tp->copied_seq = tp->rcv_nxt; 5657 smp_mb(); 5658 tcp_set_state(sk, TCP_ESTABLISHED); 5659 sk->sk_state_change(sk); 5660 5661 /* Note, that this wakeup is only for marginal 5662 * crossed SYN case. Passively open sockets 5663 * are not waked up, because sk->sk_sleep == 5664 * NULL and sk->sk_socket == NULL. 5665 */ 5666 if (sk->sk_socket) 5667 sk_wake_async(sk, 5668 SOCK_WAKE_IO, POLL_OUT); 5669 5670 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5671 tp->snd_wnd = ntohs(th->window) << 5672 tp->rx_opt.snd_wscale; 5673 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 5674 TCP_SKB_CB(skb)->seq); 5675 5676 /* tcp_ack considers this ACK as duplicate 5677 * and does not calculate rtt. 5678 * Fix it at least with timestamps. 5679 */ 5680 if (tp->rx_opt.saw_tstamp && 5681 tp->rx_opt.rcv_tsecr && !tp->srtt) 5682 tcp_ack_saw_tstamp(sk, 0); 5683 5684 if (tp->rx_opt.tstamp_ok) 5685 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5686 5687 /* Make sure socket is routed, for 5688 * correct metrics. 5689 */ 5690 icsk->icsk_af_ops->rebuild_header(sk); 5691 5692 tcp_init_metrics(sk); 5693 5694 tcp_init_congestion_control(sk); 5695 5696 /* Prevent spurious tcp_cwnd_restart() on 5697 * first data packet. 5698 */ 5699 tp->lsndtime = tcp_time_stamp; 5700 5701 tcp_mtup_init(sk); 5702 tcp_initialize_rcv_mss(sk); 5703 tcp_init_buffer_space(sk); 5704 tcp_fast_path_on(tp); 5705 } else { 5706 return 1; 5707 } 5708 break; 5709 5710 case TCP_FIN_WAIT1: 5711 if (tp->snd_una == tp->write_seq) { 5712 tcp_set_state(sk, TCP_FIN_WAIT2); 5713 sk->sk_shutdown |= SEND_SHUTDOWN; 5714 dst_confirm(sk->sk_dst_cache); 5715 5716 if (!sock_flag(sk, SOCK_DEAD)) 5717 /* Wake up lingering close() */ 5718 sk->sk_state_change(sk); 5719 else { 5720 int tmo; 5721 5722 if (tp->linger2 < 0 || 5723 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5724 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5725 tcp_done(sk); 5726 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5727 return 1; 5728 } 5729 5730 tmo = tcp_fin_time(sk); 5731 if (tmo > TCP_TIMEWAIT_LEN) { 5732 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5733 } else if (th->fin || sock_owned_by_user(sk)) { 5734 /* Bad case. We could lose such FIN otherwise. 5735 * It is not a big problem, but it looks confusing 5736 * and not so rare event. We still can lose it now, 5737 * if it spins in bh_lock_sock(), but it is really 5738 * marginal case. 5739 */ 5740 inet_csk_reset_keepalive_timer(sk, tmo); 5741 } else { 5742 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5743 goto discard; 5744 } 5745 } 5746 } 5747 break; 5748 5749 case TCP_CLOSING: 5750 if (tp->snd_una == tp->write_seq) { 5751 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5752 goto discard; 5753 } 5754 break; 5755 5756 case TCP_LAST_ACK: 5757 if (tp->snd_una == tp->write_seq) { 5758 tcp_update_metrics(sk); 5759 tcp_done(sk); 5760 goto discard; 5761 } 5762 break; 5763 } 5764 } else 5765 goto discard; 5766 5767 /* step 6: check the URG bit */ 5768 tcp_urg(sk, skb, th); 5769 5770 /* step 7: process the segment text */ 5771 switch (sk->sk_state) { 5772 case TCP_CLOSE_WAIT: 5773 case TCP_CLOSING: 5774 case TCP_LAST_ACK: 5775 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5776 break; 5777 case TCP_FIN_WAIT1: 5778 case TCP_FIN_WAIT2: 5779 /* RFC 793 says to queue data in these states, 5780 * RFC 1122 says we MUST send a reset. 5781 * BSD 4.4 also does reset. 5782 */ 5783 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5784 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5785 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5786 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5787 tcp_reset(sk); 5788 return 1; 5789 } 5790 } 5791 /* Fall through */ 5792 case TCP_ESTABLISHED: 5793 tcp_data_queue(sk, skb); 5794 queued = 1; 5795 break; 5796 } 5797 5798 /* tcp_data could move socket to TIME-WAIT */ 5799 if (sk->sk_state != TCP_CLOSE) { 5800 tcp_data_snd_check(sk); 5801 tcp_ack_snd_check(sk); 5802 } 5803 5804 if (!queued) { 5805 discard: 5806 __kfree_skb(skb); 5807 } 5808 return 0; 5809 } 5810 5811 EXPORT_SYMBOL(sysctl_tcp_ecn); 5812 EXPORT_SYMBOL(sysctl_tcp_reordering); 5813 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 5814 EXPORT_SYMBOL(tcp_parse_options); 5815 #ifdef CONFIG_TCP_MD5SIG 5816 EXPORT_SYMBOL(tcp_parse_md5sig_option); 5817 #endif 5818 EXPORT_SYMBOL(tcp_rcv_established); 5819 EXPORT_SYMBOL(tcp_rcv_state_process); 5820 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 5821