1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <linux/bitops.h> 74 #include <net/dst.h> 75 #include <net/tcp.h> 76 #include <net/tcp_ecn.h> 77 #include <net/proto_memory.h> 78 #include <net/inet_common.h> 79 #include <linux/ipsec.h> 80 #include <linux/unaligned.h> 81 #include <linux/errqueue.h> 82 #include <trace/events/tcp.h> 83 #include <linux/jump_label_ratelimit.h> 84 #include <net/busy_poll.h> 85 #include <net/mptcp.h> 86 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 89 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 90 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 91 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 92 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 93 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 94 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 95 #define FLAG_ECE 0x40 /* ECE in this ACK */ 96 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 97 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 98 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 99 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 100 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 101 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 102 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 103 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 104 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 105 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 106 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 107 #define FLAG_TS_PROGRESS 0x40000 /* Positive timestamp delta */ 108 109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 113 114 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 115 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 116 117 #define REXMIT_NONE 0 /* no loss recovery to do */ 118 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 119 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 120 121 #if IS_ENABLED(CONFIG_TLS_DEVICE) 122 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 123 124 void clean_acked_data_enable(struct tcp_sock *tp, 125 void (*cad)(struct sock *sk, u32 ack_seq)) 126 { 127 tp->tcp_clean_acked = cad; 128 static_branch_deferred_inc(&clean_acked_data_enabled); 129 } 130 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 131 132 void clean_acked_data_disable(struct tcp_sock *tp) 133 { 134 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 135 tp->tcp_clean_acked = NULL; 136 } 137 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 138 139 void clean_acked_data_flush(void) 140 { 141 static_key_deferred_flush(&clean_acked_data_enabled); 142 } 143 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 144 #endif 145 146 #ifdef CONFIG_CGROUP_BPF 147 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 148 { 149 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 150 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 151 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 152 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 153 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 154 struct bpf_sock_ops_kern sock_ops; 155 156 if (likely(!unknown_opt && !parse_all_opt)) 157 return; 158 159 /* The skb will be handled in the 160 * bpf_skops_established() or 161 * bpf_skops_write_hdr_opt(). 162 */ 163 switch (sk->sk_state) { 164 case TCP_SYN_RECV: 165 case TCP_SYN_SENT: 166 case TCP_LISTEN: 167 return; 168 } 169 170 sock_owned_by_me(sk); 171 172 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 173 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 174 sock_ops.is_fullsock = 1; 175 sock_ops.is_locked_tcp_sock = 1; 176 sock_ops.sk = sk; 177 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 178 179 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 180 } 181 182 static void bpf_skops_established(struct sock *sk, int bpf_op, 183 struct sk_buff *skb) 184 { 185 struct bpf_sock_ops_kern sock_ops; 186 187 sock_owned_by_me(sk); 188 189 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 190 sock_ops.op = bpf_op; 191 sock_ops.is_fullsock = 1; 192 sock_ops.is_locked_tcp_sock = 1; 193 sock_ops.sk = sk; 194 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 195 if (skb) 196 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 197 198 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 199 } 200 #else 201 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 202 { 203 } 204 205 static void bpf_skops_established(struct sock *sk, int bpf_op, 206 struct sk_buff *skb) 207 { 208 } 209 #endif 210 211 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 212 unsigned int len) 213 { 214 struct net_device *dev; 215 216 rcu_read_lock(); 217 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 218 if (!dev || len >= READ_ONCE(dev->mtu)) 219 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 220 dev ? dev->name : "Unknown driver"); 221 rcu_read_unlock(); 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 247 248 do_div(val, skb->truesize); 249 tcp_sk(sk)->scaling_ratio = val ? val : 1; 250 251 if (old_ratio != tcp_sk(sk)->scaling_ratio) { 252 struct tcp_sock *tp = tcp_sk(sk); 253 254 val = tcp_win_from_space(sk, sk->sk_rcvbuf); 255 tcp_set_window_clamp(sk, val); 256 257 if (tp->window_clamp < tp->rcvq_space.space) 258 tp->rcvq_space.space = tp->window_clamp; 259 } 260 } 261 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 262 tcp_sk(sk)->advmss); 263 /* Account for possibly-removed options */ 264 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 265 tcp_gro_dev_warn, sk, skb, len); 266 /* If the skb has a len of exactly 1*MSS and has the PSH bit 267 * set then it is likely the end of an application write. So 268 * more data may not be arriving soon, and yet the data sender 269 * may be waiting for an ACK if cwnd-bound or using TX zero 270 * copy. So we set ICSK_ACK_PUSHED here so that 271 * tcp_cleanup_rbuf() will send an ACK immediately if the app 272 * reads all of the data and is not ping-pong. If len > MSS 273 * then this logic does not matter (and does not hurt) because 274 * tcp_cleanup_rbuf() will always ACK immediately if the app 275 * reads data and there is more than an MSS of unACKed data. 276 */ 277 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 278 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 279 } else { 280 /* Otherwise, we make more careful check taking into account, 281 * that SACKs block is variable. 282 * 283 * "len" is invariant segment length, including TCP header. 284 */ 285 len += skb->data - skb_transport_header(skb); 286 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 287 /* If PSH is not set, packet should be 288 * full sized, provided peer TCP is not badly broken. 289 * This observation (if it is correct 8)) allows 290 * to handle super-low mtu links fairly. 291 */ 292 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 293 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 294 /* Subtract also invariant (if peer is RFC compliant), 295 * tcp header plus fixed timestamp option length. 296 * Resulting "len" is MSS free of SACK jitter. 297 */ 298 len -= tcp_sk(sk)->tcp_header_len; 299 icsk->icsk_ack.last_seg_size = len; 300 if (len == lss) { 301 icsk->icsk_ack.rcv_mss = len; 302 return; 303 } 304 } 305 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 306 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 307 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 308 } 309 } 310 311 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 312 { 313 struct inet_connection_sock *icsk = inet_csk(sk); 314 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 315 316 if (quickacks == 0) 317 quickacks = 2; 318 quickacks = min(quickacks, max_quickacks); 319 if (quickacks > icsk->icsk_ack.quick) 320 icsk->icsk_ack.quick = quickacks; 321 } 322 323 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 324 { 325 struct inet_connection_sock *icsk = inet_csk(sk); 326 327 tcp_incr_quickack(sk, max_quickacks); 328 inet_csk_exit_pingpong_mode(sk); 329 icsk->icsk_ack.ato = TCP_ATO_MIN; 330 } 331 332 /* Send ACKs quickly, if "quick" count is not exhausted 333 * and the session is not interactive. 334 */ 335 336 static bool tcp_in_quickack_mode(struct sock *sk) 337 { 338 const struct inet_connection_sock *icsk = inet_csk(sk); 339 340 return icsk->icsk_ack.dst_quick_ack || 341 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 342 } 343 344 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb) 345 { 346 struct tcp_sock *tp = tcp_sk(sk); 347 348 if (tcp_ecn_disabled(tp)) 349 return; 350 351 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 352 case INET_ECN_NOT_ECT: 353 /* Funny extension: if ECT is not set on a segment, 354 * and we already seen ECT on a previous segment, 355 * it is probably a retransmit. 356 */ 357 if (tp->ecn_flags & TCP_ECN_SEEN) 358 tcp_enter_quickack_mode(sk, 2); 359 break; 360 case INET_ECN_CE: 361 if (tcp_ca_needs_ecn(sk)) 362 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 363 364 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR) && 365 tcp_ecn_mode_rfc3168(tp)) { 366 /* Better not delay acks, sender can have a very low cwnd */ 367 tcp_enter_quickack_mode(sk, 2); 368 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 369 } 370 /* As for RFC3168 ECN, the TCP_ECN_SEEN flag is set by 371 * tcp_data_ecn_check() when the ECN codepoint of 372 * received TCP data contains ECT(0), ECT(1), or CE. 373 */ 374 if (!tcp_ecn_mode_rfc3168(tp)) 375 break; 376 tp->ecn_flags |= TCP_ECN_SEEN; 377 break; 378 default: 379 if (tcp_ca_needs_ecn(sk)) 380 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 381 if (!tcp_ecn_mode_rfc3168(tp)) 382 break; 383 tp->ecn_flags |= TCP_ECN_SEEN; 384 break; 385 } 386 } 387 388 /* Returns true if the byte counters can be used */ 389 static bool tcp_accecn_process_option(struct tcp_sock *tp, 390 const struct sk_buff *skb, 391 u32 delivered_bytes, int flag) 392 { 393 u8 estimate_ecnfield = tp->est_ecnfield; 394 bool ambiguous_ecn_bytes_incr = false; 395 bool first_changed = false; 396 unsigned int optlen; 397 bool order1, res; 398 unsigned int i; 399 u8 *ptr; 400 401 if (tcp_accecn_opt_fail_recv(tp)) 402 return false; 403 404 if (!(flag & FLAG_SLOWPATH) || !tp->rx_opt.accecn) { 405 if (!tp->saw_accecn_opt) { 406 /* Too late to enable after this point due to 407 * potential counter wraps 408 */ 409 if (tp->bytes_sent >= (1 << 23) - 1) { 410 u8 saw_opt = TCP_ACCECN_OPT_FAIL_SEEN; 411 412 tcp_accecn_saw_opt_fail_recv(tp, saw_opt); 413 } 414 return false; 415 } 416 417 if (estimate_ecnfield) { 418 u8 ecnfield = estimate_ecnfield - 1; 419 420 tp->delivered_ecn_bytes[ecnfield] += delivered_bytes; 421 return true; 422 } 423 return false; 424 } 425 426 ptr = skb_transport_header(skb) + tp->rx_opt.accecn; 427 optlen = ptr[1] - 2; 428 if (WARN_ON_ONCE(ptr[0] != TCPOPT_ACCECN0 && ptr[0] != TCPOPT_ACCECN1)) 429 return false; 430 order1 = (ptr[0] == TCPOPT_ACCECN1); 431 ptr += 2; 432 433 if (tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) { 434 tp->saw_accecn_opt = tcp_accecn_option_init(skb, 435 tp->rx_opt.accecn); 436 if (tp->saw_accecn_opt == TCP_ACCECN_OPT_FAIL_SEEN) 437 tcp_accecn_fail_mode_set(tp, TCP_ACCECN_OPT_FAIL_RECV); 438 } 439 440 res = !!estimate_ecnfield; 441 for (i = 0; i < 3; i++) { 442 u32 init_offset; 443 u8 ecnfield; 444 s32 delta; 445 u32 *cnt; 446 447 if (optlen < TCPOLEN_ACCECN_PERFIELD) 448 break; 449 450 ecnfield = tcp_accecn_optfield_to_ecnfield(i, order1); 451 init_offset = tcp_accecn_field_init_offset(ecnfield); 452 cnt = &tp->delivered_ecn_bytes[ecnfield - 1]; 453 delta = tcp_update_ecn_bytes(cnt, ptr, init_offset); 454 if (delta && delta < 0) { 455 res = false; 456 ambiguous_ecn_bytes_incr = true; 457 } 458 if (delta && ecnfield != estimate_ecnfield) { 459 if (!first_changed) { 460 tp->est_ecnfield = ecnfield; 461 first_changed = true; 462 } else { 463 res = false; 464 ambiguous_ecn_bytes_incr = true; 465 } 466 } 467 468 optlen -= TCPOLEN_ACCECN_PERFIELD; 469 ptr += TCPOLEN_ACCECN_PERFIELD; 470 } 471 if (ambiguous_ecn_bytes_incr) 472 tp->est_ecnfield = 0; 473 474 return res; 475 } 476 477 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count) 478 { 479 tp->delivered_ce += ecn_count; 480 } 481 482 /* Updates the delivered and delivered_ce counts */ 483 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 484 bool ece_ack) 485 { 486 tp->delivered += delivered; 487 if (tcp_ecn_mode_rfc3168(tp) && ece_ack) 488 tcp_count_delivered_ce(tp, delivered); 489 } 490 491 /* Returns the ECN CE delta */ 492 static u32 __tcp_accecn_process(struct sock *sk, const struct sk_buff *skb, 493 u32 delivered_pkts, u32 delivered_bytes, 494 int flag) 495 { 496 u32 old_ceb = tcp_sk(sk)->delivered_ecn_bytes[INET_ECN_CE - 1]; 497 const struct tcphdr *th = tcp_hdr(skb); 498 struct tcp_sock *tp = tcp_sk(sk); 499 u32 delta, safe_delta, d_ceb; 500 bool opt_deltas_valid; 501 u32 corrected_ace; 502 503 /* Reordered ACK or uncertain due to lack of data to send and ts */ 504 if (!(flag & (FLAG_FORWARD_PROGRESS | FLAG_TS_PROGRESS))) 505 return 0; 506 507 opt_deltas_valid = tcp_accecn_process_option(tp, skb, 508 delivered_bytes, flag); 509 510 if (!(flag & FLAG_SLOWPATH)) { 511 /* AccECN counter might overflow on large ACKs */ 512 if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK) 513 return 0; 514 } 515 516 /* ACE field is not available during handshake */ 517 if (flag & FLAG_SYN_ACKED) 518 return 0; 519 520 if (tp->received_ce_pending >= TCP_ACCECN_ACE_MAX_DELTA) 521 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 522 523 corrected_ace = tcp_accecn_ace(th) - TCP_ACCECN_CEP_INIT_OFFSET; 524 delta = (corrected_ace - tp->delivered_ce) & TCP_ACCECN_CEP_ACE_MASK; 525 if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK) 526 return delta; 527 528 safe_delta = delivered_pkts - 529 ((delivered_pkts - delta) & TCP_ACCECN_CEP_ACE_MASK); 530 531 if (opt_deltas_valid) { 532 d_ceb = tp->delivered_ecn_bytes[INET_ECN_CE - 1] - old_ceb; 533 if (!d_ceb) 534 return delta; 535 536 if ((delivered_pkts >= (TCP_ACCECN_CEP_ACE_MASK + 1) * 2) && 537 (tcp_is_sack(tp) || 538 ((1 << inet_csk(sk)->icsk_ca_state) & 539 (TCPF_CA_Open | TCPF_CA_CWR)))) { 540 u32 est_d_cep; 541 542 if (delivered_bytes <= d_ceb) 543 return safe_delta; 544 545 est_d_cep = DIV_ROUND_UP_ULL((u64)d_ceb * 546 delivered_pkts, 547 delivered_bytes); 548 return min(safe_delta, 549 delta + 550 (est_d_cep & ~TCP_ACCECN_CEP_ACE_MASK)); 551 } 552 553 if (d_ceb > delta * tp->mss_cache) 554 return safe_delta; 555 if (d_ceb < 556 safe_delta * tp->mss_cache >> TCP_ACCECN_SAFETY_SHIFT) 557 return delta; 558 } 559 560 return safe_delta; 561 } 562 563 static u32 tcp_accecn_process(struct sock *sk, const struct sk_buff *skb, 564 u32 delivered_pkts, u32 delivered_bytes, 565 int *flag) 566 { 567 struct tcp_sock *tp = tcp_sk(sk); 568 u32 delta; 569 570 delta = __tcp_accecn_process(sk, skb, delivered_pkts, 571 delivered_bytes, *flag); 572 if (delta > 0) { 573 tcp_count_delivered_ce(tp, delta); 574 *flag |= FLAG_ECE; 575 /* Recalculate header predictor */ 576 if (tp->pred_flags) 577 tcp_fast_path_on(tp); 578 } 579 return delta; 580 } 581 582 /* Buffer size and advertised window tuning. 583 * 584 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 585 */ 586 587 static void tcp_sndbuf_expand(struct sock *sk) 588 { 589 const struct tcp_sock *tp = tcp_sk(sk); 590 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 591 int sndmem, per_mss; 592 u32 nr_segs; 593 594 /* Worst case is non GSO/TSO : each frame consumes one skb 595 * and skb->head is kmalloced using power of two area of memory 596 */ 597 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 598 MAX_TCP_HEADER + 599 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 600 601 per_mss = roundup_pow_of_two(per_mss) + 602 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 603 604 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 605 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 606 607 /* Fast Recovery (RFC 5681 3.2) : 608 * Cubic needs 1.7 factor, rounded to 2 to include 609 * extra cushion (application might react slowly to EPOLLOUT) 610 */ 611 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 612 sndmem *= nr_segs * per_mss; 613 614 if (sk->sk_sndbuf < sndmem) 615 WRITE_ONCE(sk->sk_sndbuf, 616 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 617 } 618 619 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 620 * 621 * All tcp_full_space() is split to two parts: "network" buffer, allocated 622 * forward and advertised in receiver window (tp->rcv_wnd) and 623 * "application buffer", required to isolate scheduling/application 624 * latencies from network. 625 * window_clamp is maximal advertised window. It can be less than 626 * tcp_full_space(), in this case tcp_full_space() - window_clamp 627 * is reserved for "application" buffer. The less window_clamp is 628 * the smoother our behaviour from viewpoint of network, but the lower 629 * throughput and the higher sensitivity of the connection to losses. 8) 630 * 631 * rcv_ssthresh is more strict window_clamp used at "slow start" 632 * phase to predict further behaviour of this connection. 633 * It is used for two goals: 634 * - to enforce header prediction at sender, even when application 635 * requires some significant "application buffer". It is check #1. 636 * - to prevent pruning of receive queue because of misprediction 637 * of receiver window. Check #2. 638 * 639 * The scheme does not work when sender sends good segments opening 640 * window and then starts to feed us spaghetti. But it should work 641 * in common situations. Otherwise, we have to rely on queue collapsing. 642 */ 643 644 /* Slow part of check#2. */ 645 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 646 unsigned int skbtruesize) 647 { 648 const struct tcp_sock *tp = tcp_sk(sk); 649 /* Optimize this! */ 650 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 651 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 652 653 while (tp->rcv_ssthresh <= window) { 654 if (truesize <= skb->len) 655 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 656 657 truesize >>= 1; 658 window >>= 1; 659 } 660 return 0; 661 } 662 663 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 664 * can play nice with us, as sk_buff and skb->head might be either 665 * freed or shared with up to MAX_SKB_FRAGS segments. 666 * Only give a boost to drivers using page frag(s) to hold the frame(s), 667 * and if no payload was pulled in skb->head before reaching us. 668 */ 669 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 670 { 671 u32 truesize = skb->truesize; 672 673 if (adjust && !skb_headlen(skb)) { 674 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 675 /* paranoid check, some drivers might be buggy */ 676 if (unlikely((int)truesize < (int)skb->len)) 677 truesize = skb->truesize; 678 } 679 return truesize; 680 } 681 682 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 683 bool adjust) 684 { 685 struct tcp_sock *tp = tcp_sk(sk); 686 int room; 687 688 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 689 690 if (room <= 0) 691 return; 692 693 /* Check #1 */ 694 if (!tcp_under_memory_pressure(sk)) { 695 unsigned int truesize = truesize_adjust(adjust, skb); 696 int incr; 697 698 /* Check #2. Increase window, if skb with such overhead 699 * will fit to rcvbuf in future. 700 */ 701 if (tcp_win_from_space(sk, truesize) <= skb->len) 702 incr = 2 * tp->advmss; 703 else 704 incr = __tcp_grow_window(sk, skb, truesize); 705 706 if (incr) { 707 incr = max_t(int, incr, 2 * skb->len); 708 tp->rcv_ssthresh += min(room, incr); 709 inet_csk(sk)->icsk_ack.quick |= 1; 710 } 711 } else { 712 /* Under pressure: 713 * Adjust rcv_ssthresh according to reserved mem 714 */ 715 tcp_adjust_rcv_ssthresh(sk); 716 } 717 } 718 719 /* 3. Try to fixup all. It is made immediately after connection enters 720 * established state. 721 */ 722 static void tcp_init_buffer_space(struct sock *sk) 723 { 724 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 725 struct tcp_sock *tp = tcp_sk(sk); 726 int maxwin; 727 728 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 729 tcp_sndbuf_expand(sk); 730 731 tcp_mstamp_refresh(tp); 732 tp->rcvq_space.time = tp->tcp_mstamp; 733 tp->rcvq_space.seq = tp->copied_seq; 734 735 maxwin = tcp_full_space(sk); 736 737 if (tp->window_clamp >= maxwin) { 738 WRITE_ONCE(tp->window_clamp, maxwin); 739 740 if (tcp_app_win && maxwin > 4 * tp->advmss) 741 WRITE_ONCE(tp->window_clamp, 742 max(maxwin - (maxwin >> tcp_app_win), 743 4 * tp->advmss)); 744 } 745 746 /* Force reservation of one segment. */ 747 if (tcp_app_win && 748 tp->window_clamp > 2 * tp->advmss && 749 tp->window_clamp + tp->advmss > maxwin) 750 WRITE_ONCE(tp->window_clamp, 751 max(2 * tp->advmss, maxwin - tp->advmss)); 752 753 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 754 tp->snd_cwnd_stamp = tcp_jiffies32; 755 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 756 (u32)TCP_INIT_CWND * tp->advmss); 757 } 758 759 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 760 static void tcp_clamp_window(struct sock *sk) 761 { 762 struct tcp_sock *tp = tcp_sk(sk); 763 struct inet_connection_sock *icsk = inet_csk(sk); 764 struct net *net = sock_net(sk); 765 int rmem2; 766 767 icsk->icsk_ack.quick = 0; 768 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 769 770 if (sk->sk_rcvbuf < rmem2 && 771 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 772 !tcp_under_memory_pressure(sk) && 773 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 774 WRITE_ONCE(sk->sk_rcvbuf, 775 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 776 } 777 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 778 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 779 } 780 781 /* Initialize RCV_MSS value. 782 * RCV_MSS is an our guess about MSS used by the peer. 783 * We haven't any direct information about the MSS. 784 * It's better to underestimate the RCV_MSS rather than overestimate. 785 * Overestimations make us ACKing less frequently than needed. 786 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 787 */ 788 void tcp_initialize_rcv_mss(struct sock *sk) 789 { 790 const struct tcp_sock *tp = tcp_sk(sk); 791 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 792 793 hint = min(hint, tp->rcv_wnd / 2); 794 hint = min(hint, TCP_MSS_DEFAULT); 795 hint = max(hint, TCP_MIN_MSS); 796 797 inet_csk(sk)->icsk_ack.rcv_mss = hint; 798 } 799 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss); 800 801 /* Receiver "autotuning" code. 802 * 803 * The algorithm for RTT estimation w/o timestamps is based on 804 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 805 * <https://public.lanl.gov/radiant/pubs.html#DRS> 806 * 807 * More detail on this code can be found at 808 * <http://staff.psc.edu/jheffner/>, 809 * though this reference is out of date. A new paper 810 * is pending. 811 */ 812 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 813 { 814 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us; 815 long m = sample << 3; 816 817 if (old_sample == 0 || m < old_sample) { 818 new_sample = m; 819 } else { 820 /* If we sample in larger samples in the non-timestamp 821 * case, we could grossly overestimate the RTT especially 822 * with chatty applications or bulk transfer apps which 823 * are stalled on filesystem I/O. 824 * 825 * Also, since we are only going for a minimum in the 826 * non-timestamp case, we do not smooth things out 827 * else with timestamps disabled convergence takes too 828 * long. 829 */ 830 if (win_dep) 831 return; 832 /* Do not use this sample if receive queue is not empty. */ 833 if (tp->rcv_nxt != tp->copied_seq) 834 return; 835 new_sample = old_sample - (old_sample >> 3) + sample; 836 } 837 838 tp->rcv_rtt_est.rtt_us = new_sample; 839 } 840 841 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 842 { 843 u32 delta_us; 844 845 if (tp->rcv_rtt_est.time == 0) 846 goto new_measure; 847 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 848 return; 849 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 850 if (!delta_us) 851 delta_us = 1; 852 tcp_rcv_rtt_update(tp, delta_us, 1); 853 854 new_measure: 855 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 856 tp->rcv_rtt_est.time = tp->tcp_mstamp; 857 } 858 859 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta) 860 { 861 u32 delta, delta_us; 862 863 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 864 if (tp->tcp_usec_ts) 865 return delta; 866 867 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 868 if (!delta) 869 delta = min_delta; 870 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 871 return delta_us; 872 } 873 return -1; 874 } 875 876 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 877 const struct sk_buff *skb) 878 { 879 struct tcp_sock *tp = tcp_sk(sk); 880 881 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 882 return; 883 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 884 885 if (TCP_SKB_CB(skb)->end_seq - 886 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 887 s32 delta = tcp_rtt_tsopt_us(tp, 0); 888 889 if (delta > 0) 890 tcp_rcv_rtt_update(tp, delta, 0); 891 } 892 } 893 894 void tcp_rcvbuf_grow(struct sock *sk, u32 newval) 895 { 896 const struct net *net = sock_net(sk); 897 struct tcp_sock *tp = tcp_sk(sk); 898 u32 rcvwin, rcvbuf, cap, oldval; 899 u64 grow; 900 901 oldval = tp->rcvq_space.space; 902 tp->rcvq_space.space = newval; 903 904 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 905 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 906 return; 907 908 /* DRS is always one RTT late. */ 909 rcvwin = newval << 1; 910 911 /* slow start: allow the sender to double its rate. */ 912 grow = (u64)rcvwin * (newval - oldval); 913 do_div(grow, oldval); 914 rcvwin += grow << 1; 915 916 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) 917 rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt; 918 919 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 920 921 rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap); 922 if (rcvbuf > sk->sk_rcvbuf) { 923 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 924 /* Make the window clamp follow along. */ 925 WRITE_ONCE(tp->window_clamp, 926 tcp_win_from_space(sk, rcvbuf)); 927 } 928 } 929 /* 930 * This function should be called every time data is copied to user space. 931 * It calculates the appropriate TCP receive buffer space. 932 */ 933 void tcp_rcv_space_adjust(struct sock *sk) 934 { 935 struct tcp_sock *tp = tcp_sk(sk); 936 int time, inq, copied; 937 938 trace_tcp_rcv_space_adjust(sk); 939 940 tcp_mstamp_refresh(tp); 941 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 942 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 943 return; 944 945 /* Number of bytes copied to user in last RTT */ 946 copied = tp->copied_seq - tp->rcvq_space.seq; 947 /* Number of bytes in receive queue. */ 948 inq = tp->rcv_nxt - tp->copied_seq; 949 copied -= inq; 950 if (copied <= tp->rcvq_space.space) 951 goto new_measure; 952 953 trace_tcp_rcvbuf_grow(sk, time); 954 955 tcp_rcvbuf_grow(sk, copied); 956 957 new_measure: 958 tp->rcvq_space.seq = tp->copied_seq; 959 tp->rcvq_space.time = tp->tcp_mstamp; 960 } 961 962 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 963 { 964 #if IS_ENABLED(CONFIG_IPV6) 965 struct inet_connection_sock *icsk = inet_csk(sk); 966 967 if (skb->protocol == htons(ETH_P_IPV6)) 968 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 969 #endif 970 } 971 972 /* There is something which you must keep in mind when you analyze the 973 * behavior of the tp->ato delayed ack timeout interval. When a 974 * connection starts up, we want to ack as quickly as possible. The 975 * problem is that "good" TCP's do slow start at the beginning of data 976 * transmission. The means that until we send the first few ACK's the 977 * sender will sit on his end and only queue most of his data, because 978 * he can only send snd_cwnd unacked packets at any given time. For 979 * each ACK we send, he increments snd_cwnd and transmits more of his 980 * queue. -DaveM 981 */ 982 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 983 { 984 struct tcp_sock *tp = tcp_sk(sk); 985 struct inet_connection_sock *icsk = inet_csk(sk); 986 u32 now; 987 988 inet_csk_schedule_ack(sk); 989 990 tcp_measure_rcv_mss(sk, skb); 991 992 tcp_rcv_rtt_measure(tp); 993 994 now = tcp_jiffies32; 995 996 if (!icsk->icsk_ack.ato) { 997 /* The _first_ data packet received, initialize 998 * delayed ACK engine. 999 */ 1000 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 1001 icsk->icsk_ack.ato = TCP_ATO_MIN; 1002 } else { 1003 int m = now - icsk->icsk_ack.lrcvtime; 1004 1005 if (m <= TCP_ATO_MIN / 2) { 1006 /* The fastest case is the first. */ 1007 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 1008 } else if (m < icsk->icsk_ack.ato) { 1009 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 1010 if (icsk->icsk_ack.ato > icsk->icsk_rto) 1011 icsk->icsk_ack.ato = icsk->icsk_rto; 1012 } else if (m > icsk->icsk_rto) { 1013 /* Too long gap. Apparently sender failed to 1014 * restart window, so that we send ACKs quickly. 1015 */ 1016 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 1017 } 1018 } 1019 icsk->icsk_ack.lrcvtime = now; 1020 tcp_save_lrcv_flowlabel(sk, skb); 1021 1022 tcp_data_ecn_check(sk, skb); 1023 1024 if (skb->len >= 128) 1025 tcp_grow_window(sk, skb, true); 1026 } 1027 1028 /* Called to compute a smoothed rtt estimate. The data fed to this 1029 * routine either comes from timestamps, or from segments that were 1030 * known _not_ to have been retransmitted [see Karn/Partridge 1031 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 1032 * piece by Van Jacobson. 1033 * NOTE: the next three routines used to be one big routine. 1034 * To save cycles in the RFC 1323 implementation it was better to break 1035 * it up into three procedures. -- erics 1036 */ 1037 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 1038 { 1039 struct tcp_sock *tp = tcp_sk(sk); 1040 long m = mrtt_us; /* RTT */ 1041 u32 srtt = tp->srtt_us; 1042 1043 /* The following amusing code comes from Jacobson's 1044 * article in SIGCOMM '88. Note that rtt and mdev 1045 * are scaled versions of rtt and mean deviation. 1046 * This is designed to be as fast as possible 1047 * m stands for "measurement". 1048 * 1049 * On a 1990 paper the rto value is changed to: 1050 * RTO = rtt + 4 * mdev 1051 * 1052 * Funny. This algorithm seems to be very broken. 1053 * These formulae increase RTO, when it should be decreased, increase 1054 * too slowly, when it should be increased quickly, decrease too quickly 1055 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 1056 * does not matter how to _calculate_ it. Seems, it was trap 1057 * that VJ failed to avoid. 8) 1058 */ 1059 if (srtt != 0) { 1060 m -= (srtt >> 3); /* m is now error in rtt est */ 1061 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 1062 if (m < 0) { 1063 m = -m; /* m is now abs(error) */ 1064 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 1065 /* This is similar to one of Eifel findings. 1066 * Eifel blocks mdev updates when rtt decreases. 1067 * This solution is a bit different: we use finer gain 1068 * for mdev in this case (alpha*beta). 1069 * Like Eifel it also prevents growth of rto, 1070 * but also it limits too fast rto decreases, 1071 * happening in pure Eifel. 1072 */ 1073 if (m > 0) 1074 m >>= 3; 1075 } else { 1076 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 1077 } 1078 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 1079 if (tp->mdev_us > tp->mdev_max_us) { 1080 tp->mdev_max_us = tp->mdev_us; 1081 if (tp->mdev_max_us > tp->rttvar_us) 1082 tp->rttvar_us = tp->mdev_max_us; 1083 } 1084 if (after(tp->snd_una, tp->rtt_seq)) { 1085 if (tp->mdev_max_us < tp->rttvar_us) 1086 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 1087 tp->rtt_seq = tp->snd_nxt; 1088 tp->mdev_max_us = tcp_rto_min_us(sk); 1089 1090 tcp_bpf_rtt(sk, mrtt_us, srtt); 1091 } 1092 } else { 1093 /* no previous measure. */ 1094 srtt = m << 3; /* take the measured time to be rtt */ 1095 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 1096 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 1097 tp->mdev_max_us = tp->rttvar_us; 1098 tp->rtt_seq = tp->snd_nxt; 1099 1100 tcp_bpf_rtt(sk, mrtt_us, srtt); 1101 } 1102 tp->srtt_us = max(1U, srtt); 1103 } 1104 1105 static void tcp_update_pacing_rate(struct sock *sk) 1106 { 1107 const struct tcp_sock *tp = tcp_sk(sk); 1108 u64 rate; 1109 1110 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 1111 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 1112 1113 /* current rate is (cwnd * mss) / srtt 1114 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 1115 * In Congestion Avoidance phase, set it to 120 % the current rate. 1116 * 1117 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 1118 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 1119 * end of slow start and should slow down. 1120 */ 1121 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 1122 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 1123 else 1124 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 1125 1126 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 1127 1128 if (likely(tp->srtt_us)) 1129 do_div(rate, tp->srtt_us); 1130 1131 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 1132 * without any lock. We want to make sure compiler wont store 1133 * intermediate values in this location. 1134 */ 1135 WRITE_ONCE(sk->sk_pacing_rate, 1136 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 1137 } 1138 1139 /* Calculate rto without backoff. This is the second half of Van Jacobson's 1140 * routine referred to above. 1141 */ 1142 static void tcp_set_rto(struct sock *sk) 1143 { 1144 const struct tcp_sock *tp = tcp_sk(sk); 1145 /* Old crap is replaced with new one. 8) 1146 * 1147 * More seriously: 1148 * 1. If rtt variance happened to be less 50msec, it is hallucination. 1149 * It cannot be less due to utterly erratic ACK generation made 1150 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 1151 * to do with delayed acks, because at cwnd>2 true delack timeout 1152 * is invisible. Actually, Linux-2.4 also generates erratic 1153 * ACKs in some circumstances. 1154 */ 1155 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 1156 1157 /* 2. Fixups made earlier cannot be right. 1158 * If we do not estimate RTO correctly without them, 1159 * all the algo is pure shit and should be replaced 1160 * with correct one. It is exactly, which we pretend to do. 1161 */ 1162 1163 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 1164 * guarantees that rto is higher. 1165 */ 1166 tcp_bound_rto(sk); 1167 } 1168 1169 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1170 { 1171 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1172 1173 if (!cwnd) 1174 cwnd = TCP_INIT_CWND; 1175 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1176 } 1177 1178 struct tcp_sacktag_state { 1179 /* Timestamps for earliest and latest never-retransmitted segment 1180 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1181 * but congestion control should still get an accurate delay signal. 1182 */ 1183 u64 first_sackt; 1184 u64 last_sackt; 1185 u32 reord; 1186 u32 sack_delivered; 1187 u32 delivered_bytes; 1188 int flag; 1189 unsigned int mss_now; 1190 struct rate_sample *rate; 1191 }; 1192 1193 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1194 * and spurious retransmission information if this DSACK is unlikely caused by 1195 * sender's action: 1196 * - DSACKed sequence range is larger than maximum receiver's window. 1197 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1198 */ 1199 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1200 u32 end_seq, struct tcp_sacktag_state *state) 1201 { 1202 u32 seq_len, dup_segs = 1; 1203 1204 if (!before(start_seq, end_seq)) 1205 return 0; 1206 1207 seq_len = end_seq - start_seq; 1208 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1209 if (seq_len > tp->max_window) 1210 return 0; 1211 if (seq_len > tp->mss_cache) 1212 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1213 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1214 state->flag |= FLAG_DSACK_TLP; 1215 1216 tp->dsack_dups += dup_segs; 1217 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1218 if (tp->dsack_dups > tp->total_retrans) 1219 return 0; 1220 1221 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1222 /* We increase the RACK ordering window in rounds where we receive 1223 * DSACKs that may have been due to reordering causing RACK to trigger 1224 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1225 * without having seen reordering, or that match TLP probes (TLP 1226 * is timer-driven, not triggered by RACK). 1227 */ 1228 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1229 tp->rack.dsack_seen = 1; 1230 1231 state->flag |= FLAG_DSACKING_ACK; 1232 /* A spurious retransmission is delivered */ 1233 state->sack_delivered += dup_segs; 1234 1235 return dup_segs; 1236 } 1237 1238 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1239 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1240 * distance is approximated in full-mss packet distance ("reordering"). 1241 */ 1242 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1243 const int ts) 1244 { 1245 struct tcp_sock *tp = tcp_sk(sk); 1246 const u32 mss = tp->mss_cache; 1247 u32 fack, metric; 1248 1249 fack = tcp_highest_sack_seq(tp); 1250 if (!before(low_seq, fack)) 1251 return; 1252 1253 metric = fack - low_seq; 1254 if ((metric > tp->reordering * mss) && mss) { 1255 #if FASTRETRANS_DEBUG > 1 1256 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1257 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1258 tp->reordering, 1259 0, 1260 tp->sacked_out, 1261 tp->undo_marker ? tp->undo_retrans : 0); 1262 #endif 1263 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1264 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1265 } 1266 1267 /* This exciting event is worth to be remembered. 8) */ 1268 tp->reord_seen++; 1269 NET_INC_STATS(sock_net(sk), 1270 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1271 } 1272 1273 /* This must be called before lost_out or retrans_out are updated 1274 * on a new loss, because we want to know if all skbs previously 1275 * known to be lost have already been retransmitted, indicating 1276 * that this newly lost skb is our next skb to retransmit. 1277 */ 1278 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1279 { 1280 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1281 (tp->retransmit_skb_hint && 1282 before(TCP_SKB_CB(skb)->seq, 1283 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1284 tp->retransmit_skb_hint = skb; 1285 } 1286 1287 /* Sum the number of packets on the wire we have marked as lost, and 1288 * notify the congestion control module that the given skb was marked lost. 1289 */ 1290 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1291 { 1292 tp->lost += tcp_skb_pcount(skb); 1293 } 1294 1295 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1296 { 1297 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1298 struct tcp_sock *tp = tcp_sk(sk); 1299 1300 if (sacked & TCPCB_SACKED_ACKED) 1301 return; 1302 1303 tcp_verify_retransmit_hint(tp, skb); 1304 if (sacked & TCPCB_LOST) { 1305 if (sacked & TCPCB_SACKED_RETRANS) { 1306 /* Account for retransmits that are lost again */ 1307 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1308 tp->retrans_out -= tcp_skb_pcount(skb); 1309 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1310 tcp_skb_pcount(skb)); 1311 tcp_notify_skb_loss_event(tp, skb); 1312 } 1313 } else { 1314 tp->lost_out += tcp_skb_pcount(skb); 1315 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1316 tcp_notify_skb_loss_event(tp, skb); 1317 } 1318 } 1319 1320 /* This procedure tags the retransmission queue when SACKs arrive. 1321 * 1322 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1323 * Packets in queue with these bits set are counted in variables 1324 * sacked_out, retrans_out and lost_out, correspondingly. 1325 * 1326 * Valid combinations are: 1327 * Tag InFlight Description 1328 * 0 1 - orig segment is in flight. 1329 * S 0 - nothing flies, orig reached receiver. 1330 * L 0 - nothing flies, orig lost by net. 1331 * R 2 - both orig and retransmit are in flight. 1332 * L|R 1 - orig is lost, retransmit is in flight. 1333 * S|R 1 - orig reached receiver, retrans is still in flight. 1334 * (L|S|R is logically valid, it could occur when L|R is sacked, 1335 * but it is equivalent to plain S and code short-circuits it to S. 1336 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1337 * 1338 * These 6 states form finite state machine, controlled by the following events: 1339 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1340 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1341 * 3. Loss detection event of two flavors: 1342 * A. Scoreboard estimator decided the packet is lost. 1343 * A'. Reno "three dupacks" marks head of queue lost. 1344 * B. SACK arrives sacking SND.NXT at the moment, when the 1345 * segment was retransmitted. 1346 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1347 * 1348 * It is pleasant to note, that state diagram turns out to be commutative, 1349 * so that we are allowed not to be bothered by order of our actions, 1350 * when multiple events arrive simultaneously. (see the function below). 1351 * 1352 * Reordering detection. 1353 * -------------------- 1354 * Reordering metric is maximal distance, which a packet can be displaced 1355 * in packet stream. With SACKs we can estimate it: 1356 * 1357 * 1. SACK fills old hole and the corresponding segment was not 1358 * ever retransmitted -> reordering. Alas, we cannot use it 1359 * when segment was retransmitted. 1360 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1361 * for retransmitted and already SACKed segment -> reordering.. 1362 * Both of these heuristics are not used in Loss state, when we cannot 1363 * account for retransmits accurately. 1364 * 1365 * SACK block validation. 1366 * ---------------------- 1367 * 1368 * SACK block range validation checks that the received SACK block fits to 1369 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1370 * Note that SND.UNA is not included to the range though being valid because 1371 * it means that the receiver is rather inconsistent with itself reporting 1372 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1373 * perfectly valid, however, in light of RFC2018 which explicitly states 1374 * that "SACK block MUST reflect the newest segment. Even if the newest 1375 * segment is going to be discarded ...", not that it looks very clever 1376 * in case of head skb. Due to potentional receiver driven attacks, we 1377 * choose to avoid immediate execution of a walk in write queue due to 1378 * reneging and defer head skb's loss recovery to standard loss recovery 1379 * procedure that will eventually trigger (nothing forbids us doing this). 1380 * 1381 * Implements also blockage to start_seq wrap-around. Problem lies in the 1382 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1383 * there's no guarantee that it will be before snd_nxt (n). The problem 1384 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1385 * wrap (s_w): 1386 * 1387 * <- outs wnd -> <- wrapzone -> 1388 * u e n u_w e_w s n_w 1389 * | | | | | | | 1390 * |<------------+------+----- TCP seqno space --------------+---------->| 1391 * ...-- <2^31 ->| |<--------... 1392 * ...---- >2^31 ------>| |<--------... 1393 * 1394 * Current code wouldn't be vulnerable but it's better still to discard such 1395 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1396 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1397 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1398 * equal to the ideal case (infinite seqno space without wrap caused issues). 1399 * 1400 * With D-SACK the lower bound is extended to cover sequence space below 1401 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1402 * again, D-SACK block must not to go across snd_una (for the same reason as 1403 * for the normal SACK blocks, explained above). But there all simplicity 1404 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1405 * fully below undo_marker they do not affect behavior in anyway and can 1406 * therefore be safely ignored. In rare cases (which are more or less 1407 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1408 * fragmentation and packet reordering past skb's retransmission. To consider 1409 * them correctly, the acceptable range must be extended even more though 1410 * the exact amount is rather hard to quantify. However, tp->max_window can 1411 * be used as an exaggerated estimate. 1412 */ 1413 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1414 u32 start_seq, u32 end_seq) 1415 { 1416 /* Too far in future, or reversed (interpretation is ambiguous) */ 1417 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1418 return false; 1419 1420 /* Nasty start_seq wrap-around check (see comments above) */ 1421 if (!before(start_seq, tp->snd_nxt)) 1422 return false; 1423 1424 /* In outstanding window? ...This is valid exit for D-SACKs too. 1425 * start_seq == snd_una is non-sensical (see comments above) 1426 */ 1427 if (after(start_seq, tp->snd_una)) 1428 return true; 1429 1430 if (!is_dsack || !tp->undo_marker) 1431 return false; 1432 1433 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1434 if (after(end_seq, tp->snd_una)) 1435 return false; 1436 1437 if (!before(start_seq, tp->undo_marker)) 1438 return true; 1439 1440 /* Too old */ 1441 if (!after(end_seq, tp->undo_marker)) 1442 return false; 1443 1444 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1445 * start_seq < undo_marker and end_seq >= undo_marker. 1446 */ 1447 return !before(start_seq, end_seq - tp->max_window); 1448 } 1449 1450 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1451 struct tcp_sack_block_wire *sp, int num_sacks, 1452 u32 prior_snd_una, struct tcp_sacktag_state *state) 1453 { 1454 struct tcp_sock *tp = tcp_sk(sk); 1455 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1456 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1457 u32 dup_segs; 1458 1459 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1460 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1461 } else if (num_sacks > 1) { 1462 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1463 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1464 1465 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1466 return false; 1467 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1468 } else { 1469 return false; 1470 } 1471 1472 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1473 if (!dup_segs) { /* Skip dubious DSACK */ 1474 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1475 return false; 1476 } 1477 1478 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1479 1480 /* D-SACK for already forgotten data... Do dumb counting. */ 1481 if (tp->undo_marker && tp->undo_retrans > 0 && 1482 !after(end_seq_0, prior_snd_una) && 1483 after(end_seq_0, tp->undo_marker)) 1484 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1485 1486 return true; 1487 } 1488 1489 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1490 * the incoming SACK may not exactly match but we can find smaller MSS 1491 * aligned portion of it that matches. Therefore we might need to fragment 1492 * which may fail and creates some hassle (caller must handle error case 1493 * returns). 1494 * 1495 * FIXME: this could be merged to shift decision code 1496 */ 1497 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1498 u32 start_seq, u32 end_seq) 1499 { 1500 int err; 1501 bool in_sack; 1502 unsigned int pkt_len; 1503 unsigned int mss; 1504 1505 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1506 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1507 1508 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1509 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1510 mss = tcp_skb_mss(skb); 1511 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1512 1513 if (!in_sack) { 1514 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1515 if (pkt_len < mss) 1516 pkt_len = mss; 1517 } else { 1518 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1519 if (pkt_len < mss) 1520 return -EINVAL; 1521 } 1522 1523 /* Round if necessary so that SACKs cover only full MSSes 1524 * and/or the remaining small portion (if present) 1525 */ 1526 if (pkt_len > mss) { 1527 unsigned int new_len = (pkt_len / mss) * mss; 1528 if (!in_sack && new_len < pkt_len) 1529 new_len += mss; 1530 pkt_len = new_len; 1531 } 1532 1533 if (pkt_len >= skb->len && !in_sack) 1534 return 0; 1535 1536 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1537 pkt_len, mss, GFP_ATOMIC); 1538 if (err < 0) 1539 return err; 1540 } 1541 1542 return in_sack; 1543 } 1544 1545 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1546 static u8 tcp_sacktag_one(struct sock *sk, 1547 struct tcp_sacktag_state *state, u8 sacked, 1548 u32 start_seq, u32 end_seq, 1549 int dup_sack, int pcount, u32 plen, 1550 u64 xmit_time) 1551 { 1552 struct tcp_sock *tp = tcp_sk(sk); 1553 1554 /* Account D-SACK for retransmitted packet. */ 1555 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1556 if (tp->undo_marker && tp->undo_retrans > 0 && 1557 after(end_seq, tp->undo_marker)) 1558 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1559 if ((sacked & TCPCB_SACKED_ACKED) && 1560 before(start_seq, state->reord)) 1561 state->reord = start_seq; 1562 } 1563 1564 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1565 if (!after(end_seq, tp->snd_una)) 1566 return sacked; 1567 1568 if (!(sacked & TCPCB_SACKED_ACKED)) { 1569 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1570 1571 if (sacked & TCPCB_SACKED_RETRANS) { 1572 /* If the segment is not tagged as lost, 1573 * we do not clear RETRANS, believing 1574 * that retransmission is still in flight. 1575 */ 1576 if (sacked & TCPCB_LOST) { 1577 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1578 tp->lost_out -= pcount; 1579 tp->retrans_out -= pcount; 1580 } 1581 } else { 1582 if (!(sacked & TCPCB_RETRANS)) { 1583 /* New sack for not retransmitted frame, 1584 * which was in hole. It is reordering. 1585 */ 1586 if (before(start_seq, 1587 tcp_highest_sack_seq(tp)) && 1588 before(start_seq, state->reord)) 1589 state->reord = start_seq; 1590 1591 if (!after(end_seq, tp->high_seq)) 1592 state->flag |= FLAG_ORIG_SACK_ACKED; 1593 if (state->first_sackt == 0) 1594 state->first_sackt = xmit_time; 1595 state->last_sackt = xmit_time; 1596 } 1597 1598 if (sacked & TCPCB_LOST) { 1599 sacked &= ~TCPCB_LOST; 1600 tp->lost_out -= pcount; 1601 } 1602 } 1603 1604 sacked |= TCPCB_SACKED_ACKED; 1605 state->flag |= FLAG_DATA_SACKED; 1606 tp->sacked_out += pcount; 1607 /* Out-of-order packets delivered */ 1608 state->sack_delivered += pcount; 1609 state->delivered_bytes += plen; 1610 } 1611 1612 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1613 * frames and clear it. undo_retrans is decreased above, L|R frames 1614 * are accounted above as well. 1615 */ 1616 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1617 sacked &= ~TCPCB_SACKED_RETRANS; 1618 tp->retrans_out -= pcount; 1619 } 1620 1621 return sacked; 1622 } 1623 1624 /* Shift newly-SACKed bytes from this skb to the immediately previous 1625 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1626 */ 1627 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1628 struct sk_buff *skb, 1629 struct tcp_sacktag_state *state, 1630 unsigned int pcount, int shifted, int mss, 1631 bool dup_sack) 1632 { 1633 struct tcp_sock *tp = tcp_sk(sk); 1634 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1635 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1636 1637 BUG_ON(!pcount); 1638 1639 /* Adjust counters and hints for the newly sacked sequence 1640 * range but discard the return value since prev is already 1641 * marked. We must tag the range first because the seq 1642 * advancement below implicitly advances 1643 * tcp_highest_sack_seq() when skb is highest_sack. 1644 */ 1645 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1646 start_seq, end_seq, dup_sack, pcount, skb->len, 1647 tcp_skb_timestamp_us(skb)); 1648 tcp_rate_skb_delivered(sk, skb, state->rate); 1649 1650 TCP_SKB_CB(prev)->end_seq += shifted; 1651 TCP_SKB_CB(skb)->seq += shifted; 1652 1653 tcp_skb_pcount_add(prev, pcount); 1654 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1655 tcp_skb_pcount_add(skb, -pcount); 1656 1657 /* When we're adding to gso_segs == 1, gso_size will be zero, 1658 * in theory this shouldn't be necessary but as long as DSACK 1659 * code can come after this skb later on it's better to keep 1660 * setting gso_size to something. 1661 */ 1662 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1663 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1664 1665 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1666 if (tcp_skb_pcount(skb) <= 1) 1667 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1668 1669 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1670 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1671 1672 if (skb->len > 0) { 1673 BUG_ON(!tcp_skb_pcount(skb)); 1674 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1675 return false; 1676 } 1677 1678 /* Whole SKB was eaten :-) */ 1679 1680 if (skb == tp->retransmit_skb_hint) 1681 tp->retransmit_skb_hint = prev; 1682 1683 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1684 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1685 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1686 TCP_SKB_CB(prev)->end_seq++; 1687 1688 if (skb == tcp_highest_sack(sk)) 1689 tcp_advance_highest_sack(sk, skb); 1690 1691 tcp_skb_collapse_tstamp(prev, skb); 1692 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1693 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1694 1695 tcp_rtx_queue_unlink_and_free(skb, sk); 1696 1697 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1698 1699 return true; 1700 } 1701 1702 /* I wish gso_size would have a bit more sane initialization than 1703 * something-or-zero which complicates things 1704 */ 1705 static int tcp_skb_seglen(const struct sk_buff *skb) 1706 { 1707 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1708 } 1709 1710 /* Shifting pages past head area doesn't work */ 1711 static int skb_can_shift(const struct sk_buff *skb) 1712 { 1713 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1714 } 1715 1716 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1717 int pcount, int shiftlen) 1718 { 1719 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1720 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1721 * to make sure not storing more than 65535 * 8 bytes per skb, 1722 * even if current MSS is bigger. 1723 */ 1724 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1725 return 0; 1726 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1727 return 0; 1728 return skb_shift(to, from, shiftlen); 1729 } 1730 1731 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1732 * skb. 1733 */ 1734 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1735 struct tcp_sacktag_state *state, 1736 u32 start_seq, u32 end_seq, 1737 bool dup_sack) 1738 { 1739 struct tcp_sock *tp = tcp_sk(sk); 1740 struct sk_buff *prev; 1741 int mss; 1742 int pcount = 0; 1743 int len; 1744 int in_sack; 1745 1746 /* Normally R but no L won't result in plain S */ 1747 if (!dup_sack && 1748 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1749 goto fallback; 1750 if (!skb_can_shift(skb)) 1751 goto fallback; 1752 /* This frame is about to be dropped (was ACKed). */ 1753 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1754 goto fallback; 1755 1756 /* Can only happen with delayed DSACK + discard craziness */ 1757 prev = skb_rb_prev(skb); 1758 if (!prev) 1759 goto fallback; 1760 1761 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1762 goto fallback; 1763 1764 if (!tcp_skb_can_collapse(prev, skb)) 1765 goto fallback; 1766 1767 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1768 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1769 1770 if (in_sack) { 1771 len = skb->len; 1772 pcount = tcp_skb_pcount(skb); 1773 mss = tcp_skb_seglen(skb); 1774 1775 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1776 * drop this restriction as unnecessary 1777 */ 1778 if (mss != tcp_skb_seglen(prev)) 1779 goto fallback; 1780 } else { 1781 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1782 goto noop; 1783 /* CHECKME: This is non-MSS split case only?, this will 1784 * cause skipped skbs due to advancing loop btw, original 1785 * has that feature too 1786 */ 1787 if (tcp_skb_pcount(skb) <= 1) 1788 goto noop; 1789 1790 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1791 if (!in_sack) { 1792 /* TODO: head merge to next could be attempted here 1793 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1794 * though it might not be worth of the additional hassle 1795 * 1796 * ...we can probably just fallback to what was done 1797 * previously. We could try merging non-SACKed ones 1798 * as well but it probably isn't going to buy off 1799 * because later SACKs might again split them, and 1800 * it would make skb timestamp tracking considerably 1801 * harder problem. 1802 */ 1803 goto fallback; 1804 } 1805 1806 len = end_seq - TCP_SKB_CB(skb)->seq; 1807 BUG_ON(len < 0); 1808 BUG_ON(len > skb->len); 1809 1810 /* MSS boundaries should be honoured or else pcount will 1811 * severely break even though it makes things bit trickier. 1812 * Optimize common case to avoid most of the divides 1813 */ 1814 mss = tcp_skb_mss(skb); 1815 1816 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1817 * drop this restriction as unnecessary 1818 */ 1819 if (mss != tcp_skb_seglen(prev)) 1820 goto fallback; 1821 1822 if (len == mss) { 1823 pcount = 1; 1824 } else if (len < mss) { 1825 goto noop; 1826 } else { 1827 pcount = len / mss; 1828 len = pcount * mss; 1829 } 1830 } 1831 1832 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1833 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1834 goto fallback; 1835 1836 if (!tcp_skb_shift(prev, skb, pcount, len)) 1837 goto fallback; 1838 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1839 goto out; 1840 1841 /* Hole filled allows collapsing with the next as well, this is very 1842 * useful when hole on every nth skb pattern happens 1843 */ 1844 skb = skb_rb_next(prev); 1845 if (!skb) 1846 goto out; 1847 1848 if (!skb_can_shift(skb) || 1849 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1850 (mss != tcp_skb_seglen(skb))) 1851 goto out; 1852 1853 if (!tcp_skb_can_collapse(prev, skb)) 1854 goto out; 1855 len = skb->len; 1856 pcount = tcp_skb_pcount(skb); 1857 if (tcp_skb_shift(prev, skb, pcount, len)) 1858 tcp_shifted_skb(sk, prev, skb, state, pcount, 1859 len, mss, 0); 1860 1861 out: 1862 return prev; 1863 1864 noop: 1865 return skb; 1866 1867 fallback: 1868 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1869 return NULL; 1870 } 1871 1872 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1873 struct tcp_sack_block *next_dup, 1874 struct tcp_sacktag_state *state, 1875 u32 start_seq, u32 end_seq, 1876 bool dup_sack_in) 1877 { 1878 struct tcp_sock *tp = tcp_sk(sk); 1879 struct sk_buff *tmp; 1880 1881 skb_rbtree_walk_from(skb) { 1882 int in_sack = 0; 1883 bool dup_sack = dup_sack_in; 1884 1885 /* queue is in-order => we can short-circuit the walk early */ 1886 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1887 break; 1888 1889 if (next_dup && 1890 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1891 in_sack = tcp_match_skb_to_sack(sk, skb, 1892 next_dup->start_seq, 1893 next_dup->end_seq); 1894 if (in_sack > 0) 1895 dup_sack = true; 1896 } 1897 1898 /* skb reference here is a bit tricky to get right, since 1899 * shifting can eat and free both this skb and the next, 1900 * so not even _safe variant of the loop is enough. 1901 */ 1902 if (in_sack <= 0) { 1903 tmp = tcp_shift_skb_data(sk, skb, state, 1904 start_seq, end_seq, dup_sack); 1905 if (tmp) { 1906 if (tmp != skb) { 1907 skb = tmp; 1908 continue; 1909 } 1910 1911 in_sack = 0; 1912 } else { 1913 in_sack = tcp_match_skb_to_sack(sk, skb, 1914 start_seq, 1915 end_seq); 1916 } 1917 } 1918 1919 if (unlikely(in_sack < 0)) 1920 break; 1921 1922 if (in_sack) { 1923 TCP_SKB_CB(skb)->sacked = 1924 tcp_sacktag_one(sk, 1925 state, 1926 TCP_SKB_CB(skb)->sacked, 1927 TCP_SKB_CB(skb)->seq, 1928 TCP_SKB_CB(skb)->end_seq, 1929 dup_sack, 1930 tcp_skb_pcount(skb), 1931 skb->len, 1932 tcp_skb_timestamp_us(skb)); 1933 tcp_rate_skb_delivered(sk, skb, state->rate); 1934 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1935 list_del_init(&skb->tcp_tsorted_anchor); 1936 1937 if (!before(TCP_SKB_CB(skb)->seq, 1938 tcp_highest_sack_seq(tp))) 1939 tcp_advance_highest_sack(sk, skb); 1940 } 1941 } 1942 return skb; 1943 } 1944 1945 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1946 { 1947 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1948 struct sk_buff *skb; 1949 1950 while (*p) { 1951 parent = *p; 1952 skb = rb_to_skb(parent); 1953 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1954 p = &parent->rb_left; 1955 continue; 1956 } 1957 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1958 p = &parent->rb_right; 1959 continue; 1960 } 1961 return skb; 1962 } 1963 return NULL; 1964 } 1965 1966 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1967 u32 skip_to_seq) 1968 { 1969 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1970 return skb; 1971 1972 return tcp_sacktag_bsearch(sk, skip_to_seq); 1973 } 1974 1975 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1976 struct sock *sk, 1977 struct tcp_sack_block *next_dup, 1978 struct tcp_sacktag_state *state, 1979 u32 skip_to_seq) 1980 { 1981 if (!next_dup) 1982 return skb; 1983 1984 if (before(next_dup->start_seq, skip_to_seq)) { 1985 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1986 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1987 next_dup->start_seq, next_dup->end_seq, 1988 1); 1989 } 1990 1991 return skb; 1992 } 1993 1994 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1995 { 1996 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1997 } 1998 1999 static int 2000 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 2001 u32 prior_snd_una, struct tcp_sacktag_state *state) 2002 { 2003 struct tcp_sock *tp = tcp_sk(sk); 2004 const unsigned char *ptr = (skb_transport_header(ack_skb) + 2005 TCP_SKB_CB(ack_skb)->sacked); 2006 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 2007 struct tcp_sack_block sp[TCP_NUM_SACKS]; 2008 struct tcp_sack_block *cache; 2009 struct sk_buff *skb; 2010 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 2011 int used_sacks; 2012 bool found_dup_sack = false; 2013 int i, j; 2014 int first_sack_index; 2015 2016 state->flag = 0; 2017 state->reord = tp->snd_nxt; 2018 2019 if (!tp->sacked_out) 2020 tcp_highest_sack_reset(sk); 2021 2022 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 2023 num_sacks, prior_snd_una, state); 2024 2025 /* Eliminate too old ACKs, but take into 2026 * account more or less fresh ones, they can 2027 * contain valid SACK info. 2028 */ 2029 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 2030 return 0; 2031 2032 if (!tp->packets_out) 2033 goto out; 2034 2035 used_sacks = 0; 2036 first_sack_index = 0; 2037 for (i = 0; i < num_sacks; i++) { 2038 bool dup_sack = !i && found_dup_sack; 2039 2040 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 2041 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 2042 2043 if (!tcp_is_sackblock_valid(tp, dup_sack, 2044 sp[used_sacks].start_seq, 2045 sp[used_sacks].end_seq)) { 2046 int mib_idx; 2047 2048 if (dup_sack) { 2049 if (!tp->undo_marker) 2050 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 2051 else 2052 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 2053 } else { 2054 /* Don't count olds caused by ACK reordering */ 2055 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 2056 !after(sp[used_sacks].end_seq, tp->snd_una)) 2057 continue; 2058 mib_idx = LINUX_MIB_TCPSACKDISCARD; 2059 } 2060 2061 NET_INC_STATS(sock_net(sk), mib_idx); 2062 if (i == 0) 2063 first_sack_index = -1; 2064 continue; 2065 } 2066 2067 /* Ignore very old stuff early */ 2068 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 2069 if (i == 0) 2070 first_sack_index = -1; 2071 continue; 2072 } 2073 2074 used_sacks++; 2075 } 2076 2077 /* order SACK blocks to allow in order walk of the retrans queue */ 2078 for (i = used_sacks - 1; i > 0; i--) { 2079 for (j = 0; j < i; j++) { 2080 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 2081 swap(sp[j], sp[j + 1]); 2082 2083 /* Track where the first SACK block goes to */ 2084 if (j == first_sack_index) 2085 first_sack_index = j + 1; 2086 } 2087 } 2088 } 2089 2090 state->mss_now = tcp_current_mss(sk); 2091 skb = NULL; 2092 i = 0; 2093 2094 if (!tp->sacked_out) { 2095 /* It's already past, so skip checking against it */ 2096 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 2097 } else { 2098 cache = tp->recv_sack_cache; 2099 /* Skip empty blocks in at head of the cache */ 2100 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 2101 !cache->end_seq) 2102 cache++; 2103 } 2104 2105 while (i < used_sacks) { 2106 u32 start_seq = sp[i].start_seq; 2107 u32 end_seq = sp[i].end_seq; 2108 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 2109 struct tcp_sack_block *next_dup = NULL; 2110 2111 if (found_dup_sack && ((i + 1) == first_sack_index)) 2112 next_dup = &sp[i + 1]; 2113 2114 /* Skip too early cached blocks */ 2115 while (tcp_sack_cache_ok(tp, cache) && 2116 !before(start_seq, cache->end_seq)) 2117 cache++; 2118 2119 /* Can skip some work by looking recv_sack_cache? */ 2120 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 2121 after(end_seq, cache->start_seq)) { 2122 2123 /* Head todo? */ 2124 if (before(start_seq, cache->start_seq)) { 2125 skb = tcp_sacktag_skip(skb, sk, start_seq); 2126 skb = tcp_sacktag_walk(skb, sk, next_dup, 2127 state, 2128 start_seq, 2129 cache->start_seq, 2130 dup_sack); 2131 } 2132 2133 /* Rest of the block already fully processed? */ 2134 if (!after(end_seq, cache->end_seq)) 2135 goto advance_sp; 2136 2137 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 2138 state, 2139 cache->end_seq); 2140 2141 /* ...tail remains todo... */ 2142 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 2143 /* ...but better entrypoint exists! */ 2144 skb = tcp_highest_sack(sk); 2145 if (!skb) 2146 break; 2147 cache++; 2148 goto walk; 2149 } 2150 2151 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 2152 /* Check overlap against next cached too (past this one already) */ 2153 cache++; 2154 continue; 2155 } 2156 2157 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2158 skb = tcp_highest_sack(sk); 2159 if (!skb) 2160 break; 2161 } 2162 skb = tcp_sacktag_skip(skb, sk, start_seq); 2163 2164 walk: 2165 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2166 start_seq, end_seq, dup_sack); 2167 2168 advance_sp: 2169 i++; 2170 } 2171 2172 /* Clear the head of the cache sack blocks so we can skip it next time */ 2173 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2174 tp->recv_sack_cache[i].start_seq = 0; 2175 tp->recv_sack_cache[i].end_seq = 0; 2176 } 2177 for (j = 0; j < used_sacks; j++) 2178 tp->recv_sack_cache[i++] = sp[j]; 2179 2180 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2181 tcp_check_sack_reordering(sk, state->reord, 0); 2182 2183 tcp_verify_left_out(tp); 2184 out: 2185 2186 #if FASTRETRANS_DEBUG > 0 2187 WARN_ON((int)tp->sacked_out < 0); 2188 WARN_ON((int)tp->lost_out < 0); 2189 WARN_ON((int)tp->retrans_out < 0); 2190 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2191 #endif 2192 return state->flag; 2193 } 2194 2195 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2196 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2197 */ 2198 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2199 { 2200 u32 holes; 2201 2202 holes = max(tp->lost_out, 1U); 2203 holes = min(holes, tp->packets_out); 2204 2205 if ((tp->sacked_out + holes) > tp->packets_out) { 2206 tp->sacked_out = tp->packets_out - holes; 2207 return true; 2208 } 2209 return false; 2210 } 2211 2212 /* If we receive more dupacks than we expected counting segments 2213 * in assumption of absent reordering, interpret this as reordering. 2214 * The only another reason could be bug in receiver TCP. 2215 */ 2216 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2217 { 2218 struct tcp_sock *tp = tcp_sk(sk); 2219 2220 if (!tcp_limit_reno_sacked(tp)) 2221 return; 2222 2223 tp->reordering = min_t(u32, tp->packets_out + addend, 2224 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2225 tp->reord_seen++; 2226 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2227 } 2228 2229 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2230 2231 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2232 { 2233 if (num_dupack) { 2234 struct tcp_sock *tp = tcp_sk(sk); 2235 u32 prior_sacked = tp->sacked_out; 2236 s32 delivered; 2237 2238 tp->sacked_out += num_dupack; 2239 tcp_check_reno_reordering(sk, 0); 2240 delivered = tp->sacked_out - prior_sacked; 2241 if (delivered > 0) 2242 tcp_count_delivered(tp, delivered, ece_ack); 2243 tcp_verify_left_out(tp); 2244 } 2245 } 2246 2247 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2248 2249 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2250 { 2251 struct tcp_sock *tp = tcp_sk(sk); 2252 2253 if (acked > 0) { 2254 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2255 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2256 ece_ack); 2257 if (acked - 1 >= tp->sacked_out) 2258 tp->sacked_out = 0; 2259 else 2260 tp->sacked_out -= acked - 1; 2261 } 2262 tcp_check_reno_reordering(sk, acked); 2263 tcp_verify_left_out(tp); 2264 } 2265 2266 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2267 { 2268 tp->sacked_out = 0; 2269 } 2270 2271 void tcp_clear_retrans(struct tcp_sock *tp) 2272 { 2273 tp->retrans_out = 0; 2274 tp->lost_out = 0; 2275 tp->undo_marker = 0; 2276 tp->undo_retrans = -1; 2277 tp->sacked_out = 0; 2278 tp->rto_stamp = 0; 2279 tp->total_rto = 0; 2280 tp->total_rto_recoveries = 0; 2281 tp->total_rto_time = 0; 2282 } 2283 2284 static inline void tcp_init_undo(struct tcp_sock *tp) 2285 { 2286 tp->undo_marker = tp->snd_una; 2287 2288 /* Retransmission still in flight may cause DSACKs later. */ 2289 /* First, account for regular retransmits in flight: */ 2290 tp->undo_retrans = tp->retrans_out; 2291 /* Next, account for TLP retransmits in flight: */ 2292 if (tp->tlp_high_seq && tp->tlp_retrans) 2293 tp->undo_retrans++; 2294 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2295 if (!tp->undo_retrans) 2296 tp->undo_retrans = -1; 2297 } 2298 2299 /* If we detect SACK reneging, forget all SACK information 2300 * and reset tags completely, otherwise preserve SACKs. If receiver 2301 * dropped its ofo queue, we will know this due to reneging detection. 2302 */ 2303 static void tcp_timeout_mark_lost(struct sock *sk) 2304 { 2305 struct tcp_sock *tp = tcp_sk(sk); 2306 struct sk_buff *skb, *head; 2307 bool is_reneg; /* is receiver reneging on SACKs? */ 2308 2309 head = tcp_rtx_queue_head(sk); 2310 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2311 if (is_reneg) { 2312 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2313 tp->sacked_out = 0; 2314 /* Mark SACK reneging until we recover from this loss event. */ 2315 tp->is_sack_reneg = 1; 2316 } else if (tcp_is_reno(tp)) { 2317 tcp_reset_reno_sack(tp); 2318 } 2319 2320 skb = head; 2321 skb_rbtree_walk_from(skb) { 2322 if (is_reneg) 2323 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2324 else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0) 2325 continue; /* Don't mark recently sent ones lost yet */ 2326 tcp_mark_skb_lost(sk, skb); 2327 } 2328 tcp_verify_left_out(tp); 2329 tcp_clear_all_retrans_hints(tp); 2330 } 2331 2332 /* Enter Loss state. */ 2333 void tcp_enter_loss(struct sock *sk) 2334 { 2335 const struct inet_connection_sock *icsk = inet_csk(sk); 2336 struct tcp_sock *tp = tcp_sk(sk); 2337 struct net *net = sock_net(sk); 2338 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2339 u8 reordering; 2340 2341 tcp_timeout_mark_lost(sk); 2342 2343 /* Reduce ssthresh if it has not yet been made inside this window. */ 2344 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2345 !after(tp->high_seq, tp->snd_una) || 2346 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2347 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2348 tp->prior_cwnd = tcp_snd_cwnd(tp); 2349 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2350 tcp_ca_event(sk, CA_EVENT_LOSS); 2351 tcp_init_undo(tp); 2352 } 2353 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2354 tp->snd_cwnd_cnt = 0; 2355 tp->snd_cwnd_stamp = tcp_jiffies32; 2356 2357 /* Timeout in disordered state after receiving substantial DUPACKs 2358 * suggests that the degree of reordering is over-estimated. 2359 */ 2360 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2361 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2362 tp->sacked_out >= reordering) 2363 tp->reordering = min_t(unsigned int, tp->reordering, 2364 reordering); 2365 2366 tcp_set_ca_state(sk, TCP_CA_Loss); 2367 tp->high_seq = tp->snd_nxt; 2368 tp->tlp_high_seq = 0; 2369 tcp_ecn_queue_cwr(tp); 2370 2371 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2372 * loss recovery is underway except recurring timeout(s) on 2373 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2374 */ 2375 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2376 (new_recovery || icsk->icsk_retransmits) && 2377 !inet_csk(sk)->icsk_mtup.probe_size; 2378 } 2379 2380 /* If ACK arrived pointing to a remembered SACK, it means that our 2381 * remembered SACKs do not reflect real state of receiver i.e. 2382 * receiver _host_ is heavily congested (or buggy). 2383 * 2384 * To avoid big spurious retransmission bursts due to transient SACK 2385 * scoreboard oddities that look like reneging, we give the receiver a 2386 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2387 * restore sanity to the SACK scoreboard. If the apparent reneging 2388 * persists until this RTO then we'll clear the SACK scoreboard. 2389 */ 2390 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2391 { 2392 if (*ack_flag & FLAG_SACK_RENEGING && 2393 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2394 struct tcp_sock *tp = tcp_sk(sk); 2395 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2396 msecs_to_jiffies(10)); 2397 2398 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false); 2399 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2400 return true; 2401 } 2402 return false; 2403 } 2404 2405 /* Linux NewReno/SACK/ECN state machine. 2406 * -------------------------------------- 2407 * 2408 * "Open" Normal state, no dubious events, fast path. 2409 * "Disorder" In all the respects it is "Open", 2410 * but requires a bit more attention. It is entered when 2411 * we see some SACKs or dupacks. It is split of "Open" 2412 * mainly to move some processing from fast path to slow one. 2413 * "CWR" CWND was reduced due to some Congestion Notification event. 2414 * It can be ECN, ICMP source quench, local device congestion. 2415 * "Recovery" CWND was reduced, we are fast-retransmitting. 2416 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2417 * 2418 * tcp_fastretrans_alert() is entered: 2419 * - each incoming ACK, if state is not "Open" 2420 * - when arrived ACK is unusual, namely: 2421 * * SACK 2422 * * Duplicate ACK. 2423 * * ECN ECE. 2424 * 2425 * Counting packets in flight is pretty simple. 2426 * 2427 * in_flight = packets_out - left_out + retrans_out 2428 * 2429 * packets_out is SND.NXT-SND.UNA counted in packets. 2430 * 2431 * retrans_out is number of retransmitted segments. 2432 * 2433 * left_out is number of segments left network, but not ACKed yet. 2434 * 2435 * left_out = sacked_out + lost_out 2436 * 2437 * sacked_out: Packets, which arrived to receiver out of order 2438 * and hence not ACKed. With SACKs this number is simply 2439 * amount of SACKed data. Even without SACKs 2440 * it is easy to give pretty reliable estimate of this number, 2441 * counting duplicate ACKs. 2442 * 2443 * lost_out: Packets lost by network. TCP has no explicit 2444 * "loss notification" feedback from network (for now). 2445 * It means that this number can be only _guessed_. 2446 * Actually, it is the heuristics to predict lossage that 2447 * distinguishes different algorithms. 2448 * 2449 * F.e. after RTO, when all the queue is considered as lost, 2450 * lost_out = packets_out and in_flight = retrans_out. 2451 * 2452 * Essentially, we have now a few algorithms detecting 2453 * lost packets. 2454 * 2455 * If the receiver supports SACK: 2456 * 2457 * RACK (RFC8985): RACK is a newer loss detection algorithm 2458 * (2017-) that checks timing instead of counting DUPACKs. 2459 * Essentially a packet is considered lost if it's not S/ACKed 2460 * after RTT + reordering_window, where both metrics are 2461 * dynamically measured and adjusted. This is implemented in 2462 * tcp_rack_mark_lost. 2463 * 2464 * If the receiver does not support SACK: 2465 * 2466 * NewReno (RFC6582): in Recovery we assume that one segment 2467 * is lost (classic Reno). While we are in Recovery and 2468 * a partial ACK arrives, we assume that one more packet 2469 * is lost (NewReno). This heuristics are the same in NewReno 2470 * and SACK. 2471 * 2472 * The really tricky (and requiring careful tuning) part of the algorithm 2473 * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue(). 2474 * The first determines the moment _when_ we should reduce CWND and, 2475 * hence, slow down forward transmission. In fact, it determines the moment 2476 * when we decide that hole is caused by loss, rather than by a reorder. 2477 * 2478 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2479 * holes, caused by lost packets. 2480 * 2481 * And the most logically complicated part of algorithm is undo 2482 * heuristics. We detect false retransmits due to both too early 2483 * fast retransmit (reordering) and underestimated RTO, analyzing 2484 * timestamps and D-SACKs. When we detect that some segments were 2485 * retransmitted by mistake and CWND reduction was wrong, we undo 2486 * window reduction and abort recovery phase. This logic is hidden 2487 * inside several functions named tcp_try_undo_<something>. 2488 */ 2489 2490 /* This function decides, when we should leave Disordered state 2491 * and enter Recovery phase, reducing congestion window. 2492 * 2493 * Main question: may we further continue forward transmission 2494 * with the same cwnd? 2495 */ 2496 static bool tcp_time_to_recover(const struct tcp_sock *tp) 2497 { 2498 /* Has loss detection marked at least one packet lost? */ 2499 return tp->lost_out != 0; 2500 } 2501 2502 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2503 { 2504 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2505 before(tp->rx_opt.rcv_tsecr, when); 2506 } 2507 2508 /* skb is spurious retransmitted if the returned timestamp echo 2509 * reply is prior to the skb transmission time 2510 */ 2511 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2512 const struct sk_buff *skb) 2513 { 2514 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2515 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2516 } 2517 2518 /* Nothing was retransmitted or returned timestamp is less 2519 * than timestamp of the first retransmission. 2520 */ 2521 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2522 { 2523 const struct sock *sk = (const struct sock *)tp; 2524 2525 /* Received an echoed timestamp before the first retransmission? */ 2526 if (tp->retrans_stamp) 2527 return tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2528 2529 /* We set tp->retrans_stamp upon the first retransmission of a loss 2530 * recovery episode, so normally if tp->retrans_stamp is 0 then no 2531 * retransmission has happened yet (likely due to TSQ, which can cause 2532 * fast retransmits to be delayed). So if snd_una advanced while 2533 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed, 2534 * not lost. But there are exceptions where we retransmit but then 2535 * clear tp->retrans_stamp, so we check for those exceptions. 2536 */ 2537 2538 /* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen() 2539 * clears tp->retrans_stamp when snd_una == high_seq. 2540 */ 2541 if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq)) 2542 return false; 2543 2544 /* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp 2545 * when setting FLAG_SYN_ACKED is set, even if the SYN was 2546 * retransmitted. 2547 */ 2548 if (sk->sk_state == TCP_SYN_SENT) 2549 return false; 2550 2551 return true; /* tp->retrans_stamp is zero; no retransmit yet */ 2552 } 2553 2554 /* Undo procedures. */ 2555 2556 /* We can clear retrans_stamp when there are no retransmissions in the 2557 * window. It would seem that it is trivially available for us in 2558 * tp->retrans_out, however, that kind of assumptions doesn't consider 2559 * what will happen if errors occur when sending retransmission for the 2560 * second time. ...It could the that such segment has only 2561 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2562 * the head skb is enough except for some reneging corner cases that 2563 * are not worth the effort. 2564 * 2565 * Main reason for all this complexity is the fact that connection dying 2566 * time now depends on the validity of the retrans_stamp, in particular, 2567 * that successive retransmissions of a segment must not advance 2568 * retrans_stamp under any conditions. 2569 */ 2570 static bool tcp_any_retrans_done(const struct sock *sk) 2571 { 2572 const struct tcp_sock *tp = tcp_sk(sk); 2573 struct sk_buff *skb; 2574 2575 if (tp->retrans_out) 2576 return true; 2577 2578 skb = tcp_rtx_queue_head(sk); 2579 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2580 return true; 2581 2582 return false; 2583 } 2584 2585 /* If loss recovery is finished and there are no retransmits out in the 2586 * network, then we clear retrans_stamp so that upon the next loss recovery 2587 * retransmits_timed_out() and timestamp-undo are using the correct value. 2588 */ 2589 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2590 { 2591 if (!tcp_any_retrans_done(sk)) 2592 tcp_sk(sk)->retrans_stamp = 0; 2593 } 2594 2595 static void DBGUNDO(struct sock *sk, const char *msg) 2596 { 2597 #if FASTRETRANS_DEBUG > 1 2598 struct tcp_sock *tp = tcp_sk(sk); 2599 struct inet_sock *inet = inet_sk(sk); 2600 2601 if (sk->sk_family == AF_INET) { 2602 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2603 msg, 2604 &inet->inet_daddr, ntohs(inet->inet_dport), 2605 tcp_snd_cwnd(tp), tcp_left_out(tp), 2606 tp->snd_ssthresh, tp->prior_ssthresh, 2607 tp->packets_out); 2608 } 2609 #if IS_ENABLED(CONFIG_IPV6) 2610 else if (sk->sk_family == AF_INET6) { 2611 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2612 msg, 2613 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2614 tcp_snd_cwnd(tp), tcp_left_out(tp), 2615 tp->snd_ssthresh, tp->prior_ssthresh, 2616 tp->packets_out); 2617 } 2618 #endif 2619 #endif 2620 } 2621 2622 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2623 { 2624 struct tcp_sock *tp = tcp_sk(sk); 2625 2626 if (unmark_loss) { 2627 struct sk_buff *skb; 2628 2629 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2630 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2631 } 2632 tp->lost_out = 0; 2633 tcp_clear_all_retrans_hints(tp); 2634 } 2635 2636 if (tp->prior_ssthresh) { 2637 const struct inet_connection_sock *icsk = inet_csk(sk); 2638 2639 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2640 2641 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2642 tp->snd_ssthresh = tp->prior_ssthresh; 2643 tcp_ecn_withdraw_cwr(tp); 2644 } 2645 } 2646 tp->snd_cwnd_stamp = tcp_jiffies32; 2647 tp->undo_marker = 0; 2648 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2649 } 2650 2651 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2652 { 2653 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2654 } 2655 2656 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2657 { 2658 struct tcp_sock *tp = tcp_sk(sk); 2659 2660 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2661 /* Hold old state until something *above* high_seq 2662 * is ACKed. For Reno it is MUST to prevent false 2663 * fast retransmits (RFC2582). SACK TCP is safe. */ 2664 if (!tcp_any_retrans_done(sk)) 2665 tp->retrans_stamp = 0; 2666 return true; 2667 } 2668 return false; 2669 } 2670 2671 /* People celebrate: "We love our President!" */ 2672 static bool tcp_try_undo_recovery(struct sock *sk) 2673 { 2674 struct tcp_sock *tp = tcp_sk(sk); 2675 2676 if (tcp_may_undo(tp)) { 2677 int mib_idx; 2678 2679 /* Happy end! We did not retransmit anything 2680 * or our original transmission succeeded. 2681 */ 2682 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2683 tcp_undo_cwnd_reduction(sk, false); 2684 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2685 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2686 else 2687 mib_idx = LINUX_MIB_TCPFULLUNDO; 2688 2689 NET_INC_STATS(sock_net(sk), mib_idx); 2690 } else if (tp->rack.reo_wnd_persist) { 2691 tp->rack.reo_wnd_persist--; 2692 } 2693 if (tcp_is_non_sack_preventing_reopen(sk)) 2694 return true; 2695 tcp_set_ca_state(sk, TCP_CA_Open); 2696 tp->is_sack_reneg = 0; 2697 return false; 2698 } 2699 2700 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2701 static bool tcp_try_undo_dsack(struct sock *sk) 2702 { 2703 struct tcp_sock *tp = tcp_sk(sk); 2704 2705 if (tp->undo_marker && !tp->undo_retrans) { 2706 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2707 tp->rack.reo_wnd_persist + 1); 2708 DBGUNDO(sk, "D-SACK"); 2709 tcp_undo_cwnd_reduction(sk, false); 2710 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2711 return true; 2712 } 2713 return false; 2714 } 2715 2716 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2717 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2718 { 2719 struct tcp_sock *tp = tcp_sk(sk); 2720 2721 if (frto_undo || tcp_may_undo(tp)) { 2722 tcp_undo_cwnd_reduction(sk, true); 2723 2724 DBGUNDO(sk, "partial loss"); 2725 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2726 if (frto_undo) 2727 NET_INC_STATS(sock_net(sk), 2728 LINUX_MIB_TCPSPURIOUSRTOS); 2729 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 2730 if (tcp_is_non_sack_preventing_reopen(sk)) 2731 return true; 2732 if (frto_undo || tcp_is_sack(tp)) { 2733 tcp_set_ca_state(sk, TCP_CA_Open); 2734 tp->is_sack_reneg = 0; 2735 } 2736 return true; 2737 } 2738 return false; 2739 } 2740 2741 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2742 * It computes the number of packets to send (sndcnt) based on packets newly 2743 * delivered: 2744 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2745 * cwnd reductions across a full RTT. 2746 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2747 * But when SND_UNA is acked without further losses, 2748 * slow starts cwnd up to ssthresh to speed up the recovery. 2749 */ 2750 static void tcp_init_cwnd_reduction(struct sock *sk) 2751 { 2752 struct tcp_sock *tp = tcp_sk(sk); 2753 2754 tp->high_seq = tp->snd_nxt; 2755 tp->tlp_high_seq = 0; 2756 tp->snd_cwnd_cnt = 0; 2757 tp->prior_cwnd = tcp_snd_cwnd(tp); 2758 tp->prr_delivered = 0; 2759 tp->prr_out = 0; 2760 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2761 tcp_ecn_queue_cwr(tp); 2762 } 2763 2764 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2765 { 2766 struct tcp_sock *tp = tcp_sk(sk); 2767 int sndcnt = 0; 2768 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2769 2770 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2771 return; 2772 2773 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag); 2774 2775 tp->prr_delivered += newly_acked_sacked; 2776 if (delta < 0) { 2777 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2778 tp->prior_cwnd - 1; 2779 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2780 } else { 2781 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2782 newly_acked_sacked); 2783 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2784 sndcnt++; 2785 sndcnt = min(delta, sndcnt); 2786 } 2787 /* Force a fast retransmit upon entering fast recovery */ 2788 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2789 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2790 } 2791 2792 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2793 { 2794 struct tcp_sock *tp = tcp_sk(sk); 2795 2796 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2797 return; 2798 2799 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2800 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2801 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2802 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2803 tp->snd_cwnd_stamp = tcp_jiffies32; 2804 } 2805 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2806 } 2807 2808 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2809 void tcp_enter_cwr(struct sock *sk) 2810 { 2811 struct tcp_sock *tp = tcp_sk(sk); 2812 2813 tp->prior_ssthresh = 0; 2814 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2815 tp->undo_marker = 0; 2816 tcp_init_cwnd_reduction(sk); 2817 tcp_set_ca_state(sk, TCP_CA_CWR); 2818 } 2819 } 2820 EXPORT_SYMBOL(tcp_enter_cwr); 2821 2822 static void tcp_try_keep_open(struct sock *sk) 2823 { 2824 struct tcp_sock *tp = tcp_sk(sk); 2825 int state = TCP_CA_Open; 2826 2827 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2828 state = TCP_CA_Disorder; 2829 2830 if (inet_csk(sk)->icsk_ca_state != state) { 2831 tcp_set_ca_state(sk, state); 2832 tp->high_seq = tp->snd_nxt; 2833 } 2834 } 2835 2836 static void tcp_try_to_open(struct sock *sk, int flag) 2837 { 2838 struct tcp_sock *tp = tcp_sk(sk); 2839 2840 tcp_verify_left_out(tp); 2841 2842 if (!tcp_any_retrans_done(sk)) 2843 tp->retrans_stamp = 0; 2844 2845 if (flag & FLAG_ECE) 2846 tcp_enter_cwr(sk); 2847 2848 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2849 tcp_try_keep_open(sk); 2850 } 2851 } 2852 2853 static void tcp_mtup_probe_failed(struct sock *sk) 2854 { 2855 struct inet_connection_sock *icsk = inet_csk(sk); 2856 2857 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2858 icsk->icsk_mtup.probe_size = 0; 2859 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2860 } 2861 2862 static void tcp_mtup_probe_success(struct sock *sk) 2863 { 2864 struct tcp_sock *tp = tcp_sk(sk); 2865 struct inet_connection_sock *icsk = inet_csk(sk); 2866 u64 val; 2867 2868 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2869 2870 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2871 do_div(val, icsk->icsk_mtup.probe_size); 2872 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2873 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2874 2875 tp->snd_cwnd_cnt = 0; 2876 tp->snd_cwnd_stamp = tcp_jiffies32; 2877 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2878 2879 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2880 icsk->icsk_mtup.probe_size = 0; 2881 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2882 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2883 } 2884 2885 /* Sometimes we deduce that packets have been dropped due to reasons other than 2886 * congestion, like path MTU reductions or failed client TFO attempts. In these 2887 * cases we call this function to retransmit as many packets as cwnd allows, 2888 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2889 * non-zero value (and may do so in a later calling context due to TSQ), we 2890 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2891 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2892 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2893 * prematurely). 2894 */ 2895 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2896 { 2897 const struct inet_connection_sock *icsk = inet_csk(sk); 2898 struct tcp_sock *tp = tcp_sk(sk); 2899 2900 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2901 tp->high_seq = tp->snd_nxt; 2902 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2903 tp->prior_ssthresh = 0; 2904 tp->undo_marker = 0; 2905 tcp_set_ca_state(sk, TCP_CA_Loss); 2906 } 2907 tcp_xmit_retransmit_queue(sk); 2908 } 2909 2910 /* Do a simple retransmit without using the backoff mechanisms in 2911 * tcp_timer. This is used for path mtu discovery. 2912 * The socket is already locked here. 2913 */ 2914 void tcp_simple_retransmit(struct sock *sk) 2915 { 2916 struct tcp_sock *tp = tcp_sk(sk); 2917 struct sk_buff *skb; 2918 int mss; 2919 2920 /* A fastopen SYN request is stored as two separate packets within 2921 * the retransmit queue, this is done by tcp_send_syn_data(). 2922 * As a result simply checking the MSS of the frames in the queue 2923 * will not work for the SYN packet. 2924 * 2925 * Us being here is an indication of a path MTU issue so we can 2926 * assume that the fastopen SYN was lost and just mark all the 2927 * frames in the retransmit queue as lost. We will use an MSS of 2928 * -1 to mark all frames as lost, otherwise compute the current MSS. 2929 */ 2930 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2931 mss = -1; 2932 else 2933 mss = tcp_current_mss(sk); 2934 2935 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2936 if (tcp_skb_seglen(skb) > mss) 2937 tcp_mark_skb_lost(sk, skb); 2938 } 2939 2940 if (!tp->lost_out) 2941 return; 2942 2943 if (tcp_is_reno(tp)) 2944 tcp_limit_reno_sacked(tp); 2945 2946 tcp_verify_left_out(tp); 2947 2948 /* Don't muck with the congestion window here. 2949 * Reason is that we do not increase amount of _data_ 2950 * in network, but units changed and effective 2951 * cwnd/ssthresh really reduced now. 2952 */ 2953 tcp_non_congestion_loss_retransmit(sk); 2954 } 2955 EXPORT_IPV6_MOD(tcp_simple_retransmit); 2956 2957 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2958 { 2959 struct tcp_sock *tp = tcp_sk(sk); 2960 int mib_idx; 2961 2962 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2963 tcp_retrans_stamp_cleanup(sk); 2964 2965 if (tcp_is_reno(tp)) 2966 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2967 else 2968 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2969 2970 NET_INC_STATS(sock_net(sk), mib_idx); 2971 2972 tp->prior_ssthresh = 0; 2973 tcp_init_undo(tp); 2974 2975 if (!tcp_in_cwnd_reduction(sk)) { 2976 if (!ece_ack) 2977 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2978 tcp_init_cwnd_reduction(sk); 2979 } 2980 tcp_set_ca_state(sk, TCP_CA_Recovery); 2981 } 2982 2983 static void tcp_update_rto_time(struct tcp_sock *tp) 2984 { 2985 if (tp->rto_stamp) { 2986 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2987 tp->rto_stamp = 0; 2988 } 2989 } 2990 2991 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2992 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2993 */ 2994 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2995 int *rexmit) 2996 { 2997 struct tcp_sock *tp = tcp_sk(sk); 2998 bool recovered = !before(tp->snd_una, tp->high_seq); 2999 3000 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 3001 tcp_try_undo_loss(sk, false)) 3002 return; 3003 3004 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 3005 /* Step 3.b. A timeout is spurious if not all data are 3006 * lost, i.e., never-retransmitted data are (s)acked. 3007 */ 3008 if ((flag & FLAG_ORIG_SACK_ACKED) && 3009 tcp_try_undo_loss(sk, true)) 3010 return; 3011 3012 if (after(tp->snd_nxt, tp->high_seq)) { 3013 if (flag & FLAG_DATA_SACKED || num_dupack) 3014 tp->frto = 0; /* Step 3.a. loss was real */ 3015 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 3016 tp->high_seq = tp->snd_nxt; 3017 /* Step 2.b. Try send new data (but deferred until cwnd 3018 * is updated in tcp_ack()). Otherwise fall back to 3019 * the conventional recovery. 3020 */ 3021 if (!tcp_write_queue_empty(sk) && 3022 after(tcp_wnd_end(tp), tp->snd_nxt)) { 3023 *rexmit = REXMIT_NEW; 3024 return; 3025 } 3026 tp->frto = 0; 3027 } 3028 } 3029 3030 if (recovered) { 3031 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 3032 tcp_try_undo_recovery(sk); 3033 return; 3034 } 3035 if (tcp_is_reno(tp)) { 3036 /* A Reno DUPACK means new data in F-RTO step 2.b above are 3037 * delivered. Lower inflight to clock out (re)transmissions. 3038 */ 3039 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 3040 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 3041 else if (flag & FLAG_SND_UNA_ADVANCED) 3042 tcp_reset_reno_sack(tp); 3043 } 3044 *rexmit = REXMIT_LOST; 3045 } 3046 3047 /* Undo during fast recovery after partial ACK. */ 3048 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 3049 { 3050 struct tcp_sock *tp = tcp_sk(sk); 3051 3052 if (tp->undo_marker && tcp_packet_delayed(tp)) { 3053 /* Plain luck! Hole if filled with delayed 3054 * packet, rather than with a retransmit. Check reordering. 3055 */ 3056 tcp_check_sack_reordering(sk, prior_snd_una, 1); 3057 3058 /* We are getting evidence that the reordering degree is higher 3059 * than we realized. If there are no retransmits out then we 3060 * can undo. Otherwise we clock out new packets but do not 3061 * mark more packets lost or retransmit more. 3062 */ 3063 if (tp->retrans_out) 3064 return true; 3065 3066 if (!tcp_any_retrans_done(sk)) 3067 tp->retrans_stamp = 0; 3068 3069 DBGUNDO(sk, "partial recovery"); 3070 tcp_undo_cwnd_reduction(sk, true); 3071 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3072 tcp_try_keep_open(sk); 3073 } 3074 return false; 3075 } 3076 3077 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3078 { 3079 struct tcp_sock *tp = tcp_sk(sk); 3080 3081 if (tcp_rtx_queue_empty(sk)) 3082 return; 3083 3084 if (unlikely(tcp_is_reno(tp))) { 3085 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3086 } else { 3087 u32 prior_retrans = tp->retrans_out; 3088 3089 if (tcp_rack_mark_lost(sk)) 3090 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3091 if (prior_retrans > tp->retrans_out) 3092 *ack_flag |= FLAG_LOST_RETRANS; 3093 } 3094 } 3095 3096 /* Process an event, which can update packets-in-flight not trivially. 3097 * Main goal of this function is to calculate new estimate for left_out, 3098 * taking into account both packets sitting in receiver's buffer and 3099 * packets lost by network. 3100 * 3101 * Besides that it updates the congestion state when packet loss or ECN 3102 * is detected. But it does not reduce the cwnd, it is done by the 3103 * congestion control later. 3104 * 3105 * It does _not_ decide what to send, it is made in function 3106 * tcp_xmit_retransmit_queue(). 3107 */ 3108 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3109 int num_dupack, int *ack_flag, int *rexmit) 3110 { 3111 struct inet_connection_sock *icsk = inet_csk(sk); 3112 struct tcp_sock *tp = tcp_sk(sk); 3113 int flag = *ack_flag; 3114 bool ece_ack = flag & FLAG_ECE; 3115 3116 if (!tp->packets_out && tp->sacked_out) 3117 tp->sacked_out = 0; 3118 3119 /* Now state machine starts. 3120 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3121 if (ece_ack) 3122 tp->prior_ssthresh = 0; 3123 3124 /* B. In all the states check for reneging SACKs. */ 3125 if (tcp_check_sack_reneging(sk, ack_flag)) 3126 return; 3127 3128 /* C. Check consistency of the current state. */ 3129 tcp_verify_left_out(tp); 3130 3131 /* D. Check state exit conditions. State can be terminated 3132 * when high_seq is ACKed. */ 3133 if (icsk->icsk_ca_state == TCP_CA_Open) { 3134 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3135 tp->retrans_stamp = 0; 3136 } else if (!before(tp->snd_una, tp->high_seq)) { 3137 switch (icsk->icsk_ca_state) { 3138 case TCP_CA_CWR: 3139 /* CWR is to be held something *above* high_seq 3140 * is ACKed for CWR bit to reach receiver. */ 3141 if (tp->snd_una != tp->high_seq) { 3142 tcp_end_cwnd_reduction(sk); 3143 tcp_set_ca_state(sk, TCP_CA_Open); 3144 } 3145 break; 3146 3147 case TCP_CA_Recovery: 3148 if (tcp_is_reno(tp)) 3149 tcp_reset_reno_sack(tp); 3150 if (tcp_try_undo_recovery(sk)) 3151 return; 3152 tcp_end_cwnd_reduction(sk); 3153 break; 3154 } 3155 } 3156 3157 /* E. Process state. */ 3158 switch (icsk->icsk_ca_state) { 3159 case TCP_CA_Recovery: 3160 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3161 if (tcp_is_reno(tp)) 3162 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3163 } else if (tcp_try_undo_partial(sk, prior_snd_una)) 3164 return; 3165 3166 if (tcp_try_undo_dsack(sk)) 3167 tcp_try_to_open(sk, flag); 3168 3169 tcp_identify_packet_loss(sk, ack_flag); 3170 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3171 if (!tcp_time_to_recover(tp)) 3172 return; 3173 /* Undo reverts the recovery state. If loss is evident, 3174 * starts a new recovery (e.g. reordering then loss); 3175 */ 3176 tcp_enter_recovery(sk, ece_ack); 3177 } 3178 break; 3179 case TCP_CA_Loss: 3180 tcp_process_loss(sk, flag, num_dupack, rexmit); 3181 if (icsk->icsk_ca_state != TCP_CA_Loss) 3182 tcp_update_rto_time(tp); 3183 tcp_identify_packet_loss(sk, ack_flag); 3184 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3185 (*ack_flag & FLAG_LOST_RETRANS))) 3186 return; 3187 /* Change state if cwnd is undone or retransmits are lost */ 3188 fallthrough; 3189 default: 3190 if (tcp_is_reno(tp)) { 3191 if (flag & FLAG_SND_UNA_ADVANCED) 3192 tcp_reset_reno_sack(tp); 3193 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3194 } 3195 3196 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3197 tcp_try_undo_dsack(sk); 3198 3199 tcp_identify_packet_loss(sk, ack_flag); 3200 if (!tcp_time_to_recover(tp)) { 3201 tcp_try_to_open(sk, flag); 3202 return; 3203 } 3204 3205 /* MTU probe failure: don't reduce cwnd */ 3206 if (icsk->icsk_ca_state < TCP_CA_CWR && 3207 icsk->icsk_mtup.probe_size && 3208 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3209 tcp_mtup_probe_failed(sk); 3210 /* Restores the reduction we did in tcp_mtup_probe() */ 3211 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3212 tcp_simple_retransmit(sk); 3213 return; 3214 } 3215 3216 /* Otherwise enter Recovery state */ 3217 tcp_enter_recovery(sk, ece_ack); 3218 } 3219 3220 *rexmit = REXMIT_LOST; 3221 } 3222 3223 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3224 { 3225 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3226 struct tcp_sock *tp = tcp_sk(sk); 3227 3228 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3229 /* If the remote keeps returning delayed ACKs, eventually 3230 * the min filter would pick it up and overestimate the 3231 * prop. delay when it expires. Skip suspected delayed ACKs. 3232 */ 3233 return; 3234 } 3235 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3236 rtt_us ? : jiffies_to_usecs(1)); 3237 } 3238 3239 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3240 long seq_rtt_us, long sack_rtt_us, 3241 long ca_rtt_us, struct rate_sample *rs) 3242 { 3243 const struct tcp_sock *tp = tcp_sk(sk); 3244 3245 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3246 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3247 * Karn's algorithm forbids taking RTT if some retransmitted data 3248 * is acked (RFC6298). 3249 */ 3250 if (seq_rtt_us < 0) 3251 seq_rtt_us = sack_rtt_us; 3252 3253 /* RTTM Rule: A TSecr value received in a segment is used to 3254 * update the averaged RTT measurement only if the segment 3255 * acknowledges some new data, i.e., only if it advances the 3256 * left edge of the send window. 3257 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3258 */ 3259 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3260 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3261 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1); 3262 3263 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3264 if (seq_rtt_us < 0) 3265 return false; 3266 3267 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3268 * always taken together with ACK, SACK, or TS-opts. Any negative 3269 * values will be skipped with the seq_rtt_us < 0 check above. 3270 */ 3271 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3272 tcp_rtt_estimator(sk, seq_rtt_us); 3273 tcp_set_rto(sk); 3274 3275 /* RFC6298: only reset backoff on valid RTT measurement. */ 3276 inet_csk(sk)->icsk_backoff = 0; 3277 return true; 3278 } 3279 3280 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3281 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3282 { 3283 struct rate_sample rs; 3284 long rtt_us = -1L; 3285 3286 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3287 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3288 3289 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3290 } 3291 3292 3293 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3294 { 3295 const struct inet_connection_sock *icsk = inet_csk(sk); 3296 3297 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3298 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3299 } 3300 3301 /* Restart timer after forward progress on connection. 3302 * RFC2988 recommends to restart timer to now+rto. 3303 */ 3304 void tcp_rearm_rto(struct sock *sk) 3305 { 3306 const struct inet_connection_sock *icsk = inet_csk(sk); 3307 struct tcp_sock *tp = tcp_sk(sk); 3308 3309 /* If the retrans timer is currently being used by Fast Open 3310 * for SYN-ACK retrans purpose, stay put. 3311 */ 3312 if (rcu_access_pointer(tp->fastopen_rsk)) 3313 return; 3314 3315 if (!tp->packets_out) { 3316 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3317 } else { 3318 u32 rto = inet_csk(sk)->icsk_rto; 3319 /* Offset the time elapsed after installing regular RTO */ 3320 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3321 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3322 s64 delta_us = tcp_rto_delta_us(sk); 3323 /* delta_us may not be positive if the socket is locked 3324 * when the retrans timer fires and is rescheduled. 3325 */ 3326 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3327 } 3328 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true); 3329 } 3330 } 3331 3332 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3333 static void tcp_set_xmit_timer(struct sock *sk) 3334 { 3335 if (!tcp_schedule_loss_probe(sk, true)) 3336 tcp_rearm_rto(sk); 3337 } 3338 3339 /* If we get here, the whole TSO packet has not been acked. */ 3340 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3341 { 3342 struct tcp_sock *tp = tcp_sk(sk); 3343 u32 packets_acked; 3344 3345 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3346 3347 packets_acked = tcp_skb_pcount(skb); 3348 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3349 return 0; 3350 packets_acked -= tcp_skb_pcount(skb); 3351 3352 if (packets_acked) { 3353 BUG_ON(tcp_skb_pcount(skb) == 0); 3354 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3355 } 3356 3357 return packets_acked; 3358 } 3359 3360 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3361 const struct sk_buff *ack_skb, u32 prior_snd_una) 3362 { 3363 const struct skb_shared_info *shinfo; 3364 3365 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3366 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3367 return; 3368 3369 shinfo = skb_shinfo(skb); 3370 if (!before(shinfo->tskey, prior_snd_una) && 3371 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3372 tcp_skb_tsorted_save(skb) { 3373 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3374 } tcp_skb_tsorted_restore(skb); 3375 } 3376 } 3377 3378 /* Remove acknowledged frames from the retransmission queue. If our packet 3379 * is before the ack sequence we can discard it as it's confirmed to have 3380 * arrived at the other end. 3381 */ 3382 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3383 u32 prior_fack, u32 prior_snd_una, 3384 struct tcp_sacktag_state *sack, bool ece_ack) 3385 { 3386 const struct inet_connection_sock *icsk = inet_csk(sk); 3387 u64 first_ackt, last_ackt; 3388 struct tcp_sock *tp = tcp_sk(sk); 3389 u32 prior_sacked = tp->sacked_out; 3390 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3391 struct sk_buff *skb, *next; 3392 bool fully_acked = true; 3393 long sack_rtt_us = -1L; 3394 long seq_rtt_us = -1L; 3395 long ca_rtt_us = -1L; 3396 u32 pkts_acked = 0; 3397 bool rtt_update; 3398 int flag = 0; 3399 3400 first_ackt = 0; 3401 3402 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3403 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3404 const u32 start_seq = scb->seq; 3405 u8 sacked = scb->sacked; 3406 u32 acked_pcount; 3407 3408 /* Determine how many packets and what bytes were acked, tso and else */ 3409 if (after(scb->end_seq, tp->snd_una)) { 3410 if (tcp_skb_pcount(skb) == 1 || 3411 !after(tp->snd_una, scb->seq)) 3412 break; 3413 3414 acked_pcount = tcp_tso_acked(sk, skb); 3415 if (!acked_pcount) 3416 break; 3417 fully_acked = false; 3418 } else { 3419 acked_pcount = tcp_skb_pcount(skb); 3420 } 3421 3422 if (unlikely(sacked & TCPCB_RETRANS)) { 3423 if (sacked & TCPCB_SACKED_RETRANS) 3424 tp->retrans_out -= acked_pcount; 3425 flag |= FLAG_RETRANS_DATA_ACKED; 3426 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3427 last_ackt = tcp_skb_timestamp_us(skb); 3428 WARN_ON_ONCE(last_ackt == 0); 3429 if (!first_ackt) 3430 first_ackt = last_ackt; 3431 3432 if (before(start_seq, reord)) 3433 reord = start_seq; 3434 if (!after(scb->end_seq, tp->high_seq)) 3435 flag |= FLAG_ORIG_SACK_ACKED; 3436 } 3437 3438 if (sacked & TCPCB_SACKED_ACKED) { 3439 tp->sacked_out -= acked_pcount; 3440 /* snd_una delta covers these skbs */ 3441 sack->delivered_bytes -= skb->len; 3442 } else if (tcp_is_sack(tp)) { 3443 tcp_count_delivered(tp, acked_pcount, ece_ack); 3444 if (!tcp_skb_spurious_retrans(tp, skb)) 3445 tcp_rack_advance(tp, sacked, scb->end_seq, 3446 tcp_skb_timestamp_us(skb)); 3447 } 3448 if (sacked & TCPCB_LOST) 3449 tp->lost_out -= acked_pcount; 3450 3451 tp->packets_out -= acked_pcount; 3452 pkts_acked += acked_pcount; 3453 tcp_rate_skb_delivered(sk, skb, sack->rate); 3454 3455 /* Initial outgoing SYN's get put onto the write_queue 3456 * just like anything else we transmit. It is not 3457 * true data, and if we misinform our callers that 3458 * this ACK acks real data, we will erroneously exit 3459 * connection startup slow start one packet too 3460 * quickly. This is severely frowned upon behavior. 3461 */ 3462 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3463 flag |= FLAG_DATA_ACKED; 3464 } else { 3465 flag |= FLAG_SYN_ACKED; 3466 tp->retrans_stamp = 0; 3467 } 3468 3469 if (!fully_acked) 3470 break; 3471 3472 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3473 3474 next = skb_rb_next(skb); 3475 if (unlikely(skb == tp->retransmit_skb_hint)) 3476 tp->retransmit_skb_hint = NULL; 3477 tcp_highest_sack_replace(sk, skb, next); 3478 tcp_rtx_queue_unlink_and_free(skb, sk); 3479 } 3480 3481 if (!skb) 3482 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3483 3484 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3485 tp->snd_up = tp->snd_una; 3486 3487 if (skb) { 3488 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3489 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3490 flag |= FLAG_SACK_RENEGING; 3491 } 3492 3493 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3494 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3495 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3496 3497 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3498 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3499 sack->rate->prior_delivered + 1 == tp->delivered && 3500 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3501 /* Conservatively mark a delayed ACK. It's typically 3502 * from a lone runt packet over the round trip to 3503 * a receiver w/o out-of-order or CE events. 3504 */ 3505 flag |= FLAG_ACK_MAYBE_DELAYED; 3506 } 3507 } 3508 if (sack->first_sackt) { 3509 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3510 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3511 } 3512 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3513 ca_rtt_us, sack->rate); 3514 3515 if (flag & FLAG_ACKED) { 3516 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3517 if (unlikely(icsk->icsk_mtup.probe_size && 3518 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3519 tcp_mtup_probe_success(sk); 3520 } 3521 3522 if (tcp_is_reno(tp)) { 3523 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3524 3525 /* If any of the cumulatively ACKed segments was 3526 * retransmitted, non-SACK case cannot confirm that 3527 * progress was due to original transmission due to 3528 * lack of TCPCB_SACKED_ACKED bits even if some of 3529 * the packets may have been never retransmitted. 3530 */ 3531 if (flag & FLAG_RETRANS_DATA_ACKED) 3532 flag &= ~FLAG_ORIG_SACK_ACKED; 3533 } else { 3534 /* Non-retransmitted hole got filled? That's reordering */ 3535 if (before(reord, prior_fack)) 3536 tcp_check_sack_reordering(sk, reord, 0); 3537 } 3538 3539 sack->delivered_bytes = (skb ? 3540 TCP_SKB_CB(skb)->seq : tp->snd_una) - 3541 prior_snd_una; 3542 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3543 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3544 tcp_skb_timestamp_us(skb))) { 3545 /* Do not re-arm RTO if the sack RTT is measured from data sent 3546 * after when the head was last (re)transmitted. Otherwise the 3547 * timeout may continue to extend in loss recovery. 3548 */ 3549 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3550 } 3551 3552 if (icsk->icsk_ca_ops->pkts_acked) { 3553 struct ack_sample sample = { .pkts_acked = pkts_acked, 3554 .rtt_us = sack->rate->rtt_us }; 3555 3556 sample.in_flight = tp->mss_cache * 3557 (tp->delivered - sack->rate->prior_delivered); 3558 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3559 } 3560 3561 #if FASTRETRANS_DEBUG > 0 3562 WARN_ON((int)tp->sacked_out < 0); 3563 WARN_ON((int)tp->lost_out < 0); 3564 WARN_ON((int)tp->retrans_out < 0); 3565 if (!tp->packets_out && tcp_is_sack(tp)) { 3566 icsk = inet_csk(sk); 3567 if (tp->lost_out) { 3568 pr_debug("Leak l=%u %d\n", 3569 tp->lost_out, icsk->icsk_ca_state); 3570 tp->lost_out = 0; 3571 } 3572 if (tp->sacked_out) { 3573 pr_debug("Leak s=%u %d\n", 3574 tp->sacked_out, icsk->icsk_ca_state); 3575 tp->sacked_out = 0; 3576 } 3577 if (tp->retrans_out) { 3578 pr_debug("Leak r=%u %d\n", 3579 tp->retrans_out, icsk->icsk_ca_state); 3580 tp->retrans_out = 0; 3581 } 3582 } 3583 #endif 3584 return flag; 3585 } 3586 3587 static void tcp_ack_probe(struct sock *sk) 3588 { 3589 struct inet_connection_sock *icsk = inet_csk(sk); 3590 struct sk_buff *head = tcp_send_head(sk); 3591 const struct tcp_sock *tp = tcp_sk(sk); 3592 3593 /* Was it a usable window open? */ 3594 if (!head) 3595 return; 3596 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3597 icsk->icsk_backoff = 0; 3598 icsk->icsk_probes_tstamp = 0; 3599 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3600 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3601 * This function is not for random using! 3602 */ 3603 } else { 3604 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk)); 3605 3606 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3607 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true); 3608 } 3609 } 3610 3611 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3612 { 3613 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3614 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3615 } 3616 3617 /* Decide wheather to run the increase function of congestion control. */ 3618 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3619 { 3620 /* If reordering is high then always grow cwnd whenever data is 3621 * delivered regardless of its ordering. Otherwise stay conservative 3622 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3623 * new SACK or ECE mark may first advance cwnd here and later reduce 3624 * cwnd in tcp_fastretrans_alert() based on more states. 3625 */ 3626 if (tcp_sk(sk)->reordering > 3627 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3628 return flag & FLAG_FORWARD_PROGRESS; 3629 3630 return flag & FLAG_DATA_ACKED; 3631 } 3632 3633 /* The "ultimate" congestion control function that aims to replace the rigid 3634 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3635 * It's called toward the end of processing an ACK with precise rate 3636 * information. All transmission or retransmission are delayed afterwards. 3637 */ 3638 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3639 int flag, const struct rate_sample *rs) 3640 { 3641 const struct inet_connection_sock *icsk = inet_csk(sk); 3642 3643 if (icsk->icsk_ca_ops->cong_control) { 3644 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3645 return; 3646 } 3647 3648 if (tcp_in_cwnd_reduction(sk)) { 3649 /* Reduce cwnd if state mandates */ 3650 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3651 } else if (tcp_may_raise_cwnd(sk, flag)) { 3652 /* Advance cwnd if state allows */ 3653 tcp_cong_avoid(sk, ack, acked_sacked); 3654 } 3655 tcp_update_pacing_rate(sk); 3656 } 3657 3658 /* Check that window update is acceptable. 3659 * The function assumes that snd_una<=ack<=snd_next. 3660 */ 3661 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3662 const u32 ack, const u32 ack_seq, 3663 const u32 nwin) 3664 { 3665 return after(ack, tp->snd_una) || 3666 after(ack_seq, tp->snd_wl1) || 3667 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3668 } 3669 3670 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3671 { 3672 #ifdef CONFIG_TCP_AO 3673 struct tcp_ao_info *ao; 3674 3675 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3676 return; 3677 3678 ao = rcu_dereference_protected(tp->ao_info, 3679 lockdep_sock_is_held((struct sock *)tp)); 3680 if (ao && ack < tp->snd_una) { 3681 ao->snd_sne++; 3682 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne); 3683 } 3684 #endif 3685 } 3686 3687 /* If we update tp->snd_una, also update tp->bytes_acked */ 3688 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3689 { 3690 u32 delta = ack - tp->snd_una; 3691 3692 sock_owned_by_me((struct sock *)tp); 3693 tp->bytes_acked += delta; 3694 tcp_snd_sne_update(tp, ack); 3695 tp->snd_una = ack; 3696 } 3697 3698 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3699 { 3700 #ifdef CONFIG_TCP_AO 3701 struct tcp_ao_info *ao; 3702 3703 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3704 return; 3705 3706 ao = rcu_dereference_protected(tp->ao_info, 3707 lockdep_sock_is_held((struct sock *)tp)); 3708 if (ao && seq < tp->rcv_nxt) { 3709 ao->rcv_sne++; 3710 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne); 3711 } 3712 #endif 3713 } 3714 3715 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3716 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3717 { 3718 u32 delta = seq - tp->rcv_nxt; 3719 3720 sock_owned_by_me((struct sock *)tp); 3721 tp->bytes_received += delta; 3722 tcp_rcv_sne_update(tp, seq); 3723 WRITE_ONCE(tp->rcv_nxt, seq); 3724 } 3725 3726 /* Update our send window. 3727 * 3728 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3729 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3730 */ 3731 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3732 u32 ack_seq) 3733 { 3734 struct tcp_sock *tp = tcp_sk(sk); 3735 int flag = 0; 3736 u32 nwin = ntohs(tcp_hdr(skb)->window); 3737 3738 if (likely(!tcp_hdr(skb)->syn)) 3739 nwin <<= tp->rx_opt.snd_wscale; 3740 3741 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3742 flag |= FLAG_WIN_UPDATE; 3743 tcp_update_wl(tp, ack_seq); 3744 3745 if (tp->snd_wnd != nwin) { 3746 tp->snd_wnd = nwin; 3747 3748 /* Note, it is the only place, where 3749 * fast path is recovered for sending TCP. 3750 */ 3751 tp->pred_flags = 0; 3752 tcp_fast_path_check(sk); 3753 3754 if (!tcp_write_queue_empty(sk)) 3755 tcp_slow_start_after_idle_check(sk); 3756 3757 if (nwin > tp->max_window) { 3758 tp->max_window = nwin; 3759 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3760 } 3761 } 3762 } 3763 3764 tcp_snd_una_update(tp, ack); 3765 3766 return flag; 3767 } 3768 3769 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3770 u32 *last_oow_ack_time) 3771 { 3772 /* Paired with the WRITE_ONCE() in this function. */ 3773 u32 val = READ_ONCE(*last_oow_ack_time); 3774 3775 if (val) { 3776 s32 elapsed = (s32)(tcp_jiffies32 - val); 3777 3778 if (0 <= elapsed && 3779 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3780 NET_INC_STATS(net, mib_idx); 3781 return true; /* rate-limited: don't send yet! */ 3782 } 3783 } 3784 3785 /* Paired with the prior READ_ONCE() and with itself, 3786 * as we might be lockless. 3787 */ 3788 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3789 3790 return false; /* not rate-limited: go ahead, send dupack now! */ 3791 } 3792 3793 /* Return true if we're currently rate-limiting out-of-window ACKs and 3794 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3795 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3796 * attacks that send repeated SYNs or ACKs for the same connection. To 3797 * do this, we do not send a duplicate SYNACK or ACK if the remote 3798 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3799 */ 3800 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3801 int mib_idx, u32 *last_oow_ack_time) 3802 { 3803 /* Data packets without SYNs are not likely part of an ACK loop. */ 3804 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3805 !tcp_hdr(skb)->syn) 3806 return false; 3807 3808 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3809 } 3810 3811 static void tcp_send_ack_reflect_ect(struct sock *sk, bool accecn_reflector) 3812 { 3813 struct tcp_sock *tp = tcp_sk(sk); 3814 u16 flags = 0; 3815 3816 if (accecn_reflector) 3817 flags = tcp_accecn_reflector_flags(tp->syn_ect_rcv); 3818 __tcp_send_ack(sk, tp->rcv_nxt, flags); 3819 } 3820 3821 /* RFC 5961 7 [ACK Throttling] */ 3822 static void tcp_send_challenge_ack(struct sock *sk, bool accecn_reflector) 3823 { 3824 struct tcp_sock *tp = tcp_sk(sk); 3825 struct net *net = sock_net(sk); 3826 u32 count, now, ack_limit; 3827 3828 /* First check our per-socket dupack rate limit. */ 3829 if (__tcp_oow_rate_limited(net, 3830 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3831 &tp->last_oow_ack_time)) 3832 return; 3833 3834 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3835 if (ack_limit == INT_MAX) 3836 goto send_ack; 3837 3838 /* Then check host-wide RFC 5961 rate limit. */ 3839 now = jiffies / HZ; 3840 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3841 u32 half = (ack_limit + 1) >> 1; 3842 3843 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3844 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3845 get_random_u32_inclusive(half, ack_limit + half - 1)); 3846 } 3847 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3848 if (count > 0) { 3849 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3850 send_ack: 3851 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3852 tcp_send_ack_reflect_ect(sk, accecn_reflector); 3853 } 3854 } 3855 3856 static void tcp_store_ts_recent(struct tcp_sock *tp) 3857 { 3858 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3859 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3860 } 3861 3862 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta) 3863 { 3864 tcp_store_ts_recent(tp); 3865 return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0; 3866 } 3867 3868 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3869 { 3870 s32 delta; 3871 3872 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3873 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3874 * extra check below makes sure this can only happen 3875 * for pure ACK frames. -DaveM 3876 * 3877 * Not only, also it occurs for expired timestamps. 3878 */ 3879 3880 if (tcp_paws_check(&tp->rx_opt, 0)) { 3881 delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent; 3882 return __tcp_replace_ts_recent(tp, delta); 3883 } 3884 } 3885 3886 return 0; 3887 } 3888 3889 /* This routine deals with acks during a TLP episode and ends an episode by 3890 * resetting tlp_high_seq. Ref: TLP algorithm in RFC8985 3891 */ 3892 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3893 { 3894 struct tcp_sock *tp = tcp_sk(sk); 3895 3896 if (before(ack, tp->tlp_high_seq)) 3897 return; 3898 3899 if (!tp->tlp_retrans) { 3900 /* TLP of new data has been acknowledged */ 3901 tp->tlp_high_seq = 0; 3902 } else if (flag & FLAG_DSACK_TLP) { 3903 /* This DSACK means original and TLP probe arrived; no loss */ 3904 tp->tlp_high_seq = 0; 3905 } else if (after(ack, tp->tlp_high_seq)) { 3906 /* ACK advances: there was a loss, so reduce cwnd. Reset 3907 * tlp_high_seq in tcp_init_cwnd_reduction() 3908 */ 3909 tcp_init_cwnd_reduction(sk); 3910 tcp_set_ca_state(sk, TCP_CA_CWR); 3911 tcp_end_cwnd_reduction(sk); 3912 tcp_try_keep_open(sk); 3913 NET_INC_STATS(sock_net(sk), 3914 LINUX_MIB_TCPLOSSPROBERECOVERY); 3915 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3916 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3917 /* Pure dupack: original and TLP probe arrived; no loss */ 3918 tp->tlp_high_seq = 0; 3919 } 3920 } 3921 3922 static void tcp_in_ack_event(struct sock *sk, int flag) 3923 { 3924 const struct inet_connection_sock *icsk = inet_csk(sk); 3925 3926 if (icsk->icsk_ca_ops->in_ack_event) { 3927 u32 ack_ev_flags = 0; 3928 3929 if (flag & FLAG_WIN_UPDATE) 3930 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3931 if (flag & FLAG_SLOWPATH) { 3932 ack_ev_flags |= CA_ACK_SLOWPATH; 3933 if (flag & FLAG_ECE) 3934 ack_ev_flags |= CA_ACK_ECE; 3935 } 3936 3937 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags); 3938 } 3939 } 3940 3941 /* Congestion control has updated the cwnd already. So if we're in 3942 * loss recovery then now we do any new sends (for FRTO) or 3943 * retransmits (for CA_Loss or CA_recovery) that make sense. 3944 */ 3945 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3946 { 3947 struct tcp_sock *tp = tcp_sk(sk); 3948 3949 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3950 return; 3951 3952 if (unlikely(rexmit == REXMIT_NEW)) { 3953 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3954 TCP_NAGLE_OFF); 3955 if (after(tp->snd_nxt, tp->high_seq)) 3956 return; 3957 tp->frto = 0; 3958 } 3959 tcp_xmit_retransmit_queue(sk); 3960 } 3961 3962 /* Returns the number of packets newly acked or sacked by the current ACK */ 3963 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, 3964 u32 ecn_count, int flag) 3965 { 3966 const struct net *net = sock_net(sk); 3967 struct tcp_sock *tp = tcp_sk(sk); 3968 u32 delivered; 3969 3970 delivered = tp->delivered - prior_delivered; 3971 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3972 3973 if (flag & FLAG_ECE) { 3974 if (tcp_ecn_mode_rfc3168(tp)) 3975 ecn_count = delivered; 3976 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, ecn_count); 3977 } 3978 3979 return delivered; 3980 } 3981 3982 /* This routine deals with incoming acks, but not outgoing ones. */ 3983 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3984 { 3985 struct inet_connection_sock *icsk = inet_csk(sk); 3986 struct tcp_sock *tp = tcp_sk(sk); 3987 struct tcp_sacktag_state sack_state; 3988 struct rate_sample rs = { .prior_delivered = 0 }; 3989 u32 prior_snd_una = tp->snd_una; 3990 bool is_sack_reneg = tp->is_sack_reneg; 3991 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3992 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3993 int num_dupack = 0; 3994 int prior_packets = tp->packets_out; 3995 u32 delivered = tp->delivered; 3996 u32 lost = tp->lost; 3997 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3998 u32 ecn_count = 0; /* Did we receive ECE/an AccECN ACE update? */ 3999 u32 prior_fack; 4000 4001 sack_state.first_sackt = 0; 4002 sack_state.rate = &rs; 4003 sack_state.sack_delivered = 0; 4004 sack_state.delivered_bytes = 0; 4005 4006 /* We very likely will need to access rtx queue. */ 4007 prefetch(sk->tcp_rtx_queue.rb_node); 4008 4009 /* If the ack is older than previous acks 4010 * then we can probably ignore it. 4011 */ 4012 if (before(ack, prior_snd_una)) { 4013 u32 max_window; 4014 4015 /* do not accept ACK for bytes we never sent. */ 4016 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 4017 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 4018 if (before(ack, prior_snd_una - max_window)) { 4019 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 4020 tcp_send_challenge_ack(sk, false); 4021 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 4022 } 4023 goto old_ack; 4024 } 4025 4026 /* If the ack includes data we haven't sent yet, discard 4027 * this segment (RFC793 Section 3.9). 4028 */ 4029 if (after(ack, tp->snd_nxt)) 4030 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 4031 4032 if (after(ack, prior_snd_una)) { 4033 flag |= FLAG_SND_UNA_ADVANCED; 4034 WRITE_ONCE(icsk->icsk_retransmits, 0); 4035 4036 #if IS_ENABLED(CONFIG_TLS_DEVICE) 4037 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 4038 if (tp->tcp_clean_acked) 4039 tp->tcp_clean_acked(sk, ack); 4040 #endif 4041 } 4042 4043 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 4044 rs.prior_in_flight = tcp_packets_in_flight(tp); 4045 4046 /* ts_recent update must be made after we are sure that the packet 4047 * is in window. 4048 */ 4049 if (flag & FLAG_UPDATE_TS_RECENT) 4050 flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4051 4052 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 4053 FLAG_SND_UNA_ADVANCED) { 4054 /* Window is constant, pure forward advance. 4055 * No more checks are required. 4056 * Note, we use the fact that SND.UNA>=SND.WL2. 4057 */ 4058 tcp_update_wl(tp, ack_seq); 4059 tcp_snd_una_update(tp, ack); 4060 flag |= FLAG_WIN_UPDATE; 4061 4062 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 4063 } else { 4064 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 4065 flag |= FLAG_DATA; 4066 else 4067 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 4068 4069 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 4070 4071 if (TCP_SKB_CB(skb)->sacked) 4072 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4073 &sack_state); 4074 4075 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) 4076 flag |= FLAG_ECE; 4077 4078 if (sack_state.sack_delivered) 4079 tcp_count_delivered(tp, sack_state.sack_delivered, 4080 flag & FLAG_ECE); 4081 } 4082 4083 /* This is a deviation from RFC3168 since it states that: 4084 * "When the TCP data sender is ready to set the CWR bit after reducing 4085 * the congestion window, it SHOULD set the CWR bit only on the first 4086 * new data packet that it transmits." 4087 * We accept CWR on pure ACKs to be more robust 4088 * with widely-deployed TCP implementations that do this. 4089 */ 4090 tcp_ecn_accept_cwr(sk, skb); 4091 4092 /* We passed data and got it acked, remove any soft error 4093 * log. Something worked... 4094 */ 4095 if (READ_ONCE(sk->sk_err_soft)) 4096 WRITE_ONCE(sk->sk_err_soft, 0); 4097 WRITE_ONCE(icsk->icsk_probes_out, 0); 4098 tp->rcv_tstamp = tcp_jiffies32; 4099 if (!prior_packets) 4100 goto no_queue; 4101 4102 /* See if we can take anything off of the retransmit queue. */ 4103 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 4104 &sack_state, flag & FLAG_ECE); 4105 4106 tcp_rack_update_reo_wnd(sk, &rs); 4107 4108 if (tcp_ecn_mode_accecn(tp)) 4109 ecn_count = tcp_accecn_process(sk, skb, 4110 tp->delivered - delivered, 4111 sack_state.delivered_bytes, 4112 &flag); 4113 4114 tcp_in_ack_event(sk, flag); 4115 4116 if (tp->tlp_high_seq) 4117 tcp_process_tlp_ack(sk, ack, flag); 4118 4119 if (tcp_ack_is_dubious(sk, flag)) { 4120 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4121 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4122 num_dupack = 1; 4123 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4124 if (!(flag & FLAG_DATA)) 4125 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4126 } 4127 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4128 &rexmit); 4129 } 4130 4131 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4132 if (flag & FLAG_SET_XMIT_TIMER) 4133 tcp_set_xmit_timer(sk); 4134 4135 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4136 sk_dst_confirm(sk); 4137 4138 delivered = tcp_newly_delivered(sk, delivered, ecn_count, flag); 4139 4140 lost = tp->lost - lost; /* freshly marked lost */ 4141 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4142 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4143 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4144 tcp_xmit_recovery(sk, rexmit); 4145 return 1; 4146 4147 no_queue: 4148 if (tcp_ecn_mode_accecn(tp)) 4149 ecn_count = tcp_accecn_process(sk, skb, 4150 tp->delivered - delivered, 4151 sack_state.delivered_bytes, 4152 &flag); 4153 tcp_in_ack_event(sk, flag); 4154 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4155 if (flag & FLAG_DSACKING_ACK) { 4156 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4157 &rexmit); 4158 tcp_newly_delivered(sk, delivered, ecn_count, flag); 4159 } 4160 /* If this ack opens up a zero window, clear backoff. It was 4161 * being used to time the probes, and is probably far higher than 4162 * it needs to be for normal retransmission. 4163 */ 4164 tcp_ack_probe(sk); 4165 4166 if (tp->tlp_high_seq) 4167 tcp_process_tlp_ack(sk, ack, flag); 4168 return 1; 4169 4170 old_ack: 4171 /* If data was SACKed, tag it and see if we should send more data. 4172 * If data was DSACKed, see if we can undo a cwnd reduction. 4173 */ 4174 if (TCP_SKB_CB(skb)->sacked) { 4175 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4176 &sack_state); 4177 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4178 &rexmit); 4179 tcp_newly_delivered(sk, delivered, ecn_count, flag); 4180 tcp_xmit_recovery(sk, rexmit); 4181 } 4182 4183 return 0; 4184 } 4185 4186 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4187 bool syn, struct tcp_fastopen_cookie *foc, 4188 bool exp_opt) 4189 { 4190 /* Valid only in SYN or SYN-ACK with an even length. */ 4191 if (!foc || !syn || len < 0 || (len & 1)) 4192 return; 4193 4194 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4195 len <= TCP_FASTOPEN_COOKIE_MAX) 4196 memcpy(foc->val, cookie, len); 4197 else if (len != 0) 4198 len = -1; 4199 foc->len = len; 4200 foc->exp = exp_opt; 4201 } 4202 4203 static bool smc_parse_options(const struct tcphdr *th, 4204 struct tcp_options_received *opt_rx, 4205 const unsigned char *ptr, 4206 int opsize) 4207 { 4208 #if IS_ENABLED(CONFIG_SMC) 4209 if (static_branch_unlikely(&tcp_have_smc)) { 4210 if (th->syn && !(opsize & 1) && 4211 opsize >= TCPOLEN_EXP_SMC_BASE && 4212 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4213 opt_rx->smc_ok = 1; 4214 return true; 4215 } 4216 } 4217 #endif 4218 return false; 4219 } 4220 4221 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4222 * value on success. 4223 */ 4224 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4225 { 4226 const unsigned char *ptr = (const unsigned char *)(th + 1); 4227 int length = (th->doff * 4) - sizeof(struct tcphdr); 4228 u16 mss = 0; 4229 4230 while (length > 0) { 4231 int opcode = *ptr++; 4232 int opsize; 4233 4234 switch (opcode) { 4235 case TCPOPT_EOL: 4236 return mss; 4237 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4238 length--; 4239 continue; 4240 default: 4241 if (length < 2) 4242 return mss; 4243 opsize = *ptr++; 4244 if (opsize < 2) /* "silly options" */ 4245 return mss; 4246 if (opsize > length) 4247 return mss; /* fail on partial options */ 4248 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4249 u16 in_mss = get_unaligned_be16(ptr); 4250 4251 if (in_mss) { 4252 if (user_mss && user_mss < in_mss) 4253 in_mss = user_mss; 4254 mss = in_mss; 4255 } 4256 } 4257 ptr += opsize - 2; 4258 length -= opsize; 4259 } 4260 } 4261 return mss; 4262 } 4263 4264 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4265 * But, this can also be called on packets in the established flow when 4266 * the fast version below fails. 4267 */ 4268 void tcp_parse_options(const struct net *net, 4269 const struct sk_buff *skb, 4270 struct tcp_options_received *opt_rx, int estab, 4271 struct tcp_fastopen_cookie *foc) 4272 { 4273 const unsigned char *ptr; 4274 const struct tcphdr *th = tcp_hdr(skb); 4275 int length = (th->doff * 4) - sizeof(struct tcphdr); 4276 4277 ptr = (const unsigned char *)(th + 1); 4278 opt_rx->saw_tstamp = 0; 4279 opt_rx->accecn = 0; 4280 opt_rx->saw_unknown = 0; 4281 4282 while (length > 0) { 4283 int opcode = *ptr++; 4284 int opsize; 4285 4286 switch (opcode) { 4287 case TCPOPT_EOL: 4288 return; 4289 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4290 length--; 4291 continue; 4292 default: 4293 if (length < 2) 4294 return; 4295 opsize = *ptr++; 4296 if (opsize < 2) /* "silly options" */ 4297 return; 4298 if (opsize > length) 4299 return; /* don't parse partial options */ 4300 switch (opcode) { 4301 case TCPOPT_MSS: 4302 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4303 u16 in_mss = get_unaligned_be16(ptr); 4304 if (in_mss) { 4305 if (opt_rx->user_mss && 4306 opt_rx->user_mss < in_mss) 4307 in_mss = opt_rx->user_mss; 4308 opt_rx->mss_clamp = in_mss; 4309 } 4310 } 4311 break; 4312 case TCPOPT_WINDOW: 4313 if (opsize == TCPOLEN_WINDOW && th->syn && 4314 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4315 __u8 snd_wscale = *(__u8 *)ptr; 4316 opt_rx->wscale_ok = 1; 4317 if (snd_wscale > TCP_MAX_WSCALE) { 4318 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4319 __func__, 4320 snd_wscale, 4321 TCP_MAX_WSCALE); 4322 snd_wscale = TCP_MAX_WSCALE; 4323 } 4324 opt_rx->snd_wscale = snd_wscale; 4325 } 4326 break; 4327 case TCPOPT_TIMESTAMP: 4328 if ((opsize == TCPOLEN_TIMESTAMP) && 4329 ((estab && opt_rx->tstamp_ok) || 4330 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4331 opt_rx->saw_tstamp = 1; 4332 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4333 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4334 } 4335 break; 4336 case TCPOPT_SACK_PERM: 4337 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4338 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4339 opt_rx->sack_ok = TCP_SACK_SEEN; 4340 tcp_sack_reset(opt_rx); 4341 } 4342 break; 4343 4344 case TCPOPT_SACK: 4345 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4346 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4347 opt_rx->sack_ok) { 4348 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4349 } 4350 break; 4351 #ifdef CONFIG_TCP_MD5SIG 4352 case TCPOPT_MD5SIG: 4353 /* The MD5 Hash has already been 4354 * checked (see tcp_v{4,6}_rcv()). 4355 */ 4356 break; 4357 #endif 4358 #ifdef CONFIG_TCP_AO 4359 case TCPOPT_AO: 4360 /* TCP AO has already been checked 4361 * (see tcp_inbound_ao_hash()). 4362 */ 4363 break; 4364 #endif 4365 case TCPOPT_FASTOPEN: 4366 tcp_parse_fastopen_option( 4367 opsize - TCPOLEN_FASTOPEN_BASE, 4368 ptr, th->syn, foc, false); 4369 break; 4370 4371 case TCPOPT_ACCECN0: 4372 case TCPOPT_ACCECN1: 4373 /* Save offset of AccECN option in TCP header */ 4374 opt_rx->accecn = (ptr - 2) - (__u8 *)th; 4375 break; 4376 4377 case TCPOPT_EXP: 4378 /* Fast Open option shares code 254 using a 4379 * 16 bits magic number. 4380 */ 4381 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4382 get_unaligned_be16(ptr) == 4383 TCPOPT_FASTOPEN_MAGIC) { 4384 tcp_parse_fastopen_option(opsize - 4385 TCPOLEN_EXP_FASTOPEN_BASE, 4386 ptr + 2, th->syn, foc, true); 4387 break; 4388 } 4389 4390 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4391 break; 4392 4393 opt_rx->saw_unknown = 1; 4394 break; 4395 4396 default: 4397 opt_rx->saw_unknown = 1; 4398 } 4399 ptr += opsize-2; 4400 length -= opsize; 4401 } 4402 } 4403 } 4404 EXPORT_SYMBOL(tcp_parse_options); 4405 4406 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4407 { 4408 const __be32 *ptr = (const __be32 *)(th + 1); 4409 4410 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4411 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4412 tp->rx_opt.saw_tstamp = 1; 4413 ++ptr; 4414 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4415 ++ptr; 4416 if (*ptr) 4417 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4418 else 4419 tp->rx_opt.rcv_tsecr = 0; 4420 return true; 4421 } 4422 return false; 4423 } 4424 4425 /* Fast parse options. This hopes to only see timestamps. 4426 * If it is wrong it falls back on tcp_parse_options(). 4427 */ 4428 static bool tcp_fast_parse_options(const struct net *net, 4429 const struct sk_buff *skb, 4430 const struct tcphdr *th, struct tcp_sock *tp) 4431 { 4432 /* In the spirit of fast parsing, compare doff directly to constant 4433 * values. Because equality is used, short doff can be ignored here. 4434 */ 4435 if (th->doff == (sizeof(*th) / 4)) { 4436 tp->rx_opt.saw_tstamp = 0; 4437 tp->rx_opt.accecn = 0; 4438 return false; 4439 } else if (tp->rx_opt.tstamp_ok && 4440 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4441 if (tcp_parse_aligned_timestamp(tp, th)) { 4442 tp->rx_opt.accecn = 0; 4443 return true; 4444 } 4445 } 4446 4447 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4448 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4449 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4450 4451 return true; 4452 } 4453 4454 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4455 /* 4456 * Parse Signature options 4457 */ 4458 int tcp_do_parse_auth_options(const struct tcphdr *th, 4459 const u8 **md5_hash, const u8 **ao_hash) 4460 { 4461 int length = (th->doff << 2) - sizeof(*th); 4462 const u8 *ptr = (const u8 *)(th + 1); 4463 unsigned int minlen = TCPOLEN_MD5SIG; 4464 4465 if (IS_ENABLED(CONFIG_TCP_AO)) 4466 minlen = sizeof(struct tcp_ao_hdr) + 1; 4467 4468 *md5_hash = NULL; 4469 *ao_hash = NULL; 4470 4471 /* If not enough data remaining, we can short cut */ 4472 while (length >= minlen) { 4473 int opcode = *ptr++; 4474 int opsize; 4475 4476 switch (opcode) { 4477 case TCPOPT_EOL: 4478 return 0; 4479 case TCPOPT_NOP: 4480 length--; 4481 continue; 4482 default: 4483 opsize = *ptr++; 4484 if (opsize < 2 || opsize > length) 4485 return -EINVAL; 4486 if (opcode == TCPOPT_MD5SIG) { 4487 if (opsize != TCPOLEN_MD5SIG) 4488 return -EINVAL; 4489 if (unlikely(*md5_hash || *ao_hash)) 4490 return -EEXIST; 4491 *md5_hash = ptr; 4492 } else if (opcode == TCPOPT_AO) { 4493 if (opsize <= sizeof(struct tcp_ao_hdr)) 4494 return -EINVAL; 4495 if (unlikely(*md5_hash || *ao_hash)) 4496 return -EEXIST; 4497 *ao_hash = ptr; 4498 } 4499 } 4500 ptr += opsize - 2; 4501 length -= opsize; 4502 } 4503 return 0; 4504 } 4505 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4506 #endif 4507 4508 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4509 * 4510 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4511 * it can pass through stack. So, the following predicate verifies that 4512 * this segment is not used for anything but congestion avoidance or 4513 * fast retransmit. Moreover, we even are able to eliminate most of such 4514 * second order effects, if we apply some small "replay" window (~RTO) 4515 * to timestamp space. 4516 * 4517 * All these measures still do not guarantee that we reject wrapped ACKs 4518 * on networks with high bandwidth, when sequence space is recycled fastly, 4519 * but it guarantees that such events will be very rare and do not affect 4520 * connection seriously. This doesn't look nice, but alas, PAWS is really 4521 * buggy extension. 4522 * 4523 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4524 * states that events when retransmit arrives after original data are rare. 4525 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4526 * the biggest problem on large power networks even with minor reordering. 4527 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4528 * up to bandwidth of 18Gigabit/sec. 8) ] 4529 */ 4530 4531 /* Estimates max number of increments of remote peer TSval in 4532 * a replay window (based on our current RTO estimation). 4533 */ 4534 static u32 tcp_tsval_replay(const struct sock *sk) 4535 { 4536 /* If we use usec TS resolution, 4537 * then expect the remote peer to use the same resolution. 4538 */ 4539 if (tcp_sk(sk)->tcp_usec_ts) 4540 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4541 4542 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4543 * We know that some OS (including old linux) can use 1200 Hz. 4544 */ 4545 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4546 } 4547 4548 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk, 4549 const struct sk_buff *skb) 4550 { 4551 const struct tcp_sock *tp = tcp_sk(sk); 4552 const struct tcphdr *th = tcp_hdr(skb); 4553 SKB_DR_INIT(reason, TCP_RFC7323_PAWS); 4554 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4555 u32 seq = TCP_SKB_CB(skb)->seq; 4556 4557 /* 1. Is this not a pure ACK ? */ 4558 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq) 4559 return reason; 4560 4561 /* 2. Is its sequence not the expected one ? */ 4562 if (seq != tp->rcv_nxt) 4563 return before(seq, tp->rcv_nxt) ? 4564 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK : 4565 reason; 4566 4567 /* 3. Is this not a duplicate ACK ? */ 4568 if (ack != tp->snd_una) 4569 return reason; 4570 4571 /* 4. Is this updating the window ? */ 4572 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) << 4573 tp->rx_opt.snd_wscale)) 4574 return reason; 4575 4576 /* 5. Is this not in the replay window ? */ 4577 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > 4578 tcp_tsval_replay(sk)) 4579 return reason; 4580 4581 return 0; 4582 } 4583 4584 /* Check segment sequence number for validity. 4585 * 4586 * Segment controls are considered valid, if the segment 4587 * fits to the window after truncation to the window. Acceptability 4588 * of data (and SYN, FIN, of course) is checked separately. 4589 * See tcp_data_queue(), for example. 4590 * 4591 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4592 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4593 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4594 * (borrowed from freebsd) 4595 */ 4596 4597 static enum skb_drop_reason tcp_sequence(const struct sock *sk, 4598 u32 seq, u32 end_seq) 4599 { 4600 const struct tcp_sock *tp = tcp_sk(sk); 4601 4602 if (before(end_seq, tp->rcv_wup)) 4603 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4604 4605 if (after(end_seq, tp->rcv_nxt + tcp_receive_window(tp))) { 4606 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4607 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4608 4609 /* Only accept this packet if receive queue is empty. */ 4610 if (skb_queue_len(&sk->sk_receive_queue)) 4611 return SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE; 4612 } 4613 4614 return SKB_NOT_DROPPED_YET; 4615 } 4616 4617 4618 void tcp_done_with_error(struct sock *sk, int err) 4619 { 4620 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4621 WRITE_ONCE(sk->sk_err, err); 4622 smp_wmb(); 4623 4624 tcp_write_queue_purge(sk); 4625 tcp_done(sk); 4626 4627 if (!sock_flag(sk, SOCK_DEAD)) 4628 sk_error_report(sk); 4629 } 4630 EXPORT_IPV6_MOD(tcp_done_with_error); 4631 4632 /* When we get a reset we do this. */ 4633 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4634 { 4635 int err; 4636 4637 trace_tcp_receive_reset(sk); 4638 4639 /* mptcp can't tell us to ignore reset pkts, 4640 * so just ignore the return value of mptcp_incoming_options(). 4641 */ 4642 if (sk_is_mptcp(sk)) 4643 mptcp_incoming_options(sk, skb); 4644 4645 /* We want the right error as BSD sees it (and indeed as we do). */ 4646 switch (sk->sk_state) { 4647 case TCP_SYN_SENT: 4648 err = ECONNREFUSED; 4649 break; 4650 case TCP_CLOSE_WAIT: 4651 err = EPIPE; 4652 break; 4653 case TCP_CLOSE: 4654 return; 4655 default: 4656 err = ECONNRESET; 4657 } 4658 tcp_done_with_error(sk, err); 4659 } 4660 4661 /* 4662 * Process the FIN bit. This now behaves as it is supposed to work 4663 * and the FIN takes effect when it is validly part of sequence 4664 * space. Not before when we get holes. 4665 * 4666 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4667 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4668 * TIME-WAIT) 4669 * 4670 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4671 * close and we go into CLOSING (and later onto TIME-WAIT) 4672 * 4673 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4674 */ 4675 void tcp_fin(struct sock *sk) 4676 { 4677 struct tcp_sock *tp = tcp_sk(sk); 4678 4679 inet_csk_schedule_ack(sk); 4680 4681 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4682 sock_set_flag(sk, SOCK_DONE); 4683 4684 switch (sk->sk_state) { 4685 case TCP_SYN_RECV: 4686 case TCP_ESTABLISHED: 4687 /* Move to CLOSE_WAIT */ 4688 tcp_set_state(sk, TCP_CLOSE_WAIT); 4689 inet_csk_enter_pingpong_mode(sk); 4690 break; 4691 4692 case TCP_CLOSE_WAIT: 4693 case TCP_CLOSING: 4694 /* Received a retransmission of the FIN, do 4695 * nothing. 4696 */ 4697 break; 4698 case TCP_LAST_ACK: 4699 /* RFC793: Remain in the LAST-ACK state. */ 4700 break; 4701 4702 case TCP_FIN_WAIT1: 4703 /* This case occurs when a simultaneous close 4704 * happens, we must ack the received FIN and 4705 * enter the CLOSING state. 4706 */ 4707 tcp_send_ack(sk); 4708 tcp_set_state(sk, TCP_CLOSING); 4709 break; 4710 case TCP_FIN_WAIT2: 4711 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4712 tcp_send_ack(sk); 4713 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4714 break; 4715 default: 4716 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4717 * cases we should never reach this piece of code. 4718 */ 4719 pr_err("%s: Impossible, sk->sk_state=%d\n", 4720 __func__, sk->sk_state); 4721 break; 4722 } 4723 4724 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4725 * Probably, we should reset in this case. For now drop them. 4726 */ 4727 skb_rbtree_purge(&tp->out_of_order_queue); 4728 if (tcp_is_sack(tp)) 4729 tcp_sack_reset(&tp->rx_opt); 4730 4731 if (!sock_flag(sk, SOCK_DEAD)) { 4732 sk->sk_state_change(sk); 4733 4734 /* Do not send POLL_HUP for half duplex close. */ 4735 if (sk->sk_shutdown == SHUTDOWN_MASK || 4736 sk->sk_state == TCP_CLOSE) 4737 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4738 else 4739 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4740 } 4741 } 4742 4743 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4744 u32 end_seq) 4745 { 4746 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4747 if (before(seq, sp->start_seq)) 4748 sp->start_seq = seq; 4749 if (after(end_seq, sp->end_seq)) 4750 sp->end_seq = end_seq; 4751 return true; 4752 } 4753 return false; 4754 } 4755 4756 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4757 { 4758 struct tcp_sock *tp = tcp_sk(sk); 4759 4760 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4761 int mib_idx; 4762 4763 if (before(seq, tp->rcv_nxt)) 4764 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4765 else 4766 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4767 4768 NET_INC_STATS(sock_net(sk), mib_idx); 4769 4770 tp->rx_opt.dsack = 1; 4771 tp->duplicate_sack[0].start_seq = seq; 4772 tp->duplicate_sack[0].end_seq = end_seq; 4773 } 4774 } 4775 4776 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4777 { 4778 struct tcp_sock *tp = tcp_sk(sk); 4779 4780 if (!tp->rx_opt.dsack) 4781 tcp_dsack_set(sk, seq, end_seq); 4782 else 4783 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4784 } 4785 4786 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4787 { 4788 /* When the ACK path fails or drops most ACKs, the sender would 4789 * timeout and spuriously retransmit the same segment repeatedly. 4790 * If it seems our ACKs are not reaching the other side, 4791 * based on receiving a duplicate data segment with new flowlabel 4792 * (suggesting the sender suffered an RTO), and we are not already 4793 * repathing due to our own RTO, then rehash the socket to repath our 4794 * packets. 4795 */ 4796 #if IS_ENABLED(CONFIG_IPV6) 4797 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4798 skb->protocol == htons(ETH_P_IPV6) && 4799 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4800 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4801 sk_rethink_txhash(sk)) 4802 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4803 4804 /* Save last flowlabel after a spurious retrans. */ 4805 tcp_save_lrcv_flowlabel(sk, skb); 4806 #endif 4807 } 4808 4809 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4810 { 4811 struct tcp_sock *tp = tcp_sk(sk); 4812 4813 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4814 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4815 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4816 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4817 4818 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4819 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4820 4821 tcp_rcv_spurious_retrans(sk, skb); 4822 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4823 end_seq = tp->rcv_nxt; 4824 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4825 } 4826 } 4827 4828 tcp_send_ack(sk); 4829 } 4830 4831 /* These routines update the SACK block as out-of-order packets arrive or 4832 * in-order packets close up the sequence space. 4833 */ 4834 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4835 { 4836 int this_sack; 4837 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4838 struct tcp_sack_block *swalk = sp + 1; 4839 4840 /* See if the recent change to the first SACK eats into 4841 * or hits the sequence space of other SACK blocks, if so coalesce. 4842 */ 4843 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4844 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4845 int i; 4846 4847 /* Zap SWALK, by moving every further SACK up by one slot. 4848 * Decrease num_sacks. 4849 */ 4850 tp->rx_opt.num_sacks--; 4851 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4852 sp[i] = sp[i + 1]; 4853 continue; 4854 } 4855 this_sack++; 4856 swalk++; 4857 } 4858 } 4859 4860 void tcp_sack_compress_send_ack(struct sock *sk) 4861 { 4862 struct tcp_sock *tp = tcp_sk(sk); 4863 4864 if (!tp->compressed_ack) 4865 return; 4866 4867 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4868 __sock_put(sk); 4869 4870 /* Since we have to send one ack finally, 4871 * substract one from tp->compressed_ack to keep 4872 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4873 */ 4874 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4875 tp->compressed_ack - 1); 4876 4877 tp->compressed_ack = 0; 4878 tcp_send_ack(sk); 4879 } 4880 4881 /* Reasonable amount of sack blocks included in TCP SACK option 4882 * The max is 4, but this becomes 3 if TCP timestamps are there. 4883 * Given that SACK packets might be lost, be conservative and use 2. 4884 */ 4885 #define TCP_SACK_BLOCKS_EXPECTED 2 4886 4887 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4888 { 4889 struct tcp_sock *tp = tcp_sk(sk); 4890 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4891 int cur_sacks = tp->rx_opt.num_sacks; 4892 int this_sack; 4893 4894 if (!cur_sacks) 4895 goto new_sack; 4896 4897 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4898 if (tcp_sack_extend(sp, seq, end_seq)) { 4899 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4900 tcp_sack_compress_send_ack(sk); 4901 /* Rotate this_sack to the first one. */ 4902 for (; this_sack > 0; this_sack--, sp--) 4903 swap(*sp, *(sp - 1)); 4904 if (cur_sacks > 1) 4905 tcp_sack_maybe_coalesce(tp); 4906 return; 4907 } 4908 } 4909 4910 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4911 tcp_sack_compress_send_ack(sk); 4912 4913 /* Could not find an adjacent existing SACK, build a new one, 4914 * put it at the front, and shift everyone else down. We 4915 * always know there is at least one SACK present already here. 4916 * 4917 * If the sack array is full, forget about the last one. 4918 */ 4919 if (this_sack >= TCP_NUM_SACKS) { 4920 this_sack--; 4921 tp->rx_opt.num_sacks--; 4922 sp--; 4923 } 4924 for (; this_sack > 0; this_sack--, sp--) 4925 *sp = *(sp - 1); 4926 4927 new_sack: 4928 /* Build the new head SACK, and we're done. */ 4929 sp->start_seq = seq; 4930 sp->end_seq = end_seq; 4931 tp->rx_opt.num_sacks++; 4932 } 4933 4934 /* RCV.NXT advances, some SACKs should be eaten. */ 4935 4936 static void tcp_sack_remove(struct tcp_sock *tp) 4937 { 4938 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4939 int num_sacks = tp->rx_opt.num_sacks; 4940 int this_sack; 4941 4942 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4943 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4944 tp->rx_opt.num_sacks = 0; 4945 return; 4946 } 4947 4948 for (this_sack = 0; this_sack < num_sacks;) { 4949 /* Check if the start of the sack is covered by RCV.NXT. */ 4950 if (!before(tp->rcv_nxt, sp->start_seq)) { 4951 int i; 4952 4953 /* RCV.NXT must cover all the block! */ 4954 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4955 4956 /* Zap this SACK, by moving forward any other SACKS. */ 4957 for (i = this_sack+1; i < num_sacks; i++) 4958 tp->selective_acks[i-1] = tp->selective_acks[i]; 4959 num_sacks--; 4960 continue; 4961 } 4962 this_sack++; 4963 sp++; 4964 } 4965 tp->rx_opt.num_sacks = num_sacks; 4966 } 4967 4968 /** 4969 * tcp_try_coalesce - try to merge skb to prior one 4970 * @sk: socket 4971 * @to: prior buffer 4972 * @from: buffer to add in queue 4973 * @fragstolen: pointer to boolean 4974 * 4975 * Before queueing skb @from after @to, try to merge them 4976 * to reduce overall memory use and queue lengths, if cost is small. 4977 * Packets in ofo or receive queues can stay a long time. 4978 * Better try to coalesce them right now to avoid future collapses. 4979 * Returns true if caller should free @from instead of queueing it 4980 */ 4981 static bool tcp_try_coalesce(struct sock *sk, 4982 struct sk_buff *to, 4983 struct sk_buff *from, 4984 bool *fragstolen) 4985 { 4986 int delta; 4987 4988 *fragstolen = false; 4989 4990 /* Its possible this segment overlaps with prior segment in queue */ 4991 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4992 return false; 4993 4994 if (!tcp_skb_can_collapse_rx(to, from)) 4995 return false; 4996 4997 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4998 return false; 4999 5000 atomic_add(delta, &sk->sk_rmem_alloc); 5001 sk_mem_charge(sk, delta); 5002 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 5003 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 5004 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 5005 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 5006 5007 if (TCP_SKB_CB(from)->has_rxtstamp) { 5008 TCP_SKB_CB(to)->has_rxtstamp = true; 5009 to->tstamp = from->tstamp; 5010 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 5011 } 5012 5013 return true; 5014 } 5015 5016 static bool tcp_ooo_try_coalesce(struct sock *sk, 5017 struct sk_buff *to, 5018 struct sk_buff *from, 5019 bool *fragstolen) 5020 { 5021 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 5022 5023 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 5024 if (res) { 5025 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 5026 max_t(u16, 1, skb_shinfo(from)->gso_segs); 5027 5028 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 5029 } 5030 return res; 5031 } 5032 5033 noinline_for_tracing static void 5034 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 5035 { 5036 sk_drops_skbadd(sk, skb); 5037 sk_skb_reason_drop(sk, skb, reason); 5038 } 5039 5040 /* This one checks to see if we can put data from the 5041 * out_of_order queue into the receive_queue. 5042 */ 5043 static void tcp_ofo_queue(struct sock *sk) 5044 { 5045 struct tcp_sock *tp = tcp_sk(sk); 5046 __u32 dsack_high = tp->rcv_nxt; 5047 bool fin, fragstolen, eaten; 5048 struct sk_buff *skb, *tail; 5049 struct rb_node *p; 5050 5051 p = rb_first(&tp->out_of_order_queue); 5052 while (p) { 5053 skb = rb_to_skb(p); 5054 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5055 break; 5056 5057 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 5058 __u32 dsack = dsack_high; 5059 5060 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 5061 dsack = TCP_SKB_CB(skb)->end_seq; 5062 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 5063 } 5064 p = rb_next(p); 5065 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 5066 5067 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 5068 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 5069 continue; 5070 } 5071 5072 tail = skb_peek_tail(&sk->sk_receive_queue); 5073 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 5074 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5075 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 5076 if (!eaten) 5077 tcp_add_receive_queue(sk, skb); 5078 else 5079 kfree_skb_partial(skb, fragstolen); 5080 5081 if (unlikely(fin)) { 5082 tcp_fin(sk); 5083 /* tcp_fin() purges tp->out_of_order_queue, 5084 * so we must end this loop right now. 5085 */ 5086 break; 5087 } 5088 } 5089 } 5090 5091 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 5092 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 5093 5094 /* Check if this incoming skb can be added to socket receive queues 5095 * while satisfying sk->sk_rcvbuf limit. 5096 * 5097 * In theory we should use skb->truesize, but this can cause problems 5098 * when applications use too small SO_RCVBUF values. 5099 * When LRO / hw gro is used, the socket might have a high tp->scaling_ratio, 5100 * allowing RWIN to be close to available space. 5101 * Whenever the receive queue gets full, we can receive a small packet 5102 * filling RWIN, but with a high skb->truesize, because most NIC use 4K page 5103 * plus sk_buff metadata even when receiving less than 1500 bytes of payload. 5104 * 5105 * Note that we use skb->len to decide to accept or drop this packet, 5106 * but sk->sk_rmem_alloc is the sum of all skb->truesize. 5107 */ 5108 static bool tcp_can_ingest(const struct sock *sk, const struct sk_buff *skb) 5109 { 5110 unsigned int rmem = atomic_read(&sk->sk_rmem_alloc); 5111 5112 return rmem + skb->len <= sk->sk_rcvbuf; 5113 } 5114 5115 static int tcp_try_rmem_schedule(struct sock *sk, const struct sk_buff *skb, 5116 unsigned int size) 5117 { 5118 if (!tcp_can_ingest(sk, skb) || 5119 !sk_rmem_schedule(sk, skb, size)) { 5120 5121 if (tcp_prune_queue(sk, skb) < 0) 5122 return -1; 5123 5124 while (!sk_rmem_schedule(sk, skb, size)) { 5125 if (!tcp_prune_ofo_queue(sk, skb)) 5126 return -1; 5127 } 5128 } 5129 return 0; 5130 } 5131 5132 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 5133 { 5134 struct tcp_sock *tp = tcp_sk(sk); 5135 struct rb_node **p, *parent; 5136 struct sk_buff *skb1; 5137 u32 seq, end_seq; 5138 bool fragstolen; 5139 5140 tcp_save_lrcv_flowlabel(sk, skb); 5141 tcp_data_ecn_check(sk, skb); 5142 5143 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 5144 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 5145 sk->sk_data_ready(sk); 5146 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 5147 return; 5148 } 5149 5150 tcp_measure_rcv_mss(sk, skb); 5151 /* Disable header prediction. */ 5152 tp->pred_flags = 0; 5153 inet_csk_schedule_ack(sk); 5154 5155 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 5156 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 5157 seq = TCP_SKB_CB(skb)->seq; 5158 end_seq = TCP_SKB_CB(skb)->end_seq; 5159 5160 p = &tp->out_of_order_queue.rb_node; 5161 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5162 /* Initial out of order segment, build 1 SACK. */ 5163 if (tcp_is_sack(tp)) { 5164 tp->rx_opt.num_sacks = 1; 5165 tp->selective_acks[0].start_seq = seq; 5166 tp->selective_acks[0].end_seq = end_seq; 5167 } 5168 rb_link_node(&skb->rbnode, NULL, p); 5169 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5170 tp->ooo_last_skb = skb; 5171 goto end; 5172 } 5173 5174 /* In the typical case, we are adding an skb to the end of the list. 5175 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 5176 */ 5177 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 5178 skb, &fragstolen)) { 5179 coalesce_done: 5180 /* For non sack flows, do not grow window to force DUPACK 5181 * and trigger fast retransmit. 5182 */ 5183 if (tcp_is_sack(tp)) 5184 tcp_grow_window(sk, skb, true); 5185 kfree_skb_partial(skb, fragstolen); 5186 skb = NULL; 5187 goto add_sack; 5188 } 5189 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 5190 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 5191 parent = &tp->ooo_last_skb->rbnode; 5192 p = &parent->rb_right; 5193 goto insert; 5194 } 5195 5196 /* Find place to insert this segment. Handle overlaps on the way. */ 5197 parent = NULL; 5198 while (*p) { 5199 parent = *p; 5200 skb1 = rb_to_skb(parent); 5201 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 5202 p = &parent->rb_left; 5203 continue; 5204 } 5205 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 5206 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5207 /* All the bits are present. Drop. */ 5208 NET_INC_STATS(sock_net(sk), 5209 LINUX_MIB_TCPOFOMERGE); 5210 tcp_drop_reason(sk, skb, 5211 SKB_DROP_REASON_TCP_OFOMERGE); 5212 skb = NULL; 5213 tcp_dsack_set(sk, seq, end_seq); 5214 goto add_sack; 5215 } 5216 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5217 /* Partial overlap. */ 5218 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5219 } else { 5220 /* skb's seq == skb1's seq and skb covers skb1. 5221 * Replace skb1 with skb. 5222 */ 5223 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5224 &tp->out_of_order_queue); 5225 tcp_dsack_extend(sk, 5226 TCP_SKB_CB(skb1)->seq, 5227 TCP_SKB_CB(skb1)->end_seq); 5228 NET_INC_STATS(sock_net(sk), 5229 LINUX_MIB_TCPOFOMERGE); 5230 tcp_drop_reason(sk, skb1, 5231 SKB_DROP_REASON_TCP_OFOMERGE); 5232 goto merge_right; 5233 } 5234 } else if (tcp_ooo_try_coalesce(sk, skb1, 5235 skb, &fragstolen)) { 5236 goto coalesce_done; 5237 } 5238 p = &parent->rb_right; 5239 } 5240 insert: 5241 /* Insert segment into RB tree. */ 5242 rb_link_node(&skb->rbnode, parent, p); 5243 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5244 5245 merge_right: 5246 /* Remove other segments covered by skb. */ 5247 while ((skb1 = skb_rb_next(skb)) != NULL) { 5248 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5249 break; 5250 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5251 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5252 end_seq); 5253 break; 5254 } 5255 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5256 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5257 TCP_SKB_CB(skb1)->end_seq); 5258 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5259 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5260 } 5261 /* If there is no skb after us, we are the last_skb ! */ 5262 if (!skb1) 5263 tp->ooo_last_skb = skb; 5264 5265 add_sack: 5266 if (tcp_is_sack(tp)) 5267 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5268 end: 5269 if (skb) { 5270 /* For non sack flows, do not grow window to force DUPACK 5271 * and trigger fast retransmit. 5272 */ 5273 if (tcp_is_sack(tp)) 5274 tcp_grow_window(sk, skb, false); 5275 skb_condense(skb); 5276 skb_set_owner_r(skb, sk); 5277 } 5278 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 5279 if (sk->sk_socket) 5280 tcp_rcvbuf_grow(sk, tp->rcvq_space.space); 5281 } 5282 5283 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5284 bool *fragstolen) 5285 { 5286 int eaten; 5287 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5288 5289 eaten = (tail && 5290 tcp_try_coalesce(sk, tail, 5291 skb, fragstolen)) ? 1 : 0; 5292 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5293 if (!eaten) { 5294 tcp_add_receive_queue(sk, skb); 5295 skb_set_owner_r(skb, sk); 5296 } 5297 return eaten; 5298 } 5299 5300 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5301 { 5302 struct sk_buff *skb; 5303 int err = -ENOMEM; 5304 int data_len = 0; 5305 bool fragstolen; 5306 5307 if (size == 0) 5308 return 0; 5309 5310 if (size > PAGE_SIZE) { 5311 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5312 5313 data_len = npages << PAGE_SHIFT; 5314 size = data_len + (size & ~PAGE_MASK); 5315 } 5316 skb = alloc_skb_with_frags(size - data_len, data_len, 5317 PAGE_ALLOC_COSTLY_ORDER, 5318 &err, sk->sk_allocation); 5319 if (!skb) 5320 goto err; 5321 5322 skb_put(skb, size - data_len); 5323 skb->data_len = data_len; 5324 skb->len = size; 5325 5326 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5327 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5328 goto err_free; 5329 } 5330 5331 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5332 if (err) 5333 goto err_free; 5334 5335 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5336 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5337 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5338 5339 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5340 WARN_ON_ONCE(fragstolen); /* should not happen */ 5341 __kfree_skb(skb); 5342 } 5343 return size; 5344 5345 err_free: 5346 kfree_skb(skb); 5347 err: 5348 return err; 5349 5350 } 5351 5352 void tcp_data_ready(struct sock *sk) 5353 { 5354 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5355 sk->sk_data_ready(sk); 5356 } 5357 5358 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5359 { 5360 struct tcp_sock *tp = tcp_sk(sk); 5361 enum skb_drop_reason reason; 5362 bool fragstolen; 5363 int eaten; 5364 5365 /* If a subflow has been reset, the packet should not continue 5366 * to be processed, drop the packet. 5367 */ 5368 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5369 __kfree_skb(skb); 5370 return; 5371 } 5372 5373 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5374 __kfree_skb(skb); 5375 return; 5376 } 5377 tcp_cleanup_skb(skb); 5378 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5379 5380 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5381 tp->rx_opt.dsack = 0; 5382 5383 /* Queue data for delivery to the user. 5384 * Packets in sequence go to the receive queue. 5385 * Out of sequence packets to the out_of_order_queue. 5386 */ 5387 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5388 if (tcp_receive_window(tp) == 0) { 5389 /* Some stacks are known to send bare FIN packets 5390 * in a loop even if we send RWIN 0 in our ACK. 5391 * Accepting this FIN does not hurt memory pressure 5392 * because the FIN flag will simply be merged to the 5393 * receive queue tail skb in most cases. 5394 */ 5395 if (!skb->len && 5396 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5397 goto queue_and_out; 5398 5399 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5400 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5401 goto out_of_window; 5402 } 5403 5404 /* Ok. In sequence. In window. */ 5405 queue_and_out: 5406 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5407 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5408 inet_csk(sk)->icsk_ack.pending |= 5409 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5410 inet_csk_schedule_ack(sk); 5411 sk->sk_data_ready(sk); 5412 5413 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5414 reason = SKB_DROP_REASON_PROTO_MEM; 5415 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5416 goto drop; 5417 } 5418 sk_forced_mem_schedule(sk, skb->truesize); 5419 } 5420 5421 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5422 if (skb->len) 5423 tcp_event_data_recv(sk, skb); 5424 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5425 tcp_fin(sk); 5426 5427 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5428 tcp_ofo_queue(sk); 5429 5430 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5431 * gap in queue is filled. 5432 */ 5433 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5434 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5435 } 5436 5437 if (tp->rx_opt.num_sacks) 5438 tcp_sack_remove(tp); 5439 5440 tcp_fast_path_check(sk); 5441 5442 if (eaten > 0) 5443 kfree_skb_partial(skb, fragstolen); 5444 if (!sock_flag(sk, SOCK_DEAD)) 5445 tcp_data_ready(sk); 5446 return; 5447 } 5448 5449 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5450 tcp_rcv_spurious_retrans(sk, skb); 5451 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5452 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5453 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5454 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5455 5456 out_of_window: 5457 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5458 inet_csk_schedule_ack(sk); 5459 drop: 5460 tcp_drop_reason(sk, skb, reason); 5461 return; 5462 } 5463 5464 /* Out of window. F.e. zero window probe. */ 5465 if (!before(TCP_SKB_CB(skb)->seq, 5466 tp->rcv_nxt + tcp_receive_window(tp))) { 5467 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5468 goto out_of_window; 5469 } 5470 5471 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5472 /* Partial packet, seq < rcv_next < end_seq */ 5473 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5474 5475 /* If window is closed, drop tail of packet. But after 5476 * remembering D-SACK for its head made in previous line. 5477 */ 5478 if (!tcp_receive_window(tp)) { 5479 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5480 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5481 goto out_of_window; 5482 } 5483 goto queue_and_out; 5484 } 5485 5486 tcp_data_queue_ofo(sk, skb); 5487 } 5488 5489 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5490 { 5491 if (list) 5492 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5493 5494 return skb_rb_next(skb); 5495 } 5496 5497 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5498 struct sk_buff_head *list, 5499 struct rb_root *root) 5500 { 5501 struct sk_buff *next = tcp_skb_next(skb, list); 5502 5503 if (list) 5504 __skb_unlink(skb, list); 5505 else 5506 rb_erase(&skb->rbnode, root); 5507 5508 __kfree_skb(skb); 5509 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5510 5511 return next; 5512 } 5513 5514 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5515 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5516 { 5517 struct rb_node **p = &root->rb_node; 5518 struct rb_node *parent = NULL; 5519 struct sk_buff *skb1; 5520 5521 while (*p) { 5522 parent = *p; 5523 skb1 = rb_to_skb(parent); 5524 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5525 p = &parent->rb_left; 5526 else 5527 p = &parent->rb_right; 5528 } 5529 rb_link_node(&skb->rbnode, parent, p); 5530 rb_insert_color(&skb->rbnode, root); 5531 } 5532 5533 /* Collapse contiguous sequence of skbs head..tail with 5534 * sequence numbers start..end. 5535 * 5536 * If tail is NULL, this means until the end of the queue. 5537 * 5538 * Segments with FIN/SYN are not collapsed (only because this 5539 * simplifies code) 5540 */ 5541 static void 5542 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5543 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5544 { 5545 struct sk_buff *skb = head, *n; 5546 struct sk_buff_head tmp; 5547 bool end_of_skbs; 5548 5549 /* First, check that queue is collapsible and find 5550 * the point where collapsing can be useful. 5551 */ 5552 restart: 5553 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5554 n = tcp_skb_next(skb, list); 5555 5556 if (!skb_frags_readable(skb)) 5557 goto skip_this; 5558 5559 /* No new bits? It is possible on ofo queue. */ 5560 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5561 skb = tcp_collapse_one(sk, skb, list, root); 5562 if (!skb) 5563 break; 5564 goto restart; 5565 } 5566 5567 /* The first skb to collapse is: 5568 * - not SYN/FIN and 5569 * - bloated or contains data before "start" or 5570 * overlaps to the next one and mptcp allow collapsing. 5571 */ 5572 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5573 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5574 before(TCP_SKB_CB(skb)->seq, start))) { 5575 end_of_skbs = false; 5576 break; 5577 } 5578 5579 if (n && n != tail && skb_frags_readable(n) && 5580 tcp_skb_can_collapse_rx(skb, n) && 5581 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5582 end_of_skbs = false; 5583 break; 5584 } 5585 5586 skip_this: 5587 /* Decided to skip this, advance start seq. */ 5588 start = TCP_SKB_CB(skb)->end_seq; 5589 } 5590 if (end_of_skbs || 5591 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5592 !skb_frags_readable(skb)) 5593 return; 5594 5595 __skb_queue_head_init(&tmp); 5596 5597 while (before(start, end)) { 5598 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5599 struct sk_buff *nskb; 5600 5601 nskb = alloc_skb(copy, GFP_ATOMIC); 5602 if (!nskb) 5603 break; 5604 5605 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5606 skb_copy_decrypted(nskb, skb); 5607 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5608 if (list) 5609 __skb_queue_before(list, skb, nskb); 5610 else 5611 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5612 skb_set_owner_r(nskb, sk); 5613 mptcp_skb_ext_move(nskb, skb); 5614 5615 /* Copy data, releasing collapsed skbs. */ 5616 while (copy > 0) { 5617 int offset = start - TCP_SKB_CB(skb)->seq; 5618 int size = TCP_SKB_CB(skb)->end_seq - start; 5619 5620 BUG_ON(offset < 0); 5621 if (size > 0) { 5622 size = min(copy, size); 5623 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5624 BUG(); 5625 TCP_SKB_CB(nskb)->end_seq += size; 5626 copy -= size; 5627 start += size; 5628 } 5629 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5630 skb = tcp_collapse_one(sk, skb, list, root); 5631 if (!skb || 5632 skb == tail || 5633 !tcp_skb_can_collapse_rx(nskb, skb) || 5634 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5635 !skb_frags_readable(skb)) 5636 goto end; 5637 } 5638 } 5639 } 5640 end: 5641 skb_queue_walk_safe(&tmp, skb, n) 5642 tcp_rbtree_insert(root, skb); 5643 } 5644 5645 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5646 * and tcp_collapse() them until all the queue is collapsed. 5647 */ 5648 static void tcp_collapse_ofo_queue(struct sock *sk) 5649 { 5650 struct tcp_sock *tp = tcp_sk(sk); 5651 u32 range_truesize, sum_tiny = 0; 5652 struct sk_buff *skb, *head; 5653 u32 start, end; 5654 5655 skb = skb_rb_first(&tp->out_of_order_queue); 5656 new_range: 5657 if (!skb) { 5658 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5659 return; 5660 } 5661 start = TCP_SKB_CB(skb)->seq; 5662 end = TCP_SKB_CB(skb)->end_seq; 5663 range_truesize = skb->truesize; 5664 5665 for (head = skb;;) { 5666 skb = skb_rb_next(skb); 5667 5668 /* Range is terminated when we see a gap or when 5669 * we are at the queue end. 5670 */ 5671 if (!skb || 5672 after(TCP_SKB_CB(skb)->seq, end) || 5673 before(TCP_SKB_CB(skb)->end_seq, start)) { 5674 /* Do not attempt collapsing tiny skbs */ 5675 if (range_truesize != head->truesize || 5676 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5677 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5678 head, skb, start, end); 5679 } else { 5680 sum_tiny += range_truesize; 5681 if (sum_tiny > sk->sk_rcvbuf >> 3) 5682 return; 5683 } 5684 goto new_range; 5685 } 5686 5687 range_truesize += skb->truesize; 5688 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5689 start = TCP_SKB_CB(skb)->seq; 5690 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5691 end = TCP_SKB_CB(skb)->end_seq; 5692 } 5693 } 5694 5695 /* 5696 * Clean the out-of-order queue to make room. 5697 * We drop high sequences packets to : 5698 * 1) Let a chance for holes to be filled. 5699 * This means we do not drop packets from ooo queue if their sequence 5700 * is before incoming packet sequence. 5701 * 2) not add too big latencies if thousands of packets sit there. 5702 * (But if application shrinks SO_RCVBUF, we could still end up 5703 * freeing whole queue here) 5704 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5705 * 5706 * Return true if queue has shrunk. 5707 */ 5708 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5709 { 5710 struct tcp_sock *tp = tcp_sk(sk); 5711 struct rb_node *node, *prev; 5712 bool pruned = false; 5713 int goal; 5714 5715 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5716 return false; 5717 5718 goal = sk->sk_rcvbuf >> 3; 5719 node = &tp->ooo_last_skb->rbnode; 5720 5721 do { 5722 struct sk_buff *skb = rb_to_skb(node); 5723 5724 /* If incoming skb would land last in ofo queue, stop pruning. */ 5725 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5726 break; 5727 pruned = true; 5728 prev = rb_prev(node); 5729 rb_erase(node, &tp->out_of_order_queue); 5730 goal -= skb->truesize; 5731 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5732 tp->ooo_last_skb = rb_to_skb(prev); 5733 if (!prev || goal <= 0) { 5734 if (tcp_can_ingest(sk, in_skb) && 5735 !tcp_under_memory_pressure(sk)) 5736 break; 5737 goal = sk->sk_rcvbuf >> 3; 5738 } 5739 node = prev; 5740 } while (node); 5741 5742 if (pruned) { 5743 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5744 /* Reset SACK state. A conforming SACK implementation will 5745 * do the same at a timeout based retransmit. When a connection 5746 * is in a sad state like this, we care only about integrity 5747 * of the connection not performance. 5748 */ 5749 if (tp->rx_opt.sack_ok) 5750 tcp_sack_reset(&tp->rx_opt); 5751 } 5752 return pruned; 5753 } 5754 5755 /* Reduce allocated memory if we can, trying to get 5756 * the socket within its memory limits again. 5757 * 5758 * Return less than zero if we should start dropping frames 5759 * until the socket owning process reads some of the data 5760 * to stabilize the situation. 5761 */ 5762 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5763 { 5764 struct tcp_sock *tp = tcp_sk(sk); 5765 5766 /* Do nothing if our queues are empty. */ 5767 if (!atomic_read(&sk->sk_rmem_alloc)) 5768 return -1; 5769 5770 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5771 5772 if (!tcp_can_ingest(sk, in_skb)) 5773 tcp_clamp_window(sk); 5774 else if (tcp_under_memory_pressure(sk)) 5775 tcp_adjust_rcv_ssthresh(sk); 5776 5777 if (tcp_can_ingest(sk, in_skb)) 5778 return 0; 5779 5780 tcp_collapse_ofo_queue(sk); 5781 if (!skb_queue_empty(&sk->sk_receive_queue)) 5782 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5783 skb_peek(&sk->sk_receive_queue), 5784 NULL, 5785 tp->copied_seq, tp->rcv_nxt); 5786 5787 if (tcp_can_ingest(sk, in_skb)) 5788 return 0; 5789 5790 /* Collapsing did not help, destructive actions follow. 5791 * This must not ever occur. */ 5792 5793 tcp_prune_ofo_queue(sk, in_skb); 5794 5795 if (tcp_can_ingest(sk, in_skb)) 5796 return 0; 5797 5798 /* If we are really being abused, tell the caller to silently 5799 * drop receive data on the floor. It will get retransmitted 5800 * and hopefully then we'll have sufficient space. 5801 */ 5802 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5803 5804 /* Massive buffer overcommit. */ 5805 tp->pred_flags = 0; 5806 return -1; 5807 } 5808 5809 static bool tcp_should_expand_sndbuf(struct sock *sk) 5810 { 5811 const struct tcp_sock *tp = tcp_sk(sk); 5812 5813 /* If the user specified a specific send buffer setting, do 5814 * not modify it. 5815 */ 5816 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5817 return false; 5818 5819 /* If we are under global TCP memory pressure, do not expand. */ 5820 if (tcp_under_memory_pressure(sk)) { 5821 int unused_mem = sk_unused_reserved_mem(sk); 5822 5823 /* Adjust sndbuf according to reserved mem. But make sure 5824 * it never goes below SOCK_MIN_SNDBUF. 5825 * See sk_stream_moderate_sndbuf() for more details. 5826 */ 5827 if (unused_mem > SOCK_MIN_SNDBUF) 5828 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5829 5830 return false; 5831 } 5832 5833 /* If we are under soft global TCP memory pressure, do not expand. */ 5834 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5835 return false; 5836 5837 /* If we filled the congestion window, do not expand. */ 5838 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5839 return false; 5840 5841 return true; 5842 } 5843 5844 static void tcp_new_space(struct sock *sk) 5845 { 5846 struct tcp_sock *tp = tcp_sk(sk); 5847 5848 if (tcp_should_expand_sndbuf(sk)) { 5849 tcp_sndbuf_expand(sk); 5850 tp->snd_cwnd_stamp = tcp_jiffies32; 5851 } 5852 5853 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5854 } 5855 5856 /* Caller made space either from: 5857 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5858 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5859 * 5860 * We might be able to generate EPOLLOUT to the application if: 5861 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5862 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5863 * small enough that tcp_stream_memory_free() decides it 5864 * is time to generate EPOLLOUT. 5865 */ 5866 void tcp_check_space(struct sock *sk) 5867 { 5868 /* pairs with tcp_poll() */ 5869 smp_mb(); 5870 if (sk->sk_socket && 5871 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5872 tcp_new_space(sk); 5873 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5874 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5875 } 5876 } 5877 5878 static inline void tcp_data_snd_check(struct sock *sk) 5879 { 5880 tcp_push_pending_frames(sk); 5881 tcp_check_space(sk); 5882 } 5883 5884 /* 5885 * Check if sending an ack is needed. 5886 */ 5887 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5888 { 5889 struct tcp_sock *tp = tcp_sk(sk); 5890 unsigned long rtt, delay; 5891 5892 /* More than one full frame received... */ 5893 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5894 /* ... and right edge of window advances far enough. 5895 * (tcp_recvmsg() will send ACK otherwise). 5896 * If application uses SO_RCVLOWAT, we want send ack now if 5897 * we have not received enough bytes to satisfy the condition. 5898 */ 5899 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5900 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5901 /* We ACK each frame or... */ 5902 tcp_in_quickack_mode(sk) || 5903 /* Protocol state mandates a one-time immediate ACK */ 5904 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5905 /* If we are running from __release_sock() in user context, 5906 * Defer the ack until tcp_release_cb(). 5907 */ 5908 if (sock_owned_by_user_nocheck(sk) && 5909 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5910 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5911 return; 5912 } 5913 send_now: 5914 tcp_send_ack(sk); 5915 return; 5916 } 5917 5918 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5919 tcp_send_delayed_ack(sk); 5920 return; 5921 } 5922 5923 if (!tcp_is_sack(tp) || 5924 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5925 goto send_now; 5926 5927 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5928 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5929 tp->dup_ack_counter = 0; 5930 } 5931 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5932 tp->dup_ack_counter++; 5933 goto send_now; 5934 } 5935 tp->compressed_ack++; 5936 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5937 return; 5938 5939 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5940 5941 rtt = tp->rcv_rtt_est.rtt_us; 5942 if (tp->srtt_us && tp->srtt_us < rtt) 5943 rtt = tp->srtt_us; 5944 5945 delay = min_t(unsigned long, 5946 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5947 rtt * (NSEC_PER_USEC >> 3)/20); 5948 sock_hold(sk); 5949 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5950 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5951 HRTIMER_MODE_REL_PINNED_SOFT); 5952 } 5953 5954 static inline void tcp_ack_snd_check(struct sock *sk) 5955 { 5956 if (!inet_csk_ack_scheduled(sk)) { 5957 /* We sent a data segment already. */ 5958 return; 5959 } 5960 __tcp_ack_snd_check(sk, 1); 5961 } 5962 5963 /* 5964 * This routine is only called when we have urgent data 5965 * signaled. Its the 'slow' part of tcp_urg. It could be 5966 * moved inline now as tcp_urg is only called from one 5967 * place. We handle URGent data wrong. We have to - as 5968 * BSD still doesn't use the correction from RFC961. 5969 * For 1003.1g we should support a new option TCP_STDURG to permit 5970 * either form (or just set the sysctl tcp_stdurg). 5971 */ 5972 5973 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5974 { 5975 struct tcp_sock *tp = tcp_sk(sk); 5976 u32 ptr = ntohs(th->urg_ptr); 5977 5978 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5979 ptr--; 5980 ptr += ntohl(th->seq); 5981 5982 /* Ignore urgent data that we've already seen and read. */ 5983 if (after(tp->copied_seq, ptr)) 5984 return; 5985 5986 /* Do not replay urg ptr. 5987 * 5988 * NOTE: interesting situation not covered by specs. 5989 * Misbehaving sender may send urg ptr, pointing to segment, 5990 * which we already have in ofo queue. We are not able to fetch 5991 * such data and will stay in TCP_URG_NOTYET until will be eaten 5992 * by recvmsg(). Seems, we are not obliged to handle such wicked 5993 * situations. But it is worth to think about possibility of some 5994 * DoSes using some hypothetical application level deadlock. 5995 */ 5996 if (before(ptr, tp->rcv_nxt)) 5997 return; 5998 5999 /* Do we already have a newer (or duplicate) urgent pointer? */ 6000 if (tp->urg_data && !after(ptr, tp->urg_seq)) 6001 return; 6002 6003 /* Tell the world about our new urgent pointer. */ 6004 sk_send_sigurg(sk); 6005 6006 /* We may be adding urgent data when the last byte read was 6007 * urgent. To do this requires some care. We cannot just ignore 6008 * tp->copied_seq since we would read the last urgent byte again 6009 * as data, nor can we alter copied_seq until this data arrives 6010 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 6011 * 6012 * NOTE. Double Dutch. Rendering to plain English: author of comment 6013 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 6014 * and expect that both A and B disappear from stream. This is _wrong_. 6015 * Though this happens in BSD with high probability, this is occasional. 6016 * Any application relying on this is buggy. Note also, that fix "works" 6017 * only in this artificial test. Insert some normal data between A and B and we will 6018 * decline of BSD again. Verdict: it is better to remove to trap 6019 * buggy users. 6020 */ 6021 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 6022 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 6023 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 6024 tp->copied_seq++; 6025 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 6026 __skb_unlink(skb, &sk->sk_receive_queue); 6027 __kfree_skb(skb); 6028 } 6029 } 6030 6031 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 6032 WRITE_ONCE(tp->urg_seq, ptr); 6033 6034 /* Disable header prediction. */ 6035 tp->pred_flags = 0; 6036 } 6037 6038 /* This is the 'fast' part of urgent handling. */ 6039 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 6040 { 6041 struct tcp_sock *tp = tcp_sk(sk); 6042 6043 /* Check if we get a new urgent pointer - normally not. */ 6044 if (unlikely(th->urg)) 6045 tcp_check_urg(sk, th); 6046 6047 /* Do we wait for any urgent data? - normally not... */ 6048 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 6049 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 6050 th->syn; 6051 6052 /* Is the urgent pointer pointing into this packet? */ 6053 if (ptr < skb->len) { 6054 u8 tmp; 6055 if (skb_copy_bits(skb, ptr, &tmp, 1)) 6056 BUG(); 6057 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 6058 if (!sock_flag(sk, SOCK_DEAD)) 6059 sk->sk_data_ready(sk); 6060 } 6061 } 6062 } 6063 6064 /* Accept RST for rcv_nxt - 1 after a FIN. 6065 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 6066 * FIN is sent followed by a RST packet. The RST is sent with the same 6067 * sequence number as the FIN, and thus according to RFC 5961 a challenge 6068 * ACK should be sent. However, Mac OSX rate limits replies to challenge 6069 * ACKs on the closed socket. In addition middleboxes can drop either the 6070 * challenge ACK or a subsequent RST. 6071 */ 6072 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 6073 { 6074 const struct tcp_sock *tp = tcp_sk(sk); 6075 6076 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 6077 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 6078 TCPF_CLOSING)); 6079 } 6080 6081 /* Does PAWS and seqno based validation of an incoming segment, flags will 6082 * play significant role here. 6083 */ 6084 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 6085 const struct tcphdr *th, int syn_inerr) 6086 { 6087 struct tcp_sock *tp = tcp_sk(sk); 6088 bool accecn_reflector = false; 6089 SKB_DR(reason); 6090 6091 /* RFC1323: H1. Apply PAWS check first. */ 6092 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) || 6093 !tp->rx_opt.saw_tstamp || 6094 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW)) 6095 goto step1; 6096 6097 reason = tcp_disordered_ack_check(sk, skb); 6098 if (!reason) 6099 goto step1; 6100 /* Reset is accepted even if it did not pass PAWS. */ 6101 if (th->rst) 6102 goto step1; 6103 if (unlikely(th->syn)) 6104 goto syn_challenge; 6105 6106 /* Old ACK are common, increment PAWS_OLD_ACK 6107 * and do not send a dupack. 6108 */ 6109 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) { 6110 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK); 6111 goto discard; 6112 } 6113 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 6114 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6115 LINUX_MIB_TCPACKSKIPPEDPAWS, 6116 &tp->last_oow_ack_time)) 6117 tcp_send_dupack(sk, skb); 6118 goto discard; 6119 6120 step1: 6121 /* Step 1: check sequence number */ 6122 reason = tcp_sequence(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 6123 if (reason) { 6124 /* RFC793, page 37: "In all states except SYN-SENT, all reset 6125 * (RST) segments are validated by checking their SEQ-fields." 6126 * And page 69: "If an incoming segment is not acceptable, 6127 * an acknowledgment should be sent in reply (unless the RST 6128 * bit is set, if so drop the segment and return)". 6129 */ 6130 if (!th->rst) { 6131 if (th->syn) 6132 goto syn_challenge; 6133 6134 if (reason == SKB_DROP_REASON_TCP_INVALID_SEQUENCE || 6135 reason == SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE) 6136 NET_INC_STATS(sock_net(sk), 6137 LINUX_MIB_BEYOND_WINDOW); 6138 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6139 LINUX_MIB_TCPACKSKIPPEDSEQ, 6140 &tp->last_oow_ack_time)) 6141 tcp_send_dupack(sk, skb); 6142 } else if (tcp_reset_check(sk, skb)) { 6143 goto reset; 6144 } 6145 goto discard; 6146 } 6147 6148 /* Step 2: check RST bit */ 6149 if (th->rst) { 6150 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 6151 * FIN and SACK too if available): 6152 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 6153 * the right-most SACK block, 6154 * then 6155 * RESET the connection 6156 * else 6157 * Send a challenge ACK 6158 */ 6159 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 6160 tcp_reset_check(sk, skb)) 6161 goto reset; 6162 6163 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 6164 struct tcp_sack_block *sp = &tp->selective_acks[0]; 6165 int max_sack = sp[0].end_seq; 6166 int this_sack; 6167 6168 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 6169 ++this_sack) { 6170 max_sack = after(sp[this_sack].end_seq, 6171 max_sack) ? 6172 sp[this_sack].end_seq : max_sack; 6173 } 6174 6175 if (TCP_SKB_CB(skb)->seq == max_sack) 6176 goto reset; 6177 } 6178 6179 /* Disable TFO if RST is out-of-order 6180 * and no data has been received 6181 * for current active TFO socket 6182 */ 6183 if (tp->syn_fastopen && !tp->data_segs_in && 6184 sk->sk_state == TCP_ESTABLISHED) 6185 tcp_fastopen_active_disable(sk); 6186 tcp_send_challenge_ack(sk, false); 6187 SKB_DR_SET(reason, TCP_RESET); 6188 goto discard; 6189 } 6190 6191 /* step 3: check security and precedence [ignored] */ 6192 6193 /* step 4: Check for a SYN 6194 * RFC 5961 4.2 : Send a challenge ack 6195 */ 6196 if (th->syn) { 6197 if (tcp_ecn_mode_accecn(tp)) { 6198 accecn_reflector = true; 6199 if (tp->rx_opt.accecn && 6200 tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) { 6201 u8 saw_opt = tcp_accecn_option_init(skb, tp->rx_opt.accecn); 6202 6203 tcp_accecn_saw_opt_fail_recv(tp, saw_opt); 6204 tcp_accecn_opt_demand_min(sk, 1); 6205 } 6206 } 6207 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 6208 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 6209 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 6210 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 6211 goto pass; 6212 syn_challenge: 6213 if (syn_inerr) 6214 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6215 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 6216 tcp_send_challenge_ack(sk, accecn_reflector); 6217 SKB_DR_SET(reason, TCP_INVALID_SYN); 6218 goto discard; 6219 } 6220 6221 pass: 6222 bpf_skops_parse_hdr(sk, skb); 6223 6224 return true; 6225 6226 discard: 6227 tcp_drop_reason(sk, skb, reason); 6228 return false; 6229 6230 reset: 6231 tcp_reset(sk, skb); 6232 __kfree_skb(skb); 6233 return false; 6234 } 6235 6236 /* 6237 * TCP receive function for the ESTABLISHED state. 6238 * 6239 * It is split into a fast path and a slow path. The fast path is 6240 * disabled when: 6241 * - A zero window was announced from us - zero window probing 6242 * is only handled properly in the slow path. 6243 * - Out of order segments arrived. 6244 * - Urgent data is expected. 6245 * - There is no buffer space left 6246 * - Unexpected TCP flags/window values/header lengths are received 6247 * (detected by checking the TCP header against pred_flags) 6248 * - Data is sent in both directions. Fast path only supports pure senders 6249 * or pure receivers (this means either the sequence number or the ack 6250 * value must stay constant) 6251 * - Unexpected TCP option. 6252 * 6253 * When these conditions are not satisfied it drops into a standard 6254 * receive procedure patterned after RFC793 to handle all cases. 6255 * The first three cases are guaranteed by proper pred_flags setting, 6256 * the rest is checked inline. Fast processing is turned on in 6257 * tcp_data_queue when everything is OK. 6258 */ 6259 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6260 { 6261 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6262 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6263 struct tcp_sock *tp = tcp_sk(sk); 6264 unsigned int len = skb->len; 6265 6266 /* TCP congestion window tracking */ 6267 trace_tcp_probe(sk, skb); 6268 6269 tcp_mstamp_refresh(tp); 6270 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6271 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6272 /* 6273 * Header prediction. 6274 * The code loosely follows the one in the famous 6275 * "30 instruction TCP receive" Van Jacobson mail. 6276 * 6277 * Van's trick is to deposit buffers into socket queue 6278 * on a device interrupt, to call tcp_recv function 6279 * on the receive process context and checksum and copy 6280 * the buffer to user space. smart... 6281 * 6282 * Our current scheme is not silly either but we take the 6283 * extra cost of the net_bh soft interrupt processing... 6284 * We do checksum and copy also but from device to kernel. 6285 */ 6286 6287 tp->rx_opt.saw_tstamp = 0; 6288 tp->rx_opt.accecn = 0; 6289 6290 /* pred_flags is 0xS?10 << 16 + snd_wnd 6291 * if header_prediction is to be made 6292 * 'S' will always be tp->tcp_header_len >> 2 6293 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6294 * turn it off (when there are holes in the receive 6295 * space for instance) 6296 * PSH flag is ignored. 6297 */ 6298 6299 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6300 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6301 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6302 int tcp_header_len = tp->tcp_header_len; 6303 s32 delta = 0; 6304 int flag = 0; 6305 6306 /* Timestamp header prediction: tcp_header_len 6307 * is automatically equal to th->doff*4 due to pred_flags 6308 * match. 6309 */ 6310 6311 /* Check timestamp */ 6312 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6313 /* No? Slow path! */ 6314 if (!tcp_parse_aligned_timestamp(tp, th)) 6315 goto slow_path; 6316 6317 delta = tp->rx_opt.rcv_tsval - 6318 tp->rx_opt.ts_recent; 6319 /* If PAWS failed, check it more carefully in slow path */ 6320 if (delta < 0) 6321 goto slow_path; 6322 6323 /* DO NOT update ts_recent here, if checksum fails 6324 * and timestamp was corrupted part, it will result 6325 * in a hung connection since we will drop all 6326 * future packets due to the PAWS test. 6327 */ 6328 } 6329 6330 if (len <= tcp_header_len) { 6331 /* Bulk data transfer: sender */ 6332 if (len == tcp_header_len) { 6333 /* Predicted packet is in window by definition. 6334 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6335 * Hence, check seq<=rcv_wup reduces to: 6336 */ 6337 if (tcp_header_len == 6338 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6339 tp->rcv_nxt == tp->rcv_wup) 6340 flag |= __tcp_replace_ts_recent(tp, 6341 delta); 6342 6343 tcp_ecn_received_counters(sk, skb, 0); 6344 6345 /* We know that such packets are checksummed 6346 * on entry. 6347 */ 6348 tcp_ack(sk, skb, flag); 6349 __kfree_skb(skb); 6350 tcp_data_snd_check(sk); 6351 /* When receiving pure ack in fast path, update 6352 * last ts ecr directly instead of calling 6353 * tcp_rcv_rtt_measure_ts() 6354 */ 6355 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6356 return; 6357 } else { /* Header too small */ 6358 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6359 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6360 goto discard; 6361 } 6362 } else { 6363 int eaten = 0; 6364 bool fragstolen = false; 6365 6366 if (tcp_checksum_complete(skb)) 6367 goto csum_error; 6368 6369 if (after(TCP_SKB_CB(skb)->end_seq, 6370 tp->rcv_nxt + tcp_receive_window(tp))) 6371 goto validate; 6372 6373 if ((int)skb->truesize > sk->sk_forward_alloc) 6374 goto step5; 6375 6376 /* Predicted packet is in window by definition. 6377 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6378 * Hence, check seq<=rcv_wup reduces to: 6379 */ 6380 if (tcp_header_len == 6381 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6382 tp->rcv_nxt == tp->rcv_wup) 6383 flag |= __tcp_replace_ts_recent(tp, 6384 delta); 6385 6386 tcp_rcv_rtt_measure_ts(sk, skb); 6387 6388 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6389 6390 /* Bulk data transfer: receiver */ 6391 tcp_cleanup_skb(skb); 6392 __skb_pull(skb, tcp_header_len); 6393 tcp_ecn_received_counters(sk, skb, 6394 len - tcp_header_len); 6395 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6396 6397 tcp_event_data_recv(sk, skb); 6398 6399 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6400 /* Well, only one small jumplet in fast path... */ 6401 tcp_ack(sk, skb, flag | FLAG_DATA); 6402 tcp_data_snd_check(sk); 6403 if (!inet_csk_ack_scheduled(sk)) 6404 goto no_ack; 6405 } else { 6406 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6407 } 6408 6409 __tcp_ack_snd_check(sk, 0); 6410 no_ack: 6411 if (eaten) 6412 kfree_skb_partial(skb, fragstolen); 6413 tcp_data_ready(sk); 6414 return; 6415 } 6416 } 6417 6418 slow_path: 6419 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6420 goto csum_error; 6421 6422 if (!th->ack && !th->rst && !th->syn) { 6423 reason = SKB_DROP_REASON_TCP_FLAGS; 6424 goto discard; 6425 } 6426 6427 /* 6428 * Standard slow path. 6429 */ 6430 validate: 6431 if (!tcp_validate_incoming(sk, skb, th, 1)) 6432 return; 6433 6434 step5: 6435 tcp_ecn_received_counters_payload(sk, skb); 6436 6437 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6438 if ((int)reason < 0) { 6439 reason = -reason; 6440 goto discard; 6441 } 6442 tcp_rcv_rtt_measure_ts(sk, skb); 6443 6444 /* Process urgent data. */ 6445 tcp_urg(sk, skb, th); 6446 6447 /* step 7: process the segment text */ 6448 tcp_data_queue(sk, skb); 6449 6450 tcp_data_snd_check(sk); 6451 tcp_ack_snd_check(sk); 6452 return; 6453 6454 csum_error: 6455 reason = SKB_DROP_REASON_TCP_CSUM; 6456 trace_tcp_bad_csum(skb); 6457 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6458 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6459 6460 discard: 6461 tcp_drop_reason(sk, skb, reason); 6462 } 6463 EXPORT_IPV6_MOD(tcp_rcv_established); 6464 6465 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6466 { 6467 struct inet_connection_sock *icsk = inet_csk(sk); 6468 struct tcp_sock *tp = tcp_sk(sk); 6469 6470 tcp_mtup_init(sk); 6471 icsk->icsk_af_ops->rebuild_header(sk); 6472 tcp_init_metrics(sk); 6473 6474 /* Initialize the congestion window to start the transfer. 6475 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6476 * retransmitted. In light of RFC6298 more aggressive 1sec 6477 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6478 * retransmission has occurred. 6479 */ 6480 if (tp->total_retrans > 1 && tp->undo_marker) 6481 tcp_snd_cwnd_set(tp, 1); 6482 else 6483 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6484 tp->snd_cwnd_stamp = tcp_jiffies32; 6485 6486 bpf_skops_established(sk, bpf_op, skb); 6487 /* Initialize congestion control unless BPF initialized it already: */ 6488 if (!icsk->icsk_ca_initialized) 6489 tcp_init_congestion_control(sk); 6490 tcp_init_buffer_space(sk); 6491 } 6492 6493 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6494 { 6495 struct tcp_sock *tp = tcp_sk(sk); 6496 struct inet_connection_sock *icsk = inet_csk(sk); 6497 6498 tcp_ao_finish_connect(sk, skb); 6499 tcp_set_state(sk, TCP_ESTABLISHED); 6500 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6501 6502 if (skb) { 6503 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6504 security_inet_conn_established(sk, skb); 6505 sk_mark_napi_id(sk, skb); 6506 } 6507 6508 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6509 6510 /* Prevent spurious tcp_cwnd_restart() on first data 6511 * packet. 6512 */ 6513 tp->lsndtime = tcp_jiffies32; 6514 6515 if (sock_flag(sk, SOCK_KEEPOPEN)) 6516 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6517 6518 if (!tp->rx_opt.snd_wscale) 6519 __tcp_fast_path_on(tp, tp->snd_wnd); 6520 else 6521 tp->pred_flags = 0; 6522 } 6523 6524 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6525 struct tcp_fastopen_cookie *cookie) 6526 { 6527 struct tcp_sock *tp = tcp_sk(sk); 6528 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6529 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6530 bool syn_drop = false; 6531 6532 if (mss == READ_ONCE(tp->rx_opt.user_mss)) { 6533 struct tcp_options_received opt; 6534 6535 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6536 tcp_clear_options(&opt); 6537 opt.user_mss = opt.mss_clamp = 0; 6538 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6539 mss = opt.mss_clamp; 6540 } 6541 6542 if (!tp->syn_fastopen) { 6543 /* Ignore an unsolicited cookie */ 6544 cookie->len = -1; 6545 } else if (tp->total_retrans) { 6546 /* SYN timed out and the SYN-ACK neither has a cookie nor 6547 * acknowledges data. Presumably the remote received only 6548 * the retransmitted (regular) SYNs: either the original 6549 * SYN-data or the corresponding SYN-ACK was dropped. 6550 */ 6551 syn_drop = (cookie->len < 0 && data); 6552 } else if (cookie->len < 0 && !tp->syn_data) { 6553 /* We requested a cookie but didn't get it. If we did not use 6554 * the (old) exp opt format then try so next time (try_exp=1). 6555 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6556 */ 6557 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6558 } 6559 6560 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6561 6562 if (data) { /* Retransmit unacked data in SYN */ 6563 if (tp->total_retrans) 6564 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6565 else 6566 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6567 skb_rbtree_walk_from(data) 6568 tcp_mark_skb_lost(sk, data); 6569 tcp_non_congestion_loss_retransmit(sk); 6570 NET_INC_STATS(sock_net(sk), 6571 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6572 return true; 6573 } 6574 tp->syn_data_acked = tp->syn_data; 6575 if (tp->syn_data_acked) { 6576 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6577 /* SYN-data is counted as two separate packets in tcp_ack() */ 6578 if (tp->delivered > 1) 6579 --tp->delivered; 6580 } 6581 6582 tcp_fastopen_add_skb(sk, synack); 6583 6584 return false; 6585 } 6586 6587 static void smc_check_reset_syn(struct tcp_sock *tp) 6588 { 6589 #if IS_ENABLED(CONFIG_SMC) 6590 if (static_branch_unlikely(&tcp_have_smc)) { 6591 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6592 tp->syn_smc = 0; 6593 } 6594 #endif 6595 } 6596 6597 static void tcp_try_undo_spurious_syn(struct sock *sk) 6598 { 6599 struct tcp_sock *tp = tcp_sk(sk); 6600 u32 syn_stamp; 6601 6602 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6603 * spurious if the ACK's timestamp option echo value matches the 6604 * original SYN timestamp. 6605 */ 6606 syn_stamp = tp->retrans_stamp; 6607 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6608 syn_stamp == tp->rx_opt.rcv_tsecr) 6609 tp->undo_marker = 0; 6610 } 6611 6612 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6613 const struct tcphdr *th) 6614 { 6615 struct inet_connection_sock *icsk = inet_csk(sk); 6616 struct tcp_sock *tp = tcp_sk(sk); 6617 struct tcp_fastopen_cookie foc = { .len = -1 }; 6618 int saved_clamp = tp->rx_opt.mss_clamp; 6619 bool fastopen_fail; 6620 SKB_DR(reason); 6621 6622 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6623 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6624 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6625 6626 if (th->ack) { 6627 /* rfc793: 6628 * "If the state is SYN-SENT then 6629 * first check the ACK bit 6630 * If the ACK bit is set 6631 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6632 * a reset (unless the RST bit is set, if so drop 6633 * the segment and return)" 6634 */ 6635 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6636 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6637 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6638 if (icsk->icsk_retransmits == 0) 6639 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 6640 TCP_TIMEOUT_MIN, false); 6641 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6642 goto reset_and_undo; 6643 } 6644 6645 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6646 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6647 tcp_time_stamp_ts(tp))) { 6648 NET_INC_STATS(sock_net(sk), 6649 LINUX_MIB_PAWSACTIVEREJECTED); 6650 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6651 goto reset_and_undo; 6652 } 6653 6654 /* Now ACK is acceptable. 6655 * 6656 * "If the RST bit is set 6657 * If the ACK was acceptable then signal the user "error: 6658 * connection reset", drop the segment, enter CLOSED state, 6659 * delete TCB, and return." 6660 */ 6661 6662 if (th->rst) { 6663 tcp_reset(sk, skb); 6664 consume: 6665 __kfree_skb(skb); 6666 return 0; 6667 } 6668 6669 /* rfc793: 6670 * "fifth, if neither of the SYN or RST bits is set then 6671 * drop the segment and return." 6672 * 6673 * See note below! 6674 * --ANK(990513) 6675 */ 6676 if (!th->syn) { 6677 SKB_DR_SET(reason, TCP_FLAGS); 6678 goto discard_and_undo; 6679 } 6680 /* rfc793: 6681 * "If the SYN bit is on ... 6682 * are acceptable then ... 6683 * (our SYN has been ACKed), change the connection 6684 * state to ESTABLISHED..." 6685 */ 6686 6687 if (tcp_ecn_mode_any(tp)) 6688 tcp_ecn_rcv_synack(sk, skb, th, 6689 TCP_SKB_CB(skb)->ip_dsfield); 6690 6691 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6692 tcp_try_undo_spurious_syn(sk); 6693 tcp_ack(sk, skb, FLAG_SLOWPATH); 6694 6695 /* Ok.. it's good. Set up sequence numbers and 6696 * move to established. 6697 */ 6698 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6699 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6700 6701 /* RFC1323: The window in SYN & SYN/ACK segments is 6702 * never scaled. 6703 */ 6704 tp->snd_wnd = ntohs(th->window); 6705 6706 if (!tp->rx_opt.wscale_ok) { 6707 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6708 WRITE_ONCE(tp->window_clamp, 6709 min(tp->window_clamp, 65535U)); 6710 } 6711 6712 if (tp->rx_opt.saw_tstamp) { 6713 tp->rx_opt.tstamp_ok = 1; 6714 tp->tcp_header_len = 6715 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6716 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6717 tcp_store_ts_recent(tp); 6718 } else { 6719 tp->tcp_header_len = sizeof(struct tcphdr); 6720 } 6721 6722 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6723 tcp_initialize_rcv_mss(sk); 6724 6725 /* Remember, tcp_poll() does not lock socket! 6726 * Change state from SYN-SENT only after copied_seq 6727 * is initialized. */ 6728 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6729 6730 smc_check_reset_syn(tp); 6731 6732 smp_mb(); 6733 6734 tcp_finish_connect(sk, skb); 6735 6736 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6737 tcp_rcv_fastopen_synack(sk, skb, &foc); 6738 6739 if (!sock_flag(sk, SOCK_DEAD)) { 6740 sk->sk_state_change(sk); 6741 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6742 } 6743 if (fastopen_fail) 6744 return -1; 6745 if (sk->sk_write_pending || 6746 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6747 inet_csk_in_pingpong_mode(sk)) { 6748 /* Save one ACK. Data will be ready after 6749 * several ticks, if write_pending is set. 6750 * 6751 * It may be deleted, but with this feature tcpdumps 6752 * look so _wonderfully_ clever, that I was not able 6753 * to stand against the temptation 8) --ANK 6754 */ 6755 inet_csk_schedule_ack(sk); 6756 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6757 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, 6758 TCP_DELACK_MAX, false); 6759 goto consume; 6760 } 6761 tcp_send_ack_reflect_ect(sk, tcp_ecn_mode_accecn(tp)); 6762 return -1; 6763 } 6764 6765 /* No ACK in the segment */ 6766 6767 if (th->rst) { 6768 /* rfc793: 6769 * "If the RST bit is set 6770 * 6771 * Otherwise (no ACK) drop the segment and return." 6772 */ 6773 SKB_DR_SET(reason, TCP_RESET); 6774 goto discard_and_undo; 6775 } 6776 6777 /* PAWS check. */ 6778 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6779 tcp_paws_reject(&tp->rx_opt, 0)) { 6780 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6781 goto discard_and_undo; 6782 } 6783 if (th->syn) { 6784 /* We see SYN without ACK. It is attempt of 6785 * simultaneous connect with crossed SYNs. 6786 * Particularly, it can be connect to self. 6787 */ 6788 #ifdef CONFIG_TCP_AO 6789 struct tcp_ao_info *ao; 6790 6791 ao = rcu_dereference_protected(tp->ao_info, 6792 lockdep_sock_is_held(sk)); 6793 if (ao) { 6794 WRITE_ONCE(ao->risn, th->seq); 6795 ao->rcv_sne = 0; 6796 } 6797 #endif 6798 tcp_set_state(sk, TCP_SYN_RECV); 6799 6800 if (tp->rx_opt.saw_tstamp) { 6801 tp->rx_opt.tstamp_ok = 1; 6802 tcp_store_ts_recent(tp); 6803 tp->tcp_header_len = 6804 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6805 } else { 6806 tp->tcp_header_len = sizeof(struct tcphdr); 6807 } 6808 6809 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6810 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6811 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6812 6813 /* RFC1323: The window in SYN & SYN/ACK segments is 6814 * never scaled. 6815 */ 6816 tp->snd_wnd = ntohs(th->window); 6817 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6818 tp->max_window = tp->snd_wnd; 6819 6820 tcp_ecn_rcv_syn(tp, th, skb); 6821 6822 tcp_mtup_init(sk); 6823 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6824 tcp_initialize_rcv_mss(sk); 6825 6826 tcp_send_synack(sk); 6827 #if 0 6828 /* Note, we could accept data and URG from this segment. 6829 * There are no obstacles to make this (except that we must 6830 * either change tcp_recvmsg() to prevent it from returning data 6831 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6832 * 6833 * However, if we ignore data in ACKless segments sometimes, 6834 * we have no reasons to accept it sometimes. 6835 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6836 * is not flawless. So, discard packet for sanity. 6837 * Uncomment this return to process the data. 6838 */ 6839 return -1; 6840 #else 6841 goto consume; 6842 #endif 6843 } 6844 /* "fifth, if neither of the SYN or RST bits is set then 6845 * drop the segment and return." 6846 */ 6847 6848 discard_and_undo: 6849 tcp_clear_options(&tp->rx_opt); 6850 tp->rx_opt.mss_clamp = saved_clamp; 6851 tcp_drop_reason(sk, skb, reason); 6852 return 0; 6853 6854 reset_and_undo: 6855 tcp_clear_options(&tp->rx_opt); 6856 tp->rx_opt.mss_clamp = saved_clamp; 6857 /* we can reuse/return @reason to its caller to handle the exception */ 6858 return reason; 6859 } 6860 6861 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6862 { 6863 struct tcp_sock *tp = tcp_sk(sk); 6864 struct request_sock *req; 6865 6866 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6867 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6868 */ 6869 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6870 tcp_try_undo_recovery(sk); 6871 6872 tcp_update_rto_time(tp); 6873 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 6874 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6875 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6876 * need to zero retrans_stamp here to prevent spurious 6877 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6878 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6879 * set entering CA_Recovery, for correct retransmits_timed_out() and 6880 * undo behavior. 6881 */ 6882 tcp_retrans_stamp_cleanup(sk); 6883 6884 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6885 * we no longer need req so release it. 6886 */ 6887 req = rcu_dereference_protected(tp->fastopen_rsk, 6888 lockdep_sock_is_held(sk)); 6889 reqsk_fastopen_remove(sk, req, false); 6890 6891 /* Re-arm the timer because data may have been sent out. 6892 * This is similar to the regular data transmission case 6893 * when new data has just been ack'ed. 6894 * 6895 * (TFO) - we could try to be more aggressive and 6896 * retransmitting any data sooner based on when they 6897 * are sent out. 6898 */ 6899 tcp_rearm_rto(sk); 6900 } 6901 6902 /* 6903 * This function implements the receiving procedure of RFC 793 for 6904 * all states except ESTABLISHED and TIME_WAIT. 6905 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6906 * address independent. 6907 */ 6908 6909 enum skb_drop_reason 6910 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6911 { 6912 struct tcp_sock *tp = tcp_sk(sk); 6913 struct inet_connection_sock *icsk = inet_csk(sk); 6914 const struct tcphdr *th = tcp_hdr(skb); 6915 struct request_sock *req; 6916 int queued = 0; 6917 SKB_DR(reason); 6918 6919 switch (sk->sk_state) { 6920 case TCP_CLOSE: 6921 SKB_DR_SET(reason, TCP_CLOSE); 6922 goto discard; 6923 6924 case TCP_LISTEN: 6925 if (th->ack) 6926 return SKB_DROP_REASON_TCP_FLAGS; 6927 6928 if (th->rst) { 6929 SKB_DR_SET(reason, TCP_RESET); 6930 goto discard; 6931 } 6932 if (th->syn) { 6933 if (th->fin) { 6934 SKB_DR_SET(reason, TCP_FLAGS); 6935 goto discard; 6936 } 6937 /* It is possible that we process SYN packets from backlog, 6938 * so we need to make sure to disable BH and RCU right there. 6939 */ 6940 rcu_read_lock(); 6941 local_bh_disable(); 6942 icsk->icsk_af_ops->conn_request(sk, skb); 6943 local_bh_enable(); 6944 rcu_read_unlock(); 6945 6946 consume_skb(skb); 6947 return 0; 6948 } 6949 SKB_DR_SET(reason, TCP_FLAGS); 6950 goto discard; 6951 6952 case TCP_SYN_SENT: 6953 tp->rx_opt.saw_tstamp = 0; 6954 tcp_mstamp_refresh(tp); 6955 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6956 if (queued >= 0) 6957 return queued; 6958 6959 /* Do step6 onward by hand. */ 6960 tcp_urg(sk, skb, th); 6961 __kfree_skb(skb); 6962 tcp_data_snd_check(sk); 6963 return 0; 6964 } 6965 6966 tcp_mstamp_refresh(tp); 6967 tp->rx_opt.saw_tstamp = 0; 6968 req = rcu_dereference_protected(tp->fastopen_rsk, 6969 lockdep_sock_is_held(sk)); 6970 if (req) { 6971 bool req_stolen; 6972 6973 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6974 sk->sk_state != TCP_FIN_WAIT1); 6975 6976 SKB_DR_SET(reason, TCP_FASTOPEN); 6977 if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason)) 6978 goto discard; 6979 } 6980 6981 if (!th->ack && !th->rst && !th->syn) { 6982 SKB_DR_SET(reason, TCP_FLAGS); 6983 goto discard; 6984 } 6985 if (!tcp_validate_incoming(sk, skb, th, 0)) 6986 return 0; 6987 6988 /* step 5: check the ACK field */ 6989 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 6990 FLAG_UPDATE_TS_RECENT | 6991 FLAG_NO_CHALLENGE_ACK); 6992 6993 if ((int)reason <= 0) { 6994 if (sk->sk_state == TCP_SYN_RECV) { 6995 /* send one RST */ 6996 if (!reason) 6997 return SKB_DROP_REASON_TCP_OLD_ACK; 6998 return -reason; 6999 } 7000 /* accept old ack during closing */ 7001 if ((int)reason < 0) { 7002 tcp_send_challenge_ack(sk, false); 7003 reason = -reason; 7004 goto discard; 7005 } 7006 } 7007 SKB_DR_SET(reason, NOT_SPECIFIED); 7008 switch (sk->sk_state) { 7009 case TCP_SYN_RECV: 7010 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 7011 if (!tp->srtt_us) 7012 tcp_synack_rtt_meas(sk, req); 7013 7014 if (tp->rx_opt.tstamp_ok) 7015 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 7016 7017 if (req) { 7018 tcp_rcv_synrecv_state_fastopen(sk); 7019 } else { 7020 tcp_try_undo_spurious_syn(sk); 7021 tp->retrans_stamp = 0; 7022 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 7023 skb); 7024 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 7025 } 7026 tcp_ao_established(sk); 7027 smp_mb(); 7028 tcp_set_state(sk, TCP_ESTABLISHED); 7029 sk->sk_state_change(sk); 7030 7031 /* Note, that this wakeup is only for marginal crossed SYN case. 7032 * Passively open sockets are not waked up, because 7033 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 7034 */ 7035 if (sk->sk_socket) 7036 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 7037 7038 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 7039 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 7040 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 7041 7042 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 7043 tcp_update_pacing_rate(sk); 7044 7045 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 7046 tp->lsndtime = tcp_jiffies32; 7047 7048 tcp_initialize_rcv_mss(sk); 7049 if (tcp_ecn_mode_accecn(tp)) 7050 tcp_accecn_third_ack(sk, skb, tp->syn_ect_snt); 7051 tcp_fast_path_on(tp); 7052 if (sk->sk_shutdown & SEND_SHUTDOWN) 7053 tcp_shutdown(sk, SEND_SHUTDOWN); 7054 7055 break; 7056 7057 case TCP_FIN_WAIT1: { 7058 int tmo; 7059 7060 if (req) 7061 tcp_rcv_synrecv_state_fastopen(sk); 7062 7063 if (tp->snd_una != tp->write_seq) 7064 break; 7065 7066 tcp_set_state(sk, TCP_FIN_WAIT2); 7067 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 7068 7069 sk_dst_confirm(sk); 7070 7071 if (!sock_flag(sk, SOCK_DEAD)) { 7072 /* Wake up lingering close() */ 7073 sk->sk_state_change(sk); 7074 break; 7075 } 7076 7077 if (READ_ONCE(tp->linger2) < 0) { 7078 tcp_done(sk); 7079 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7080 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7081 } 7082 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 7083 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 7084 /* Receive out of order FIN after close() */ 7085 if (tp->syn_fastopen && th->fin) 7086 tcp_fastopen_active_disable(sk); 7087 tcp_done(sk); 7088 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7089 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7090 } 7091 7092 tmo = tcp_fin_time(sk); 7093 if (tmo > TCP_TIMEWAIT_LEN) { 7094 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 7095 } else if (th->fin || sock_owned_by_user(sk)) { 7096 /* Bad case. We could lose such FIN otherwise. 7097 * It is not a big problem, but it looks confusing 7098 * and not so rare event. We still can lose it now, 7099 * if it spins in bh_lock_sock(), but it is really 7100 * marginal case. 7101 */ 7102 tcp_reset_keepalive_timer(sk, tmo); 7103 } else { 7104 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 7105 goto consume; 7106 } 7107 break; 7108 } 7109 7110 case TCP_CLOSING: 7111 if (tp->snd_una == tp->write_seq) { 7112 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 7113 goto consume; 7114 } 7115 break; 7116 7117 case TCP_LAST_ACK: 7118 if (tp->snd_una == tp->write_seq) { 7119 tcp_update_metrics(sk); 7120 tcp_done(sk); 7121 goto consume; 7122 } 7123 break; 7124 } 7125 7126 /* step 6: check the URG bit */ 7127 tcp_urg(sk, skb, th); 7128 7129 /* step 7: process the segment text */ 7130 switch (sk->sk_state) { 7131 case TCP_CLOSE_WAIT: 7132 case TCP_CLOSING: 7133 case TCP_LAST_ACK: 7134 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 7135 /* If a subflow has been reset, the packet should not 7136 * continue to be processed, drop the packet. 7137 */ 7138 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 7139 goto discard; 7140 break; 7141 } 7142 fallthrough; 7143 case TCP_FIN_WAIT1: 7144 case TCP_FIN_WAIT2: 7145 /* RFC 793 says to queue data in these states, 7146 * RFC 1122 says we MUST send a reset. 7147 * BSD 4.4 also does reset. 7148 */ 7149 if (sk->sk_shutdown & RCV_SHUTDOWN) { 7150 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 7151 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 7152 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7153 tcp_reset(sk, skb); 7154 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7155 } 7156 } 7157 fallthrough; 7158 case TCP_ESTABLISHED: 7159 tcp_data_queue(sk, skb); 7160 queued = 1; 7161 break; 7162 } 7163 7164 /* tcp_data could move socket to TIME-WAIT */ 7165 if (sk->sk_state != TCP_CLOSE) { 7166 tcp_data_snd_check(sk); 7167 tcp_ack_snd_check(sk); 7168 } 7169 7170 if (!queued) { 7171 discard: 7172 tcp_drop_reason(sk, skb, reason); 7173 } 7174 return 0; 7175 7176 consume: 7177 __kfree_skb(skb); 7178 return 0; 7179 } 7180 EXPORT_IPV6_MOD(tcp_rcv_state_process); 7181 7182 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 7183 { 7184 struct inet_request_sock *ireq = inet_rsk(req); 7185 7186 if (family == AF_INET) 7187 net_dbg_ratelimited("drop open request from %pI4/%u\n", 7188 &ireq->ir_rmt_addr, port); 7189 #if IS_ENABLED(CONFIG_IPV6) 7190 else if (family == AF_INET6) 7191 net_dbg_ratelimited("drop open request from %pI6/%u\n", 7192 &ireq->ir_v6_rmt_addr, port); 7193 #endif 7194 } 7195 7196 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 7197 * 7198 * If we receive a SYN packet with these bits set, it means a 7199 * network is playing bad games with TOS bits. In order to 7200 * avoid possible false congestion notifications, we disable 7201 * TCP ECN negotiation. 7202 * 7203 * Exception: tcp_ca wants ECN. This is required for DCTCP 7204 * congestion control: Linux DCTCP asserts ECT on all packets, 7205 * including SYN, which is most optimal solution; however, 7206 * others, such as FreeBSD do not. 7207 * 7208 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 7209 * set, indicating the use of a future TCP extension (such as AccECN). See 7210 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 7211 * extensions. 7212 */ 7213 static void tcp_ecn_create_request(struct request_sock *req, 7214 const struct sk_buff *skb, 7215 const struct sock *listen_sk, 7216 const struct dst_entry *dst) 7217 { 7218 const struct tcphdr *th = tcp_hdr(skb); 7219 const struct net *net = sock_net(listen_sk); 7220 bool th_ecn = th->ece && th->cwr; 7221 bool ect, ecn_ok; 7222 u32 ecn_ok_dst; 7223 7224 if (tcp_accecn_syn_requested(th) && 7225 READ_ONCE(net->ipv4.sysctl_tcp_ecn) >= 3) { 7226 inet_rsk(req)->ecn_ok = 1; 7227 tcp_rsk(req)->accecn_ok = 1; 7228 tcp_rsk(req)->syn_ect_rcv = TCP_SKB_CB(skb)->ip_dsfield & 7229 INET_ECN_MASK; 7230 return; 7231 } 7232 7233 if (!th_ecn) 7234 return; 7235 7236 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 7237 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 7238 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 7239 7240 if (((!ect || th->res1 || th->ae) && ecn_ok) || 7241 tcp_ca_needs_ecn(listen_sk) || 7242 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 7243 tcp_bpf_ca_needs_ecn((struct sock *)req)) 7244 inet_rsk(req)->ecn_ok = 1; 7245 } 7246 7247 static void tcp_openreq_init(struct request_sock *req, 7248 const struct tcp_options_received *rx_opt, 7249 struct sk_buff *skb, const struct sock *sk) 7250 { 7251 struct inet_request_sock *ireq = inet_rsk(req); 7252 7253 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 7254 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 7255 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 7256 tcp_rsk(req)->snt_synack = 0; 7257 tcp_rsk(req)->snt_tsval_first = 0; 7258 tcp_rsk(req)->last_oow_ack_time = 0; 7259 tcp_rsk(req)->accecn_ok = 0; 7260 tcp_rsk(req)->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN; 7261 tcp_rsk(req)->accecn_fail_mode = 0; 7262 tcp_rsk(req)->syn_ect_rcv = 0; 7263 tcp_rsk(req)->syn_ect_snt = 0; 7264 req->mss = rx_opt->mss_clamp; 7265 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 7266 ireq->tstamp_ok = rx_opt->tstamp_ok; 7267 ireq->sack_ok = rx_opt->sack_ok; 7268 ireq->snd_wscale = rx_opt->snd_wscale; 7269 ireq->wscale_ok = rx_opt->wscale_ok; 7270 ireq->acked = 0; 7271 ireq->ecn_ok = 0; 7272 ireq->ir_rmt_port = tcp_hdr(skb)->source; 7273 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 7274 ireq->ir_mark = inet_request_mark(sk, skb); 7275 #if IS_ENABLED(CONFIG_SMC) 7276 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 7277 tcp_sk(sk)->smc_hs_congested(sk)); 7278 #endif 7279 } 7280 7281 /* 7282 * Return true if a syncookie should be sent 7283 */ 7284 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 7285 { 7286 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7287 const char *msg = "Dropping request"; 7288 struct net *net = sock_net(sk); 7289 bool want_cookie = false; 7290 u8 syncookies; 7291 7292 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7293 7294 #ifdef CONFIG_SYN_COOKIES 7295 if (syncookies) { 7296 msg = "Sending cookies"; 7297 want_cookie = true; 7298 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7299 } else 7300 #endif 7301 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7302 7303 if (syncookies != 2 && !READ_ONCE(queue->synflood_warned)) { 7304 WRITE_ONCE(queue->synflood_warned, 1); 7305 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7306 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7307 proto, inet6_rcv_saddr(sk), 7308 sk->sk_num, msg); 7309 } else { 7310 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7311 proto, &sk->sk_rcv_saddr, 7312 sk->sk_num, msg); 7313 } 7314 } 7315 7316 return want_cookie; 7317 } 7318 7319 static void tcp_reqsk_record_syn(const struct sock *sk, 7320 struct request_sock *req, 7321 const struct sk_buff *skb) 7322 { 7323 if (tcp_sk(sk)->save_syn) { 7324 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7325 struct saved_syn *saved_syn; 7326 u32 mac_hdrlen; 7327 void *base; 7328 7329 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7330 base = skb_mac_header(skb); 7331 mac_hdrlen = skb_mac_header_len(skb); 7332 len += mac_hdrlen; 7333 } else { 7334 base = skb_network_header(skb); 7335 mac_hdrlen = 0; 7336 } 7337 7338 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7339 GFP_ATOMIC); 7340 if (saved_syn) { 7341 saved_syn->mac_hdrlen = mac_hdrlen; 7342 saved_syn->network_hdrlen = skb_network_header_len(skb); 7343 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7344 memcpy(saved_syn->data, base, len); 7345 req->saved_syn = saved_syn; 7346 } 7347 } 7348 } 7349 7350 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7351 * used for SYN cookie generation. 7352 */ 7353 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7354 const struct tcp_request_sock_ops *af_ops, 7355 struct sock *sk, struct tcphdr *th) 7356 { 7357 struct tcp_sock *tp = tcp_sk(sk); 7358 u16 mss; 7359 7360 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7361 !inet_csk_reqsk_queue_is_full(sk)) 7362 return 0; 7363 7364 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7365 return 0; 7366 7367 if (sk_acceptq_is_full(sk)) { 7368 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7369 return 0; 7370 } 7371 7372 mss = tcp_parse_mss_option(th, READ_ONCE(tp->rx_opt.user_mss)); 7373 if (!mss) 7374 mss = af_ops->mss_clamp; 7375 7376 return mss; 7377 } 7378 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss); 7379 7380 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7381 const struct tcp_request_sock_ops *af_ops, 7382 struct sock *sk, struct sk_buff *skb) 7383 { 7384 struct tcp_fastopen_cookie foc = { .len = -1 }; 7385 struct tcp_options_received tmp_opt; 7386 const struct tcp_sock *tp = tcp_sk(sk); 7387 struct net *net = sock_net(sk); 7388 struct sock *fastopen_sk = NULL; 7389 struct request_sock *req; 7390 bool want_cookie = false; 7391 struct dst_entry *dst; 7392 struct flowi fl; 7393 u8 syncookies; 7394 u32 isn; 7395 7396 #ifdef CONFIG_TCP_AO 7397 const struct tcp_ao_hdr *aoh; 7398 #endif 7399 7400 isn = __this_cpu_read(tcp_tw_isn); 7401 if (isn) { 7402 /* TW buckets are converted to open requests without 7403 * limitations, they conserve resources and peer is 7404 * evidently real one. 7405 */ 7406 __this_cpu_write(tcp_tw_isn, 0); 7407 } else { 7408 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7409 7410 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7411 want_cookie = tcp_syn_flood_action(sk, 7412 rsk_ops->slab_name); 7413 if (!want_cookie) 7414 goto drop; 7415 } 7416 } 7417 7418 if (sk_acceptq_is_full(sk)) { 7419 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7420 goto drop; 7421 } 7422 7423 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7424 if (!req) 7425 goto drop; 7426 7427 req->syncookie = want_cookie; 7428 tcp_rsk(req)->af_specific = af_ops; 7429 tcp_rsk(req)->ts_off = 0; 7430 tcp_rsk(req)->req_usec_ts = false; 7431 #if IS_ENABLED(CONFIG_MPTCP) 7432 tcp_rsk(req)->is_mptcp = 0; 7433 #endif 7434 7435 tcp_clear_options(&tmp_opt); 7436 tmp_opt.mss_clamp = af_ops->mss_clamp; 7437 tmp_opt.user_mss = READ_ONCE(tp->rx_opt.user_mss); 7438 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7439 want_cookie ? NULL : &foc); 7440 7441 if (want_cookie && !tmp_opt.saw_tstamp) 7442 tcp_clear_options(&tmp_opt); 7443 7444 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7445 tmp_opt.smc_ok = 0; 7446 7447 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7448 tcp_openreq_init(req, &tmp_opt, skb, sk); 7449 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7450 7451 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7452 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7453 7454 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7455 if (!dst) 7456 goto drop_and_free; 7457 7458 if (tmp_opt.tstamp_ok) { 7459 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7460 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7461 } 7462 if (!want_cookie && !isn) { 7463 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7464 7465 /* Kill the following clause, if you dislike this way. */ 7466 if (!syncookies && 7467 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7468 (max_syn_backlog >> 2)) && 7469 !tcp_peer_is_proven(req, dst)) { 7470 /* Without syncookies last quarter of 7471 * backlog is filled with destinations, 7472 * proven to be alive. 7473 * It means that we continue to communicate 7474 * to destinations, already remembered 7475 * to the moment of synflood. 7476 */ 7477 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7478 rsk_ops->family); 7479 goto drop_and_release; 7480 } 7481 7482 isn = af_ops->init_seq(skb); 7483 } 7484 7485 tcp_ecn_create_request(req, skb, sk, dst); 7486 7487 if (want_cookie) { 7488 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7489 if (!tmp_opt.tstamp_ok) 7490 inet_rsk(req)->ecn_ok = 0; 7491 } 7492 7493 #ifdef CONFIG_TCP_AO 7494 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7495 goto drop_and_release; /* Invalid TCP options */ 7496 if (aoh) { 7497 tcp_rsk(req)->used_tcp_ao = true; 7498 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7499 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7500 7501 } else { 7502 tcp_rsk(req)->used_tcp_ao = false; 7503 } 7504 #endif 7505 tcp_rsk(req)->snt_isn = isn; 7506 tcp_rsk(req)->txhash = net_tx_rndhash(); 7507 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7508 tcp_openreq_init_rwin(req, sk, dst); 7509 sk_rx_queue_set(req_to_sk(req), skb); 7510 if (!want_cookie) { 7511 tcp_reqsk_record_syn(sk, req, skb); 7512 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7513 } 7514 if (fastopen_sk) { 7515 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7516 &foc, TCP_SYNACK_FASTOPEN, skb); 7517 /* Add the child socket directly into the accept queue */ 7518 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7519 bh_unlock_sock(fastopen_sk); 7520 sock_put(fastopen_sk); 7521 goto drop_and_free; 7522 } 7523 sk->sk_data_ready(sk); 7524 bh_unlock_sock(fastopen_sk); 7525 sock_put(fastopen_sk); 7526 } else { 7527 tcp_rsk(req)->tfo_listener = false; 7528 if (!want_cookie) { 7529 req->timeout = tcp_timeout_init((struct sock *)req); 7530 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7531 req->timeout))) { 7532 reqsk_free(req); 7533 dst_release(dst); 7534 return 0; 7535 } 7536 7537 } 7538 af_ops->send_synack(sk, dst, &fl, req, &foc, 7539 !want_cookie ? TCP_SYNACK_NORMAL : 7540 TCP_SYNACK_COOKIE, 7541 skb); 7542 if (want_cookie) { 7543 reqsk_free(req); 7544 return 0; 7545 } 7546 } 7547 reqsk_put(req); 7548 return 0; 7549 7550 drop_and_release: 7551 dst_release(dst); 7552 drop_and_free: 7553 __reqsk_free(req); 7554 drop: 7555 tcp_listendrop(sk); 7556 return 0; 7557 } 7558 EXPORT_IPV6_MOD(tcp_conn_request); 7559