1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <net/dst.h> 72 #include <net/tcp.h> 73 #include <net/inet_common.h> 74 #include <linux/ipsec.h> 75 #include <asm/unaligned.h> 76 #include <net/netdma.h> 77 78 int sysctl_tcp_timestamps __read_mostly = 1; 79 int sysctl_tcp_window_scaling __read_mostly = 1; 80 int sysctl_tcp_sack __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly = 1; 82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83 EXPORT_SYMBOL(sysctl_tcp_reordering); 84 int sysctl_tcp_ecn __read_mostly = 2; 85 EXPORT_SYMBOL(sysctl_tcp_ecn); 86 int sysctl_tcp_dsack __read_mostly = 1; 87 int sysctl_tcp_app_win __read_mostly = 31; 88 int sysctl_tcp_adv_win_scale __read_mostly = 1; 89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 90 91 /* rfc5961 challenge ack rate limiting */ 92 int sysctl_tcp_challenge_ack_limit = 100; 93 94 int sysctl_tcp_stdurg __read_mostly; 95 int sysctl_tcp_rfc1337 __read_mostly; 96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 97 int sysctl_tcp_frto __read_mostly = 2; 98 int sysctl_tcp_frto_response __read_mostly; 99 100 int sysctl_tcp_thin_dupack __read_mostly; 101 102 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 103 int sysctl_tcp_abc __read_mostly; 104 int sysctl_tcp_early_retrans __read_mostly = 2; 105 106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 112 #define FLAG_ECE 0x40 /* ECE in this ACK */ 113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 114 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 117 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 119 120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 124 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 125 126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 128 129 /* Adapt the MSS value used to make delayed ack decision to the 130 * real world. 131 */ 132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 133 { 134 struct inet_connection_sock *icsk = inet_csk(sk); 135 const unsigned int lss = icsk->icsk_ack.last_seg_size; 136 unsigned int len; 137 138 icsk->icsk_ack.last_seg_size = 0; 139 140 /* skb->len may jitter because of SACKs, even if peer 141 * sends good full-sized frames. 142 */ 143 len = skb_shinfo(skb)->gso_size ? : skb->len; 144 if (len >= icsk->icsk_ack.rcv_mss) { 145 icsk->icsk_ack.rcv_mss = len; 146 } else { 147 /* Otherwise, we make more careful check taking into account, 148 * that SACKs block is variable. 149 * 150 * "len" is invariant segment length, including TCP header. 151 */ 152 len += skb->data - skb_transport_header(skb); 153 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 154 /* If PSH is not set, packet should be 155 * full sized, provided peer TCP is not badly broken. 156 * This observation (if it is correct 8)) allows 157 * to handle super-low mtu links fairly. 158 */ 159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 160 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 161 /* Subtract also invariant (if peer is RFC compliant), 162 * tcp header plus fixed timestamp option length. 163 * Resulting "len" is MSS free of SACK jitter. 164 */ 165 len -= tcp_sk(sk)->tcp_header_len; 166 icsk->icsk_ack.last_seg_size = len; 167 if (len == lss) { 168 icsk->icsk_ack.rcv_mss = len; 169 return; 170 } 171 } 172 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 175 } 176 } 177 178 static void tcp_incr_quickack(struct sock *sk) 179 { 180 struct inet_connection_sock *icsk = inet_csk(sk); 181 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 182 183 if (quickacks == 0) 184 quickacks = 2; 185 if (quickacks > icsk->icsk_ack.quick) 186 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 187 } 188 189 static void tcp_enter_quickack_mode(struct sock *sk) 190 { 191 struct inet_connection_sock *icsk = inet_csk(sk); 192 tcp_incr_quickack(sk); 193 icsk->icsk_ack.pingpong = 0; 194 icsk->icsk_ack.ato = TCP_ATO_MIN; 195 } 196 197 /* Send ACKs quickly, if "quick" count is not exhausted 198 * and the session is not interactive. 199 */ 200 201 static inline bool tcp_in_quickack_mode(const struct sock *sk) 202 { 203 const struct inet_connection_sock *icsk = inet_csk(sk); 204 205 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 206 } 207 208 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 209 { 210 if (tp->ecn_flags & TCP_ECN_OK) 211 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 212 } 213 214 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 215 { 216 if (tcp_hdr(skb)->cwr) 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 221 { 222 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 223 } 224 225 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 226 { 227 if (!(tp->ecn_flags & TCP_ECN_OK)) 228 return; 229 230 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 231 case INET_ECN_NOT_ECT: 232 /* Funny extension: if ECT is not set on a segment, 233 * and we already seen ECT on a previous segment, 234 * it is probably a retransmit. 235 */ 236 if (tp->ecn_flags & TCP_ECN_SEEN) 237 tcp_enter_quickack_mode((struct sock *)tp); 238 break; 239 case INET_ECN_CE: 240 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 241 /* Better not delay acks, sender can have a very low cwnd */ 242 tcp_enter_quickack_mode((struct sock *)tp); 243 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 244 } 245 /* fallinto */ 246 default: 247 tp->ecn_flags |= TCP_ECN_SEEN; 248 } 249 } 250 251 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 252 { 253 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 254 tp->ecn_flags &= ~TCP_ECN_OK; 255 } 256 257 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 258 { 259 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 260 tp->ecn_flags &= ~TCP_ECN_OK; 261 } 262 263 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 264 { 265 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 266 return true; 267 return false; 268 } 269 270 /* Buffer size and advertised window tuning. 271 * 272 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 273 */ 274 275 static void tcp_fixup_sndbuf(struct sock *sk) 276 { 277 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER); 278 279 sndmem *= TCP_INIT_CWND; 280 if (sk->sk_sndbuf < sndmem) 281 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 282 } 283 284 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 285 * 286 * All tcp_full_space() is split to two parts: "network" buffer, allocated 287 * forward and advertised in receiver window (tp->rcv_wnd) and 288 * "application buffer", required to isolate scheduling/application 289 * latencies from network. 290 * window_clamp is maximal advertised window. It can be less than 291 * tcp_full_space(), in this case tcp_full_space() - window_clamp 292 * is reserved for "application" buffer. The less window_clamp is 293 * the smoother our behaviour from viewpoint of network, but the lower 294 * throughput and the higher sensitivity of the connection to losses. 8) 295 * 296 * rcv_ssthresh is more strict window_clamp used at "slow start" 297 * phase to predict further behaviour of this connection. 298 * It is used for two goals: 299 * - to enforce header prediction at sender, even when application 300 * requires some significant "application buffer". It is check #1. 301 * - to prevent pruning of receive queue because of misprediction 302 * of receiver window. Check #2. 303 * 304 * The scheme does not work when sender sends good segments opening 305 * window and then starts to feed us spaghetti. But it should work 306 * in common situations. Otherwise, we have to rely on queue collapsing. 307 */ 308 309 /* Slow part of check#2. */ 310 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 311 { 312 struct tcp_sock *tp = tcp_sk(sk); 313 /* Optimize this! */ 314 int truesize = tcp_win_from_space(skb->truesize) >> 1; 315 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 316 317 while (tp->rcv_ssthresh <= window) { 318 if (truesize <= skb->len) 319 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 320 321 truesize >>= 1; 322 window >>= 1; 323 } 324 return 0; 325 } 326 327 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 328 { 329 struct tcp_sock *tp = tcp_sk(sk); 330 331 /* Check #1 */ 332 if (tp->rcv_ssthresh < tp->window_clamp && 333 (int)tp->rcv_ssthresh < tcp_space(sk) && 334 !sk_under_memory_pressure(sk)) { 335 int incr; 336 337 /* Check #2. Increase window, if skb with such overhead 338 * will fit to rcvbuf in future. 339 */ 340 if (tcp_win_from_space(skb->truesize) <= skb->len) 341 incr = 2 * tp->advmss; 342 else 343 incr = __tcp_grow_window(sk, skb); 344 345 if (incr) { 346 incr = max_t(int, incr, 2 * skb->len); 347 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 348 tp->window_clamp); 349 inet_csk(sk)->icsk_ack.quick |= 1; 350 } 351 } 352 } 353 354 /* 3. Tuning rcvbuf, when connection enters established state. */ 355 356 static void tcp_fixup_rcvbuf(struct sock *sk) 357 { 358 u32 mss = tcp_sk(sk)->advmss; 359 u32 icwnd = TCP_DEFAULT_INIT_RCVWND; 360 int rcvmem; 361 362 /* Limit to 10 segments if mss <= 1460, 363 * or 14600/mss segments, with a minimum of two segments. 364 */ 365 if (mss > 1460) 366 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 367 368 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER); 369 while (tcp_win_from_space(rcvmem) < mss) 370 rcvmem += 128; 371 372 rcvmem *= icwnd; 373 374 if (sk->sk_rcvbuf < rcvmem) 375 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 376 } 377 378 /* 4. Try to fixup all. It is made immediately after connection enters 379 * established state. 380 */ 381 void tcp_init_buffer_space(struct sock *sk) 382 { 383 struct tcp_sock *tp = tcp_sk(sk); 384 int maxwin; 385 386 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 387 tcp_fixup_rcvbuf(sk); 388 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 389 tcp_fixup_sndbuf(sk); 390 391 tp->rcvq_space.space = tp->rcv_wnd; 392 393 maxwin = tcp_full_space(sk); 394 395 if (tp->window_clamp >= maxwin) { 396 tp->window_clamp = maxwin; 397 398 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 399 tp->window_clamp = max(maxwin - 400 (maxwin >> sysctl_tcp_app_win), 401 4 * tp->advmss); 402 } 403 404 /* Force reservation of one segment. */ 405 if (sysctl_tcp_app_win && 406 tp->window_clamp > 2 * tp->advmss && 407 tp->window_clamp + tp->advmss > maxwin) 408 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 409 410 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 411 tp->snd_cwnd_stamp = tcp_time_stamp; 412 } 413 414 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 415 static void tcp_clamp_window(struct sock *sk) 416 { 417 struct tcp_sock *tp = tcp_sk(sk); 418 struct inet_connection_sock *icsk = inet_csk(sk); 419 420 icsk->icsk_ack.quick = 0; 421 422 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 423 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 424 !sk_under_memory_pressure(sk) && 425 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 426 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 427 sysctl_tcp_rmem[2]); 428 } 429 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 430 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 431 } 432 433 /* Initialize RCV_MSS value. 434 * RCV_MSS is an our guess about MSS used by the peer. 435 * We haven't any direct information about the MSS. 436 * It's better to underestimate the RCV_MSS rather than overestimate. 437 * Overestimations make us ACKing less frequently than needed. 438 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 439 */ 440 void tcp_initialize_rcv_mss(struct sock *sk) 441 { 442 const struct tcp_sock *tp = tcp_sk(sk); 443 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 444 445 hint = min(hint, tp->rcv_wnd / 2); 446 hint = min(hint, TCP_MSS_DEFAULT); 447 hint = max(hint, TCP_MIN_MSS); 448 449 inet_csk(sk)->icsk_ack.rcv_mss = hint; 450 } 451 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 452 453 /* Receiver "autotuning" code. 454 * 455 * The algorithm for RTT estimation w/o timestamps is based on 456 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 457 * <http://public.lanl.gov/radiant/pubs.html#DRS> 458 * 459 * More detail on this code can be found at 460 * <http://staff.psc.edu/jheffner/>, 461 * though this reference is out of date. A new paper 462 * is pending. 463 */ 464 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 465 { 466 u32 new_sample = tp->rcv_rtt_est.rtt; 467 long m = sample; 468 469 if (m == 0) 470 m = 1; 471 472 if (new_sample != 0) { 473 /* If we sample in larger samples in the non-timestamp 474 * case, we could grossly overestimate the RTT especially 475 * with chatty applications or bulk transfer apps which 476 * are stalled on filesystem I/O. 477 * 478 * Also, since we are only going for a minimum in the 479 * non-timestamp case, we do not smooth things out 480 * else with timestamps disabled convergence takes too 481 * long. 482 */ 483 if (!win_dep) { 484 m -= (new_sample >> 3); 485 new_sample += m; 486 } else { 487 m <<= 3; 488 if (m < new_sample) 489 new_sample = m; 490 } 491 } else { 492 /* No previous measure. */ 493 new_sample = m << 3; 494 } 495 496 if (tp->rcv_rtt_est.rtt != new_sample) 497 tp->rcv_rtt_est.rtt = new_sample; 498 } 499 500 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 501 { 502 if (tp->rcv_rtt_est.time == 0) 503 goto new_measure; 504 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 505 return; 506 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 507 508 new_measure: 509 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 510 tp->rcv_rtt_est.time = tcp_time_stamp; 511 } 512 513 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 514 const struct sk_buff *skb) 515 { 516 struct tcp_sock *tp = tcp_sk(sk); 517 if (tp->rx_opt.rcv_tsecr && 518 (TCP_SKB_CB(skb)->end_seq - 519 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 520 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 521 } 522 523 /* 524 * This function should be called every time data is copied to user space. 525 * It calculates the appropriate TCP receive buffer space. 526 */ 527 void tcp_rcv_space_adjust(struct sock *sk) 528 { 529 struct tcp_sock *tp = tcp_sk(sk); 530 int time; 531 int space; 532 533 if (tp->rcvq_space.time == 0) 534 goto new_measure; 535 536 time = tcp_time_stamp - tp->rcvq_space.time; 537 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 538 return; 539 540 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 541 542 space = max(tp->rcvq_space.space, space); 543 544 if (tp->rcvq_space.space != space) { 545 int rcvmem; 546 547 tp->rcvq_space.space = space; 548 549 if (sysctl_tcp_moderate_rcvbuf && 550 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 551 int new_clamp = space; 552 553 /* Receive space grows, normalize in order to 554 * take into account packet headers and sk_buff 555 * structure overhead. 556 */ 557 space /= tp->advmss; 558 if (!space) 559 space = 1; 560 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 561 while (tcp_win_from_space(rcvmem) < tp->advmss) 562 rcvmem += 128; 563 space *= rcvmem; 564 space = min(space, sysctl_tcp_rmem[2]); 565 if (space > sk->sk_rcvbuf) { 566 sk->sk_rcvbuf = space; 567 568 /* Make the window clamp follow along. */ 569 tp->window_clamp = new_clamp; 570 } 571 } 572 } 573 574 new_measure: 575 tp->rcvq_space.seq = tp->copied_seq; 576 tp->rcvq_space.time = tcp_time_stamp; 577 } 578 579 /* There is something which you must keep in mind when you analyze the 580 * behavior of the tp->ato delayed ack timeout interval. When a 581 * connection starts up, we want to ack as quickly as possible. The 582 * problem is that "good" TCP's do slow start at the beginning of data 583 * transmission. The means that until we send the first few ACK's the 584 * sender will sit on his end and only queue most of his data, because 585 * he can only send snd_cwnd unacked packets at any given time. For 586 * each ACK we send, he increments snd_cwnd and transmits more of his 587 * queue. -DaveM 588 */ 589 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 590 { 591 struct tcp_sock *tp = tcp_sk(sk); 592 struct inet_connection_sock *icsk = inet_csk(sk); 593 u32 now; 594 595 inet_csk_schedule_ack(sk); 596 597 tcp_measure_rcv_mss(sk, skb); 598 599 tcp_rcv_rtt_measure(tp); 600 601 now = tcp_time_stamp; 602 603 if (!icsk->icsk_ack.ato) { 604 /* The _first_ data packet received, initialize 605 * delayed ACK engine. 606 */ 607 tcp_incr_quickack(sk); 608 icsk->icsk_ack.ato = TCP_ATO_MIN; 609 } else { 610 int m = now - icsk->icsk_ack.lrcvtime; 611 612 if (m <= TCP_ATO_MIN / 2) { 613 /* The fastest case is the first. */ 614 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 615 } else if (m < icsk->icsk_ack.ato) { 616 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 617 if (icsk->icsk_ack.ato > icsk->icsk_rto) 618 icsk->icsk_ack.ato = icsk->icsk_rto; 619 } else if (m > icsk->icsk_rto) { 620 /* Too long gap. Apparently sender failed to 621 * restart window, so that we send ACKs quickly. 622 */ 623 tcp_incr_quickack(sk); 624 sk_mem_reclaim(sk); 625 } 626 } 627 icsk->icsk_ack.lrcvtime = now; 628 629 TCP_ECN_check_ce(tp, skb); 630 631 if (skb->len >= 128) 632 tcp_grow_window(sk, skb); 633 } 634 635 /* Called to compute a smoothed rtt estimate. The data fed to this 636 * routine either comes from timestamps, or from segments that were 637 * known _not_ to have been retransmitted [see Karn/Partridge 638 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 639 * piece by Van Jacobson. 640 * NOTE: the next three routines used to be one big routine. 641 * To save cycles in the RFC 1323 implementation it was better to break 642 * it up into three procedures. -- erics 643 */ 644 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 645 { 646 struct tcp_sock *tp = tcp_sk(sk); 647 long m = mrtt; /* RTT */ 648 649 /* The following amusing code comes from Jacobson's 650 * article in SIGCOMM '88. Note that rtt and mdev 651 * are scaled versions of rtt and mean deviation. 652 * This is designed to be as fast as possible 653 * m stands for "measurement". 654 * 655 * On a 1990 paper the rto value is changed to: 656 * RTO = rtt + 4 * mdev 657 * 658 * Funny. This algorithm seems to be very broken. 659 * These formulae increase RTO, when it should be decreased, increase 660 * too slowly, when it should be increased quickly, decrease too quickly 661 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 662 * does not matter how to _calculate_ it. Seems, it was trap 663 * that VJ failed to avoid. 8) 664 */ 665 if (m == 0) 666 m = 1; 667 if (tp->srtt != 0) { 668 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 669 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 670 if (m < 0) { 671 m = -m; /* m is now abs(error) */ 672 m -= (tp->mdev >> 2); /* similar update on mdev */ 673 /* This is similar to one of Eifel findings. 674 * Eifel blocks mdev updates when rtt decreases. 675 * This solution is a bit different: we use finer gain 676 * for mdev in this case (alpha*beta). 677 * Like Eifel it also prevents growth of rto, 678 * but also it limits too fast rto decreases, 679 * happening in pure Eifel. 680 */ 681 if (m > 0) 682 m >>= 3; 683 } else { 684 m -= (tp->mdev >> 2); /* similar update on mdev */ 685 } 686 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 687 if (tp->mdev > tp->mdev_max) { 688 tp->mdev_max = tp->mdev; 689 if (tp->mdev_max > tp->rttvar) 690 tp->rttvar = tp->mdev_max; 691 } 692 if (after(tp->snd_una, tp->rtt_seq)) { 693 if (tp->mdev_max < tp->rttvar) 694 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 695 tp->rtt_seq = tp->snd_nxt; 696 tp->mdev_max = tcp_rto_min(sk); 697 } 698 } else { 699 /* no previous measure. */ 700 tp->srtt = m << 3; /* take the measured time to be rtt */ 701 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 702 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 703 tp->rtt_seq = tp->snd_nxt; 704 } 705 } 706 707 /* Calculate rto without backoff. This is the second half of Van Jacobson's 708 * routine referred to above. 709 */ 710 void tcp_set_rto(struct sock *sk) 711 { 712 const struct tcp_sock *tp = tcp_sk(sk); 713 /* Old crap is replaced with new one. 8) 714 * 715 * More seriously: 716 * 1. If rtt variance happened to be less 50msec, it is hallucination. 717 * It cannot be less due to utterly erratic ACK generation made 718 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 719 * to do with delayed acks, because at cwnd>2 true delack timeout 720 * is invisible. Actually, Linux-2.4 also generates erratic 721 * ACKs in some circumstances. 722 */ 723 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 724 725 /* 2. Fixups made earlier cannot be right. 726 * If we do not estimate RTO correctly without them, 727 * all the algo is pure shit and should be replaced 728 * with correct one. It is exactly, which we pretend to do. 729 */ 730 731 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 732 * guarantees that rto is higher. 733 */ 734 tcp_bound_rto(sk); 735 } 736 737 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 738 { 739 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 740 741 if (!cwnd) 742 cwnd = TCP_INIT_CWND; 743 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 744 } 745 746 /* 747 * Packet counting of FACK is based on in-order assumptions, therefore TCP 748 * disables it when reordering is detected 749 */ 750 void tcp_disable_fack(struct tcp_sock *tp) 751 { 752 /* RFC3517 uses different metric in lost marker => reset on change */ 753 if (tcp_is_fack(tp)) 754 tp->lost_skb_hint = NULL; 755 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 756 } 757 758 /* Take a notice that peer is sending D-SACKs */ 759 static void tcp_dsack_seen(struct tcp_sock *tp) 760 { 761 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 762 } 763 764 static void tcp_update_reordering(struct sock *sk, const int metric, 765 const int ts) 766 { 767 struct tcp_sock *tp = tcp_sk(sk); 768 if (metric > tp->reordering) { 769 int mib_idx; 770 771 tp->reordering = min(TCP_MAX_REORDERING, metric); 772 773 /* This exciting event is worth to be remembered. 8) */ 774 if (ts) 775 mib_idx = LINUX_MIB_TCPTSREORDER; 776 else if (tcp_is_reno(tp)) 777 mib_idx = LINUX_MIB_TCPRENOREORDER; 778 else if (tcp_is_fack(tp)) 779 mib_idx = LINUX_MIB_TCPFACKREORDER; 780 else 781 mib_idx = LINUX_MIB_TCPSACKREORDER; 782 783 NET_INC_STATS_BH(sock_net(sk), mib_idx); 784 #if FASTRETRANS_DEBUG > 1 785 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 786 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 787 tp->reordering, 788 tp->fackets_out, 789 tp->sacked_out, 790 tp->undo_marker ? tp->undo_retrans : 0); 791 #endif 792 tcp_disable_fack(tp); 793 } 794 795 if (metric > 0) 796 tcp_disable_early_retrans(tp); 797 } 798 799 /* This must be called before lost_out is incremented */ 800 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 801 { 802 if ((tp->retransmit_skb_hint == NULL) || 803 before(TCP_SKB_CB(skb)->seq, 804 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 805 tp->retransmit_skb_hint = skb; 806 807 if (!tp->lost_out || 808 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 809 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 810 } 811 812 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 813 { 814 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 815 tcp_verify_retransmit_hint(tp, skb); 816 817 tp->lost_out += tcp_skb_pcount(skb); 818 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 819 } 820 } 821 822 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 823 struct sk_buff *skb) 824 { 825 tcp_verify_retransmit_hint(tp, skb); 826 827 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 828 tp->lost_out += tcp_skb_pcount(skb); 829 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 830 } 831 } 832 833 /* This procedure tags the retransmission queue when SACKs arrive. 834 * 835 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 836 * Packets in queue with these bits set are counted in variables 837 * sacked_out, retrans_out and lost_out, correspondingly. 838 * 839 * Valid combinations are: 840 * Tag InFlight Description 841 * 0 1 - orig segment is in flight. 842 * S 0 - nothing flies, orig reached receiver. 843 * L 0 - nothing flies, orig lost by net. 844 * R 2 - both orig and retransmit are in flight. 845 * L|R 1 - orig is lost, retransmit is in flight. 846 * S|R 1 - orig reached receiver, retrans is still in flight. 847 * (L|S|R is logically valid, it could occur when L|R is sacked, 848 * but it is equivalent to plain S and code short-curcuits it to S. 849 * L|S is logically invalid, it would mean -1 packet in flight 8)) 850 * 851 * These 6 states form finite state machine, controlled by the following events: 852 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 853 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 854 * 3. Loss detection event of two flavors: 855 * A. Scoreboard estimator decided the packet is lost. 856 * A'. Reno "three dupacks" marks head of queue lost. 857 * A''. Its FACK modification, head until snd.fack is lost. 858 * B. SACK arrives sacking SND.NXT at the moment, when the 859 * segment was retransmitted. 860 * 4. D-SACK added new rule: D-SACK changes any tag to S. 861 * 862 * It is pleasant to note, that state diagram turns out to be commutative, 863 * so that we are allowed not to be bothered by order of our actions, 864 * when multiple events arrive simultaneously. (see the function below). 865 * 866 * Reordering detection. 867 * -------------------- 868 * Reordering metric is maximal distance, which a packet can be displaced 869 * in packet stream. With SACKs we can estimate it: 870 * 871 * 1. SACK fills old hole and the corresponding segment was not 872 * ever retransmitted -> reordering. Alas, we cannot use it 873 * when segment was retransmitted. 874 * 2. The last flaw is solved with D-SACK. D-SACK arrives 875 * for retransmitted and already SACKed segment -> reordering.. 876 * Both of these heuristics are not used in Loss state, when we cannot 877 * account for retransmits accurately. 878 * 879 * SACK block validation. 880 * ---------------------- 881 * 882 * SACK block range validation checks that the received SACK block fits to 883 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 884 * Note that SND.UNA is not included to the range though being valid because 885 * it means that the receiver is rather inconsistent with itself reporting 886 * SACK reneging when it should advance SND.UNA. Such SACK block this is 887 * perfectly valid, however, in light of RFC2018 which explicitly states 888 * that "SACK block MUST reflect the newest segment. Even if the newest 889 * segment is going to be discarded ...", not that it looks very clever 890 * in case of head skb. Due to potentional receiver driven attacks, we 891 * choose to avoid immediate execution of a walk in write queue due to 892 * reneging and defer head skb's loss recovery to standard loss recovery 893 * procedure that will eventually trigger (nothing forbids us doing this). 894 * 895 * Implements also blockage to start_seq wrap-around. Problem lies in the 896 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 897 * there's no guarantee that it will be before snd_nxt (n). The problem 898 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 899 * wrap (s_w): 900 * 901 * <- outs wnd -> <- wrapzone -> 902 * u e n u_w e_w s n_w 903 * | | | | | | | 904 * |<------------+------+----- TCP seqno space --------------+---------->| 905 * ...-- <2^31 ->| |<--------... 906 * ...---- >2^31 ------>| |<--------... 907 * 908 * Current code wouldn't be vulnerable but it's better still to discard such 909 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 910 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 911 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 912 * equal to the ideal case (infinite seqno space without wrap caused issues). 913 * 914 * With D-SACK the lower bound is extended to cover sequence space below 915 * SND.UNA down to undo_marker, which is the last point of interest. Yet 916 * again, D-SACK block must not to go across snd_una (for the same reason as 917 * for the normal SACK blocks, explained above). But there all simplicity 918 * ends, TCP might receive valid D-SACKs below that. As long as they reside 919 * fully below undo_marker they do not affect behavior in anyway and can 920 * therefore be safely ignored. In rare cases (which are more or less 921 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 922 * fragmentation and packet reordering past skb's retransmission. To consider 923 * them correctly, the acceptable range must be extended even more though 924 * the exact amount is rather hard to quantify. However, tp->max_window can 925 * be used as an exaggerated estimate. 926 */ 927 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 928 u32 start_seq, u32 end_seq) 929 { 930 /* Too far in future, or reversed (interpretation is ambiguous) */ 931 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 932 return false; 933 934 /* Nasty start_seq wrap-around check (see comments above) */ 935 if (!before(start_seq, tp->snd_nxt)) 936 return false; 937 938 /* In outstanding window? ...This is valid exit for D-SACKs too. 939 * start_seq == snd_una is non-sensical (see comments above) 940 */ 941 if (after(start_seq, tp->snd_una)) 942 return true; 943 944 if (!is_dsack || !tp->undo_marker) 945 return false; 946 947 /* ...Then it's D-SACK, and must reside below snd_una completely */ 948 if (after(end_seq, tp->snd_una)) 949 return false; 950 951 if (!before(start_seq, tp->undo_marker)) 952 return true; 953 954 /* Too old */ 955 if (!after(end_seq, tp->undo_marker)) 956 return false; 957 958 /* Undo_marker boundary crossing (overestimates a lot). Known already: 959 * start_seq < undo_marker and end_seq >= undo_marker. 960 */ 961 return !before(start_seq, end_seq - tp->max_window); 962 } 963 964 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 965 * Event "B". Later note: FACK people cheated me again 8), we have to account 966 * for reordering! Ugly, but should help. 967 * 968 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 969 * less than what is now known to be received by the other end (derived from 970 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 971 * retransmitted skbs to avoid some costly processing per ACKs. 972 */ 973 static void tcp_mark_lost_retrans(struct sock *sk) 974 { 975 const struct inet_connection_sock *icsk = inet_csk(sk); 976 struct tcp_sock *tp = tcp_sk(sk); 977 struct sk_buff *skb; 978 int cnt = 0; 979 u32 new_low_seq = tp->snd_nxt; 980 u32 received_upto = tcp_highest_sack_seq(tp); 981 982 if (!tcp_is_fack(tp) || !tp->retrans_out || 983 !after(received_upto, tp->lost_retrans_low) || 984 icsk->icsk_ca_state != TCP_CA_Recovery) 985 return; 986 987 tcp_for_write_queue(skb, sk) { 988 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 989 990 if (skb == tcp_send_head(sk)) 991 break; 992 if (cnt == tp->retrans_out) 993 break; 994 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 995 continue; 996 997 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 998 continue; 999 1000 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1001 * constraint here (see above) but figuring out that at 1002 * least tp->reordering SACK blocks reside between ack_seq 1003 * and received_upto is not easy task to do cheaply with 1004 * the available datastructures. 1005 * 1006 * Whether FACK should check here for tp->reordering segs 1007 * in-between one could argue for either way (it would be 1008 * rather simple to implement as we could count fack_count 1009 * during the walk and do tp->fackets_out - fack_count). 1010 */ 1011 if (after(received_upto, ack_seq)) { 1012 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1013 tp->retrans_out -= tcp_skb_pcount(skb); 1014 1015 tcp_skb_mark_lost_uncond_verify(tp, skb); 1016 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1017 } else { 1018 if (before(ack_seq, new_low_seq)) 1019 new_low_seq = ack_seq; 1020 cnt += tcp_skb_pcount(skb); 1021 } 1022 } 1023 1024 if (tp->retrans_out) 1025 tp->lost_retrans_low = new_low_seq; 1026 } 1027 1028 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1029 struct tcp_sack_block_wire *sp, int num_sacks, 1030 u32 prior_snd_una) 1031 { 1032 struct tcp_sock *tp = tcp_sk(sk); 1033 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1034 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1035 bool dup_sack = false; 1036 1037 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1038 dup_sack = true; 1039 tcp_dsack_seen(tp); 1040 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1041 } else if (num_sacks > 1) { 1042 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1043 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1044 1045 if (!after(end_seq_0, end_seq_1) && 1046 !before(start_seq_0, start_seq_1)) { 1047 dup_sack = true; 1048 tcp_dsack_seen(tp); 1049 NET_INC_STATS_BH(sock_net(sk), 1050 LINUX_MIB_TCPDSACKOFORECV); 1051 } 1052 } 1053 1054 /* D-SACK for already forgotten data... Do dumb counting. */ 1055 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1056 !after(end_seq_0, prior_snd_una) && 1057 after(end_seq_0, tp->undo_marker)) 1058 tp->undo_retrans--; 1059 1060 return dup_sack; 1061 } 1062 1063 struct tcp_sacktag_state { 1064 int reord; 1065 int fack_count; 1066 int flag; 1067 }; 1068 1069 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1070 * the incoming SACK may not exactly match but we can find smaller MSS 1071 * aligned portion of it that matches. Therefore we might need to fragment 1072 * which may fail and creates some hassle (caller must handle error case 1073 * returns). 1074 * 1075 * FIXME: this could be merged to shift decision code 1076 */ 1077 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1078 u32 start_seq, u32 end_seq) 1079 { 1080 int err; 1081 bool in_sack; 1082 unsigned int pkt_len; 1083 unsigned int mss; 1084 1085 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1086 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1087 1088 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1089 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1090 mss = tcp_skb_mss(skb); 1091 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1092 1093 if (!in_sack) { 1094 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1095 if (pkt_len < mss) 1096 pkt_len = mss; 1097 } else { 1098 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1099 if (pkt_len < mss) 1100 return -EINVAL; 1101 } 1102 1103 /* Round if necessary so that SACKs cover only full MSSes 1104 * and/or the remaining small portion (if present) 1105 */ 1106 if (pkt_len > mss) { 1107 unsigned int new_len = (pkt_len / mss) * mss; 1108 if (!in_sack && new_len < pkt_len) { 1109 new_len += mss; 1110 if (new_len > skb->len) 1111 return 0; 1112 } 1113 pkt_len = new_len; 1114 } 1115 err = tcp_fragment(sk, skb, pkt_len, mss); 1116 if (err < 0) 1117 return err; 1118 } 1119 1120 return in_sack; 1121 } 1122 1123 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1124 static u8 tcp_sacktag_one(struct sock *sk, 1125 struct tcp_sacktag_state *state, u8 sacked, 1126 u32 start_seq, u32 end_seq, 1127 bool dup_sack, int pcount) 1128 { 1129 struct tcp_sock *tp = tcp_sk(sk); 1130 int fack_count = state->fack_count; 1131 1132 /* Account D-SACK for retransmitted packet. */ 1133 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1134 if (tp->undo_marker && tp->undo_retrans && 1135 after(end_seq, tp->undo_marker)) 1136 tp->undo_retrans--; 1137 if (sacked & TCPCB_SACKED_ACKED) 1138 state->reord = min(fack_count, state->reord); 1139 } 1140 1141 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1142 if (!after(end_seq, tp->snd_una)) 1143 return sacked; 1144 1145 if (!(sacked & TCPCB_SACKED_ACKED)) { 1146 if (sacked & TCPCB_SACKED_RETRANS) { 1147 /* If the segment is not tagged as lost, 1148 * we do not clear RETRANS, believing 1149 * that retransmission is still in flight. 1150 */ 1151 if (sacked & TCPCB_LOST) { 1152 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1153 tp->lost_out -= pcount; 1154 tp->retrans_out -= pcount; 1155 } 1156 } else { 1157 if (!(sacked & TCPCB_RETRANS)) { 1158 /* New sack for not retransmitted frame, 1159 * which was in hole. It is reordering. 1160 */ 1161 if (before(start_seq, 1162 tcp_highest_sack_seq(tp))) 1163 state->reord = min(fack_count, 1164 state->reord); 1165 1166 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1167 if (!after(end_seq, tp->frto_highmark)) 1168 state->flag |= FLAG_ONLY_ORIG_SACKED; 1169 } 1170 1171 if (sacked & TCPCB_LOST) { 1172 sacked &= ~TCPCB_LOST; 1173 tp->lost_out -= pcount; 1174 } 1175 } 1176 1177 sacked |= TCPCB_SACKED_ACKED; 1178 state->flag |= FLAG_DATA_SACKED; 1179 tp->sacked_out += pcount; 1180 1181 fack_count += pcount; 1182 1183 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1184 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1185 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1186 tp->lost_cnt_hint += pcount; 1187 1188 if (fack_count > tp->fackets_out) 1189 tp->fackets_out = fack_count; 1190 } 1191 1192 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1193 * frames and clear it. undo_retrans is decreased above, L|R frames 1194 * are accounted above as well. 1195 */ 1196 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1197 sacked &= ~TCPCB_SACKED_RETRANS; 1198 tp->retrans_out -= pcount; 1199 } 1200 1201 return sacked; 1202 } 1203 1204 /* Shift newly-SACKed bytes from this skb to the immediately previous 1205 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1206 */ 1207 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1208 struct tcp_sacktag_state *state, 1209 unsigned int pcount, int shifted, int mss, 1210 bool dup_sack) 1211 { 1212 struct tcp_sock *tp = tcp_sk(sk); 1213 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1214 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1215 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1216 1217 BUG_ON(!pcount); 1218 1219 /* Adjust counters and hints for the newly sacked sequence 1220 * range but discard the return value since prev is already 1221 * marked. We must tag the range first because the seq 1222 * advancement below implicitly advances 1223 * tcp_highest_sack_seq() when skb is highest_sack. 1224 */ 1225 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1226 start_seq, end_seq, dup_sack, pcount); 1227 1228 if (skb == tp->lost_skb_hint) 1229 tp->lost_cnt_hint += pcount; 1230 1231 TCP_SKB_CB(prev)->end_seq += shifted; 1232 TCP_SKB_CB(skb)->seq += shifted; 1233 1234 skb_shinfo(prev)->gso_segs += pcount; 1235 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1236 skb_shinfo(skb)->gso_segs -= pcount; 1237 1238 /* When we're adding to gso_segs == 1, gso_size will be zero, 1239 * in theory this shouldn't be necessary but as long as DSACK 1240 * code can come after this skb later on it's better to keep 1241 * setting gso_size to something. 1242 */ 1243 if (!skb_shinfo(prev)->gso_size) { 1244 skb_shinfo(prev)->gso_size = mss; 1245 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1246 } 1247 1248 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1249 if (skb_shinfo(skb)->gso_segs <= 1) { 1250 skb_shinfo(skb)->gso_size = 0; 1251 skb_shinfo(skb)->gso_type = 0; 1252 } 1253 1254 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1255 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1256 1257 if (skb->len > 0) { 1258 BUG_ON(!tcp_skb_pcount(skb)); 1259 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1260 return false; 1261 } 1262 1263 /* Whole SKB was eaten :-) */ 1264 1265 if (skb == tp->retransmit_skb_hint) 1266 tp->retransmit_skb_hint = prev; 1267 if (skb == tp->scoreboard_skb_hint) 1268 tp->scoreboard_skb_hint = prev; 1269 if (skb == tp->lost_skb_hint) { 1270 tp->lost_skb_hint = prev; 1271 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1272 } 1273 1274 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags; 1275 if (skb == tcp_highest_sack(sk)) 1276 tcp_advance_highest_sack(sk, skb); 1277 1278 tcp_unlink_write_queue(skb, sk); 1279 sk_wmem_free_skb(sk, skb); 1280 1281 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1282 1283 return true; 1284 } 1285 1286 /* I wish gso_size would have a bit more sane initialization than 1287 * something-or-zero which complicates things 1288 */ 1289 static int tcp_skb_seglen(const struct sk_buff *skb) 1290 { 1291 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1292 } 1293 1294 /* Shifting pages past head area doesn't work */ 1295 static int skb_can_shift(const struct sk_buff *skb) 1296 { 1297 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1298 } 1299 1300 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1301 * skb. 1302 */ 1303 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1304 struct tcp_sacktag_state *state, 1305 u32 start_seq, u32 end_seq, 1306 bool dup_sack) 1307 { 1308 struct tcp_sock *tp = tcp_sk(sk); 1309 struct sk_buff *prev; 1310 int mss; 1311 int pcount = 0; 1312 int len; 1313 int in_sack; 1314 1315 if (!sk_can_gso(sk)) 1316 goto fallback; 1317 1318 /* Normally R but no L won't result in plain S */ 1319 if (!dup_sack && 1320 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1321 goto fallback; 1322 if (!skb_can_shift(skb)) 1323 goto fallback; 1324 /* This frame is about to be dropped (was ACKed). */ 1325 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1326 goto fallback; 1327 1328 /* Can only happen with delayed DSACK + discard craziness */ 1329 if (unlikely(skb == tcp_write_queue_head(sk))) 1330 goto fallback; 1331 prev = tcp_write_queue_prev(sk, skb); 1332 1333 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1334 goto fallback; 1335 1336 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1337 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1338 1339 if (in_sack) { 1340 len = skb->len; 1341 pcount = tcp_skb_pcount(skb); 1342 mss = tcp_skb_seglen(skb); 1343 1344 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1345 * drop this restriction as unnecessary 1346 */ 1347 if (mss != tcp_skb_seglen(prev)) 1348 goto fallback; 1349 } else { 1350 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1351 goto noop; 1352 /* CHECKME: This is non-MSS split case only?, this will 1353 * cause skipped skbs due to advancing loop btw, original 1354 * has that feature too 1355 */ 1356 if (tcp_skb_pcount(skb) <= 1) 1357 goto noop; 1358 1359 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1360 if (!in_sack) { 1361 /* TODO: head merge to next could be attempted here 1362 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1363 * though it might not be worth of the additional hassle 1364 * 1365 * ...we can probably just fallback to what was done 1366 * previously. We could try merging non-SACKed ones 1367 * as well but it probably isn't going to buy off 1368 * because later SACKs might again split them, and 1369 * it would make skb timestamp tracking considerably 1370 * harder problem. 1371 */ 1372 goto fallback; 1373 } 1374 1375 len = end_seq - TCP_SKB_CB(skb)->seq; 1376 BUG_ON(len < 0); 1377 BUG_ON(len > skb->len); 1378 1379 /* MSS boundaries should be honoured or else pcount will 1380 * severely break even though it makes things bit trickier. 1381 * Optimize common case to avoid most of the divides 1382 */ 1383 mss = tcp_skb_mss(skb); 1384 1385 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1386 * drop this restriction as unnecessary 1387 */ 1388 if (mss != tcp_skb_seglen(prev)) 1389 goto fallback; 1390 1391 if (len == mss) { 1392 pcount = 1; 1393 } else if (len < mss) { 1394 goto noop; 1395 } else { 1396 pcount = len / mss; 1397 len = pcount * mss; 1398 } 1399 } 1400 1401 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1402 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1403 goto fallback; 1404 1405 if (!skb_shift(prev, skb, len)) 1406 goto fallback; 1407 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1408 goto out; 1409 1410 /* Hole filled allows collapsing with the next as well, this is very 1411 * useful when hole on every nth skb pattern happens 1412 */ 1413 if (prev == tcp_write_queue_tail(sk)) 1414 goto out; 1415 skb = tcp_write_queue_next(sk, prev); 1416 1417 if (!skb_can_shift(skb) || 1418 (skb == tcp_send_head(sk)) || 1419 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1420 (mss != tcp_skb_seglen(skb))) 1421 goto out; 1422 1423 len = skb->len; 1424 if (skb_shift(prev, skb, len)) { 1425 pcount += tcp_skb_pcount(skb); 1426 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1427 } 1428 1429 out: 1430 state->fack_count += pcount; 1431 return prev; 1432 1433 noop: 1434 return skb; 1435 1436 fallback: 1437 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1438 return NULL; 1439 } 1440 1441 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1442 struct tcp_sack_block *next_dup, 1443 struct tcp_sacktag_state *state, 1444 u32 start_seq, u32 end_seq, 1445 bool dup_sack_in) 1446 { 1447 struct tcp_sock *tp = tcp_sk(sk); 1448 struct sk_buff *tmp; 1449 1450 tcp_for_write_queue_from(skb, sk) { 1451 int in_sack = 0; 1452 bool dup_sack = dup_sack_in; 1453 1454 if (skb == tcp_send_head(sk)) 1455 break; 1456 1457 /* queue is in-order => we can short-circuit the walk early */ 1458 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1459 break; 1460 1461 if ((next_dup != NULL) && 1462 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1463 in_sack = tcp_match_skb_to_sack(sk, skb, 1464 next_dup->start_seq, 1465 next_dup->end_seq); 1466 if (in_sack > 0) 1467 dup_sack = true; 1468 } 1469 1470 /* skb reference here is a bit tricky to get right, since 1471 * shifting can eat and free both this skb and the next, 1472 * so not even _safe variant of the loop is enough. 1473 */ 1474 if (in_sack <= 0) { 1475 tmp = tcp_shift_skb_data(sk, skb, state, 1476 start_seq, end_seq, dup_sack); 1477 if (tmp != NULL) { 1478 if (tmp != skb) { 1479 skb = tmp; 1480 continue; 1481 } 1482 1483 in_sack = 0; 1484 } else { 1485 in_sack = tcp_match_skb_to_sack(sk, skb, 1486 start_seq, 1487 end_seq); 1488 } 1489 } 1490 1491 if (unlikely(in_sack < 0)) 1492 break; 1493 1494 if (in_sack) { 1495 TCP_SKB_CB(skb)->sacked = 1496 tcp_sacktag_one(sk, 1497 state, 1498 TCP_SKB_CB(skb)->sacked, 1499 TCP_SKB_CB(skb)->seq, 1500 TCP_SKB_CB(skb)->end_seq, 1501 dup_sack, 1502 tcp_skb_pcount(skb)); 1503 1504 if (!before(TCP_SKB_CB(skb)->seq, 1505 tcp_highest_sack_seq(tp))) 1506 tcp_advance_highest_sack(sk, skb); 1507 } 1508 1509 state->fack_count += tcp_skb_pcount(skb); 1510 } 1511 return skb; 1512 } 1513 1514 /* Avoid all extra work that is being done by sacktag while walking in 1515 * a normal way 1516 */ 1517 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1518 struct tcp_sacktag_state *state, 1519 u32 skip_to_seq) 1520 { 1521 tcp_for_write_queue_from(skb, sk) { 1522 if (skb == tcp_send_head(sk)) 1523 break; 1524 1525 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1526 break; 1527 1528 state->fack_count += tcp_skb_pcount(skb); 1529 } 1530 return skb; 1531 } 1532 1533 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1534 struct sock *sk, 1535 struct tcp_sack_block *next_dup, 1536 struct tcp_sacktag_state *state, 1537 u32 skip_to_seq) 1538 { 1539 if (next_dup == NULL) 1540 return skb; 1541 1542 if (before(next_dup->start_seq, skip_to_seq)) { 1543 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1544 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1545 next_dup->start_seq, next_dup->end_seq, 1546 1); 1547 } 1548 1549 return skb; 1550 } 1551 1552 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1553 { 1554 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1555 } 1556 1557 static int 1558 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1559 u32 prior_snd_una) 1560 { 1561 const struct inet_connection_sock *icsk = inet_csk(sk); 1562 struct tcp_sock *tp = tcp_sk(sk); 1563 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1564 TCP_SKB_CB(ack_skb)->sacked); 1565 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1566 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1567 struct tcp_sack_block *cache; 1568 struct tcp_sacktag_state state; 1569 struct sk_buff *skb; 1570 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1571 int used_sacks; 1572 bool found_dup_sack = false; 1573 int i, j; 1574 int first_sack_index; 1575 1576 state.flag = 0; 1577 state.reord = tp->packets_out; 1578 1579 if (!tp->sacked_out) { 1580 if (WARN_ON(tp->fackets_out)) 1581 tp->fackets_out = 0; 1582 tcp_highest_sack_reset(sk); 1583 } 1584 1585 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1586 num_sacks, prior_snd_una); 1587 if (found_dup_sack) 1588 state.flag |= FLAG_DSACKING_ACK; 1589 1590 /* Eliminate too old ACKs, but take into 1591 * account more or less fresh ones, they can 1592 * contain valid SACK info. 1593 */ 1594 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1595 return 0; 1596 1597 if (!tp->packets_out) 1598 goto out; 1599 1600 used_sacks = 0; 1601 first_sack_index = 0; 1602 for (i = 0; i < num_sacks; i++) { 1603 bool dup_sack = !i && found_dup_sack; 1604 1605 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1606 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1607 1608 if (!tcp_is_sackblock_valid(tp, dup_sack, 1609 sp[used_sacks].start_seq, 1610 sp[used_sacks].end_seq)) { 1611 int mib_idx; 1612 1613 if (dup_sack) { 1614 if (!tp->undo_marker) 1615 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1616 else 1617 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1618 } else { 1619 /* Don't count olds caused by ACK reordering */ 1620 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1621 !after(sp[used_sacks].end_seq, tp->snd_una)) 1622 continue; 1623 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1624 } 1625 1626 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1627 if (i == 0) 1628 first_sack_index = -1; 1629 continue; 1630 } 1631 1632 /* Ignore very old stuff early */ 1633 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1634 continue; 1635 1636 used_sacks++; 1637 } 1638 1639 /* order SACK blocks to allow in order walk of the retrans queue */ 1640 for (i = used_sacks - 1; i > 0; i--) { 1641 for (j = 0; j < i; j++) { 1642 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1643 swap(sp[j], sp[j + 1]); 1644 1645 /* Track where the first SACK block goes to */ 1646 if (j == first_sack_index) 1647 first_sack_index = j + 1; 1648 } 1649 } 1650 } 1651 1652 skb = tcp_write_queue_head(sk); 1653 state.fack_count = 0; 1654 i = 0; 1655 1656 if (!tp->sacked_out) { 1657 /* It's already past, so skip checking against it */ 1658 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1659 } else { 1660 cache = tp->recv_sack_cache; 1661 /* Skip empty blocks in at head of the cache */ 1662 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1663 !cache->end_seq) 1664 cache++; 1665 } 1666 1667 while (i < used_sacks) { 1668 u32 start_seq = sp[i].start_seq; 1669 u32 end_seq = sp[i].end_seq; 1670 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1671 struct tcp_sack_block *next_dup = NULL; 1672 1673 if (found_dup_sack && ((i + 1) == first_sack_index)) 1674 next_dup = &sp[i + 1]; 1675 1676 /* Skip too early cached blocks */ 1677 while (tcp_sack_cache_ok(tp, cache) && 1678 !before(start_seq, cache->end_seq)) 1679 cache++; 1680 1681 /* Can skip some work by looking recv_sack_cache? */ 1682 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1683 after(end_seq, cache->start_seq)) { 1684 1685 /* Head todo? */ 1686 if (before(start_seq, cache->start_seq)) { 1687 skb = tcp_sacktag_skip(skb, sk, &state, 1688 start_seq); 1689 skb = tcp_sacktag_walk(skb, sk, next_dup, 1690 &state, 1691 start_seq, 1692 cache->start_seq, 1693 dup_sack); 1694 } 1695 1696 /* Rest of the block already fully processed? */ 1697 if (!after(end_seq, cache->end_seq)) 1698 goto advance_sp; 1699 1700 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1701 &state, 1702 cache->end_seq); 1703 1704 /* ...tail remains todo... */ 1705 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1706 /* ...but better entrypoint exists! */ 1707 skb = tcp_highest_sack(sk); 1708 if (skb == NULL) 1709 break; 1710 state.fack_count = tp->fackets_out; 1711 cache++; 1712 goto walk; 1713 } 1714 1715 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1716 /* Check overlap against next cached too (past this one already) */ 1717 cache++; 1718 continue; 1719 } 1720 1721 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1722 skb = tcp_highest_sack(sk); 1723 if (skb == NULL) 1724 break; 1725 state.fack_count = tp->fackets_out; 1726 } 1727 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1728 1729 walk: 1730 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1731 start_seq, end_seq, dup_sack); 1732 1733 advance_sp: 1734 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1735 * due to in-order walk 1736 */ 1737 if (after(end_seq, tp->frto_highmark)) 1738 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1739 1740 i++; 1741 } 1742 1743 /* Clear the head of the cache sack blocks so we can skip it next time */ 1744 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1745 tp->recv_sack_cache[i].start_seq = 0; 1746 tp->recv_sack_cache[i].end_seq = 0; 1747 } 1748 for (j = 0; j < used_sacks; j++) 1749 tp->recv_sack_cache[i++] = sp[j]; 1750 1751 tcp_mark_lost_retrans(sk); 1752 1753 tcp_verify_left_out(tp); 1754 1755 if ((state.reord < tp->fackets_out) && 1756 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1757 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1758 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1759 1760 out: 1761 1762 #if FASTRETRANS_DEBUG > 0 1763 WARN_ON((int)tp->sacked_out < 0); 1764 WARN_ON((int)tp->lost_out < 0); 1765 WARN_ON((int)tp->retrans_out < 0); 1766 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1767 #endif 1768 return state.flag; 1769 } 1770 1771 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1772 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1773 */ 1774 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1775 { 1776 u32 holes; 1777 1778 holes = max(tp->lost_out, 1U); 1779 holes = min(holes, tp->packets_out); 1780 1781 if ((tp->sacked_out + holes) > tp->packets_out) { 1782 tp->sacked_out = tp->packets_out - holes; 1783 return true; 1784 } 1785 return false; 1786 } 1787 1788 /* If we receive more dupacks than we expected counting segments 1789 * in assumption of absent reordering, interpret this as reordering. 1790 * The only another reason could be bug in receiver TCP. 1791 */ 1792 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1793 { 1794 struct tcp_sock *tp = tcp_sk(sk); 1795 if (tcp_limit_reno_sacked(tp)) 1796 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1797 } 1798 1799 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1800 1801 static void tcp_add_reno_sack(struct sock *sk) 1802 { 1803 struct tcp_sock *tp = tcp_sk(sk); 1804 tp->sacked_out++; 1805 tcp_check_reno_reordering(sk, 0); 1806 tcp_verify_left_out(tp); 1807 } 1808 1809 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1810 1811 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1812 { 1813 struct tcp_sock *tp = tcp_sk(sk); 1814 1815 if (acked > 0) { 1816 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1817 if (acked - 1 >= tp->sacked_out) 1818 tp->sacked_out = 0; 1819 else 1820 tp->sacked_out -= acked - 1; 1821 } 1822 tcp_check_reno_reordering(sk, acked); 1823 tcp_verify_left_out(tp); 1824 } 1825 1826 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1827 { 1828 tp->sacked_out = 0; 1829 } 1830 1831 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1832 { 1833 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1834 } 1835 1836 /* F-RTO can only be used if TCP has never retransmitted anything other than 1837 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1838 */ 1839 bool tcp_use_frto(struct sock *sk) 1840 { 1841 const struct tcp_sock *tp = tcp_sk(sk); 1842 const struct inet_connection_sock *icsk = inet_csk(sk); 1843 struct sk_buff *skb; 1844 1845 if (!sysctl_tcp_frto) 1846 return false; 1847 1848 /* MTU probe and F-RTO won't really play nicely along currently */ 1849 if (icsk->icsk_mtup.probe_size) 1850 return false; 1851 1852 if (tcp_is_sackfrto(tp)) 1853 return true; 1854 1855 /* Avoid expensive walking of rexmit queue if possible */ 1856 if (tp->retrans_out > 1) 1857 return false; 1858 1859 skb = tcp_write_queue_head(sk); 1860 if (tcp_skb_is_last(sk, skb)) 1861 return true; 1862 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 1863 tcp_for_write_queue_from(skb, sk) { 1864 if (skb == tcp_send_head(sk)) 1865 break; 1866 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1867 return false; 1868 /* Short-circuit when first non-SACKed skb has been checked */ 1869 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1870 break; 1871 } 1872 return true; 1873 } 1874 1875 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 1876 * recovery a bit and use heuristics in tcp_process_frto() to detect if 1877 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 1878 * keep retrans_out counting accurate (with SACK F-RTO, other than head 1879 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 1880 * bits are handled if the Loss state is really to be entered (in 1881 * tcp_enter_frto_loss). 1882 * 1883 * Do like tcp_enter_loss() would; when RTO expires the second time it 1884 * does: 1885 * "Reduce ssthresh if it has not yet been made inside this window." 1886 */ 1887 void tcp_enter_frto(struct sock *sk) 1888 { 1889 const struct inet_connection_sock *icsk = inet_csk(sk); 1890 struct tcp_sock *tp = tcp_sk(sk); 1891 struct sk_buff *skb; 1892 1893 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 1894 tp->snd_una == tp->high_seq || 1895 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 1896 !icsk->icsk_retransmits)) { 1897 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1898 /* Our state is too optimistic in ssthresh() call because cwnd 1899 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 1900 * recovery has not yet completed. Pattern would be this: RTO, 1901 * Cumulative ACK, RTO (2xRTO for the same segment does not end 1902 * up here twice). 1903 * RFC4138 should be more specific on what to do, even though 1904 * RTO is quite unlikely to occur after the first Cumulative ACK 1905 * due to back-off and complexity of triggering events ... 1906 */ 1907 if (tp->frto_counter) { 1908 u32 stored_cwnd; 1909 stored_cwnd = tp->snd_cwnd; 1910 tp->snd_cwnd = 2; 1911 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1912 tp->snd_cwnd = stored_cwnd; 1913 } else { 1914 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1915 } 1916 /* ... in theory, cong.control module could do "any tricks" in 1917 * ssthresh(), which means that ca_state, lost bits and lost_out 1918 * counter would have to be faked before the call occurs. We 1919 * consider that too expensive, unlikely and hacky, so modules 1920 * using these in ssthresh() must deal these incompatibility 1921 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 1922 */ 1923 tcp_ca_event(sk, CA_EVENT_FRTO); 1924 } 1925 1926 tp->undo_marker = tp->snd_una; 1927 tp->undo_retrans = 0; 1928 1929 skb = tcp_write_queue_head(sk); 1930 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1931 tp->undo_marker = 0; 1932 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1933 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1934 tp->retrans_out -= tcp_skb_pcount(skb); 1935 } 1936 tcp_verify_left_out(tp); 1937 1938 /* Too bad if TCP was application limited */ 1939 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 1940 1941 /* Earlier loss recovery underway (see RFC4138; Appendix B). 1942 * The last condition is necessary at least in tp->frto_counter case. 1943 */ 1944 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 1945 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 1946 after(tp->high_seq, tp->snd_una)) { 1947 tp->frto_highmark = tp->high_seq; 1948 } else { 1949 tp->frto_highmark = tp->snd_nxt; 1950 } 1951 tcp_set_ca_state(sk, TCP_CA_Disorder); 1952 tp->high_seq = tp->snd_nxt; 1953 tp->frto_counter = 1; 1954 } 1955 1956 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1957 * which indicates that we should follow the traditional RTO recovery, 1958 * i.e. mark everything lost and do go-back-N retransmission. 1959 */ 1960 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 1961 { 1962 struct tcp_sock *tp = tcp_sk(sk); 1963 struct sk_buff *skb; 1964 1965 tp->lost_out = 0; 1966 tp->retrans_out = 0; 1967 if (tcp_is_reno(tp)) 1968 tcp_reset_reno_sack(tp); 1969 1970 tcp_for_write_queue(skb, sk) { 1971 if (skb == tcp_send_head(sk)) 1972 break; 1973 1974 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1975 /* 1976 * Count the retransmission made on RTO correctly (only when 1977 * waiting for the first ACK and did not get it)... 1978 */ 1979 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 1980 /* For some reason this R-bit might get cleared? */ 1981 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1982 tp->retrans_out += tcp_skb_pcount(skb); 1983 /* ...enter this if branch just for the first segment */ 1984 flag |= FLAG_DATA_ACKED; 1985 } else { 1986 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1987 tp->undo_marker = 0; 1988 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1989 } 1990 1991 /* Marking forward transmissions that were made after RTO lost 1992 * can cause unnecessary retransmissions in some scenarios, 1993 * SACK blocks will mitigate that in some but not in all cases. 1994 * We used to not mark them but it was causing break-ups with 1995 * receivers that do only in-order receival. 1996 * 1997 * TODO: we could detect presence of such receiver and select 1998 * different behavior per flow. 1999 */ 2000 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2002 tp->lost_out += tcp_skb_pcount(skb); 2003 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2004 } 2005 } 2006 tcp_verify_left_out(tp); 2007 2008 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2009 tp->snd_cwnd_cnt = 0; 2010 tp->snd_cwnd_stamp = tcp_time_stamp; 2011 tp->frto_counter = 0; 2012 tp->bytes_acked = 0; 2013 2014 tp->reordering = min_t(unsigned int, tp->reordering, 2015 sysctl_tcp_reordering); 2016 tcp_set_ca_state(sk, TCP_CA_Loss); 2017 tp->high_seq = tp->snd_nxt; 2018 TCP_ECN_queue_cwr(tp); 2019 2020 tcp_clear_all_retrans_hints(tp); 2021 } 2022 2023 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2024 { 2025 tp->retrans_out = 0; 2026 tp->lost_out = 0; 2027 2028 tp->undo_marker = 0; 2029 tp->undo_retrans = 0; 2030 } 2031 2032 void tcp_clear_retrans(struct tcp_sock *tp) 2033 { 2034 tcp_clear_retrans_partial(tp); 2035 2036 tp->fackets_out = 0; 2037 tp->sacked_out = 0; 2038 } 2039 2040 /* Enter Loss state. If "how" is not zero, forget all SACK information 2041 * and reset tags completely, otherwise preserve SACKs. If receiver 2042 * dropped its ofo queue, we will know this due to reneging detection. 2043 */ 2044 void tcp_enter_loss(struct sock *sk, int how) 2045 { 2046 const struct inet_connection_sock *icsk = inet_csk(sk); 2047 struct tcp_sock *tp = tcp_sk(sk); 2048 struct sk_buff *skb; 2049 2050 /* Reduce ssthresh if it has not yet been made inside this window. */ 2051 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2052 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2053 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2054 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2055 tcp_ca_event(sk, CA_EVENT_LOSS); 2056 } 2057 tp->snd_cwnd = 1; 2058 tp->snd_cwnd_cnt = 0; 2059 tp->snd_cwnd_stamp = tcp_time_stamp; 2060 2061 tp->bytes_acked = 0; 2062 tcp_clear_retrans_partial(tp); 2063 2064 if (tcp_is_reno(tp)) 2065 tcp_reset_reno_sack(tp); 2066 2067 if (!how) { 2068 /* Push undo marker, if it was plain RTO and nothing 2069 * was retransmitted. */ 2070 tp->undo_marker = tp->snd_una; 2071 } else { 2072 tp->sacked_out = 0; 2073 tp->fackets_out = 0; 2074 } 2075 tcp_clear_all_retrans_hints(tp); 2076 2077 tcp_for_write_queue(skb, sk) { 2078 if (skb == tcp_send_head(sk)) 2079 break; 2080 2081 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2082 tp->undo_marker = 0; 2083 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2084 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2085 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2086 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2087 tp->lost_out += tcp_skb_pcount(skb); 2088 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2089 } 2090 } 2091 tcp_verify_left_out(tp); 2092 2093 tp->reordering = min_t(unsigned int, tp->reordering, 2094 sysctl_tcp_reordering); 2095 tcp_set_ca_state(sk, TCP_CA_Loss); 2096 tp->high_seq = tp->snd_nxt; 2097 TCP_ECN_queue_cwr(tp); 2098 /* Abort F-RTO algorithm if one is in progress */ 2099 tp->frto_counter = 0; 2100 } 2101 2102 /* If ACK arrived pointing to a remembered SACK, it means that our 2103 * remembered SACKs do not reflect real state of receiver i.e. 2104 * receiver _host_ is heavily congested (or buggy). 2105 * 2106 * Do processing similar to RTO timeout. 2107 */ 2108 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2109 { 2110 if (flag & FLAG_SACK_RENEGING) { 2111 struct inet_connection_sock *icsk = inet_csk(sk); 2112 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2113 2114 tcp_enter_loss(sk, 1); 2115 icsk->icsk_retransmits++; 2116 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2117 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2118 icsk->icsk_rto, TCP_RTO_MAX); 2119 return true; 2120 } 2121 return false; 2122 } 2123 2124 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2125 { 2126 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2127 } 2128 2129 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2130 * counter when SACK is enabled (without SACK, sacked_out is used for 2131 * that purpose). 2132 * 2133 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2134 * segments up to the highest received SACK block so far and holes in 2135 * between them. 2136 * 2137 * With reordering, holes may still be in flight, so RFC3517 recovery 2138 * uses pure sacked_out (total number of SACKed segments) even though 2139 * it violates the RFC that uses duplicate ACKs, often these are equal 2140 * but when e.g. out-of-window ACKs or packet duplication occurs, 2141 * they differ. Since neither occurs due to loss, TCP should really 2142 * ignore them. 2143 */ 2144 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2145 { 2146 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2147 } 2148 2149 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2150 { 2151 struct tcp_sock *tp = tcp_sk(sk); 2152 unsigned long delay; 2153 2154 /* Delay early retransmit and entering fast recovery for 2155 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2156 * available, or RTO is scheduled to fire first. 2157 */ 2158 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt) 2159 return false; 2160 2161 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2)); 2162 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2163 return false; 2164 2165 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX); 2166 tp->early_retrans_delayed = 1; 2167 return true; 2168 } 2169 2170 static inline int tcp_skb_timedout(const struct sock *sk, 2171 const struct sk_buff *skb) 2172 { 2173 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto; 2174 } 2175 2176 static inline int tcp_head_timedout(const struct sock *sk) 2177 { 2178 const struct tcp_sock *tp = tcp_sk(sk); 2179 2180 return tp->packets_out && 2181 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2182 } 2183 2184 /* Linux NewReno/SACK/FACK/ECN state machine. 2185 * -------------------------------------- 2186 * 2187 * "Open" Normal state, no dubious events, fast path. 2188 * "Disorder" In all the respects it is "Open", 2189 * but requires a bit more attention. It is entered when 2190 * we see some SACKs or dupacks. It is split of "Open" 2191 * mainly to move some processing from fast path to slow one. 2192 * "CWR" CWND was reduced due to some Congestion Notification event. 2193 * It can be ECN, ICMP source quench, local device congestion. 2194 * "Recovery" CWND was reduced, we are fast-retransmitting. 2195 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2196 * 2197 * tcp_fastretrans_alert() is entered: 2198 * - each incoming ACK, if state is not "Open" 2199 * - when arrived ACK is unusual, namely: 2200 * * SACK 2201 * * Duplicate ACK. 2202 * * ECN ECE. 2203 * 2204 * Counting packets in flight is pretty simple. 2205 * 2206 * in_flight = packets_out - left_out + retrans_out 2207 * 2208 * packets_out is SND.NXT-SND.UNA counted in packets. 2209 * 2210 * retrans_out is number of retransmitted segments. 2211 * 2212 * left_out is number of segments left network, but not ACKed yet. 2213 * 2214 * left_out = sacked_out + lost_out 2215 * 2216 * sacked_out: Packets, which arrived to receiver out of order 2217 * and hence not ACKed. With SACKs this number is simply 2218 * amount of SACKed data. Even without SACKs 2219 * it is easy to give pretty reliable estimate of this number, 2220 * counting duplicate ACKs. 2221 * 2222 * lost_out: Packets lost by network. TCP has no explicit 2223 * "loss notification" feedback from network (for now). 2224 * It means that this number can be only _guessed_. 2225 * Actually, it is the heuristics to predict lossage that 2226 * distinguishes different algorithms. 2227 * 2228 * F.e. after RTO, when all the queue is considered as lost, 2229 * lost_out = packets_out and in_flight = retrans_out. 2230 * 2231 * Essentially, we have now two algorithms counting 2232 * lost packets. 2233 * 2234 * FACK: It is the simplest heuristics. As soon as we decided 2235 * that something is lost, we decide that _all_ not SACKed 2236 * packets until the most forward SACK are lost. I.e. 2237 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2238 * It is absolutely correct estimate, if network does not reorder 2239 * packets. And it loses any connection to reality when reordering 2240 * takes place. We use FACK by default until reordering 2241 * is suspected on the path to this destination. 2242 * 2243 * NewReno: when Recovery is entered, we assume that one segment 2244 * is lost (classic Reno). While we are in Recovery and 2245 * a partial ACK arrives, we assume that one more packet 2246 * is lost (NewReno). This heuristics are the same in NewReno 2247 * and SACK. 2248 * 2249 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2250 * deflation etc. CWND is real congestion window, never inflated, changes 2251 * only according to classic VJ rules. 2252 * 2253 * Really tricky (and requiring careful tuning) part of algorithm 2254 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2255 * The first determines the moment _when_ we should reduce CWND and, 2256 * hence, slow down forward transmission. In fact, it determines the moment 2257 * when we decide that hole is caused by loss, rather than by a reorder. 2258 * 2259 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2260 * holes, caused by lost packets. 2261 * 2262 * And the most logically complicated part of algorithm is undo 2263 * heuristics. We detect false retransmits due to both too early 2264 * fast retransmit (reordering) and underestimated RTO, analyzing 2265 * timestamps and D-SACKs. When we detect that some segments were 2266 * retransmitted by mistake and CWND reduction was wrong, we undo 2267 * window reduction and abort recovery phase. This logic is hidden 2268 * inside several functions named tcp_try_undo_<something>. 2269 */ 2270 2271 /* This function decides, when we should leave Disordered state 2272 * and enter Recovery phase, reducing congestion window. 2273 * 2274 * Main question: may we further continue forward transmission 2275 * with the same cwnd? 2276 */ 2277 static bool tcp_time_to_recover(struct sock *sk, int flag) 2278 { 2279 struct tcp_sock *tp = tcp_sk(sk); 2280 __u32 packets_out; 2281 2282 /* Do not perform any recovery during F-RTO algorithm */ 2283 if (tp->frto_counter) 2284 return false; 2285 2286 /* Trick#1: The loss is proven. */ 2287 if (tp->lost_out) 2288 return true; 2289 2290 /* Not-A-Trick#2 : Classic rule... */ 2291 if (tcp_dupack_heuristics(tp) > tp->reordering) 2292 return true; 2293 2294 /* Trick#3 : when we use RFC2988 timer restart, fast 2295 * retransmit can be triggered by timeout of queue head. 2296 */ 2297 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2298 return true; 2299 2300 /* Trick#4: It is still not OK... But will it be useful to delay 2301 * recovery more? 2302 */ 2303 packets_out = tp->packets_out; 2304 if (packets_out <= tp->reordering && 2305 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2306 !tcp_may_send_now(sk)) { 2307 /* We have nothing to send. This connection is limited 2308 * either by receiver window or by application. 2309 */ 2310 return true; 2311 } 2312 2313 /* If a thin stream is detected, retransmit after first 2314 * received dupack. Employ only if SACK is supported in order 2315 * to avoid possible corner-case series of spurious retransmissions 2316 * Use only if there are no unsent data. 2317 */ 2318 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2319 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2320 tcp_is_sack(tp) && !tcp_send_head(sk)) 2321 return true; 2322 2323 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2324 * retransmissions due to small network reorderings, we implement 2325 * Mitigation A.3 in the RFC and delay the retransmission for a short 2326 * interval if appropriate. 2327 */ 2328 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2329 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) && 2330 !tcp_may_send_now(sk)) 2331 return !tcp_pause_early_retransmit(sk, flag); 2332 2333 return false; 2334 } 2335 2336 /* New heuristics: it is possible only after we switched to restart timer 2337 * each time when something is ACKed. Hence, we can detect timed out packets 2338 * during fast retransmit without falling to slow start. 2339 * 2340 * Usefulness of this as is very questionable, since we should know which of 2341 * the segments is the next to timeout which is relatively expensive to find 2342 * in general case unless we add some data structure just for that. The 2343 * current approach certainly won't find the right one too often and when it 2344 * finally does find _something_ it usually marks large part of the window 2345 * right away (because a retransmission with a larger timestamp blocks the 2346 * loop from advancing). -ij 2347 */ 2348 static void tcp_timeout_skbs(struct sock *sk) 2349 { 2350 struct tcp_sock *tp = tcp_sk(sk); 2351 struct sk_buff *skb; 2352 2353 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2354 return; 2355 2356 skb = tp->scoreboard_skb_hint; 2357 if (tp->scoreboard_skb_hint == NULL) 2358 skb = tcp_write_queue_head(sk); 2359 2360 tcp_for_write_queue_from(skb, sk) { 2361 if (skb == tcp_send_head(sk)) 2362 break; 2363 if (!tcp_skb_timedout(sk, skb)) 2364 break; 2365 2366 tcp_skb_mark_lost(tp, skb); 2367 } 2368 2369 tp->scoreboard_skb_hint = skb; 2370 2371 tcp_verify_left_out(tp); 2372 } 2373 2374 /* Detect loss in event "A" above by marking head of queue up as lost. 2375 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2376 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2377 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2378 * the maximum SACKed segments to pass before reaching this limit. 2379 */ 2380 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2381 { 2382 struct tcp_sock *tp = tcp_sk(sk); 2383 struct sk_buff *skb; 2384 int cnt, oldcnt; 2385 int err; 2386 unsigned int mss; 2387 /* Use SACK to deduce losses of new sequences sent during recovery */ 2388 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2389 2390 WARN_ON(packets > tp->packets_out); 2391 if (tp->lost_skb_hint) { 2392 skb = tp->lost_skb_hint; 2393 cnt = tp->lost_cnt_hint; 2394 /* Head already handled? */ 2395 if (mark_head && skb != tcp_write_queue_head(sk)) 2396 return; 2397 } else { 2398 skb = tcp_write_queue_head(sk); 2399 cnt = 0; 2400 } 2401 2402 tcp_for_write_queue_from(skb, sk) { 2403 if (skb == tcp_send_head(sk)) 2404 break; 2405 /* TODO: do this better */ 2406 /* this is not the most efficient way to do this... */ 2407 tp->lost_skb_hint = skb; 2408 tp->lost_cnt_hint = cnt; 2409 2410 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2411 break; 2412 2413 oldcnt = cnt; 2414 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2415 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2416 cnt += tcp_skb_pcount(skb); 2417 2418 if (cnt > packets) { 2419 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2420 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2421 (oldcnt >= packets)) 2422 break; 2423 2424 mss = skb_shinfo(skb)->gso_size; 2425 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2426 if (err < 0) 2427 break; 2428 cnt = packets; 2429 } 2430 2431 tcp_skb_mark_lost(tp, skb); 2432 2433 if (mark_head) 2434 break; 2435 } 2436 tcp_verify_left_out(tp); 2437 } 2438 2439 /* Account newly detected lost packet(s) */ 2440 2441 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2442 { 2443 struct tcp_sock *tp = tcp_sk(sk); 2444 2445 if (tcp_is_reno(tp)) { 2446 tcp_mark_head_lost(sk, 1, 1); 2447 } else if (tcp_is_fack(tp)) { 2448 int lost = tp->fackets_out - tp->reordering; 2449 if (lost <= 0) 2450 lost = 1; 2451 tcp_mark_head_lost(sk, lost, 0); 2452 } else { 2453 int sacked_upto = tp->sacked_out - tp->reordering; 2454 if (sacked_upto >= 0) 2455 tcp_mark_head_lost(sk, sacked_upto, 0); 2456 else if (fast_rexmit) 2457 tcp_mark_head_lost(sk, 1, 1); 2458 } 2459 2460 tcp_timeout_skbs(sk); 2461 } 2462 2463 /* CWND moderation, preventing bursts due to too big ACKs 2464 * in dubious situations. 2465 */ 2466 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2467 { 2468 tp->snd_cwnd = min(tp->snd_cwnd, 2469 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2470 tp->snd_cwnd_stamp = tcp_time_stamp; 2471 } 2472 2473 /* Nothing was retransmitted or returned timestamp is less 2474 * than timestamp of the first retransmission. 2475 */ 2476 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2477 { 2478 return !tp->retrans_stamp || 2479 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2480 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2481 } 2482 2483 /* Undo procedures. */ 2484 2485 #if FASTRETRANS_DEBUG > 1 2486 static void DBGUNDO(struct sock *sk, const char *msg) 2487 { 2488 struct tcp_sock *tp = tcp_sk(sk); 2489 struct inet_sock *inet = inet_sk(sk); 2490 2491 if (sk->sk_family == AF_INET) { 2492 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2493 msg, 2494 &inet->inet_daddr, ntohs(inet->inet_dport), 2495 tp->snd_cwnd, tcp_left_out(tp), 2496 tp->snd_ssthresh, tp->prior_ssthresh, 2497 tp->packets_out); 2498 } 2499 #if IS_ENABLED(CONFIG_IPV6) 2500 else if (sk->sk_family == AF_INET6) { 2501 struct ipv6_pinfo *np = inet6_sk(sk); 2502 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2503 msg, 2504 &np->daddr, ntohs(inet->inet_dport), 2505 tp->snd_cwnd, tcp_left_out(tp), 2506 tp->snd_ssthresh, tp->prior_ssthresh, 2507 tp->packets_out); 2508 } 2509 #endif 2510 } 2511 #else 2512 #define DBGUNDO(x...) do { } while (0) 2513 #endif 2514 2515 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh) 2516 { 2517 struct tcp_sock *tp = tcp_sk(sk); 2518 2519 if (tp->prior_ssthresh) { 2520 const struct inet_connection_sock *icsk = inet_csk(sk); 2521 2522 if (icsk->icsk_ca_ops->undo_cwnd) 2523 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2524 else 2525 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2526 2527 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) { 2528 tp->snd_ssthresh = tp->prior_ssthresh; 2529 TCP_ECN_withdraw_cwr(tp); 2530 } 2531 } else { 2532 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2533 } 2534 tp->snd_cwnd_stamp = tcp_time_stamp; 2535 } 2536 2537 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2538 { 2539 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2540 } 2541 2542 /* People celebrate: "We love our President!" */ 2543 static bool tcp_try_undo_recovery(struct sock *sk) 2544 { 2545 struct tcp_sock *tp = tcp_sk(sk); 2546 2547 if (tcp_may_undo(tp)) { 2548 int mib_idx; 2549 2550 /* Happy end! We did not retransmit anything 2551 * or our original transmission succeeded. 2552 */ 2553 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2554 tcp_undo_cwr(sk, true); 2555 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2556 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2557 else 2558 mib_idx = LINUX_MIB_TCPFULLUNDO; 2559 2560 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2561 tp->undo_marker = 0; 2562 } 2563 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2564 /* Hold old state until something *above* high_seq 2565 * is ACKed. For Reno it is MUST to prevent false 2566 * fast retransmits (RFC2582). SACK TCP is safe. */ 2567 tcp_moderate_cwnd(tp); 2568 return true; 2569 } 2570 tcp_set_ca_state(sk, TCP_CA_Open); 2571 return false; 2572 } 2573 2574 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2575 static void tcp_try_undo_dsack(struct sock *sk) 2576 { 2577 struct tcp_sock *tp = tcp_sk(sk); 2578 2579 if (tp->undo_marker && !tp->undo_retrans) { 2580 DBGUNDO(sk, "D-SACK"); 2581 tcp_undo_cwr(sk, true); 2582 tp->undo_marker = 0; 2583 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2584 } 2585 } 2586 2587 /* We can clear retrans_stamp when there are no retransmissions in the 2588 * window. It would seem that it is trivially available for us in 2589 * tp->retrans_out, however, that kind of assumptions doesn't consider 2590 * what will happen if errors occur when sending retransmission for the 2591 * second time. ...It could the that such segment has only 2592 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2593 * the head skb is enough except for some reneging corner cases that 2594 * are not worth the effort. 2595 * 2596 * Main reason for all this complexity is the fact that connection dying 2597 * time now depends on the validity of the retrans_stamp, in particular, 2598 * that successive retransmissions of a segment must not advance 2599 * retrans_stamp under any conditions. 2600 */ 2601 static bool tcp_any_retrans_done(const struct sock *sk) 2602 { 2603 const struct tcp_sock *tp = tcp_sk(sk); 2604 struct sk_buff *skb; 2605 2606 if (tp->retrans_out) 2607 return true; 2608 2609 skb = tcp_write_queue_head(sk); 2610 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2611 return true; 2612 2613 return false; 2614 } 2615 2616 /* Undo during fast recovery after partial ACK. */ 2617 2618 static int tcp_try_undo_partial(struct sock *sk, int acked) 2619 { 2620 struct tcp_sock *tp = tcp_sk(sk); 2621 /* Partial ACK arrived. Force Hoe's retransmit. */ 2622 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2623 2624 if (tcp_may_undo(tp)) { 2625 /* Plain luck! Hole if filled with delayed 2626 * packet, rather than with a retransmit. 2627 */ 2628 if (!tcp_any_retrans_done(sk)) 2629 tp->retrans_stamp = 0; 2630 2631 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2632 2633 DBGUNDO(sk, "Hoe"); 2634 tcp_undo_cwr(sk, false); 2635 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2636 2637 /* So... Do not make Hoe's retransmit yet. 2638 * If the first packet was delayed, the rest 2639 * ones are most probably delayed as well. 2640 */ 2641 failed = 0; 2642 } 2643 return failed; 2644 } 2645 2646 /* Undo during loss recovery after partial ACK. */ 2647 static bool tcp_try_undo_loss(struct sock *sk) 2648 { 2649 struct tcp_sock *tp = tcp_sk(sk); 2650 2651 if (tcp_may_undo(tp)) { 2652 struct sk_buff *skb; 2653 tcp_for_write_queue(skb, sk) { 2654 if (skb == tcp_send_head(sk)) 2655 break; 2656 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2657 } 2658 2659 tcp_clear_all_retrans_hints(tp); 2660 2661 DBGUNDO(sk, "partial loss"); 2662 tp->lost_out = 0; 2663 tcp_undo_cwr(sk, true); 2664 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2665 inet_csk(sk)->icsk_retransmits = 0; 2666 tp->undo_marker = 0; 2667 if (tcp_is_sack(tp)) 2668 tcp_set_ca_state(sk, TCP_CA_Open); 2669 return true; 2670 } 2671 return false; 2672 } 2673 2674 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2675 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2676 * It computes the number of packets to send (sndcnt) based on packets newly 2677 * delivered: 2678 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2679 * cwnd reductions across a full RTT. 2680 * 2) If packets in flight is lower than ssthresh (such as due to excess 2681 * losses and/or application stalls), do not perform any further cwnd 2682 * reductions, but instead slow start up to ssthresh. 2683 */ 2684 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh) 2685 { 2686 struct tcp_sock *tp = tcp_sk(sk); 2687 2688 tp->high_seq = tp->snd_nxt; 2689 tp->bytes_acked = 0; 2690 tp->snd_cwnd_cnt = 0; 2691 tp->prior_cwnd = tp->snd_cwnd; 2692 tp->prr_delivered = 0; 2693 tp->prr_out = 0; 2694 if (set_ssthresh) 2695 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2696 TCP_ECN_queue_cwr(tp); 2697 } 2698 2699 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, 2700 int fast_rexmit) 2701 { 2702 struct tcp_sock *tp = tcp_sk(sk); 2703 int sndcnt = 0; 2704 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2705 2706 tp->prr_delivered += newly_acked_sacked; 2707 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2708 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2709 tp->prior_cwnd - 1; 2710 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2711 } else { 2712 sndcnt = min_t(int, delta, 2713 max_t(int, tp->prr_delivered - tp->prr_out, 2714 newly_acked_sacked) + 1); 2715 } 2716 2717 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2718 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2719 } 2720 2721 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2722 { 2723 struct tcp_sock *tp = tcp_sk(sk); 2724 2725 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2726 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2727 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2728 tp->snd_cwnd = tp->snd_ssthresh; 2729 tp->snd_cwnd_stamp = tcp_time_stamp; 2730 } 2731 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2732 } 2733 2734 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2735 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 2736 { 2737 struct tcp_sock *tp = tcp_sk(sk); 2738 2739 tp->prior_ssthresh = 0; 2740 tp->bytes_acked = 0; 2741 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2742 tp->undo_marker = 0; 2743 tcp_init_cwnd_reduction(sk, set_ssthresh); 2744 tcp_set_ca_state(sk, TCP_CA_CWR); 2745 } 2746 } 2747 2748 static void tcp_try_keep_open(struct sock *sk) 2749 { 2750 struct tcp_sock *tp = tcp_sk(sk); 2751 int state = TCP_CA_Open; 2752 2753 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2754 state = TCP_CA_Disorder; 2755 2756 if (inet_csk(sk)->icsk_ca_state != state) { 2757 tcp_set_ca_state(sk, state); 2758 tp->high_seq = tp->snd_nxt; 2759 } 2760 } 2761 2762 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked) 2763 { 2764 struct tcp_sock *tp = tcp_sk(sk); 2765 2766 tcp_verify_left_out(tp); 2767 2768 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2769 tp->retrans_stamp = 0; 2770 2771 if (flag & FLAG_ECE) 2772 tcp_enter_cwr(sk, 1); 2773 2774 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2775 tcp_try_keep_open(sk); 2776 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2777 tcp_moderate_cwnd(tp); 2778 } else { 2779 tcp_cwnd_reduction(sk, newly_acked_sacked, 0); 2780 } 2781 } 2782 2783 static void tcp_mtup_probe_failed(struct sock *sk) 2784 { 2785 struct inet_connection_sock *icsk = inet_csk(sk); 2786 2787 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2788 icsk->icsk_mtup.probe_size = 0; 2789 } 2790 2791 static void tcp_mtup_probe_success(struct sock *sk) 2792 { 2793 struct tcp_sock *tp = tcp_sk(sk); 2794 struct inet_connection_sock *icsk = inet_csk(sk); 2795 2796 /* FIXME: breaks with very large cwnd */ 2797 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2798 tp->snd_cwnd = tp->snd_cwnd * 2799 tcp_mss_to_mtu(sk, tp->mss_cache) / 2800 icsk->icsk_mtup.probe_size; 2801 tp->snd_cwnd_cnt = 0; 2802 tp->snd_cwnd_stamp = tcp_time_stamp; 2803 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2804 2805 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2806 icsk->icsk_mtup.probe_size = 0; 2807 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2808 } 2809 2810 /* Do a simple retransmit without using the backoff mechanisms in 2811 * tcp_timer. This is used for path mtu discovery. 2812 * The socket is already locked here. 2813 */ 2814 void tcp_simple_retransmit(struct sock *sk) 2815 { 2816 const struct inet_connection_sock *icsk = inet_csk(sk); 2817 struct tcp_sock *tp = tcp_sk(sk); 2818 struct sk_buff *skb; 2819 unsigned int mss = tcp_current_mss(sk); 2820 u32 prior_lost = tp->lost_out; 2821 2822 tcp_for_write_queue(skb, sk) { 2823 if (skb == tcp_send_head(sk)) 2824 break; 2825 if (tcp_skb_seglen(skb) > mss && 2826 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2827 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2828 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2829 tp->retrans_out -= tcp_skb_pcount(skb); 2830 } 2831 tcp_skb_mark_lost_uncond_verify(tp, skb); 2832 } 2833 } 2834 2835 tcp_clear_retrans_hints_partial(tp); 2836 2837 if (prior_lost == tp->lost_out) 2838 return; 2839 2840 if (tcp_is_reno(tp)) 2841 tcp_limit_reno_sacked(tp); 2842 2843 tcp_verify_left_out(tp); 2844 2845 /* Don't muck with the congestion window here. 2846 * Reason is that we do not increase amount of _data_ 2847 * in network, but units changed and effective 2848 * cwnd/ssthresh really reduced now. 2849 */ 2850 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2851 tp->high_seq = tp->snd_nxt; 2852 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2853 tp->prior_ssthresh = 0; 2854 tp->undo_marker = 0; 2855 tcp_set_ca_state(sk, TCP_CA_Loss); 2856 } 2857 tcp_xmit_retransmit_queue(sk); 2858 } 2859 EXPORT_SYMBOL(tcp_simple_retransmit); 2860 2861 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2862 { 2863 struct tcp_sock *tp = tcp_sk(sk); 2864 int mib_idx; 2865 2866 if (tcp_is_reno(tp)) 2867 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2868 else 2869 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2870 2871 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2872 2873 tp->prior_ssthresh = 0; 2874 tp->undo_marker = tp->snd_una; 2875 tp->undo_retrans = tp->retrans_out; 2876 2877 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2878 if (!ece_ack) 2879 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2880 tcp_init_cwnd_reduction(sk, true); 2881 } 2882 tcp_set_ca_state(sk, TCP_CA_Recovery); 2883 } 2884 2885 /* Process an event, which can update packets-in-flight not trivially. 2886 * Main goal of this function is to calculate new estimate for left_out, 2887 * taking into account both packets sitting in receiver's buffer and 2888 * packets lost by network. 2889 * 2890 * Besides that it does CWND reduction, when packet loss is detected 2891 * and changes state of machine. 2892 * 2893 * It does _not_ decide what to send, it is made in function 2894 * tcp_xmit_retransmit_queue(). 2895 */ 2896 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, 2897 int prior_sacked, bool is_dupack, 2898 int flag) 2899 { 2900 struct inet_connection_sock *icsk = inet_csk(sk); 2901 struct tcp_sock *tp = tcp_sk(sk); 2902 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2903 (tcp_fackets_out(tp) > tp->reordering)); 2904 int newly_acked_sacked = 0; 2905 int fast_rexmit = 0; 2906 2907 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2908 tp->sacked_out = 0; 2909 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2910 tp->fackets_out = 0; 2911 2912 /* Now state machine starts. 2913 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2914 if (flag & FLAG_ECE) 2915 tp->prior_ssthresh = 0; 2916 2917 /* B. In all the states check for reneging SACKs. */ 2918 if (tcp_check_sack_reneging(sk, flag)) 2919 return; 2920 2921 /* C. Check consistency of the current state. */ 2922 tcp_verify_left_out(tp); 2923 2924 /* D. Check state exit conditions. State can be terminated 2925 * when high_seq is ACKed. */ 2926 if (icsk->icsk_ca_state == TCP_CA_Open) { 2927 WARN_ON(tp->retrans_out != 0); 2928 tp->retrans_stamp = 0; 2929 } else if (!before(tp->snd_una, tp->high_seq)) { 2930 switch (icsk->icsk_ca_state) { 2931 case TCP_CA_Loss: 2932 icsk->icsk_retransmits = 0; 2933 if (tcp_try_undo_recovery(sk)) 2934 return; 2935 break; 2936 2937 case TCP_CA_CWR: 2938 /* CWR is to be held something *above* high_seq 2939 * is ACKed for CWR bit to reach receiver. */ 2940 if (tp->snd_una != tp->high_seq) { 2941 tcp_end_cwnd_reduction(sk); 2942 tcp_set_ca_state(sk, TCP_CA_Open); 2943 } 2944 break; 2945 2946 case TCP_CA_Recovery: 2947 if (tcp_is_reno(tp)) 2948 tcp_reset_reno_sack(tp); 2949 if (tcp_try_undo_recovery(sk)) 2950 return; 2951 tcp_end_cwnd_reduction(sk); 2952 break; 2953 } 2954 } 2955 2956 /* E. Process state. */ 2957 switch (icsk->icsk_ca_state) { 2958 case TCP_CA_Recovery: 2959 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2960 if (tcp_is_reno(tp) && is_dupack) 2961 tcp_add_reno_sack(sk); 2962 } else 2963 do_lost = tcp_try_undo_partial(sk, pkts_acked); 2964 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked; 2965 break; 2966 case TCP_CA_Loss: 2967 if (flag & FLAG_DATA_ACKED) 2968 icsk->icsk_retransmits = 0; 2969 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 2970 tcp_reset_reno_sack(tp); 2971 if (!tcp_try_undo_loss(sk)) { 2972 tcp_moderate_cwnd(tp); 2973 tcp_xmit_retransmit_queue(sk); 2974 return; 2975 } 2976 if (icsk->icsk_ca_state != TCP_CA_Open) 2977 return; 2978 /* Loss is undone; fall through to processing in Open state. */ 2979 default: 2980 if (tcp_is_reno(tp)) { 2981 if (flag & FLAG_SND_UNA_ADVANCED) 2982 tcp_reset_reno_sack(tp); 2983 if (is_dupack) 2984 tcp_add_reno_sack(sk); 2985 } 2986 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked; 2987 2988 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2989 tcp_try_undo_dsack(sk); 2990 2991 if (!tcp_time_to_recover(sk, flag)) { 2992 tcp_try_to_open(sk, flag, newly_acked_sacked); 2993 return; 2994 } 2995 2996 /* MTU probe failure: don't reduce cwnd */ 2997 if (icsk->icsk_ca_state < TCP_CA_CWR && 2998 icsk->icsk_mtup.probe_size && 2999 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3000 tcp_mtup_probe_failed(sk); 3001 /* Restores the reduction we did in tcp_mtup_probe() */ 3002 tp->snd_cwnd++; 3003 tcp_simple_retransmit(sk); 3004 return; 3005 } 3006 3007 /* Otherwise enter Recovery state */ 3008 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 3009 fast_rexmit = 1; 3010 } 3011 3012 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3013 tcp_update_scoreboard(sk, fast_rexmit); 3014 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit); 3015 tcp_xmit_retransmit_queue(sk); 3016 } 3017 3018 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3019 { 3020 tcp_rtt_estimator(sk, seq_rtt); 3021 tcp_set_rto(sk); 3022 inet_csk(sk)->icsk_backoff = 0; 3023 } 3024 EXPORT_SYMBOL(tcp_valid_rtt_meas); 3025 3026 /* Read draft-ietf-tcplw-high-performance before mucking 3027 * with this code. (Supersedes RFC1323) 3028 */ 3029 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3030 { 3031 /* RTTM Rule: A TSecr value received in a segment is used to 3032 * update the averaged RTT measurement only if the segment 3033 * acknowledges some new data, i.e., only if it advances the 3034 * left edge of the send window. 3035 * 3036 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3037 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3038 * 3039 * Changed: reset backoff as soon as we see the first valid sample. 3040 * If we do not, we get strongly overestimated rto. With timestamps 3041 * samples are accepted even from very old segments: f.e., when rtt=1 3042 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3043 * answer arrives rto becomes 120 seconds! If at least one of segments 3044 * in window is lost... Voila. --ANK (010210) 3045 */ 3046 struct tcp_sock *tp = tcp_sk(sk); 3047 3048 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3049 } 3050 3051 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3052 { 3053 /* We don't have a timestamp. Can only use 3054 * packets that are not retransmitted to determine 3055 * rtt estimates. Also, we must not reset the 3056 * backoff for rto until we get a non-retransmitted 3057 * packet. This allows us to deal with a situation 3058 * where the network delay has increased suddenly. 3059 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3060 */ 3061 3062 if (flag & FLAG_RETRANS_DATA_ACKED) 3063 return; 3064 3065 tcp_valid_rtt_meas(sk, seq_rtt); 3066 } 3067 3068 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3069 const s32 seq_rtt) 3070 { 3071 const struct tcp_sock *tp = tcp_sk(sk); 3072 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3073 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3074 tcp_ack_saw_tstamp(sk, flag); 3075 else if (seq_rtt >= 0) 3076 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3077 } 3078 3079 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3080 { 3081 const struct inet_connection_sock *icsk = inet_csk(sk); 3082 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3083 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3084 } 3085 3086 /* Restart timer after forward progress on connection. 3087 * RFC2988 recommends to restart timer to now+rto. 3088 */ 3089 void tcp_rearm_rto(struct sock *sk) 3090 { 3091 struct tcp_sock *tp = tcp_sk(sk); 3092 3093 /* If the retrans timer is currently being used by Fast Open 3094 * for SYN-ACK retrans purpose, stay put. 3095 */ 3096 if (tp->fastopen_rsk) 3097 return; 3098 3099 if (!tp->packets_out) { 3100 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3101 } else { 3102 u32 rto = inet_csk(sk)->icsk_rto; 3103 /* Offset the time elapsed after installing regular RTO */ 3104 if (tp->early_retrans_delayed) { 3105 struct sk_buff *skb = tcp_write_queue_head(sk); 3106 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto; 3107 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3108 /* delta may not be positive if the socket is locked 3109 * when the delayed ER timer fires and is rescheduled. 3110 */ 3111 if (delta > 0) 3112 rto = delta; 3113 } 3114 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3115 TCP_RTO_MAX); 3116 } 3117 tp->early_retrans_delayed = 0; 3118 } 3119 3120 /* This function is called when the delayed ER timer fires. TCP enters 3121 * fast recovery and performs fast-retransmit. 3122 */ 3123 void tcp_resume_early_retransmit(struct sock *sk) 3124 { 3125 struct tcp_sock *tp = tcp_sk(sk); 3126 3127 tcp_rearm_rto(sk); 3128 3129 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3130 if (!tp->do_early_retrans) 3131 return; 3132 3133 tcp_enter_recovery(sk, false); 3134 tcp_update_scoreboard(sk, 1); 3135 tcp_xmit_retransmit_queue(sk); 3136 } 3137 3138 /* If we get here, the whole TSO packet has not been acked. */ 3139 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3140 { 3141 struct tcp_sock *tp = tcp_sk(sk); 3142 u32 packets_acked; 3143 3144 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3145 3146 packets_acked = tcp_skb_pcount(skb); 3147 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3148 return 0; 3149 packets_acked -= tcp_skb_pcount(skb); 3150 3151 if (packets_acked) { 3152 BUG_ON(tcp_skb_pcount(skb) == 0); 3153 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3154 } 3155 3156 return packets_acked; 3157 } 3158 3159 /* Remove acknowledged frames from the retransmission queue. If our packet 3160 * is before the ack sequence we can discard it as it's confirmed to have 3161 * arrived at the other end. 3162 */ 3163 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3164 u32 prior_snd_una) 3165 { 3166 struct tcp_sock *tp = tcp_sk(sk); 3167 const struct inet_connection_sock *icsk = inet_csk(sk); 3168 struct sk_buff *skb; 3169 u32 now = tcp_time_stamp; 3170 int fully_acked = true; 3171 int flag = 0; 3172 u32 pkts_acked = 0; 3173 u32 reord = tp->packets_out; 3174 u32 prior_sacked = tp->sacked_out; 3175 s32 seq_rtt = -1; 3176 s32 ca_seq_rtt = -1; 3177 ktime_t last_ackt = net_invalid_timestamp(); 3178 3179 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3180 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3181 u32 acked_pcount; 3182 u8 sacked = scb->sacked; 3183 3184 /* Determine how many packets and what bytes were acked, tso and else */ 3185 if (after(scb->end_seq, tp->snd_una)) { 3186 if (tcp_skb_pcount(skb) == 1 || 3187 !after(tp->snd_una, scb->seq)) 3188 break; 3189 3190 acked_pcount = tcp_tso_acked(sk, skb); 3191 if (!acked_pcount) 3192 break; 3193 3194 fully_acked = false; 3195 } else { 3196 acked_pcount = tcp_skb_pcount(skb); 3197 } 3198 3199 if (sacked & TCPCB_RETRANS) { 3200 if (sacked & TCPCB_SACKED_RETRANS) 3201 tp->retrans_out -= acked_pcount; 3202 flag |= FLAG_RETRANS_DATA_ACKED; 3203 ca_seq_rtt = -1; 3204 seq_rtt = -1; 3205 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3206 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3207 } else { 3208 ca_seq_rtt = now - scb->when; 3209 last_ackt = skb->tstamp; 3210 if (seq_rtt < 0) { 3211 seq_rtt = ca_seq_rtt; 3212 } 3213 if (!(sacked & TCPCB_SACKED_ACKED)) 3214 reord = min(pkts_acked, reord); 3215 } 3216 3217 if (sacked & TCPCB_SACKED_ACKED) 3218 tp->sacked_out -= acked_pcount; 3219 if (sacked & TCPCB_LOST) 3220 tp->lost_out -= acked_pcount; 3221 3222 tp->packets_out -= acked_pcount; 3223 pkts_acked += acked_pcount; 3224 3225 /* Initial outgoing SYN's get put onto the write_queue 3226 * just like anything else we transmit. It is not 3227 * true data, and if we misinform our callers that 3228 * this ACK acks real data, we will erroneously exit 3229 * connection startup slow start one packet too 3230 * quickly. This is severely frowned upon behavior. 3231 */ 3232 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3233 flag |= FLAG_DATA_ACKED; 3234 } else { 3235 flag |= FLAG_SYN_ACKED; 3236 tp->retrans_stamp = 0; 3237 } 3238 3239 if (!fully_acked) 3240 break; 3241 3242 tcp_unlink_write_queue(skb, sk); 3243 sk_wmem_free_skb(sk, skb); 3244 tp->scoreboard_skb_hint = NULL; 3245 if (skb == tp->retransmit_skb_hint) 3246 tp->retransmit_skb_hint = NULL; 3247 if (skb == tp->lost_skb_hint) 3248 tp->lost_skb_hint = NULL; 3249 } 3250 3251 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3252 tp->snd_up = tp->snd_una; 3253 3254 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3255 flag |= FLAG_SACK_RENEGING; 3256 3257 if (flag & FLAG_ACKED) { 3258 const struct tcp_congestion_ops *ca_ops 3259 = inet_csk(sk)->icsk_ca_ops; 3260 3261 if (unlikely(icsk->icsk_mtup.probe_size && 3262 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3263 tcp_mtup_probe_success(sk); 3264 } 3265 3266 tcp_ack_update_rtt(sk, flag, seq_rtt); 3267 tcp_rearm_rto(sk); 3268 3269 if (tcp_is_reno(tp)) { 3270 tcp_remove_reno_sacks(sk, pkts_acked); 3271 } else { 3272 int delta; 3273 3274 /* Non-retransmitted hole got filled? That's reordering */ 3275 if (reord < prior_fackets) 3276 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3277 3278 delta = tcp_is_fack(tp) ? pkts_acked : 3279 prior_sacked - tp->sacked_out; 3280 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3281 } 3282 3283 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3284 3285 if (ca_ops->pkts_acked) { 3286 s32 rtt_us = -1; 3287 3288 /* Is the ACK triggering packet unambiguous? */ 3289 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3290 /* High resolution needed and available? */ 3291 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3292 !ktime_equal(last_ackt, 3293 net_invalid_timestamp())) 3294 rtt_us = ktime_us_delta(ktime_get_real(), 3295 last_ackt); 3296 else if (ca_seq_rtt >= 0) 3297 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3298 } 3299 3300 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3301 } 3302 } 3303 3304 #if FASTRETRANS_DEBUG > 0 3305 WARN_ON((int)tp->sacked_out < 0); 3306 WARN_ON((int)tp->lost_out < 0); 3307 WARN_ON((int)tp->retrans_out < 0); 3308 if (!tp->packets_out && tcp_is_sack(tp)) { 3309 icsk = inet_csk(sk); 3310 if (tp->lost_out) { 3311 pr_debug("Leak l=%u %d\n", 3312 tp->lost_out, icsk->icsk_ca_state); 3313 tp->lost_out = 0; 3314 } 3315 if (tp->sacked_out) { 3316 pr_debug("Leak s=%u %d\n", 3317 tp->sacked_out, icsk->icsk_ca_state); 3318 tp->sacked_out = 0; 3319 } 3320 if (tp->retrans_out) { 3321 pr_debug("Leak r=%u %d\n", 3322 tp->retrans_out, icsk->icsk_ca_state); 3323 tp->retrans_out = 0; 3324 } 3325 } 3326 #endif 3327 return flag; 3328 } 3329 3330 static void tcp_ack_probe(struct sock *sk) 3331 { 3332 const struct tcp_sock *tp = tcp_sk(sk); 3333 struct inet_connection_sock *icsk = inet_csk(sk); 3334 3335 /* Was it a usable window open? */ 3336 3337 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3338 icsk->icsk_backoff = 0; 3339 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3340 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3341 * This function is not for random using! 3342 */ 3343 } else { 3344 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3345 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3346 TCP_RTO_MAX); 3347 } 3348 } 3349 3350 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3351 { 3352 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3353 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3354 } 3355 3356 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3357 { 3358 const struct tcp_sock *tp = tcp_sk(sk); 3359 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3360 !tcp_in_cwnd_reduction(sk); 3361 } 3362 3363 /* Check that window update is acceptable. 3364 * The function assumes that snd_una<=ack<=snd_next. 3365 */ 3366 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3367 const u32 ack, const u32 ack_seq, 3368 const u32 nwin) 3369 { 3370 return after(ack, tp->snd_una) || 3371 after(ack_seq, tp->snd_wl1) || 3372 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3373 } 3374 3375 /* Update our send window. 3376 * 3377 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3378 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3379 */ 3380 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3381 u32 ack_seq) 3382 { 3383 struct tcp_sock *tp = tcp_sk(sk); 3384 int flag = 0; 3385 u32 nwin = ntohs(tcp_hdr(skb)->window); 3386 3387 if (likely(!tcp_hdr(skb)->syn)) 3388 nwin <<= tp->rx_opt.snd_wscale; 3389 3390 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3391 flag |= FLAG_WIN_UPDATE; 3392 tcp_update_wl(tp, ack_seq); 3393 3394 if (tp->snd_wnd != nwin) { 3395 tp->snd_wnd = nwin; 3396 3397 /* Note, it is the only place, where 3398 * fast path is recovered for sending TCP. 3399 */ 3400 tp->pred_flags = 0; 3401 tcp_fast_path_check(sk); 3402 3403 if (nwin > tp->max_window) { 3404 tp->max_window = nwin; 3405 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3406 } 3407 } 3408 } 3409 3410 tp->snd_una = ack; 3411 3412 return flag; 3413 } 3414 3415 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3416 * continue in congestion avoidance. 3417 */ 3418 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3419 { 3420 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3421 tp->snd_cwnd_cnt = 0; 3422 tp->bytes_acked = 0; 3423 TCP_ECN_queue_cwr(tp); 3424 tcp_moderate_cwnd(tp); 3425 } 3426 3427 /* A conservative spurious RTO response algorithm: reduce cwnd using 3428 * PRR and continue in congestion avoidance. 3429 */ 3430 static void tcp_cwr_spur_to_response(struct sock *sk) 3431 { 3432 tcp_enter_cwr(sk, 0); 3433 } 3434 3435 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3436 { 3437 if (flag & FLAG_ECE) 3438 tcp_cwr_spur_to_response(sk); 3439 else 3440 tcp_undo_cwr(sk, true); 3441 } 3442 3443 /* F-RTO spurious RTO detection algorithm (RFC4138) 3444 * 3445 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3446 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3447 * window (but not to or beyond highest sequence sent before RTO): 3448 * On First ACK, send two new segments out. 3449 * On Second ACK, RTO was likely spurious. Do spurious response (response 3450 * algorithm is not part of the F-RTO detection algorithm 3451 * given in RFC4138 but can be selected separately). 3452 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3453 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3454 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3455 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3456 * 3457 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3458 * original window even after we transmit two new data segments. 3459 * 3460 * SACK version: 3461 * on first step, wait until first cumulative ACK arrives, then move to 3462 * the second step. In second step, the next ACK decides. 3463 * 3464 * F-RTO is implemented (mainly) in four functions: 3465 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3466 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3467 * called when tcp_use_frto() showed green light 3468 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3469 * - tcp_enter_frto_loss() is called if there is not enough evidence 3470 * to prove that the RTO is indeed spurious. It transfers the control 3471 * from F-RTO to the conventional RTO recovery 3472 */ 3473 static bool tcp_process_frto(struct sock *sk, int flag) 3474 { 3475 struct tcp_sock *tp = tcp_sk(sk); 3476 3477 tcp_verify_left_out(tp); 3478 3479 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3480 if (flag & FLAG_DATA_ACKED) 3481 inet_csk(sk)->icsk_retransmits = 0; 3482 3483 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3484 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3485 tp->undo_marker = 0; 3486 3487 if (!before(tp->snd_una, tp->frto_highmark)) { 3488 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3489 return true; 3490 } 3491 3492 if (!tcp_is_sackfrto(tp)) { 3493 /* RFC4138 shortcoming in step 2; should also have case c): 3494 * ACK isn't duplicate nor advances window, e.g., opposite dir 3495 * data, winupdate 3496 */ 3497 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3498 return true; 3499 3500 if (!(flag & FLAG_DATA_ACKED)) { 3501 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3502 flag); 3503 return true; 3504 } 3505 } else { 3506 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3507 /* Prevent sending of new data. */ 3508 tp->snd_cwnd = min(tp->snd_cwnd, 3509 tcp_packets_in_flight(tp)); 3510 return true; 3511 } 3512 3513 if ((tp->frto_counter >= 2) && 3514 (!(flag & FLAG_FORWARD_PROGRESS) || 3515 ((flag & FLAG_DATA_SACKED) && 3516 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3517 /* RFC4138 shortcoming (see comment above) */ 3518 if (!(flag & FLAG_FORWARD_PROGRESS) && 3519 (flag & FLAG_NOT_DUP)) 3520 return true; 3521 3522 tcp_enter_frto_loss(sk, 3, flag); 3523 return true; 3524 } 3525 } 3526 3527 if (tp->frto_counter == 1) { 3528 /* tcp_may_send_now needs to see updated state */ 3529 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3530 tp->frto_counter = 2; 3531 3532 if (!tcp_may_send_now(sk)) 3533 tcp_enter_frto_loss(sk, 2, flag); 3534 3535 return true; 3536 } else { 3537 switch (sysctl_tcp_frto_response) { 3538 case 2: 3539 tcp_undo_spur_to_response(sk, flag); 3540 break; 3541 case 1: 3542 tcp_conservative_spur_to_response(tp); 3543 break; 3544 default: 3545 tcp_cwr_spur_to_response(sk); 3546 break; 3547 } 3548 tp->frto_counter = 0; 3549 tp->undo_marker = 0; 3550 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3551 } 3552 return false; 3553 } 3554 3555 /* This routine deals with incoming acks, but not outgoing ones. */ 3556 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3557 { 3558 struct inet_connection_sock *icsk = inet_csk(sk); 3559 struct tcp_sock *tp = tcp_sk(sk); 3560 u32 prior_snd_una = tp->snd_una; 3561 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3562 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3563 bool is_dupack = false; 3564 u32 prior_in_flight; 3565 u32 prior_fackets; 3566 int prior_packets; 3567 int prior_sacked = tp->sacked_out; 3568 int pkts_acked = 0; 3569 bool frto_cwnd = false; 3570 3571 /* If the ack is older than previous acks 3572 * then we can probably ignore it. 3573 */ 3574 if (before(ack, prior_snd_una)) 3575 goto old_ack; 3576 3577 /* If the ack includes data we haven't sent yet, discard 3578 * this segment (RFC793 Section 3.9). 3579 */ 3580 if (after(ack, tp->snd_nxt)) 3581 goto invalid_ack; 3582 3583 if (tp->early_retrans_delayed) 3584 tcp_rearm_rto(sk); 3585 3586 if (after(ack, prior_snd_una)) 3587 flag |= FLAG_SND_UNA_ADVANCED; 3588 3589 if (sysctl_tcp_abc) { 3590 if (icsk->icsk_ca_state < TCP_CA_CWR) 3591 tp->bytes_acked += ack - prior_snd_una; 3592 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3593 /* we assume just one segment left network */ 3594 tp->bytes_acked += min(ack - prior_snd_una, 3595 tp->mss_cache); 3596 } 3597 3598 prior_fackets = tp->fackets_out; 3599 prior_in_flight = tcp_packets_in_flight(tp); 3600 3601 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3602 /* Window is constant, pure forward advance. 3603 * No more checks are required. 3604 * Note, we use the fact that SND.UNA>=SND.WL2. 3605 */ 3606 tcp_update_wl(tp, ack_seq); 3607 tp->snd_una = ack; 3608 flag |= FLAG_WIN_UPDATE; 3609 3610 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3611 3612 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3613 } else { 3614 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3615 flag |= FLAG_DATA; 3616 else 3617 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3618 3619 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3620 3621 if (TCP_SKB_CB(skb)->sacked) 3622 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3623 3624 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3625 flag |= FLAG_ECE; 3626 3627 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3628 } 3629 3630 /* We passed data and got it acked, remove any soft error 3631 * log. Something worked... 3632 */ 3633 sk->sk_err_soft = 0; 3634 icsk->icsk_probes_out = 0; 3635 tp->rcv_tstamp = tcp_time_stamp; 3636 prior_packets = tp->packets_out; 3637 if (!prior_packets) 3638 goto no_queue; 3639 3640 /* See if we can take anything off of the retransmit queue. */ 3641 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3642 3643 pkts_acked = prior_packets - tp->packets_out; 3644 3645 if (tp->frto_counter) 3646 frto_cwnd = tcp_process_frto(sk, flag); 3647 /* Guarantee sacktag reordering detection against wrap-arounds */ 3648 if (before(tp->frto_highmark, tp->snd_una)) 3649 tp->frto_highmark = 0; 3650 3651 if (tcp_ack_is_dubious(sk, flag)) { 3652 /* Advance CWND, if state allows this. */ 3653 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3654 tcp_may_raise_cwnd(sk, flag)) 3655 tcp_cong_avoid(sk, ack, prior_in_flight); 3656 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3657 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3658 is_dupack, flag); 3659 } else { 3660 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3661 tcp_cong_avoid(sk, ack, prior_in_flight); 3662 } 3663 3664 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3665 struct dst_entry *dst = __sk_dst_get(sk); 3666 if (dst) 3667 dst_confirm(dst); 3668 } 3669 return 1; 3670 3671 no_queue: 3672 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3673 if (flag & FLAG_DSACKING_ACK) 3674 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3675 is_dupack, flag); 3676 /* If this ack opens up a zero window, clear backoff. It was 3677 * being used to time the probes, and is probably far higher than 3678 * it needs to be for normal retransmission. 3679 */ 3680 if (tcp_send_head(sk)) 3681 tcp_ack_probe(sk); 3682 return 1; 3683 3684 invalid_ack: 3685 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3686 return -1; 3687 3688 old_ack: 3689 /* If data was SACKed, tag it and see if we should send more data. 3690 * If data was DSACKed, see if we can undo a cwnd reduction. 3691 */ 3692 if (TCP_SKB_CB(skb)->sacked) { 3693 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3694 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3695 is_dupack, flag); 3696 } 3697 3698 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3699 return 0; 3700 } 3701 3702 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3703 * But, this can also be called on packets in the established flow when 3704 * the fast version below fails. 3705 */ 3706 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx, 3707 const u8 **hvpp, int estab, 3708 struct tcp_fastopen_cookie *foc) 3709 { 3710 const unsigned char *ptr; 3711 const struct tcphdr *th = tcp_hdr(skb); 3712 int length = (th->doff * 4) - sizeof(struct tcphdr); 3713 3714 ptr = (const unsigned char *)(th + 1); 3715 opt_rx->saw_tstamp = 0; 3716 3717 while (length > 0) { 3718 int opcode = *ptr++; 3719 int opsize; 3720 3721 switch (opcode) { 3722 case TCPOPT_EOL: 3723 return; 3724 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3725 length--; 3726 continue; 3727 default: 3728 opsize = *ptr++; 3729 if (opsize < 2) /* "silly options" */ 3730 return; 3731 if (opsize > length) 3732 return; /* don't parse partial options */ 3733 switch (opcode) { 3734 case TCPOPT_MSS: 3735 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3736 u16 in_mss = get_unaligned_be16(ptr); 3737 if (in_mss) { 3738 if (opt_rx->user_mss && 3739 opt_rx->user_mss < in_mss) 3740 in_mss = opt_rx->user_mss; 3741 opt_rx->mss_clamp = in_mss; 3742 } 3743 } 3744 break; 3745 case TCPOPT_WINDOW: 3746 if (opsize == TCPOLEN_WINDOW && th->syn && 3747 !estab && sysctl_tcp_window_scaling) { 3748 __u8 snd_wscale = *(__u8 *)ptr; 3749 opt_rx->wscale_ok = 1; 3750 if (snd_wscale > 14) { 3751 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3752 __func__, 3753 snd_wscale); 3754 snd_wscale = 14; 3755 } 3756 opt_rx->snd_wscale = snd_wscale; 3757 } 3758 break; 3759 case TCPOPT_TIMESTAMP: 3760 if ((opsize == TCPOLEN_TIMESTAMP) && 3761 ((estab && opt_rx->tstamp_ok) || 3762 (!estab && sysctl_tcp_timestamps))) { 3763 opt_rx->saw_tstamp = 1; 3764 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3765 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3766 } 3767 break; 3768 case TCPOPT_SACK_PERM: 3769 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3770 !estab && sysctl_tcp_sack) { 3771 opt_rx->sack_ok = TCP_SACK_SEEN; 3772 tcp_sack_reset(opt_rx); 3773 } 3774 break; 3775 3776 case TCPOPT_SACK: 3777 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3778 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3779 opt_rx->sack_ok) { 3780 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3781 } 3782 break; 3783 #ifdef CONFIG_TCP_MD5SIG 3784 case TCPOPT_MD5SIG: 3785 /* 3786 * The MD5 Hash has already been 3787 * checked (see tcp_v{4,6}_do_rcv()). 3788 */ 3789 break; 3790 #endif 3791 case TCPOPT_COOKIE: 3792 /* This option is variable length. 3793 */ 3794 switch (opsize) { 3795 case TCPOLEN_COOKIE_BASE: 3796 /* not yet implemented */ 3797 break; 3798 case TCPOLEN_COOKIE_PAIR: 3799 /* not yet implemented */ 3800 break; 3801 case TCPOLEN_COOKIE_MIN+0: 3802 case TCPOLEN_COOKIE_MIN+2: 3803 case TCPOLEN_COOKIE_MIN+4: 3804 case TCPOLEN_COOKIE_MIN+6: 3805 case TCPOLEN_COOKIE_MAX: 3806 /* 16-bit multiple */ 3807 opt_rx->cookie_plus = opsize; 3808 *hvpp = ptr; 3809 break; 3810 default: 3811 /* ignore option */ 3812 break; 3813 } 3814 break; 3815 3816 case TCPOPT_EXP: 3817 /* Fast Open option shares code 254 using a 3818 * 16 bits magic number. It's valid only in 3819 * SYN or SYN-ACK with an even size. 3820 */ 3821 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3822 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3823 foc == NULL || !th->syn || (opsize & 1)) 3824 break; 3825 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3826 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3827 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3828 memcpy(foc->val, ptr + 2, foc->len); 3829 else if (foc->len != 0) 3830 foc->len = -1; 3831 break; 3832 3833 } 3834 ptr += opsize-2; 3835 length -= opsize; 3836 } 3837 } 3838 } 3839 EXPORT_SYMBOL(tcp_parse_options); 3840 3841 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3842 { 3843 const __be32 *ptr = (const __be32 *)(th + 1); 3844 3845 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3846 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3847 tp->rx_opt.saw_tstamp = 1; 3848 ++ptr; 3849 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3850 ++ptr; 3851 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3852 return true; 3853 } 3854 return false; 3855 } 3856 3857 /* Fast parse options. This hopes to only see timestamps. 3858 * If it is wrong it falls back on tcp_parse_options(). 3859 */ 3860 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3861 const struct tcphdr *th, 3862 struct tcp_sock *tp, const u8 **hvpp) 3863 { 3864 /* In the spirit of fast parsing, compare doff directly to constant 3865 * values. Because equality is used, short doff can be ignored here. 3866 */ 3867 if (th->doff == (sizeof(*th) / 4)) { 3868 tp->rx_opt.saw_tstamp = 0; 3869 return false; 3870 } else if (tp->rx_opt.tstamp_ok && 3871 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3872 if (tcp_parse_aligned_timestamp(tp, th)) 3873 return true; 3874 } 3875 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL); 3876 return true; 3877 } 3878 3879 #ifdef CONFIG_TCP_MD5SIG 3880 /* 3881 * Parse MD5 Signature option 3882 */ 3883 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3884 { 3885 int length = (th->doff << 2) - sizeof(*th); 3886 const u8 *ptr = (const u8 *)(th + 1); 3887 3888 /* If the TCP option is too short, we can short cut */ 3889 if (length < TCPOLEN_MD5SIG) 3890 return NULL; 3891 3892 while (length > 0) { 3893 int opcode = *ptr++; 3894 int opsize; 3895 3896 switch(opcode) { 3897 case TCPOPT_EOL: 3898 return NULL; 3899 case TCPOPT_NOP: 3900 length--; 3901 continue; 3902 default: 3903 opsize = *ptr++; 3904 if (opsize < 2 || opsize > length) 3905 return NULL; 3906 if (opcode == TCPOPT_MD5SIG) 3907 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3908 } 3909 ptr += opsize - 2; 3910 length -= opsize; 3911 } 3912 return NULL; 3913 } 3914 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3915 #endif 3916 3917 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3918 { 3919 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3920 tp->rx_opt.ts_recent_stamp = get_seconds(); 3921 } 3922 3923 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3924 { 3925 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3926 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3927 * extra check below makes sure this can only happen 3928 * for pure ACK frames. -DaveM 3929 * 3930 * Not only, also it occurs for expired timestamps. 3931 */ 3932 3933 if (tcp_paws_check(&tp->rx_opt, 0)) 3934 tcp_store_ts_recent(tp); 3935 } 3936 } 3937 3938 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3939 * 3940 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3941 * it can pass through stack. So, the following predicate verifies that 3942 * this segment is not used for anything but congestion avoidance or 3943 * fast retransmit. Moreover, we even are able to eliminate most of such 3944 * second order effects, if we apply some small "replay" window (~RTO) 3945 * to timestamp space. 3946 * 3947 * All these measures still do not guarantee that we reject wrapped ACKs 3948 * on networks with high bandwidth, when sequence space is recycled fastly, 3949 * but it guarantees that such events will be very rare and do not affect 3950 * connection seriously. This doesn't look nice, but alas, PAWS is really 3951 * buggy extension. 3952 * 3953 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3954 * states that events when retransmit arrives after original data are rare. 3955 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3956 * the biggest problem on large power networks even with minor reordering. 3957 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3958 * up to bandwidth of 18Gigabit/sec. 8) ] 3959 */ 3960 3961 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3962 { 3963 const struct tcp_sock *tp = tcp_sk(sk); 3964 const struct tcphdr *th = tcp_hdr(skb); 3965 u32 seq = TCP_SKB_CB(skb)->seq; 3966 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3967 3968 return (/* 1. Pure ACK with correct sequence number. */ 3969 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3970 3971 /* 2. ... and duplicate ACK. */ 3972 ack == tp->snd_una && 3973 3974 /* 3. ... and does not update window. */ 3975 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3976 3977 /* 4. ... and sits in replay window. */ 3978 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3979 } 3980 3981 static inline bool tcp_paws_discard(const struct sock *sk, 3982 const struct sk_buff *skb) 3983 { 3984 const struct tcp_sock *tp = tcp_sk(sk); 3985 3986 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3987 !tcp_disordered_ack(sk, skb); 3988 } 3989 3990 /* Check segment sequence number for validity. 3991 * 3992 * Segment controls are considered valid, if the segment 3993 * fits to the window after truncation to the window. Acceptability 3994 * of data (and SYN, FIN, of course) is checked separately. 3995 * See tcp_data_queue(), for example. 3996 * 3997 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3998 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3999 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4000 * (borrowed from freebsd) 4001 */ 4002 4003 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4004 { 4005 return !before(end_seq, tp->rcv_wup) && 4006 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4007 } 4008 4009 /* When we get a reset we do this. */ 4010 void tcp_reset(struct sock *sk) 4011 { 4012 /* We want the right error as BSD sees it (and indeed as we do). */ 4013 switch (sk->sk_state) { 4014 case TCP_SYN_SENT: 4015 sk->sk_err = ECONNREFUSED; 4016 break; 4017 case TCP_CLOSE_WAIT: 4018 sk->sk_err = EPIPE; 4019 break; 4020 case TCP_CLOSE: 4021 return; 4022 default: 4023 sk->sk_err = ECONNRESET; 4024 } 4025 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4026 smp_wmb(); 4027 4028 if (!sock_flag(sk, SOCK_DEAD)) 4029 sk->sk_error_report(sk); 4030 4031 tcp_done(sk); 4032 } 4033 4034 /* 4035 * Process the FIN bit. This now behaves as it is supposed to work 4036 * and the FIN takes effect when it is validly part of sequence 4037 * space. Not before when we get holes. 4038 * 4039 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4040 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4041 * TIME-WAIT) 4042 * 4043 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4044 * close and we go into CLOSING (and later onto TIME-WAIT) 4045 * 4046 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4047 */ 4048 static void tcp_fin(struct sock *sk) 4049 { 4050 struct tcp_sock *tp = tcp_sk(sk); 4051 4052 inet_csk_schedule_ack(sk); 4053 4054 sk->sk_shutdown |= RCV_SHUTDOWN; 4055 sock_set_flag(sk, SOCK_DONE); 4056 4057 switch (sk->sk_state) { 4058 case TCP_SYN_RECV: 4059 case TCP_ESTABLISHED: 4060 /* Move to CLOSE_WAIT */ 4061 tcp_set_state(sk, TCP_CLOSE_WAIT); 4062 inet_csk(sk)->icsk_ack.pingpong = 1; 4063 break; 4064 4065 case TCP_CLOSE_WAIT: 4066 case TCP_CLOSING: 4067 /* Received a retransmission of the FIN, do 4068 * nothing. 4069 */ 4070 break; 4071 case TCP_LAST_ACK: 4072 /* RFC793: Remain in the LAST-ACK state. */ 4073 break; 4074 4075 case TCP_FIN_WAIT1: 4076 /* This case occurs when a simultaneous close 4077 * happens, we must ack the received FIN and 4078 * enter the CLOSING state. 4079 */ 4080 tcp_send_ack(sk); 4081 tcp_set_state(sk, TCP_CLOSING); 4082 break; 4083 case TCP_FIN_WAIT2: 4084 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4085 tcp_send_ack(sk); 4086 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4087 break; 4088 default: 4089 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4090 * cases we should never reach this piece of code. 4091 */ 4092 pr_err("%s: Impossible, sk->sk_state=%d\n", 4093 __func__, sk->sk_state); 4094 break; 4095 } 4096 4097 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4098 * Probably, we should reset in this case. For now drop them. 4099 */ 4100 __skb_queue_purge(&tp->out_of_order_queue); 4101 if (tcp_is_sack(tp)) 4102 tcp_sack_reset(&tp->rx_opt); 4103 sk_mem_reclaim(sk); 4104 4105 if (!sock_flag(sk, SOCK_DEAD)) { 4106 sk->sk_state_change(sk); 4107 4108 /* Do not send POLL_HUP for half duplex close. */ 4109 if (sk->sk_shutdown == SHUTDOWN_MASK || 4110 sk->sk_state == TCP_CLOSE) 4111 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4112 else 4113 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4114 } 4115 } 4116 4117 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4118 u32 end_seq) 4119 { 4120 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4121 if (before(seq, sp->start_seq)) 4122 sp->start_seq = seq; 4123 if (after(end_seq, sp->end_seq)) 4124 sp->end_seq = end_seq; 4125 return true; 4126 } 4127 return false; 4128 } 4129 4130 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4131 { 4132 struct tcp_sock *tp = tcp_sk(sk); 4133 4134 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4135 int mib_idx; 4136 4137 if (before(seq, tp->rcv_nxt)) 4138 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4139 else 4140 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4141 4142 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4143 4144 tp->rx_opt.dsack = 1; 4145 tp->duplicate_sack[0].start_seq = seq; 4146 tp->duplicate_sack[0].end_seq = end_seq; 4147 } 4148 } 4149 4150 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4151 { 4152 struct tcp_sock *tp = tcp_sk(sk); 4153 4154 if (!tp->rx_opt.dsack) 4155 tcp_dsack_set(sk, seq, end_seq); 4156 else 4157 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4158 } 4159 4160 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4161 { 4162 struct tcp_sock *tp = tcp_sk(sk); 4163 4164 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4165 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4167 tcp_enter_quickack_mode(sk); 4168 4169 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4170 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4171 4172 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4173 end_seq = tp->rcv_nxt; 4174 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4175 } 4176 } 4177 4178 tcp_send_ack(sk); 4179 } 4180 4181 /* These routines update the SACK block as out-of-order packets arrive or 4182 * in-order packets close up the sequence space. 4183 */ 4184 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4185 { 4186 int this_sack; 4187 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4188 struct tcp_sack_block *swalk = sp + 1; 4189 4190 /* See if the recent change to the first SACK eats into 4191 * or hits the sequence space of other SACK blocks, if so coalesce. 4192 */ 4193 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4194 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4195 int i; 4196 4197 /* Zap SWALK, by moving every further SACK up by one slot. 4198 * Decrease num_sacks. 4199 */ 4200 tp->rx_opt.num_sacks--; 4201 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4202 sp[i] = sp[i + 1]; 4203 continue; 4204 } 4205 this_sack++, swalk++; 4206 } 4207 } 4208 4209 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4210 { 4211 struct tcp_sock *tp = tcp_sk(sk); 4212 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4213 int cur_sacks = tp->rx_opt.num_sacks; 4214 int this_sack; 4215 4216 if (!cur_sacks) 4217 goto new_sack; 4218 4219 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4220 if (tcp_sack_extend(sp, seq, end_seq)) { 4221 /* Rotate this_sack to the first one. */ 4222 for (; this_sack > 0; this_sack--, sp--) 4223 swap(*sp, *(sp - 1)); 4224 if (cur_sacks > 1) 4225 tcp_sack_maybe_coalesce(tp); 4226 return; 4227 } 4228 } 4229 4230 /* Could not find an adjacent existing SACK, build a new one, 4231 * put it at the front, and shift everyone else down. We 4232 * always know there is at least one SACK present already here. 4233 * 4234 * If the sack array is full, forget about the last one. 4235 */ 4236 if (this_sack >= TCP_NUM_SACKS) { 4237 this_sack--; 4238 tp->rx_opt.num_sacks--; 4239 sp--; 4240 } 4241 for (; this_sack > 0; this_sack--, sp--) 4242 *sp = *(sp - 1); 4243 4244 new_sack: 4245 /* Build the new head SACK, and we're done. */ 4246 sp->start_seq = seq; 4247 sp->end_seq = end_seq; 4248 tp->rx_opt.num_sacks++; 4249 } 4250 4251 /* RCV.NXT advances, some SACKs should be eaten. */ 4252 4253 static void tcp_sack_remove(struct tcp_sock *tp) 4254 { 4255 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4256 int num_sacks = tp->rx_opt.num_sacks; 4257 int this_sack; 4258 4259 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4260 if (skb_queue_empty(&tp->out_of_order_queue)) { 4261 tp->rx_opt.num_sacks = 0; 4262 return; 4263 } 4264 4265 for (this_sack = 0; this_sack < num_sacks;) { 4266 /* Check if the start of the sack is covered by RCV.NXT. */ 4267 if (!before(tp->rcv_nxt, sp->start_seq)) { 4268 int i; 4269 4270 /* RCV.NXT must cover all the block! */ 4271 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4272 4273 /* Zap this SACK, by moving forward any other SACKS. */ 4274 for (i=this_sack+1; i < num_sacks; i++) 4275 tp->selective_acks[i-1] = tp->selective_acks[i]; 4276 num_sacks--; 4277 continue; 4278 } 4279 this_sack++; 4280 sp++; 4281 } 4282 tp->rx_opt.num_sacks = num_sacks; 4283 } 4284 4285 /* This one checks to see if we can put data from the 4286 * out_of_order queue into the receive_queue. 4287 */ 4288 static void tcp_ofo_queue(struct sock *sk) 4289 { 4290 struct tcp_sock *tp = tcp_sk(sk); 4291 __u32 dsack_high = tp->rcv_nxt; 4292 struct sk_buff *skb; 4293 4294 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4295 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4296 break; 4297 4298 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4299 __u32 dsack = dsack_high; 4300 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4301 dsack_high = TCP_SKB_CB(skb)->end_seq; 4302 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4303 } 4304 4305 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4306 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4307 __skb_unlink(skb, &tp->out_of_order_queue); 4308 __kfree_skb(skb); 4309 continue; 4310 } 4311 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4312 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4313 TCP_SKB_CB(skb)->end_seq); 4314 4315 __skb_unlink(skb, &tp->out_of_order_queue); 4316 __skb_queue_tail(&sk->sk_receive_queue, skb); 4317 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4318 if (tcp_hdr(skb)->fin) 4319 tcp_fin(sk); 4320 } 4321 } 4322 4323 static bool tcp_prune_ofo_queue(struct sock *sk); 4324 static int tcp_prune_queue(struct sock *sk); 4325 4326 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4327 unsigned int size) 4328 { 4329 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4330 !sk_rmem_schedule(sk, skb, size)) { 4331 4332 if (tcp_prune_queue(sk) < 0) 4333 return -1; 4334 4335 if (!sk_rmem_schedule(sk, skb, size)) { 4336 if (!tcp_prune_ofo_queue(sk)) 4337 return -1; 4338 4339 if (!sk_rmem_schedule(sk, skb, size)) 4340 return -1; 4341 } 4342 } 4343 return 0; 4344 } 4345 4346 /** 4347 * tcp_try_coalesce - try to merge skb to prior one 4348 * @sk: socket 4349 * @to: prior buffer 4350 * @from: buffer to add in queue 4351 * @fragstolen: pointer to boolean 4352 * 4353 * Before queueing skb @from after @to, try to merge them 4354 * to reduce overall memory use and queue lengths, if cost is small. 4355 * Packets in ofo or receive queues can stay a long time. 4356 * Better try to coalesce them right now to avoid future collapses. 4357 * Returns true if caller should free @from instead of queueing it 4358 */ 4359 static bool tcp_try_coalesce(struct sock *sk, 4360 struct sk_buff *to, 4361 struct sk_buff *from, 4362 bool *fragstolen) 4363 { 4364 int delta; 4365 4366 *fragstolen = false; 4367 4368 if (tcp_hdr(from)->fin) 4369 return false; 4370 4371 /* Its possible this segment overlaps with prior segment in queue */ 4372 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4373 return false; 4374 4375 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4376 return false; 4377 4378 atomic_add(delta, &sk->sk_rmem_alloc); 4379 sk_mem_charge(sk, delta); 4380 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4381 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4382 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4383 return true; 4384 } 4385 4386 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4387 { 4388 struct tcp_sock *tp = tcp_sk(sk); 4389 struct sk_buff *skb1; 4390 u32 seq, end_seq; 4391 4392 TCP_ECN_check_ce(tp, skb); 4393 4394 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4395 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4396 __kfree_skb(skb); 4397 return; 4398 } 4399 4400 /* Disable header prediction. */ 4401 tp->pred_flags = 0; 4402 inet_csk_schedule_ack(sk); 4403 4404 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4405 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4406 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4407 4408 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4409 if (!skb1) { 4410 /* Initial out of order segment, build 1 SACK. */ 4411 if (tcp_is_sack(tp)) { 4412 tp->rx_opt.num_sacks = 1; 4413 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4414 tp->selective_acks[0].end_seq = 4415 TCP_SKB_CB(skb)->end_seq; 4416 } 4417 __skb_queue_head(&tp->out_of_order_queue, skb); 4418 goto end; 4419 } 4420 4421 seq = TCP_SKB_CB(skb)->seq; 4422 end_seq = TCP_SKB_CB(skb)->end_seq; 4423 4424 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4425 bool fragstolen; 4426 4427 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4428 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4429 } else { 4430 kfree_skb_partial(skb, fragstolen); 4431 skb = NULL; 4432 } 4433 4434 if (!tp->rx_opt.num_sacks || 4435 tp->selective_acks[0].end_seq != seq) 4436 goto add_sack; 4437 4438 /* Common case: data arrive in order after hole. */ 4439 tp->selective_acks[0].end_seq = end_seq; 4440 goto end; 4441 } 4442 4443 /* Find place to insert this segment. */ 4444 while (1) { 4445 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4446 break; 4447 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4448 skb1 = NULL; 4449 break; 4450 } 4451 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4452 } 4453 4454 /* Do skb overlap to previous one? */ 4455 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4456 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4457 /* All the bits are present. Drop. */ 4458 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4459 __kfree_skb(skb); 4460 skb = NULL; 4461 tcp_dsack_set(sk, seq, end_seq); 4462 goto add_sack; 4463 } 4464 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4465 /* Partial overlap. */ 4466 tcp_dsack_set(sk, seq, 4467 TCP_SKB_CB(skb1)->end_seq); 4468 } else { 4469 if (skb_queue_is_first(&tp->out_of_order_queue, 4470 skb1)) 4471 skb1 = NULL; 4472 else 4473 skb1 = skb_queue_prev( 4474 &tp->out_of_order_queue, 4475 skb1); 4476 } 4477 } 4478 if (!skb1) 4479 __skb_queue_head(&tp->out_of_order_queue, skb); 4480 else 4481 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4482 4483 /* And clean segments covered by new one as whole. */ 4484 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4485 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4486 4487 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4488 break; 4489 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4490 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4491 end_seq); 4492 break; 4493 } 4494 __skb_unlink(skb1, &tp->out_of_order_queue); 4495 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4496 TCP_SKB_CB(skb1)->end_seq); 4497 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4498 __kfree_skb(skb1); 4499 } 4500 4501 add_sack: 4502 if (tcp_is_sack(tp)) 4503 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4504 end: 4505 if (skb) 4506 skb_set_owner_r(skb, sk); 4507 } 4508 4509 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4510 bool *fragstolen) 4511 { 4512 int eaten; 4513 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4514 4515 __skb_pull(skb, hdrlen); 4516 eaten = (tail && 4517 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4518 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4519 if (!eaten) { 4520 __skb_queue_tail(&sk->sk_receive_queue, skb); 4521 skb_set_owner_r(skb, sk); 4522 } 4523 return eaten; 4524 } 4525 4526 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4527 { 4528 struct sk_buff *skb = NULL; 4529 struct tcphdr *th; 4530 bool fragstolen; 4531 4532 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation); 4533 if (!skb) 4534 goto err; 4535 4536 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th))) 4537 goto err_free; 4538 4539 th = (struct tcphdr *)skb_put(skb, sizeof(*th)); 4540 skb_reset_transport_header(skb); 4541 memset(th, 0, sizeof(*th)); 4542 4543 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4544 goto err_free; 4545 4546 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4547 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4548 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4549 4550 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) { 4551 WARN_ON_ONCE(fragstolen); /* should not happen */ 4552 __kfree_skb(skb); 4553 } 4554 return size; 4555 4556 err_free: 4557 kfree_skb(skb); 4558 err: 4559 return -ENOMEM; 4560 } 4561 4562 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4563 { 4564 const struct tcphdr *th = tcp_hdr(skb); 4565 struct tcp_sock *tp = tcp_sk(sk); 4566 int eaten = -1; 4567 bool fragstolen = false; 4568 4569 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4570 goto drop; 4571 4572 skb_dst_drop(skb); 4573 __skb_pull(skb, th->doff * 4); 4574 4575 TCP_ECN_accept_cwr(tp, skb); 4576 4577 tp->rx_opt.dsack = 0; 4578 4579 /* Queue data for delivery to the user. 4580 * Packets in sequence go to the receive queue. 4581 * Out of sequence packets to the out_of_order_queue. 4582 */ 4583 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4584 if (tcp_receive_window(tp) == 0) 4585 goto out_of_window; 4586 4587 /* Ok. In sequence. In window. */ 4588 if (tp->ucopy.task == current && 4589 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4590 sock_owned_by_user(sk) && !tp->urg_data) { 4591 int chunk = min_t(unsigned int, skb->len, 4592 tp->ucopy.len); 4593 4594 __set_current_state(TASK_RUNNING); 4595 4596 local_bh_enable(); 4597 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4598 tp->ucopy.len -= chunk; 4599 tp->copied_seq += chunk; 4600 eaten = (chunk == skb->len); 4601 tcp_rcv_space_adjust(sk); 4602 } 4603 local_bh_disable(); 4604 } 4605 4606 if (eaten <= 0) { 4607 queue_and_out: 4608 if (eaten < 0 && 4609 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4610 goto drop; 4611 4612 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4613 } 4614 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4615 if (skb->len) 4616 tcp_event_data_recv(sk, skb); 4617 if (th->fin) 4618 tcp_fin(sk); 4619 4620 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4621 tcp_ofo_queue(sk); 4622 4623 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4624 * gap in queue is filled. 4625 */ 4626 if (skb_queue_empty(&tp->out_of_order_queue)) 4627 inet_csk(sk)->icsk_ack.pingpong = 0; 4628 } 4629 4630 if (tp->rx_opt.num_sacks) 4631 tcp_sack_remove(tp); 4632 4633 tcp_fast_path_check(sk); 4634 4635 if (eaten > 0) 4636 kfree_skb_partial(skb, fragstolen); 4637 if (!sock_flag(sk, SOCK_DEAD)) 4638 sk->sk_data_ready(sk, 0); 4639 return; 4640 } 4641 4642 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4643 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4644 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4645 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4646 4647 out_of_window: 4648 tcp_enter_quickack_mode(sk); 4649 inet_csk_schedule_ack(sk); 4650 drop: 4651 __kfree_skb(skb); 4652 return; 4653 } 4654 4655 /* Out of window. F.e. zero window probe. */ 4656 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4657 goto out_of_window; 4658 4659 tcp_enter_quickack_mode(sk); 4660 4661 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4662 /* Partial packet, seq < rcv_next < end_seq */ 4663 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4664 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4665 TCP_SKB_CB(skb)->end_seq); 4666 4667 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4668 4669 /* If window is closed, drop tail of packet. But after 4670 * remembering D-SACK for its head made in previous line. 4671 */ 4672 if (!tcp_receive_window(tp)) 4673 goto out_of_window; 4674 goto queue_and_out; 4675 } 4676 4677 tcp_data_queue_ofo(sk, skb); 4678 } 4679 4680 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4681 struct sk_buff_head *list) 4682 { 4683 struct sk_buff *next = NULL; 4684 4685 if (!skb_queue_is_last(list, skb)) 4686 next = skb_queue_next(list, skb); 4687 4688 __skb_unlink(skb, list); 4689 __kfree_skb(skb); 4690 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4691 4692 return next; 4693 } 4694 4695 /* Collapse contiguous sequence of skbs head..tail with 4696 * sequence numbers start..end. 4697 * 4698 * If tail is NULL, this means until the end of the list. 4699 * 4700 * Segments with FIN/SYN are not collapsed (only because this 4701 * simplifies code) 4702 */ 4703 static void 4704 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4705 struct sk_buff *head, struct sk_buff *tail, 4706 u32 start, u32 end) 4707 { 4708 struct sk_buff *skb, *n; 4709 bool end_of_skbs; 4710 4711 /* First, check that queue is collapsible and find 4712 * the point where collapsing can be useful. */ 4713 skb = head; 4714 restart: 4715 end_of_skbs = true; 4716 skb_queue_walk_from_safe(list, skb, n) { 4717 if (skb == tail) 4718 break; 4719 /* No new bits? It is possible on ofo queue. */ 4720 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4721 skb = tcp_collapse_one(sk, skb, list); 4722 if (!skb) 4723 break; 4724 goto restart; 4725 } 4726 4727 /* The first skb to collapse is: 4728 * - not SYN/FIN and 4729 * - bloated or contains data before "start" or 4730 * overlaps to the next one. 4731 */ 4732 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4733 (tcp_win_from_space(skb->truesize) > skb->len || 4734 before(TCP_SKB_CB(skb)->seq, start))) { 4735 end_of_skbs = false; 4736 break; 4737 } 4738 4739 if (!skb_queue_is_last(list, skb)) { 4740 struct sk_buff *next = skb_queue_next(list, skb); 4741 if (next != tail && 4742 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4743 end_of_skbs = false; 4744 break; 4745 } 4746 } 4747 4748 /* Decided to skip this, advance start seq. */ 4749 start = TCP_SKB_CB(skb)->end_seq; 4750 } 4751 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4752 return; 4753 4754 while (before(start, end)) { 4755 struct sk_buff *nskb; 4756 unsigned int header = skb_headroom(skb); 4757 int copy = SKB_MAX_ORDER(header, 0); 4758 4759 /* Too big header? This can happen with IPv6. */ 4760 if (copy < 0) 4761 return; 4762 if (end - start < copy) 4763 copy = end - start; 4764 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4765 if (!nskb) 4766 return; 4767 4768 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4769 skb_set_network_header(nskb, (skb_network_header(skb) - 4770 skb->head)); 4771 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4772 skb->head)); 4773 skb_reserve(nskb, header); 4774 memcpy(nskb->head, skb->head, header); 4775 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4776 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4777 __skb_queue_before(list, skb, nskb); 4778 skb_set_owner_r(nskb, sk); 4779 4780 /* Copy data, releasing collapsed skbs. */ 4781 while (copy > 0) { 4782 int offset = start - TCP_SKB_CB(skb)->seq; 4783 int size = TCP_SKB_CB(skb)->end_seq - start; 4784 4785 BUG_ON(offset < 0); 4786 if (size > 0) { 4787 size = min(copy, size); 4788 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4789 BUG(); 4790 TCP_SKB_CB(nskb)->end_seq += size; 4791 copy -= size; 4792 start += size; 4793 } 4794 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4795 skb = tcp_collapse_one(sk, skb, list); 4796 if (!skb || 4797 skb == tail || 4798 tcp_hdr(skb)->syn || 4799 tcp_hdr(skb)->fin) 4800 return; 4801 } 4802 } 4803 } 4804 } 4805 4806 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4807 * and tcp_collapse() them until all the queue is collapsed. 4808 */ 4809 static void tcp_collapse_ofo_queue(struct sock *sk) 4810 { 4811 struct tcp_sock *tp = tcp_sk(sk); 4812 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4813 struct sk_buff *head; 4814 u32 start, end; 4815 4816 if (skb == NULL) 4817 return; 4818 4819 start = TCP_SKB_CB(skb)->seq; 4820 end = TCP_SKB_CB(skb)->end_seq; 4821 head = skb; 4822 4823 for (;;) { 4824 struct sk_buff *next = NULL; 4825 4826 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4827 next = skb_queue_next(&tp->out_of_order_queue, skb); 4828 skb = next; 4829 4830 /* Segment is terminated when we see gap or when 4831 * we are at the end of all the queue. */ 4832 if (!skb || 4833 after(TCP_SKB_CB(skb)->seq, end) || 4834 before(TCP_SKB_CB(skb)->end_seq, start)) { 4835 tcp_collapse(sk, &tp->out_of_order_queue, 4836 head, skb, start, end); 4837 head = skb; 4838 if (!skb) 4839 break; 4840 /* Start new segment */ 4841 start = TCP_SKB_CB(skb)->seq; 4842 end = TCP_SKB_CB(skb)->end_seq; 4843 } else { 4844 if (before(TCP_SKB_CB(skb)->seq, start)) 4845 start = TCP_SKB_CB(skb)->seq; 4846 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4847 end = TCP_SKB_CB(skb)->end_seq; 4848 } 4849 } 4850 } 4851 4852 /* 4853 * Purge the out-of-order queue. 4854 * Return true if queue was pruned. 4855 */ 4856 static bool tcp_prune_ofo_queue(struct sock *sk) 4857 { 4858 struct tcp_sock *tp = tcp_sk(sk); 4859 bool res = false; 4860 4861 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4862 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4863 __skb_queue_purge(&tp->out_of_order_queue); 4864 4865 /* Reset SACK state. A conforming SACK implementation will 4866 * do the same at a timeout based retransmit. When a connection 4867 * is in a sad state like this, we care only about integrity 4868 * of the connection not performance. 4869 */ 4870 if (tp->rx_opt.sack_ok) 4871 tcp_sack_reset(&tp->rx_opt); 4872 sk_mem_reclaim(sk); 4873 res = true; 4874 } 4875 return res; 4876 } 4877 4878 /* Reduce allocated memory if we can, trying to get 4879 * the socket within its memory limits again. 4880 * 4881 * Return less than zero if we should start dropping frames 4882 * until the socket owning process reads some of the data 4883 * to stabilize the situation. 4884 */ 4885 static int tcp_prune_queue(struct sock *sk) 4886 { 4887 struct tcp_sock *tp = tcp_sk(sk); 4888 4889 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4890 4891 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4892 4893 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4894 tcp_clamp_window(sk); 4895 else if (sk_under_memory_pressure(sk)) 4896 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4897 4898 tcp_collapse_ofo_queue(sk); 4899 if (!skb_queue_empty(&sk->sk_receive_queue)) 4900 tcp_collapse(sk, &sk->sk_receive_queue, 4901 skb_peek(&sk->sk_receive_queue), 4902 NULL, 4903 tp->copied_seq, tp->rcv_nxt); 4904 sk_mem_reclaim(sk); 4905 4906 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4907 return 0; 4908 4909 /* Collapsing did not help, destructive actions follow. 4910 * This must not ever occur. */ 4911 4912 tcp_prune_ofo_queue(sk); 4913 4914 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4915 return 0; 4916 4917 /* If we are really being abused, tell the caller to silently 4918 * drop receive data on the floor. It will get retransmitted 4919 * and hopefully then we'll have sufficient space. 4920 */ 4921 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4922 4923 /* Massive buffer overcommit. */ 4924 tp->pred_flags = 0; 4925 return -1; 4926 } 4927 4928 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4929 * As additional protections, we do not touch cwnd in retransmission phases, 4930 * and if application hit its sndbuf limit recently. 4931 */ 4932 void tcp_cwnd_application_limited(struct sock *sk) 4933 { 4934 struct tcp_sock *tp = tcp_sk(sk); 4935 4936 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4937 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4938 /* Limited by application or receiver window. */ 4939 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4940 u32 win_used = max(tp->snd_cwnd_used, init_win); 4941 if (win_used < tp->snd_cwnd) { 4942 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4943 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4944 } 4945 tp->snd_cwnd_used = 0; 4946 } 4947 tp->snd_cwnd_stamp = tcp_time_stamp; 4948 } 4949 4950 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4951 { 4952 const struct tcp_sock *tp = tcp_sk(sk); 4953 4954 /* If the user specified a specific send buffer setting, do 4955 * not modify it. 4956 */ 4957 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4958 return false; 4959 4960 /* If we are under global TCP memory pressure, do not expand. */ 4961 if (sk_under_memory_pressure(sk)) 4962 return false; 4963 4964 /* If we are under soft global TCP memory pressure, do not expand. */ 4965 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4966 return false; 4967 4968 /* If we filled the congestion window, do not expand. */ 4969 if (tp->packets_out >= tp->snd_cwnd) 4970 return false; 4971 4972 return true; 4973 } 4974 4975 /* When incoming ACK allowed to free some skb from write_queue, 4976 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4977 * on the exit from tcp input handler. 4978 * 4979 * PROBLEM: sndbuf expansion does not work well with largesend. 4980 */ 4981 static void tcp_new_space(struct sock *sk) 4982 { 4983 struct tcp_sock *tp = tcp_sk(sk); 4984 4985 if (tcp_should_expand_sndbuf(sk)) { 4986 int sndmem = SKB_TRUESIZE(max_t(u32, 4987 tp->rx_opt.mss_clamp, 4988 tp->mss_cache) + 4989 MAX_TCP_HEADER); 4990 int demanded = max_t(unsigned int, tp->snd_cwnd, 4991 tp->reordering + 1); 4992 sndmem *= 2 * demanded; 4993 if (sndmem > sk->sk_sndbuf) 4994 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4995 tp->snd_cwnd_stamp = tcp_time_stamp; 4996 } 4997 4998 sk->sk_write_space(sk); 4999 } 5000 5001 static void tcp_check_space(struct sock *sk) 5002 { 5003 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5004 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5005 if (sk->sk_socket && 5006 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5007 tcp_new_space(sk); 5008 } 5009 } 5010 5011 static inline void tcp_data_snd_check(struct sock *sk) 5012 { 5013 tcp_push_pending_frames(sk); 5014 tcp_check_space(sk); 5015 } 5016 5017 /* 5018 * Check if sending an ack is needed. 5019 */ 5020 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5021 { 5022 struct tcp_sock *tp = tcp_sk(sk); 5023 5024 /* More than one full frame received... */ 5025 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5026 /* ... and right edge of window advances far enough. 5027 * (tcp_recvmsg() will send ACK otherwise). Or... 5028 */ 5029 __tcp_select_window(sk) >= tp->rcv_wnd) || 5030 /* We ACK each frame or... */ 5031 tcp_in_quickack_mode(sk) || 5032 /* We have out of order data. */ 5033 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 5034 /* Then ack it now */ 5035 tcp_send_ack(sk); 5036 } else { 5037 /* Else, send delayed ack. */ 5038 tcp_send_delayed_ack(sk); 5039 } 5040 } 5041 5042 static inline void tcp_ack_snd_check(struct sock *sk) 5043 { 5044 if (!inet_csk_ack_scheduled(sk)) { 5045 /* We sent a data segment already. */ 5046 return; 5047 } 5048 __tcp_ack_snd_check(sk, 1); 5049 } 5050 5051 /* 5052 * This routine is only called when we have urgent data 5053 * signaled. Its the 'slow' part of tcp_urg. It could be 5054 * moved inline now as tcp_urg is only called from one 5055 * place. We handle URGent data wrong. We have to - as 5056 * BSD still doesn't use the correction from RFC961. 5057 * For 1003.1g we should support a new option TCP_STDURG to permit 5058 * either form (or just set the sysctl tcp_stdurg). 5059 */ 5060 5061 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5062 { 5063 struct tcp_sock *tp = tcp_sk(sk); 5064 u32 ptr = ntohs(th->urg_ptr); 5065 5066 if (ptr && !sysctl_tcp_stdurg) 5067 ptr--; 5068 ptr += ntohl(th->seq); 5069 5070 /* Ignore urgent data that we've already seen and read. */ 5071 if (after(tp->copied_seq, ptr)) 5072 return; 5073 5074 /* Do not replay urg ptr. 5075 * 5076 * NOTE: interesting situation not covered by specs. 5077 * Misbehaving sender may send urg ptr, pointing to segment, 5078 * which we already have in ofo queue. We are not able to fetch 5079 * such data and will stay in TCP_URG_NOTYET until will be eaten 5080 * by recvmsg(). Seems, we are not obliged to handle such wicked 5081 * situations. But it is worth to think about possibility of some 5082 * DoSes using some hypothetical application level deadlock. 5083 */ 5084 if (before(ptr, tp->rcv_nxt)) 5085 return; 5086 5087 /* Do we already have a newer (or duplicate) urgent pointer? */ 5088 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5089 return; 5090 5091 /* Tell the world about our new urgent pointer. */ 5092 sk_send_sigurg(sk); 5093 5094 /* We may be adding urgent data when the last byte read was 5095 * urgent. To do this requires some care. We cannot just ignore 5096 * tp->copied_seq since we would read the last urgent byte again 5097 * as data, nor can we alter copied_seq until this data arrives 5098 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5099 * 5100 * NOTE. Double Dutch. Rendering to plain English: author of comment 5101 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5102 * and expect that both A and B disappear from stream. This is _wrong_. 5103 * Though this happens in BSD with high probability, this is occasional. 5104 * Any application relying on this is buggy. Note also, that fix "works" 5105 * only in this artificial test. Insert some normal data between A and B and we will 5106 * decline of BSD again. Verdict: it is better to remove to trap 5107 * buggy users. 5108 */ 5109 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5110 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5111 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5112 tp->copied_seq++; 5113 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5114 __skb_unlink(skb, &sk->sk_receive_queue); 5115 __kfree_skb(skb); 5116 } 5117 } 5118 5119 tp->urg_data = TCP_URG_NOTYET; 5120 tp->urg_seq = ptr; 5121 5122 /* Disable header prediction. */ 5123 tp->pred_flags = 0; 5124 } 5125 5126 /* This is the 'fast' part of urgent handling. */ 5127 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5128 { 5129 struct tcp_sock *tp = tcp_sk(sk); 5130 5131 /* Check if we get a new urgent pointer - normally not. */ 5132 if (th->urg) 5133 tcp_check_urg(sk, th); 5134 5135 /* Do we wait for any urgent data? - normally not... */ 5136 if (tp->urg_data == TCP_URG_NOTYET) { 5137 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5138 th->syn; 5139 5140 /* Is the urgent pointer pointing into this packet? */ 5141 if (ptr < skb->len) { 5142 u8 tmp; 5143 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5144 BUG(); 5145 tp->urg_data = TCP_URG_VALID | tmp; 5146 if (!sock_flag(sk, SOCK_DEAD)) 5147 sk->sk_data_ready(sk, 0); 5148 } 5149 } 5150 } 5151 5152 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5153 { 5154 struct tcp_sock *tp = tcp_sk(sk); 5155 int chunk = skb->len - hlen; 5156 int err; 5157 5158 local_bh_enable(); 5159 if (skb_csum_unnecessary(skb)) 5160 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5161 else 5162 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5163 tp->ucopy.iov); 5164 5165 if (!err) { 5166 tp->ucopy.len -= chunk; 5167 tp->copied_seq += chunk; 5168 tcp_rcv_space_adjust(sk); 5169 } 5170 5171 local_bh_disable(); 5172 return err; 5173 } 5174 5175 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5176 struct sk_buff *skb) 5177 { 5178 __sum16 result; 5179 5180 if (sock_owned_by_user(sk)) { 5181 local_bh_enable(); 5182 result = __tcp_checksum_complete(skb); 5183 local_bh_disable(); 5184 } else { 5185 result = __tcp_checksum_complete(skb); 5186 } 5187 return result; 5188 } 5189 5190 static inline bool tcp_checksum_complete_user(struct sock *sk, 5191 struct sk_buff *skb) 5192 { 5193 return !skb_csum_unnecessary(skb) && 5194 __tcp_checksum_complete_user(sk, skb); 5195 } 5196 5197 #ifdef CONFIG_NET_DMA 5198 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5199 int hlen) 5200 { 5201 struct tcp_sock *tp = tcp_sk(sk); 5202 int chunk = skb->len - hlen; 5203 int dma_cookie; 5204 bool copied_early = false; 5205 5206 if (tp->ucopy.wakeup) 5207 return false; 5208 5209 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5210 tp->ucopy.dma_chan = net_dma_find_channel(); 5211 5212 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5213 5214 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5215 skb, hlen, 5216 tp->ucopy.iov, chunk, 5217 tp->ucopy.pinned_list); 5218 5219 if (dma_cookie < 0) 5220 goto out; 5221 5222 tp->ucopy.dma_cookie = dma_cookie; 5223 copied_early = true; 5224 5225 tp->ucopy.len -= chunk; 5226 tp->copied_seq += chunk; 5227 tcp_rcv_space_adjust(sk); 5228 5229 if ((tp->ucopy.len == 0) || 5230 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5231 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5232 tp->ucopy.wakeup = 1; 5233 sk->sk_data_ready(sk, 0); 5234 } 5235 } else if (chunk > 0) { 5236 tp->ucopy.wakeup = 1; 5237 sk->sk_data_ready(sk, 0); 5238 } 5239 out: 5240 return copied_early; 5241 } 5242 #endif /* CONFIG_NET_DMA */ 5243 5244 static void tcp_send_challenge_ack(struct sock *sk) 5245 { 5246 /* unprotected vars, we dont care of overwrites */ 5247 static u32 challenge_timestamp; 5248 static unsigned int challenge_count; 5249 u32 now = jiffies / HZ; 5250 5251 if (now != challenge_timestamp) { 5252 challenge_timestamp = now; 5253 challenge_count = 0; 5254 } 5255 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 5256 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 5257 tcp_send_ack(sk); 5258 } 5259 } 5260 5261 /* Does PAWS and seqno based validation of an incoming segment, flags will 5262 * play significant role here. 5263 */ 5264 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5265 const struct tcphdr *th, int syn_inerr) 5266 { 5267 const u8 *hash_location; 5268 struct tcp_sock *tp = tcp_sk(sk); 5269 5270 /* RFC1323: H1. Apply PAWS check first. */ 5271 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5272 tp->rx_opt.saw_tstamp && 5273 tcp_paws_discard(sk, skb)) { 5274 if (!th->rst) { 5275 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5276 tcp_send_dupack(sk, skb); 5277 goto discard; 5278 } 5279 /* Reset is accepted even if it did not pass PAWS. */ 5280 } 5281 5282 /* Step 1: check sequence number */ 5283 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5284 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5285 * (RST) segments are validated by checking their SEQ-fields." 5286 * And page 69: "If an incoming segment is not acceptable, 5287 * an acknowledgment should be sent in reply (unless the RST 5288 * bit is set, if so drop the segment and return)". 5289 */ 5290 if (!th->rst) { 5291 if (th->syn) 5292 goto syn_challenge; 5293 tcp_send_dupack(sk, skb); 5294 } 5295 goto discard; 5296 } 5297 5298 /* Step 2: check RST bit */ 5299 if (th->rst) { 5300 /* RFC 5961 3.2 : 5301 * If sequence number exactly matches RCV.NXT, then 5302 * RESET the connection 5303 * else 5304 * Send a challenge ACK 5305 */ 5306 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5307 tcp_reset(sk); 5308 else 5309 tcp_send_challenge_ack(sk); 5310 goto discard; 5311 } 5312 5313 /* ts_recent update must be made after we are sure that the packet 5314 * is in window. 5315 */ 5316 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5317 5318 /* step 3: check security and precedence [ignored] */ 5319 5320 /* step 4: Check for a SYN 5321 * RFC 5691 4.2 : Send a challenge ack 5322 */ 5323 if (th->syn) { 5324 syn_challenge: 5325 if (syn_inerr) 5326 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5327 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5328 tcp_send_challenge_ack(sk); 5329 goto discard; 5330 } 5331 5332 return true; 5333 5334 discard: 5335 __kfree_skb(skb); 5336 return false; 5337 } 5338 5339 /* 5340 * TCP receive function for the ESTABLISHED state. 5341 * 5342 * It is split into a fast path and a slow path. The fast path is 5343 * disabled when: 5344 * - A zero window was announced from us - zero window probing 5345 * is only handled properly in the slow path. 5346 * - Out of order segments arrived. 5347 * - Urgent data is expected. 5348 * - There is no buffer space left 5349 * - Unexpected TCP flags/window values/header lengths are received 5350 * (detected by checking the TCP header against pred_flags) 5351 * - Data is sent in both directions. Fast path only supports pure senders 5352 * or pure receivers (this means either the sequence number or the ack 5353 * value must stay constant) 5354 * - Unexpected TCP option. 5355 * 5356 * When these conditions are not satisfied it drops into a standard 5357 * receive procedure patterned after RFC793 to handle all cases. 5358 * The first three cases are guaranteed by proper pred_flags setting, 5359 * the rest is checked inline. Fast processing is turned on in 5360 * tcp_data_queue when everything is OK. 5361 */ 5362 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5363 const struct tcphdr *th, unsigned int len) 5364 { 5365 struct tcp_sock *tp = tcp_sk(sk); 5366 5367 if (unlikely(sk->sk_rx_dst == NULL)) 5368 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5369 /* 5370 * Header prediction. 5371 * The code loosely follows the one in the famous 5372 * "30 instruction TCP receive" Van Jacobson mail. 5373 * 5374 * Van's trick is to deposit buffers into socket queue 5375 * on a device interrupt, to call tcp_recv function 5376 * on the receive process context and checksum and copy 5377 * the buffer to user space. smart... 5378 * 5379 * Our current scheme is not silly either but we take the 5380 * extra cost of the net_bh soft interrupt processing... 5381 * We do checksum and copy also but from device to kernel. 5382 */ 5383 5384 tp->rx_opt.saw_tstamp = 0; 5385 5386 /* pred_flags is 0xS?10 << 16 + snd_wnd 5387 * if header_prediction is to be made 5388 * 'S' will always be tp->tcp_header_len >> 2 5389 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5390 * turn it off (when there are holes in the receive 5391 * space for instance) 5392 * PSH flag is ignored. 5393 */ 5394 5395 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5396 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5397 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5398 int tcp_header_len = tp->tcp_header_len; 5399 5400 /* Timestamp header prediction: tcp_header_len 5401 * is automatically equal to th->doff*4 due to pred_flags 5402 * match. 5403 */ 5404 5405 /* Check timestamp */ 5406 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5407 /* No? Slow path! */ 5408 if (!tcp_parse_aligned_timestamp(tp, th)) 5409 goto slow_path; 5410 5411 /* If PAWS failed, check it more carefully in slow path */ 5412 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5413 goto slow_path; 5414 5415 /* DO NOT update ts_recent here, if checksum fails 5416 * and timestamp was corrupted part, it will result 5417 * in a hung connection since we will drop all 5418 * future packets due to the PAWS test. 5419 */ 5420 } 5421 5422 if (len <= tcp_header_len) { 5423 /* Bulk data transfer: sender */ 5424 if (len == tcp_header_len) { 5425 /* Predicted packet is in window by definition. 5426 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5427 * Hence, check seq<=rcv_wup reduces to: 5428 */ 5429 if (tcp_header_len == 5430 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5431 tp->rcv_nxt == tp->rcv_wup) 5432 tcp_store_ts_recent(tp); 5433 5434 /* We know that such packets are checksummed 5435 * on entry. 5436 */ 5437 tcp_ack(sk, skb, 0); 5438 __kfree_skb(skb); 5439 tcp_data_snd_check(sk); 5440 return 0; 5441 } else { /* Header too small */ 5442 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5443 goto discard; 5444 } 5445 } else { 5446 int eaten = 0; 5447 int copied_early = 0; 5448 bool fragstolen = false; 5449 5450 if (tp->copied_seq == tp->rcv_nxt && 5451 len - tcp_header_len <= tp->ucopy.len) { 5452 #ifdef CONFIG_NET_DMA 5453 if (tp->ucopy.task == current && 5454 sock_owned_by_user(sk) && 5455 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5456 copied_early = 1; 5457 eaten = 1; 5458 } 5459 #endif 5460 if (tp->ucopy.task == current && 5461 sock_owned_by_user(sk) && !copied_early) { 5462 __set_current_state(TASK_RUNNING); 5463 5464 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5465 eaten = 1; 5466 } 5467 if (eaten) { 5468 /* Predicted packet is in window by definition. 5469 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5470 * Hence, check seq<=rcv_wup reduces to: 5471 */ 5472 if (tcp_header_len == 5473 (sizeof(struct tcphdr) + 5474 TCPOLEN_TSTAMP_ALIGNED) && 5475 tp->rcv_nxt == tp->rcv_wup) 5476 tcp_store_ts_recent(tp); 5477 5478 tcp_rcv_rtt_measure_ts(sk, skb); 5479 5480 __skb_pull(skb, tcp_header_len); 5481 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5482 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5483 } 5484 if (copied_early) 5485 tcp_cleanup_rbuf(sk, skb->len); 5486 } 5487 if (!eaten) { 5488 if (tcp_checksum_complete_user(sk, skb)) 5489 goto csum_error; 5490 5491 /* Predicted packet is in window by definition. 5492 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5493 * Hence, check seq<=rcv_wup reduces to: 5494 */ 5495 if (tcp_header_len == 5496 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5497 tp->rcv_nxt == tp->rcv_wup) 5498 tcp_store_ts_recent(tp); 5499 5500 tcp_rcv_rtt_measure_ts(sk, skb); 5501 5502 if ((int)skb->truesize > sk->sk_forward_alloc) 5503 goto step5; 5504 5505 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5506 5507 /* Bulk data transfer: receiver */ 5508 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5509 &fragstolen); 5510 } 5511 5512 tcp_event_data_recv(sk, skb); 5513 5514 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5515 /* Well, only one small jumplet in fast path... */ 5516 tcp_ack(sk, skb, FLAG_DATA); 5517 tcp_data_snd_check(sk); 5518 if (!inet_csk_ack_scheduled(sk)) 5519 goto no_ack; 5520 } 5521 5522 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5523 __tcp_ack_snd_check(sk, 0); 5524 no_ack: 5525 #ifdef CONFIG_NET_DMA 5526 if (copied_early) 5527 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5528 else 5529 #endif 5530 if (eaten) 5531 kfree_skb_partial(skb, fragstolen); 5532 sk->sk_data_ready(sk, 0); 5533 return 0; 5534 } 5535 } 5536 5537 slow_path: 5538 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5539 goto csum_error; 5540 5541 /* 5542 * Standard slow path. 5543 */ 5544 5545 if (!tcp_validate_incoming(sk, skb, th, 1)) 5546 return 0; 5547 5548 step5: 5549 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5550 goto discard; 5551 5552 tcp_rcv_rtt_measure_ts(sk, skb); 5553 5554 /* Process urgent data. */ 5555 tcp_urg(sk, skb, th); 5556 5557 /* step 7: process the segment text */ 5558 tcp_data_queue(sk, skb); 5559 5560 tcp_data_snd_check(sk); 5561 tcp_ack_snd_check(sk); 5562 return 0; 5563 5564 csum_error: 5565 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5566 5567 discard: 5568 __kfree_skb(skb); 5569 return 0; 5570 } 5571 EXPORT_SYMBOL(tcp_rcv_established); 5572 5573 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5574 { 5575 struct tcp_sock *tp = tcp_sk(sk); 5576 struct inet_connection_sock *icsk = inet_csk(sk); 5577 5578 tcp_set_state(sk, TCP_ESTABLISHED); 5579 5580 if (skb != NULL) { 5581 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5582 security_inet_conn_established(sk, skb); 5583 } 5584 5585 /* Make sure socket is routed, for correct metrics. */ 5586 icsk->icsk_af_ops->rebuild_header(sk); 5587 5588 tcp_init_metrics(sk); 5589 5590 tcp_init_congestion_control(sk); 5591 5592 /* Prevent spurious tcp_cwnd_restart() on first data 5593 * packet. 5594 */ 5595 tp->lsndtime = tcp_time_stamp; 5596 5597 tcp_init_buffer_space(sk); 5598 5599 if (sock_flag(sk, SOCK_KEEPOPEN)) 5600 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5601 5602 if (!tp->rx_opt.snd_wscale) 5603 __tcp_fast_path_on(tp, tp->snd_wnd); 5604 else 5605 tp->pred_flags = 0; 5606 5607 if (!sock_flag(sk, SOCK_DEAD)) { 5608 sk->sk_state_change(sk); 5609 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5610 } 5611 } 5612 5613 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5614 struct tcp_fastopen_cookie *cookie) 5615 { 5616 struct tcp_sock *tp = tcp_sk(sk); 5617 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5618 u16 mss = tp->rx_opt.mss_clamp; 5619 bool syn_drop; 5620 5621 if (mss == tp->rx_opt.user_mss) { 5622 struct tcp_options_received opt; 5623 const u8 *hash_location; 5624 5625 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5626 tcp_clear_options(&opt); 5627 opt.user_mss = opt.mss_clamp = 0; 5628 tcp_parse_options(synack, &opt, &hash_location, 0, NULL); 5629 mss = opt.mss_clamp; 5630 } 5631 5632 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5633 cookie->len = -1; 5634 5635 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5636 * the remote receives only the retransmitted (regular) SYNs: either 5637 * the original SYN-data or the corresponding SYN-ACK is lost. 5638 */ 5639 syn_drop = (cookie->len <= 0 && data && 5640 inet_csk(sk)->icsk_retransmits); 5641 5642 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5643 5644 if (data) { /* Retransmit unacked data in SYN */ 5645 tcp_retransmit_skb(sk, data); 5646 tcp_rearm_rto(sk); 5647 return true; 5648 } 5649 return false; 5650 } 5651 5652 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5653 const struct tcphdr *th, unsigned int len) 5654 { 5655 const u8 *hash_location; 5656 struct inet_connection_sock *icsk = inet_csk(sk); 5657 struct tcp_sock *tp = tcp_sk(sk); 5658 struct tcp_cookie_values *cvp = tp->cookie_values; 5659 struct tcp_fastopen_cookie foc = { .len = -1 }; 5660 int saved_clamp = tp->rx_opt.mss_clamp; 5661 5662 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc); 5663 5664 if (th->ack) { 5665 /* rfc793: 5666 * "If the state is SYN-SENT then 5667 * first check the ACK bit 5668 * If the ACK bit is set 5669 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5670 * a reset (unless the RST bit is set, if so drop 5671 * the segment and return)" 5672 */ 5673 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5674 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5675 goto reset_and_undo; 5676 5677 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5678 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5679 tcp_time_stamp)) { 5680 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5681 goto reset_and_undo; 5682 } 5683 5684 /* Now ACK is acceptable. 5685 * 5686 * "If the RST bit is set 5687 * If the ACK was acceptable then signal the user "error: 5688 * connection reset", drop the segment, enter CLOSED state, 5689 * delete TCB, and return." 5690 */ 5691 5692 if (th->rst) { 5693 tcp_reset(sk); 5694 goto discard; 5695 } 5696 5697 /* rfc793: 5698 * "fifth, if neither of the SYN or RST bits is set then 5699 * drop the segment and return." 5700 * 5701 * See note below! 5702 * --ANK(990513) 5703 */ 5704 if (!th->syn) 5705 goto discard_and_undo; 5706 5707 /* rfc793: 5708 * "If the SYN bit is on ... 5709 * are acceptable then ... 5710 * (our SYN has been ACKed), change the connection 5711 * state to ESTABLISHED..." 5712 */ 5713 5714 TCP_ECN_rcv_synack(tp, th); 5715 5716 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5717 tcp_ack(sk, skb, FLAG_SLOWPATH); 5718 5719 /* Ok.. it's good. Set up sequence numbers and 5720 * move to established. 5721 */ 5722 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5723 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5724 5725 /* RFC1323: The window in SYN & SYN/ACK segments is 5726 * never scaled. 5727 */ 5728 tp->snd_wnd = ntohs(th->window); 5729 5730 if (!tp->rx_opt.wscale_ok) { 5731 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5732 tp->window_clamp = min(tp->window_clamp, 65535U); 5733 } 5734 5735 if (tp->rx_opt.saw_tstamp) { 5736 tp->rx_opt.tstamp_ok = 1; 5737 tp->tcp_header_len = 5738 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5739 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5740 tcp_store_ts_recent(tp); 5741 } else { 5742 tp->tcp_header_len = sizeof(struct tcphdr); 5743 } 5744 5745 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5746 tcp_enable_fack(tp); 5747 5748 tcp_mtup_init(sk); 5749 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5750 tcp_initialize_rcv_mss(sk); 5751 5752 /* Remember, tcp_poll() does not lock socket! 5753 * Change state from SYN-SENT only after copied_seq 5754 * is initialized. */ 5755 tp->copied_seq = tp->rcv_nxt; 5756 5757 if (cvp != NULL && 5758 cvp->cookie_pair_size > 0 && 5759 tp->rx_opt.cookie_plus > 0) { 5760 int cookie_size = tp->rx_opt.cookie_plus 5761 - TCPOLEN_COOKIE_BASE; 5762 int cookie_pair_size = cookie_size 5763 + cvp->cookie_desired; 5764 5765 /* A cookie extension option was sent and returned. 5766 * Note that each incoming SYNACK replaces the 5767 * Responder cookie. The initial exchange is most 5768 * fragile, as protection against spoofing relies 5769 * entirely upon the sequence and timestamp (above). 5770 * This replacement strategy allows the correct pair to 5771 * pass through, while any others will be filtered via 5772 * Responder verification later. 5773 */ 5774 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5775 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5776 hash_location, cookie_size); 5777 cvp->cookie_pair_size = cookie_pair_size; 5778 } 5779 } 5780 5781 smp_mb(); 5782 5783 tcp_finish_connect(sk, skb); 5784 5785 if ((tp->syn_fastopen || tp->syn_data) && 5786 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5787 return -1; 5788 5789 if (sk->sk_write_pending || 5790 icsk->icsk_accept_queue.rskq_defer_accept || 5791 icsk->icsk_ack.pingpong) { 5792 /* Save one ACK. Data will be ready after 5793 * several ticks, if write_pending is set. 5794 * 5795 * It may be deleted, but with this feature tcpdumps 5796 * look so _wonderfully_ clever, that I was not able 5797 * to stand against the temptation 8) --ANK 5798 */ 5799 inet_csk_schedule_ack(sk); 5800 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5801 tcp_enter_quickack_mode(sk); 5802 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5803 TCP_DELACK_MAX, TCP_RTO_MAX); 5804 5805 discard: 5806 __kfree_skb(skb); 5807 return 0; 5808 } else { 5809 tcp_send_ack(sk); 5810 } 5811 return -1; 5812 } 5813 5814 /* No ACK in the segment */ 5815 5816 if (th->rst) { 5817 /* rfc793: 5818 * "If the RST bit is set 5819 * 5820 * Otherwise (no ACK) drop the segment and return." 5821 */ 5822 5823 goto discard_and_undo; 5824 } 5825 5826 /* PAWS check. */ 5827 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5828 tcp_paws_reject(&tp->rx_opt, 0)) 5829 goto discard_and_undo; 5830 5831 if (th->syn) { 5832 /* We see SYN without ACK. It is attempt of 5833 * simultaneous connect with crossed SYNs. 5834 * Particularly, it can be connect to self. 5835 */ 5836 tcp_set_state(sk, TCP_SYN_RECV); 5837 5838 if (tp->rx_opt.saw_tstamp) { 5839 tp->rx_opt.tstamp_ok = 1; 5840 tcp_store_ts_recent(tp); 5841 tp->tcp_header_len = 5842 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5843 } else { 5844 tp->tcp_header_len = sizeof(struct tcphdr); 5845 } 5846 5847 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5848 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5849 5850 /* RFC1323: The window in SYN & SYN/ACK segments is 5851 * never scaled. 5852 */ 5853 tp->snd_wnd = ntohs(th->window); 5854 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5855 tp->max_window = tp->snd_wnd; 5856 5857 TCP_ECN_rcv_syn(tp, th); 5858 5859 tcp_mtup_init(sk); 5860 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5861 tcp_initialize_rcv_mss(sk); 5862 5863 tcp_send_synack(sk); 5864 #if 0 5865 /* Note, we could accept data and URG from this segment. 5866 * There are no obstacles to make this (except that we must 5867 * either change tcp_recvmsg() to prevent it from returning data 5868 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5869 * 5870 * However, if we ignore data in ACKless segments sometimes, 5871 * we have no reasons to accept it sometimes. 5872 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5873 * is not flawless. So, discard packet for sanity. 5874 * Uncomment this return to process the data. 5875 */ 5876 return -1; 5877 #else 5878 goto discard; 5879 #endif 5880 } 5881 /* "fifth, if neither of the SYN or RST bits is set then 5882 * drop the segment and return." 5883 */ 5884 5885 discard_and_undo: 5886 tcp_clear_options(&tp->rx_opt); 5887 tp->rx_opt.mss_clamp = saved_clamp; 5888 goto discard; 5889 5890 reset_and_undo: 5891 tcp_clear_options(&tp->rx_opt); 5892 tp->rx_opt.mss_clamp = saved_clamp; 5893 return 1; 5894 } 5895 5896 /* 5897 * This function implements the receiving procedure of RFC 793 for 5898 * all states except ESTABLISHED and TIME_WAIT. 5899 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5900 * address independent. 5901 */ 5902 5903 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5904 const struct tcphdr *th, unsigned int len) 5905 { 5906 struct tcp_sock *tp = tcp_sk(sk); 5907 struct inet_connection_sock *icsk = inet_csk(sk); 5908 struct request_sock *req; 5909 int queued = 0; 5910 5911 tp->rx_opt.saw_tstamp = 0; 5912 5913 switch (sk->sk_state) { 5914 case TCP_CLOSE: 5915 goto discard; 5916 5917 case TCP_LISTEN: 5918 if (th->ack) 5919 return 1; 5920 5921 if (th->rst) 5922 goto discard; 5923 5924 if (th->syn) { 5925 if (th->fin) 5926 goto discard; 5927 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5928 return 1; 5929 5930 /* Now we have several options: In theory there is 5931 * nothing else in the frame. KA9Q has an option to 5932 * send data with the syn, BSD accepts data with the 5933 * syn up to the [to be] advertised window and 5934 * Solaris 2.1 gives you a protocol error. For now 5935 * we just ignore it, that fits the spec precisely 5936 * and avoids incompatibilities. It would be nice in 5937 * future to drop through and process the data. 5938 * 5939 * Now that TTCP is starting to be used we ought to 5940 * queue this data. 5941 * But, this leaves one open to an easy denial of 5942 * service attack, and SYN cookies can't defend 5943 * against this problem. So, we drop the data 5944 * in the interest of security over speed unless 5945 * it's still in use. 5946 */ 5947 kfree_skb(skb); 5948 return 0; 5949 } 5950 goto discard; 5951 5952 case TCP_SYN_SENT: 5953 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5954 if (queued >= 0) 5955 return queued; 5956 5957 /* Do step6 onward by hand. */ 5958 tcp_urg(sk, skb, th); 5959 __kfree_skb(skb); 5960 tcp_data_snd_check(sk); 5961 return 0; 5962 } 5963 5964 req = tp->fastopen_rsk; 5965 if (req != NULL) { 5966 BUG_ON(sk->sk_state != TCP_SYN_RECV && 5967 sk->sk_state != TCP_FIN_WAIT1); 5968 5969 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5970 goto discard; 5971 } 5972 if (!tcp_validate_incoming(sk, skb, th, 0)) 5973 return 0; 5974 5975 /* step 5: check the ACK field */ 5976 if (th->ack) { 5977 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5978 5979 switch (sk->sk_state) { 5980 case TCP_SYN_RECV: 5981 if (acceptable) { 5982 /* Once we leave TCP_SYN_RECV, we no longer 5983 * need req so release it. 5984 */ 5985 if (req) { 5986 tcp_synack_rtt_meas(sk, req); 5987 tp->total_retrans = req->retrans; 5988 5989 reqsk_fastopen_remove(sk, req, false); 5990 } else { 5991 /* Make sure socket is routed, for 5992 * correct metrics. 5993 */ 5994 icsk->icsk_af_ops->rebuild_header(sk); 5995 tcp_init_congestion_control(sk); 5996 5997 tcp_mtup_init(sk); 5998 tcp_init_buffer_space(sk); 5999 tp->copied_seq = tp->rcv_nxt; 6000 } 6001 smp_mb(); 6002 tcp_set_state(sk, TCP_ESTABLISHED); 6003 sk->sk_state_change(sk); 6004 6005 /* Note, that this wakeup is only for marginal 6006 * crossed SYN case. Passively open sockets 6007 * are not waked up, because sk->sk_sleep == 6008 * NULL and sk->sk_socket == NULL. 6009 */ 6010 if (sk->sk_socket) 6011 sk_wake_async(sk, 6012 SOCK_WAKE_IO, POLL_OUT); 6013 6014 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6015 tp->snd_wnd = ntohs(th->window) << 6016 tp->rx_opt.snd_wscale; 6017 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6018 6019 if (tp->rx_opt.tstamp_ok) 6020 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6021 6022 if (req) { 6023 /* Re-arm the timer because data may 6024 * have been sent out. This is similar 6025 * to the regular data transmission case 6026 * when new data has just been ack'ed. 6027 * 6028 * (TFO) - we could try to be more 6029 * aggressive and retranmitting any data 6030 * sooner based on when they were sent 6031 * out. 6032 */ 6033 tcp_rearm_rto(sk); 6034 } else 6035 tcp_init_metrics(sk); 6036 6037 /* Prevent spurious tcp_cwnd_restart() on 6038 * first data packet. 6039 */ 6040 tp->lsndtime = tcp_time_stamp; 6041 6042 tcp_initialize_rcv_mss(sk); 6043 tcp_fast_path_on(tp); 6044 } else { 6045 return 1; 6046 } 6047 break; 6048 6049 case TCP_FIN_WAIT1: 6050 /* If we enter the TCP_FIN_WAIT1 state and we are a 6051 * Fast Open socket and this is the first acceptable 6052 * ACK we have received, this would have acknowledged 6053 * our SYNACK so stop the SYNACK timer. 6054 */ 6055 if (acceptable && req != NULL) { 6056 /* We no longer need the request sock. */ 6057 reqsk_fastopen_remove(sk, req, false); 6058 tcp_rearm_rto(sk); 6059 } 6060 if (tp->snd_una == tp->write_seq) { 6061 struct dst_entry *dst; 6062 6063 tcp_set_state(sk, TCP_FIN_WAIT2); 6064 sk->sk_shutdown |= SEND_SHUTDOWN; 6065 6066 dst = __sk_dst_get(sk); 6067 if (dst) 6068 dst_confirm(dst); 6069 6070 if (!sock_flag(sk, SOCK_DEAD)) 6071 /* Wake up lingering close() */ 6072 sk->sk_state_change(sk); 6073 else { 6074 int tmo; 6075 6076 if (tp->linger2 < 0 || 6077 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6078 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 6079 tcp_done(sk); 6080 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6081 return 1; 6082 } 6083 6084 tmo = tcp_fin_time(sk); 6085 if (tmo > TCP_TIMEWAIT_LEN) { 6086 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6087 } else if (th->fin || sock_owned_by_user(sk)) { 6088 /* Bad case. We could lose such FIN otherwise. 6089 * It is not a big problem, but it looks confusing 6090 * and not so rare event. We still can lose it now, 6091 * if it spins in bh_lock_sock(), but it is really 6092 * marginal case. 6093 */ 6094 inet_csk_reset_keepalive_timer(sk, tmo); 6095 } else { 6096 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6097 goto discard; 6098 } 6099 } 6100 } 6101 break; 6102 6103 case TCP_CLOSING: 6104 if (tp->snd_una == tp->write_seq) { 6105 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6106 goto discard; 6107 } 6108 break; 6109 6110 case TCP_LAST_ACK: 6111 if (tp->snd_una == tp->write_seq) { 6112 tcp_update_metrics(sk); 6113 tcp_done(sk); 6114 goto discard; 6115 } 6116 break; 6117 } 6118 } else 6119 goto discard; 6120 6121 /* step 6: check the URG bit */ 6122 tcp_urg(sk, skb, th); 6123 6124 /* step 7: process the segment text */ 6125 switch (sk->sk_state) { 6126 case TCP_CLOSE_WAIT: 6127 case TCP_CLOSING: 6128 case TCP_LAST_ACK: 6129 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6130 break; 6131 case TCP_FIN_WAIT1: 6132 case TCP_FIN_WAIT2: 6133 /* RFC 793 says to queue data in these states, 6134 * RFC 1122 says we MUST send a reset. 6135 * BSD 4.4 also does reset. 6136 */ 6137 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6138 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6139 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6140 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6141 tcp_reset(sk); 6142 return 1; 6143 } 6144 } 6145 /* Fall through */ 6146 case TCP_ESTABLISHED: 6147 tcp_data_queue(sk, skb); 6148 queued = 1; 6149 break; 6150 } 6151 6152 /* tcp_data could move socket to TIME-WAIT */ 6153 if (sk->sk_state != TCP_CLOSE) { 6154 tcp_data_snd_check(sk); 6155 tcp_ack_snd_check(sk); 6156 } 6157 6158 if (!queued) { 6159 discard: 6160 __kfree_skb(skb); 6161 } 6162 return 0; 6163 } 6164 EXPORT_SYMBOL(tcp_rcv_state_process); 6165