1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/slab.h> 66 #include <linux/module.h> 67 #include <linux/sysctl.h> 68 #include <linux/kernel.h> 69 #include <net/dst.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 #include <net/netdma.h> 75 76 int sysctl_tcp_timestamps __read_mostly = 1; 77 int sysctl_tcp_window_scaling __read_mostly = 1; 78 int sysctl_tcp_sack __read_mostly = 1; 79 int sysctl_tcp_fack __read_mostly = 1; 80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 81 EXPORT_SYMBOL(sysctl_tcp_reordering); 82 int sysctl_tcp_ecn __read_mostly = 2; 83 EXPORT_SYMBOL(sysctl_tcp_ecn); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 2; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_frto_response __read_mostly; 94 int sysctl_tcp_nometrics_save __read_mostly; 95 96 int sysctl_tcp_thin_dupack __read_mostly; 97 98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 99 int sysctl_tcp_abc __read_mostly; 100 101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 107 #define FLAG_ECE 0x40 /* ECE in this ACK */ 108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 121 122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 124 125 /* Adapt the MSS value used to make delayed ack decision to the 126 * real world. 127 */ 128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 129 { 130 struct inet_connection_sock *icsk = inet_csk(sk); 131 const unsigned int lss = icsk->icsk_ack.last_seg_size; 132 unsigned int len; 133 134 icsk->icsk_ack.last_seg_size = 0; 135 136 /* skb->len may jitter because of SACKs, even if peer 137 * sends good full-sized frames. 138 */ 139 len = skb_shinfo(skb)->gso_size ? : skb->len; 140 if (len >= icsk->icsk_ack.rcv_mss) { 141 icsk->icsk_ack.rcv_mss = len; 142 } else { 143 /* Otherwise, we make more careful check taking into account, 144 * that SACKs block is variable. 145 * 146 * "len" is invariant segment length, including TCP header. 147 */ 148 len += skb->data - skb_transport_header(skb); 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 150 /* If PSH is not set, packet should be 151 * full sized, provided peer TCP is not badly broken. 152 * This observation (if it is correct 8)) allows 153 * to handle super-low mtu links fairly. 154 */ 155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 157 /* Subtract also invariant (if peer is RFC compliant), 158 * tcp header plus fixed timestamp option length. 159 * Resulting "len" is MSS free of SACK jitter. 160 */ 161 len -= tcp_sk(sk)->tcp_header_len; 162 icsk->icsk_ack.last_seg_size = len; 163 if (len == lss) { 164 icsk->icsk_ack.rcv_mss = len; 165 return; 166 } 167 } 168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 171 } 172 } 173 174 static void tcp_incr_quickack(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 178 179 if (quickacks == 0) 180 quickacks = 2; 181 if (quickacks > icsk->icsk_ack.quick) 182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 183 } 184 185 void tcp_enter_quickack_mode(struct sock *sk) 186 { 187 struct inet_connection_sock *icsk = inet_csk(sk); 188 tcp_incr_quickack(sk); 189 icsk->icsk_ack.pingpong = 0; 190 icsk->icsk_ack.ato = TCP_ATO_MIN; 191 } 192 193 /* Send ACKs quickly, if "quick" count is not exhausted 194 * and the session is not interactive. 195 */ 196 197 static inline int tcp_in_quickack_mode(const struct sock *sk) 198 { 199 const struct inet_connection_sock *icsk = inet_csk(sk); 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 221 { 222 if (tp->ecn_flags & TCP_ECN_OK) { 223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 225 /* Funny extension: if ECT is not set on a segment, 226 * it is surely retransmit. It is not in ECN RFC, 227 * but Linux follows this rule. */ 228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 229 tcp_enter_quickack_mode((struct sock *)tp); 230 } 231 } 232 233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 234 { 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 236 tp->ecn_flags &= ~TCP_ECN_OK; 237 } 238 239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 240 { 241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 242 tp->ecn_flags &= ~TCP_ECN_OK; 243 } 244 245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 246 { 247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 248 return 1; 249 return 0; 250 } 251 252 /* Buffer size and advertised window tuning. 253 * 254 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 255 */ 256 257 static void tcp_fixup_sndbuf(struct sock *sk) 258 { 259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 260 sizeof(struct sk_buff); 261 262 if (sk->sk_sndbuf < 3 * sndmem) 263 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 264 } 265 266 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 267 * 268 * All tcp_full_space() is split to two parts: "network" buffer, allocated 269 * forward and advertised in receiver window (tp->rcv_wnd) and 270 * "application buffer", required to isolate scheduling/application 271 * latencies from network. 272 * window_clamp is maximal advertised window. It can be less than 273 * tcp_full_space(), in this case tcp_full_space() - window_clamp 274 * is reserved for "application" buffer. The less window_clamp is 275 * the smoother our behaviour from viewpoint of network, but the lower 276 * throughput and the higher sensitivity of the connection to losses. 8) 277 * 278 * rcv_ssthresh is more strict window_clamp used at "slow start" 279 * phase to predict further behaviour of this connection. 280 * It is used for two goals: 281 * - to enforce header prediction at sender, even when application 282 * requires some significant "application buffer". It is check #1. 283 * - to prevent pruning of receive queue because of misprediction 284 * of receiver window. Check #2. 285 * 286 * The scheme does not work when sender sends good segments opening 287 * window and then starts to feed us spaghetti. But it should work 288 * in common situations. Otherwise, we have to rely on queue collapsing. 289 */ 290 291 /* Slow part of check#2. */ 292 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 293 { 294 struct tcp_sock *tp = tcp_sk(sk); 295 /* Optimize this! */ 296 int truesize = tcp_win_from_space(skb->truesize) >> 1; 297 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 298 299 while (tp->rcv_ssthresh <= window) { 300 if (truesize <= skb->len) 301 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 302 303 truesize >>= 1; 304 window >>= 1; 305 } 306 return 0; 307 } 308 309 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 310 { 311 struct tcp_sock *tp = tcp_sk(sk); 312 313 /* Check #1 */ 314 if (tp->rcv_ssthresh < tp->window_clamp && 315 (int)tp->rcv_ssthresh < tcp_space(sk) && 316 !tcp_memory_pressure) { 317 int incr; 318 319 /* Check #2. Increase window, if skb with such overhead 320 * will fit to rcvbuf in future. 321 */ 322 if (tcp_win_from_space(skb->truesize) <= skb->len) 323 incr = 2 * tp->advmss; 324 else 325 incr = __tcp_grow_window(sk, skb); 326 327 if (incr) { 328 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 329 tp->window_clamp); 330 inet_csk(sk)->icsk_ack.quick |= 1; 331 } 332 } 333 } 334 335 /* 3. Tuning rcvbuf, when connection enters established state. */ 336 337 static void tcp_fixup_rcvbuf(struct sock *sk) 338 { 339 struct tcp_sock *tp = tcp_sk(sk); 340 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 341 342 /* Try to select rcvbuf so that 4 mss-sized segments 343 * will fit to window and corresponding skbs will fit to our rcvbuf. 344 * (was 3; 4 is minimum to allow fast retransmit to work.) 345 */ 346 while (tcp_win_from_space(rcvmem) < tp->advmss) 347 rcvmem += 128; 348 if (sk->sk_rcvbuf < 4 * rcvmem) 349 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 350 } 351 352 /* 4. Try to fixup all. It is made immediately after connection enters 353 * established state. 354 */ 355 static void tcp_init_buffer_space(struct sock *sk) 356 { 357 struct tcp_sock *tp = tcp_sk(sk); 358 int maxwin; 359 360 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 361 tcp_fixup_rcvbuf(sk); 362 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 363 tcp_fixup_sndbuf(sk); 364 365 tp->rcvq_space.space = tp->rcv_wnd; 366 367 maxwin = tcp_full_space(sk); 368 369 if (tp->window_clamp >= maxwin) { 370 tp->window_clamp = maxwin; 371 372 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 373 tp->window_clamp = max(maxwin - 374 (maxwin >> sysctl_tcp_app_win), 375 4 * tp->advmss); 376 } 377 378 /* Force reservation of one segment. */ 379 if (sysctl_tcp_app_win && 380 tp->window_clamp > 2 * tp->advmss && 381 tp->window_clamp + tp->advmss > maxwin) 382 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 383 384 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 385 tp->snd_cwnd_stamp = tcp_time_stamp; 386 } 387 388 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 389 static void tcp_clamp_window(struct sock *sk) 390 { 391 struct tcp_sock *tp = tcp_sk(sk); 392 struct inet_connection_sock *icsk = inet_csk(sk); 393 394 icsk->icsk_ack.quick = 0; 395 396 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 397 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 398 !tcp_memory_pressure && 399 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 400 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 401 sysctl_tcp_rmem[2]); 402 } 403 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 404 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 405 } 406 407 /* Initialize RCV_MSS value. 408 * RCV_MSS is an our guess about MSS used by the peer. 409 * We haven't any direct information about the MSS. 410 * It's better to underestimate the RCV_MSS rather than overestimate. 411 * Overestimations make us ACKing less frequently than needed. 412 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 413 */ 414 void tcp_initialize_rcv_mss(struct sock *sk) 415 { 416 struct tcp_sock *tp = tcp_sk(sk); 417 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 418 419 hint = min(hint, tp->rcv_wnd / 2); 420 hint = min(hint, TCP_MSS_DEFAULT); 421 hint = max(hint, TCP_MIN_MSS); 422 423 inet_csk(sk)->icsk_ack.rcv_mss = hint; 424 } 425 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 426 427 /* Receiver "autotuning" code. 428 * 429 * The algorithm for RTT estimation w/o timestamps is based on 430 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 431 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 432 * 433 * More detail on this code can be found at 434 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 435 * though this reference is out of date. A new paper 436 * is pending. 437 */ 438 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 439 { 440 u32 new_sample = tp->rcv_rtt_est.rtt; 441 long m = sample; 442 443 if (m == 0) 444 m = 1; 445 446 if (new_sample != 0) { 447 /* If we sample in larger samples in the non-timestamp 448 * case, we could grossly overestimate the RTT especially 449 * with chatty applications or bulk transfer apps which 450 * are stalled on filesystem I/O. 451 * 452 * Also, since we are only going for a minimum in the 453 * non-timestamp case, we do not smooth things out 454 * else with timestamps disabled convergence takes too 455 * long. 456 */ 457 if (!win_dep) { 458 m -= (new_sample >> 3); 459 new_sample += m; 460 } else if (m < new_sample) 461 new_sample = m << 3; 462 } else { 463 /* No previous measure. */ 464 new_sample = m << 3; 465 } 466 467 if (tp->rcv_rtt_est.rtt != new_sample) 468 tp->rcv_rtt_est.rtt = new_sample; 469 } 470 471 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 472 { 473 if (tp->rcv_rtt_est.time == 0) 474 goto new_measure; 475 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 476 return; 477 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 478 479 new_measure: 480 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 481 tp->rcv_rtt_est.time = tcp_time_stamp; 482 } 483 484 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 485 const struct sk_buff *skb) 486 { 487 struct tcp_sock *tp = tcp_sk(sk); 488 if (tp->rx_opt.rcv_tsecr && 489 (TCP_SKB_CB(skb)->end_seq - 490 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 491 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 492 } 493 494 /* 495 * This function should be called every time data is copied to user space. 496 * It calculates the appropriate TCP receive buffer space. 497 */ 498 void tcp_rcv_space_adjust(struct sock *sk) 499 { 500 struct tcp_sock *tp = tcp_sk(sk); 501 int time; 502 int space; 503 504 if (tp->rcvq_space.time == 0) 505 goto new_measure; 506 507 time = tcp_time_stamp - tp->rcvq_space.time; 508 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 509 return; 510 511 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 512 513 space = max(tp->rcvq_space.space, space); 514 515 if (tp->rcvq_space.space != space) { 516 int rcvmem; 517 518 tp->rcvq_space.space = space; 519 520 if (sysctl_tcp_moderate_rcvbuf && 521 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 522 int new_clamp = space; 523 524 /* Receive space grows, normalize in order to 525 * take into account packet headers and sk_buff 526 * structure overhead. 527 */ 528 space /= tp->advmss; 529 if (!space) 530 space = 1; 531 rcvmem = (tp->advmss + MAX_TCP_HEADER + 532 16 + sizeof(struct sk_buff)); 533 while (tcp_win_from_space(rcvmem) < tp->advmss) 534 rcvmem += 128; 535 space *= rcvmem; 536 space = min(space, sysctl_tcp_rmem[2]); 537 if (space > sk->sk_rcvbuf) { 538 sk->sk_rcvbuf = space; 539 540 /* Make the window clamp follow along. */ 541 tp->window_clamp = new_clamp; 542 } 543 } 544 } 545 546 new_measure: 547 tp->rcvq_space.seq = tp->copied_seq; 548 tp->rcvq_space.time = tcp_time_stamp; 549 } 550 551 /* There is something which you must keep in mind when you analyze the 552 * behavior of the tp->ato delayed ack timeout interval. When a 553 * connection starts up, we want to ack as quickly as possible. The 554 * problem is that "good" TCP's do slow start at the beginning of data 555 * transmission. The means that until we send the first few ACK's the 556 * sender will sit on his end and only queue most of his data, because 557 * he can only send snd_cwnd unacked packets at any given time. For 558 * each ACK we send, he increments snd_cwnd and transmits more of his 559 * queue. -DaveM 560 */ 561 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 562 { 563 struct tcp_sock *tp = tcp_sk(sk); 564 struct inet_connection_sock *icsk = inet_csk(sk); 565 u32 now; 566 567 inet_csk_schedule_ack(sk); 568 569 tcp_measure_rcv_mss(sk, skb); 570 571 tcp_rcv_rtt_measure(tp); 572 573 now = tcp_time_stamp; 574 575 if (!icsk->icsk_ack.ato) { 576 /* The _first_ data packet received, initialize 577 * delayed ACK engine. 578 */ 579 tcp_incr_quickack(sk); 580 icsk->icsk_ack.ato = TCP_ATO_MIN; 581 } else { 582 int m = now - icsk->icsk_ack.lrcvtime; 583 584 if (m <= TCP_ATO_MIN / 2) { 585 /* The fastest case is the first. */ 586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 587 } else if (m < icsk->icsk_ack.ato) { 588 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 589 if (icsk->icsk_ack.ato > icsk->icsk_rto) 590 icsk->icsk_ack.ato = icsk->icsk_rto; 591 } else if (m > icsk->icsk_rto) { 592 /* Too long gap. Apparently sender failed to 593 * restart window, so that we send ACKs quickly. 594 */ 595 tcp_incr_quickack(sk); 596 sk_mem_reclaim(sk); 597 } 598 } 599 icsk->icsk_ack.lrcvtime = now; 600 601 TCP_ECN_check_ce(tp, skb); 602 603 if (skb->len >= 128) 604 tcp_grow_window(sk, skb); 605 } 606 607 /* Called to compute a smoothed rtt estimate. The data fed to this 608 * routine either comes from timestamps, or from segments that were 609 * known _not_ to have been retransmitted [see Karn/Partridge 610 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 611 * piece by Van Jacobson. 612 * NOTE: the next three routines used to be one big routine. 613 * To save cycles in the RFC 1323 implementation it was better to break 614 * it up into three procedures. -- erics 615 */ 616 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 617 { 618 struct tcp_sock *tp = tcp_sk(sk); 619 long m = mrtt; /* RTT */ 620 621 /* The following amusing code comes from Jacobson's 622 * article in SIGCOMM '88. Note that rtt and mdev 623 * are scaled versions of rtt and mean deviation. 624 * This is designed to be as fast as possible 625 * m stands for "measurement". 626 * 627 * On a 1990 paper the rto value is changed to: 628 * RTO = rtt + 4 * mdev 629 * 630 * Funny. This algorithm seems to be very broken. 631 * These formulae increase RTO, when it should be decreased, increase 632 * too slowly, when it should be increased quickly, decrease too quickly 633 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 634 * does not matter how to _calculate_ it. Seems, it was trap 635 * that VJ failed to avoid. 8) 636 */ 637 if (m == 0) 638 m = 1; 639 if (tp->srtt != 0) { 640 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 641 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 642 if (m < 0) { 643 m = -m; /* m is now abs(error) */ 644 m -= (tp->mdev >> 2); /* similar update on mdev */ 645 /* This is similar to one of Eifel findings. 646 * Eifel blocks mdev updates when rtt decreases. 647 * This solution is a bit different: we use finer gain 648 * for mdev in this case (alpha*beta). 649 * Like Eifel it also prevents growth of rto, 650 * but also it limits too fast rto decreases, 651 * happening in pure Eifel. 652 */ 653 if (m > 0) 654 m >>= 3; 655 } else { 656 m -= (tp->mdev >> 2); /* similar update on mdev */ 657 } 658 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 659 if (tp->mdev > tp->mdev_max) { 660 tp->mdev_max = tp->mdev; 661 if (tp->mdev_max > tp->rttvar) 662 tp->rttvar = tp->mdev_max; 663 } 664 if (after(tp->snd_una, tp->rtt_seq)) { 665 if (tp->mdev_max < tp->rttvar) 666 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 667 tp->rtt_seq = tp->snd_nxt; 668 tp->mdev_max = tcp_rto_min(sk); 669 } 670 } else { 671 /* no previous measure. */ 672 tp->srtt = m << 3; /* take the measured time to be rtt */ 673 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 674 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 675 tp->rtt_seq = tp->snd_nxt; 676 } 677 } 678 679 /* Calculate rto without backoff. This is the second half of Van Jacobson's 680 * routine referred to above. 681 */ 682 static inline void tcp_set_rto(struct sock *sk) 683 { 684 const struct tcp_sock *tp = tcp_sk(sk); 685 /* Old crap is replaced with new one. 8) 686 * 687 * More seriously: 688 * 1. If rtt variance happened to be less 50msec, it is hallucination. 689 * It cannot be less due to utterly erratic ACK generation made 690 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 691 * to do with delayed acks, because at cwnd>2 true delack timeout 692 * is invisible. Actually, Linux-2.4 also generates erratic 693 * ACKs in some circumstances. 694 */ 695 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 696 697 /* 2. Fixups made earlier cannot be right. 698 * If we do not estimate RTO correctly without them, 699 * all the algo is pure shit and should be replaced 700 * with correct one. It is exactly, which we pretend to do. 701 */ 702 703 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 704 * guarantees that rto is higher. 705 */ 706 tcp_bound_rto(sk); 707 } 708 709 /* Save metrics learned by this TCP session. 710 This function is called only, when TCP finishes successfully 711 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 712 */ 713 void tcp_update_metrics(struct sock *sk) 714 { 715 struct tcp_sock *tp = tcp_sk(sk); 716 struct dst_entry *dst = __sk_dst_get(sk); 717 718 if (sysctl_tcp_nometrics_save) 719 return; 720 721 dst_confirm(dst); 722 723 if (dst && (dst->flags & DST_HOST)) { 724 const struct inet_connection_sock *icsk = inet_csk(sk); 725 int m; 726 unsigned long rtt; 727 728 if (icsk->icsk_backoff || !tp->srtt) { 729 /* This session failed to estimate rtt. Why? 730 * Probably, no packets returned in time. 731 * Reset our results. 732 */ 733 if (!(dst_metric_locked(dst, RTAX_RTT))) 734 dst->metrics[RTAX_RTT - 1] = 0; 735 return; 736 } 737 738 rtt = dst_metric_rtt(dst, RTAX_RTT); 739 m = rtt - tp->srtt; 740 741 /* If newly calculated rtt larger than stored one, 742 * store new one. Otherwise, use EWMA. Remember, 743 * rtt overestimation is always better than underestimation. 744 */ 745 if (!(dst_metric_locked(dst, RTAX_RTT))) { 746 if (m <= 0) 747 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 748 else 749 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 750 } 751 752 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 753 unsigned long var; 754 if (m < 0) 755 m = -m; 756 757 /* Scale deviation to rttvar fixed point */ 758 m >>= 1; 759 if (m < tp->mdev) 760 m = tp->mdev; 761 762 var = dst_metric_rtt(dst, RTAX_RTTVAR); 763 if (m >= var) 764 var = m; 765 else 766 var -= (var - m) >> 2; 767 768 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 769 } 770 771 if (tcp_in_initial_slowstart(tp)) { 772 /* Slow start still did not finish. */ 773 if (dst_metric(dst, RTAX_SSTHRESH) && 774 !dst_metric_locked(dst, RTAX_SSTHRESH) && 775 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 776 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 777 if (!dst_metric_locked(dst, RTAX_CWND) && 778 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 779 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd; 780 } else if (tp->snd_cwnd > tp->snd_ssthresh && 781 icsk->icsk_ca_state == TCP_CA_Open) { 782 /* Cong. avoidance phase, cwnd is reliable. */ 783 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 784 dst->metrics[RTAX_SSTHRESH-1] = 785 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 786 if (!dst_metric_locked(dst, RTAX_CWND)) 787 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1; 788 } else { 789 /* Else slow start did not finish, cwnd is non-sense, 790 ssthresh may be also invalid. 791 */ 792 if (!dst_metric_locked(dst, RTAX_CWND)) 793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1; 794 if (dst_metric(dst, RTAX_SSTHRESH) && 795 !dst_metric_locked(dst, RTAX_SSTHRESH) && 796 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 797 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 798 } 799 800 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 801 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 802 tp->reordering != sysctl_tcp_reordering) 803 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 804 } 805 } 806 } 807 808 /* Numbers are taken from RFC3390. 809 * 810 * John Heffner states: 811 * 812 * The RFC specifies a window of no more than 4380 bytes 813 * unless 2*MSS > 4380. Reading the pseudocode in the RFC 814 * is a bit misleading because they use a clamp at 4380 bytes 815 * rather than use a multiplier in the relevant range. 816 */ 817 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 818 { 819 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 820 821 if (!cwnd) { 822 if (tp->mss_cache > 1460) 823 cwnd = 2; 824 else 825 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 826 } 827 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 828 } 829 830 /* Set slow start threshold and cwnd not falling to slow start */ 831 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 832 { 833 struct tcp_sock *tp = tcp_sk(sk); 834 const struct inet_connection_sock *icsk = inet_csk(sk); 835 836 tp->prior_ssthresh = 0; 837 tp->bytes_acked = 0; 838 if (icsk->icsk_ca_state < TCP_CA_CWR) { 839 tp->undo_marker = 0; 840 if (set_ssthresh) 841 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 842 tp->snd_cwnd = min(tp->snd_cwnd, 843 tcp_packets_in_flight(tp) + 1U); 844 tp->snd_cwnd_cnt = 0; 845 tp->high_seq = tp->snd_nxt; 846 tp->snd_cwnd_stamp = tcp_time_stamp; 847 TCP_ECN_queue_cwr(tp); 848 849 tcp_set_ca_state(sk, TCP_CA_CWR); 850 } 851 } 852 853 /* 854 * Packet counting of FACK is based on in-order assumptions, therefore TCP 855 * disables it when reordering is detected 856 */ 857 static void tcp_disable_fack(struct tcp_sock *tp) 858 { 859 /* RFC3517 uses different metric in lost marker => reset on change */ 860 if (tcp_is_fack(tp)) 861 tp->lost_skb_hint = NULL; 862 tp->rx_opt.sack_ok &= ~2; 863 } 864 865 /* Take a notice that peer is sending D-SACKs */ 866 static void tcp_dsack_seen(struct tcp_sock *tp) 867 { 868 tp->rx_opt.sack_ok |= 4; 869 } 870 871 /* Initialize metrics on socket. */ 872 873 static void tcp_init_metrics(struct sock *sk) 874 { 875 struct tcp_sock *tp = tcp_sk(sk); 876 struct dst_entry *dst = __sk_dst_get(sk); 877 878 if (dst == NULL) 879 goto reset; 880 881 dst_confirm(dst); 882 883 if (dst_metric_locked(dst, RTAX_CWND)) 884 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 885 if (dst_metric(dst, RTAX_SSTHRESH)) { 886 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 887 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 888 tp->snd_ssthresh = tp->snd_cwnd_clamp; 889 } 890 if (dst_metric(dst, RTAX_REORDERING) && 891 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 892 tcp_disable_fack(tp); 893 tp->reordering = dst_metric(dst, RTAX_REORDERING); 894 } 895 896 if (dst_metric(dst, RTAX_RTT) == 0) 897 goto reset; 898 899 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 900 goto reset; 901 902 /* Initial rtt is determined from SYN,SYN-ACK. 903 * The segment is small and rtt may appear much 904 * less than real one. Use per-dst memory 905 * to make it more realistic. 906 * 907 * A bit of theory. RTT is time passed after "normal" sized packet 908 * is sent until it is ACKed. In normal circumstances sending small 909 * packets force peer to delay ACKs and calculation is correct too. 910 * The algorithm is adaptive and, provided we follow specs, it 911 * NEVER underestimate RTT. BUT! If peer tries to make some clever 912 * tricks sort of "quick acks" for time long enough to decrease RTT 913 * to low value, and then abruptly stops to do it and starts to delay 914 * ACKs, wait for troubles. 915 */ 916 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 917 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 918 tp->rtt_seq = tp->snd_nxt; 919 } 920 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 921 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 922 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 923 } 924 tcp_set_rto(sk); 925 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 926 goto reset; 927 928 cwnd: 929 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 930 tp->snd_cwnd_stamp = tcp_time_stamp; 931 return; 932 933 reset: 934 /* Play conservative. If timestamps are not 935 * supported, TCP will fail to recalculate correct 936 * rtt, if initial rto is too small. FORGET ALL AND RESET! 937 */ 938 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 939 tp->srtt = 0; 940 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 941 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 942 } 943 goto cwnd; 944 } 945 946 static void tcp_update_reordering(struct sock *sk, const int metric, 947 const int ts) 948 { 949 struct tcp_sock *tp = tcp_sk(sk); 950 if (metric > tp->reordering) { 951 int mib_idx; 952 953 tp->reordering = min(TCP_MAX_REORDERING, metric); 954 955 /* This exciting event is worth to be remembered. 8) */ 956 if (ts) 957 mib_idx = LINUX_MIB_TCPTSREORDER; 958 else if (tcp_is_reno(tp)) 959 mib_idx = LINUX_MIB_TCPRENOREORDER; 960 else if (tcp_is_fack(tp)) 961 mib_idx = LINUX_MIB_TCPFACKREORDER; 962 else 963 mib_idx = LINUX_MIB_TCPSACKREORDER; 964 965 NET_INC_STATS_BH(sock_net(sk), mib_idx); 966 #if FASTRETRANS_DEBUG > 1 967 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 968 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 969 tp->reordering, 970 tp->fackets_out, 971 tp->sacked_out, 972 tp->undo_marker ? tp->undo_retrans : 0); 973 #endif 974 tcp_disable_fack(tp); 975 } 976 } 977 978 /* This must be called before lost_out is incremented */ 979 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 980 { 981 if ((tp->retransmit_skb_hint == NULL) || 982 before(TCP_SKB_CB(skb)->seq, 983 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 984 tp->retransmit_skb_hint = skb; 985 986 if (!tp->lost_out || 987 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 988 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 989 } 990 991 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 992 { 993 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 994 tcp_verify_retransmit_hint(tp, skb); 995 996 tp->lost_out += tcp_skb_pcount(skb); 997 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 998 } 999 } 1000 1001 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 1002 struct sk_buff *skb) 1003 { 1004 tcp_verify_retransmit_hint(tp, skb); 1005 1006 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1007 tp->lost_out += tcp_skb_pcount(skb); 1008 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1009 } 1010 } 1011 1012 /* This procedure tags the retransmission queue when SACKs arrive. 1013 * 1014 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1015 * Packets in queue with these bits set are counted in variables 1016 * sacked_out, retrans_out and lost_out, correspondingly. 1017 * 1018 * Valid combinations are: 1019 * Tag InFlight Description 1020 * 0 1 - orig segment is in flight. 1021 * S 0 - nothing flies, orig reached receiver. 1022 * L 0 - nothing flies, orig lost by net. 1023 * R 2 - both orig and retransmit are in flight. 1024 * L|R 1 - orig is lost, retransmit is in flight. 1025 * S|R 1 - orig reached receiver, retrans is still in flight. 1026 * (L|S|R is logically valid, it could occur when L|R is sacked, 1027 * but it is equivalent to plain S and code short-curcuits it to S. 1028 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1029 * 1030 * These 6 states form finite state machine, controlled by the following events: 1031 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1032 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1033 * 3. Loss detection event of one of three flavors: 1034 * A. Scoreboard estimator decided the packet is lost. 1035 * A'. Reno "three dupacks" marks head of queue lost. 1036 * A''. Its FACK modfication, head until snd.fack is lost. 1037 * B. SACK arrives sacking data transmitted after never retransmitted 1038 * hole was sent out. 1039 * C. SACK arrives sacking SND.NXT at the moment, when the 1040 * segment was retransmitted. 1041 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1042 * 1043 * It is pleasant to note, that state diagram turns out to be commutative, 1044 * so that we are allowed not to be bothered by order of our actions, 1045 * when multiple events arrive simultaneously. (see the function below). 1046 * 1047 * Reordering detection. 1048 * -------------------- 1049 * Reordering metric is maximal distance, which a packet can be displaced 1050 * in packet stream. With SACKs we can estimate it: 1051 * 1052 * 1. SACK fills old hole and the corresponding segment was not 1053 * ever retransmitted -> reordering. Alas, we cannot use it 1054 * when segment was retransmitted. 1055 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1056 * for retransmitted and already SACKed segment -> reordering.. 1057 * Both of these heuristics are not used in Loss state, when we cannot 1058 * account for retransmits accurately. 1059 * 1060 * SACK block validation. 1061 * ---------------------- 1062 * 1063 * SACK block range validation checks that the received SACK block fits to 1064 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1065 * Note that SND.UNA is not included to the range though being valid because 1066 * it means that the receiver is rather inconsistent with itself reporting 1067 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1068 * perfectly valid, however, in light of RFC2018 which explicitly states 1069 * that "SACK block MUST reflect the newest segment. Even if the newest 1070 * segment is going to be discarded ...", not that it looks very clever 1071 * in case of head skb. Due to potentional receiver driven attacks, we 1072 * choose to avoid immediate execution of a walk in write queue due to 1073 * reneging and defer head skb's loss recovery to standard loss recovery 1074 * procedure that will eventually trigger (nothing forbids us doing this). 1075 * 1076 * Implements also blockage to start_seq wrap-around. Problem lies in the 1077 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1078 * there's no guarantee that it will be before snd_nxt (n). The problem 1079 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1080 * wrap (s_w): 1081 * 1082 * <- outs wnd -> <- wrapzone -> 1083 * u e n u_w e_w s n_w 1084 * | | | | | | | 1085 * |<------------+------+----- TCP seqno space --------------+---------->| 1086 * ...-- <2^31 ->| |<--------... 1087 * ...---- >2^31 ------>| |<--------... 1088 * 1089 * Current code wouldn't be vulnerable but it's better still to discard such 1090 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1091 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1092 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1093 * equal to the ideal case (infinite seqno space without wrap caused issues). 1094 * 1095 * With D-SACK the lower bound is extended to cover sequence space below 1096 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1097 * again, D-SACK block must not to go across snd_una (for the same reason as 1098 * for the normal SACK blocks, explained above). But there all simplicity 1099 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1100 * fully below undo_marker they do not affect behavior in anyway and can 1101 * therefore be safely ignored. In rare cases (which are more or less 1102 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1103 * fragmentation and packet reordering past skb's retransmission. To consider 1104 * them correctly, the acceptable range must be extended even more though 1105 * the exact amount is rather hard to quantify. However, tp->max_window can 1106 * be used as an exaggerated estimate. 1107 */ 1108 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1109 u32 start_seq, u32 end_seq) 1110 { 1111 /* Too far in future, or reversed (interpretation is ambiguous) */ 1112 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1113 return 0; 1114 1115 /* Nasty start_seq wrap-around check (see comments above) */ 1116 if (!before(start_seq, tp->snd_nxt)) 1117 return 0; 1118 1119 /* In outstanding window? ...This is valid exit for D-SACKs too. 1120 * start_seq == snd_una is non-sensical (see comments above) 1121 */ 1122 if (after(start_seq, tp->snd_una)) 1123 return 1; 1124 1125 if (!is_dsack || !tp->undo_marker) 1126 return 0; 1127 1128 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1129 if (!after(end_seq, tp->snd_una)) 1130 return 0; 1131 1132 if (!before(start_seq, tp->undo_marker)) 1133 return 1; 1134 1135 /* Too old */ 1136 if (!after(end_seq, tp->undo_marker)) 1137 return 0; 1138 1139 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1140 * start_seq < undo_marker and end_seq >= undo_marker. 1141 */ 1142 return !before(start_seq, end_seq - tp->max_window); 1143 } 1144 1145 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1146 * Event "C". Later note: FACK people cheated me again 8), we have to account 1147 * for reordering! Ugly, but should help. 1148 * 1149 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1150 * less than what is now known to be received by the other end (derived from 1151 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1152 * retransmitted skbs to avoid some costly processing per ACKs. 1153 */ 1154 static void tcp_mark_lost_retrans(struct sock *sk) 1155 { 1156 const struct inet_connection_sock *icsk = inet_csk(sk); 1157 struct tcp_sock *tp = tcp_sk(sk); 1158 struct sk_buff *skb; 1159 int cnt = 0; 1160 u32 new_low_seq = tp->snd_nxt; 1161 u32 received_upto = tcp_highest_sack_seq(tp); 1162 1163 if (!tcp_is_fack(tp) || !tp->retrans_out || 1164 !after(received_upto, tp->lost_retrans_low) || 1165 icsk->icsk_ca_state != TCP_CA_Recovery) 1166 return; 1167 1168 tcp_for_write_queue(skb, sk) { 1169 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1170 1171 if (skb == tcp_send_head(sk)) 1172 break; 1173 if (cnt == tp->retrans_out) 1174 break; 1175 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1176 continue; 1177 1178 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1179 continue; 1180 1181 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1182 * constraint here (see above) but figuring out that at 1183 * least tp->reordering SACK blocks reside between ack_seq 1184 * and received_upto is not easy task to do cheaply with 1185 * the available datastructures. 1186 * 1187 * Whether FACK should check here for tp->reordering segs 1188 * in-between one could argue for either way (it would be 1189 * rather simple to implement as we could count fack_count 1190 * during the walk and do tp->fackets_out - fack_count). 1191 */ 1192 if (after(received_upto, ack_seq)) { 1193 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1194 tp->retrans_out -= tcp_skb_pcount(skb); 1195 1196 tcp_skb_mark_lost_uncond_verify(tp, skb); 1197 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1198 } else { 1199 if (before(ack_seq, new_low_seq)) 1200 new_low_seq = ack_seq; 1201 cnt += tcp_skb_pcount(skb); 1202 } 1203 } 1204 1205 if (tp->retrans_out) 1206 tp->lost_retrans_low = new_low_seq; 1207 } 1208 1209 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1210 struct tcp_sack_block_wire *sp, int num_sacks, 1211 u32 prior_snd_una) 1212 { 1213 struct tcp_sock *tp = tcp_sk(sk); 1214 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1215 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1216 int dup_sack = 0; 1217 1218 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1219 dup_sack = 1; 1220 tcp_dsack_seen(tp); 1221 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1222 } else if (num_sacks > 1) { 1223 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1224 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1225 1226 if (!after(end_seq_0, end_seq_1) && 1227 !before(start_seq_0, start_seq_1)) { 1228 dup_sack = 1; 1229 tcp_dsack_seen(tp); 1230 NET_INC_STATS_BH(sock_net(sk), 1231 LINUX_MIB_TCPDSACKOFORECV); 1232 } 1233 } 1234 1235 /* D-SACK for already forgotten data... Do dumb counting. */ 1236 if (dup_sack && 1237 !after(end_seq_0, prior_snd_una) && 1238 after(end_seq_0, tp->undo_marker)) 1239 tp->undo_retrans--; 1240 1241 return dup_sack; 1242 } 1243 1244 struct tcp_sacktag_state { 1245 int reord; 1246 int fack_count; 1247 int flag; 1248 }; 1249 1250 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1251 * the incoming SACK may not exactly match but we can find smaller MSS 1252 * aligned portion of it that matches. Therefore we might need to fragment 1253 * which may fail and creates some hassle (caller must handle error case 1254 * returns). 1255 * 1256 * FIXME: this could be merged to shift decision code 1257 */ 1258 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1259 u32 start_seq, u32 end_seq) 1260 { 1261 int in_sack, err; 1262 unsigned int pkt_len; 1263 unsigned int mss; 1264 1265 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1266 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1267 1268 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1269 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1270 mss = tcp_skb_mss(skb); 1271 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1272 1273 if (!in_sack) { 1274 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1275 if (pkt_len < mss) 1276 pkt_len = mss; 1277 } else { 1278 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1279 if (pkt_len < mss) 1280 return -EINVAL; 1281 } 1282 1283 /* Round if necessary so that SACKs cover only full MSSes 1284 * and/or the remaining small portion (if present) 1285 */ 1286 if (pkt_len > mss) { 1287 unsigned int new_len = (pkt_len / mss) * mss; 1288 if (!in_sack && new_len < pkt_len) { 1289 new_len += mss; 1290 if (new_len > skb->len) 1291 return 0; 1292 } 1293 pkt_len = new_len; 1294 } 1295 err = tcp_fragment(sk, skb, pkt_len, mss); 1296 if (err < 0) 1297 return err; 1298 } 1299 1300 return in_sack; 1301 } 1302 1303 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1304 struct tcp_sacktag_state *state, 1305 int dup_sack, int pcount) 1306 { 1307 struct tcp_sock *tp = tcp_sk(sk); 1308 u8 sacked = TCP_SKB_CB(skb)->sacked; 1309 int fack_count = state->fack_count; 1310 1311 /* Account D-SACK for retransmitted packet. */ 1312 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1313 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1314 tp->undo_retrans--; 1315 if (sacked & TCPCB_SACKED_ACKED) 1316 state->reord = min(fack_count, state->reord); 1317 } 1318 1319 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1320 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1321 return sacked; 1322 1323 if (!(sacked & TCPCB_SACKED_ACKED)) { 1324 if (sacked & TCPCB_SACKED_RETRANS) { 1325 /* If the segment is not tagged as lost, 1326 * we do not clear RETRANS, believing 1327 * that retransmission is still in flight. 1328 */ 1329 if (sacked & TCPCB_LOST) { 1330 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1331 tp->lost_out -= pcount; 1332 tp->retrans_out -= pcount; 1333 } 1334 } else { 1335 if (!(sacked & TCPCB_RETRANS)) { 1336 /* New sack for not retransmitted frame, 1337 * which was in hole. It is reordering. 1338 */ 1339 if (before(TCP_SKB_CB(skb)->seq, 1340 tcp_highest_sack_seq(tp))) 1341 state->reord = min(fack_count, 1342 state->reord); 1343 1344 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1345 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1346 state->flag |= FLAG_ONLY_ORIG_SACKED; 1347 } 1348 1349 if (sacked & TCPCB_LOST) { 1350 sacked &= ~TCPCB_LOST; 1351 tp->lost_out -= pcount; 1352 } 1353 } 1354 1355 sacked |= TCPCB_SACKED_ACKED; 1356 state->flag |= FLAG_DATA_SACKED; 1357 tp->sacked_out += pcount; 1358 1359 fack_count += pcount; 1360 1361 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1362 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1363 before(TCP_SKB_CB(skb)->seq, 1364 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1365 tp->lost_cnt_hint += pcount; 1366 1367 if (fack_count > tp->fackets_out) 1368 tp->fackets_out = fack_count; 1369 } 1370 1371 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1372 * frames and clear it. undo_retrans is decreased above, L|R frames 1373 * are accounted above as well. 1374 */ 1375 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1376 sacked &= ~TCPCB_SACKED_RETRANS; 1377 tp->retrans_out -= pcount; 1378 } 1379 1380 return sacked; 1381 } 1382 1383 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1384 struct tcp_sacktag_state *state, 1385 unsigned int pcount, int shifted, int mss, 1386 int dup_sack) 1387 { 1388 struct tcp_sock *tp = tcp_sk(sk); 1389 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1390 1391 BUG_ON(!pcount); 1392 1393 /* Tweak before seqno plays */ 1394 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint && 1395 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq)) 1396 tp->lost_cnt_hint += pcount; 1397 1398 TCP_SKB_CB(prev)->end_seq += shifted; 1399 TCP_SKB_CB(skb)->seq += shifted; 1400 1401 skb_shinfo(prev)->gso_segs += pcount; 1402 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1403 skb_shinfo(skb)->gso_segs -= pcount; 1404 1405 /* When we're adding to gso_segs == 1, gso_size will be zero, 1406 * in theory this shouldn't be necessary but as long as DSACK 1407 * code can come after this skb later on it's better to keep 1408 * setting gso_size to something. 1409 */ 1410 if (!skb_shinfo(prev)->gso_size) { 1411 skb_shinfo(prev)->gso_size = mss; 1412 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1413 } 1414 1415 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1416 if (skb_shinfo(skb)->gso_segs <= 1) { 1417 skb_shinfo(skb)->gso_size = 0; 1418 skb_shinfo(skb)->gso_type = 0; 1419 } 1420 1421 /* We discard results */ 1422 tcp_sacktag_one(skb, sk, state, dup_sack, pcount); 1423 1424 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1425 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1426 1427 if (skb->len > 0) { 1428 BUG_ON(!tcp_skb_pcount(skb)); 1429 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1430 return 0; 1431 } 1432 1433 /* Whole SKB was eaten :-) */ 1434 1435 if (skb == tp->retransmit_skb_hint) 1436 tp->retransmit_skb_hint = prev; 1437 if (skb == tp->scoreboard_skb_hint) 1438 tp->scoreboard_skb_hint = prev; 1439 if (skb == tp->lost_skb_hint) { 1440 tp->lost_skb_hint = prev; 1441 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1442 } 1443 1444 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags; 1445 if (skb == tcp_highest_sack(sk)) 1446 tcp_advance_highest_sack(sk, skb); 1447 1448 tcp_unlink_write_queue(skb, sk); 1449 sk_wmem_free_skb(sk, skb); 1450 1451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1452 1453 return 1; 1454 } 1455 1456 /* I wish gso_size would have a bit more sane initialization than 1457 * something-or-zero which complicates things 1458 */ 1459 static int tcp_skb_seglen(struct sk_buff *skb) 1460 { 1461 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1462 } 1463 1464 /* Shifting pages past head area doesn't work */ 1465 static int skb_can_shift(struct sk_buff *skb) 1466 { 1467 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1468 } 1469 1470 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1471 * skb. 1472 */ 1473 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1474 struct tcp_sacktag_state *state, 1475 u32 start_seq, u32 end_seq, 1476 int dup_sack) 1477 { 1478 struct tcp_sock *tp = tcp_sk(sk); 1479 struct sk_buff *prev; 1480 int mss; 1481 int pcount = 0; 1482 int len; 1483 int in_sack; 1484 1485 if (!sk_can_gso(sk)) 1486 goto fallback; 1487 1488 /* Normally R but no L won't result in plain S */ 1489 if (!dup_sack && 1490 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1491 goto fallback; 1492 if (!skb_can_shift(skb)) 1493 goto fallback; 1494 /* This frame is about to be dropped (was ACKed). */ 1495 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1496 goto fallback; 1497 1498 /* Can only happen with delayed DSACK + discard craziness */ 1499 if (unlikely(skb == tcp_write_queue_head(sk))) 1500 goto fallback; 1501 prev = tcp_write_queue_prev(sk, skb); 1502 1503 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1504 goto fallback; 1505 1506 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1507 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1508 1509 if (in_sack) { 1510 len = skb->len; 1511 pcount = tcp_skb_pcount(skb); 1512 mss = tcp_skb_seglen(skb); 1513 1514 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1515 * drop this restriction as unnecessary 1516 */ 1517 if (mss != tcp_skb_seglen(prev)) 1518 goto fallback; 1519 } else { 1520 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1521 goto noop; 1522 /* CHECKME: This is non-MSS split case only?, this will 1523 * cause skipped skbs due to advancing loop btw, original 1524 * has that feature too 1525 */ 1526 if (tcp_skb_pcount(skb) <= 1) 1527 goto noop; 1528 1529 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1530 if (!in_sack) { 1531 /* TODO: head merge to next could be attempted here 1532 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1533 * though it might not be worth of the additional hassle 1534 * 1535 * ...we can probably just fallback to what was done 1536 * previously. We could try merging non-SACKed ones 1537 * as well but it probably isn't going to buy off 1538 * because later SACKs might again split them, and 1539 * it would make skb timestamp tracking considerably 1540 * harder problem. 1541 */ 1542 goto fallback; 1543 } 1544 1545 len = end_seq - TCP_SKB_CB(skb)->seq; 1546 BUG_ON(len < 0); 1547 BUG_ON(len > skb->len); 1548 1549 /* MSS boundaries should be honoured or else pcount will 1550 * severely break even though it makes things bit trickier. 1551 * Optimize common case to avoid most of the divides 1552 */ 1553 mss = tcp_skb_mss(skb); 1554 1555 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1556 * drop this restriction as unnecessary 1557 */ 1558 if (mss != tcp_skb_seglen(prev)) 1559 goto fallback; 1560 1561 if (len == mss) { 1562 pcount = 1; 1563 } else if (len < mss) { 1564 goto noop; 1565 } else { 1566 pcount = len / mss; 1567 len = pcount * mss; 1568 } 1569 } 1570 1571 if (!skb_shift(prev, skb, len)) 1572 goto fallback; 1573 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1574 goto out; 1575 1576 /* Hole filled allows collapsing with the next as well, this is very 1577 * useful when hole on every nth skb pattern happens 1578 */ 1579 if (prev == tcp_write_queue_tail(sk)) 1580 goto out; 1581 skb = tcp_write_queue_next(sk, prev); 1582 1583 if (!skb_can_shift(skb) || 1584 (skb == tcp_send_head(sk)) || 1585 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1586 (mss != tcp_skb_seglen(skb))) 1587 goto out; 1588 1589 len = skb->len; 1590 if (skb_shift(prev, skb, len)) { 1591 pcount += tcp_skb_pcount(skb); 1592 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1593 } 1594 1595 out: 1596 state->fack_count += pcount; 1597 return prev; 1598 1599 noop: 1600 return skb; 1601 1602 fallback: 1603 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1604 return NULL; 1605 } 1606 1607 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1608 struct tcp_sack_block *next_dup, 1609 struct tcp_sacktag_state *state, 1610 u32 start_seq, u32 end_seq, 1611 int dup_sack_in) 1612 { 1613 struct tcp_sock *tp = tcp_sk(sk); 1614 struct sk_buff *tmp; 1615 1616 tcp_for_write_queue_from(skb, sk) { 1617 int in_sack = 0; 1618 int dup_sack = dup_sack_in; 1619 1620 if (skb == tcp_send_head(sk)) 1621 break; 1622 1623 /* queue is in-order => we can short-circuit the walk early */ 1624 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1625 break; 1626 1627 if ((next_dup != NULL) && 1628 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1629 in_sack = tcp_match_skb_to_sack(sk, skb, 1630 next_dup->start_seq, 1631 next_dup->end_seq); 1632 if (in_sack > 0) 1633 dup_sack = 1; 1634 } 1635 1636 /* skb reference here is a bit tricky to get right, since 1637 * shifting can eat and free both this skb and the next, 1638 * so not even _safe variant of the loop is enough. 1639 */ 1640 if (in_sack <= 0) { 1641 tmp = tcp_shift_skb_data(sk, skb, state, 1642 start_seq, end_seq, dup_sack); 1643 if (tmp != NULL) { 1644 if (tmp != skb) { 1645 skb = tmp; 1646 continue; 1647 } 1648 1649 in_sack = 0; 1650 } else { 1651 in_sack = tcp_match_skb_to_sack(sk, skb, 1652 start_seq, 1653 end_seq); 1654 } 1655 } 1656 1657 if (unlikely(in_sack < 0)) 1658 break; 1659 1660 if (in_sack) { 1661 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk, 1662 state, 1663 dup_sack, 1664 tcp_skb_pcount(skb)); 1665 1666 if (!before(TCP_SKB_CB(skb)->seq, 1667 tcp_highest_sack_seq(tp))) 1668 tcp_advance_highest_sack(sk, skb); 1669 } 1670 1671 state->fack_count += tcp_skb_pcount(skb); 1672 } 1673 return skb; 1674 } 1675 1676 /* Avoid all extra work that is being done by sacktag while walking in 1677 * a normal way 1678 */ 1679 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1680 struct tcp_sacktag_state *state, 1681 u32 skip_to_seq) 1682 { 1683 tcp_for_write_queue_from(skb, sk) { 1684 if (skb == tcp_send_head(sk)) 1685 break; 1686 1687 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1688 break; 1689 1690 state->fack_count += tcp_skb_pcount(skb); 1691 } 1692 return skb; 1693 } 1694 1695 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1696 struct sock *sk, 1697 struct tcp_sack_block *next_dup, 1698 struct tcp_sacktag_state *state, 1699 u32 skip_to_seq) 1700 { 1701 if (next_dup == NULL) 1702 return skb; 1703 1704 if (before(next_dup->start_seq, skip_to_seq)) { 1705 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1706 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1707 next_dup->start_seq, next_dup->end_seq, 1708 1); 1709 } 1710 1711 return skb; 1712 } 1713 1714 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1715 { 1716 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1717 } 1718 1719 static int 1720 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1721 u32 prior_snd_una) 1722 { 1723 const struct inet_connection_sock *icsk = inet_csk(sk); 1724 struct tcp_sock *tp = tcp_sk(sk); 1725 unsigned char *ptr = (skb_transport_header(ack_skb) + 1726 TCP_SKB_CB(ack_skb)->sacked); 1727 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1728 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1729 struct tcp_sack_block *cache; 1730 struct tcp_sacktag_state state; 1731 struct sk_buff *skb; 1732 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1733 int used_sacks; 1734 int found_dup_sack = 0; 1735 int i, j; 1736 int first_sack_index; 1737 1738 state.flag = 0; 1739 state.reord = tp->packets_out; 1740 1741 if (!tp->sacked_out) { 1742 if (WARN_ON(tp->fackets_out)) 1743 tp->fackets_out = 0; 1744 tcp_highest_sack_reset(sk); 1745 } 1746 1747 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1748 num_sacks, prior_snd_una); 1749 if (found_dup_sack) 1750 state.flag |= FLAG_DSACKING_ACK; 1751 1752 /* Eliminate too old ACKs, but take into 1753 * account more or less fresh ones, they can 1754 * contain valid SACK info. 1755 */ 1756 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1757 return 0; 1758 1759 if (!tp->packets_out) 1760 goto out; 1761 1762 used_sacks = 0; 1763 first_sack_index = 0; 1764 for (i = 0; i < num_sacks; i++) { 1765 int dup_sack = !i && found_dup_sack; 1766 1767 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1768 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1769 1770 if (!tcp_is_sackblock_valid(tp, dup_sack, 1771 sp[used_sacks].start_seq, 1772 sp[used_sacks].end_seq)) { 1773 int mib_idx; 1774 1775 if (dup_sack) { 1776 if (!tp->undo_marker) 1777 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1778 else 1779 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1780 } else { 1781 /* Don't count olds caused by ACK reordering */ 1782 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1783 !after(sp[used_sacks].end_seq, tp->snd_una)) 1784 continue; 1785 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1786 } 1787 1788 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1789 if (i == 0) 1790 first_sack_index = -1; 1791 continue; 1792 } 1793 1794 /* Ignore very old stuff early */ 1795 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1796 continue; 1797 1798 used_sacks++; 1799 } 1800 1801 /* order SACK blocks to allow in order walk of the retrans queue */ 1802 for (i = used_sacks - 1; i > 0; i--) { 1803 for (j = 0; j < i; j++) { 1804 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1805 swap(sp[j], sp[j + 1]); 1806 1807 /* Track where the first SACK block goes to */ 1808 if (j == first_sack_index) 1809 first_sack_index = j + 1; 1810 } 1811 } 1812 } 1813 1814 skb = tcp_write_queue_head(sk); 1815 state.fack_count = 0; 1816 i = 0; 1817 1818 if (!tp->sacked_out) { 1819 /* It's already past, so skip checking against it */ 1820 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1821 } else { 1822 cache = tp->recv_sack_cache; 1823 /* Skip empty blocks in at head of the cache */ 1824 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1825 !cache->end_seq) 1826 cache++; 1827 } 1828 1829 while (i < used_sacks) { 1830 u32 start_seq = sp[i].start_seq; 1831 u32 end_seq = sp[i].end_seq; 1832 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1833 struct tcp_sack_block *next_dup = NULL; 1834 1835 if (found_dup_sack && ((i + 1) == first_sack_index)) 1836 next_dup = &sp[i + 1]; 1837 1838 /* Event "B" in the comment above. */ 1839 if (after(end_seq, tp->high_seq)) 1840 state.flag |= FLAG_DATA_LOST; 1841 1842 /* Skip too early cached blocks */ 1843 while (tcp_sack_cache_ok(tp, cache) && 1844 !before(start_seq, cache->end_seq)) 1845 cache++; 1846 1847 /* Can skip some work by looking recv_sack_cache? */ 1848 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1849 after(end_seq, cache->start_seq)) { 1850 1851 /* Head todo? */ 1852 if (before(start_seq, cache->start_seq)) { 1853 skb = tcp_sacktag_skip(skb, sk, &state, 1854 start_seq); 1855 skb = tcp_sacktag_walk(skb, sk, next_dup, 1856 &state, 1857 start_seq, 1858 cache->start_seq, 1859 dup_sack); 1860 } 1861 1862 /* Rest of the block already fully processed? */ 1863 if (!after(end_seq, cache->end_seq)) 1864 goto advance_sp; 1865 1866 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1867 &state, 1868 cache->end_seq); 1869 1870 /* ...tail remains todo... */ 1871 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1872 /* ...but better entrypoint exists! */ 1873 skb = tcp_highest_sack(sk); 1874 if (skb == NULL) 1875 break; 1876 state.fack_count = tp->fackets_out; 1877 cache++; 1878 goto walk; 1879 } 1880 1881 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1882 /* Check overlap against next cached too (past this one already) */ 1883 cache++; 1884 continue; 1885 } 1886 1887 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1888 skb = tcp_highest_sack(sk); 1889 if (skb == NULL) 1890 break; 1891 state.fack_count = tp->fackets_out; 1892 } 1893 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1894 1895 walk: 1896 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1897 start_seq, end_seq, dup_sack); 1898 1899 advance_sp: 1900 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1901 * due to in-order walk 1902 */ 1903 if (after(end_seq, tp->frto_highmark)) 1904 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1905 1906 i++; 1907 } 1908 1909 /* Clear the head of the cache sack blocks so we can skip it next time */ 1910 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1911 tp->recv_sack_cache[i].start_seq = 0; 1912 tp->recv_sack_cache[i].end_seq = 0; 1913 } 1914 for (j = 0; j < used_sacks; j++) 1915 tp->recv_sack_cache[i++] = sp[j]; 1916 1917 tcp_mark_lost_retrans(sk); 1918 1919 tcp_verify_left_out(tp); 1920 1921 if ((state.reord < tp->fackets_out) && 1922 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1923 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1924 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1925 1926 out: 1927 1928 #if FASTRETRANS_DEBUG > 0 1929 WARN_ON((int)tp->sacked_out < 0); 1930 WARN_ON((int)tp->lost_out < 0); 1931 WARN_ON((int)tp->retrans_out < 0); 1932 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1933 #endif 1934 return state.flag; 1935 } 1936 1937 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1938 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1939 */ 1940 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1941 { 1942 u32 holes; 1943 1944 holes = max(tp->lost_out, 1U); 1945 holes = min(holes, tp->packets_out); 1946 1947 if ((tp->sacked_out + holes) > tp->packets_out) { 1948 tp->sacked_out = tp->packets_out - holes; 1949 return 1; 1950 } 1951 return 0; 1952 } 1953 1954 /* If we receive more dupacks than we expected counting segments 1955 * in assumption of absent reordering, interpret this as reordering. 1956 * The only another reason could be bug in receiver TCP. 1957 */ 1958 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1959 { 1960 struct tcp_sock *tp = tcp_sk(sk); 1961 if (tcp_limit_reno_sacked(tp)) 1962 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1963 } 1964 1965 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1966 1967 static void tcp_add_reno_sack(struct sock *sk) 1968 { 1969 struct tcp_sock *tp = tcp_sk(sk); 1970 tp->sacked_out++; 1971 tcp_check_reno_reordering(sk, 0); 1972 tcp_verify_left_out(tp); 1973 } 1974 1975 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1976 1977 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1978 { 1979 struct tcp_sock *tp = tcp_sk(sk); 1980 1981 if (acked > 0) { 1982 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1983 if (acked - 1 >= tp->sacked_out) 1984 tp->sacked_out = 0; 1985 else 1986 tp->sacked_out -= acked - 1; 1987 } 1988 tcp_check_reno_reordering(sk, acked); 1989 tcp_verify_left_out(tp); 1990 } 1991 1992 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1993 { 1994 tp->sacked_out = 0; 1995 } 1996 1997 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1998 { 1999 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 2000 } 2001 2002 /* F-RTO can only be used if TCP has never retransmitted anything other than 2003 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 2004 */ 2005 int tcp_use_frto(struct sock *sk) 2006 { 2007 const struct tcp_sock *tp = tcp_sk(sk); 2008 const struct inet_connection_sock *icsk = inet_csk(sk); 2009 struct sk_buff *skb; 2010 2011 if (!sysctl_tcp_frto) 2012 return 0; 2013 2014 /* MTU probe and F-RTO won't really play nicely along currently */ 2015 if (icsk->icsk_mtup.probe_size) 2016 return 0; 2017 2018 if (tcp_is_sackfrto(tp)) 2019 return 1; 2020 2021 /* Avoid expensive walking of rexmit queue if possible */ 2022 if (tp->retrans_out > 1) 2023 return 0; 2024 2025 skb = tcp_write_queue_head(sk); 2026 if (tcp_skb_is_last(sk, skb)) 2027 return 1; 2028 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2029 tcp_for_write_queue_from(skb, sk) { 2030 if (skb == tcp_send_head(sk)) 2031 break; 2032 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2033 return 0; 2034 /* Short-circuit when first non-SACKed skb has been checked */ 2035 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2036 break; 2037 } 2038 return 1; 2039 } 2040 2041 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2042 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2043 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2044 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2045 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2046 * bits are handled if the Loss state is really to be entered (in 2047 * tcp_enter_frto_loss). 2048 * 2049 * Do like tcp_enter_loss() would; when RTO expires the second time it 2050 * does: 2051 * "Reduce ssthresh if it has not yet been made inside this window." 2052 */ 2053 void tcp_enter_frto(struct sock *sk) 2054 { 2055 const struct inet_connection_sock *icsk = inet_csk(sk); 2056 struct tcp_sock *tp = tcp_sk(sk); 2057 struct sk_buff *skb; 2058 2059 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2060 tp->snd_una == tp->high_seq || 2061 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2062 !icsk->icsk_retransmits)) { 2063 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2064 /* Our state is too optimistic in ssthresh() call because cwnd 2065 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2066 * recovery has not yet completed. Pattern would be this: RTO, 2067 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2068 * up here twice). 2069 * RFC4138 should be more specific on what to do, even though 2070 * RTO is quite unlikely to occur after the first Cumulative ACK 2071 * due to back-off and complexity of triggering events ... 2072 */ 2073 if (tp->frto_counter) { 2074 u32 stored_cwnd; 2075 stored_cwnd = tp->snd_cwnd; 2076 tp->snd_cwnd = 2; 2077 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2078 tp->snd_cwnd = stored_cwnd; 2079 } else { 2080 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2081 } 2082 /* ... in theory, cong.control module could do "any tricks" in 2083 * ssthresh(), which means that ca_state, lost bits and lost_out 2084 * counter would have to be faked before the call occurs. We 2085 * consider that too expensive, unlikely and hacky, so modules 2086 * using these in ssthresh() must deal these incompatibility 2087 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2088 */ 2089 tcp_ca_event(sk, CA_EVENT_FRTO); 2090 } 2091 2092 tp->undo_marker = tp->snd_una; 2093 tp->undo_retrans = 0; 2094 2095 skb = tcp_write_queue_head(sk); 2096 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2097 tp->undo_marker = 0; 2098 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2099 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2100 tp->retrans_out -= tcp_skb_pcount(skb); 2101 } 2102 tcp_verify_left_out(tp); 2103 2104 /* Too bad if TCP was application limited */ 2105 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2106 2107 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2108 * The last condition is necessary at least in tp->frto_counter case. 2109 */ 2110 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2111 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2112 after(tp->high_seq, tp->snd_una)) { 2113 tp->frto_highmark = tp->high_seq; 2114 } else { 2115 tp->frto_highmark = tp->snd_nxt; 2116 } 2117 tcp_set_ca_state(sk, TCP_CA_Disorder); 2118 tp->high_seq = tp->snd_nxt; 2119 tp->frto_counter = 1; 2120 } 2121 2122 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2123 * which indicates that we should follow the traditional RTO recovery, 2124 * i.e. mark everything lost and do go-back-N retransmission. 2125 */ 2126 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2127 { 2128 struct tcp_sock *tp = tcp_sk(sk); 2129 struct sk_buff *skb; 2130 2131 tp->lost_out = 0; 2132 tp->retrans_out = 0; 2133 if (tcp_is_reno(tp)) 2134 tcp_reset_reno_sack(tp); 2135 2136 tcp_for_write_queue(skb, sk) { 2137 if (skb == tcp_send_head(sk)) 2138 break; 2139 2140 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2141 /* 2142 * Count the retransmission made on RTO correctly (only when 2143 * waiting for the first ACK and did not get it)... 2144 */ 2145 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2146 /* For some reason this R-bit might get cleared? */ 2147 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2148 tp->retrans_out += tcp_skb_pcount(skb); 2149 /* ...enter this if branch just for the first segment */ 2150 flag |= FLAG_DATA_ACKED; 2151 } else { 2152 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2153 tp->undo_marker = 0; 2154 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2155 } 2156 2157 /* Marking forward transmissions that were made after RTO lost 2158 * can cause unnecessary retransmissions in some scenarios, 2159 * SACK blocks will mitigate that in some but not in all cases. 2160 * We used to not mark them but it was causing break-ups with 2161 * receivers that do only in-order receival. 2162 * 2163 * TODO: we could detect presence of such receiver and select 2164 * different behavior per flow. 2165 */ 2166 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2167 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2168 tp->lost_out += tcp_skb_pcount(skb); 2169 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2170 } 2171 } 2172 tcp_verify_left_out(tp); 2173 2174 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2175 tp->snd_cwnd_cnt = 0; 2176 tp->snd_cwnd_stamp = tcp_time_stamp; 2177 tp->frto_counter = 0; 2178 tp->bytes_acked = 0; 2179 2180 tp->reordering = min_t(unsigned int, tp->reordering, 2181 sysctl_tcp_reordering); 2182 tcp_set_ca_state(sk, TCP_CA_Loss); 2183 tp->high_seq = tp->snd_nxt; 2184 TCP_ECN_queue_cwr(tp); 2185 2186 tcp_clear_all_retrans_hints(tp); 2187 } 2188 2189 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2190 { 2191 tp->retrans_out = 0; 2192 tp->lost_out = 0; 2193 2194 tp->undo_marker = 0; 2195 tp->undo_retrans = 0; 2196 } 2197 2198 void tcp_clear_retrans(struct tcp_sock *tp) 2199 { 2200 tcp_clear_retrans_partial(tp); 2201 2202 tp->fackets_out = 0; 2203 tp->sacked_out = 0; 2204 } 2205 2206 /* Enter Loss state. If "how" is not zero, forget all SACK information 2207 * and reset tags completely, otherwise preserve SACKs. If receiver 2208 * dropped its ofo queue, we will know this due to reneging detection. 2209 */ 2210 void tcp_enter_loss(struct sock *sk, int how) 2211 { 2212 const struct inet_connection_sock *icsk = inet_csk(sk); 2213 struct tcp_sock *tp = tcp_sk(sk); 2214 struct sk_buff *skb; 2215 2216 /* Reduce ssthresh if it has not yet been made inside this window. */ 2217 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2218 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2219 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2220 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2221 tcp_ca_event(sk, CA_EVENT_LOSS); 2222 } 2223 tp->snd_cwnd = 1; 2224 tp->snd_cwnd_cnt = 0; 2225 tp->snd_cwnd_stamp = tcp_time_stamp; 2226 2227 tp->bytes_acked = 0; 2228 tcp_clear_retrans_partial(tp); 2229 2230 if (tcp_is_reno(tp)) 2231 tcp_reset_reno_sack(tp); 2232 2233 if (!how) { 2234 /* Push undo marker, if it was plain RTO and nothing 2235 * was retransmitted. */ 2236 tp->undo_marker = tp->snd_una; 2237 } else { 2238 tp->sacked_out = 0; 2239 tp->fackets_out = 0; 2240 } 2241 tcp_clear_all_retrans_hints(tp); 2242 2243 tcp_for_write_queue(skb, sk) { 2244 if (skb == tcp_send_head(sk)) 2245 break; 2246 2247 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2248 tp->undo_marker = 0; 2249 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2250 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2251 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2252 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2253 tp->lost_out += tcp_skb_pcount(skb); 2254 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2255 } 2256 } 2257 tcp_verify_left_out(tp); 2258 2259 tp->reordering = min_t(unsigned int, tp->reordering, 2260 sysctl_tcp_reordering); 2261 tcp_set_ca_state(sk, TCP_CA_Loss); 2262 tp->high_seq = tp->snd_nxt; 2263 TCP_ECN_queue_cwr(tp); 2264 /* Abort F-RTO algorithm if one is in progress */ 2265 tp->frto_counter = 0; 2266 } 2267 2268 /* If ACK arrived pointing to a remembered SACK, it means that our 2269 * remembered SACKs do not reflect real state of receiver i.e. 2270 * receiver _host_ is heavily congested (or buggy). 2271 * 2272 * Do processing similar to RTO timeout. 2273 */ 2274 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2275 { 2276 if (flag & FLAG_SACK_RENEGING) { 2277 struct inet_connection_sock *icsk = inet_csk(sk); 2278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2279 2280 tcp_enter_loss(sk, 1); 2281 icsk->icsk_retransmits++; 2282 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2283 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2284 icsk->icsk_rto, TCP_RTO_MAX); 2285 return 1; 2286 } 2287 return 0; 2288 } 2289 2290 static inline int tcp_fackets_out(struct tcp_sock *tp) 2291 { 2292 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2293 } 2294 2295 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2296 * counter when SACK is enabled (without SACK, sacked_out is used for 2297 * that purpose). 2298 * 2299 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2300 * segments up to the highest received SACK block so far and holes in 2301 * between them. 2302 * 2303 * With reordering, holes may still be in flight, so RFC3517 recovery 2304 * uses pure sacked_out (total number of SACKed segments) even though 2305 * it violates the RFC that uses duplicate ACKs, often these are equal 2306 * but when e.g. out-of-window ACKs or packet duplication occurs, 2307 * they differ. Since neither occurs due to loss, TCP should really 2308 * ignore them. 2309 */ 2310 static inline int tcp_dupack_heuristics(struct tcp_sock *tp) 2311 { 2312 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2313 } 2314 2315 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2316 { 2317 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 2318 } 2319 2320 static inline int tcp_head_timedout(struct sock *sk) 2321 { 2322 struct tcp_sock *tp = tcp_sk(sk); 2323 2324 return tp->packets_out && 2325 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2326 } 2327 2328 /* Linux NewReno/SACK/FACK/ECN state machine. 2329 * -------------------------------------- 2330 * 2331 * "Open" Normal state, no dubious events, fast path. 2332 * "Disorder" In all the respects it is "Open", 2333 * but requires a bit more attention. It is entered when 2334 * we see some SACKs or dupacks. It is split of "Open" 2335 * mainly to move some processing from fast path to slow one. 2336 * "CWR" CWND was reduced due to some Congestion Notification event. 2337 * It can be ECN, ICMP source quench, local device congestion. 2338 * "Recovery" CWND was reduced, we are fast-retransmitting. 2339 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2340 * 2341 * tcp_fastretrans_alert() is entered: 2342 * - each incoming ACK, if state is not "Open" 2343 * - when arrived ACK is unusual, namely: 2344 * * SACK 2345 * * Duplicate ACK. 2346 * * ECN ECE. 2347 * 2348 * Counting packets in flight is pretty simple. 2349 * 2350 * in_flight = packets_out - left_out + retrans_out 2351 * 2352 * packets_out is SND.NXT-SND.UNA counted in packets. 2353 * 2354 * retrans_out is number of retransmitted segments. 2355 * 2356 * left_out is number of segments left network, but not ACKed yet. 2357 * 2358 * left_out = sacked_out + lost_out 2359 * 2360 * sacked_out: Packets, which arrived to receiver out of order 2361 * and hence not ACKed. With SACKs this number is simply 2362 * amount of SACKed data. Even without SACKs 2363 * it is easy to give pretty reliable estimate of this number, 2364 * counting duplicate ACKs. 2365 * 2366 * lost_out: Packets lost by network. TCP has no explicit 2367 * "loss notification" feedback from network (for now). 2368 * It means that this number can be only _guessed_. 2369 * Actually, it is the heuristics to predict lossage that 2370 * distinguishes different algorithms. 2371 * 2372 * F.e. after RTO, when all the queue is considered as lost, 2373 * lost_out = packets_out and in_flight = retrans_out. 2374 * 2375 * Essentially, we have now two algorithms counting 2376 * lost packets. 2377 * 2378 * FACK: It is the simplest heuristics. As soon as we decided 2379 * that something is lost, we decide that _all_ not SACKed 2380 * packets until the most forward SACK are lost. I.e. 2381 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2382 * It is absolutely correct estimate, if network does not reorder 2383 * packets. And it loses any connection to reality when reordering 2384 * takes place. We use FACK by default until reordering 2385 * is suspected on the path to this destination. 2386 * 2387 * NewReno: when Recovery is entered, we assume that one segment 2388 * is lost (classic Reno). While we are in Recovery and 2389 * a partial ACK arrives, we assume that one more packet 2390 * is lost (NewReno). This heuristics are the same in NewReno 2391 * and SACK. 2392 * 2393 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2394 * deflation etc. CWND is real congestion window, never inflated, changes 2395 * only according to classic VJ rules. 2396 * 2397 * Really tricky (and requiring careful tuning) part of algorithm 2398 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2399 * The first determines the moment _when_ we should reduce CWND and, 2400 * hence, slow down forward transmission. In fact, it determines the moment 2401 * when we decide that hole is caused by loss, rather than by a reorder. 2402 * 2403 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2404 * holes, caused by lost packets. 2405 * 2406 * And the most logically complicated part of algorithm is undo 2407 * heuristics. We detect false retransmits due to both too early 2408 * fast retransmit (reordering) and underestimated RTO, analyzing 2409 * timestamps and D-SACKs. When we detect that some segments were 2410 * retransmitted by mistake and CWND reduction was wrong, we undo 2411 * window reduction and abort recovery phase. This logic is hidden 2412 * inside several functions named tcp_try_undo_<something>. 2413 */ 2414 2415 /* This function decides, when we should leave Disordered state 2416 * and enter Recovery phase, reducing congestion window. 2417 * 2418 * Main question: may we further continue forward transmission 2419 * with the same cwnd? 2420 */ 2421 static int tcp_time_to_recover(struct sock *sk) 2422 { 2423 struct tcp_sock *tp = tcp_sk(sk); 2424 __u32 packets_out; 2425 2426 /* Do not perform any recovery during F-RTO algorithm */ 2427 if (tp->frto_counter) 2428 return 0; 2429 2430 /* Trick#1: The loss is proven. */ 2431 if (tp->lost_out) 2432 return 1; 2433 2434 /* Not-A-Trick#2 : Classic rule... */ 2435 if (tcp_dupack_heuristics(tp) > tp->reordering) 2436 return 1; 2437 2438 /* Trick#3 : when we use RFC2988 timer restart, fast 2439 * retransmit can be triggered by timeout of queue head. 2440 */ 2441 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2442 return 1; 2443 2444 /* Trick#4: It is still not OK... But will it be useful to delay 2445 * recovery more? 2446 */ 2447 packets_out = tp->packets_out; 2448 if (packets_out <= tp->reordering && 2449 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2450 !tcp_may_send_now(sk)) { 2451 /* We have nothing to send. This connection is limited 2452 * either by receiver window or by application. 2453 */ 2454 return 1; 2455 } 2456 2457 /* If a thin stream is detected, retransmit after first 2458 * received dupack. Employ only if SACK is supported in order 2459 * to avoid possible corner-case series of spurious retransmissions 2460 * Use only if there are no unsent data. 2461 */ 2462 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2463 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2464 tcp_is_sack(tp) && !tcp_send_head(sk)) 2465 return 1; 2466 2467 return 0; 2468 } 2469 2470 /* New heuristics: it is possible only after we switched to restart timer 2471 * each time when something is ACKed. Hence, we can detect timed out packets 2472 * during fast retransmit without falling to slow start. 2473 * 2474 * Usefulness of this as is very questionable, since we should know which of 2475 * the segments is the next to timeout which is relatively expensive to find 2476 * in general case unless we add some data structure just for that. The 2477 * current approach certainly won't find the right one too often and when it 2478 * finally does find _something_ it usually marks large part of the window 2479 * right away (because a retransmission with a larger timestamp blocks the 2480 * loop from advancing). -ij 2481 */ 2482 static void tcp_timeout_skbs(struct sock *sk) 2483 { 2484 struct tcp_sock *tp = tcp_sk(sk); 2485 struct sk_buff *skb; 2486 2487 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2488 return; 2489 2490 skb = tp->scoreboard_skb_hint; 2491 if (tp->scoreboard_skb_hint == NULL) 2492 skb = tcp_write_queue_head(sk); 2493 2494 tcp_for_write_queue_from(skb, sk) { 2495 if (skb == tcp_send_head(sk)) 2496 break; 2497 if (!tcp_skb_timedout(sk, skb)) 2498 break; 2499 2500 tcp_skb_mark_lost(tp, skb); 2501 } 2502 2503 tp->scoreboard_skb_hint = skb; 2504 2505 tcp_verify_left_out(tp); 2506 } 2507 2508 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2509 * is against sacked "cnt", otherwise it's against facked "cnt" 2510 */ 2511 static void tcp_mark_head_lost(struct sock *sk, int packets) 2512 { 2513 struct tcp_sock *tp = tcp_sk(sk); 2514 struct sk_buff *skb; 2515 int cnt, oldcnt; 2516 int err; 2517 unsigned int mss; 2518 2519 if (packets == 0) 2520 return; 2521 2522 WARN_ON(packets > tp->packets_out); 2523 if (tp->lost_skb_hint) { 2524 skb = tp->lost_skb_hint; 2525 cnt = tp->lost_cnt_hint; 2526 } else { 2527 skb = tcp_write_queue_head(sk); 2528 cnt = 0; 2529 } 2530 2531 tcp_for_write_queue_from(skb, sk) { 2532 if (skb == tcp_send_head(sk)) 2533 break; 2534 /* TODO: do this better */ 2535 /* this is not the most efficient way to do this... */ 2536 tp->lost_skb_hint = skb; 2537 tp->lost_cnt_hint = cnt; 2538 2539 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2540 break; 2541 2542 oldcnt = cnt; 2543 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2544 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2545 cnt += tcp_skb_pcount(skb); 2546 2547 if (cnt > packets) { 2548 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2549 (oldcnt >= packets)) 2550 break; 2551 2552 mss = skb_shinfo(skb)->gso_size; 2553 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2554 if (err < 0) 2555 break; 2556 cnt = packets; 2557 } 2558 2559 tcp_skb_mark_lost(tp, skb); 2560 } 2561 tcp_verify_left_out(tp); 2562 } 2563 2564 /* Account newly detected lost packet(s) */ 2565 2566 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2567 { 2568 struct tcp_sock *tp = tcp_sk(sk); 2569 2570 if (tcp_is_reno(tp)) { 2571 tcp_mark_head_lost(sk, 1); 2572 } else if (tcp_is_fack(tp)) { 2573 int lost = tp->fackets_out - tp->reordering; 2574 if (lost <= 0) 2575 lost = 1; 2576 tcp_mark_head_lost(sk, lost); 2577 } else { 2578 int sacked_upto = tp->sacked_out - tp->reordering; 2579 if (sacked_upto < fast_rexmit) 2580 sacked_upto = fast_rexmit; 2581 tcp_mark_head_lost(sk, sacked_upto); 2582 } 2583 2584 tcp_timeout_skbs(sk); 2585 } 2586 2587 /* CWND moderation, preventing bursts due to too big ACKs 2588 * in dubious situations. 2589 */ 2590 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2591 { 2592 tp->snd_cwnd = min(tp->snd_cwnd, 2593 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2594 tp->snd_cwnd_stamp = tcp_time_stamp; 2595 } 2596 2597 /* Lower bound on congestion window is slow start threshold 2598 * unless congestion avoidance choice decides to overide it. 2599 */ 2600 static inline u32 tcp_cwnd_min(const struct sock *sk) 2601 { 2602 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2603 2604 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2605 } 2606 2607 /* Decrease cwnd each second ack. */ 2608 static void tcp_cwnd_down(struct sock *sk, int flag) 2609 { 2610 struct tcp_sock *tp = tcp_sk(sk); 2611 int decr = tp->snd_cwnd_cnt + 1; 2612 2613 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2614 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2615 tp->snd_cwnd_cnt = decr & 1; 2616 decr >>= 1; 2617 2618 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2619 tp->snd_cwnd -= decr; 2620 2621 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2622 tp->snd_cwnd_stamp = tcp_time_stamp; 2623 } 2624 } 2625 2626 /* Nothing was retransmitted or returned timestamp is less 2627 * than timestamp of the first retransmission. 2628 */ 2629 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2630 { 2631 return !tp->retrans_stamp || 2632 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2633 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2634 } 2635 2636 /* Undo procedures. */ 2637 2638 #if FASTRETRANS_DEBUG > 1 2639 static void DBGUNDO(struct sock *sk, const char *msg) 2640 { 2641 struct tcp_sock *tp = tcp_sk(sk); 2642 struct inet_sock *inet = inet_sk(sk); 2643 2644 if (sk->sk_family == AF_INET) { 2645 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2646 msg, 2647 &inet->inet_daddr, ntohs(inet->inet_dport), 2648 tp->snd_cwnd, tcp_left_out(tp), 2649 tp->snd_ssthresh, tp->prior_ssthresh, 2650 tp->packets_out); 2651 } 2652 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2653 else if (sk->sk_family == AF_INET6) { 2654 struct ipv6_pinfo *np = inet6_sk(sk); 2655 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2656 msg, 2657 &np->daddr, ntohs(inet->inet_dport), 2658 tp->snd_cwnd, tcp_left_out(tp), 2659 tp->snd_ssthresh, tp->prior_ssthresh, 2660 tp->packets_out); 2661 } 2662 #endif 2663 } 2664 #else 2665 #define DBGUNDO(x...) do { } while (0) 2666 #endif 2667 2668 static void tcp_undo_cwr(struct sock *sk, const int undo) 2669 { 2670 struct tcp_sock *tp = tcp_sk(sk); 2671 2672 if (tp->prior_ssthresh) { 2673 const struct inet_connection_sock *icsk = inet_csk(sk); 2674 2675 if (icsk->icsk_ca_ops->undo_cwnd) 2676 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2677 else 2678 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2679 2680 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2681 tp->snd_ssthresh = tp->prior_ssthresh; 2682 TCP_ECN_withdraw_cwr(tp); 2683 } 2684 } else { 2685 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2686 } 2687 tcp_moderate_cwnd(tp); 2688 tp->snd_cwnd_stamp = tcp_time_stamp; 2689 } 2690 2691 static inline int tcp_may_undo(struct tcp_sock *tp) 2692 { 2693 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2694 } 2695 2696 /* People celebrate: "We love our President!" */ 2697 static int tcp_try_undo_recovery(struct sock *sk) 2698 { 2699 struct tcp_sock *tp = tcp_sk(sk); 2700 2701 if (tcp_may_undo(tp)) { 2702 int mib_idx; 2703 2704 /* Happy end! We did not retransmit anything 2705 * or our original transmission succeeded. 2706 */ 2707 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2708 tcp_undo_cwr(sk, 1); 2709 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2710 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2711 else 2712 mib_idx = LINUX_MIB_TCPFULLUNDO; 2713 2714 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2715 tp->undo_marker = 0; 2716 } 2717 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2718 /* Hold old state until something *above* high_seq 2719 * is ACKed. For Reno it is MUST to prevent false 2720 * fast retransmits (RFC2582). SACK TCP is safe. */ 2721 tcp_moderate_cwnd(tp); 2722 return 1; 2723 } 2724 tcp_set_ca_state(sk, TCP_CA_Open); 2725 return 0; 2726 } 2727 2728 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2729 static void tcp_try_undo_dsack(struct sock *sk) 2730 { 2731 struct tcp_sock *tp = tcp_sk(sk); 2732 2733 if (tp->undo_marker && !tp->undo_retrans) { 2734 DBGUNDO(sk, "D-SACK"); 2735 tcp_undo_cwr(sk, 1); 2736 tp->undo_marker = 0; 2737 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2738 } 2739 } 2740 2741 /* We can clear retrans_stamp when there are no retransmissions in the 2742 * window. It would seem that it is trivially available for us in 2743 * tp->retrans_out, however, that kind of assumptions doesn't consider 2744 * what will happen if errors occur when sending retransmission for the 2745 * second time. ...It could the that such segment has only 2746 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2747 * the head skb is enough except for some reneging corner cases that 2748 * are not worth the effort. 2749 * 2750 * Main reason for all this complexity is the fact that connection dying 2751 * time now depends on the validity of the retrans_stamp, in particular, 2752 * that successive retransmissions of a segment must not advance 2753 * retrans_stamp under any conditions. 2754 */ 2755 static int tcp_any_retrans_done(struct sock *sk) 2756 { 2757 struct tcp_sock *tp = tcp_sk(sk); 2758 struct sk_buff *skb; 2759 2760 if (tp->retrans_out) 2761 return 1; 2762 2763 skb = tcp_write_queue_head(sk); 2764 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2765 return 1; 2766 2767 return 0; 2768 } 2769 2770 /* Undo during fast recovery after partial ACK. */ 2771 2772 static int tcp_try_undo_partial(struct sock *sk, int acked) 2773 { 2774 struct tcp_sock *tp = tcp_sk(sk); 2775 /* Partial ACK arrived. Force Hoe's retransmit. */ 2776 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2777 2778 if (tcp_may_undo(tp)) { 2779 /* Plain luck! Hole if filled with delayed 2780 * packet, rather than with a retransmit. 2781 */ 2782 if (!tcp_any_retrans_done(sk)) 2783 tp->retrans_stamp = 0; 2784 2785 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2786 2787 DBGUNDO(sk, "Hoe"); 2788 tcp_undo_cwr(sk, 0); 2789 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2790 2791 /* So... Do not make Hoe's retransmit yet. 2792 * If the first packet was delayed, the rest 2793 * ones are most probably delayed as well. 2794 */ 2795 failed = 0; 2796 } 2797 return failed; 2798 } 2799 2800 /* Undo during loss recovery after partial ACK. */ 2801 static int tcp_try_undo_loss(struct sock *sk) 2802 { 2803 struct tcp_sock *tp = tcp_sk(sk); 2804 2805 if (tcp_may_undo(tp)) { 2806 struct sk_buff *skb; 2807 tcp_for_write_queue(skb, sk) { 2808 if (skb == tcp_send_head(sk)) 2809 break; 2810 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2811 } 2812 2813 tcp_clear_all_retrans_hints(tp); 2814 2815 DBGUNDO(sk, "partial loss"); 2816 tp->lost_out = 0; 2817 tcp_undo_cwr(sk, 1); 2818 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2819 inet_csk(sk)->icsk_retransmits = 0; 2820 tp->undo_marker = 0; 2821 if (tcp_is_sack(tp)) 2822 tcp_set_ca_state(sk, TCP_CA_Open); 2823 return 1; 2824 } 2825 return 0; 2826 } 2827 2828 static inline void tcp_complete_cwr(struct sock *sk) 2829 { 2830 struct tcp_sock *tp = tcp_sk(sk); 2831 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2832 tp->snd_cwnd_stamp = tcp_time_stamp; 2833 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2834 } 2835 2836 static void tcp_try_keep_open(struct sock *sk) 2837 { 2838 struct tcp_sock *tp = tcp_sk(sk); 2839 int state = TCP_CA_Open; 2840 2841 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker) 2842 state = TCP_CA_Disorder; 2843 2844 if (inet_csk(sk)->icsk_ca_state != state) { 2845 tcp_set_ca_state(sk, state); 2846 tp->high_seq = tp->snd_nxt; 2847 } 2848 } 2849 2850 static void tcp_try_to_open(struct sock *sk, int flag) 2851 { 2852 struct tcp_sock *tp = tcp_sk(sk); 2853 2854 tcp_verify_left_out(tp); 2855 2856 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2857 tp->retrans_stamp = 0; 2858 2859 if (flag & FLAG_ECE) 2860 tcp_enter_cwr(sk, 1); 2861 2862 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2863 tcp_try_keep_open(sk); 2864 tcp_moderate_cwnd(tp); 2865 } else { 2866 tcp_cwnd_down(sk, flag); 2867 } 2868 } 2869 2870 static void tcp_mtup_probe_failed(struct sock *sk) 2871 { 2872 struct inet_connection_sock *icsk = inet_csk(sk); 2873 2874 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2875 icsk->icsk_mtup.probe_size = 0; 2876 } 2877 2878 static void tcp_mtup_probe_success(struct sock *sk) 2879 { 2880 struct tcp_sock *tp = tcp_sk(sk); 2881 struct inet_connection_sock *icsk = inet_csk(sk); 2882 2883 /* FIXME: breaks with very large cwnd */ 2884 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2885 tp->snd_cwnd = tp->snd_cwnd * 2886 tcp_mss_to_mtu(sk, tp->mss_cache) / 2887 icsk->icsk_mtup.probe_size; 2888 tp->snd_cwnd_cnt = 0; 2889 tp->snd_cwnd_stamp = tcp_time_stamp; 2890 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2891 2892 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2893 icsk->icsk_mtup.probe_size = 0; 2894 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2895 } 2896 2897 /* Do a simple retransmit without using the backoff mechanisms in 2898 * tcp_timer. This is used for path mtu discovery. 2899 * The socket is already locked here. 2900 */ 2901 void tcp_simple_retransmit(struct sock *sk) 2902 { 2903 const struct inet_connection_sock *icsk = inet_csk(sk); 2904 struct tcp_sock *tp = tcp_sk(sk); 2905 struct sk_buff *skb; 2906 unsigned int mss = tcp_current_mss(sk); 2907 u32 prior_lost = tp->lost_out; 2908 2909 tcp_for_write_queue(skb, sk) { 2910 if (skb == tcp_send_head(sk)) 2911 break; 2912 if (tcp_skb_seglen(skb) > mss && 2913 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2914 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2915 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2916 tp->retrans_out -= tcp_skb_pcount(skb); 2917 } 2918 tcp_skb_mark_lost_uncond_verify(tp, skb); 2919 } 2920 } 2921 2922 tcp_clear_retrans_hints_partial(tp); 2923 2924 if (prior_lost == tp->lost_out) 2925 return; 2926 2927 if (tcp_is_reno(tp)) 2928 tcp_limit_reno_sacked(tp); 2929 2930 tcp_verify_left_out(tp); 2931 2932 /* Don't muck with the congestion window here. 2933 * Reason is that we do not increase amount of _data_ 2934 * in network, but units changed and effective 2935 * cwnd/ssthresh really reduced now. 2936 */ 2937 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2938 tp->high_seq = tp->snd_nxt; 2939 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2940 tp->prior_ssthresh = 0; 2941 tp->undo_marker = 0; 2942 tcp_set_ca_state(sk, TCP_CA_Loss); 2943 } 2944 tcp_xmit_retransmit_queue(sk); 2945 } 2946 EXPORT_SYMBOL(tcp_simple_retransmit); 2947 2948 /* Process an event, which can update packets-in-flight not trivially. 2949 * Main goal of this function is to calculate new estimate for left_out, 2950 * taking into account both packets sitting in receiver's buffer and 2951 * packets lost by network. 2952 * 2953 * Besides that it does CWND reduction, when packet loss is detected 2954 * and changes state of machine. 2955 * 2956 * It does _not_ decide what to send, it is made in function 2957 * tcp_xmit_retransmit_queue(). 2958 */ 2959 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2960 { 2961 struct inet_connection_sock *icsk = inet_csk(sk); 2962 struct tcp_sock *tp = tcp_sk(sk); 2963 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2964 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2965 (tcp_fackets_out(tp) > tp->reordering)); 2966 int fast_rexmit = 0, mib_idx; 2967 2968 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2969 tp->sacked_out = 0; 2970 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2971 tp->fackets_out = 0; 2972 2973 /* Now state machine starts. 2974 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2975 if (flag & FLAG_ECE) 2976 tp->prior_ssthresh = 0; 2977 2978 /* B. In all the states check for reneging SACKs. */ 2979 if (tcp_check_sack_reneging(sk, flag)) 2980 return; 2981 2982 /* C. Process data loss notification, provided it is valid. */ 2983 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2984 before(tp->snd_una, tp->high_seq) && 2985 icsk->icsk_ca_state != TCP_CA_Open && 2986 tp->fackets_out > tp->reordering) { 2987 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering); 2988 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2989 } 2990 2991 /* D. Check consistency of the current state. */ 2992 tcp_verify_left_out(tp); 2993 2994 /* E. Check state exit conditions. State can be terminated 2995 * when high_seq is ACKed. */ 2996 if (icsk->icsk_ca_state == TCP_CA_Open) { 2997 WARN_ON(tp->retrans_out != 0); 2998 tp->retrans_stamp = 0; 2999 } else if (!before(tp->snd_una, tp->high_seq)) { 3000 switch (icsk->icsk_ca_state) { 3001 case TCP_CA_Loss: 3002 icsk->icsk_retransmits = 0; 3003 if (tcp_try_undo_recovery(sk)) 3004 return; 3005 break; 3006 3007 case TCP_CA_CWR: 3008 /* CWR is to be held something *above* high_seq 3009 * is ACKed for CWR bit to reach receiver. */ 3010 if (tp->snd_una != tp->high_seq) { 3011 tcp_complete_cwr(sk); 3012 tcp_set_ca_state(sk, TCP_CA_Open); 3013 } 3014 break; 3015 3016 case TCP_CA_Disorder: 3017 tcp_try_undo_dsack(sk); 3018 if (!tp->undo_marker || 3019 /* For SACK case do not Open to allow to undo 3020 * catching for all duplicate ACKs. */ 3021 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 3022 tp->undo_marker = 0; 3023 tcp_set_ca_state(sk, TCP_CA_Open); 3024 } 3025 break; 3026 3027 case TCP_CA_Recovery: 3028 if (tcp_is_reno(tp)) 3029 tcp_reset_reno_sack(tp); 3030 if (tcp_try_undo_recovery(sk)) 3031 return; 3032 tcp_complete_cwr(sk); 3033 break; 3034 } 3035 } 3036 3037 /* F. Process state. */ 3038 switch (icsk->icsk_ca_state) { 3039 case TCP_CA_Recovery: 3040 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3041 if (tcp_is_reno(tp) && is_dupack) 3042 tcp_add_reno_sack(sk); 3043 } else 3044 do_lost = tcp_try_undo_partial(sk, pkts_acked); 3045 break; 3046 case TCP_CA_Loss: 3047 if (flag & FLAG_DATA_ACKED) 3048 icsk->icsk_retransmits = 0; 3049 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3050 tcp_reset_reno_sack(tp); 3051 if (!tcp_try_undo_loss(sk)) { 3052 tcp_moderate_cwnd(tp); 3053 tcp_xmit_retransmit_queue(sk); 3054 return; 3055 } 3056 if (icsk->icsk_ca_state != TCP_CA_Open) 3057 return; 3058 /* Loss is undone; fall through to processing in Open state. */ 3059 default: 3060 if (tcp_is_reno(tp)) { 3061 if (flag & FLAG_SND_UNA_ADVANCED) 3062 tcp_reset_reno_sack(tp); 3063 if (is_dupack) 3064 tcp_add_reno_sack(sk); 3065 } 3066 3067 if (icsk->icsk_ca_state == TCP_CA_Disorder) 3068 tcp_try_undo_dsack(sk); 3069 3070 if (!tcp_time_to_recover(sk)) { 3071 tcp_try_to_open(sk, flag); 3072 return; 3073 } 3074 3075 /* MTU probe failure: don't reduce cwnd */ 3076 if (icsk->icsk_ca_state < TCP_CA_CWR && 3077 icsk->icsk_mtup.probe_size && 3078 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3079 tcp_mtup_probe_failed(sk); 3080 /* Restores the reduction we did in tcp_mtup_probe() */ 3081 tp->snd_cwnd++; 3082 tcp_simple_retransmit(sk); 3083 return; 3084 } 3085 3086 /* Otherwise enter Recovery state */ 3087 3088 if (tcp_is_reno(tp)) 3089 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3090 else 3091 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3092 3093 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3094 3095 tp->high_seq = tp->snd_nxt; 3096 tp->prior_ssthresh = 0; 3097 tp->undo_marker = tp->snd_una; 3098 tp->undo_retrans = tp->retrans_out; 3099 3100 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3101 if (!(flag & FLAG_ECE)) 3102 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3103 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3104 TCP_ECN_queue_cwr(tp); 3105 } 3106 3107 tp->bytes_acked = 0; 3108 tp->snd_cwnd_cnt = 0; 3109 tcp_set_ca_state(sk, TCP_CA_Recovery); 3110 fast_rexmit = 1; 3111 } 3112 3113 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3114 tcp_update_scoreboard(sk, fast_rexmit); 3115 tcp_cwnd_down(sk, flag); 3116 tcp_xmit_retransmit_queue(sk); 3117 } 3118 3119 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3120 { 3121 tcp_rtt_estimator(sk, seq_rtt); 3122 tcp_set_rto(sk); 3123 inet_csk(sk)->icsk_backoff = 0; 3124 } 3125 3126 /* Read draft-ietf-tcplw-high-performance before mucking 3127 * with this code. (Supersedes RFC1323) 3128 */ 3129 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3130 { 3131 /* RTTM Rule: A TSecr value received in a segment is used to 3132 * update the averaged RTT measurement only if the segment 3133 * acknowledges some new data, i.e., only if it advances the 3134 * left edge of the send window. 3135 * 3136 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3137 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3138 * 3139 * Changed: reset backoff as soon as we see the first valid sample. 3140 * If we do not, we get strongly overestimated rto. With timestamps 3141 * samples are accepted even from very old segments: f.e., when rtt=1 3142 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3143 * answer arrives rto becomes 120 seconds! If at least one of segments 3144 * in window is lost... Voila. --ANK (010210) 3145 */ 3146 struct tcp_sock *tp = tcp_sk(sk); 3147 3148 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3149 } 3150 3151 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3152 { 3153 /* We don't have a timestamp. Can only use 3154 * packets that are not retransmitted to determine 3155 * rtt estimates. Also, we must not reset the 3156 * backoff for rto until we get a non-retransmitted 3157 * packet. This allows us to deal with a situation 3158 * where the network delay has increased suddenly. 3159 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3160 */ 3161 3162 if (flag & FLAG_RETRANS_DATA_ACKED) 3163 return; 3164 3165 tcp_valid_rtt_meas(sk, seq_rtt); 3166 } 3167 3168 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3169 const s32 seq_rtt) 3170 { 3171 const struct tcp_sock *tp = tcp_sk(sk); 3172 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3173 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3174 tcp_ack_saw_tstamp(sk, flag); 3175 else if (seq_rtt >= 0) 3176 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3177 } 3178 3179 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3180 { 3181 const struct inet_connection_sock *icsk = inet_csk(sk); 3182 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3183 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3184 } 3185 3186 /* Restart timer after forward progress on connection. 3187 * RFC2988 recommends to restart timer to now+rto. 3188 */ 3189 static void tcp_rearm_rto(struct sock *sk) 3190 { 3191 struct tcp_sock *tp = tcp_sk(sk); 3192 3193 if (!tp->packets_out) { 3194 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3195 } else { 3196 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3197 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3198 } 3199 } 3200 3201 /* If we get here, the whole TSO packet has not been acked. */ 3202 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3203 { 3204 struct tcp_sock *tp = tcp_sk(sk); 3205 u32 packets_acked; 3206 3207 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3208 3209 packets_acked = tcp_skb_pcount(skb); 3210 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3211 return 0; 3212 packets_acked -= tcp_skb_pcount(skb); 3213 3214 if (packets_acked) { 3215 BUG_ON(tcp_skb_pcount(skb) == 0); 3216 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3217 } 3218 3219 return packets_acked; 3220 } 3221 3222 /* Remove acknowledged frames from the retransmission queue. If our packet 3223 * is before the ack sequence we can discard it as it's confirmed to have 3224 * arrived at the other end. 3225 */ 3226 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3227 u32 prior_snd_una) 3228 { 3229 struct tcp_sock *tp = tcp_sk(sk); 3230 const struct inet_connection_sock *icsk = inet_csk(sk); 3231 struct sk_buff *skb; 3232 u32 now = tcp_time_stamp; 3233 int fully_acked = 1; 3234 int flag = 0; 3235 u32 pkts_acked = 0; 3236 u32 reord = tp->packets_out; 3237 u32 prior_sacked = tp->sacked_out; 3238 s32 seq_rtt = -1; 3239 s32 ca_seq_rtt = -1; 3240 ktime_t last_ackt = net_invalid_timestamp(); 3241 3242 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3243 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3244 u32 acked_pcount; 3245 u8 sacked = scb->sacked; 3246 3247 /* Determine how many packets and what bytes were acked, tso and else */ 3248 if (after(scb->end_seq, tp->snd_una)) { 3249 if (tcp_skb_pcount(skb) == 1 || 3250 !after(tp->snd_una, scb->seq)) 3251 break; 3252 3253 acked_pcount = tcp_tso_acked(sk, skb); 3254 if (!acked_pcount) 3255 break; 3256 3257 fully_acked = 0; 3258 } else { 3259 acked_pcount = tcp_skb_pcount(skb); 3260 } 3261 3262 if (sacked & TCPCB_RETRANS) { 3263 if (sacked & TCPCB_SACKED_RETRANS) 3264 tp->retrans_out -= acked_pcount; 3265 flag |= FLAG_RETRANS_DATA_ACKED; 3266 ca_seq_rtt = -1; 3267 seq_rtt = -1; 3268 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3269 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3270 } else { 3271 ca_seq_rtt = now - scb->when; 3272 last_ackt = skb->tstamp; 3273 if (seq_rtt < 0) { 3274 seq_rtt = ca_seq_rtt; 3275 } 3276 if (!(sacked & TCPCB_SACKED_ACKED)) 3277 reord = min(pkts_acked, reord); 3278 } 3279 3280 if (sacked & TCPCB_SACKED_ACKED) 3281 tp->sacked_out -= acked_pcount; 3282 if (sacked & TCPCB_LOST) 3283 tp->lost_out -= acked_pcount; 3284 3285 tp->packets_out -= acked_pcount; 3286 pkts_acked += acked_pcount; 3287 3288 /* Initial outgoing SYN's get put onto the write_queue 3289 * just like anything else we transmit. It is not 3290 * true data, and if we misinform our callers that 3291 * this ACK acks real data, we will erroneously exit 3292 * connection startup slow start one packet too 3293 * quickly. This is severely frowned upon behavior. 3294 */ 3295 if (!(scb->flags & TCPHDR_SYN)) { 3296 flag |= FLAG_DATA_ACKED; 3297 } else { 3298 flag |= FLAG_SYN_ACKED; 3299 tp->retrans_stamp = 0; 3300 } 3301 3302 if (!fully_acked) 3303 break; 3304 3305 tcp_unlink_write_queue(skb, sk); 3306 sk_wmem_free_skb(sk, skb); 3307 tp->scoreboard_skb_hint = NULL; 3308 if (skb == tp->retransmit_skb_hint) 3309 tp->retransmit_skb_hint = NULL; 3310 if (skb == tp->lost_skb_hint) 3311 tp->lost_skb_hint = NULL; 3312 } 3313 3314 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3315 tp->snd_up = tp->snd_una; 3316 3317 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3318 flag |= FLAG_SACK_RENEGING; 3319 3320 if (flag & FLAG_ACKED) { 3321 const struct tcp_congestion_ops *ca_ops 3322 = inet_csk(sk)->icsk_ca_ops; 3323 3324 if (unlikely(icsk->icsk_mtup.probe_size && 3325 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3326 tcp_mtup_probe_success(sk); 3327 } 3328 3329 tcp_ack_update_rtt(sk, flag, seq_rtt); 3330 tcp_rearm_rto(sk); 3331 3332 if (tcp_is_reno(tp)) { 3333 tcp_remove_reno_sacks(sk, pkts_acked); 3334 } else { 3335 int delta; 3336 3337 /* Non-retransmitted hole got filled? That's reordering */ 3338 if (reord < prior_fackets) 3339 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3340 3341 delta = tcp_is_fack(tp) ? pkts_acked : 3342 prior_sacked - tp->sacked_out; 3343 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3344 } 3345 3346 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3347 3348 if (ca_ops->pkts_acked) { 3349 s32 rtt_us = -1; 3350 3351 /* Is the ACK triggering packet unambiguous? */ 3352 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3353 /* High resolution needed and available? */ 3354 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3355 !ktime_equal(last_ackt, 3356 net_invalid_timestamp())) 3357 rtt_us = ktime_us_delta(ktime_get_real(), 3358 last_ackt); 3359 else if (ca_seq_rtt > 0) 3360 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3361 } 3362 3363 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3364 } 3365 } 3366 3367 #if FASTRETRANS_DEBUG > 0 3368 WARN_ON((int)tp->sacked_out < 0); 3369 WARN_ON((int)tp->lost_out < 0); 3370 WARN_ON((int)tp->retrans_out < 0); 3371 if (!tp->packets_out && tcp_is_sack(tp)) { 3372 icsk = inet_csk(sk); 3373 if (tp->lost_out) { 3374 printk(KERN_DEBUG "Leak l=%u %d\n", 3375 tp->lost_out, icsk->icsk_ca_state); 3376 tp->lost_out = 0; 3377 } 3378 if (tp->sacked_out) { 3379 printk(KERN_DEBUG "Leak s=%u %d\n", 3380 tp->sacked_out, icsk->icsk_ca_state); 3381 tp->sacked_out = 0; 3382 } 3383 if (tp->retrans_out) { 3384 printk(KERN_DEBUG "Leak r=%u %d\n", 3385 tp->retrans_out, icsk->icsk_ca_state); 3386 tp->retrans_out = 0; 3387 } 3388 } 3389 #endif 3390 return flag; 3391 } 3392 3393 static void tcp_ack_probe(struct sock *sk) 3394 { 3395 const struct tcp_sock *tp = tcp_sk(sk); 3396 struct inet_connection_sock *icsk = inet_csk(sk); 3397 3398 /* Was it a usable window open? */ 3399 3400 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3401 icsk->icsk_backoff = 0; 3402 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3403 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3404 * This function is not for random using! 3405 */ 3406 } else { 3407 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3408 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3409 TCP_RTO_MAX); 3410 } 3411 } 3412 3413 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3414 { 3415 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3416 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 3417 } 3418 3419 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3420 { 3421 const struct tcp_sock *tp = tcp_sk(sk); 3422 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3423 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3424 } 3425 3426 /* Check that window update is acceptable. 3427 * The function assumes that snd_una<=ack<=snd_next. 3428 */ 3429 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3430 const u32 ack, const u32 ack_seq, 3431 const u32 nwin) 3432 { 3433 return (after(ack, tp->snd_una) || 3434 after(ack_seq, tp->snd_wl1) || 3435 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 3436 } 3437 3438 /* Update our send window. 3439 * 3440 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3441 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3442 */ 3443 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3444 u32 ack_seq) 3445 { 3446 struct tcp_sock *tp = tcp_sk(sk); 3447 int flag = 0; 3448 u32 nwin = ntohs(tcp_hdr(skb)->window); 3449 3450 if (likely(!tcp_hdr(skb)->syn)) 3451 nwin <<= tp->rx_opt.snd_wscale; 3452 3453 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3454 flag |= FLAG_WIN_UPDATE; 3455 tcp_update_wl(tp, ack_seq); 3456 3457 if (tp->snd_wnd != nwin) { 3458 tp->snd_wnd = nwin; 3459 3460 /* Note, it is the only place, where 3461 * fast path is recovered for sending TCP. 3462 */ 3463 tp->pred_flags = 0; 3464 tcp_fast_path_check(sk); 3465 3466 if (nwin > tp->max_window) { 3467 tp->max_window = nwin; 3468 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3469 } 3470 } 3471 } 3472 3473 tp->snd_una = ack; 3474 3475 return flag; 3476 } 3477 3478 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3479 * continue in congestion avoidance. 3480 */ 3481 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3482 { 3483 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3484 tp->snd_cwnd_cnt = 0; 3485 tp->bytes_acked = 0; 3486 TCP_ECN_queue_cwr(tp); 3487 tcp_moderate_cwnd(tp); 3488 } 3489 3490 /* A conservative spurious RTO response algorithm: reduce cwnd using 3491 * rate halving and continue in congestion avoidance. 3492 */ 3493 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3494 { 3495 tcp_enter_cwr(sk, 0); 3496 } 3497 3498 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3499 { 3500 if (flag & FLAG_ECE) 3501 tcp_ratehalving_spur_to_response(sk); 3502 else 3503 tcp_undo_cwr(sk, 1); 3504 } 3505 3506 /* F-RTO spurious RTO detection algorithm (RFC4138) 3507 * 3508 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3509 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3510 * window (but not to or beyond highest sequence sent before RTO): 3511 * On First ACK, send two new segments out. 3512 * On Second ACK, RTO was likely spurious. Do spurious response (response 3513 * algorithm is not part of the F-RTO detection algorithm 3514 * given in RFC4138 but can be selected separately). 3515 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3516 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3517 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3518 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3519 * 3520 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3521 * original window even after we transmit two new data segments. 3522 * 3523 * SACK version: 3524 * on first step, wait until first cumulative ACK arrives, then move to 3525 * the second step. In second step, the next ACK decides. 3526 * 3527 * F-RTO is implemented (mainly) in four functions: 3528 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3529 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3530 * called when tcp_use_frto() showed green light 3531 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3532 * - tcp_enter_frto_loss() is called if there is not enough evidence 3533 * to prove that the RTO is indeed spurious. It transfers the control 3534 * from F-RTO to the conventional RTO recovery 3535 */ 3536 static int tcp_process_frto(struct sock *sk, int flag) 3537 { 3538 struct tcp_sock *tp = tcp_sk(sk); 3539 3540 tcp_verify_left_out(tp); 3541 3542 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3543 if (flag & FLAG_DATA_ACKED) 3544 inet_csk(sk)->icsk_retransmits = 0; 3545 3546 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3547 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3548 tp->undo_marker = 0; 3549 3550 if (!before(tp->snd_una, tp->frto_highmark)) { 3551 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3552 return 1; 3553 } 3554 3555 if (!tcp_is_sackfrto(tp)) { 3556 /* RFC4138 shortcoming in step 2; should also have case c): 3557 * ACK isn't duplicate nor advances window, e.g., opposite dir 3558 * data, winupdate 3559 */ 3560 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3561 return 1; 3562 3563 if (!(flag & FLAG_DATA_ACKED)) { 3564 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3565 flag); 3566 return 1; 3567 } 3568 } else { 3569 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3570 /* Prevent sending of new data. */ 3571 tp->snd_cwnd = min(tp->snd_cwnd, 3572 tcp_packets_in_flight(tp)); 3573 return 1; 3574 } 3575 3576 if ((tp->frto_counter >= 2) && 3577 (!(flag & FLAG_FORWARD_PROGRESS) || 3578 ((flag & FLAG_DATA_SACKED) && 3579 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3580 /* RFC4138 shortcoming (see comment above) */ 3581 if (!(flag & FLAG_FORWARD_PROGRESS) && 3582 (flag & FLAG_NOT_DUP)) 3583 return 1; 3584 3585 tcp_enter_frto_loss(sk, 3, flag); 3586 return 1; 3587 } 3588 } 3589 3590 if (tp->frto_counter == 1) { 3591 /* tcp_may_send_now needs to see updated state */ 3592 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3593 tp->frto_counter = 2; 3594 3595 if (!tcp_may_send_now(sk)) 3596 tcp_enter_frto_loss(sk, 2, flag); 3597 3598 return 1; 3599 } else { 3600 switch (sysctl_tcp_frto_response) { 3601 case 2: 3602 tcp_undo_spur_to_response(sk, flag); 3603 break; 3604 case 1: 3605 tcp_conservative_spur_to_response(tp); 3606 break; 3607 default: 3608 tcp_ratehalving_spur_to_response(sk); 3609 break; 3610 } 3611 tp->frto_counter = 0; 3612 tp->undo_marker = 0; 3613 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3614 } 3615 return 0; 3616 } 3617 3618 /* This routine deals with incoming acks, but not outgoing ones. */ 3619 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3620 { 3621 struct inet_connection_sock *icsk = inet_csk(sk); 3622 struct tcp_sock *tp = tcp_sk(sk); 3623 u32 prior_snd_una = tp->snd_una; 3624 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3625 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3626 u32 prior_in_flight; 3627 u32 prior_fackets; 3628 int prior_packets; 3629 int frto_cwnd = 0; 3630 3631 /* If the ack is older than previous acks 3632 * then we can probably ignore it. 3633 */ 3634 if (before(ack, prior_snd_una)) 3635 goto old_ack; 3636 3637 /* If the ack includes data we haven't sent yet, discard 3638 * this segment (RFC793 Section 3.9). 3639 */ 3640 if (after(ack, tp->snd_nxt)) 3641 goto invalid_ack; 3642 3643 if (after(ack, prior_snd_una)) 3644 flag |= FLAG_SND_UNA_ADVANCED; 3645 3646 if (sysctl_tcp_abc) { 3647 if (icsk->icsk_ca_state < TCP_CA_CWR) 3648 tp->bytes_acked += ack - prior_snd_una; 3649 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3650 /* we assume just one segment left network */ 3651 tp->bytes_acked += min(ack - prior_snd_una, 3652 tp->mss_cache); 3653 } 3654 3655 prior_fackets = tp->fackets_out; 3656 prior_in_flight = tcp_packets_in_flight(tp); 3657 3658 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3659 /* Window is constant, pure forward advance. 3660 * No more checks are required. 3661 * Note, we use the fact that SND.UNA>=SND.WL2. 3662 */ 3663 tcp_update_wl(tp, ack_seq); 3664 tp->snd_una = ack; 3665 flag |= FLAG_WIN_UPDATE; 3666 3667 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3668 3669 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3670 } else { 3671 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3672 flag |= FLAG_DATA; 3673 else 3674 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3675 3676 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3677 3678 if (TCP_SKB_CB(skb)->sacked) 3679 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3680 3681 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3682 flag |= FLAG_ECE; 3683 3684 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3685 } 3686 3687 /* We passed data and got it acked, remove any soft error 3688 * log. Something worked... 3689 */ 3690 sk->sk_err_soft = 0; 3691 icsk->icsk_probes_out = 0; 3692 tp->rcv_tstamp = tcp_time_stamp; 3693 prior_packets = tp->packets_out; 3694 if (!prior_packets) 3695 goto no_queue; 3696 3697 /* See if we can take anything off of the retransmit queue. */ 3698 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3699 3700 if (tp->frto_counter) 3701 frto_cwnd = tcp_process_frto(sk, flag); 3702 /* Guarantee sacktag reordering detection against wrap-arounds */ 3703 if (before(tp->frto_highmark, tp->snd_una)) 3704 tp->frto_highmark = 0; 3705 3706 if (tcp_ack_is_dubious(sk, flag)) { 3707 /* Advance CWND, if state allows this. */ 3708 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3709 tcp_may_raise_cwnd(sk, flag)) 3710 tcp_cong_avoid(sk, ack, prior_in_flight); 3711 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3712 flag); 3713 } else { 3714 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3715 tcp_cong_avoid(sk, ack, prior_in_flight); 3716 } 3717 3718 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3719 dst_confirm(__sk_dst_get(sk)); 3720 3721 return 1; 3722 3723 no_queue: 3724 /* If this ack opens up a zero window, clear backoff. It was 3725 * being used to time the probes, and is probably far higher than 3726 * it needs to be for normal retransmission. 3727 */ 3728 if (tcp_send_head(sk)) 3729 tcp_ack_probe(sk); 3730 return 1; 3731 3732 invalid_ack: 3733 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3734 return -1; 3735 3736 old_ack: 3737 if (TCP_SKB_CB(skb)->sacked) { 3738 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3739 if (icsk->icsk_ca_state == TCP_CA_Open) 3740 tcp_try_keep_open(sk); 3741 } 3742 3743 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3744 return 0; 3745 } 3746 3747 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3748 * But, this can also be called on packets in the established flow when 3749 * the fast version below fails. 3750 */ 3751 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3752 u8 **hvpp, int estab) 3753 { 3754 unsigned char *ptr; 3755 struct tcphdr *th = tcp_hdr(skb); 3756 int length = (th->doff * 4) - sizeof(struct tcphdr); 3757 3758 ptr = (unsigned char *)(th + 1); 3759 opt_rx->saw_tstamp = 0; 3760 3761 while (length > 0) { 3762 int opcode = *ptr++; 3763 int opsize; 3764 3765 switch (opcode) { 3766 case TCPOPT_EOL: 3767 return; 3768 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3769 length--; 3770 continue; 3771 default: 3772 opsize = *ptr++; 3773 if (opsize < 2) /* "silly options" */ 3774 return; 3775 if (opsize > length) 3776 return; /* don't parse partial options */ 3777 switch (opcode) { 3778 case TCPOPT_MSS: 3779 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3780 u16 in_mss = get_unaligned_be16(ptr); 3781 if (in_mss) { 3782 if (opt_rx->user_mss && 3783 opt_rx->user_mss < in_mss) 3784 in_mss = opt_rx->user_mss; 3785 opt_rx->mss_clamp = in_mss; 3786 } 3787 } 3788 break; 3789 case TCPOPT_WINDOW: 3790 if (opsize == TCPOLEN_WINDOW && th->syn && 3791 !estab && sysctl_tcp_window_scaling) { 3792 __u8 snd_wscale = *(__u8 *)ptr; 3793 opt_rx->wscale_ok = 1; 3794 if (snd_wscale > 14) { 3795 if (net_ratelimit()) 3796 printk(KERN_INFO "tcp_parse_options: Illegal window " 3797 "scaling value %d >14 received.\n", 3798 snd_wscale); 3799 snd_wscale = 14; 3800 } 3801 opt_rx->snd_wscale = snd_wscale; 3802 } 3803 break; 3804 case TCPOPT_TIMESTAMP: 3805 if ((opsize == TCPOLEN_TIMESTAMP) && 3806 ((estab && opt_rx->tstamp_ok) || 3807 (!estab && sysctl_tcp_timestamps))) { 3808 opt_rx->saw_tstamp = 1; 3809 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3810 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3811 } 3812 break; 3813 case TCPOPT_SACK_PERM: 3814 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3815 !estab && sysctl_tcp_sack) { 3816 opt_rx->sack_ok = 1; 3817 tcp_sack_reset(opt_rx); 3818 } 3819 break; 3820 3821 case TCPOPT_SACK: 3822 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3823 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3824 opt_rx->sack_ok) { 3825 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3826 } 3827 break; 3828 #ifdef CONFIG_TCP_MD5SIG 3829 case TCPOPT_MD5SIG: 3830 /* 3831 * The MD5 Hash has already been 3832 * checked (see tcp_v{4,6}_do_rcv()). 3833 */ 3834 break; 3835 #endif 3836 case TCPOPT_COOKIE: 3837 /* This option is variable length. 3838 */ 3839 switch (opsize) { 3840 case TCPOLEN_COOKIE_BASE: 3841 /* not yet implemented */ 3842 break; 3843 case TCPOLEN_COOKIE_PAIR: 3844 /* not yet implemented */ 3845 break; 3846 case TCPOLEN_COOKIE_MIN+0: 3847 case TCPOLEN_COOKIE_MIN+2: 3848 case TCPOLEN_COOKIE_MIN+4: 3849 case TCPOLEN_COOKIE_MIN+6: 3850 case TCPOLEN_COOKIE_MAX: 3851 /* 16-bit multiple */ 3852 opt_rx->cookie_plus = opsize; 3853 *hvpp = ptr; 3854 break; 3855 default: 3856 /* ignore option */ 3857 break; 3858 } 3859 break; 3860 } 3861 3862 ptr += opsize-2; 3863 length -= opsize; 3864 } 3865 } 3866 } 3867 EXPORT_SYMBOL(tcp_parse_options); 3868 3869 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3870 { 3871 __be32 *ptr = (__be32 *)(th + 1); 3872 3873 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3874 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3875 tp->rx_opt.saw_tstamp = 1; 3876 ++ptr; 3877 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3878 ++ptr; 3879 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3880 return 1; 3881 } 3882 return 0; 3883 } 3884 3885 /* Fast parse options. This hopes to only see timestamps. 3886 * If it is wrong it falls back on tcp_parse_options(). 3887 */ 3888 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3889 struct tcp_sock *tp, u8 **hvpp) 3890 { 3891 /* In the spirit of fast parsing, compare doff directly to constant 3892 * values. Because equality is used, short doff can be ignored here. 3893 */ 3894 if (th->doff == (sizeof(*th) / 4)) { 3895 tp->rx_opt.saw_tstamp = 0; 3896 return 0; 3897 } else if (tp->rx_opt.tstamp_ok && 3898 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3899 if (tcp_parse_aligned_timestamp(tp, th)) 3900 return 1; 3901 } 3902 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1); 3903 return 1; 3904 } 3905 3906 #ifdef CONFIG_TCP_MD5SIG 3907 /* 3908 * Parse MD5 Signature option 3909 */ 3910 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3911 { 3912 int length = (th->doff << 2) - sizeof (*th); 3913 u8 *ptr = (u8*)(th + 1); 3914 3915 /* If the TCP option is too short, we can short cut */ 3916 if (length < TCPOLEN_MD5SIG) 3917 return NULL; 3918 3919 while (length > 0) { 3920 int opcode = *ptr++; 3921 int opsize; 3922 3923 switch(opcode) { 3924 case TCPOPT_EOL: 3925 return NULL; 3926 case TCPOPT_NOP: 3927 length--; 3928 continue; 3929 default: 3930 opsize = *ptr++; 3931 if (opsize < 2 || opsize > length) 3932 return NULL; 3933 if (opcode == TCPOPT_MD5SIG) 3934 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3935 } 3936 ptr += opsize - 2; 3937 length -= opsize; 3938 } 3939 return NULL; 3940 } 3941 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3942 #endif 3943 3944 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3945 { 3946 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3947 tp->rx_opt.ts_recent_stamp = get_seconds(); 3948 } 3949 3950 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3951 { 3952 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3953 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3954 * extra check below makes sure this can only happen 3955 * for pure ACK frames. -DaveM 3956 * 3957 * Not only, also it occurs for expired timestamps. 3958 */ 3959 3960 if (tcp_paws_check(&tp->rx_opt, 0)) 3961 tcp_store_ts_recent(tp); 3962 } 3963 } 3964 3965 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3966 * 3967 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3968 * it can pass through stack. So, the following predicate verifies that 3969 * this segment is not used for anything but congestion avoidance or 3970 * fast retransmit. Moreover, we even are able to eliminate most of such 3971 * second order effects, if we apply some small "replay" window (~RTO) 3972 * to timestamp space. 3973 * 3974 * All these measures still do not guarantee that we reject wrapped ACKs 3975 * on networks with high bandwidth, when sequence space is recycled fastly, 3976 * but it guarantees that such events will be very rare and do not affect 3977 * connection seriously. This doesn't look nice, but alas, PAWS is really 3978 * buggy extension. 3979 * 3980 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3981 * states that events when retransmit arrives after original data are rare. 3982 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3983 * the biggest problem on large power networks even with minor reordering. 3984 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3985 * up to bandwidth of 18Gigabit/sec. 8) ] 3986 */ 3987 3988 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3989 { 3990 struct tcp_sock *tp = tcp_sk(sk); 3991 struct tcphdr *th = tcp_hdr(skb); 3992 u32 seq = TCP_SKB_CB(skb)->seq; 3993 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3994 3995 return (/* 1. Pure ACK with correct sequence number. */ 3996 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3997 3998 /* 2. ... and duplicate ACK. */ 3999 ack == tp->snd_una && 4000 4001 /* 3. ... and does not update window. */ 4002 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4003 4004 /* 4. ... and sits in replay window. */ 4005 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4006 } 4007 4008 static inline int tcp_paws_discard(const struct sock *sk, 4009 const struct sk_buff *skb) 4010 { 4011 const struct tcp_sock *tp = tcp_sk(sk); 4012 4013 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4014 !tcp_disordered_ack(sk, skb); 4015 } 4016 4017 /* Check segment sequence number for validity. 4018 * 4019 * Segment controls are considered valid, if the segment 4020 * fits to the window after truncation to the window. Acceptability 4021 * of data (and SYN, FIN, of course) is checked separately. 4022 * See tcp_data_queue(), for example. 4023 * 4024 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4025 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4026 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4027 * (borrowed from freebsd) 4028 */ 4029 4030 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 4031 { 4032 return !before(end_seq, tp->rcv_wup) && 4033 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4034 } 4035 4036 /* When we get a reset we do this. */ 4037 static void tcp_reset(struct sock *sk) 4038 { 4039 /* We want the right error as BSD sees it (and indeed as we do). */ 4040 switch (sk->sk_state) { 4041 case TCP_SYN_SENT: 4042 sk->sk_err = ECONNREFUSED; 4043 break; 4044 case TCP_CLOSE_WAIT: 4045 sk->sk_err = EPIPE; 4046 break; 4047 case TCP_CLOSE: 4048 return; 4049 default: 4050 sk->sk_err = ECONNRESET; 4051 } 4052 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4053 smp_wmb(); 4054 4055 if (!sock_flag(sk, SOCK_DEAD)) 4056 sk->sk_error_report(sk); 4057 4058 tcp_done(sk); 4059 } 4060 4061 /* 4062 * Process the FIN bit. This now behaves as it is supposed to work 4063 * and the FIN takes effect when it is validly part of sequence 4064 * space. Not before when we get holes. 4065 * 4066 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4067 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4068 * TIME-WAIT) 4069 * 4070 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4071 * close and we go into CLOSING (and later onto TIME-WAIT) 4072 * 4073 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4074 */ 4075 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 4076 { 4077 struct tcp_sock *tp = tcp_sk(sk); 4078 4079 inet_csk_schedule_ack(sk); 4080 4081 sk->sk_shutdown |= RCV_SHUTDOWN; 4082 sock_set_flag(sk, SOCK_DONE); 4083 4084 switch (sk->sk_state) { 4085 case TCP_SYN_RECV: 4086 case TCP_ESTABLISHED: 4087 /* Move to CLOSE_WAIT */ 4088 tcp_set_state(sk, TCP_CLOSE_WAIT); 4089 inet_csk(sk)->icsk_ack.pingpong = 1; 4090 break; 4091 4092 case TCP_CLOSE_WAIT: 4093 case TCP_CLOSING: 4094 /* Received a retransmission of the FIN, do 4095 * nothing. 4096 */ 4097 break; 4098 case TCP_LAST_ACK: 4099 /* RFC793: Remain in the LAST-ACK state. */ 4100 break; 4101 4102 case TCP_FIN_WAIT1: 4103 /* This case occurs when a simultaneous close 4104 * happens, we must ack the received FIN and 4105 * enter the CLOSING state. 4106 */ 4107 tcp_send_ack(sk); 4108 tcp_set_state(sk, TCP_CLOSING); 4109 break; 4110 case TCP_FIN_WAIT2: 4111 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4112 tcp_send_ack(sk); 4113 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4114 break; 4115 default: 4116 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4117 * cases we should never reach this piece of code. 4118 */ 4119 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4120 __func__, sk->sk_state); 4121 break; 4122 } 4123 4124 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4125 * Probably, we should reset in this case. For now drop them. 4126 */ 4127 __skb_queue_purge(&tp->out_of_order_queue); 4128 if (tcp_is_sack(tp)) 4129 tcp_sack_reset(&tp->rx_opt); 4130 sk_mem_reclaim(sk); 4131 4132 if (!sock_flag(sk, SOCK_DEAD)) { 4133 sk->sk_state_change(sk); 4134 4135 /* Do not send POLL_HUP for half duplex close. */ 4136 if (sk->sk_shutdown == SHUTDOWN_MASK || 4137 sk->sk_state == TCP_CLOSE) 4138 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4139 else 4140 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4141 } 4142 } 4143 4144 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4145 u32 end_seq) 4146 { 4147 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4148 if (before(seq, sp->start_seq)) 4149 sp->start_seq = seq; 4150 if (after(end_seq, sp->end_seq)) 4151 sp->end_seq = end_seq; 4152 return 1; 4153 } 4154 return 0; 4155 } 4156 4157 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4158 { 4159 struct tcp_sock *tp = tcp_sk(sk); 4160 4161 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4162 int mib_idx; 4163 4164 if (before(seq, tp->rcv_nxt)) 4165 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4166 else 4167 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4168 4169 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4170 4171 tp->rx_opt.dsack = 1; 4172 tp->duplicate_sack[0].start_seq = seq; 4173 tp->duplicate_sack[0].end_seq = end_seq; 4174 } 4175 } 4176 4177 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4178 { 4179 struct tcp_sock *tp = tcp_sk(sk); 4180 4181 if (!tp->rx_opt.dsack) 4182 tcp_dsack_set(sk, seq, end_seq); 4183 else 4184 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4185 } 4186 4187 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 4188 { 4189 struct tcp_sock *tp = tcp_sk(sk); 4190 4191 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4192 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4193 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4194 tcp_enter_quickack_mode(sk); 4195 4196 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4197 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4198 4199 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4200 end_seq = tp->rcv_nxt; 4201 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4202 } 4203 } 4204 4205 tcp_send_ack(sk); 4206 } 4207 4208 /* These routines update the SACK block as out-of-order packets arrive or 4209 * in-order packets close up the sequence space. 4210 */ 4211 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4212 { 4213 int this_sack; 4214 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4215 struct tcp_sack_block *swalk = sp + 1; 4216 4217 /* See if the recent change to the first SACK eats into 4218 * or hits the sequence space of other SACK blocks, if so coalesce. 4219 */ 4220 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4221 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4222 int i; 4223 4224 /* Zap SWALK, by moving every further SACK up by one slot. 4225 * Decrease num_sacks. 4226 */ 4227 tp->rx_opt.num_sacks--; 4228 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4229 sp[i] = sp[i + 1]; 4230 continue; 4231 } 4232 this_sack++, swalk++; 4233 } 4234 } 4235 4236 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4237 { 4238 struct tcp_sock *tp = tcp_sk(sk); 4239 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4240 int cur_sacks = tp->rx_opt.num_sacks; 4241 int this_sack; 4242 4243 if (!cur_sacks) 4244 goto new_sack; 4245 4246 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4247 if (tcp_sack_extend(sp, seq, end_seq)) { 4248 /* Rotate this_sack to the first one. */ 4249 for (; this_sack > 0; this_sack--, sp--) 4250 swap(*sp, *(sp - 1)); 4251 if (cur_sacks > 1) 4252 tcp_sack_maybe_coalesce(tp); 4253 return; 4254 } 4255 } 4256 4257 /* Could not find an adjacent existing SACK, build a new one, 4258 * put it at the front, and shift everyone else down. We 4259 * always know there is at least one SACK present already here. 4260 * 4261 * If the sack array is full, forget about the last one. 4262 */ 4263 if (this_sack >= TCP_NUM_SACKS) { 4264 this_sack--; 4265 tp->rx_opt.num_sacks--; 4266 sp--; 4267 } 4268 for (; this_sack > 0; this_sack--, sp--) 4269 *sp = *(sp - 1); 4270 4271 new_sack: 4272 /* Build the new head SACK, and we're done. */ 4273 sp->start_seq = seq; 4274 sp->end_seq = end_seq; 4275 tp->rx_opt.num_sacks++; 4276 } 4277 4278 /* RCV.NXT advances, some SACKs should be eaten. */ 4279 4280 static void tcp_sack_remove(struct tcp_sock *tp) 4281 { 4282 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4283 int num_sacks = tp->rx_opt.num_sacks; 4284 int this_sack; 4285 4286 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4287 if (skb_queue_empty(&tp->out_of_order_queue)) { 4288 tp->rx_opt.num_sacks = 0; 4289 return; 4290 } 4291 4292 for (this_sack = 0; this_sack < num_sacks;) { 4293 /* Check if the start of the sack is covered by RCV.NXT. */ 4294 if (!before(tp->rcv_nxt, sp->start_seq)) { 4295 int i; 4296 4297 /* RCV.NXT must cover all the block! */ 4298 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4299 4300 /* Zap this SACK, by moving forward any other SACKS. */ 4301 for (i=this_sack+1; i < num_sacks; i++) 4302 tp->selective_acks[i-1] = tp->selective_acks[i]; 4303 num_sacks--; 4304 continue; 4305 } 4306 this_sack++; 4307 sp++; 4308 } 4309 tp->rx_opt.num_sacks = num_sacks; 4310 } 4311 4312 /* This one checks to see if we can put data from the 4313 * out_of_order queue into the receive_queue. 4314 */ 4315 static void tcp_ofo_queue(struct sock *sk) 4316 { 4317 struct tcp_sock *tp = tcp_sk(sk); 4318 __u32 dsack_high = tp->rcv_nxt; 4319 struct sk_buff *skb; 4320 4321 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4322 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4323 break; 4324 4325 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4326 __u32 dsack = dsack_high; 4327 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4328 dsack_high = TCP_SKB_CB(skb)->end_seq; 4329 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4330 } 4331 4332 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4333 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4334 __skb_unlink(skb, &tp->out_of_order_queue); 4335 __kfree_skb(skb); 4336 continue; 4337 } 4338 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4339 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4340 TCP_SKB_CB(skb)->end_seq); 4341 4342 __skb_unlink(skb, &tp->out_of_order_queue); 4343 __skb_queue_tail(&sk->sk_receive_queue, skb); 4344 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4345 if (tcp_hdr(skb)->fin) 4346 tcp_fin(skb, sk, tcp_hdr(skb)); 4347 } 4348 } 4349 4350 static int tcp_prune_ofo_queue(struct sock *sk); 4351 static int tcp_prune_queue(struct sock *sk); 4352 4353 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4354 { 4355 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4356 !sk_rmem_schedule(sk, size)) { 4357 4358 if (tcp_prune_queue(sk) < 0) 4359 return -1; 4360 4361 if (!sk_rmem_schedule(sk, size)) { 4362 if (!tcp_prune_ofo_queue(sk)) 4363 return -1; 4364 4365 if (!sk_rmem_schedule(sk, size)) 4366 return -1; 4367 } 4368 } 4369 return 0; 4370 } 4371 4372 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4373 { 4374 struct tcphdr *th = tcp_hdr(skb); 4375 struct tcp_sock *tp = tcp_sk(sk); 4376 int eaten = -1; 4377 4378 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4379 goto drop; 4380 4381 skb_dst_drop(skb); 4382 __skb_pull(skb, th->doff * 4); 4383 4384 TCP_ECN_accept_cwr(tp, skb); 4385 4386 tp->rx_opt.dsack = 0; 4387 4388 /* Queue data for delivery to the user. 4389 * Packets in sequence go to the receive queue. 4390 * Out of sequence packets to the out_of_order_queue. 4391 */ 4392 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4393 if (tcp_receive_window(tp) == 0) 4394 goto out_of_window; 4395 4396 /* Ok. In sequence. In window. */ 4397 if (tp->ucopy.task == current && 4398 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4399 sock_owned_by_user(sk) && !tp->urg_data) { 4400 int chunk = min_t(unsigned int, skb->len, 4401 tp->ucopy.len); 4402 4403 __set_current_state(TASK_RUNNING); 4404 4405 local_bh_enable(); 4406 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4407 tp->ucopy.len -= chunk; 4408 tp->copied_seq += chunk; 4409 eaten = (chunk == skb->len && !th->fin); 4410 tcp_rcv_space_adjust(sk); 4411 } 4412 local_bh_disable(); 4413 } 4414 4415 if (eaten <= 0) { 4416 queue_and_out: 4417 if (eaten < 0 && 4418 tcp_try_rmem_schedule(sk, skb->truesize)) 4419 goto drop; 4420 4421 skb_set_owner_r(skb, sk); 4422 __skb_queue_tail(&sk->sk_receive_queue, skb); 4423 } 4424 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4425 if (skb->len) 4426 tcp_event_data_recv(sk, skb); 4427 if (th->fin) 4428 tcp_fin(skb, sk, th); 4429 4430 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4431 tcp_ofo_queue(sk); 4432 4433 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4434 * gap in queue is filled. 4435 */ 4436 if (skb_queue_empty(&tp->out_of_order_queue)) 4437 inet_csk(sk)->icsk_ack.pingpong = 0; 4438 } 4439 4440 if (tp->rx_opt.num_sacks) 4441 tcp_sack_remove(tp); 4442 4443 tcp_fast_path_check(sk); 4444 4445 if (eaten > 0) 4446 __kfree_skb(skb); 4447 else if (!sock_flag(sk, SOCK_DEAD)) 4448 sk->sk_data_ready(sk, 0); 4449 return; 4450 } 4451 4452 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4453 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4454 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4455 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4456 4457 out_of_window: 4458 tcp_enter_quickack_mode(sk); 4459 inet_csk_schedule_ack(sk); 4460 drop: 4461 __kfree_skb(skb); 4462 return; 4463 } 4464 4465 /* Out of window. F.e. zero window probe. */ 4466 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4467 goto out_of_window; 4468 4469 tcp_enter_quickack_mode(sk); 4470 4471 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4472 /* Partial packet, seq < rcv_next < end_seq */ 4473 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4474 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4475 TCP_SKB_CB(skb)->end_seq); 4476 4477 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4478 4479 /* If window is closed, drop tail of packet. But after 4480 * remembering D-SACK for its head made in previous line. 4481 */ 4482 if (!tcp_receive_window(tp)) 4483 goto out_of_window; 4484 goto queue_and_out; 4485 } 4486 4487 TCP_ECN_check_ce(tp, skb); 4488 4489 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4490 goto drop; 4491 4492 /* Disable header prediction. */ 4493 tp->pred_flags = 0; 4494 inet_csk_schedule_ack(sk); 4495 4496 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4497 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4498 4499 skb_set_owner_r(skb, sk); 4500 4501 if (!skb_peek(&tp->out_of_order_queue)) { 4502 /* Initial out of order segment, build 1 SACK. */ 4503 if (tcp_is_sack(tp)) { 4504 tp->rx_opt.num_sacks = 1; 4505 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4506 tp->selective_acks[0].end_seq = 4507 TCP_SKB_CB(skb)->end_seq; 4508 } 4509 __skb_queue_head(&tp->out_of_order_queue, skb); 4510 } else { 4511 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue); 4512 u32 seq = TCP_SKB_CB(skb)->seq; 4513 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4514 4515 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4516 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4517 4518 if (!tp->rx_opt.num_sacks || 4519 tp->selective_acks[0].end_seq != seq) 4520 goto add_sack; 4521 4522 /* Common case: data arrive in order after hole. */ 4523 tp->selective_acks[0].end_seq = end_seq; 4524 return; 4525 } 4526 4527 /* Find place to insert this segment. */ 4528 while (1) { 4529 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4530 break; 4531 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4532 skb1 = NULL; 4533 break; 4534 } 4535 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4536 } 4537 4538 /* Do skb overlap to previous one? */ 4539 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4540 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4541 /* All the bits are present. Drop. */ 4542 __kfree_skb(skb); 4543 tcp_dsack_set(sk, seq, end_seq); 4544 goto add_sack; 4545 } 4546 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4547 /* Partial overlap. */ 4548 tcp_dsack_set(sk, seq, 4549 TCP_SKB_CB(skb1)->end_seq); 4550 } else { 4551 if (skb_queue_is_first(&tp->out_of_order_queue, 4552 skb1)) 4553 skb1 = NULL; 4554 else 4555 skb1 = skb_queue_prev( 4556 &tp->out_of_order_queue, 4557 skb1); 4558 } 4559 } 4560 if (!skb1) 4561 __skb_queue_head(&tp->out_of_order_queue, skb); 4562 else 4563 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4564 4565 /* And clean segments covered by new one as whole. */ 4566 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4567 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4568 4569 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4570 break; 4571 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4572 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4573 end_seq); 4574 break; 4575 } 4576 __skb_unlink(skb1, &tp->out_of_order_queue); 4577 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4578 TCP_SKB_CB(skb1)->end_seq); 4579 __kfree_skb(skb1); 4580 } 4581 4582 add_sack: 4583 if (tcp_is_sack(tp)) 4584 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4585 } 4586 } 4587 4588 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4589 struct sk_buff_head *list) 4590 { 4591 struct sk_buff *next = NULL; 4592 4593 if (!skb_queue_is_last(list, skb)) 4594 next = skb_queue_next(list, skb); 4595 4596 __skb_unlink(skb, list); 4597 __kfree_skb(skb); 4598 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4599 4600 return next; 4601 } 4602 4603 /* Collapse contiguous sequence of skbs head..tail with 4604 * sequence numbers start..end. 4605 * 4606 * If tail is NULL, this means until the end of the list. 4607 * 4608 * Segments with FIN/SYN are not collapsed (only because this 4609 * simplifies code) 4610 */ 4611 static void 4612 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4613 struct sk_buff *head, struct sk_buff *tail, 4614 u32 start, u32 end) 4615 { 4616 struct sk_buff *skb, *n; 4617 bool end_of_skbs; 4618 4619 /* First, check that queue is collapsible and find 4620 * the point where collapsing can be useful. */ 4621 skb = head; 4622 restart: 4623 end_of_skbs = true; 4624 skb_queue_walk_from_safe(list, skb, n) { 4625 if (skb == tail) 4626 break; 4627 /* No new bits? It is possible on ofo queue. */ 4628 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4629 skb = tcp_collapse_one(sk, skb, list); 4630 if (!skb) 4631 break; 4632 goto restart; 4633 } 4634 4635 /* The first skb to collapse is: 4636 * - not SYN/FIN and 4637 * - bloated or contains data before "start" or 4638 * overlaps to the next one. 4639 */ 4640 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4641 (tcp_win_from_space(skb->truesize) > skb->len || 4642 before(TCP_SKB_CB(skb)->seq, start))) { 4643 end_of_skbs = false; 4644 break; 4645 } 4646 4647 if (!skb_queue_is_last(list, skb)) { 4648 struct sk_buff *next = skb_queue_next(list, skb); 4649 if (next != tail && 4650 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4651 end_of_skbs = false; 4652 break; 4653 } 4654 } 4655 4656 /* Decided to skip this, advance start seq. */ 4657 start = TCP_SKB_CB(skb)->end_seq; 4658 } 4659 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4660 return; 4661 4662 while (before(start, end)) { 4663 struct sk_buff *nskb; 4664 unsigned int header = skb_headroom(skb); 4665 int copy = SKB_MAX_ORDER(header, 0); 4666 4667 /* Too big header? This can happen with IPv6. */ 4668 if (copy < 0) 4669 return; 4670 if (end - start < copy) 4671 copy = end - start; 4672 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4673 if (!nskb) 4674 return; 4675 4676 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4677 skb_set_network_header(nskb, (skb_network_header(skb) - 4678 skb->head)); 4679 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4680 skb->head)); 4681 skb_reserve(nskb, header); 4682 memcpy(nskb->head, skb->head, header); 4683 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4684 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4685 __skb_queue_before(list, skb, nskb); 4686 skb_set_owner_r(nskb, sk); 4687 4688 /* Copy data, releasing collapsed skbs. */ 4689 while (copy > 0) { 4690 int offset = start - TCP_SKB_CB(skb)->seq; 4691 int size = TCP_SKB_CB(skb)->end_seq - start; 4692 4693 BUG_ON(offset < 0); 4694 if (size > 0) { 4695 size = min(copy, size); 4696 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4697 BUG(); 4698 TCP_SKB_CB(nskb)->end_seq += size; 4699 copy -= size; 4700 start += size; 4701 } 4702 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4703 skb = tcp_collapse_one(sk, skb, list); 4704 if (!skb || 4705 skb == tail || 4706 tcp_hdr(skb)->syn || 4707 tcp_hdr(skb)->fin) 4708 return; 4709 } 4710 } 4711 } 4712 } 4713 4714 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4715 * and tcp_collapse() them until all the queue is collapsed. 4716 */ 4717 static void tcp_collapse_ofo_queue(struct sock *sk) 4718 { 4719 struct tcp_sock *tp = tcp_sk(sk); 4720 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4721 struct sk_buff *head; 4722 u32 start, end; 4723 4724 if (skb == NULL) 4725 return; 4726 4727 start = TCP_SKB_CB(skb)->seq; 4728 end = TCP_SKB_CB(skb)->end_seq; 4729 head = skb; 4730 4731 for (;;) { 4732 struct sk_buff *next = NULL; 4733 4734 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4735 next = skb_queue_next(&tp->out_of_order_queue, skb); 4736 skb = next; 4737 4738 /* Segment is terminated when we see gap or when 4739 * we are at the end of all the queue. */ 4740 if (!skb || 4741 after(TCP_SKB_CB(skb)->seq, end) || 4742 before(TCP_SKB_CB(skb)->end_seq, start)) { 4743 tcp_collapse(sk, &tp->out_of_order_queue, 4744 head, skb, start, end); 4745 head = skb; 4746 if (!skb) 4747 break; 4748 /* Start new segment */ 4749 start = TCP_SKB_CB(skb)->seq; 4750 end = TCP_SKB_CB(skb)->end_seq; 4751 } else { 4752 if (before(TCP_SKB_CB(skb)->seq, start)) 4753 start = TCP_SKB_CB(skb)->seq; 4754 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4755 end = TCP_SKB_CB(skb)->end_seq; 4756 } 4757 } 4758 } 4759 4760 /* 4761 * Purge the out-of-order queue. 4762 * Return true if queue was pruned. 4763 */ 4764 static int tcp_prune_ofo_queue(struct sock *sk) 4765 { 4766 struct tcp_sock *tp = tcp_sk(sk); 4767 int res = 0; 4768 4769 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4770 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4771 __skb_queue_purge(&tp->out_of_order_queue); 4772 4773 /* Reset SACK state. A conforming SACK implementation will 4774 * do the same at a timeout based retransmit. When a connection 4775 * is in a sad state like this, we care only about integrity 4776 * of the connection not performance. 4777 */ 4778 if (tp->rx_opt.sack_ok) 4779 tcp_sack_reset(&tp->rx_opt); 4780 sk_mem_reclaim(sk); 4781 res = 1; 4782 } 4783 return res; 4784 } 4785 4786 /* Reduce allocated memory if we can, trying to get 4787 * the socket within its memory limits again. 4788 * 4789 * Return less than zero if we should start dropping frames 4790 * until the socket owning process reads some of the data 4791 * to stabilize the situation. 4792 */ 4793 static int tcp_prune_queue(struct sock *sk) 4794 { 4795 struct tcp_sock *tp = tcp_sk(sk); 4796 4797 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4798 4799 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4800 4801 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4802 tcp_clamp_window(sk); 4803 else if (tcp_memory_pressure) 4804 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4805 4806 tcp_collapse_ofo_queue(sk); 4807 if (!skb_queue_empty(&sk->sk_receive_queue)) 4808 tcp_collapse(sk, &sk->sk_receive_queue, 4809 skb_peek(&sk->sk_receive_queue), 4810 NULL, 4811 tp->copied_seq, tp->rcv_nxt); 4812 sk_mem_reclaim(sk); 4813 4814 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4815 return 0; 4816 4817 /* Collapsing did not help, destructive actions follow. 4818 * This must not ever occur. */ 4819 4820 tcp_prune_ofo_queue(sk); 4821 4822 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4823 return 0; 4824 4825 /* If we are really being abused, tell the caller to silently 4826 * drop receive data on the floor. It will get retransmitted 4827 * and hopefully then we'll have sufficient space. 4828 */ 4829 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4830 4831 /* Massive buffer overcommit. */ 4832 tp->pred_flags = 0; 4833 return -1; 4834 } 4835 4836 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4837 * As additional protections, we do not touch cwnd in retransmission phases, 4838 * and if application hit its sndbuf limit recently. 4839 */ 4840 void tcp_cwnd_application_limited(struct sock *sk) 4841 { 4842 struct tcp_sock *tp = tcp_sk(sk); 4843 4844 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4845 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4846 /* Limited by application or receiver window. */ 4847 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4848 u32 win_used = max(tp->snd_cwnd_used, init_win); 4849 if (win_used < tp->snd_cwnd) { 4850 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4851 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4852 } 4853 tp->snd_cwnd_used = 0; 4854 } 4855 tp->snd_cwnd_stamp = tcp_time_stamp; 4856 } 4857 4858 static int tcp_should_expand_sndbuf(struct sock *sk) 4859 { 4860 struct tcp_sock *tp = tcp_sk(sk); 4861 4862 /* If the user specified a specific send buffer setting, do 4863 * not modify it. 4864 */ 4865 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4866 return 0; 4867 4868 /* If we are under global TCP memory pressure, do not expand. */ 4869 if (tcp_memory_pressure) 4870 return 0; 4871 4872 /* If we are under soft global TCP memory pressure, do not expand. */ 4873 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4874 return 0; 4875 4876 /* If we filled the congestion window, do not expand. */ 4877 if (tp->packets_out >= tp->snd_cwnd) 4878 return 0; 4879 4880 return 1; 4881 } 4882 4883 /* When incoming ACK allowed to free some skb from write_queue, 4884 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4885 * on the exit from tcp input handler. 4886 * 4887 * PROBLEM: sndbuf expansion does not work well with largesend. 4888 */ 4889 static void tcp_new_space(struct sock *sk) 4890 { 4891 struct tcp_sock *tp = tcp_sk(sk); 4892 4893 if (tcp_should_expand_sndbuf(sk)) { 4894 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4895 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4896 int demanded = max_t(unsigned int, tp->snd_cwnd, 4897 tp->reordering + 1); 4898 sndmem *= 2 * demanded; 4899 if (sndmem > sk->sk_sndbuf) 4900 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4901 tp->snd_cwnd_stamp = tcp_time_stamp; 4902 } 4903 4904 sk->sk_write_space(sk); 4905 } 4906 4907 static void tcp_check_space(struct sock *sk) 4908 { 4909 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4910 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4911 if (sk->sk_socket && 4912 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4913 tcp_new_space(sk); 4914 } 4915 } 4916 4917 static inline void tcp_data_snd_check(struct sock *sk) 4918 { 4919 tcp_push_pending_frames(sk); 4920 tcp_check_space(sk); 4921 } 4922 4923 /* 4924 * Check if sending an ack is needed. 4925 */ 4926 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4927 { 4928 struct tcp_sock *tp = tcp_sk(sk); 4929 4930 /* More than one full frame received... */ 4931 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4932 /* ... and right edge of window advances far enough. 4933 * (tcp_recvmsg() will send ACK otherwise). Or... 4934 */ 4935 __tcp_select_window(sk) >= tp->rcv_wnd) || 4936 /* We ACK each frame or... */ 4937 tcp_in_quickack_mode(sk) || 4938 /* We have out of order data. */ 4939 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4940 /* Then ack it now */ 4941 tcp_send_ack(sk); 4942 } else { 4943 /* Else, send delayed ack. */ 4944 tcp_send_delayed_ack(sk); 4945 } 4946 } 4947 4948 static inline void tcp_ack_snd_check(struct sock *sk) 4949 { 4950 if (!inet_csk_ack_scheduled(sk)) { 4951 /* We sent a data segment already. */ 4952 return; 4953 } 4954 __tcp_ack_snd_check(sk, 1); 4955 } 4956 4957 /* 4958 * This routine is only called when we have urgent data 4959 * signaled. Its the 'slow' part of tcp_urg. It could be 4960 * moved inline now as tcp_urg is only called from one 4961 * place. We handle URGent data wrong. We have to - as 4962 * BSD still doesn't use the correction from RFC961. 4963 * For 1003.1g we should support a new option TCP_STDURG to permit 4964 * either form (or just set the sysctl tcp_stdurg). 4965 */ 4966 4967 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4968 { 4969 struct tcp_sock *tp = tcp_sk(sk); 4970 u32 ptr = ntohs(th->urg_ptr); 4971 4972 if (ptr && !sysctl_tcp_stdurg) 4973 ptr--; 4974 ptr += ntohl(th->seq); 4975 4976 /* Ignore urgent data that we've already seen and read. */ 4977 if (after(tp->copied_seq, ptr)) 4978 return; 4979 4980 /* Do not replay urg ptr. 4981 * 4982 * NOTE: interesting situation not covered by specs. 4983 * Misbehaving sender may send urg ptr, pointing to segment, 4984 * which we already have in ofo queue. We are not able to fetch 4985 * such data and will stay in TCP_URG_NOTYET until will be eaten 4986 * by recvmsg(). Seems, we are not obliged to handle such wicked 4987 * situations. But it is worth to think about possibility of some 4988 * DoSes using some hypothetical application level deadlock. 4989 */ 4990 if (before(ptr, tp->rcv_nxt)) 4991 return; 4992 4993 /* Do we already have a newer (or duplicate) urgent pointer? */ 4994 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4995 return; 4996 4997 /* Tell the world about our new urgent pointer. */ 4998 sk_send_sigurg(sk); 4999 5000 /* We may be adding urgent data when the last byte read was 5001 * urgent. To do this requires some care. We cannot just ignore 5002 * tp->copied_seq since we would read the last urgent byte again 5003 * as data, nor can we alter copied_seq until this data arrives 5004 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5005 * 5006 * NOTE. Double Dutch. Rendering to plain English: author of comment 5007 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5008 * and expect that both A and B disappear from stream. This is _wrong_. 5009 * Though this happens in BSD with high probability, this is occasional. 5010 * Any application relying on this is buggy. Note also, that fix "works" 5011 * only in this artificial test. Insert some normal data between A and B and we will 5012 * decline of BSD again. Verdict: it is better to remove to trap 5013 * buggy users. 5014 */ 5015 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5016 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5017 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5018 tp->copied_seq++; 5019 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5020 __skb_unlink(skb, &sk->sk_receive_queue); 5021 __kfree_skb(skb); 5022 } 5023 } 5024 5025 tp->urg_data = TCP_URG_NOTYET; 5026 tp->urg_seq = ptr; 5027 5028 /* Disable header prediction. */ 5029 tp->pred_flags = 0; 5030 } 5031 5032 /* This is the 'fast' part of urgent handling. */ 5033 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 5034 { 5035 struct tcp_sock *tp = tcp_sk(sk); 5036 5037 /* Check if we get a new urgent pointer - normally not. */ 5038 if (th->urg) 5039 tcp_check_urg(sk, th); 5040 5041 /* Do we wait for any urgent data? - normally not... */ 5042 if (tp->urg_data == TCP_URG_NOTYET) { 5043 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5044 th->syn; 5045 5046 /* Is the urgent pointer pointing into this packet? */ 5047 if (ptr < skb->len) { 5048 u8 tmp; 5049 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5050 BUG(); 5051 tp->urg_data = TCP_URG_VALID | tmp; 5052 if (!sock_flag(sk, SOCK_DEAD)) 5053 sk->sk_data_ready(sk, 0); 5054 } 5055 } 5056 } 5057 5058 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5059 { 5060 struct tcp_sock *tp = tcp_sk(sk); 5061 int chunk = skb->len - hlen; 5062 int err; 5063 5064 local_bh_enable(); 5065 if (skb_csum_unnecessary(skb)) 5066 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5067 else 5068 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5069 tp->ucopy.iov); 5070 5071 if (!err) { 5072 tp->ucopy.len -= chunk; 5073 tp->copied_seq += chunk; 5074 tcp_rcv_space_adjust(sk); 5075 } 5076 5077 local_bh_disable(); 5078 return err; 5079 } 5080 5081 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5082 struct sk_buff *skb) 5083 { 5084 __sum16 result; 5085 5086 if (sock_owned_by_user(sk)) { 5087 local_bh_enable(); 5088 result = __tcp_checksum_complete(skb); 5089 local_bh_disable(); 5090 } else { 5091 result = __tcp_checksum_complete(skb); 5092 } 5093 return result; 5094 } 5095 5096 static inline int tcp_checksum_complete_user(struct sock *sk, 5097 struct sk_buff *skb) 5098 { 5099 return !skb_csum_unnecessary(skb) && 5100 __tcp_checksum_complete_user(sk, skb); 5101 } 5102 5103 #ifdef CONFIG_NET_DMA 5104 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5105 int hlen) 5106 { 5107 struct tcp_sock *tp = tcp_sk(sk); 5108 int chunk = skb->len - hlen; 5109 int dma_cookie; 5110 int copied_early = 0; 5111 5112 if (tp->ucopy.wakeup) 5113 return 0; 5114 5115 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5116 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 5117 5118 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5119 5120 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5121 skb, hlen, 5122 tp->ucopy.iov, chunk, 5123 tp->ucopy.pinned_list); 5124 5125 if (dma_cookie < 0) 5126 goto out; 5127 5128 tp->ucopy.dma_cookie = dma_cookie; 5129 copied_early = 1; 5130 5131 tp->ucopy.len -= chunk; 5132 tp->copied_seq += chunk; 5133 tcp_rcv_space_adjust(sk); 5134 5135 if ((tp->ucopy.len == 0) || 5136 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5137 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5138 tp->ucopy.wakeup = 1; 5139 sk->sk_data_ready(sk, 0); 5140 } 5141 } else if (chunk > 0) { 5142 tp->ucopy.wakeup = 1; 5143 sk->sk_data_ready(sk, 0); 5144 } 5145 out: 5146 return copied_early; 5147 } 5148 #endif /* CONFIG_NET_DMA */ 5149 5150 /* Does PAWS and seqno based validation of an incoming segment, flags will 5151 * play significant role here. 5152 */ 5153 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5154 struct tcphdr *th, int syn_inerr) 5155 { 5156 u8 *hash_location; 5157 struct tcp_sock *tp = tcp_sk(sk); 5158 5159 /* RFC1323: H1. Apply PAWS check first. */ 5160 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5161 tp->rx_opt.saw_tstamp && 5162 tcp_paws_discard(sk, skb)) { 5163 if (!th->rst) { 5164 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5165 tcp_send_dupack(sk, skb); 5166 goto discard; 5167 } 5168 /* Reset is accepted even if it did not pass PAWS. */ 5169 } 5170 5171 /* Step 1: check sequence number */ 5172 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5173 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5174 * (RST) segments are validated by checking their SEQ-fields." 5175 * And page 69: "If an incoming segment is not acceptable, 5176 * an acknowledgment should be sent in reply (unless the RST 5177 * bit is set, if so drop the segment and return)". 5178 */ 5179 if (!th->rst) 5180 tcp_send_dupack(sk, skb); 5181 goto discard; 5182 } 5183 5184 /* Step 2: check RST bit */ 5185 if (th->rst) { 5186 tcp_reset(sk); 5187 goto discard; 5188 } 5189 5190 /* ts_recent update must be made after we are sure that the packet 5191 * is in window. 5192 */ 5193 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5194 5195 /* step 3: check security and precedence [ignored] */ 5196 5197 /* step 4: Check for a SYN in window. */ 5198 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5199 if (syn_inerr) 5200 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5201 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5202 tcp_reset(sk); 5203 return -1; 5204 } 5205 5206 return 1; 5207 5208 discard: 5209 __kfree_skb(skb); 5210 return 0; 5211 } 5212 5213 /* 5214 * TCP receive function for the ESTABLISHED state. 5215 * 5216 * It is split into a fast path and a slow path. The fast path is 5217 * disabled when: 5218 * - A zero window was announced from us - zero window probing 5219 * is only handled properly in the slow path. 5220 * - Out of order segments arrived. 5221 * - Urgent data is expected. 5222 * - There is no buffer space left 5223 * - Unexpected TCP flags/window values/header lengths are received 5224 * (detected by checking the TCP header against pred_flags) 5225 * - Data is sent in both directions. Fast path only supports pure senders 5226 * or pure receivers (this means either the sequence number or the ack 5227 * value must stay constant) 5228 * - Unexpected TCP option. 5229 * 5230 * When these conditions are not satisfied it drops into a standard 5231 * receive procedure patterned after RFC793 to handle all cases. 5232 * The first three cases are guaranteed by proper pred_flags setting, 5233 * the rest is checked inline. Fast processing is turned on in 5234 * tcp_data_queue when everything is OK. 5235 */ 5236 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5237 struct tcphdr *th, unsigned len) 5238 { 5239 struct tcp_sock *tp = tcp_sk(sk); 5240 int res; 5241 5242 /* 5243 * Header prediction. 5244 * The code loosely follows the one in the famous 5245 * "30 instruction TCP receive" Van Jacobson mail. 5246 * 5247 * Van's trick is to deposit buffers into socket queue 5248 * on a device interrupt, to call tcp_recv function 5249 * on the receive process context and checksum and copy 5250 * the buffer to user space. smart... 5251 * 5252 * Our current scheme is not silly either but we take the 5253 * extra cost of the net_bh soft interrupt processing... 5254 * We do checksum and copy also but from device to kernel. 5255 */ 5256 5257 tp->rx_opt.saw_tstamp = 0; 5258 5259 /* pred_flags is 0xS?10 << 16 + snd_wnd 5260 * if header_prediction is to be made 5261 * 'S' will always be tp->tcp_header_len >> 2 5262 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5263 * turn it off (when there are holes in the receive 5264 * space for instance) 5265 * PSH flag is ignored. 5266 */ 5267 5268 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5269 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5270 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5271 int tcp_header_len = tp->tcp_header_len; 5272 5273 /* Timestamp header prediction: tcp_header_len 5274 * is automatically equal to th->doff*4 due to pred_flags 5275 * match. 5276 */ 5277 5278 /* Check timestamp */ 5279 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5280 /* No? Slow path! */ 5281 if (!tcp_parse_aligned_timestamp(tp, th)) 5282 goto slow_path; 5283 5284 /* If PAWS failed, check it more carefully in slow path */ 5285 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5286 goto slow_path; 5287 5288 /* DO NOT update ts_recent here, if checksum fails 5289 * and timestamp was corrupted part, it will result 5290 * in a hung connection since we will drop all 5291 * future packets due to the PAWS test. 5292 */ 5293 } 5294 5295 if (len <= tcp_header_len) { 5296 /* Bulk data transfer: sender */ 5297 if (len == tcp_header_len) { 5298 /* Predicted packet is in window by definition. 5299 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5300 * Hence, check seq<=rcv_wup reduces to: 5301 */ 5302 if (tcp_header_len == 5303 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5304 tp->rcv_nxt == tp->rcv_wup) 5305 tcp_store_ts_recent(tp); 5306 5307 /* We know that such packets are checksummed 5308 * on entry. 5309 */ 5310 tcp_ack(sk, skb, 0); 5311 __kfree_skb(skb); 5312 tcp_data_snd_check(sk); 5313 return 0; 5314 } else { /* Header too small */ 5315 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5316 goto discard; 5317 } 5318 } else { 5319 int eaten = 0; 5320 int copied_early = 0; 5321 5322 if (tp->copied_seq == tp->rcv_nxt && 5323 len - tcp_header_len <= tp->ucopy.len) { 5324 #ifdef CONFIG_NET_DMA 5325 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5326 copied_early = 1; 5327 eaten = 1; 5328 } 5329 #endif 5330 if (tp->ucopy.task == current && 5331 sock_owned_by_user(sk) && !copied_early) { 5332 __set_current_state(TASK_RUNNING); 5333 5334 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5335 eaten = 1; 5336 } 5337 if (eaten) { 5338 /* Predicted packet is in window by definition. 5339 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5340 * Hence, check seq<=rcv_wup reduces to: 5341 */ 5342 if (tcp_header_len == 5343 (sizeof(struct tcphdr) + 5344 TCPOLEN_TSTAMP_ALIGNED) && 5345 tp->rcv_nxt == tp->rcv_wup) 5346 tcp_store_ts_recent(tp); 5347 5348 tcp_rcv_rtt_measure_ts(sk, skb); 5349 5350 __skb_pull(skb, tcp_header_len); 5351 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5352 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5353 } 5354 if (copied_early) 5355 tcp_cleanup_rbuf(sk, skb->len); 5356 } 5357 if (!eaten) { 5358 if (tcp_checksum_complete_user(sk, skb)) 5359 goto csum_error; 5360 5361 /* Predicted packet is in window by definition. 5362 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5363 * Hence, check seq<=rcv_wup reduces to: 5364 */ 5365 if (tcp_header_len == 5366 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5367 tp->rcv_nxt == tp->rcv_wup) 5368 tcp_store_ts_recent(tp); 5369 5370 tcp_rcv_rtt_measure_ts(sk, skb); 5371 5372 if ((int)skb->truesize > sk->sk_forward_alloc) 5373 goto step5; 5374 5375 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5376 5377 /* Bulk data transfer: receiver */ 5378 __skb_pull(skb, tcp_header_len); 5379 __skb_queue_tail(&sk->sk_receive_queue, skb); 5380 skb_set_owner_r(skb, sk); 5381 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5382 } 5383 5384 tcp_event_data_recv(sk, skb); 5385 5386 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5387 /* Well, only one small jumplet in fast path... */ 5388 tcp_ack(sk, skb, FLAG_DATA); 5389 tcp_data_snd_check(sk); 5390 if (!inet_csk_ack_scheduled(sk)) 5391 goto no_ack; 5392 } 5393 5394 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5395 __tcp_ack_snd_check(sk, 0); 5396 no_ack: 5397 #ifdef CONFIG_NET_DMA 5398 if (copied_early) 5399 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5400 else 5401 #endif 5402 if (eaten) 5403 __kfree_skb(skb); 5404 else 5405 sk->sk_data_ready(sk, 0); 5406 return 0; 5407 } 5408 } 5409 5410 slow_path: 5411 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5412 goto csum_error; 5413 5414 /* 5415 * Standard slow path. 5416 */ 5417 5418 res = tcp_validate_incoming(sk, skb, th, 1); 5419 if (res <= 0) 5420 return -res; 5421 5422 step5: 5423 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5424 goto discard; 5425 5426 tcp_rcv_rtt_measure_ts(sk, skb); 5427 5428 /* Process urgent data. */ 5429 tcp_urg(sk, skb, th); 5430 5431 /* step 7: process the segment text */ 5432 tcp_data_queue(sk, skb); 5433 5434 tcp_data_snd_check(sk); 5435 tcp_ack_snd_check(sk); 5436 return 0; 5437 5438 csum_error: 5439 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5440 5441 discard: 5442 __kfree_skb(skb); 5443 return 0; 5444 } 5445 EXPORT_SYMBOL(tcp_rcv_established); 5446 5447 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5448 struct tcphdr *th, unsigned len) 5449 { 5450 u8 *hash_location; 5451 struct inet_connection_sock *icsk = inet_csk(sk); 5452 struct tcp_sock *tp = tcp_sk(sk); 5453 struct tcp_cookie_values *cvp = tp->cookie_values; 5454 int saved_clamp = tp->rx_opt.mss_clamp; 5455 5456 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0); 5457 5458 if (th->ack) { 5459 /* rfc793: 5460 * "If the state is SYN-SENT then 5461 * first check the ACK bit 5462 * If the ACK bit is set 5463 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5464 * a reset (unless the RST bit is set, if so drop 5465 * the segment and return)" 5466 * 5467 * We do not send data with SYN, so that RFC-correct 5468 * test reduces to: 5469 */ 5470 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5471 goto reset_and_undo; 5472 5473 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5474 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5475 tcp_time_stamp)) { 5476 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5477 goto reset_and_undo; 5478 } 5479 5480 /* Now ACK is acceptable. 5481 * 5482 * "If the RST bit is set 5483 * If the ACK was acceptable then signal the user "error: 5484 * connection reset", drop the segment, enter CLOSED state, 5485 * delete TCB, and return." 5486 */ 5487 5488 if (th->rst) { 5489 tcp_reset(sk); 5490 goto discard; 5491 } 5492 5493 /* rfc793: 5494 * "fifth, if neither of the SYN or RST bits is set then 5495 * drop the segment and return." 5496 * 5497 * See note below! 5498 * --ANK(990513) 5499 */ 5500 if (!th->syn) 5501 goto discard_and_undo; 5502 5503 /* rfc793: 5504 * "If the SYN bit is on ... 5505 * are acceptable then ... 5506 * (our SYN has been ACKed), change the connection 5507 * state to ESTABLISHED..." 5508 */ 5509 5510 TCP_ECN_rcv_synack(tp, th); 5511 5512 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5513 tcp_ack(sk, skb, FLAG_SLOWPATH); 5514 5515 /* Ok.. it's good. Set up sequence numbers and 5516 * move to established. 5517 */ 5518 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5519 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5520 5521 /* RFC1323: The window in SYN & SYN/ACK segments is 5522 * never scaled. 5523 */ 5524 tp->snd_wnd = ntohs(th->window); 5525 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5526 5527 if (!tp->rx_opt.wscale_ok) { 5528 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5529 tp->window_clamp = min(tp->window_clamp, 65535U); 5530 } 5531 5532 if (tp->rx_opt.saw_tstamp) { 5533 tp->rx_opt.tstamp_ok = 1; 5534 tp->tcp_header_len = 5535 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5536 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5537 tcp_store_ts_recent(tp); 5538 } else { 5539 tp->tcp_header_len = sizeof(struct tcphdr); 5540 } 5541 5542 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5543 tcp_enable_fack(tp); 5544 5545 tcp_mtup_init(sk); 5546 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5547 tcp_initialize_rcv_mss(sk); 5548 5549 /* Remember, tcp_poll() does not lock socket! 5550 * Change state from SYN-SENT only after copied_seq 5551 * is initialized. */ 5552 tp->copied_seq = tp->rcv_nxt; 5553 5554 if (cvp != NULL && 5555 cvp->cookie_pair_size > 0 && 5556 tp->rx_opt.cookie_plus > 0) { 5557 int cookie_size = tp->rx_opt.cookie_plus 5558 - TCPOLEN_COOKIE_BASE; 5559 int cookie_pair_size = cookie_size 5560 + cvp->cookie_desired; 5561 5562 /* A cookie extension option was sent and returned. 5563 * Note that each incoming SYNACK replaces the 5564 * Responder cookie. The initial exchange is most 5565 * fragile, as protection against spoofing relies 5566 * entirely upon the sequence and timestamp (above). 5567 * This replacement strategy allows the correct pair to 5568 * pass through, while any others will be filtered via 5569 * Responder verification later. 5570 */ 5571 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5572 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5573 hash_location, cookie_size); 5574 cvp->cookie_pair_size = cookie_pair_size; 5575 } 5576 } 5577 5578 smp_mb(); 5579 tcp_set_state(sk, TCP_ESTABLISHED); 5580 5581 security_inet_conn_established(sk, skb); 5582 5583 /* Make sure socket is routed, for correct metrics. */ 5584 icsk->icsk_af_ops->rebuild_header(sk); 5585 5586 tcp_init_metrics(sk); 5587 5588 tcp_init_congestion_control(sk); 5589 5590 /* Prevent spurious tcp_cwnd_restart() on first data 5591 * packet. 5592 */ 5593 tp->lsndtime = tcp_time_stamp; 5594 5595 tcp_init_buffer_space(sk); 5596 5597 if (sock_flag(sk, SOCK_KEEPOPEN)) 5598 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5599 5600 if (!tp->rx_opt.snd_wscale) 5601 __tcp_fast_path_on(tp, tp->snd_wnd); 5602 else 5603 tp->pred_flags = 0; 5604 5605 if (!sock_flag(sk, SOCK_DEAD)) { 5606 sk->sk_state_change(sk); 5607 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5608 } 5609 5610 if (sk->sk_write_pending || 5611 icsk->icsk_accept_queue.rskq_defer_accept || 5612 icsk->icsk_ack.pingpong) { 5613 /* Save one ACK. Data will be ready after 5614 * several ticks, if write_pending is set. 5615 * 5616 * It may be deleted, but with this feature tcpdumps 5617 * look so _wonderfully_ clever, that I was not able 5618 * to stand against the temptation 8) --ANK 5619 */ 5620 inet_csk_schedule_ack(sk); 5621 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5622 icsk->icsk_ack.ato = TCP_ATO_MIN; 5623 tcp_incr_quickack(sk); 5624 tcp_enter_quickack_mode(sk); 5625 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5626 TCP_DELACK_MAX, TCP_RTO_MAX); 5627 5628 discard: 5629 __kfree_skb(skb); 5630 return 0; 5631 } else { 5632 tcp_send_ack(sk); 5633 } 5634 return -1; 5635 } 5636 5637 /* No ACK in the segment */ 5638 5639 if (th->rst) { 5640 /* rfc793: 5641 * "If the RST bit is set 5642 * 5643 * Otherwise (no ACK) drop the segment and return." 5644 */ 5645 5646 goto discard_and_undo; 5647 } 5648 5649 /* PAWS check. */ 5650 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5651 tcp_paws_reject(&tp->rx_opt, 0)) 5652 goto discard_and_undo; 5653 5654 if (th->syn) { 5655 /* We see SYN without ACK. It is attempt of 5656 * simultaneous connect with crossed SYNs. 5657 * Particularly, it can be connect to self. 5658 */ 5659 tcp_set_state(sk, TCP_SYN_RECV); 5660 5661 if (tp->rx_opt.saw_tstamp) { 5662 tp->rx_opt.tstamp_ok = 1; 5663 tcp_store_ts_recent(tp); 5664 tp->tcp_header_len = 5665 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5666 } else { 5667 tp->tcp_header_len = sizeof(struct tcphdr); 5668 } 5669 5670 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5671 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5672 5673 /* RFC1323: The window in SYN & SYN/ACK segments is 5674 * never scaled. 5675 */ 5676 tp->snd_wnd = ntohs(th->window); 5677 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5678 tp->max_window = tp->snd_wnd; 5679 5680 TCP_ECN_rcv_syn(tp, th); 5681 5682 tcp_mtup_init(sk); 5683 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5684 tcp_initialize_rcv_mss(sk); 5685 5686 tcp_send_synack(sk); 5687 #if 0 5688 /* Note, we could accept data and URG from this segment. 5689 * There are no obstacles to make this. 5690 * 5691 * However, if we ignore data in ACKless segments sometimes, 5692 * we have no reasons to accept it sometimes. 5693 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5694 * is not flawless. So, discard packet for sanity. 5695 * Uncomment this return to process the data. 5696 */ 5697 return -1; 5698 #else 5699 goto discard; 5700 #endif 5701 } 5702 /* "fifth, if neither of the SYN or RST bits is set then 5703 * drop the segment and return." 5704 */ 5705 5706 discard_and_undo: 5707 tcp_clear_options(&tp->rx_opt); 5708 tp->rx_opt.mss_clamp = saved_clamp; 5709 goto discard; 5710 5711 reset_and_undo: 5712 tcp_clear_options(&tp->rx_opt); 5713 tp->rx_opt.mss_clamp = saved_clamp; 5714 return 1; 5715 } 5716 5717 /* 5718 * This function implements the receiving procedure of RFC 793 for 5719 * all states except ESTABLISHED and TIME_WAIT. 5720 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5721 * address independent. 5722 */ 5723 5724 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5725 struct tcphdr *th, unsigned len) 5726 { 5727 struct tcp_sock *tp = tcp_sk(sk); 5728 struct inet_connection_sock *icsk = inet_csk(sk); 5729 int queued = 0; 5730 int res; 5731 5732 tp->rx_opt.saw_tstamp = 0; 5733 5734 switch (sk->sk_state) { 5735 case TCP_CLOSE: 5736 goto discard; 5737 5738 case TCP_LISTEN: 5739 if (th->ack) 5740 return 1; 5741 5742 if (th->rst) 5743 goto discard; 5744 5745 if (th->syn) { 5746 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5747 return 1; 5748 5749 /* Now we have several options: In theory there is 5750 * nothing else in the frame. KA9Q has an option to 5751 * send data with the syn, BSD accepts data with the 5752 * syn up to the [to be] advertised window and 5753 * Solaris 2.1 gives you a protocol error. For now 5754 * we just ignore it, that fits the spec precisely 5755 * and avoids incompatibilities. It would be nice in 5756 * future to drop through and process the data. 5757 * 5758 * Now that TTCP is starting to be used we ought to 5759 * queue this data. 5760 * But, this leaves one open to an easy denial of 5761 * service attack, and SYN cookies can't defend 5762 * against this problem. So, we drop the data 5763 * in the interest of security over speed unless 5764 * it's still in use. 5765 */ 5766 kfree_skb(skb); 5767 return 0; 5768 } 5769 goto discard; 5770 5771 case TCP_SYN_SENT: 5772 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5773 if (queued >= 0) 5774 return queued; 5775 5776 /* Do step6 onward by hand. */ 5777 tcp_urg(sk, skb, th); 5778 __kfree_skb(skb); 5779 tcp_data_snd_check(sk); 5780 return 0; 5781 } 5782 5783 res = tcp_validate_incoming(sk, skb, th, 0); 5784 if (res <= 0) 5785 return -res; 5786 5787 /* step 5: check the ACK field */ 5788 if (th->ack) { 5789 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5790 5791 switch (sk->sk_state) { 5792 case TCP_SYN_RECV: 5793 if (acceptable) { 5794 tp->copied_seq = tp->rcv_nxt; 5795 smp_mb(); 5796 tcp_set_state(sk, TCP_ESTABLISHED); 5797 sk->sk_state_change(sk); 5798 5799 /* Note, that this wakeup is only for marginal 5800 * crossed SYN case. Passively open sockets 5801 * are not waked up, because sk->sk_sleep == 5802 * NULL and sk->sk_socket == NULL. 5803 */ 5804 if (sk->sk_socket) 5805 sk_wake_async(sk, 5806 SOCK_WAKE_IO, POLL_OUT); 5807 5808 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5809 tp->snd_wnd = ntohs(th->window) << 5810 tp->rx_opt.snd_wscale; 5811 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5812 5813 /* tcp_ack considers this ACK as duplicate 5814 * and does not calculate rtt. 5815 * Force it here. 5816 */ 5817 tcp_ack_update_rtt(sk, 0, 0); 5818 5819 if (tp->rx_opt.tstamp_ok) 5820 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5821 5822 /* Make sure socket is routed, for 5823 * correct metrics. 5824 */ 5825 icsk->icsk_af_ops->rebuild_header(sk); 5826 5827 tcp_init_metrics(sk); 5828 5829 tcp_init_congestion_control(sk); 5830 5831 /* Prevent spurious tcp_cwnd_restart() on 5832 * first data packet. 5833 */ 5834 tp->lsndtime = tcp_time_stamp; 5835 5836 tcp_mtup_init(sk); 5837 tcp_initialize_rcv_mss(sk); 5838 tcp_init_buffer_space(sk); 5839 tcp_fast_path_on(tp); 5840 } else { 5841 return 1; 5842 } 5843 break; 5844 5845 case TCP_FIN_WAIT1: 5846 if (tp->snd_una == tp->write_seq) { 5847 tcp_set_state(sk, TCP_FIN_WAIT2); 5848 sk->sk_shutdown |= SEND_SHUTDOWN; 5849 dst_confirm(__sk_dst_get(sk)); 5850 5851 if (!sock_flag(sk, SOCK_DEAD)) 5852 /* Wake up lingering close() */ 5853 sk->sk_state_change(sk); 5854 else { 5855 int tmo; 5856 5857 if (tp->linger2 < 0 || 5858 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5859 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5860 tcp_done(sk); 5861 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5862 return 1; 5863 } 5864 5865 tmo = tcp_fin_time(sk); 5866 if (tmo > TCP_TIMEWAIT_LEN) { 5867 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5868 } else if (th->fin || sock_owned_by_user(sk)) { 5869 /* Bad case. We could lose such FIN otherwise. 5870 * It is not a big problem, but it looks confusing 5871 * and not so rare event. We still can lose it now, 5872 * if it spins in bh_lock_sock(), but it is really 5873 * marginal case. 5874 */ 5875 inet_csk_reset_keepalive_timer(sk, tmo); 5876 } else { 5877 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5878 goto discard; 5879 } 5880 } 5881 } 5882 break; 5883 5884 case TCP_CLOSING: 5885 if (tp->snd_una == tp->write_seq) { 5886 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5887 goto discard; 5888 } 5889 break; 5890 5891 case TCP_LAST_ACK: 5892 if (tp->snd_una == tp->write_seq) { 5893 tcp_update_metrics(sk); 5894 tcp_done(sk); 5895 goto discard; 5896 } 5897 break; 5898 } 5899 } else 5900 goto discard; 5901 5902 /* step 6: check the URG bit */ 5903 tcp_urg(sk, skb, th); 5904 5905 /* step 7: process the segment text */ 5906 switch (sk->sk_state) { 5907 case TCP_CLOSE_WAIT: 5908 case TCP_CLOSING: 5909 case TCP_LAST_ACK: 5910 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5911 break; 5912 case TCP_FIN_WAIT1: 5913 case TCP_FIN_WAIT2: 5914 /* RFC 793 says to queue data in these states, 5915 * RFC 1122 says we MUST send a reset. 5916 * BSD 4.4 also does reset. 5917 */ 5918 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5919 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5920 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5921 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5922 tcp_reset(sk); 5923 return 1; 5924 } 5925 } 5926 /* Fall through */ 5927 case TCP_ESTABLISHED: 5928 tcp_data_queue(sk, skb); 5929 queued = 1; 5930 break; 5931 } 5932 5933 /* tcp_data could move socket to TIME-WAIT */ 5934 if (sk->sk_state != TCP_CLOSE) { 5935 tcp_data_snd_check(sk); 5936 tcp_ack_snd_check(sk); 5937 } 5938 5939 if (!queued) { 5940 discard: 5941 __kfree_skb(skb); 5942 } 5943 return 0; 5944 } 5945 EXPORT_SYMBOL(tcp_rcv_state_process); 5946