1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_max_reordering __read_mostly = 300; 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 100; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 97 98 int sysctl_tcp_thin_dupack __read_mostly; 99 100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 101 int sysctl_tcp_early_retrans __read_mostly = 3; 102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 103 104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 110 #define FLAG_ECE 0x40 /* ECE in this ACK */ 111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 118 119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 123 124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 126 127 #define REXMIT_NONE 0 /* no loss recovery to do */ 128 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 130 131 /* Adapt the MSS value used to make delayed ack decision to the 132 * real world. 133 */ 134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 135 { 136 struct inet_connection_sock *icsk = inet_csk(sk); 137 const unsigned int lss = icsk->icsk_ack.last_seg_size; 138 unsigned int len; 139 140 icsk->icsk_ack.last_seg_size = 0; 141 142 /* skb->len may jitter because of SACKs, even if peer 143 * sends good full-sized frames. 144 */ 145 len = skb_shinfo(skb)->gso_size ? : skb->len; 146 if (len >= icsk->icsk_ack.rcv_mss) { 147 icsk->icsk_ack.rcv_mss = len; 148 } else { 149 /* Otherwise, we make more careful check taking into account, 150 * that SACKs block is variable. 151 * 152 * "len" is invariant segment length, including TCP header. 153 */ 154 len += skb->data - skb_transport_header(skb); 155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 156 /* If PSH is not set, packet should be 157 * full sized, provided peer TCP is not badly broken. 158 * This observation (if it is correct 8)) allows 159 * to handle super-low mtu links fairly. 160 */ 161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 163 /* Subtract also invariant (if peer is RFC compliant), 164 * tcp header plus fixed timestamp option length. 165 * Resulting "len" is MSS free of SACK jitter. 166 */ 167 len -= tcp_sk(sk)->tcp_header_len; 168 icsk->icsk_ack.last_seg_size = len; 169 if (len == lss) { 170 icsk->icsk_ack.rcv_mss = len; 171 return; 172 } 173 } 174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 177 } 178 } 179 180 static void tcp_incr_quickack(struct sock *sk) 181 { 182 struct inet_connection_sock *icsk = inet_csk(sk); 183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 184 185 if (quickacks == 0) 186 quickacks = 2; 187 if (quickacks > icsk->icsk_ack.quick) 188 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 189 } 190 191 static void tcp_enter_quickack_mode(struct sock *sk) 192 { 193 struct inet_connection_sock *icsk = inet_csk(sk); 194 tcp_incr_quickack(sk); 195 icsk->icsk_ack.pingpong = 0; 196 icsk->icsk_ack.ato = TCP_ATO_MIN; 197 } 198 199 /* Send ACKs quickly, if "quick" count is not exhausted 200 * and the session is not interactive. 201 */ 202 203 static bool tcp_in_quickack_mode(struct sock *sk) 204 { 205 const struct inet_connection_sock *icsk = inet_csk(sk); 206 const struct dst_entry *dst = __sk_dst_get(sk); 207 208 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 209 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 210 } 211 212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 213 { 214 if (tp->ecn_flags & TCP_ECN_OK) 215 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 216 } 217 218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 219 { 220 if (tcp_hdr(skb)->cwr) 221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 222 } 223 224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 225 { 226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 227 } 228 229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 230 { 231 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 232 case INET_ECN_NOT_ECT: 233 /* Funny extension: if ECT is not set on a segment, 234 * and we already seen ECT on a previous segment, 235 * it is probably a retransmit. 236 */ 237 if (tp->ecn_flags & TCP_ECN_SEEN) 238 tcp_enter_quickack_mode((struct sock *)tp); 239 break; 240 case INET_ECN_CE: 241 if (tcp_ca_needs_ecn((struct sock *)tp)) 242 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 243 244 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 245 /* Better not delay acks, sender can have a very low cwnd */ 246 tcp_enter_quickack_mode((struct sock *)tp); 247 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 248 } 249 tp->ecn_flags |= TCP_ECN_SEEN; 250 break; 251 default: 252 if (tcp_ca_needs_ecn((struct sock *)tp)) 253 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 254 tp->ecn_flags |= TCP_ECN_SEEN; 255 break; 256 } 257 } 258 259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 260 { 261 if (tp->ecn_flags & TCP_ECN_OK) 262 __tcp_ecn_check_ce(tp, skb); 263 } 264 265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 266 { 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 268 tp->ecn_flags &= ~TCP_ECN_OK; 269 } 270 271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 274 tp->ecn_flags &= ~TCP_ECN_OK; 275 } 276 277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 278 { 279 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 280 return true; 281 return false; 282 } 283 284 /* Buffer size and advertised window tuning. 285 * 286 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 287 */ 288 289 static void tcp_sndbuf_expand(struct sock *sk) 290 { 291 const struct tcp_sock *tp = tcp_sk(sk); 292 int sndmem, per_mss; 293 u32 nr_segs; 294 295 /* Worst case is non GSO/TSO : each frame consumes one skb 296 * and skb->head is kmalloced using power of two area of memory 297 */ 298 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 299 MAX_TCP_HEADER + 300 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 301 302 per_mss = roundup_pow_of_two(per_mss) + 303 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 304 305 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 306 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 307 308 /* Fast Recovery (RFC 5681 3.2) : 309 * Cubic needs 1.7 factor, rounded to 2 to include 310 * extra cushion (application might react slowly to POLLOUT) 311 */ 312 sndmem = 2 * nr_segs * per_mss; 313 314 if (sk->sk_sndbuf < sndmem) 315 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 316 } 317 318 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 319 * 320 * All tcp_full_space() is split to two parts: "network" buffer, allocated 321 * forward and advertised in receiver window (tp->rcv_wnd) and 322 * "application buffer", required to isolate scheduling/application 323 * latencies from network. 324 * window_clamp is maximal advertised window. It can be less than 325 * tcp_full_space(), in this case tcp_full_space() - window_clamp 326 * is reserved for "application" buffer. The less window_clamp is 327 * the smoother our behaviour from viewpoint of network, but the lower 328 * throughput and the higher sensitivity of the connection to losses. 8) 329 * 330 * rcv_ssthresh is more strict window_clamp used at "slow start" 331 * phase to predict further behaviour of this connection. 332 * It is used for two goals: 333 * - to enforce header prediction at sender, even when application 334 * requires some significant "application buffer". It is check #1. 335 * - to prevent pruning of receive queue because of misprediction 336 * of receiver window. Check #2. 337 * 338 * The scheme does not work when sender sends good segments opening 339 * window and then starts to feed us spaghetti. But it should work 340 * in common situations. Otherwise, we have to rely on queue collapsing. 341 */ 342 343 /* Slow part of check#2. */ 344 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 345 { 346 struct tcp_sock *tp = tcp_sk(sk); 347 /* Optimize this! */ 348 int truesize = tcp_win_from_space(skb->truesize) >> 1; 349 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 350 351 while (tp->rcv_ssthresh <= window) { 352 if (truesize <= skb->len) 353 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 354 355 truesize >>= 1; 356 window >>= 1; 357 } 358 return 0; 359 } 360 361 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 362 { 363 struct tcp_sock *tp = tcp_sk(sk); 364 365 /* Check #1 */ 366 if (tp->rcv_ssthresh < tp->window_clamp && 367 (int)tp->rcv_ssthresh < tcp_space(sk) && 368 !tcp_under_memory_pressure(sk)) { 369 int incr; 370 371 /* Check #2. Increase window, if skb with such overhead 372 * will fit to rcvbuf in future. 373 */ 374 if (tcp_win_from_space(skb->truesize) <= skb->len) 375 incr = 2 * tp->advmss; 376 else 377 incr = __tcp_grow_window(sk, skb); 378 379 if (incr) { 380 incr = max_t(int, incr, 2 * skb->len); 381 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 382 tp->window_clamp); 383 inet_csk(sk)->icsk_ack.quick |= 1; 384 } 385 } 386 } 387 388 /* 3. Tuning rcvbuf, when connection enters established state. */ 389 static void tcp_fixup_rcvbuf(struct sock *sk) 390 { 391 u32 mss = tcp_sk(sk)->advmss; 392 int rcvmem; 393 394 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 395 tcp_default_init_rwnd(mss); 396 397 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 398 * Allow enough cushion so that sender is not limited by our window 399 */ 400 if (sysctl_tcp_moderate_rcvbuf) 401 rcvmem <<= 2; 402 403 if (sk->sk_rcvbuf < rcvmem) 404 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 405 } 406 407 /* 4. Try to fixup all. It is made immediately after connection enters 408 * established state. 409 */ 410 void tcp_init_buffer_space(struct sock *sk) 411 { 412 struct tcp_sock *tp = tcp_sk(sk); 413 int maxwin; 414 415 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 416 tcp_fixup_rcvbuf(sk); 417 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 418 tcp_sndbuf_expand(sk); 419 420 tp->rcvq_space.space = tp->rcv_wnd; 421 tp->rcvq_space.time = tcp_time_stamp; 422 tp->rcvq_space.seq = tp->copied_seq; 423 424 maxwin = tcp_full_space(sk); 425 426 if (tp->window_clamp >= maxwin) { 427 tp->window_clamp = maxwin; 428 429 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 430 tp->window_clamp = max(maxwin - 431 (maxwin >> sysctl_tcp_app_win), 432 4 * tp->advmss); 433 } 434 435 /* Force reservation of one segment. */ 436 if (sysctl_tcp_app_win && 437 tp->window_clamp > 2 * tp->advmss && 438 tp->window_clamp + tp->advmss > maxwin) 439 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 440 441 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 442 tp->snd_cwnd_stamp = tcp_time_stamp; 443 } 444 445 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 446 static void tcp_clamp_window(struct sock *sk) 447 { 448 struct tcp_sock *tp = tcp_sk(sk); 449 struct inet_connection_sock *icsk = inet_csk(sk); 450 451 icsk->icsk_ack.quick = 0; 452 453 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 454 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 455 !tcp_under_memory_pressure(sk) && 456 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 457 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 458 sysctl_tcp_rmem[2]); 459 } 460 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 461 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 462 } 463 464 /* Initialize RCV_MSS value. 465 * RCV_MSS is an our guess about MSS used by the peer. 466 * We haven't any direct information about the MSS. 467 * It's better to underestimate the RCV_MSS rather than overestimate. 468 * Overestimations make us ACKing less frequently than needed. 469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 470 */ 471 void tcp_initialize_rcv_mss(struct sock *sk) 472 { 473 const struct tcp_sock *tp = tcp_sk(sk); 474 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 475 476 hint = min(hint, tp->rcv_wnd / 2); 477 hint = min(hint, TCP_MSS_DEFAULT); 478 hint = max(hint, TCP_MIN_MSS); 479 480 inet_csk(sk)->icsk_ack.rcv_mss = hint; 481 } 482 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 483 484 /* Receiver "autotuning" code. 485 * 486 * The algorithm for RTT estimation w/o timestamps is based on 487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 488 * <http://public.lanl.gov/radiant/pubs.html#DRS> 489 * 490 * More detail on this code can be found at 491 * <http://staff.psc.edu/jheffner/>, 492 * though this reference is out of date. A new paper 493 * is pending. 494 */ 495 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 496 { 497 u32 new_sample = tp->rcv_rtt_est.rtt; 498 long m = sample; 499 500 if (m == 0) 501 m = 1; 502 503 if (new_sample != 0) { 504 /* If we sample in larger samples in the non-timestamp 505 * case, we could grossly overestimate the RTT especially 506 * with chatty applications or bulk transfer apps which 507 * are stalled on filesystem I/O. 508 * 509 * Also, since we are only going for a minimum in the 510 * non-timestamp case, we do not smooth things out 511 * else with timestamps disabled convergence takes too 512 * long. 513 */ 514 if (!win_dep) { 515 m -= (new_sample >> 3); 516 new_sample += m; 517 } else { 518 m <<= 3; 519 if (m < new_sample) 520 new_sample = m; 521 } 522 } else { 523 /* No previous measure. */ 524 new_sample = m << 3; 525 } 526 527 if (tp->rcv_rtt_est.rtt != new_sample) 528 tp->rcv_rtt_est.rtt = new_sample; 529 } 530 531 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 532 { 533 if (tp->rcv_rtt_est.time == 0) 534 goto new_measure; 535 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 536 return; 537 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 538 539 new_measure: 540 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 541 tp->rcv_rtt_est.time = tcp_time_stamp; 542 } 543 544 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 545 const struct sk_buff *skb) 546 { 547 struct tcp_sock *tp = tcp_sk(sk); 548 if (tp->rx_opt.rcv_tsecr && 549 (TCP_SKB_CB(skb)->end_seq - 550 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 551 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 552 } 553 554 /* 555 * This function should be called every time data is copied to user space. 556 * It calculates the appropriate TCP receive buffer space. 557 */ 558 void tcp_rcv_space_adjust(struct sock *sk) 559 { 560 struct tcp_sock *tp = tcp_sk(sk); 561 int time; 562 int copied; 563 564 time = tcp_time_stamp - tp->rcvq_space.time; 565 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 566 return; 567 568 /* Number of bytes copied to user in last RTT */ 569 copied = tp->copied_seq - tp->rcvq_space.seq; 570 if (copied <= tp->rcvq_space.space) 571 goto new_measure; 572 573 /* A bit of theory : 574 * copied = bytes received in previous RTT, our base window 575 * To cope with packet losses, we need a 2x factor 576 * To cope with slow start, and sender growing its cwin by 100 % 577 * every RTT, we need a 4x factor, because the ACK we are sending 578 * now is for the next RTT, not the current one : 579 * <prev RTT . ><current RTT .. ><next RTT .... > 580 */ 581 582 if (sysctl_tcp_moderate_rcvbuf && 583 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 584 int rcvwin, rcvmem, rcvbuf; 585 586 /* minimal window to cope with packet losses, assuming 587 * steady state. Add some cushion because of small variations. 588 */ 589 rcvwin = (copied << 1) + 16 * tp->advmss; 590 591 /* If rate increased by 25%, 592 * assume slow start, rcvwin = 3 * copied 593 * If rate increased by 50%, 594 * assume sender can use 2x growth, rcvwin = 4 * copied 595 */ 596 if (copied >= 597 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 598 if (copied >= 599 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 600 rcvwin <<= 1; 601 else 602 rcvwin += (rcvwin >> 1); 603 } 604 605 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 606 while (tcp_win_from_space(rcvmem) < tp->advmss) 607 rcvmem += 128; 608 609 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 610 if (rcvbuf > sk->sk_rcvbuf) { 611 sk->sk_rcvbuf = rcvbuf; 612 613 /* Make the window clamp follow along. */ 614 tp->window_clamp = rcvwin; 615 } 616 } 617 tp->rcvq_space.space = copied; 618 619 new_measure: 620 tp->rcvq_space.seq = tp->copied_seq; 621 tp->rcvq_space.time = tcp_time_stamp; 622 } 623 624 /* There is something which you must keep in mind when you analyze the 625 * behavior of the tp->ato delayed ack timeout interval. When a 626 * connection starts up, we want to ack as quickly as possible. The 627 * problem is that "good" TCP's do slow start at the beginning of data 628 * transmission. The means that until we send the first few ACK's the 629 * sender will sit on his end and only queue most of his data, because 630 * he can only send snd_cwnd unacked packets at any given time. For 631 * each ACK we send, he increments snd_cwnd and transmits more of his 632 * queue. -DaveM 633 */ 634 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 635 { 636 struct tcp_sock *tp = tcp_sk(sk); 637 struct inet_connection_sock *icsk = inet_csk(sk); 638 u32 now; 639 640 inet_csk_schedule_ack(sk); 641 642 tcp_measure_rcv_mss(sk, skb); 643 644 tcp_rcv_rtt_measure(tp); 645 646 now = tcp_time_stamp; 647 648 if (!icsk->icsk_ack.ato) { 649 /* The _first_ data packet received, initialize 650 * delayed ACK engine. 651 */ 652 tcp_incr_quickack(sk); 653 icsk->icsk_ack.ato = TCP_ATO_MIN; 654 } else { 655 int m = now - icsk->icsk_ack.lrcvtime; 656 657 if (m <= TCP_ATO_MIN / 2) { 658 /* The fastest case is the first. */ 659 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 660 } else if (m < icsk->icsk_ack.ato) { 661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 662 if (icsk->icsk_ack.ato > icsk->icsk_rto) 663 icsk->icsk_ack.ato = icsk->icsk_rto; 664 } else if (m > icsk->icsk_rto) { 665 /* Too long gap. Apparently sender failed to 666 * restart window, so that we send ACKs quickly. 667 */ 668 tcp_incr_quickack(sk); 669 sk_mem_reclaim(sk); 670 } 671 } 672 icsk->icsk_ack.lrcvtime = now; 673 674 tcp_ecn_check_ce(tp, skb); 675 676 if (skb->len >= 128) 677 tcp_grow_window(sk, skb); 678 } 679 680 /* Called to compute a smoothed rtt estimate. The data fed to this 681 * routine either comes from timestamps, or from segments that were 682 * known _not_ to have been retransmitted [see Karn/Partridge 683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 684 * piece by Van Jacobson. 685 * NOTE: the next three routines used to be one big routine. 686 * To save cycles in the RFC 1323 implementation it was better to break 687 * it up into three procedures. -- erics 688 */ 689 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 690 { 691 struct tcp_sock *tp = tcp_sk(sk); 692 long m = mrtt_us; /* RTT */ 693 u32 srtt = tp->srtt_us; 694 695 /* The following amusing code comes from Jacobson's 696 * article in SIGCOMM '88. Note that rtt and mdev 697 * are scaled versions of rtt and mean deviation. 698 * This is designed to be as fast as possible 699 * m stands for "measurement". 700 * 701 * On a 1990 paper the rto value is changed to: 702 * RTO = rtt + 4 * mdev 703 * 704 * Funny. This algorithm seems to be very broken. 705 * These formulae increase RTO, when it should be decreased, increase 706 * too slowly, when it should be increased quickly, decrease too quickly 707 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 708 * does not matter how to _calculate_ it. Seems, it was trap 709 * that VJ failed to avoid. 8) 710 */ 711 if (srtt != 0) { 712 m -= (srtt >> 3); /* m is now error in rtt est */ 713 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 714 if (m < 0) { 715 m = -m; /* m is now abs(error) */ 716 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 717 /* This is similar to one of Eifel findings. 718 * Eifel blocks mdev updates when rtt decreases. 719 * This solution is a bit different: we use finer gain 720 * for mdev in this case (alpha*beta). 721 * Like Eifel it also prevents growth of rto, 722 * but also it limits too fast rto decreases, 723 * happening in pure Eifel. 724 */ 725 if (m > 0) 726 m >>= 3; 727 } else { 728 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 729 } 730 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 731 if (tp->mdev_us > tp->mdev_max_us) { 732 tp->mdev_max_us = tp->mdev_us; 733 if (tp->mdev_max_us > tp->rttvar_us) 734 tp->rttvar_us = tp->mdev_max_us; 735 } 736 if (after(tp->snd_una, tp->rtt_seq)) { 737 if (tp->mdev_max_us < tp->rttvar_us) 738 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 739 tp->rtt_seq = tp->snd_nxt; 740 tp->mdev_max_us = tcp_rto_min_us(sk); 741 } 742 } else { 743 /* no previous measure. */ 744 srtt = m << 3; /* take the measured time to be rtt */ 745 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 746 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 747 tp->mdev_max_us = tp->rttvar_us; 748 tp->rtt_seq = tp->snd_nxt; 749 } 750 tp->srtt_us = max(1U, srtt); 751 } 752 753 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 754 * Note: TCP stack does not yet implement pacing. 755 * FQ packet scheduler can be used to implement cheap but effective 756 * TCP pacing, to smooth the burst on large writes when packets 757 * in flight is significantly lower than cwnd (or rwin) 758 */ 759 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 760 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 761 762 static void tcp_update_pacing_rate(struct sock *sk) 763 { 764 const struct tcp_sock *tp = tcp_sk(sk); 765 u64 rate; 766 767 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 768 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 769 770 /* current rate is (cwnd * mss) / srtt 771 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 772 * In Congestion Avoidance phase, set it to 120 % the current rate. 773 * 774 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 775 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 776 * end of slow start and should slow down. 777 */ 778 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 779 rate *= sysctl_tcp_pacing_ss_ratio; 780 else 781 rate *= sysctl_tcp_pacing_ca_ratio; 782 783 rate *= max(tp->snd_cwnd, tp->packets_out); 784 785 if (likely(tp->srtt_us)) 786 do_div(rate, tp->srtt_us); 787 788 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 789 * without any lock. We want to make sure compiler wont store 790 * intermediate values in this location. 791 */ 792 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 793 sk->sk_max_pacing_rate); 794 } 795 796 /* Calculate rto without backoff. This is the second half of Van Jacobson's 797 * routine referred to above. 798 */ 799 static void tcp_set_rto(struct sock *sk) 800 { 801 const struct tcp_sock *tp = tcp_sk(sk); 802 /* Old crap is replaced with new one. 8) 803 * 804 * More seriously: 805 * 1. If rtt variance happened to be less 50msec, it is hallucination. 806 * It cannot be less due to utterly erratic ACK generation made 807 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 808 * to do with delayed acks, because at cwnd>2 true delack timeout 809 * is invisible. Actually, Linux-2.4 also generates erratic 810 * ACKs in some circumstances. 811 */ 812 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 813 814 /* 2. Fixups made earlier cannot be right. 815 * If we do not estimate RTO correctly without them, 816 * all the algo is pure shit and should be replaced 817 * with correct one. It is exactly, which we pretend to do. 818 */ 819 820 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 821 * guarantees that rto is higher. 822 */ 823 tcp_bound_rto(sk); 824 } 825 826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 827 { 828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 829 830 if (!cwnd) 831 cwnd = TCP_INIT_CWND; 832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 833 } 834 835 /* 836 * Packet counting of FACK is based on in-order assumptions, therefore TCP 837 * disables it when reordering is detected 838 */ 839 void tcp_disable_fack(struct tcp_sock *tp) 840 { 841 /* RFC3517 uses different metric in lost marker => reset on change */ 842 if (tcp_is_fack(tp)) 843 tp->lost_skb_hint = NULL; 844 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 845 } 846 847 /* Take a notice that peer is sending D-SACKs */ 848 static void tcp_dsack_seen(struct tcp_sock *tp) 849 { 850 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 851 } 852 853 static void tcp_update_reordering(struct sock *sk, const int metric, 854 const int ts) 855 { 856 struct tcp_sock *tp = tcp_sk(sk); 857 if (metric > tp->reordering) { 858 int mib_idx; 859 860 tp->reordering = min(sysctl_tcp_max_reordering, metric); 861 862 /* This exciting event is worth to be remembered. 8) */ 863 if (ts) 864 mib_idx = LINUX_MIB_TCPTSREORDER; 865 else if (tcp_is_reno(tp)) 866 mib_idx = LINUX_MIB_TCPRENOREORDER; 867 else if (tcp_is_fack(tp)) 868 mib_idx = LINUX_MIB_TCPFACKREORDER; 869 else 870 mib_idx = LINUX_MIB_TCPSACKREORDER; 871 872 NET_INC_STATS(sock_net(sk), mib_idx); 873 #if FASTRETRANS_DEBUG > 1 874 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 875 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 876 tp->reordering, 877 tp->fackets_out, 878 tp->sacked_out, 879 tp->undo_marker ? tp->undo_retrans : 0); 880 #endif 881 tcp_disable_fack(tp); 882 } 883 884 if (metric > 0) 885 tcp_disable_early_retrans(tp); 886 tp->rack.reord = 1; 887 } 888 889 /* This must be called before lost_out is incremented */ 890 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 891 { 892 if (!tp->retransmit_skb_hint || 893 before(TCP_SKB_CB(skb)->seq, 894 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 895 tp->retransmit_skb_hint = skb; 896 897 if (!tp->lost_out || 898 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 899 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 900 } 901 902 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 903 { 904 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 905 tcp_verify_retransmit_hint(tp, skb); 906 907 tp->lost_out += tcp_skb_pcount(skb); 908 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 909 } 910 } 911 912 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 913 { 914 tcp_verify_retransmit_hint(tp, skb); 915 916 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 917 tp->lost_out += tcp_skb_pcount(skb); 918 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 919 } 920 } 921 922 /* This procedure tags the retransmission queue when SACKs arrive. 923 * 924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 925 * Packets in queue with these bits set are counted in variables 926 * sacked_out, retrans_out and lost_out, correspondingly. 927 * 928 * Valid combinations are: 929 * Tag InFlight Description 930 * 0 1 - orig segment is in flight. 931 * S 0 - nothing flies, orig reached receiver. 932 * L 0 - nothing flies, orig lost by net. 933 * R 2 - both orig and retransmit are in flight. 934 * L|R 1 - orig is lost, retransmit is in flight. 935 * S|R 1 - orig reached receiver, retrans is still in flight. 936 * (L|S|R is logically valid, it could occur when L|R is sacked, 937 * but it is equivalent to plain S and code short-curcuits it to S. 938 * L|S is logically invalid, it would mean -1 packet in flight 8)) 939 * 940 * These 6 states form finite state machine, controlled by the following events: 941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 943 * 3. Loss detection event of two flavors: 944 * A. Scoreboard estimator decided the packet is lost. 945 * A'. Reno "three dupacks" marks head of queue lost. 946 * A''. Its FACK modification, head until snd.fack is lost. 947 * B. SACK arrives sacking SND.NXT at the moment, when the 948 * segment was retransmitted. 949 * 4. D-SACK added new rule: D-SACK changes any tag to S. 950 * 951 * It is pleasant to note, that state diagram turns out to be commutative, 952 * so that we are allowed not to be bothered by order of our actions, 953 * when multiple events arrive simultaneously. (see the function below). 954 * 955 * Reordering detection. 956 * -------------------- 957 * Reordering metric is maximal distance, which a packet can be displaced 958 * in packet stream. With SACKs we can estimate it: 959 * 960 * 1. SACK fills old hole and the corresponding segment was not 961 * ever retransmitted -> reordering. Alas, we cannot use it 962 * when segment was retransmitted. 963 * 2. The last flaw is solved with D-SACK. D-SACK arrives 964 * for retransmitted and already SACKed segment -> reordering.. 965 * Both of these heuristics are not used in Loss state, when we cannot 966 * account for retransmits accurately. 967 * 968 * SACK block validation. 969 * ---------------------- 970 * 971 * SACK block range validation checks that the received SACK block fits to 972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 973 * Note that SND.UNA is not included to the range though being valid because 974 * it means that the receiver is rather inconsistent with itself reporting 975 * SACK reneging when it should advance SND.UNA. Such SACK block this is 976 * perfectly valid, however, in light of RFC2018 which explicitly states 977 * that "SACK block MUST reflect the newest segment. Even if the newest 978 * segment is going to be discarded ...", not that it looks very clever 979 * in case of head skb. Due to potentional receiver driven attacks, we 980 * choose to avoid immediate execution of a walk in write queue due to 981 * reneging and defer head skb's loss recovery to standard loss recovery 982 * procedure that will eventually trigger (nothing forbids us doing this). 983 * 984 * Implements also blockage to start_seq wrap-around. Problem lies in the 985 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 986 * there's no guarantee that it will be before snd_nxt (n). The problem 987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 988 * wrap (s_w): 989 * 990 * <- outs wnd -> <- wrapzone -> 991 * u e n u_w e_w s n_w 992 * | | | | | | | 993 * |<------------+------+----- TCP seqno space --------------+---------->| 994 * ...-- <2^31 ->| |<--------... 995 * ...---- >2^31 ------>| |<--------... 996 * 997 * Current code wouldn't be vulnerable but it's better still to discard such 998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1001 * equal to the ideal case (infinite seqno space without wrap caused issues). 1002 * 1003 * With D-SACK the lower bound is extended to cover sequence space below 1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1005 * again, D-SACK block must not to go across snd_una (for the same reason as 1006 * for the normal SACK blocks, explained above). But there all simplicity 1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1008 * fully below undo_marker they do not affect behavior in anyway and can 1009 * therefore be safely ignored. In rare cases (which are more or less 1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1011 * fragmentation and packet reordering past skb's retransmission. To consider 1012 * them correctly, the acceptable range must be extended even more though 1013 * the exact amount is rather hard to quantify. However, tp->max_window can 1014 * be used as an exaggerated estimate. 1015 */ 1016 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1017 u32 start_seq, u32 end_seq) 1018 { 1019 /* Too far in future, or reversed (interpretation is ambiguous) */ 1020 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1021 return false; 1022 1023 /* Nasty start_seq wrap-around check (see comments above) */ 1024 if (!before(start_seq, tp->snd_nxt)) 1025 return false; 1026 1027 /* In outstanding window? ...This is valid exit for D-SACKs too. 1028 * start_seq == snd_una is non-sensical (see comments above) 1029 */ 1030 if (after(start_seq, tp->snd_una)) 1031 return true; 1032 1033 if (!is_dsack || !tp->undo_marker) 1034 return false; 1035 1036 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1037 if (after(end_seq, tp->snd_una)) 1038 return false; 1039 1040 if (!before(start_seq, tp->undo_marker)) 1041 return true; 1042 1043 /* Too old */ 1044 if (!after(end_seq, tp->undo_marker)) 1045 return false; 1046 1047 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1048 * start_seq < undo_marker and end_seq >= undo_marker. 1049 */ 1050 return !before(start_seq, end_seq - tp->max_window); 1051 } 1052 1053 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1054 struct tcp_sack_block_wire *sp, int num_sacks, 1055 u32 prior_snd_una) 1056 { 1057 struct tcp_sock *tp = tcp_sk(sk); 1058 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1059 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1060 bool dup_sack = false; 1061 1062 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1063 dup_sack = true; 1064 tcp_dsack_seen(tp); 1065 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1066 } else if (num_sacks > 1) { 1067 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1068 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1069 1070 if (!after(end_seq_0, end_seq_1) && 1071 !before(start_seq_0, start_seq_1)) { 1072 dup_sack = true; 1073 tcp_dsack_seen(tp); 1074 NET_INC_STATS(sock_net(sk), 1075 LINUX_MIB_TCPDSACKOFORECV); 1076 } 1077 } 1078 1079 /* D-SACK for already forgotten data... Do dumb counting. */ 1080 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1081 !after(end_seq_0, prior_snd_una) && 1082 after(end_seq_0, tp->undo_marker)) 1083 tp->undo_retrans--; 1084 1085 return dup_sack; 1086 } 1087 1088 struct tcp_sacktag_state { 1089 int reord; 1090 int fack_count; 1091 /* Timestamps for earliest and latest never-retransmitted segment 1092 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1093 * but congestion control should still get an accurate delay signal. 1094 */ 1095 struct skb_mstamp first_sackt; 1096 struct skb_mstamp last_sackt; 1097 int flag; 1098 }; 1099 1100 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1101 * the incoming SACK may not exactly match but we can find smaller MSS 1102 * aligned portion of it that matches. Therefore we might need to fragment 1103 * which may fail and creates some hassle (caller must handle error case 1104 * returns). 1105 * 1106 * FIXME: this could be merged to shift decision code 1107 */ 1108 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1109 u32 start_seq, u32 end_seq) 1110 { 1111 int err; 1112 bool in_sack; 1113 unsigned int pkt_len; 1114 unsigned int mss; 1115 1116 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1117 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1118 1119 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1120 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1121 mss = tcp_skb_mss(skb); 1122 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1123 1124 if (!in_sack) { 1125 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1126 if (pkt_len < mss) 1127 pkt_len = mss; 1128 } else { 1129 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1130 if (pkt_len < mss) 1131 return -EINVAL; 1132 } 1133 1134 /* Round if necessary so that SACKs cover only full MSSes 1135 * and/or the remaining small portion (if present) 1136 */ 1137 if (pkt_len > mss) { 1138 unsigned int new_len = (pkt_len / mss) * mss; 1139 if (!in_sack && new_len < pkt_len) { 1140 new_len += mss; 1141 if (new_len >= skb->len) 1142 return 0; 1143 } 1144 pkt_len = new_len; 1145 } 1146 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1147 if (err < 0) 1148 return err; 1149 } 1150 1151 return in_sack; 1152 } 1153 1154 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1155 static u8 tcp_sacktag_one(struct sock *sk, 1156 struct tcp_sacktag_state *state, u8 sacked, 1157 u32 start_seq, u32 end_seq, 1158 int dup_sack, int pcount, 1159 const struct skb_mstamp *xmit_time) 1160 { 1161 struct tcp_sock *tp = tcp_sk(sk); 1162 int fack_count = state->fack_count; 1163 1164 /* Account D-SACK for retransmitted packet. */ 1165 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1166 if (tp->undo_marker && tp->undo_retrans > 0 && 1167 after(end_seq, tp->undo_marker)) 1168 tp->undo_retrans--; 1169 if (sacked & TCPCB_SACKED_ACKED) 1170 state->reord = min(fack_count, state->reord); 1171 } 1172 1173 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1174 if (!after(end_seq, tp->snd_una)) 1175 return sacked; 1176 1177 if (!(sacked & TCPCB_SACKED_ACKED)) { 1178 tcp_rack_advance(tp, xmit_time, sacked); 1179 1180 if (sacked & TCPCB_SACKED_RETRANS) { 1181 /* If the segment is not tagged as lost, 1182 * we do not clear RETRANS, believing 1183 * that retransmission is still in flight. 1184 */ 1185 if (sacked & TCPCB_LOST) { 1186 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1187 tp->lost_out -= pcount; 1188 tp->retrans_out -= pcount; 1189 } 1190 } else { 1191 if (!(sacked & TCPCB_RETRANS)) { 1192 /* New sack for not retransmitted frame, 1193 * which was in hole. It is reordering. 1194 */ 1195 if (before(start_seq, 1196 tcp_highest_sack_seq(tp))) 1197 state->reord = min(fack_count, 1198 state->reord); 1199 if (!after(end_seq, tp->high_seq)) 1200 state->flag |= FLAG_ORIG_SACK_ACKED; 1201 if (state->first_sackt.v64 == 0) 1202 state->first_sackt = *xmit_time; 1203 state->last_sackt = *xmit_time; 1204 } 1205 1206 if (sacked & TCPCB_LOST) { 1207 sacked &= ~TCPCB_LOST; 1208 tp->lost_out -= pcount; 1209 } 1210 } 1211 1212 sacked |= TCPCB_SACKED_ACKED; 1213 state->flag |= FLAG_DATA_SACKED; 1214 tp->sacked_out += pcount; 1215 tp->delivered += pcount; /* Out-of-order packets delivered */ 1216 1217 fack_count += pcount; 1218 1219 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1220 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1221 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1222 tp->lost_cnt_hint += pcount; 1223 1224 if (fack_count > tp->fackets_out) 1225 tp->fackets_out = fack_count; 1226 } 1227 1228 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1229 * frames and clear it. undo_retrans is decreased above, L|R frames 1230 * are accounted above as well. 1231 */ 1232 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1233 sacked &= ~TCPCB_SACKED_RETRANS; 1234 tp->retrans_out -= pcount; 1235 } 1236 1237 return sacked; 1238 } 1239 1240 /* Shift newly-SACKed bytes from this skb to the immediately previous 1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1242 */ 1243 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1244 struct tcp_sacktag_state *state, 1245 unsigned int pcount, int shifted, int mss, 1246 bool dup_sack) 1247 { 1248 struct tcp_sock *tp = tcp_sk(sk); 1249 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1250 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1251 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1252 1253 BUG_ON(!pcount); 1254 1255 /* Adjust counters and hints for the newly sacked sequence 1256 * range but discard the return value since prev is already 1257 * marked. We must tag the range first because the seq 1258 * advancement below implicitly advances 1259 * tcp_highest_sack_seq() when skb is highest_sack. 1260 */ 1261 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1262 start_seq, end_seq, dup_sack, pcount, 1263 &skb->skb_mstamp); 1264 1265 if (skb == tp->lost_skb_hint) 1266 tp->lost_cnt_hint += pcount; 1267 1268 TCP_SKB_CB(prev)->end_seq += shifted; 1269 TCP_SKB_CB(skb)->seq += shifted; 1270 1271 tcp_skb_pcount_add(prev, pcount); 1272 BUG_ON(tcp_skb_pcount(skb) < pcount); 1273 tcp_skb_pcount_add(skb, -pcount); 1274 1275 /* When we're adding to gso_segs == 1, gso_size will be zero, 1276 * in theory this shouldn't be necessary but as long as DSACK 1277 * code can come after this skb later on it's better to keep 1278 * setting gso_size to something. 1279 */ 1280 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1281 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1282 1283 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1284 if (tcp_skb_pcount(skb) <= 1) 1285 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1286 1287 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1288 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1289 1290 if (skb->len > 0) { 1291 BUG_ON(!tcp_skb_pcount(skb)); 1292 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1293 return false; 1294 } 1295 1296 /* Whole SKB was eaten :-) */ 1297 1298 if (skb == tp->retransmit_skb_hint) 1299 tp->retransmit_skb_hint = prev; 1300 if (skb == tp->lost_skb_hint) { 1301 tp->lost_skb_hint = prev; 1302 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1303 } 1304 1305 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1306 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1307 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1308 TCP_SKB_CB(prev)->end_seq++; 1309 1310 if (skb == tcp_highest_sack(sk)) 1311 tcp_advance_highest_sack(sk, skb); 1312 1313 tcp_skb_collapse_tstamp(prev, skb); 1314 tcp_unlink_write_queue(skb, sk); 1315 sk_wmem_free_skb(sk, skb); 1316 1317 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1318 1319 return true; 1320 } 1321 1322 /* I wish gso_size would have a bit more sane initialization than 1323 * something-or-zero which complicates things 1324 */ 1325 static int tcp_skb_seglen(const struct sk_buff *skb) 1326 { 1327 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1328 } 1329 1330 /* Shifting pages past head area doesn't work */ 1331 static int skb_can_shift(const struct sk_buff *skb) 1332 { 1333 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1334 } 1335 1336 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1337 * skb. 1338 */ 1339 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1340 struct tcp_sacktag_state *state, 1341 u32 start_seq, u32 end_seq, 1342 bool dup_sack) 1343 { 1344 struct tcp_sock *tp = tcp_sk(sk); 1345 struct sk_buff *prev; 1346 int mss; 1347 int pcount = 0; 1348 int len; 1349 int in_sack; 1350 1351 if (!sk_can_gso(sk)) 1352 goto fallback; 1353 1354 /* Normally R but no L won't result in plain S */ 1355 if (!dup_sack && 1356 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1357 goto fallback; 1358 if (!skb_can_shift(skb)) 1359 goto fallback; 1360 /* This frame is about to be dropped (was ACKed). */ 1361 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1362 goto fallback; 1363 1364 /* Can only happen with delayed DSACK + discard craziness */ 1365 if (unlikely(skb == tcp_write_queue_head(sk))) 1366 goto fallback; 1367 prev = tcp_write_queue_prev(sk, skb); 1368 1369 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1370 goto fallback; 1371 1372 if (!tcp_skb_can_collapse_to(prev)) 1373 goto fallback; 1374 1375 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1376 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1377 1378 if (in_sack) { 1379 len = skb->len; 1380 pcount = tcp_skb_pcount(skb); 1381 mss = tcp_skb_seglen(skb); 1382 1383 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1384 * drop this restriction as unnecessary 1385 */ 1386 if (mss != tcp_skb_seglen(prev)) 1387 goto fallback; 1388 } else { 1389 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1390 goto noop; 1391 /* CHECKME: This is non-MSS split case only?, this will 1392 * cause skipped skbs due to advancing loop btw, original 1393 * has that feature too 1394 */ 1395 if (tcp_skb_pcount(skb) <= 1) 1396 goto noop; 1397 1398 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1399 if (!in_sack) { 1400 /* TODO: head merge to next could be attempted here 1401 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1402 * though it might not be worth of the additional hassle 1403 * 1404 * ...we can probably just fallback to what was done 1405 * previously. We could try merging non-SACKed ones 1406 * as well but it probably isn't going to buy off 1407 * because later SACKs might again split them, and 1408 * it would make skb timestamp tracking considerably 1409 * harder problem. 1410 */ 1411 goto fallback; 1412 } 1413 1414 len = end_seq - TCP_SKB_CB(skb)->seq; 1415 BUG_ON(len < 0); 1416 BUG_ON(len > skb->len); 1417 1418 /* MSS boundaries should be honoured or else pcount will 1419 * severely break even though it makes things bit trickier. 1420 * Optimize common case to avoid most of the divides 1421 */ 1422 mss = tcp_skb_mss(skb); 1423 1424 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1425 * drop this restriction as unnecessary 1426 */ 1427 if (mss != tcp_skb_seglen(prev)) 1428 goto fallback; 1429 1430 if (len == mss) { 1431 pcount = 1; 1432 } else if (len < mss) { 1433 goto noop; 1434 } else { 1435 pcount = len / mss; 1436 len = pcount * mss; 1437 } 1438 } 1439 1440 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1441 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1442 goto fallback; 1443 1444 if (!skb_shift(prev, skb, len)) 1445 goto fallback; 1446 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1447 goto out; 1448 1449 /* Hole filled allows collapsing with the next as well, this is very 1450 * useful when hole on every nth skb pattern happens 1451 */ 1452 if (prev == tcp_write_queue_tail(sk)) 1453 goto out; 1454 skb = tcp_write_queue_next(sk, prev); 1455 1456 if (!skb_can_shift(skb) || 1457 (skb == tcp_send_head(sk)) || 1458 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1459 (mss != tcp_skb_seglen(skb))) 1460 goto out; 1461 1462 len = skb->len; 1463 if (skb_shift(prev, skb, len)) { 1464 pcount += tcp_skb_pcount(skb); 1465 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1466 } 1467 1468 out: 1469 state->fack_count += pcount; 1470 return prev; 1471 1472 noop: 1473 return skb; 1474 1475 fallback: 1476 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1477 return NULL; 1478 } 1479 1480 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1481 struct tcp_sack_block *next_dup, 1482 struct tcp_sacktag_state *state, 1483 u32 start_seq, u32 end_seq, 1484 bool dup_sack_in) 1485 { 1486 struct tcp_sock *tp = tcp_sk(sk); 1487 struct sk_buff *tmp; 1488 1489 tcp_for_write_queue_from(skb, sk) { 1490 int in_sack = 0; 1491 bool dup_sack = dup_sack_in; 1492 1493 if (skb == tcp_send_head(sk)) 1494 break; 1495 1496 /* queue is in-order => we can short-circuit the walk early */ 1497 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1498 break; 1499 1500 if (next_dup && 1501 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1502 in_sack = tcp_match_skb_to_sack(sk, skb, 1503 next_dup->start_seq, 1504 next_dup->end_seq); 1505 if (in_sack > 0) 1506 dup_sack = true; 1507 } 1508 1509 /* skb reference here is a bit tricky to get right, since 1510 * shifting can eat and free both this skb and the next, 1511 * so not even _safe variant of the loop is enough. 1512 */ 1513 if (in_sack <= 0) { 1514 tmp = tcp_shift_skb_data(sk, skb, state, 1515 start_seq, end_seq, dup_sack); 1516 if (tmp) { 1517 if (tmp != skb) { 1518 skb = tmp; 1519 continue; 1520 } 1521 1522 in_sack = 0; 1523 } else { 1524 in_sack = tcp_match_skb_to_sack(sk, skb, 1525 start_seq, 1526 end_seq); 1527 } 1528 } 1529 1530 if (unlikely(in_sack < 0)) 1531 break; 1532 1533 if (in_sack) { 1534 TCP_SKB_CB(skb)->sacked = 1535 tcp_sacktag_one(sk, 1536 state, 1537 TCP_SKB_CB(skb)->sacked, 1538 TCP_SKB_CB(skb)->seq, 1539 TCP_SKB_CB(skb)->end_seq, 1540 dup_sack, 1541 tcp_skb_pcount(skb), 1542 &skb->skb_mstamp); 1543 1544 if (!before(TCP_SKB_CB(skb)->seq, 1545 tcp_highest_sack_seq(tp))) 1546 tcp_advance_highest_sack(sk, skb); 1547 } 1548 1549 state->fack_count += tcp_skb_pcount(skb); 1550 } 1551 return skb; 1552 } 1553 1554 /* Avoid all extra work that is being done by sacktag while walking in 1555 * a normal way 1556 */ 1557 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1558 struct tcp_sacktag_state *state, 1559 u32 skip_to_seq) 1560 { 1561 tcp_for_write_queue_from(skb, sk) { 1562 if (skb == tcp_send_head(sk)) 1563 break; 1564 1565 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1566 break; 1567 1568 state->fack_count += tcp_skb_pcount(skb); 1569 } 1570 return skb; 1571 } 1572 1573 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1574 struct sock *sk, 1575 struct tcp_sack_block *next_dup, 1576 struct tcp_sacktag_state *state, 1577 u32 skip_to_seq) 1578 { 1579 if (!next_dup) 1580 return skb; 1581 1582 if (before(next_dup->start_seq, skip_to_seq)) { 1583 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1584 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1585 next_dup->start_seq, next_dup->end_seq, 1586 1); 1587 } 1588 1589 return skb; 1590 } 1591 1592 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1593 { 1594 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1595 } 1596 1597 static int 1598 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1599 u32 prior_snd_una, struct tcp_sacktag_state *state) 1600 { 1601 struct tcp_sock *tp = tcp_sk(sk); 1602 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1603 TCP_SKB_CB(ack_skb)->sacked); 1604 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1605 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1606 struct tcp_sack_block *cache; 1607 struct sk_buff *skb; 1608 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1609 int used_sacks; 1610 bool found_dup_sack = false; 1611 int i, j; 1612 int first_sack_index; 1613 1614 state->flag = 0; 1615 state->reord = tp->packets_out; 1616 1617 if (!tp->sacked_out) { 1618 if (WARN_ON(tp->fackets_out)) 1619 tp->fackets_out = 0; 1620 tcp_highest_sack_reset(sk); 1621 } 1622 1623 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1624 num_sacks, prior_snd_una); 1625 if (found_dup_sack) 1626 state->flag |= FLAG_DSACKING_ACK; 1627 1628 /* Eliminate too old ACKs, but take into 1629 * account more or less fresh ones, they can 1630 * contain valid SACK info. 1631 */ 1632 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1633 return 0; 1634 1635 if (!tp->packets_out) 1636 goto out; 1637 1638 used_sacks = 0; 1639 first_sack_index = 0; 1640 for (i = 0; i < num_sacks; i++) { 1641 bool dup_sack = !i && found_dup_sack; 1642 1643 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1644 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1645 1646 if (!tcp_is_sackblock_valid(tp, dup_sack, 1647 sp[used_sacks].start_seq, 1648 sp[used_sacks].end_seq)) { 1649 int mib_idx; 1650 1651 if (dup_sack) { 1652 if (!tp->undo_marker) 1653 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1654 else 1655 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1656 } else { 1657 /* Don't count olds caused by ACK reordering */ 1658 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1659 !after(sp[used_sacks].end_seq, tp->snd_una)) 1660 continue; 1661 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1662 } 1663 1664 NET_INC_STATS(sock_net(sk), mib_idx); 1665 if (i == 0) 1666 first_sack_index = -1; 1667 continue; 1668 } 1669 1670 /* Ignore very old stuff early */ 1671 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1672 continue; 1673 1674 used_sacks++; 1675 } 1676 1677 /* order SACK blocks to allow in order walk of the retrans queue */ 1678 for (i = used_sacks - 1; i > 0; i--) { 1679 for (j = 0; j < i; j++) { 1680 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1681 swap(sp[j], sp[j + 1]); 1682 1683 /* Track where the first SACK block goes to */ 1684 if (j == first_sack_index) 1685 first_sack_index = j + 1; 1686 } 1687 } 1688 } 1689 1690 skb = tcp_write_queue_head(sk); 1691 state->fack_count = 0; 1692 i = 0; 1693 1694 if (!tp->sacked_out) { 1695 /* It's already past, so skip checking against it */ 1696 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1697 } else { 1698 cache = tp->recv_sack_cache; 1699 /* Skip empty blocks in at head of the cache */ 1700 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1701 !cache->end_seq) 1702 cache++; 1703 } 1704 1705 while (i < used_sacks) { 1706 u32 start_seq = sp[i].start_seq; 1707 u32 end_seq = sp[i].end_seq; 1708 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1709 struct tcp_sack_block *next_dup = NULL; 1710 1711 if (found_dup_sack && ((i + 1) == first_sack_index)) 1712 next_dup = &sp[i + 1]; 1713 1714 /* Skip too early cached blocks */ 1715 while (tcp_sack_cache_ok(tp, cache) && 1716 !before(start_seq, cache->end_seq)) 1717 cache++; 1718 1719 /* Can skip some work by looking recv_sack_cache? */ 1720 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1721 after(end_seq, cache->start_seq)) { 1722 1723 /* Head todo? */ 1724 if (before(start_seq, cache->start_seq)) { 1725 skb = tcp_sacktag_skip(skb, sk, state, 1726 start_seq); 1727 skb = tcp_sacktag_walk(skb, sk, next_dup, 1728 state, 1729 start_seq, 1730 cache->start_seq, 1731 dup_sack); 1732 } 1733 1734 /* Rest of the block already fully processed? */ 1735 if (!after(end_seq, cache->end_seq)) 1736 goto advance_sp; 1737 1738 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1739 state, 1740 cache->end_seq); 1741 1742 /* ...tail remains todo... */ 1743 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1744 /* ...but better entrypoint exists! */ 1745 skb = tcp_highest_sack(sk); 1746 if (!skb) 1747 break; 1748 state->fack_count = tp->fackets_out; 1749 cache++; 1750 goto walk; 1751 } 1752 1753 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1754 /* Check overlap against next cached too (past this one already) */ 1755 cache++; 1756 continue; 1757 } 1758 1759 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1760 skb = tcp_highest_sack(sk); 1761 if (!skb) 1762 break; 1763 state->fack_count = tp->fackets_out; 1764 } 1765 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1766 1767 walk: 1768 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1769 start_seq, end_seq, dup_sack); 1770 1771 advance_sp: 1772 i++; 1773 } 1774 1775 /* Clear the head of the cache sack blocks so we can skip it next time */ 1776 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1777 tp->recv_sack_cache[i].start_seq = 0; 1778 tp->recv_sack_cache[i].end_seq = 0; 1779 } 1780 for (j = 0; j < used_sacks; j++) 1781 tp->recv_sack_cache[i++] = sp[j]; 1782 1783 if ((state->reord < tp->fackets_out) && 1784 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1785 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1786 1787 tcp_verify_left_out(tp); 1788 out: 1789 1790 #if FASTRETRANS_DEBUG > 0 1791 WARN_ON((int)tp->sacked_out < 0); 1792 WARN_ON((int)tp->lost_out < 0); 1793 WARN_ON((int)tp->retrans_out < 0); 1794 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1795 #endif 1796 return state->flag; 1797 } 1798 1799 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1800 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1801 */ 1802 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1803 { 1804 u32 holes; 1805 1806 holes = max(tp->lost_out, 1U); 1807 holes = min(holes, tp->packets_out); 1808 1809 if ((tp->sacked_out + holes) > tp->packets_out) { 1810 tp->sacked_out = tp->packets_out - holes; 1811 return true; 1812 } 1813 return false; 1814 } 1815 1816 /* If we receive more dupacks than we expected counting segments 1817 * in assumption of absent reordering, interpret this as reordering. 1818 * The only another reason could be bug in receiver TCP. 1819 */ 1820 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1821 { 1822 struct tcp_sock *tp = tcp_sk(sk); 1823 if (tcp_limit_reno_sacked(tp)) 1824 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1825 } 1826 1827 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1828 1829 static void tcp_add_reno_sack(struct sock *sk) 1830 { 1831 struct tcp_sock *tp = tcp_sk(sk); 1832 u32 prior_sacked = tp->sacked_out; 1833 1834 tp->sacked_out++; 1835 tcp_check_reno_reordering(sk, 0); 1836 if (tp->sacked_out > prior_sacked) 1837 tp->delivered++; /* Some out-of-order packet is delivered */ 1838 tcp_verify_left_out(tp); 1839 } 1840 1841 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1842 1843 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1844 { 1845 struct tcp_sock *tp = tcp_sk(sk); 1846 1847 if (acked > 0) { 1848 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1849 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1850 if (acked - 1 >= tp->sacked_out) 1851 tp->sacked_out = 0; 1852 else 1853 tp->sacked_out -= acked - 1; 1854 } 1855 tcp_check_reno_reordering(sk, acked); 1856 tcp_verify_left_out(tp); 1857 } 1858 1859 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1860 { 1861 tp->sacked_out = 0; 1862 } 1863 1864 void tcp_clear_retrans(struct tcp_sock *tp) 1865 { 1866 tp->retrans_out = 0; 1867 tp->lost_out = 0; 1868 tp->undo_marker = 0; 1869 tp->undo_retrans = -1; 1870 tp->fackets_out = 0; 1871 tp->sacked_out = 0; 1872 } 1873 1874 static inline void tcp_init_undo(struct tcp_sock *tp) 1875 { 1876 tp->undo_marker = tp->snd_una; 1877 /* Retransmission still in flight may cause DSACKs later. */ 1878 tp->undo_retrans = tp->retrans_out ? : -1; 1879 } 1880 1881 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1882 * and reset tags completely, otherwise preserve SACKs. If receiver 1883 * dropped its ofo queue, we will know this due to reneging detection. 1884 */ 1885 void tcp_enter_loss(struct sock *sk) 1886 { 1887 const struct inet_connection_sock *icsk = inet_csk(sk); 1888 struct tcp_sock *tp = tcp_sk(sk); 1889 struct net *net = sock_net(sk); 1890 struct sk_buff *skb; 1891 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1892 bool is_reneg; /* is receiver reneging on SACKs? */ 1893 1894 /* Reduce ssthresh if it has not yet been made inside this window. */ 1895 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1896 !after(tp->high_seq, tp->snd_una) || 1897 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1898 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1899 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1900 tcp_ca_event(sk, CA_EVENT_LOSS); 1901 tcp_init_undo(tp); 1902 } 1903 tp->snd_cwnd = 1; 1904 tp->snd_cwnd_cnt = 0; 1905 tp->snd_cwnd_stamp = tcp_time_stamp; 1906 1907 tp->retrans_out = 0; 1908 tp->lost_out = 0; 1909 1910 if (tcp_is_reno(tp)) 1911 tcp_reset_reno_sack(tp); 1912 1913 skb = tcp_write_queue_head(sk); 1914 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1915 if (is_reneg) { 1916 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1917 tp->sacked_out = 0; 1918 tp->fackets_out = 0; 1919 } 1920 tcp_clear_all_retrans_hints(tp); 1921 1922 tcp_for_write_queue(skb, sk) { 1923 if (skb == tcp_send_head(sk)) 1924 break; 1925 1926 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1927 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1928 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1929 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1930 tp->lost_out += tcp_skb_pcount(skb); 1931 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1932 } 1933 } 1934 tcp_verify_left_out(tp); 1935 1936 /* Timeout in disordered state after receiving substantial DUPACKs 1937 * suggests that the degree of reordering is over-estimated. 1938 */ 1939 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1940 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1941 tp->reordering = min_t(unsigned int, tp->reordering, 1942 net->ipv4.sysctl_tcp_reordering); 1943 tcp_set_ca_state(sk, TCP_CA_Loss); 1944 tp->high_seq = tp->snd_nxt; 1945 tcp_ecn_queue_cwr(tp); 1946 1947 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1948 * loss recovery is underway except recurring timeout(s) on 1949 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1950 */ 1951 tp->frto = sysctl_tcp_frto && 1952 (new_recovery || icsk->icsk_retransmits) && 1953 !inet_csk(sk)->icsk_mtup.probe_size; 1954 } 1955 1956 /* If ACK arrived pointing to a remembered SACK, it means that our 1957 * remembered SACKs do not reflect real state of receiver i.e. 1958 * receiver _host_ is heavily congested (or buggy). 1959 * 1960 * To avoid big spurious retransmission bursts due to transient SACK 1961 * scoreboard oddities that look like reneging, we give the receiver a 1962 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1963 * restore sanity to the SACK scoreboard. If the apparent reneging 1964 * persists until this RTO then we'll clear the SACK scoreboard. 1965 */ 1966 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1967 { 1968 if (flag & FLAG_SACK_RENEGING) { 1969 struct tcp_sock *tp = tcp_sk(sk); 1970 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 1971 msecs_to_jiffies(10)); 1972 1973 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1974 delay, TCP_RTO_MAX); 1975 return true; 1976 } 1977 return false; 1978 } 1979 1980 static inline int tcp_fackets_out(const struct tcp_sock *tp) 1981 { 1982 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 1983 } 1984 1985 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 1986 * counter when SACK is enabled (without SACK, sacked_out is used for 1987 * that purpose). 1988 * 1989 * Instead, with FACK TCP uses fackets_out that includes both SACKed 1990 * segments up to the highest received SACK block so far and holes in 1991 * between them. 1992 * 1993 * With reordering, holes may still be in flight, so RFC3517 recovery 1994 * uses pure sacked_out (total number of SACKed segments) even though 1995 * it violates the RFC that uses duplicate ACKs, often these are equal 1996 * but when e.g. out-of-window ACKs or packet duplication occurs, 1997 * they differ. Since neither occurs due to loss, TCP should really 1998 * ignore them. 1999 */ 2000 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2001 { 2002 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2003 } 2004 2005 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2006 { 2007 struct tcp_sock *tp = tcp_sk(sk); 2008 unsigned long delay; 2009 2010 /* Delay early retransmit and entering fast recovery for 2011 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2012 * available, or RTO is scheduled to fire first. 2013 */ 2014 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2015 (flag & FLAG_ECE) || !tp->srtt_us) 2016 return false; 2017 2018 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2019 msecs_to_jiffies(2)); 2020 2021 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2022 return false; 2023 2024 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2025 TCP_RTO_MAX); 2026 return true; 2027 } 2028 2029 /* Linux NewReno/SACK/FACK/ECN state machine. 2030 * -------------------------------------- 2031 * 2032 * "Open" Normal state, no dubious events, fast path. 2033 * "Disorder" In all the respects it is "Open", 2034 * but requires a bit more attention. It is entered when 2035 * we see some SACKs or dupacks. It is split of "Open" 2036 * mainly to move some processing from fast path to slow one. 2037 * "CWR" CWND was reduced due to some Congestion Notification event. 2038 * It can be ECN, ICMP source quench, local device congestion. 2039 * "Recovery" CWND was reduced, we are fast-retransmitting. 2040 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2041 * 2042 * tcp_fastretrans_alert() is entered: 2043 * - each incoming ACK, if state is not "Open" 2044 * - when arrived ACK is unusual, namely: 2045 * * SACK 2046 * * Duplicate ACK. 2047 * * ECN ECE. 2048 * 2049 * Counting packets in flight is pretty simple. 2050 * 2051 * in_flight = packets_out - left_out + retrans_out 2052 * 2053 * packets_out is SND.NXT-SND.UNA counted in packets. 2054 * 2055 * retrans_out is number of retransmitted segments. 2056 * 2057 * left_out is number of segments left network, but not ACKed yet. 2058 * 2059 * left_out = sacked_out + lost_out 2060 * 2061 * sacked_out: Packets, which arrived to receiver out of order 2062 * and hence not ACKed. With SACKs this number is simply 2063 * amount of SACKed data. Even without SACKs 2064 * it is easy to give pretty reliable estimate of this number, 2065 * counting duplicate ACKs. 2066 * 2067 * lost_out: Packets lost by network. TCP has no explicit 2068 * "loss notification" feedback from network (for now). 2069 * It means that this number can be only _guessed_. 2070 * Actually, it is the heuristics to predict lossage that 2071 * distinguishes different algorithms. 2072 * 2073 * F.e. after RTO, when all the queue is considered as lost, 2074 * lost_out = packets_out and in_flight = retrans_out. 2075 * 2076 * Essentially, we have now two algorithms counting 2077 * lost packets. 2078 * 2079 * FACK: It is the simplest heuristics. As soon as we decided 2080 * that something is lost, we decide that _all_ not SACKed 2081 * packets until the most forward SACK are lost. I.e. 2082 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2083 * It is absolutely correct estimate, if network does not reorder 2084 * packets. And it loses any connection to reality when reordering 2085 * takes place. We use FACK by default until reordering 2086 * is suspected on the path to this destination. 2087 * 2088 * NewReno: when Recovery is entered, we assume that one segment 2089 * is lost (classic Reno). While we are in Recovery and 2090 * a partial ACK arrives, we assume that one more packet 2091 * is lost (NewReno). This heuristics are the same in NewReno 2092 * and SACK. 2093 * 2094 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2095 * deflation etc. CWND is real congestion window, never inflated, changes 2096 * only according to classic VJ rules. 2097 * 2098 * Really tricky (and requiring careful tuning) part of algorithm 2099 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2100 * The first determines the moment _when_ we should reduce CWND and, 2101 * hence, slow down forward transmission. In fact, it determines the moment 2102 * when we decide that hole is caused by loss, rather than by a reorder. 2103 * 2104 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2105 * holes, caused by lost packets. 2106 * 2107 * And the most logically complicated part of algorithm is undo 2108 * heuristics. We detect false retransmits due to both too early 2109 * fast retransmit (reordering) and underestimated RTO, analyzing 2110 * timestamps and D-SACKs. When we detect that some segments were 2111 * retransmitted by mistake and CWND reduction was wrong, we undo 2112 * window reduction and abort recovery phase. This logic is hidden 2113 * inside several functions named tcp_try_undo_<something>. 2114 */ 2115 2116 /* This function decides, when we should leave Disordered state 2117 * and enter Recovery phase, reducing congestion window. 2118 * 2119 * Main question: may we further continue forward transmission 2120 * with the same cwnd? 2121 */ 2122 static bool tcp_time_to_recover(struct sock *sk, int flag) 2123 { 2124 struct tcp_sock *tp = tcp_sk(sk); 2125 __u32 packets_out; 2126 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 2127 2128 /* Trick#1: The loss is proven. */ 2129 if (tp->lost_out) 2130 return true; 2131 2132 /* Not-A-Trick#2 : Classic rule... */ 2133 if (tcp_dupack_heuristics(tp) > tp->reordering) 2134 return true; 2135 2136 /* Trick#4: It is still not OK... But will it be useful to delay 2137 * recovery more? 2138 */ 2139 packets_out = tp->packets_out; 2140 if (packets_out <= tp->reordering && 2141 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) && 2142 !tcp_may_send_now(sk)) { 2143 /* We have nothing to send. This connection is limited 2144 * either by receiver window or by application. 2145 */ 2146 return true; 2147 } 2148 2149 /* If a thin stream is detected, retransmit after first 2150 * received dupack. Employ only if SACK is supported in order 2151 * to avoid possible corner-case series of spurious retransmissions 2152 * Use only if there are no unsent data. 2153 */ 2154 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2155 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2156 tcp_is_sack(tp) && !tcp_send_head(sk)) 2157 return true; 2158 2159 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2160 * retransmissions due to small network reorderings, we implement 2161 * Mitigation A.3 in the RFC and delay the retransmission for a short 2162 * interval if appropriate. 2163 */ 2164 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2165 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2166 !tcp_may_send_now(sk)) 2167 return !tcp_pause_early_retransmit(sk, flag); 2168 2169 return false; 2170 } 2171 2172 /* Detect loss in event "A" above by marking head of queue up as lost. 2173 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2174 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2175 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2176 * the maximum SACKed segments to pass before reaching this limit. 2177 */ 2178 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2179 { 2180 struct tcp_sock *tp = tcp_sk(sk); 2181 struct sk_buff *skb; 2182 int cnt, oldcnt, lost; 2183 unsigned int mss; 2184 /* Use SACK to deduce losses of new sequences sent during recovery */ 2185 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2186 2187 WARN_ON(packets > tp->packets_out); 2188 if (tp->lost_skb_hint) { 2189 skb = tp->lost_skb_hint; 2190 cnt = tp->lost_cnt_hint; 2191 /* Head already handled? */ 2192 if (mark_head && skb != tcp_write_queue_head(sk)) 2193 return; 2194 } else { 2195 skb = tcp_write_queue_head(sk); 2196 cnt = 0; 2197 } 2198 2199 tcp_for_write_queue_from(skb, sk) { 2200 if (skb == tcp_send_head(sk)) 2201 break; 2202 /* TODO: do this better */ 2203 /* this is not the most efficient way to do this... */ 2204 tp->lost_skb_hint = skb; 2205 tp->lost_cnt_hint = cnt; 2206 2207 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2208 break; 2209 2210 oldcnt = cnt; 2211 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2212 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2213 cnt += tcp_skb_pcount(skb); 2214 2215 if (cnt > packets) { 2216 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2217 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2218 (oldcnt >= packets)) 2219 break; 2220 2221 mss = tcp_skb_mss(skb); 2222 /* If needed, chop off the prefix to mark as lost. */ 2223 lost = (packets - oldcnt) * mss; 2224 if (lost < skb->len && 2225 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2226 break; 2227 cnt = packets; 2228 } 2229 2230 tcp_skb_mark_lost(tp, skb); 2231 2232 if (mark_head) 2233 break; 2234 } 2235 tcp_verify_left_out(tp); 2236 } 2237 2238 /* Account newly detected lost packet(s) */ 2239 2240 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2241 { 2242 struct tcp_sock *tp = tcp_sk(sk); 2243 2244 if (tcp_is_reno(tp)) { 2245 tcp_mark_head_lost(sk, 1, 1); 2246 } else if (tcp_is_fack(tp)) { 2247 int lost = tp->fackets_out - tp->reordering; 2248 if (lost <= 0) 2249 lost = 1; 2250 tcp_mark_head_lost(sk, lost, 0); 2251 } else { 2252 int sacked_upto = tp->sacked_out - tp->reordering; 2253 if (sacked_upto >= 0) 2254 tcp_mark_head_lost(sk, sacked_upto, 0); 2255 else if (fast_rexmit) 2256 tcp_mark_head_lost(sk, 1, 1); 2257 } 2258 } 2259 2260 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2261 { 2262 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2263 before(tp->rx_opt.rcv_tsecr, when); 2264 } 2265 2266 /* skb is spurious retransmitted if the returned timestamp echo 2267 * reply is prior to the skb transmission time 2268 */ 2269 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2270 const struct sk_buff *skb) 2271 { 2272 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2273 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2274 } 2275 2276 /* Nothing was retransmitted or returned timestamp is less 2277 * than timestamp of the first retransmission. 2278 */ 2279 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2280 { 2281 return !tp->retrans_stamp || 2282 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2283 } 2284 2285 /* Undo procedures. */ 2286 2287 /* We can clear retrans_stamp when there are no retransmissions in the 2288 * window. It would seem that it is trivially available for us in 2289 * tp->retrans_out, however, that kind of assumptions doesn't consider 2290 * what will happen if errors occur when sending retransmission for the 2291 * second time. ...It could the that such segment has only 2292 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2293 * the head skb is enough except for some reneging corner cases that 2294 * are not worth the effort. 2295 * 2296 * Main reason for all this complexity is the fact that connection dying 2297 * time now depends on the validity of the retrans_stamp, in particular, 2298 * that successive retransmissions of a segment must not advance 2299 * retrans_stamp under any conditions. 2300 */ 2301 static bool tcp_any_retrans_done(const struct sock *sk) 2302 { 2303 const struct tcp_sock *tp = tcp_sk(sk); 2304 struct sk_buff *skb; 2305 2306 if (tp->retrans_out) 2307 return true; 2308 2309 skb = tcp_write_queue_head(sk); 2310 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2311 return true; 2312 2313 return false; 2314 } 2315 2316 #if FASTRETRANS_DEBUG > 1 2317 static void DBGUNDO(struct sock *sk, const char *msg) 2318 { 2319 struct tcp_sock *tp = tcp_sk(sk); 2320 struct inet_sock *inet = inet_sk(sk); 2321 2322 if (sk->sk_family == AF_INET) { 2323 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2324 msg, 2325 &inet->inet_daddr, ntohs(inet->inet_dport), 2326 tp->snd_cwnd, tcp_left_out(tp), 2327 tp->snd_ssthresh, tp->prior_ssthresh, 2328 tp->packets_out); 2329 } 2330 #if IS_ENABLED(CONFIG_IPV6) 2331 else if (sk->sk_family == AF_INET6) { 2332 struct ipv6_pinfo *np = inet6_sk(sk); 2333 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2334 msg, 2335 &np->daddr, ntohs(inet->inet_dport), 2336 tp->snd_cwnd, tcp_left_out(tp), 2337 tp->snd_ssthresh, tp->prior_ssthresh, 2338 tp->packets_out); 2339 } 2340 #endif 2341 } 2342 #else 2343 #define DBGUNDO(x...) do { } while (0) 2344 #endif 2345 2346 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2347 { 2348 struct tcp_sock *tp = tcp_sk(sk); 2349 2350 if (unmark_loss) { 2351 struct sk_buff *skb; 2352 2353 tcp_for_write_queue(skb, sk) { 2354 if (skb == tcp_send_head(sk)) 2355 break; 2356 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2357 } 2358 tp->lost_out = 0; 2359 tcp_clear_all_retrans_hints(tp); 2360 } 2361 2362 if (tp->prior_ssthresh) { 2363 const struct inet_connection_sock *icsk = inet_csk(sk); 2364 2365 if (icsk->icsk_ca_ops->undo_cwnd) 2366 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2367 else 2368 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2369 2370 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2371 tp->snd_ssthresh = tp->prior_ssthresh; 2372 tcp_ecn_withdraw_cwr(tp); 2373 } 2374 } 2375 tp->snd_cwnd_stamp = tcp_time_stamp; 2376 tp->undo_marker = 0; 2377 } 2378 2379 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2380 { 2381 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2382 } 2383 2384 /* People celebrate: "We love our President!" */ 2385 static bool tcp_try_undo_recovery(struct sock *sk) 2386 { 2387 struct tcp_sock *tp = tcp_sk(sk); 2388 2389 if (tcp_may_undo(tp)) { 2390 int mib_idx; 2391 2392 /* Happy end! We did not retransmit anything 2393 * or our original transmission succeeded. 2394 */ 2395 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2396 tcp_undo_cwnd_reduction(sk, false); 2397 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2398 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2399 else 2400 mib_idx = LINUX_MIB_TCPFULLUNDO; 2401 2402 NET_INC_STATS(sock_net(sk), mib_idx); 2403 } 2404 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2405 /* Hold old state until something *above* high_seq 2406 * is ACKed. For Reno it is MUST to prevent false 2407 * fast retransmits (RFC2582). SACK TCP is safe. */ 2408 if (!tcp_any_retrans_done(sk)) 2409 tp->retrans_stamp = 0; 2410 return true; 2411 } 2412 tcp_set_ca_state(sk, TCP_CA_Open); 2413 return false; 2414 } 2415 2416 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2417 static bool tcp_try_undo_dsack(struct sock *sk) 2418 { 2419 struct tcp_sock *tp = tcp_sk(sk); 2420 2421 if (tp->undo_marker && !tp->undo_retrans) { 2422 DBGUNDO(sk, "D-SACK"); 2423 tcp_undo_cwnd_reduction(sk, false); 2424 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2425 return true; 2426 } 2427 return false; 2428 } 2429 2430 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2431 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2432 { 2433 struct tcp_sock *tp = tcp_sk(sk); 2434 2435 if (frto_undo || tcp_may_undo(tp)) { 2436 tcp_undo_cwnd_reduction(sk, true); 2437 2438 DBGUNDO(sk, "partial loss"); 2439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2440 if (frto_undo) 2441 NET_INC_STATS(sock_net(sk), 2442 LINUX_MIB_TCPSPURIOUSRTOS); 2443 inet_csk(sk)->icsk_retransmits = 0; 2444 if (frto_undo || tcp_is_sack(tp)) 2445 tcp_set_ca_state(sk, TCP_CA_Open); 2446 return true; 2447 } 2448 return false; 2449 } 2450 2451 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2452 * It computes the number of packets to send (sndcnt) based on packets newly 2453 * delivered: 2454 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2455 * cwnd reductions across a full RTT. 2456 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2457 * But when the retransmits are acked without further losses, PRR 2458 * slow starts cwnd up to ssthresh to speed up the recovery. 2459 */ 2460 static void tcp_init_cwnd_reduction(struct sock *sk) 2461 { 2462 struct tcp_sock *tp = tcp_sk(sk); 2463 2464 tp->high_seq = tp->snd_nxt; 2465 tp->tlp_high_seq = 0; 2466 tp->snd_cwnd_cnt = 0; 2467 tp->prior_cwnd = tp->snd_cwnd; 2468 tp->prr_delivered = 0; 2469 tp->prr_out = 0; 2470 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2471 tcp_ecn_queue_cwr(tp); 2472 } 2473 2474 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, 2475 int flag) 2476 { 2477 struct tcp_sock *tp = tcp_sk(sk); 2478 int sndcnt = 0; 2479 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2480 2481 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2482 return; 2483 2484 tp->prr_delivered += newly_acked_sacked; 2485 if (delta < 0) { 2486 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2487 tp->prior_cwnd - 1; 2488 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2489 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2490 !(flag & FLAG_LOST_RETRANS)) { 2491 sndcnt = min_t(int, delta, 2492 max_t(int, tp->prr_delivered - tp->prr_out, 2493 newly_acked_sacked) + 1); 2494 } else { 2495 sndcnt = min(delta, newly_acked_sacked); 2496 } 2497 /* Force a fast retransmit upon entering fast recovery */ 2498 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2499 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2500 } 2501 2502 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2503 { 2504 struct tcp_sock *tp = tcp_sk(sk); 2505 2506 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2507 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2508 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2509 tp->snd_cwnd = tp->snd_ssthresh; 2510 tp->snd_cwnd_stamp = tcp_time_stamp; 2511 } 2512 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2513 } 2514 2515 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2516 void tcp_enter_cwr(struct sock *sk) 2517 { 2518 struct tcp_sock *tp = tcp_sk(sk); 2519 2520 tp->prior_ssthresh = 0; 2521 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2522 tp->undo_marker = 0; 2523 tcp_init_cwnd_reduction(sk); 2524 tcp_set_ca_state(sk, TCP_CA_CWR); 2525 } 2526 } 2527 EXPORT_SYMBOL(tcp_enter_cwr); 2528 2529 static void tcp_try_keep_open(struct sock *sk) 2530 { 2531 struct tcp_sock *tp = tcp_sk(sk); 2532 int state = TCP_CA_Open; 2533 2534 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2535 state = TCP_CA_Disorder; 2536 2537 if (inet_csk(sk)->icsk_ca_state != state) { 2538 tcp_set_ca_state(sk, state); 2539 tp->high_seq = tp->snd_nxt; 2540 } 2541 } 2542 2543 static void tcp_try_to_open(struct sock *sk, int flag) 2544 { 2545 struct tcp_sock *tp = tcp_sk(sk); 2546 2547 tcp_verify_left_out(tp); 2548 2549 if (!tcp_any_retrans_done(sk)) 2550 tp->retrans_stamp = 0; 2551 2552 if (flag & FLAG_ECE) 2553 tcp_enter_cwr(sk); 2554 2555 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2556 tcp_try_keep_open(sk); 2557 } 2558 } 2559 2560 static void tcp_mtup_probe_failed(struct sock *sk) 2561 { 2562 struct inet_connection_sock *icsk = inet_csk(sk); 2563 2564 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2565 icsk->icsk_mtup.probe_size = 0; 2566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2567 } 2568 2569 static void tcp_mtup_probe_success(struct sock *sk) 2570 { 2571 struct tcp_sock *tp = tcp_sk(sk); 2572 struct inet_connection_sock *icsk = inet_csk(sk); 2573 2574 /* FIXME: breaks with very large cwnd */ 2575 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2576 tp->snd_cwnd = tp->snd_cwnd * 2577 tcp_mss_to_mtu(sk, tp->mss_cache) / 2578 icsk->icsk_mtup.probe_size; 2579 tp->snd_cwnd_cnt = 0; 2580 tp->snd_cwnd_stamp = tcp_time_stamp; 2581 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2582 2583 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2584 icsk->icsk_mtup.probe_size = 0; 2585 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2587 } 2588 2589 /* Do a simple retransmit without using the backoff mechanisms in 2590 * tcp_timer. This is used for path mtu discovery. 2591 * The socket is already locked here. 2592 */ 2593 void tcp_simple_retransmit(struct sock *sk) 2594 { 2595 const struct inet_connection_sock *icsk = inet_csk(sk); 2596 struct tcp_sock *tp = tcp_sk(sk); 2597 struct sk_buff *skb; 2598 unsigned int mss = tcp_current_mss(sk); 2599 u32 prior_lost = tp->lost_out; 2600 2601 tcp_for_write_queue(skb, sk) { 2602 if (skb == tcp_send_head(sk)) 2603 break; 2604 if (tcp_skb_seglen(skb) > mss && 2605 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2606 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2607 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2608 tp->retrans_out -= tcp_skb_pcount(skb); 2609 } 2610 tcp_skb_mark_lost_uncond_verify(tp, skb); 2611 } 2612 } 2613 2614 tcp_clear_retrans_hints_partial(tp); 2615 2616 if (prior_lost == tp->lost_out) 2617 return; 2618 2619 if (tcp_is_reno(tp)) 2620 tcp_limit_reno_sacked(tp); 2621 2622 tcp_verify_left_out(tp); 2623 2624 /* Don't muck with the congestion window here. 2625 * Reason is that we do not increase amount of _data_ 2626 * in network, but units changed and effective 2627 * cwnd/ssthresh really reduced now. 2628 */ 2629 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2630 tp->high_seq = tp->snd_nxt; 2631 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2632 tp->prior_ssthresh = 0; 2633 tp->undo_marker = 0; 2634 tcp_set_ca_state(sk, TCP_CA_Loss); 2635 } 2636 tcp_xmit_retransmit_queue(sk); 2637 } 2638 EXPORT_SYMBOL(tcp_simple_retransmit); 2639 2640 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2641 { 2642 struct tcp_sock *tp = tcp_sk(sk); 2643 int mib_idx; 2644 2645 if (tcp_is_reno(tp)) 2646 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2647 else 2648 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2649 2650 NET_INC_STATS(sock_net(sk), mib_idx); 2651 2652 tp->prior_ssthresh = 0; 2653 tcp_init_undo(tp); 2654 2655 if (!tcp_in_cwnd_reduction(sk)) { 2656 if (!ece_ack) 2657 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2658 tcp_init_cwnd_reduction(sk); 2659 } 2660 tcp_set_ca_state(sk, TCP_CA_Recovery); 2661 } 2662 2663 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2664 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2665 */ 2666 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2667 int *rexmit) 2668 { 2669 struct tcp_sock *tp = tcp_sk(sk); 2670 bool recovered = !before(tp->snd_una, tp->high_seq); 2671 2672 if ((flag & FLAG_SND_UNA_ADVANCED) && 2673 tcp_try_undo_loss(sk, false)) 2674 return; 2675 2676 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2677 /* Step 3.b. A timeout is spurious if not all data are 2678 * lost, i.e., never-retransmitted data are (s)acked. 2679 */ 2680 if ((flag & FLAG_ORIG_SACK_ACKED) && 2681 tcp_try_undo_loss(sk, true)) 2682 return; 2683 2684 if (after(tp->snd_nxt, tp->high_seq)) { 2685 if (flag & FLAG_DATA_SACKED || is_dupack) 2686 tp->frto = 0; /* Step 3.a. loss was real */ 2687 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2688 tp->high_seq = tp->snd_nxt; 2689 /* Step 2.b. Try send new data (but deferred until cwnd 2690 * is updated in tcp_ack()). Otherwise fall back to 2691 * the conventional recovery. 2692 */ 2693 if (tcp_send_head(sk) && 2694 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2695 *rexmit = REXMIT_NEW; 2696 return; 2697 } 2698 tp->frto = 0; 2699 } 2700 } 2701 2702 if (recovered) { 2703 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2704 tcp_try_undo_recovery(sk); 2705 return; 2706 } 2707 if (tcp_is_reno(tp)) { 2708 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2709 * delivered. Lower inflight to clock out (re)tranmissions. 2710 */ 2711 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2712 tcp_add_reno_sack(sk); 2713 else if (flag & FLAG_SND_UNA_ADVANCED) 2714 tcp_reset_reno_sack(tp); 2715 } 2716 *rexmit = REXMIT_LOST; 2717 } 2718 2719 /* Undo during fast recovery after partial ACK. */ 2720 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2721 { 2722 struct tcp_sock *tp = tcp_sk(sk); 2723 2724 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2725 /* Plain luck! Hole if filled with delayed 2726 * packet, rather than with a retransmit. 2727 */ 2728 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2729 2730 /* We are getting evidence that the reordering degree is higher 2731 * than we realized. If there are no retransmits out then we 2732 * can undo. Otherwise we clock out new packets but do not 2733 * mark more packets lost or retransmit more. 2734 */ 2735 if (tp->retrans_out) 2736 return true; 2737 2738 if (!tcp_any_retrans_done(sk)) 2739 tp->retrans_stamp = 0; 2740 2741 DBGUNDO(sk, "partial recovery"); 2742 tcp_undo_cwnd_reduction(sk, true); 2743 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2744 tcp_try_keep_open(sk); 2745 return true; 2746 } 2747 return false; 2748 } 2749 2750 /* Process an event, which can update packets-in-flight not trivially. 2751 * Main goal of this function is to calculate new estimate for left_out, 2752 * taking into account both packets sitting in receiver's buffer and 2753 * packets lost by network. 2754 * 2755 * Besides that it updates the congestion state when packet loss or ECN 2756 * is detected. But it does not reduce the cwnd, it is done by the 2757 * congestion control later. 2758 * 2759 * It does _not_ decide what to send, it is made in function 2760 * tcp_xmit_retransmit_queue(). 2761 */ 2762 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2763 bool is_dupack, int *ack_flag, int *rexmit) 2764 { 2765 struct inet_connection_sock *icsk = inet_csk(sk); 2766 struct tcp_sock *tp = tcp_sk(sk); 2767 int fast_rexmit = 0, flag = *ack_flag; 2768 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2769 (tcp_fackets_out(tp) > tp->reordering)); 2770 2771 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2772 tp->sacked_out = 0; 2773 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2774 tp->fackets_out = 0; 2775 2776 /* Now state machine starts. 2777 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2778 if (flag & FLAG_ECE) 2779 tp->prior_ssthresh = 0; 2780 2781 /* B. In all the states check for reneging SACKs. */ 2782 if (tcp_check_sack_reneging(sk, flag)) 2783 return; 2784 2785 /* C. Check consistency of the current state. */ 2786 tcp_verify_left_out(tp); 2787 2788 /* D. Check state exit conditions. State can be terminated 2789 * when high_seq is ACKed. */ 2790 if (icsk->icsk_ca_state == TCP_CA_Open) { 2791 WARN_ON(tp->retrans_out != 0); 2792 tp->retrans_stamp = 0; 2793 } else if (!before(tp->snd_una, tp->high_seq)) { 2794 switch (icsk->icsk_ca_state) { 2795 case TCP_CA_CWR: 2796 /* CWR is to be held something *above* high_seq 2797 * is ACKed for CWR bit to reach receiver. */ 2798 if (tp->snd_una != tp->high_seq) { 2799 tcp_end_cwnd_reduction(sk); 2800 tcp_set_ca_state(sk, TCP_CA_Open); 2801 } 2802 break; 2803 2804 case TCP_CA_Recovery: 2805 if (tcp_is_reno(tp)) 2806 tcp_reset_reno_sack(tp); 2807 if (tcp_try_undo_recovery(sk)) 2808 return; 2809 tcp_end_cwnd_reduction(sk); 2810 break; 2811 } 2812 } 2813 2814 /* Use RACK to detect loss */ 2815 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS && 2816 tcp_rack_mark_lost(sk)) { 2817 flag |= FLAG_LOST_RETRANS; 2818 *ack_flag |= FLAG_LOST_RETRANS; 2819 } 2820 2821 /* E. Process state. */ 2822 switch (icsk->icsk_ca_state) { 2823 case TCP_CA_Recovery: 2824 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2825 if (tcp_is_reno(tp) && is_dupack) 2826 tcp_add_reno_sack(sk); 2827 } else { 2828 if (tcp_try_undo_partial(sk, acked)) 2829 return; 2830 /* Partial ACK arrived. Force fast retransmit. */ 2831 do_lost = tcp_is_reno(tp) || 2832 tcp_fackets_out(tp) > tp->reordering; 2833 } 2834 if (tcp_try_undo_dsack(sk)) { 2835 tcp_try_keep_open(sk); 2836 return; 2837 } 2838 break; 2839 case TCP_CA_Loss: 2840 tcp_process_loss(sk, flag, is_dupack, rexmit); 2841 if (icsk->icsk_ca_state != TCP_CA_Open && 2842 !(flag & FLAG_LOST_RETRANS)) 2843 return; 2844 /* Change state if cwnd is undone or retransmits are lost */ 2845 default: 2846 if (tcp_is_reno(tp)) { 2847 if (flag & FLAG_SND_UNA_ADVANCED) 2848 tcp_reset_reno_sack(tp); 2849 if (is_dupack) 2850 tcp_add_reno_sack(sk); 2851 } 2852 2853 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2854 tcp_try_undo_dsack(sk); 2855 2856 if (!tcp_time_to_recover(sk, flag)) { 2857 tcp_try_to_open(sk, flag); 2858 return; 2859 } 2860 2861 /* MTU probe failure: don't reduce cwnd */ 2862 if (icsk->icsk_ca_state < TCP_CA_CWR && 2863 icsk->icsk_mtup.probe_size && 2864 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2865 tcp_mtup_probe_failed(sk); 2866 /* Restores the reduction we did in tcp_mtup_probe() */ 2867 tp->snd_cwnd++; 2868 tcp_simple_retransmit(sk); 2869 return; 2870 } 2871 2872 /* Otherwise enter Recovery state */ 2873 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2874 fast_rexmit = 1; 2875 } 2876 2877 if (do_lost) 2878 tcp_update_scoreboard(sk, fast_rexmit); 2879 *rexmit = REXMIT_LOST; 2880 } 2881 2882 /* Kathleen Nichols' algorithm for tracking the minimum value of 2883 * a data stream over some fixed time interval. (E.g., the minimum 2884 * RTT over the past five minutes.) It uses constant space and constant 2885 * time per update yet almost always delivers the same minimum as an 2886 * implementation that has to keep all the data in the window. 2887 * 2888 * The algorithm keeps track of the best, 2nd best & 3rd best min 2889 * values, maintaining an invariant that the measurement time of the 2890 * n'th best >= n-1'th best. It also makes sure that the three values 2891 * are widely separated in the time window since that bounds the worse 2892 * case error when that data is monotonically increasing over the window. 2893 * 2894 * Upon getting a new min, we can forget everything earlier because it 2895 * has no value - the new min is <= everything else in the window by 2896 * definition and it's the most recent. So we restart fresh on every new min 2897 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd 2898 * best. 2899 */ 2900 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2901 { 2902 const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ; 2903 struct rtt_meas *m = tcp_sk(sk)->rtt_min; 2904 struct rtt_meas rttm = { 2905 .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1), 2906 .ts = now, 2907 }; 2908 u32 elapsed; 2909 2910 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */ 2911 if (unlikely(rttm.rtt <= m[0].rtt)) 2912 m[0] = m[1] = m[2] = rttm; 2913 else if (rttm.rtt <= m[1].rtt) 2914 m[1] = m[2] = rttm; 2915 else if (rttm.rtt <= m[2].rtt) 2916 m[2] = rttm; 2917 2918 elapsed = now - m[0].ts; 2919 if (unlikely(elapsed > wlen)) { 2920 /* Passed entire window without a new min so make 2nd choice 2921 * the new min & 3rd choice the new 2nd. So forth and so on. 2922 */ 2923 m[0] = m[1]; 2924 m[1] = m[2]; 2925 m[2] = rttm; 2926 if (now - m[0].ts > wlen) { 2927 m[0] = m[1]; 2928 m[1] = rttm; 2929 if (now - m[0].ts > wlen) 2930 m[0] = rttm; 2931 } 2932 } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) { 2933 /* Passed a quarter of the window without a new min so 2934 * take 2nd choice from the 2nd quarter of the window. 2935 */ 2936 m[2] = m[1] = rttm; 2937 } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) { 2938 /* Passed half the window without a new min so take the 3rd 2939 * choice from the last half of the window. 2940 */ 2941 m[2] = rttm; 2942 } 2943 } 2944 2945 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2946 long seq_rtt_us, long sack_rtt_us, 2947 long ca_rtt_us) 2948 { 2949 const struct tcp_sock *tp = tcp_sk(sk); 2950 2951 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2952 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2953 * Karn's algorithm forbids taking RTT if some retransmitted data 2954 * is acked (RFC6298). 2955 */ 2956 if (seq_rtt_us < 0) 2957 seq_rtt_us = sack_rtt_us; 2958 2959 /* RTTM Rule: A TSecr value received in a segment is used to 2960 * update the averaged RTT measurement only if the segment 2961 * acknowledges some new data, i.e., only if it advances the 2962 * left edge of the send window. 2963 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2964 */ 2965 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2966 flag & FLAG_ACKED) 2967 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - 2968 tp->rx_opt.rcv_tsecr); 2969 if (seq_rtt_us < 0) 2970 return false; 2971 2972 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2973 * always taken together with ACK, SACK, or TS-opts. Any negative 2974 * values will be skipped with the seq_rtt_us < 0 check above. 2975 */ 2976 tcp_update_rtt_min(sk, ca_rtt_us); 2977 tcp_rtt_estimator(sk, seq_rtt_us); 2978 tcp_set_rto(sk); 2979 2980 /* RFC6298: only reset backoff on valid RTT measurement. */ 2981 inet_csk(sk)->icsk_backoff = 0; 2982 return true; 2983 } 2984 2985 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2986 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2987 { 2988 long rtt_us = -1L; 2989 2990 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { 2991 struct skb_mstamp now; 2992 2993 skb_mstamp_get(&now); 2994 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); 2995 } 2996 2997 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); 2998 } 2999 3000 3001 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3002 { 3003 const struct inet_connection_sock *icsk = inet_csk(sk); 3004 3005 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3006 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3007 } 3008 3009 /* Restart timer after forward progress on connection. 3010 * RFC2988 recommends to restart timer to now+rto. 3011 */ 3012 void tcp_rearm_rto(struct sock *sk) 3013 { 3014 const struct inet_connection_sock *icsk = inet_csk(sk); 3015 struct tcp_sock *tp = tcp_sk(sk); 3016 3017 /* If the retrans timer is currently being used by Fast Open 3018 * for SYN-ACK retrans purpose, stay put. 3019 */ 3020 if (tp->fastopen_rsk) 3021 return; 3022 3023 if (!tp->packets_out) { 3024 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3025 } else { 3026 u32 rto = inet_csk(sk)->icsk_rto; 3027 /* Offset the time elapsed after installing regular RTO */ 3028 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3029 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3030 struct sk_buff *skb = tcp_write_queue_head(sk); 3031 const u32 rto_time_stamp = 3032 tcp_skb_timestamp(skb) + rto; 3033 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3034 /* delta may not be positive if the socket is locked 3035 * when the retrans timer fires and is rescheduled. 3036 */ 3037 if (delta > 0) 3038 rto = delta; 3039 } 3040 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3041 TCP_RTO_MAX); 3042 } 3043 } 3044 3045 /* This function is called when the delayed ER timer fires. TCP enters 3046 * fast recovery and performs fast-retransmit. 3047 */ 3048 void tcp_resume_early_retransmit(struct sock *sk) 3049 { 3050 struct tcp_sock *tp = tcp_sk(sk); 3051 3052 tcp_rearm_rto(sk); 3053 3054 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3055 if (!tp->do_early_retrans) 3056 return; 3057 3058 tcp_enter_recovery(sk, false); 3059 tcp_update_scoreboard(sk, 1); 3060 tcp_xmit_retransmit_queue(sk); 3061 } 3062 3063 /* If we get here, the whole TSO packet has not been acked. */ 3064 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3065 { 3066 struct tcp_sock *tp = tcp_sk(sk); 3067 u32 packets_acked; 3068 3069 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3070 3071 packets_acked = tcp_skb_pcount(skb); 3072 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3073 return 0; 3074 packets_acked -= tcp_skb_pcount(skb); 3075 3076 if (packets_acked) { 3077 BUG_ON(tcp_skb_pcount(skb) == 0); 3078 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3079 } 3080 3081 return packets_acked; 3082 } 3083 3084 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3085 u32 prior_snd_una) 3086 { 3087 const struct skb_shared_info *shinfo; 3088 3089 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3090 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3091 return; 3092 3093 shinfo = skb_shinfo(skb); 3094 if (!before(shinfo->tskey, prior_snd_una) && 3095 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3096 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3097 } 3098 3099 /* Remove acknowledged frames from the retransmission queue. If our packet 3100 * is before the ack sequence we can discard it as it's confirmed to have 3101 * arrived at the other end. 3102 */ 3103 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3104 u32 prior_snd_una, int *acked, 3105 struct tcp_sacktag_state *sack) 3106 { 3107 const struct inet_connection_sock *icsk = inet_csk(sk); 3108 struct skb_mstamp first_ackt, last_ackt, now; 3109 struct tcp_sock *tp = tcp_sk(sk); 3110 u32 prior_sacked = tp->sacked_out; 3111 u32 reord = tp->packets_out; 3112 bool fully_acked = true; 3113 long sack_rtt_us = -1L; 3114 long seq_rtt_us = -1L; 3115 long ca_rtt_us = -1L; 3116 struct sk_buff *skb; 3117 u32 pkts_acked = 0; 3118 bool rtt_update; 3119 int flag = 0; 3120 3121 first_ackt.v64 = 0; 3122 3123 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3124 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3125 u8 sacked = scb->sacked; 3126 u32 acked_pcount; 3127 3128 tcp_ack_tstamp(sk, skb, prior_snd_una); 3129 3130 /* Determine how many packets and what bytes were acked, tso and else */ 3131 if (after(scb->end_seq, tp->snd_una)) { 3132 if (tcp_skb_pcount(skb) == 1 || 3133 !after(tp->snd_una, scb->seq)) 3134 break; 3135 3136 acked_pcount = tcp_tso_acked(sk, skb); 3137 if (!acked_pcount) 3138 break; 3139 3140 fully_acked = false; 3141 } else { 3142 /* Speedup tcp_unlink_write_queue() and next loop */ 3143 prefetchw(skb->next); 3144 acked_pcount = tcp_skb_pcount(skb); 3145 } 3146 3147 if (unlikely(sacked & TCPCB_RETRANS)) { 3148 if (sacked & TCPCB_SACKED_RETRANS) 3149 tp->retrans_out -= acked_pcount; 3150 flag |= FLAG_RETRANS_DATA_ACKED; 3151 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3152 last_ackt = skb->skb_mstamp; 3153 WARN_ON_ONCE(last_ackt.v64 == 0); 3154 if (!first_ackt.v64) 3155 first_ackt = last_ackt; 3156 3157 reord = min(pkts_acked, reord); 3158 if (!after(scb->end_seq, tp->high_seq)) 3159 flag |= FLAG_ORIG_SACK_ACKED; 3160 } 3161 3162 if (sacked & TCPCB_SACKED_ACKED) { 3163 tp->sacked_out -= acked_pcount; 3164 } else if (tcp_is_sack(tp)) { 3165 tp->delivered += acked_pcount; 3166 if (!tcp_skb_spurious_retrans(tp, skb)) 3167 tcp_rack_advance(tp, &skb->skb_mstamp, sacked); 3168 } 3169 if (sacked & TCPCB_LOST) 3170 tp->lost_out -= acked_pcount; 3171 3172 tp->packets_out -= acked_pcount; 3173 pkts_acked += acked_pcount; 3174 3175 /* Initial outgoing SYN's get put onto the write_queue 3176 * just like anything else we transmit. It is not 3177 * true data, and if we misinform our callers that 3178 * this ACK acks real data, we will erroneously exit 3179 * connection startup slow start one packet too 3180 * quickly. This is severely frowned upon behavior. 3181 */ 3182 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3183 flag |= FLAG_DATA_ACKED; 3184 } else { 3185 flag |= FLAG_SYN_ACKED; 3186 tp->retrans_stamp = 0; 3187 } 3188 3189 if (!fully_acked) 3190 break; 3191 3192 tcp_unlink_write_queue(skb, sk); 3193 sk_wmem_free_skb(sk, skb); 3194 if (unlikely(skb == tp->retransmit_skb_hint)) 3195 tp->retransmit_skb_hint = NULL; 3196 if (unlikely(skb == tp->lost_skb_hint)) 3197 tp->lost_skb_hint = NULL; 3198 } 3199 3200 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3201 tp->snd_up = tp->snd_una; 3202 3203 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3204 flag |= FLAG_SACK_RENEGING; 3205 3206 skb_mstamp_get(&now); 3207 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3208 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3209 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3210 } 3211 if (sack->first_sackt.v64) { 3212 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt); 3213 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt); 3214 } 3215 3216 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3217 ca_rtt_us); 3218 3219 if (flag & FLAG_ACKED) { 3220 tcp_rearm_rto(sk); 3221 if (unlikely(icsk->icsk_mtup.probe_size && 3222 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3223 tcp_mtup_probe_success(sk); 3224 } 3225 3226 if (tcp_is_reno(tp)) { 3227 tcp_remove_reno_sacks(sk, pkts_acked); 3228 } else { 3229 int delta; 3230 3231 /* Non-retransmitted hole got filled? That's reordering */ 3232 if (reord < prior_fackets) 3233 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3234 3235 delta = tcp_is_fack(tp) ? pkts_acked : 3236 prior_sacked - tp->sacked_out; 3237 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3238 } 3239 3240 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3241 3242 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3243 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3244 /* Do not re-arm RTO if the sack RTT is measured from data sent 3245 * after when the head was last (re)transmitted. Otherwise the 3246 * timeout may continue to extend in loss recovery. 3247 */ 3248 tcp_rearm_rto(sk); 3249 } 3250 3251 if (icsk->icsk_ca_ops->pkts_acked) { 3252 struct ack_sample sample = { .pkts_acked = pkts_acked, 3253 .rtt_us = ca_rtt_us }; 3254 3255 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3256 } 3257 3258 #if FASTRETRANS_DEBUG > 0 3259 WARN_ON((int)tp->sacked_out < 0); 3260 WARN_ON((int)tp->lost_out < 0); 3261 WARN_ON((int)tp->retrans_out < 0); 3262 if (!tp->packets_out && tcp_is_sack(tp)) { 3263 icsk = inet_csk(sk); 3264 if (tp->lost_out) { 3265 pr_debug("Leak l=%u %d\n", 3266 tp->lost_out, icsk->icsk_ca_state); 3267 tp->lost_out = 0; 3268 } 3269 if (tp->sacked_out) { 3270 pr_debug("Leak s=%u %d\n", 3271 tp->sacked_out, icsk->icsk_ca_state); 3272 tp->sacked_out = 0; 3273 } 3274 if (tp->retrans_out) { 3275 pr_debug("Leak r=%u %d\n", 3276 tp->retrans_out, icsk->icsk_ca_state); 3277 tp->retrans_out = 0; 3278 } 3279 } 3280 #endif 3281 *acked = pkts_acked; 3282 return flag; 3283 } 3284 3285 static void tcp_ack_probe(struct sock *sk) 3286 { 3287 const struct tcp_sock *tp = tcp_sk(sk); 3288 struct inet_connection_sock *icsk = inet_csk(sk); 3289 3290 /* Was it a usable window open? */ 3291 3292 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3293 icsk->icsk_backoff = 0; 3294 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3295 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3296 * This function is not for random using! 3297 */ 3298 } else { 3299 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3300 3301 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3302 when, TCP_RTO_MAX); 3303 } 3304 } 3305 3306 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3307 { 3308 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3309 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3310 } 3311 3312 /* Decide wheather to run the increase function of congestion control. */ 3313 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3314 { 3315 /* If reordering is high then always grow cwnd whenever data is 3316 * delivered regardless of its ordering. Otherwise stay conservative 3317 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3318 * new SACK or ECE mark may first advance cwnd here and later reduce 3319 * cwnd in tcp_fastretrans_alert() based on more states. 3320 */ 3321 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3322 return flag & FLAG_FORWARD_PROGRESS; 3323 3324 return flag & FLAG_DATA_ACKED; 3325 } 3326 3327 /* The "ultimate" congestion control function that aims to replace the rigid 3328 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3329 * It's called toward the end of processing an ACK with precise rate 3330 * information. All transmission or retransmission are delayed afterwards. 3331 */ 3332 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3333 int flag) 3334 { 3335 if (tcp_in_cwnd_reduction(sk)) { 3336 /* Reduce cwnd if state mandates */ 3337 tcp_cwnd_reduction(sk, acked_sacked, flag); 3338 } else if (tcp_may_raise_cwnd(sk, flag)) { 3339 /* Advance cwnd if state allows */ 3340 tcp_cong_avoid(sk, ack, acked_sacked); 3341 } 3342 tcp_update_pacing_rate(sk); 3343 } 3344 3345 /* Check that window update is acceptable. 3346 * The function assumes that snd_una<=ack<=snd_next. 3347 */ 3348 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3349 const u32 ack, const u32 ack_seq, 3350 const u32 nwin) 3351 { 3352 return after(ack, tp->snd_una) || 3353 after(ack_seq, tp->snd_wl1) || 3354 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3355 } 3356 3357 /* If we update tp->snd_una, also update tp->bytes_acked */ 3358 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3359 { 3360 u32 delta = ack - tp->snd_una; 3361 3362 sock_owned_by_me((struct sock *)tp); 3363 u64_stats_update_begin_raw(&tp->syncp); 3364 tp->bytes_acked += delta; 3365 u64_stats_update_end_raw(&tp->syncp); 3366 tp->snd_una = ack; 3367 } 3368 3369 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3370 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3371 { 3372 u32 delta = seq - tp->rcv_nxt; 3373 3374 sock_owned_by_me((struct sock *)tp); 3375 u64_stats_update_begin_raw(&tp->syncp); 3376 tp->bytes_received += delta; 3377 u64_stats_update_end_raw(&tp->syncp); 3378 tp->rcv_nxt = seq; 3379 } 3380 3381 /* Update our send window. 3382 * 3383 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3384 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3385 */ 3386 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3387 u32 ack_seq) 3388 { 3389 struct tcp_sock *tp = tcp_sk(sk); 3390 int flag = 0; 3391 u32 nwin = ntohs(tcp_hdr(skb)->window); 3392 3393 if (likely(!tcp_hdr(skb)->syn)) 3394 nwin <<= tp->rx_opt.snd_wscale; 3395 3396 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3397 flag |= FLAG_WIN_UPDATE; 3398 tcp_update_wl(tp, ack_seq); 3399 3400 if (tp->snd_wnd != nwin) { 3401 tp->snd_wnd = nwin; 3402 3403 /* Note, it is the only place, where 3404 * fast path is recovered for sending TCP. 3405 */ 3406 tp->pred_flags = 0; 3407 tcp_fast_path_check(sk); 3408 3409 if (tcp_send_head(sk)) 3410 tcp_slow_start_after_idle_check(sk); 3411 3412 if (nwin > tp->max_window) { 3413 tp->max_window = nwin; 3414 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3415 } 3416 } 3417 } 3418 3419 tcp_snd_una_update(tp, ack); 3420 3421 return flag; 3422 } 3423 3424 /* Return true if we're currently rate-limiting out-of-window ACKs and 3425 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3426 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3427 * attacks that send repeated SYNs or ACKs for the same connection. To 3428 * do this, we do not send a duplicate SYNACK or ACK if the remote 3429 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3430 */ 3431 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3432 int mib_idx, u32 *last_oow_ack_time) 3433 { 3434 /* Data packets without SYNs are not likely part of an ACK loop. */ 3435 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3436 !tcp_hdr(skb)->syn) 3437 goto not_rate_limited; 3438 3439 if (*last_oow_ack_time) { 3440 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3441 3442 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3443 NET_INC_STATS(net, mib_idx); 3444 return true; /* rate-limited: don't send yet! */ 3445 } 3446 } 3447 3448 *last_oow_ack_time = tcp_time_stamp; 3449 3450 not_rate_limited: 3451 return false; /* not rate-limited: go ahead, send dupack now! */ 3452 } 3453 3454 /* RFC 5961 7 [ACK Throttling] */ 3455 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3456 { 3457 /* unprotected vars, we dont care of overwrites */ 3458 static u32 challenge_timestamp; 3459 static unsigned int challenge_count; 3460 struct tcp_sock *tp = tcp_sk(sk); 3461 u32 now; 3462 3463 /* First check our per-socket dupack rate limit. */ 3464 if (tcp_oow_rate_limited(sock_net(sk), skb, 3465 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3466 &tp->last_oow_ack_time)) 3467 return; 3468 3469 /* Then check the check host-wide RFC 5961 rate limit. */ 3470 now = jiffies / HZ; 3471 if (now != challenge_timestamp) { 3472 challenge_timestamp = now; 3473 challenge_count = 0; 3474 } 3475 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3476 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3477 tcp_send_ack(sk); 3478 } 3479 } 3480 3481 static void tcp_store_ts_recent(struct tcp_sock *tp) 3482 { 3483 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3484 tp->rx_opt.ts_recent_stamp = get_seconds(); 3485 } 3486 3487 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3488 { 3489 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3490 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3491 * extra check below makes sure this can only happen 3492 * for pure ACK frames. -DaveM 3493 * 3494 * Not only, also it occurs for expired timestamps. 3495 */ 3496 3497 if (tcp_paws_check(&tp->rx_opt, 0)) 3498 tcp_store_ts_recent(tp); 3499 } 3500 } 3501 3502 /* This routine deals with acks during a TLP episode. 3503 * We mark the end of a TLP episode on receiving TLP dupack or when 3504 * ack is after tlp_high_seq. 3505 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3506 */ 3507 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3508 { 3509 struct tcp_sock *tp = tcp_sk(sk); 3510 3511 if (before(ack, tp->tlp_high_seq)) 3512 return; 3513 3514 if (flag & FLAG_DSACKING_ACK) { 3515 /* This DSACK means original and TLP probe arrived; no loss */ 3516 tp->tlp_high_seq = 0; 3517 } else if (after(ack, tp->tlp_high_seq)) { 3518 /* ACK advances: there was a loss, so reduce cwnd. Reset 3519 * tlp_high_seq in tcp_init_cwnd_reduction() 3520 */ 3521 tcp_init_cwnd_reduction(sk); 3522 tcp_set_ca_state(sk, TCP_CA_CWR); 3523 tcp_end_cwnd_reduction(sk); 3524 tcp_try_keep_open(sk); 3525 NET_INC_STATS(sock_net(sk), 3526 LINUX_MIB_TCPLOSSPROBERECOVERY); 3527 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3528 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3529 /* Pure dupack: original and TLP probe arrived; no loss */ 3530 tp->tlp_high_seq = 0; 3531 } 3532 } 3533 3534 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3535 { 3536 const struct inet_connection_sock *icsk = inet_csk(sk); 3537 3538 if (icsk->icsk_ca_ops->in_ack_event) 3539 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3540 } 3541 3542 /* Congestion control has updated the cwnd already. So if we're in 3543 * loss recovery then now we do any new sends (for FRTO) or 3544 * retransmits (for CA_Loss or CA_recovery) that make sense. 3545 */ 3546 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3547 { 3548 struct tcp_sock *tp = tcp_sk(sk); 3549 3550 if (rexmit == REXMIT_NONE) 3551 return; 3552 3553 if (unlikely(rexmit == 2)) { 3554 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3555 TCP_NAGLE_OFF); 3556 if (after(tp->snd_nxt, tp->high_seq)) 3557 return; 3558 tp->frto = 0; 3559 } 3560 tcp_xmit_retransmit_queue(sk); 3561 } 3562 3563 /* This routine deals with incoming acks, but not outgoing ones. */ 3564 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3565 { 3566 struct inet_connection_sock *icsk = inet_csk(sk); 3567 struct tcp_sock *tp = tcp_sk(sk); 3568 struct tcp_sacktag_state sack_state; 3569 u32 prior_snd_una = tp->snd_una; 3570 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3571 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3572 bool is_dupack = false; 3573 u32 prior_fackets; 3574 int prior_packets = tp->packets_out; 3575 u32 prior_delivered = tp->delivered; 3576 int acked = 0; /* Number of packets newly acked */ 3577 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3578 3579 sack_state.first_sackt.v64 = 0; 3580 3581 /* We very likely will need to access write queue head. */ 3582 prefetchw(sk->sk_write_queue.next); 3583 3584 /* If the ack is older than previous acks 3585 * then we can probably ignore it. 3586 */ 3587 if (before(ack, prior_snd_una)) { 3588 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3589 if (before(ack, prior_snd_una - tp->max_window)) { 3590 tcp_send_challenge_ack(sk, skb); 3591 return -1; 3592 } 3593 goto old_ack; 3594 } 3595 3596 /* If the ack includes data we haven't sent yet, discard 3597 * this segment (RFC793 Section 3.9). 3598 */ 3599 if (after(ack, tp->snd_nxt)) 3600 goto invalid_ack; 3601 3602 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3603 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3604 tcp_rearm_rto(sk); 3605 3606 if (after(ack, prior_snd_una)) { 3607 flag |= FLAG_SND_UNA_ADVANCED; 3608 icsk->icsk_retransmits = 0; 3609 } 3610 3611 prior_fackets = tp->fackets_out; 3612 3613 /* ts_recent update must be made after we are sure that the packet 3614 * is in window. 3615 */ 3616 if (flag & FLAG_UPDATE_TS_RECENT) 3617 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3618 3619 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3620 /* Window is constant, pure forward advance. 3621 * No more checks are required. 3622 * Note, we use the fact that SND.UNA>=SND.WL2. 3623 */ 3624 tcp_update_wl(tp, ack_seq); 3625 tcp_snd_una_update(tp, ack); 3626 flag |= FLAG_WIN_UPDATE; 3627 3628 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3629 3630 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3631 } else { 3632 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3633 3634 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3635 flag |= FLAG_DATA; 3636 else 3637 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3638 3639 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3640 3641 if (TCP_SKB_CB(skb)->sacked) 3642 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3643 &sack_state); 3644 3645 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3646 flag |= FLAG_ECE; 3647 ack_ev_flags |= CA_ACK_ECE; 3648 } 3649 3650 if (flag & FLAG_WIN_UPDATE) 3651 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3652 3653 tcp_in_ack_event(sk, ack_ev_flags); 3654 } 3655 3656 /* We passed data and got it acked, remove any soft error 3657 * log. Something worked... 3658 */ 3659 sk->sk_err_soft = 0; 3660 icsk->icsk_probes_out = 0; 3661 tp->rcv_tstamp = tcp_time_stamp; 3662 if (!prior_packets) 3663 goto no_queue; 3664 3665 /* See if we can take anything off of the retransmit queue. */ 3666 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3667 &sack_state); 3668 3669 if (tcp_ack_is_dubious(sk, flag)) { 3670 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3671 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3672 } 3673 if (tp->tlp_high_seq) 3674 tcp_process_tlp_ack(sk, ack, flag); 3675 3676 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3677 struct dst_entry *dst = __sk_dst_get(sk); 3678 if (dst) 3679 dst_confirm(dst); 3680 } 3681 3682 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3683 tcp_schedule_loss_probe(sk); 3684 tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag); 3685 tcp_xmit_recovery(sk, rexmit); 3686 return 1; 3687 3688 no_queue: 3689 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3690 if (flag & FLAG_DSACKING_ACK) 3691 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3692 /* If this ack opens up a zero window, clear backoff. It was 3693 * being used to time the probes, and is probably far higher than 3694 * it needs to be for normal retransmission. 3695 */ 3696 if (tcp_send_head(sk)) 3697 tcp_ack_probe(sk); 3698 3699 if (tp->tlp_high_seq) 3700 tcp_process_tlp_ack(sk, ack, flag); 3701 return 1; 3702 3703 invalid_ack: 3704 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3705 return -1; 3706 3707 old_ack: 3708 /* If data was SACKed, tag it and see if we should send more data. 3709 * If data was DSACKed, see if we can undo a cwnd reduction. 3710 */ 3711 if (TCP_SKB_CB(skb)->sacked) { 3712 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3713 &sack_state); 3714 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3715 tcp_xmit_recovery(sk, rexmit); 3716 } 3717 3718 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3719 return 0; 3720 } 3721 3722 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3723 bool syn, struct tcp_fastopen_cookie *foc, 3724 bool exp_opt) 3725 { 3726 /* Valid only in SYN or SYN-ACK with an even length. */ 3727 if (!foc || !syn || len < 0 || (len & 1)) 3728 return; 3729 3730 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3731 len <= TCP_FASTOPEN_COOKIE_MAX) 3732 memcpy(foc->val, cookie, len); 3733 else if (len != 0) 3734 len = -1; 3735 foc->len = len; 3736 foc->exp = exp_opt; 3737 } 3738 3739 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3740 * But, this can also be called on packets in the established flow when 3741 * the fast version below fails. 3742 */ 3743 void tcp_parse_options(const struct sk_buff *skb, 3744 struct tcp_options_received *opt_rx, int estab, 3745 struct tcp_fastopen_cookie *foc) 3746 { 3747 const unsigned char *ptr; 3748 const struct tcphdr *th = tcp_hdr(skb); 3749 int length = (th->doff * 4) - sizeof(struct tcphdr); 3750 3751 ptr = (const unsigned char *)(th + 1); 3752 opt_rx->saw_tstamp = 0; 3753 3754 while (length > 0) { 3755 int opcode = *ptr++; 3756 int opsize; 3757 3758 switch (opcode) { 3759 case TCPOPT_EOL: 3760 return; 3761 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3762 length--; 3763 continue; 3764 default: 3765 opsize = *ptr++; 3766 if (opsize < 2) /* "silly options" */ 3767 return; 3768 if (opsize > length) 3769 return; /* don't parse partial options */ 3770 switch (opcode) { 3771 case TCPOPT_MSS: 3772 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3773 u16 in_mss = get_unaligned_be16(ptr); 3774 if (in_mss) { 3775 if (opt_rx->user_mss && 3776 opt_rx->user_mss < in_mss) 3777 in_mss = opt_rx->user_mss; 3778 opt_rx->mss_clamp = in_mss; 3779 } 3780 } 3781 break; 3782 case TCPOPT_WINDOW: 3783 if (opsize == TCPOLEN_WINDOW && th->syn && 3784 !estab && sysctl_tcp_window_scaling) { 3785 __u8 snd_wscale = *(__u8 *)ptr; 3786 opt_rx->wscale_ok = 1; 3787 if (snd_wscale > 14) { 3788 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3789 __func__, 3790 snd_wscale); 3791 snd_wscale = 14; 3792 } 3793 opt_rx->snd_wscale = snd_wscale; 3794 } 3795 break; 3796 case TCPOPT_TIMESTAMP: 3797 if ((opsize == TCPOLEN_TIMESTAMP) && 3798 ((estab && opt_rx->tstamp_ok) || 3799 (!estab && sysctl_tcp_timestamps))) { 3800 opt_rx->saw_tstamp = 1; 3801 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3802 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3803 } 3804 break; 3805 case TCPOPT_SACK_PERM: 3806 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3807 !estab && sysctl_tcp_sack) { 3808 opt_rx->sack_ok = TCP_SACK_SEEN; 3809 tcp_sack_reset(opt_rx); 3810 } 3811 break; 3812 3813 case TCPOPT_SACK: 3814 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3815 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3816 opt_rx->sack_ok) { 3817 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3818 } 3819 break; 3820 #ifdef CONFIG_TCP_MD5SIG 3821 case TCPOPT_MD5SIG: 3822 /* 3823 * The MD5 Hash has already been 3824 * checked (see tcp_v{4,6}_do_rcv()). 3825 */ 3826 break; 3827 #endif 3828 case TCPOPT_FASTOPEN: 3829 tcp_parse_fastopen_option( 3830 opsize - TCPOLEN_FASTOPEN_BASE, 3831 ptr, th->syn, foc, false); 3832 break; 3833 3834 case TCPOPT_EXP: 3835 /* Fast Open option shares code 254 using a 3836 * 16 bits magic number. 3837 */ 3838 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3839 get_unaligned_be16(ptr) == 3840 TCPOPT_FASTOPEN_MAGIC) 3841 tcp_parse_fastopen_option(opsize - 3842 TCPOLEN_EXP_FASTOPEN_BASE, 3843 ptr + 2, th->syn, foc, true); 3844 break; 3845 3846 } 3847 ptr += opsize-2; 3848 length -= opsize; 3849 } 3850 } 3851 } 3852 EXPORT_SYMBOL(tcp_parse_options); 3853 3854 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3855 { 3856 const __be32 *ptr = (const __be32 *)(th + 1); 3857 3858 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3859 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3860 tp->rx_opt.saw_tstamp = 1; 3861 ++ptr; 3862 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3863 ++ptr; 3864 if (*ptr) 3865 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3866 else 3867 tp->rx_opt.rcv_tsecr = 0; 3868 return true; 3869 } 3870 return false; 3871 } 3872 3873 /* Fast parse options. This hopes to only see timestamps. 3874 * If it is wrong it falls back on tcp_parse_options(). 3875 */ 3876 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3877 const struct tcphdr *th, struct tcp_sock *tp) 3878 { 3879 /* In the spirit of fast parsing, compare doff directly to constant 3880 * values. Because equality is used, short doff can be ignored here. 3881 */ 3882 if (th->doff == (sizeof(*th) / 4)) { 3883 tp->rx_opt.saw_tstamp = 0; 3884 return false; 3885 } else if (tp->rx_opt.tstamp_ok && 3886 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3887 if (tcp_parse_aligned_timestamp(tp, th)) 3888 return true; 3889 } 3890 3891 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3892 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3893 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3894 3895 return true; 3896 } 3897 3898 #ifdef CONFIG_TCP_MD5SIG 3899 /* 3900 * Parse MD5 Signature option 3901 */ 3902 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3903 { 3904 int length = (th->doff << 2) - sizeof(*th); 3905 const u8 *ptr = (const u8 *)(th + 1); 3906 3907 /* If the TCP option is too short, we can short cut */ 3908 if (length < TCPOLEN_MD5SIG) 3909 return NULL; 3910 3911 while (length > 0) { 3912 int opcode = *ptr++; 3913 int opsize; 3914 3915 switch (opcode) { 3916 case TCPOPT_EOL: 3917 return NULL; 3918 case TCPOPT_NOP: 3919 length--; 3920 continue; 3921 default: 3922 opsize = *ptr++; 3923 if (opsize < 2 || opsize > length) 3924 return NULL; 3925 if (opcode == TCPOPT_MD5SIG) 3926 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3927 } 3928 ptr += opsize - 2; 3929 length -= opsize; 3930 } 3931 return NULL; 3932 } 3933 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3934 #endif 3935 3936 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3937 * 3938 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3939 * it can pass through stack. So, the following predicate verifies that 3940 * this segment is not used for anything but congestion avoidance or 3941 * fast retransmit. Moreover, we even are able to eliminate most of such 3942 * second order effects, if we apply some small "replay" window (~RTO) 3943 * to timestamp space. 3944 * 3945 * All these measures still do not guarantee that we reject wrapped ACKs 3946 * on networks with high bandwidth, when sequence space is recycled fastly, 3947 * but it guarantees that such events will be very rare and do not affect 3948 * connection seriously. This doesn't look nice, but alas, PAWS is really 3949 * buggy extension. 3950 * 3951 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3952 * states that events when retransmit arrives after original data are rare. 3953 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3954 * the biggest problem on large power networks even with minor reordering. 3955 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3956 * up to bandwidth of 18Gigabit/sec. 8) ] 3957 */ 3958 3959 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3960 { 3961 const struct tcp_sock *tp = tcp_sk(sk); 3962 const struct tcphdr *th = tcp_hdr(skb); 3963 u32 seq = TCP_SKB_CB(skb)->seq; 3964 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3965 3966 return (/* 1. Pure ACK with correct sequence number. */ 3967 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3968 3969 /* 2. ... and duplicate ACK. */ 3970 ack == tp->snd_una && 3971 3972 /* 3. ... and does not update window. */ 3973 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3974 3975 /* 4. ... and sits in replay window. */ 3976 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3977 } 3978 3979 static inline bool tcp_paws_discard(const struct sock *sk, 3980 const struct sk_buff *skb) 3981 { 3982 const struct tcp_sock *tp = tcp_sk(sk); 3983 3984 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3985 !tcp_disordered_ack(sk, skb); 3986 } 3987 3988 /* Check segment sequence number for validity. 3989 * 3990 * Segment controls are considered valid, if the segment 3991 * fits to the window after truncation to the window. Acceptability 3992 * of data (and SYN, FIN, of course) is checked separately. 3993 * See tcp_data_queue(), for example. 3994 * 3995 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3996 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3997 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3998 * (borrowed from freebsd) 3999 */ 4000 4001 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4002 { 4003 return !before(end_seq, tp->rcv_wup) && 4004 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4005 } 4006 4007 /* When we get a reset we do this. */ 4008 void tcp_reset(struct sock *sk) 4009 { 4010 /* We want the right error as BSD sees it (and indeed as we do). */ 4011 switch (sk->sk_state) { 4012 case TCP_SYN_SENT: 4013 sk->sk_err = ECONNREFUSED; 4014 break; 4015 case TCP_CLOSE_WAIT: 4016 sk->sk_err = EPIPE; 4017 break; 4018 case TCP_CLOSE: 4019 return; 4020 default: 4021 sk->sk_err = ECONNRESET; 4022 } 4023 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4024 smp_wmb(); 4025 4026 if (!sock_flag(sk, SOCK_DEAD)) 4027 sk->sk_error_report(sk); 4028 4029 tcp_done(sk); 4030 } 4031 4032 /* 4033 * Process the FIN bit. This now behaves as it is supposed to work 4034 * and the FIN takes effect when it is validly part of sequence 4035 * space. Not before when we get holes. 4036 * 4037 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4038 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4039 * TIME-WAIT) 4040 * 4041 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4042 * close and we go into CLOSING (and later onto TIME-WAIT) 4043 * 4044 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4045 */ 4046 void tcp_fin(struct sock *sk) 4047 { 4048 struct tcp_sock *tp = tcp_sk(sk); 4049 4050 inet_csk_schedule_ack(sk); 4051 4052 sk->sk_shutdown |= RCV_SHUTDOWN; 4053 sock_set_flag(sk, SOCK_DONE); 4054 4055 switch (sk->sk_state) { 4056 case TCP_SYN_RECV: 4057 case TCP_ESTABLISHED: 4058 /* Move to CLOSE_WAIT */ 4059 tcp_set_state(sk, TCP_CLOSE_WAIT); 4060 inet_csk(sk)->icsk_ack.pingpong = 1; 4061 break; 4062 4063 case TCP_CLOSE_WAIT: 4064 case TCP_CLOSING: 4065 /* Received a retransmission of the FIN, do 4066 * nothing. 4067 */ 4068 break; 4069 case TCP_LAST_ACK: 4070 /* RFC793: Remain in the LAST-ACK state. */ 4071 break; 4072 4073 case TCP_FIN_WAIT1: 4074 /* This case occurs when a simultaneous close 4075 * happens, we must ack the received FIN and 4076 * enter the CLOSING state. 4077 */ 4078 tcp_send_ack(sk); 4079 tcp_set_state(sk, TCP_CLOSING); 4080 break; 4081 case TCP_FIN_WAIT2: 4082 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4083 tcp_send_ack(sk); 4084 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4085 break; 4086 default: 4087 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4088 * cases we should never reach this piece of code. 4089 */ 4090 pr_err("%s: Impossible, sk->sk_state=%d\n", 4091 __func__, sk->sk_state); 4092 break; 4093 } 4094 4095 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4096 * Probably, we should reset in this case. For now drop them. 4097 */ 4098 __skb_queue_purge(&tp->out_of_order_queue); 4099 if (tcp_is_sack(tp)) 4100 tcp_sack_reset(&tp->rx_opt); 4101 sk_mem_reclaim(sk); 4102 4103 if (!sock_flag(sk, SOCK_DEAD)) { 4104 sk->sk_state_change(sk); 4105 4106 /* Do not send POLL_HUP for half duplex close. */ 4107 if (sk->sk_shutdown == SHUTDOWN_MASK || 4108 sk->sk_state == TCP_CLOSE) 4109 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4110 else 4111 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4112 } 4113 } 4114 4115 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4116 u32 end_seq) 4117 { 4118 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4119 if (before(seq, sp->start_seq)) 4120 sp->start_seq = seq; 4121 if (after(end_seq, sp->end_seq)) 4122 sp->end_seq = end_seq; 4123 return true; 4124 } 4125 return false; 4126 } 4127 4128 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4129 { 4130 struct tcp_sock *tp = tcp_sk(sk); 4131 4132 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4133 int mib_idx; 4134 4135 if (before(seq, tp->rcv_nxt)) 4136 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4137 else 4138 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4139 4140 NET_INC_STATS(sock_net(sk), mib_idx); 4141 4142 tp->rx_opt.dsack = 1; 4143 tp->duplicate_sack[0].start_seq = seq; 4144 tp->duplicate_sack[0].end_seq = end_seq; 4145 } 4146 } 4147 4148 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4149 { 4150 struct tcp_sock *tp = tcp_sk(sk); 4151 4152 if (!tp->rx_opt.dsack) 4153 tcp_dsack_set(sk, seq, end_seq); 4154 else 4155 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4156 } 4157 4158 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4159 { 4160 struct tcp_sock *tp = tcp_sk(sk); 4161 4162 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4163 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4164 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4165 tcp_enter_quickack_mode(sk); 4166 4167 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4168 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4169 4170 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4171 end_seq = tp->rcv_nxt; 4172 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4173 } 4174 } 4175 4176 tcp_send_ack(sk); 4177 } 4178 4179 /* These routines update the SACK block as out-of-order packets arrive or 4180 * in-order packets close up the sequence space. 4181 */ 4182 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4183 { 4184 int this_sack; 4185 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4186 struct tcp_sack_block *swalk = sp + 1; 4187 4188 /* See if the recent change to the first SACK eats into 4189 * or hits the sequence space of other SACK blocks, if so coalesce. 4190 */ 4191 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4192 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4193 int i; 4194 4195 /* Zap SWALK, by moving every further SACK up by one slot. 4196 * Decrease num_sacks. 4197 */ 4198 tp->rx_opt.num_sacks--; 4199 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4200 sp[i] = sp[i + 1]; 4201 continue; 4202 } 4203 this_sack++, swalk++; 4204 } 4205 } 4206 4207 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4208 { 4209 struct tcp_sock *tp = tcp_sk(sk); 4210 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4211 int cur_sacks = tp->rx_opt.num_sacks; 4212 int this_sack; 4213 4214 if (!cur_sacks) 4215 goto new_sack; 4216 4217 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4218 if (tcp_sack_extend(sp, seq, end_seq)) { 4219 /* Rotate this_sack to the first one. */ 4220 for (; this_sack > 0; this_sack--, sp--) 4221 swap(*sp, *(sp - 1)); 4222 if (cur_sacks > 1) 4223 tcp_sack_maybe_coalesce(tp); 4224 return; 4225 } 4226 } 4227 4228 /* Could not find an adjacent existing SACK, build a new one, 4229 * put it at the front, and shift everyone else down. We 4230 * always know there is at least one SACK present already here. 4231 * 4232 * If the sack array is full, forget about the last one. 4233 */ 4234 if (this_sack >= TCP_NUM_SACKS) { 4235 this_sack--; 4236 tp->rx_opt.num_sacks--; 4237 sp--; 4238 } 4239 for (; this_sack > 0; this_sack--, sp--) 4240 *sp = *(sp - 1); 4241 4242 new_sack: 4243 /* Build the new head SACK, and we're done. */ 4244 sp->start_seq = seq; 4245 sp->end_seq = end_seq; 4246 tp->rx_opt.num_sacks++; 4247 } 4248 4249 /* RCV.NXT advances, some SACKs should be eaten. */ 4250 4251 static void tcp_sack_remove(struct tcp_sock *tp) 4252 { 4253 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4254 int num_sacks = tp->rx_opt.num_sacks; 4255 int this_sack; 4256 4257 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4258 if (skb_queue_empty(&tp->out_of_order_queue)) { 4259 tp->rx_opt.num_sacks = 0; 4260 return; 4261 } 4262 4263 for (this_sack = 0; this_sack < num_sacks;) { 4264 /* Check if the start of the sack is covered by RCV.NXT. */ 4265 if (!before(tp->rcv_nxt, sp->start_seq)) { 4266 int i; 4267 4268 /* RCV.NXT must cover all the block! */ 4269 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4270 4271 /* Zap this SACK, by moving forward any other SACKS. */ 4272 for (i = this_sack+1; i < num_sacks; i++) 4273 tp->selective_acks[i-1] = tp->selective_acks[i]; 4274 num_sacks--; 4275 continue; 4276 } 4277 this_sack++; 4278 sp++; 4279 } 4280 tp->rx_opt.num_sacks = num_sacks; 4281 } 4282 4283 /** 4284 * tcp_try_coalesce - try to merge skb to prior one 4285 * @sk: socket 4286 * @to: prior buffer 4287 * @from: buffer to add in queue 4288 * @fragstolen: pointer to boolean 4289 * 4290 * Before queueing skb @from after @to, try to merge them 4291 * to reduce overall memory use and queue lengths, if cost is small. 4292 * Packets in ofo or receive queues can stay a long time. 4293 * Better try to coalesce them right now to avoid future collapses. 4294 * Returns true if caller should free @from instead of queueing it 4295 */ 4296 static bool tcp_try_coalesce(struct sock *sk, 4297 struct sk_buff *to, 4298 struct sk_buff *from, 4299 bool *fragstolen) 4300 { 4301 int delta; 4302 4303 *fragstolen = false; 4304 4305 /* Its possible this segment overlaps with prior segment in queue */ 4306 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4307 return false; 4308 4309 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4310 return false; 4311 4312 atomic_add(delta, &sk->sk_rmem_alloc); 4313 sk_mem_charge(sk, delta); 4314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4315 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4316 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4317 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4318 return true; 4319 } 4320 4321 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4322 { 4323 sk_drops_add(sk, skb); 4324 __kfree_skb(skb); 4325 } 4326 4327 /* This one checks to see if we can put data from the 4328 * out_of_order queue into the receive_queue. 4329 */ 4330 static void tcp_ofo_queue(struct sock *sk) 4331 { 4332 struct tcp_sock *tp = tcp_sk(sk); 4333 __u32 dsack_high = tp->rcv_nxt; 4334 struct sk_buff *skb, *tail; 4335 bool fragstolen, eaten; 4336 4337 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4338 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4339 break; 4340 4341 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4342 __u32 dsack = dsack_high; 4343 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4344 dsack_high = TCP_SKB_CB(skb)->end_seq; 4345 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4346 } 4347 4348 __skb_unlink(skb, &tp->out_of_order_queue); 4349 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4350 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4351 tcp_drop(sk, skb); 4352 continue; 4353 } 4354 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4355 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4356 TCP_SKB_CB(skb)->end_seq); 4357 4358 tail = skb_peek_tail(&sk->sk_receive_queue); 4359 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4360 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4361 if (!eaten) 4362 __skb_queue_tail(&sk->sk_receive_queue, skb); 4363 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4364 tcp_fin(sk); 4365 if (eaten) 4366 kfree_skb_partial(skb, fragstolen); 4367 } 4368 } 4369 4370 static bool tcp_prune_ofo_queue(struct sock *sk); 4371 static int tcp_prune_queue(struct sock *sk); 4372 4373 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4374 unsigned int size) 4375 { 4376 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4377 !sk_rmem_schedule(sk, skb, size)) { 4378 4379 if (tcp_prune_queue(sk) < 0) 4380 return -1; 4381 4382 if (!sk_rmem_schedule(sk, skb, size)) { 4383 if (!tcp_prune_ofo_queue(sk)) 4384 return -1; 4385 4386 if (!sk_rmem_schedule(sk, skb, size)) 4387 return -1; 4388 } 4389 } 4390 return 0; 4391 } 4392 4393 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4394 { 4395 struct tcp_sock *tp = tcp_sk(sk); 4396 struct sk_buff *skb1; 4397 u32 seq, end_seq; 4398 4399 tcp_ecn_check_ce(tp, skb); 4400 4401 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4402 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4403 tcp_drop(sk, skb); 4404 return; 4405 } 4406 4407 /* Disable header prediction. */ 4408 tp->pred_flags = 0; 4409 inet_csk_schedule_ack(sk); 4410 4411 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4412 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4413 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4414 4415 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4416 if (!skb1) { 4417 /* Initial out of order segment, build 1 SACK. */ 4418 if (tcp_is_sack(tp)) { 4419 tp->rx_opt.num_sacks = 1; 4420 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4421 tp->selective_acks[0].end_seq = 4422 TCP_SKB_CB(skb)->end_seq; 4423 } 4424 __skb_queue_head(&tp->out_of_order_queue, skb); 4425 goto end; 4426 } 4427 4428 seq = TCP_SKB_CB(skb)->seq; 4429 end_seq = TCP_SKB_CB(skb)->end_seq; 4430 4431 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4432 bool fragstolen; 4433 4434 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4435 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4436 } else { 4437 tcp_grow_window(sk, skb); 4438 kfree_skb_partial(skb, fragstolen); 4439 skb = NULL; 4440 } 4441 4442 if (!tp->rx_opt.num_sacks || 4443 tp->selective_acks[0].end_seq != seq) 4444 goto add_sack; 4445 4446 /* Common case: data arrive in order after hole. */ 4447 tp->selective_acks[0].end_seq = end_seq; 4448 goto end; 4449 } 4450 4451 /* Find place to insert this segment. */ 4452 while (1) { 4453 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4454 break; 4455 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4456 skb1 = NULL; 4457 break; 4458 } 4459 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4460 } 4461 4462 /* Do skb overlap to previous one? */ 4463 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4464 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4465 /* All the bits are present. Drop. */ 4466 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4467 tcp_drop(sk, skb); 4468 skb = NULL; 4469 tcp_dsack_set(sk, seq, end_seq); 4470 goto add_sack; 4471 } 4472 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4473 /* Partial overlap. */ 4474 tcp_dsack_set(sk, seq, 4475 TCP_SKB_CB(skb1)->end_seq); 4476 } else { 4477 if (skb_queue_is_first(&tp->out_of_order_queue, 4478 skb1)) 4479 skb1 = NULL; 4480 else 4481 skb1 = skb_queue_prev( 4482 &tp->out_of_order_queue, 4483 skb1); 4484 } 4485 } 4486 if (!skb1) 4487 __skb_queue_head(&tp->out_of_order_queue, skb); 4488 else 4489 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4490 4491 /* And clean segments covered by new one as whole. */ 4492 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4493 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4494 4495 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4496 break; 4497 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4498 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4499 end_seq); 4500 break; 4501 } 4502 __skb_unlink(skb1, &tp->out_of_order_queue); 4503 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4504 TCP_SKB_CB(skb1)->end_seq); 4505 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4506 tcp_drop(sk, skb1); 4507 } 4508 4509 add_sack: 4510 if (tcp_is_sack(tp)) 4511 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4512 end: 4513 if (skb) { 4514 tcp_grow_window(sk, skb); 4515 skb_set_owner_r(skb, sk); 4516 } 4517 } 4518 4519 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4520 bool *fragstolen) 4521 { 4522 int eaten; 4523 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4524 4525 __skb_pull(skb, hdrlen); 4526 eaten = (tail && 4527 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4528 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4529 if (!eaten) { 4530 __skb_queue_tail(&sk->sk_receive_queue, skb); 4531 skb_set_owner_r(skb, sk); 4532 } 4533 return eaten; 4534 } 4535 4536 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4537 { 4538 struct sk_buff *skb; 4539 int err = -ENOMEM; 4540 int data_len = 0; 4541 bool fragstolen; 4542 4543 if (size == 0) 4544 return 0; 4545 4546 if (size > PAGE_SIZE) { 4547 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4548 4549 data_len = npages << PAGE_SHIFT; 4550 size = data_len + (size & ~PAGE_MASK); 4551 } 4552 skb = alloc_skb_with_frags(size - data_len, data_len, 4553 PAGE_ALLOC_COSTLY_ORDER, 4554 &err, sk->sk_allocation); 4555 if (!skb) 4556 goto err; 4557 4558 skb_put(skb, size - data_len); 4559 skb->data_len = data_len; 4560 skb->len = size; 4561 4562 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4563 goto err_free; 4564 4565 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4566 if (err) 4567 goto err_free; 4568 4569 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4570 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4571 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4572 4573 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4574 WARN_ON_ONCE(fragstolen); /* should not happen */ 4575 __kfree_skb(skb); 4576 } 4577 return size; 4578 4579 err_free: 4580 kfree_skb(skb); 4581 err: 4582 return err; 4583 4584 } 4585 4586 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4587 { 4588 struct tcp_sock *tp = tcp_sk(sk); 4589 bool fragstolen = false; 4590 int eaten = -1; 4591 4592 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4593 __kfree_skb(skb); 4594 return; 4595 } 4596 skb_dst_drop(skb); 4597 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4598 4599 tcp_ecn_accept_cwr(tp, skb); 4600 4601 tp->rx_opt.dsack = 0; 4602 4603 /* Queue data for delivery to the user. 4604 * Packets in sequence go to the receive queue. 4605 * Out of sequence packets to the out_of_order_queue. 4606 */ 4607 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4608 if (tcp_receive_window(tp) == 0) 4609 goto out_of_window; 4610 4611 /* Ok. In sequence. In window. */ 4612 if (tp->ucopy.task == current && 4613 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4614 sock_owned_by_user(sk) && !tp->urg_data) { 4615 int chunk = min_t(unsigned int, skb->len, 4616 tp->ucopy.len); 4617 4618 __set_current_state(TASK_RUNNING); 4619 4620 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4621 tp->ucopy.len -= chunk; 4622 tp->copied_seq += chunk; 4623 eaten = (chunk == skb->len); 4624 tcp_rcv_space_adjust(sk); 4625 } 4626 } 4627 4628 if (eaten <= 0) { 4629 queue_and_out: 4630 if (eaten < 0) { 4631 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4632 sk_forced_mem_schedule(sk, skb->truesize); 4633 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4634 goto drop; 4635 } 4636 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4637 } 4638 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4639 if (skb->len) 4640 tcp_event_data_recv(sk, skb); 4641 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4642 tcp_fin(sk); 4643 4644 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4645 tcp_ofo_queue(sk); 4646 4647 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4648 * gap in queue is filled. 4649 */ 4650 if (skb_queue_empty(&tp->out_of_order_queue)) 4651 inet_csk(sk)->icsk_ack.pingpong = 0; 4652 } 4653 4654 if (tp->rx_opt.num_sacks) 4655 tcp_sack_remove(tp); 4656 4657 tcp_fast_path_check(sk); 4658 4659 if (eaten > 0) 4660 kfree_skb_partial(skb, fragstolen); 4661 if (!sock_flag(sk, SOCK_DEAD)) 4662 sk->sk_data_ready(sk); 4663 return; 4664 } 4665 4666 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4667 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4668 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4669 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4670 4671 out_of_window: 4672 tcp_enter_quickack_mode(sk); 4673 inet_csk_schedule_ack(sk); 4674 drop: 4675 tcp_drop(sk, skb); 4676 return; 4677 } 4678 4679 /* Out of window. F.e. zero window probe. */ 4680 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4681 goto out_of_window; 4682 4683 tcp_enter_quickack_mode(sk); 4684 4685 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4686 /* Partial packet, seq < rcv_next < end_seq */ 4687 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4688 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4689 TCP_SKB_CB(skb)->end_seq); 4690 4691 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4692 4693 /* If window is closed, drop tail of packet. But after 4694 * remembering D-SACK for its head made in previous line. 4695 */ 4696 if (!tcp_receive_window(tp)) 4697 goto out_of_window; 4698 goto queue_and_out; 4699 } 4700 4701 tcp_data_queue_ofo(sk, skb); 4702 } 4703 4704 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4705 struct sk_buff_head *list) 4706 { 4707 struct sk_buff *next = NULL; 4708 4709 if (!skb_queue_is_last(list, skb)) 4710 next = skb_queue_next(list, skb); 4711 4712 __skb_unlink(skb, list); 4713 __kfree_skb(skb); 4714 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4715 4716 return next; 4717 } 4718 4719 /* Collapse contiguous sequence of skbs head..tail with 4720 * sequence numbers start..end. 4721 * 4722 * If tail is NULL, this means until the end of the list. 4723 * 4724 * Segments with FIN/SYN are not collapsed (only because this 4725 * simplifies code) 4726 */ 4727 static void 4728 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4729 struct sk_buff *head, struct sk_buff *tail, 4730 u32 start, u32 end) 4731 { 4732 struct sk_buff *skb, *n; 4733 bool end_of_skbs; 4734 4735 /* First, check that queue is collapsible and find 4736 * the point where collapsing can be useful. */ 4737 skb = head; 4738 restart: 4739 end_of_skbs = true; 4740 skb_queue_walk_from_safe(list, skb, n) { 4741 if (skb == tail) 4742 break; 4743 /* No new bits? It is possible on ofo queue. */ 4744 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4745 skb = tcp_collapse_one(sk, skb, list); 4746 if (!skb) 4747 break; 4748 goto restart; 4749 } 4750 4751 /* The first skb to collapse is: 4752 * - not SYN/FIN and 4753 * - bloated or contains data before "start" or 4754 * overlaps to the next one. 4755 */ 4756 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4757 (tcp_win_from_space(skb->truesize) > skb->len || 4758 before(TCP_SKB_CB(skb)->seq, start))) { 4759 end_of_skbs = false; 4760 break; 4761 } 4762 4763 if (!skb_queue_is_last(list, skb)) { 4764 struct sk_buff *next = skb_queue_next(list, skb); 4765 if (next != tail && 4766 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4767 end_of_skbs = false; 4768 break; 4769 } 4770 } 4771 4772 /* Decided to skip this, advance start seq. */ 4773 start = TCP_SKB_CB(skb)->end_seq; 4774 } 4775 if (end_of_skbs || 4776 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4777 return; 4778 4779 while (before(start, end)) { 4780 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4781 struct sk_buff *nskb; 4782 4783 nskb = alloc_skb(copy, GFP_ATOMIC); 4784 if (!nskb) 4785 return; 4786 4787 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4788 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4789 __skb_queue_before(list, skb, nskb); 4790 skb_set_owner_r(nskb, sk); 4791 4792 /* Copy data, releasing collapsed skbs. */ 4793 while (copy > 0) { 4794 int offset = start - TCP_SKB_CB(skb)->seq; 4795 int size = TCP_SKB_CB(skb)->end_seq - start; 4796 4797 BUG_ON(offset < 0); 4798 if (size > 0) { 4799 size = min(copy, size); 4800 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4801 BUG(); 4802 TCP_SKB_CB(nskb)->end_seq += size; 4803 copy -= size; 4804 start += size; 4805 } 4806 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4807 skb = tcp_collapse_one(sk, skb, list); 4808 if (!skb || 4809 skb == tail || 4810 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4811 return; 4812 } 4813 } 4814 } 4815 } 4816 4817 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4818 * and tcp_collapse() them until all the queue is collapsed. 4819 */ 4820 static void tcp_collapse_ofo_queue(struct sock *sk) 4821 { 4822 struct tcp_sock *tp = tcp_sk(sk); 4823 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4824 struct sk_buff *head; 4825 u32 start, end; 4826 4827 if (!skb) 4828 return; 4829 4830 start = TCP_SKB_CB(skb)->seq; 4831 end = TCP_SKB_CB(skb)->end_seq; 4832 head = skb; 4833 4834 for (;;) { 4835 struct sk_buff *next = NULL; 4836 4837 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4838 next = skb_queue_next(&tp->out_of_order_queue, skb); 4839 skb = next; 4840 4841 /* Segment is terminated when we see gap or when 4842 * we are at the end of all the queue. */ 4843 if (!skb || 4844 after(TCP_SKB_CB(skb)->seq, end) || 4845 before(TCP_SKB_CB(skb)->end_seq, start)) { 4846 tcp_collapse(sk, &tp->out_of_order_queue, 4847 head, skb, start, end); 4848 head = skb; 4849 if (!skb) 4850 break; 4851 /* Start new segment */ 4852 start = TCP_SKB_CB(skb)->seq; 4853 end = TCP_SKB_CB(skb)->end_seq; 4854 } else { 4855 if (before(TCP_SKB_CB(skb)->seq, start)) 4856 start = TCP_SKB_CB(skb)->seq; 4857 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4858 end = TCP_SKB_CB(skb)->end_seq; 4859 } 4860 } 4861 } 4862 4863 /* 4864 * Purge the out-of-order queue. 4865 * Return true if queue was pruned. 4866 */ 4867 static bool tcp_prune_ofo_queue(struct sock *sk) 4868 { 4869 struct tcp_sock *tp = tcp_sk(sk); 4870 bool res = false; 4871 4872 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4873 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4874 __skb_queue_purge(&tp->out_of_order_queue); 4875 4876 /* Reset SACK state. A conforming SACK implementation will 4877 * do the same at a timeout based retransmit. When a connection 4878 * is in a sad state like this, we care only about integrity 4879 * of the connection not performance. 4880 */ 4881 if (tp->rx_opt.sack_ok) 4882 tcp_sack_reset(&tp->rx_opt); 4883 sk_mem_reclaim(sk); 4884 res = true; 4885 } 4886 return res; 4887 } 4888 4889 /* Reduce allocated memory if we can, trying to get 4890 * the socket within its memory limits again. 4891 * 4892 * Return less than zero if we should start dropping frames 4893 * until the socket owning process reads some of the data 4894 * to stabilize the situation. 4895 */ 4896 static int tcp_prune_queue(struct sock *sk) 4897 { 4898 struct tcp_sock *tp = tcp_sk(sk); 4899 4900 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4901 4902 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4903 4904 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4905 tcp_clamp_window(sk); 4906 else if (tcp_under_memory_pressure(sk)) 4907 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4908 4909 tcp_collapse_ofo_queue(sk); 4910 if (!skb_queue_empty(&sk->sk_receive_queue)) 4911 tcp_collapse(sk, &sk->sk_receive_queue, 4912 skb_peek(&sk->sk_receive_queue), 4913 NULL, 4914 tp->copied_seq, tp->rcv_nxt); 4915 sk_mem_reclaim(sk); 4916 4917 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4918 return 0; 4919 4920 /* Collapsing did not help, destructive actions follow. 4921 * This must not ever occur. */ 4922 4923 tcp_prune_ofo_queue(sk); 4924 4925 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4926 return 0; 4927 4928 /* If we are really being abused, tell the caller to silently 4929 * drop receive data on the floor. It will get retransmitted 4930 * and hopefully then we'll have sufficient space. 4931 */ 4932 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4933 4934 /* Massive buffer overcommit. */ 4935 tp->pred_flags = 0; 4936 return -1; 4937 } 4938 4939 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4940 { 4941 const struct tcp_sock *tp = tcp_sk(sk); 4942 4943 /* If the user specified a specific send buffer setting, do 4944 * not modify it. 4945 */ 4946 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4947 return false; 4948 4949 /* If we are under global TCP memory pressure, do not expand. */ 4950 if (tcp_under_memory_pressure(sk)) 4951 return false; 4952 4953 /* If we are under soft global TCP memory pressure, do not expand. */ 4954 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4955 return false; 4956 4957 /* If we filled the congestion window, do not expand. */ 4958 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4959 return false; 4960 4961 return true; 4962 } 4963 4964 /* When incoming ACK allowed to free some skb from write_queue, 4965 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4966 * on the exit from tcp input handler. 4967 * 4968 * PROBLEM: sndbuf expansion does not work well with largesend. 4969 */ 4970 static void tcp_new_space(struct sock *sk) 4971 { 4972 struct tcp_sock *tp = tcp_sk(sk); 4973 4974 if (tcp_should_expand_sndbuf(sk)) { 4975 tcp_sndbuf_expand(sk); 4976 tp->snd_cwnd_stamp = tcp_time_stamp; 4977 } 4978 4979 sk->sk_write_space(sk); 4980 } 4981 4982 static void tcp_check_space(struct sock *sk) 4983 { 4984 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4985 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4986 /* pairs with tcp_poll() */ 4987 smp_mb__after_atomic(); 4988 if (sk->sk_socket && 4989 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4990 tcp_new_space(sk); 4991 } 4992 } 4993 4994 static inline void tcp_data_snd_check(struct sock *sk) 4995 { 4996 tcp_push_pending_frames(sk); 4997 tcp_check_space(sk); 4998 } 4999 5000 /* 5001 * Check if sending an ack is needed. 5002 */ 5003 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5004 { 5005 struct tcp_sock *tp = tcp_sk(sk); 5006 5007 /* More than one full frame received... */ 5008 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5009 /* ... and right edge of window advances far enough. 5010 * (tcp_recvmsg() will send ACK otherwise). Or... 5011 */ 5012 __tcp_select_window(sk) >= tp->rcv_wnd) || 5013 /* We ACK each frame or... */ 5014 tcp_in_quickack_mode(sk) || 5015 /* We have out of order data. */ 5016 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 5017 /* Then ack it now */ 5018 tcp_send_ack(sk); 5019 } else { 5020 /* Else, send delayed ack. */ 5021 tcp_send_delayed_ack(sk); 5022 } 5023 } 5024 5025 static inline void tcp_ack_snd_check(struct sock *sk) 5026 { 5027 if (!inet_csk_ack_scheduled(sk)) { 5028 /* We sent a data segment already. */ 5029 return; 5030 } 5031 __tcp_ack_snd_check(sk, 1); 5032 } 5033 5034 /* 5035 * This routine is only called when we have urgent data 5036 * signaled. Its the 'slow' part of tcp_urg. It could be 5037 * moved inline now as tcp_urg is only called from one 5038 * place. We handle URGent data wrong. We have to - as 5039 * BSD still doesn't use the correction from RFC961. 5040 * For 1003.1g we should support a new option TCP_STDURG to permit 5041 * either form (or just set the sysctl tcp_stdurg). 5042 */ 5043 5044 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5045 { 5046 struct tcp_sock *tp = tcp_sk(sk); 5047 u32 ptr = ntohs(th->urg_ptr); 5048 5049 if (ptr && !sysctl_tcp_stdurg) 5050 ptr--; 5051 ptr += ntohl(th->seq); 5052 5053 /* Ignore urgent data that we've already seen and read. */ 5054 if (after(tp->copied_seq, ptr)) 5055 return; 5056 5057 /* Do not replay urg ptr. 5058 * 5059 * NOTE: interesting situation not covered by specs. 5060 * Misbehaving sender may send urg ptr, pointing to segment, 5061 * which we already have in ofo queue. We are not able to fetch 5062 * such data and will stay in TCP_URG_NOTYET until will be eaten 5063 * by recvmsg(). Seems, we are not obliged to handle such wicked 5064 * situations. But it is worth to think about possibility of some 5065 * DoSes using some hypothetical application level deadlock. 5066 */ 5067 if (before(ptr, tp->rcv_nxt)) 5068 return; 5069 5070 /* Do we already have a newer (or duplicate) urgent pointer? */ 5071 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5072 return; 5073 5074 /* Tell the world about our new urgent pointer. */ 5075 sk_send_sigurg(sk); 5076 5077 /* We may be adding urgent data when the last byte read was 5078 * urgent. To do this requires some care. We cannot just ignore 5079 * tp->copied_seq since we would read the last urgent byte again 5080 * as data, nor can we alter copied_seq until this data arrives 5081 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5082 * 5083 * NOTE. Double Dutch. Rendering to plain English: author of comment 5084 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5085 * and expect that both A and B disappear from stream. This is _wrong_. 5086 * Though this happens in BSD with high probability, this is occasional. 5087 * Any application relying on this is buggy. Note also, that fix "works" 5088 * only in this artificial test. Insert some normal data between A and B and we will 5089 * decline of BSD again. Verdict: it is better to remove to trap 5090 * buggy users. 5091 */ 5092 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5093 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5094 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5095 tp->copied_seq++; 5096 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5097 __skb_unlink(skb, &sk->sk_receive_queue); 5098 __kfree_skb(skb); 5099 } 5100 } 5101 5102 tp->urg_data = TCP_URG_NOTYET; 5103 tp->urg_seq = ptr; 5104 5105 /* Disable header prediction. */ 5106 tp->pred_flags = 0; 5107 } 5108 5109 /* This is the 'fast' part of urgent handling. */ 5110 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5111 { 5112 struct tcp_sock *tp = tcp_sk(sk); 5113 5114 /* Check if we get a new urgent pointer - normally not. */ 5115 if (th->urg) 5116 tcp_check_urg(sk, th); 5117 5118 /* Do we wait for any urgent data? - normally not... */ 5119 if (tp->urg_data == TCP_URG_NOTYET) { 5120 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5121 th->syn; 5122 5123 /* Is the urgent pointer pointing into this packet? */ 5124 if (ptr < skb->len) { 5125 u8 tmp; 5126 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5127 BUG(); 5128 tp->urg_data = TCP_URG_VALID | tmp; 5129 if (!sock_flag(sk, SOCK_DEAD)) 5130 sk->sk_data_ready(sk); 5131 } 5132 } 5133 } 5134 5135 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5136 { 5137 struct tcp_sock *tp = tcp_sk(sk); 5138 int chunk = skb->len - hlen; 5139 int err; 5140 5141 if (skb_csum_unnecessary(skb)) 5142 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5143 else 5144 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5145 5146 if (!err) { 5147 tp->ucopy.len -= chunk; 5148 tp->copied_seq += chunk; 5149 tcp_rcv_space_adjust(sk); 5150 } 5151 5152 return err; 5153 } 5154 5155 /* Does PAWS and seqno based validation of an incoming segment, flags will 5156 * play significant role here. 5157 */ 5158 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5159 const struct tcphdr *th, int syn_inerr) 5160 { 5161 struct tcp_sock *tp = tcp_sk(sk); 5162 5163 /* RFC1323: H1. Apply PAWS check first. */ 5164 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5165 tcp_paws_discard(sk, skb)) { 5166 if (!th->rst) { 5167 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5168 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5169 LINUX_MIB_TCPACKSKIPPEDPAWS, 5170 &tp->last_oow_ack_time)) 5171 tcp_send_dupack(sk, skb); 5172 goto discard; 5173 } 5174 /* Reset is accepted even if it did not pass PAWS. */ 5175 } 5176 5177 /* Step 1: check sequence number */ 5178 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5179 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5180 * (RST) segments are validated by checking their SEQ-fields." 5181 * And page 69: "If an incoming segment is not acceptable, 5182 * an acknowledgment should be sent in reply (unless the RST 5183 * bit is set, if so drop the segment and return)". 5184 */ 5185 if (!th->rst) { 5186 if (th->syn) 5187 goto syn_challenge; 5188 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5189 LINUX_MIB_TCPACKSKIPPEDSEQ, 5190 &tp->last_oow_ack_time)) 5191 tcp_send_dupack(sk, skb); 5192 } 5193 goto discard; 5194 } 5195 5196 /* Step 2: check RST bit */ 5197 if (th->rst) { 5198 /* RFC 5961 3.2 : 5199 * If sequence number exactly matches RCV.NXT, then 5200 * RESET the connection 5201 * else 5202 * Send a challenge ACK 5203 */ 5204 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5205 tcp_reset(sk); 5206 else 5207 tcp_send_challenge_ack(sk, skb); 5208 goto discard; 5209 } 5210 5211 /* step 3: check security and precedence [ignored] */ 5212 5213 /* step 4: Check for a SYN 5214 * RFC 5961 4.2 : Send a challenge ack 5215 */ 5216 if (th->syn) { 5217 syn_challenge: 5218 if (syn_inerr) 5219 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5220 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5221 tcp_send_challenge_ack(sk, skb); 5222 goto discard; 5223 } 5224 5225 return true; 5226 5227 discard: 5228 tcp_drop(sk, skb); 5229 return false; 5230 } 5231 5232 /* 5233 * TCP receive function for the ESTABLISHED state. 5234 * 5235 * It is split into a fast path and a slow path. The fast path is 5236 * disabled when: 5237 * - A zero window was announced from us - zero window probing 5238 * is only handled properly in the slow path. 5239 * - Out of order segments arrived. 5240 * - Urgent data is expected. 5241 * - There is no buffer space left 5242 * - Unexpected TCP flags/window values/header lengths are received 5243 * (detected by checking the TCP header against pred_flags) 5244 * - Data is sent in both directions. Fast path only supports pure senders 5245 * or pure receivers (this means either the sequence number or the ack 5246 * value must stay constant) 5247 * - Unexpected TCP option. 5248 * 5249 * When these conditions are not satisfied it drops into a standard 5250 * receive procedure patterned after RFC793 to handle all cases. 5251 * The first three cases are guaranteed by proper pred_flags setting, 5252 * the rest is checked inline. Fast processing is turned on in 5253 * tcp_data_queue when everything is OK. 5254 */ 5255 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5256 const struct tcphdr *th, unsigned int len) 5257 { 5258 struct tcp_sock *tp = tcp_sk(sk); 5259 5260 if (unlikely(!sk->sk_rx_dst)) 5261 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5262 /* 5263 * Header prediction. 5264 * The code loosely follows the one in the famous 5265 * "30 instruction TCP receive" Van Jacobson mail. 5266 * 5267 * Van's trick is to deposit buffers into socket queue 5268 * on a device interrupt, to call tcp_recv function 5269 * on the receive process context and checksum and copy 5270 * the buffer to user space. smart... 5271 * 5272 * Our current scheme is not silly either but we take the 5273 * extra cost of the net_bh soft interrupt processing... 5274 * We do checksum and copy also but from device to kernel. 5275 */ 5276 5277 tp->rx_opt.saw_tstamp = 0; 5278 5279 /* pred_flags is 0xS?10 << 16 + snd_wnd 5280 * if header_prediction is to be made 5281 * 'S' will always be tp->tcp_header_len >> 2 5282 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5283 * turn it off (when there are holes in the receive 5284 * space for instance) 5285 * PSH flag is ignored. 5286 */ 5287 5288 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5289 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5290 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5291 int tcp_header_len = tp->tcp_header_len; 5292 5293 /* Timestamp header prediction: tcp_header_len 5294 * is automatically equal to th->doff*4 due to pred_flags 5295 * match. 5296 */ 5297 5298 /* Check timestamp */ 5299 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5300 /* No? Slow path! */ 5301 if (!tcp_parse_aligned_timestamp(tp, th)) 5302 goto slow_path; 5303 5304 /* If PAWS failed, check it more carefully in slow path */ 5305 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5306 goto slow_path; 5307 5308 /* DO NOT update ts_recent here, if checksum fails 5309 * and timestamp was corrupted part, it will result 5310 * in a hung connection since we will drop all 5311 * future packets due to the PAWS test. 5312 */ 5313 } 5314 5315 if (len <= tcp_header_len) { 5316 /* Bulk data transfer: sender */ 5317 if (len == tcp_header_len) { 5318 /* Predicted packet is in window by definition. 5319 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5320 * Hence, check seq<=rcv_wup reduces to: 5321 */ 5322 if (tcp_header_len == 5323 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5324 tp->rcv_nxt == tp->rcv_wup) 5325 tcp_store_ts_recent(tp); 5326 5327 /* We know that such packets are checksummed 5328 * on entry. 5329 */ 5330 tcp_ack(sk, skb, 0); 5331 __kfree_skb(skb); 5332 tcp_data_snd_check(sk); 5333 return; 5334 } else { /* Header too small */ 5335 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5336 goto discard; 5337 } 5338 } else { 5339 int eaten = 0; 5340 bool fragstolen = false; 5341 5342 if (tp->ucopy.task == current && 5343 tp->copied_seq == tp->rcv_nxt && 5344 len - tcp_header_len <= tp->ucopy.len && 5345 sock_owned_by_user(sk)) { 5346 __set_current_state(TASK_RUNNING); 5347 5348 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5349 /* Predicted packet is in window by definition. 5350 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5351 * Hence, check seq<=rcv_wup reduces to: 5352 */ 5353 if (tcp_header_len == 5354 (sizeof(struct tcphdr) + 5355 TCPOLEN_TSTAMP_ALIGNED) && 5356 tp->rcv_nxt == tp->rcv_wup) 5357 tcp_store_ts_recent(tp); 5358 5359 tcp_rcv_rtt_measure_ts(sk, skb); 5360 5361 __skb_pull(skb, tcp_header_len); 5362 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5363 NET_INC_STATS(sock_net(sk), 5364 LINUX_MIB_TCPHPHITSTOUSER); 5365 eaten = 1; 5366 } 5367 } 5368 if (!eaten) { 5369 if (tcp_checksum_complete(skb)) 5370 goto csum_error; 5371 5372 if ((int)skb->truesize > sk->sk_forward_alloc) 5373 goto step5; 5374 5375 /* Predicted packet is in window by definition. 5376 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5377 * Hence, check seq<=rcv_wup reduces to: 5378 */ 5379 if (tcp_header_len == 5380 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5381 tp->rcv_nxt == tp->rcv_wup) 5382 tcp_store_ts_recent(tp); 5383 5384 tcp_rcv_rtt_measure_ts(sk, skb); 5385 5386 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5387 5388 /* Bulk data transfer: receiver */ 5389 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5390 &fragstolen); 5391 } 5392 5393 tcp_event_data_recv(sk, skb); 5394 5395 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5396 /* Well, only one small jumplet in fast path... */ 5397 tcp_ack(sk, skb, FLAG_DATA); 5398 tcp_data_snd_check(sk); 5399 if (!inet_csk_ack_scheduled(sk)) 5400 goto no_ack; 5401 } 5402 5403 __tcp_ack_snd_check(sk, 0); 5404 no_ack: 5405 if (eaten) 5406 kfree_skb_partial(skb, fragstolen); 5407 sk->sk_data_ready(sk); 5408 return; 5409 } 5410 } 5411 5412 slow_path: 5413 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5414 goto csum_error; 5415 5416 if (!th->ack && !th->rst && !th->syn) 5417 goto discard; 5418 5419 /* 5420 * Standard slow path. 5421 */ 5422 5423 if (!tcp_validate_incoming(sk, skb, th, 1)) 5424 return; 5425 5426 step5: 5427 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5428 goto discard; 5429 5430 tcp_rcv_rtt_measure_ts(sk, skb); 5431 5432 /* Process urgent data. */ 5433 tcp_urg(sk, skb, th); 5434 5435 /* step 7: process the segment text */ 5436 tcp_data_queue(sk, skb); 5437 5438 tcp_data_snd_check(sk); 5439 tcp_ack_snd_check(sk); 5440 return; 5441 5442 csum_error: 5443 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5444 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5445 5446 discard: 5447 tcp_drop(sk, skb); 5448 } 5449 EXPORT_SYMBOL(tcp_rcv_established); 5450 5451 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5452 { 5453 struct tcp_sock *tp = tcp_sk(sk); 5454 struct inet_connection_sock *icsk = inet_csk(sk); 5455 5456 tcp_set_state(sk, TCP_ESTABLISHED); 5457 5458 if (skb) { 5459 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5460 security_inet_conn_established(sk, skb); 5461 } 5462 5463 /* Make sure socket is routed, for correct metrics. */ 5464 icsk->icsk_af_ops->rebuild_header(sk); 5465 5466 tcp_init_metrics(sk); 5467 5468 tcp_init_congestion_control(sk); 5469 5470 /* Prevent spurious tcp_cwnd_restart() on first data 5471 * packet. 5472 */ 5473 tp->lsndtime = tcp_time_stamp; 5474 5475 tcp_init_buffer_space(sk); 5476 5477 if (sock_flag(sk, SOCK_KEEPOPEN)) 5478 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5479 5480 if (!tp->rx_opt.snd_wscale) 5481 __tcp_fast_path_on(tp, tp->snd_wnd); 5482 else 5483 tp->pred_flags = 0; 5484 5485 if (!sock_flag(sk, SOCK_DEAD)) { 5486 sk->sk_state_change(sk); 5487 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5488 } 5489 } 5490 5491 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5492 struct tcp_fastopen_cookie *cookie) 5493 { 5494 struct tcp_sock *tp = tcp_sk(sk); 5495 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5496 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5497 bool syn_drop = false; 5498 5499 if (mss == tp->rx_opt.user_mss) { 5500 struct tcp_options_received opt; 5501 5502 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5503 tcp_clear_options(&opt); 5504 opt.user_mss = opt.mss_clamp = 0; 5505 tcp_parse_options(synack, &opt, 0, NULL); 5506 mss = opt.mss_clamp; 5507 } 5508 5509 if (!tp->syn_fastopen) { 5510 /* Ignore an unsolicited cookie */ 5511 cookie->len = -1; 5512 } else if (tp->total_retrans) { 5513 /* SYN timed out and the SYN-ACK neither has a cookie nor 5514 * acknowledges data. Presumably the remote received only 5515 * the retransmitted (regular) SYNs: either the original 5516 * SYN-data or the corresponding SYN-ACK was dropped. 5517 */ 5518 syn_drop = (cookie->len < 0 && data); 5519 } else if (cookie->len < 0 && !tp->syn_data) { 5520 /* We requested a cookie but didn't get it. If we did not use 5521 * the (old) exp opt format then try so next time (try_exp=1). 5522 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5523 */ 5524 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5525 } 5526 5527 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5528 5529 if (data) { /* Retransmit unacked data in SYN */ 5530 tcp_for_write_queue_from(data, sk) { 5531 if (data == tcp_send_head(sk) || 5532 __tcp_retransmit_skb(sk, data, 1)) 5533 break; 5534 } 5535 tcp_rearm_rto(sk); 5536 NET_INC_STATS(sock_net(sk), 5537 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5538 return true; 5539 } 5540 tp->syn_data_acked = tp->syn_data; 5541 if (tp->syn_data_acked) 5542 NET_INC_STATS(sock_net(sk), 5543 LINUX_MIB_TCPFASTOPENACTIVE); 5544 5545 tcp_fastopen_add_skb(sk, synack); 5546 5547 return false; 5548 } 5549 5550 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5551 const struct tcphdr *th) 5552 { 5553 struct inet_connection_sock *icsk = inet_csk(sk); 5554 struct tcp_sock *tp = tcp_sk(sk); 5555 struct tcp_fastopen_cookie foc = { .len = -1 }; 5556 int saved_clamp = tp->rx_opt.mss_clamp; 5557 5558 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5559 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5560 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5561 5562 if (th->ack) { 5563 /* rfc793: 5564 * "If the state is SYN-SENT then 5565 * first check the ACK bit 5566 * If the ACK bit is set 5567 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5568 * a reset (unless the RST bit is set, if so drop 5569 * the segment and return)" 5570 */ 5571 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5572 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5573 goto reset_and_undo; 5574 5575 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5576 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5577 tcp_time_stamp)) { 5578 NET_INC_STATS(sock_net(sk), 5579 LINUX_MIB_PAWSACTIVEREJECTED); 5580 goto reset_and_undo; 5581 } 5582 5583 /* Now ACK is acceptable. 5584 * 5585 * "If the RST bit is set 5586 * If the ACK was acceptable then signal the user "error: 5587 * connection reset", drop the segment, enter CLOSED state, 5588 * delete TCB, and return." 5589 */ 5590 5591 if (th->rst) { 5592 tcp_reset(sk); 5593 goto discard; 5594 } 5595 5596 /* rfc793: 5597 * "fifth, if neither of the SYN or RST bits is set then 5598 * drop the segment and return." 5599 * 5600 * See note below! 5601 * --ANK(990513) 5602 */ 5603 if (!th->syn) 5604 goto discard_and_undo; 5605 5606 /* rfc793: 5607 * "If the SYN bit is on ... 5608 * are acceptable then ... 5609 * (our SYN has been ACKed), change the connection 5610 * state to ESTABLISHED..." 5611 */ 5612 5613 tcp_ecn_rcv_synack(tp, th); 5614 5615 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5616 tcp_ack(sk, skb, FLAG_SLOWPATH); 5617 5618 /* Ok.. it's good. Set up sequence numbers and 5619 * move to established. 5620 */ 5621 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5622 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5623 5624 /* RFC1323: The window in SYN & SYN/ACK segments is 5625 * never scaled. 5626 */ 5627 tp->snd_wnd = ntohs(th->window); 5628 5629 if (!tp->rx_opt.wscale_ok) { 5630 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5631 tp->window_clamp = min(tp->window_clamp, 65535U); 5632 } 5633 5634 if (tp->rx_opt.saw_tstamp) { 5635 tp->rx_opt.tstamp_ok = 1; 5636 tp->tcp_header_len = 5637 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5638 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5639 tcp_store_ts_recent(tp); 5640 } else { 5641 tp->tcp_header_len = sizeof(struct tcphdr); 5642 } 5643 5644 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5645 tcp_enable_fack(tp); 5646 5647 tcp_mtup_init(sk); 5648 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5649 tcp_initialize_rcv_mss(sk); 5650 5651 /* Remember, tcp_poll() does not lock socket! 5652 * Change state from SYN-SENT only after copied_seq 5653 * is initialized. */ 5654 tp->copied_seq = tp->rcv_nxt; 5655 5656 smp_mb(); 5657 5658 tcp_finish_connect(sk, skb); 5659 5660 if ((tp->syn_fastopen || tp->syn_data) && 5661 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5662 return -1; 5663 5664 if (sk->sk_write_pending || 5665 icsk->icsk_accept_queue.rskq_defer_accept || 5666 icsk->icsk_ack.pingpong) { 5667 /* Save one ACK. Data will be ready after 5668 * several ticks, if write_pending is set. 5669 * 5670 * It may be deleted, but with this feature tcpdumps 5671 * look so _wonderfully_ clever, that I was not able 5672 * to stand against the temptation 8) --ANK 5673 */ 5674 inet_csk_schedule_ack(sk); 5675 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5676 tcp_enter_quickack_mode(sk); 5677 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5678 TCP_DELACK_MAX, TCP_RTO_MAX); 5679 5680 discard: 5681 tcp_drop(sk, skb); 5682 return 0; 5683 } else { 5684 tcp_send_ack(sk); 5685 } 5686 return -1; 5687 } 5688 5689 /* No ACK in the segment */ 5690 5691 if (th->rst) { 5692 /* rfc793: 5693 * "If the RST bit is set 5694 * 5695 * Otherwise (no ACK) drop the segment and return." 5696 */ 5697 5698 goto discard_and_undo; 5699 } 5700 5701 /* PAWS check. */ 5702 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5703 tcp_paws_reject(&tp->rx_opt, 0)) 5704 goto discard_and_undo; 5705 5706 if (th->syn) { 5707 /* We see SYN without ACK. It is attempt of 5708 * simultaneous connect with crossed SYNs. 5709 * Particularly, it can be connect to self. 5710 */ 5711 tcp_set_state(sk, TCP_SYN_RECV); 5712 5713 if (tp->rx_opt.saw_tstamp) { 5714 tp->rx_opt.tstamp_ok = 1; 5715 tcp_store_ts_recent(tp); 5716 tp->tcp_header_len = 5717 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5718 } else { 5719 tp->tcp_header_len = sizeof(struct tcphdr); 5720 } 5721 5722 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5723 tp->copied_seq = tp->rcv_nxt; 5724 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5725 5726 /* RFC1323: The window in SYN & SYN/ACK segments is 5727 * never scaled. 5728 */ 5729 tp->snd_wnd = ntohs(th->window); 5730 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5731 tp->max_window = tp->snd_wnd; 5732 5733 tcp_ecn_rcv_syn(tp, th); 5734 5735 tcp_mtup_init(sk); 5736 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5737 tcp_initialize_rcv_mss(sk); 5738 5739 tcp_send_synack(sk); 5740 #if 0 5741 /* Note, we could accept data and URG from this segment. 5742 * There are no obstacles to make this (except that we must 5743 * either change tcp_recvmsg() to prevent it from returning data 5744 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5745 * 5746 * However, if we ignore data in ACKless segments sometimes, 5747 * we have no reasons to accept it sometimes. 5748 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5749 * is not flawless. So, discard packet for sanity. 5750 * Uncomment this return to process the data. 5751 */ 5752 return -1; 5753 #else 5754 goto discard; 5755 #endif 5756 } 5757 /* "fifth, if neither of the SYN or RST bits is set then 5758 * drop the segment and return." 5759 */ 5760 5761 discard_and_undo: 5762 tcp_clear_options(&tp->rx_opt); 5763 tp->rx_opt.mss_clamp = saved_clamp; 5764 goto discard; 5765 5766 reset_and_undo: 5767 tcp_clear_options(&tp->rx_opt); 5768 tp->rx_opt.mss_clamp = saved_clamp; 5769 return 1; 5770 } 5771 5772 /* 5773 * This function implements the receiving procedure of RFC 793 for 5774 * all states except ESTABLISHED and TIME_WAIT. 5775 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5776 * address independent. 5777 */ 5778 5779 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5780 { 5781 struct tcp_sock *tp = tcp_sk(sk); 5782 struct inet_connection_sock *icsk = inet_csk(sk); 5783 const struct tcphdr *th = tcp_hdr(skb); 5784 struct request_sock *req; 5785 int queued = 0; 5786 bool acceptable; 5787 5788 switch (sk->sk_state) { 5789 case TCP_CLOSE: 5790 goto discard; 5791 5792 case TCP_LISTEN: 5793 if (th->ack) 5794 return 1; 5795 5796 if (th->rst) 5797 goto discard; 5798 5799 if (th->syn) { 5800 if (th->fin) 5801 goto discard; 5802 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5803 return 1; 5804 5805 consume_skb(skb); 5806 return 0; 5807 } 5808 goto discard; 5809 5810 case TCP_SYN_SENT: 5811 tp->rx_opt.saw_tstamp = 0; 5812 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5813 if (queued >= 0) 5814 return queued; 5815 5816 /* Do step6 onward by hand. */ 5817 tcp_urg(sk, skb, th); 5818 __kfree_skb(skb); 5819 tcp_data_snd_check(sk); 5820 return 0; 5821 } 5822 5823 tp->rx_opt.saw_tstamp = 0; 5824 req = tp->fastopen_rsk; 5825 if (req) { 5826 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5827 sk->sk_state != TCP_FIN_WAIT1); 5828 5829 if (!tcp_check_req(sk, skb, req, true)) 5830 goto discard; 5831 } 5832 5833 if (!th->ack && !th->rst && !th->syn) 5834 goto discard; 5835 5836 if (!tcp_validate_incoming(sk, skb, th, 0)) 5837 return 0; 5838 5839 /* step 5: check the ACK field */ 5840 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5841 FLAG_UPDATE_TS_RECENT) > 0; 5842 5843 switch (sk->sk_state) { 5844 case TCP_SYN_RECV: 5845 if (!acceptable) 5846 return 1; 5847 5848 if (!tp->srtt_us) 5849 tcp_synack_rtt_meas(sk, req); 5850 5851 /* Once we leave TCP_SYN_RECV, we no longer need req 5852 * so release it. 5853 */ 5854 if (req) { 5855 tp->total_retrans = req->num_retrans; 5856 reqsk_fastopen_remove(sk, req, false); 5857 } else { 5858 /* Make sure socket is routed, for correct metrics. */ 5859 icsk->icsk_af_ops->rebuild_header(sk); 5860 tcp_init_congestion_control(sk); 5861 5862 tcp_mtup_init(sk); 5863 tp->copied_seq = tp->rcv_nxt; 5864 tcp_init_buffer_space(sk); 5865 } 5866 smp_mb(); 5867 tcp_set_state(sk, TCP_ESTABLISHED); 5868 sk->sk_state_change(sk); 5869 5870 /* Note, that this wakeup is only for marginal crossed SYN case. 5871 * Passively open sockets are not waked up, because 5872 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5873 */ 5874 if (sk->sk_socket) 5875 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5876 5877 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5878 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5879 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5880 5881 if (tp->rx_opt.tstamp_ok) 5882 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5883 5884 if (req) { 5885 /* Re-arm the timer because data may have been sent out. 5886 * This is similar to the regular data transmission case 5887 * when new data has just been ack'ed. 5888 * 5889 * (TFO) - we could try to be more aggressive and 5890 * retransmitting any data sooner based on when they 5891 * are sent out. 5892 */ 5893 tcp_rearm_rto(sk); 5894 } else 5895 tcp_init_metrics(sk); 5896 5897 tcp_update_pacing_rate(sk); 5898 5899 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5900 tp->lsndtime = tcp_time_stamp; 5901 5902 tcp_initialize_rcv_mss(sk); 5903 tcp_fast_path_on(tp); 5904 break; 5905 5906 case TCP_FIN_WAIT1: { 5907 struct dst_entry *dst; 5908 int tmo; 5909 5910 /* If we enter the TCP_FIN_WAIT1 state and we are a 5911 * Fast Open socket and this is the first acceptable 5912 * ACK we have received, this would have acknowledged 5913 * our SYNACK so stop the SYNACK timer. 5914 */ 5915 if (req) { 5916 /* Return RST if ack_seq is invalid. 5917 * Note that RFC793 only says to generate a 5918 * DUPACK for it but for TCP Fast Open it seems 5919 * better to treat this case like TCP_SYN_RECV 5920 * above. 5921 */ 5922 if (!acceptable) 5923 return 1; 5924 /* We no longer need the request sock. */ 5925 reqsk_fastopen_remove(sk, req, false); 5926 tcp_rearm_rto(sk); 5927 } 5928 if (tp->snd_una != tp->write_seq) 5929 break; 5930 5931 tcp_set_state(sk, TCP_FIN_WAIT2); 5932 sk->sk_shutdown |= SEND_SHUTDOWN; 5933 5934 dst = __sk_dst_get(sk); 5935 if (dst) 5936 dst_confirm(dst); 5937 5938 if (!sock_flag(sk, SOCK_DEAD)) { 5939 /* Wake up lingering close() */ 5940 sk->sk_state_change(sk); 5941 break; 5942 } 5943 5944 if (tp->linger2 < 0 || 5945 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5946 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5947 tcp_done(sk); 5948 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5949 return 1; 5950 } 5951 5952 tmo = tcp_fin_time(sk); 5953 if (tmo > TCP_TIMEWAIT_LEN) { 5954 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5955 } else if (th->fin || sock_owned_by_user(sk)) { 5956 /* Bad case. We could lose such FIN otherwise. 5957 * It is not a big problem, but it looks confusing 5958 * and not so rare event. We still can lose it now, 5959 * if it spins in bh_lock_sock(), but it is really 5960 * marginal case. 5961 */ 5962 inet_csk_reset_keepalive_timer(sk, tmo); 5963 } else { 5964 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5965 goto discard; 5966 } 5967 break; 5968 } 5969 5970 case TCP_CLOSING: 5971 if (tp->snd_una == tp->write_seq) { 5972 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5973 goto discard; 5974 } 5975 break; 5976 5977 case TCP_LAST_ACK: 5978 if (tp->snd_una == tp->write_seq) { 5979 tcp_update_metrics(sk); 5980 tcp_done(sk); 5981 goto discard; 5982 } 5983 break; 5984 } 5985 5986 /* step 6: check the URG bit */ 5987 tcp_urg(sk, skb, th); 5988 5989 /* step 7: process the segment text */ 5990 switch (sk->sk_state) { 5991 case TCP_CLOSE_WAIT: 5992 case TCP_CLOSING: 5993 case TCP_LAST_ACK: 5994 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5995 break; 5996 case TCP_FIN_WAIT1: 5997 case TCP_FIN_WAIT2: 5998 /* RFC 793 says to queue data in these states, 5999 * RFC 1122 says we MUST send a reset. 6000 * BSD 4.4 also does reset. 6001 */ 6002 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6003 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6004 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6005 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6006 tcp_reset(sk); 6007 return 1; 6008 } 6009 } 6010 /* Fall through */ 6011 case TCP_ESTABLISHED: 6012 tcp_data_queue(sk, skb); 6013 queued = 1; 6014 break; 6015 } 6016 6017 /* tcp_data could move socket to TIME-WAIT */ 6018 if (sk->sk_state != TCP_CLOSE) { 6019 tcp_data_snd_check(sk); 6020 tcp_ack_snd_check(sk); 6021 } 6022 6023 if (!queued) { 6024 discard: 6025 tcp_drop(sk, skb); 6026 } 6027 return 0; 6028 } 6029 EXPORT_SYMBOL(tcp_rcv_state_process); 6030 6031 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6032 { 6033 struct inet_request_sock *ireq = inet_rsk(req); 6034 6035 if (family == AF_INET) 6036 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6037 &ireq->ir_rmt_addr, port); 6038 #if IS_ENABLED(CONFIG_IPV6) 6039 else if (family == AF_INET6) 6040 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6041 &ireq->ir_v6_rmt_addr, port); 6042 #endif 6043 } 6044 6045 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6046 * 6047 * If we receive a SYN packet with these bits set, it means a 6048 * network is playing bad games with TOS bits. In order to 6049 * avoid possible false congestion notifications, we disable 6050 * TCP ECN negotiation. 6051 * 6052 * Exception: tcp_ca wants ECN. This is required for DCTCP 6053 * congestion control: Linux DCTCP asserts ECT on all packets, 6054 * including SYN, which is most optimal solution; however, 6055 * others, such as FreeBSD do not. 6056 */ 6057 static void tcp_ecn_create_request(struct request_sock *req, 6058 const struct sk_buff *skb, 6059 const struct sock *listen_sk, 6060 const struct dst_entry *dst) 6061 { 6062 const struct tcphdr *th = tcp_hdr(skb); 6063 const struct net *net = sock_net(listen_sk); 6064 bool th_ecn = th->ece && th->cwr; 6065 bool ect, ecn_ok; 6066 u32 ecn_ok_dst; 6067 6068 if (!th_ecn) 6069 return; 6070 6071 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6072 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6073 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6074 6075 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6076 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6077 inet_rsk(req)->ecn_ok = 1; 6078 } 6079 6080 static void tcp_openreq_init(struct request_sock *req, 6081 const struct tcp_options_received *rx_opt, 6082 struct sk_buff *skb, const struct sock *sk) 6083 { 6084 struct inet_request_sock *ireq = inet_rsk(req); 6085 6086 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6087 req->cookie_ts = 0; 6088 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6089 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6090 skb_mstamp_get(&tcp_rsk(req)->snt_synack); 6091 tcp_rsk(req)->last_oow_ack_time = 0; 6092 req->mss = rx_opt->mss_clamp; 6093 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6094 ireq->tstamp_ok = rx_opt->tstamp_ok; 6095 ireq->sack_ok = rx_opt->sack_ok; 6096 ireq->snd_wscale = rx_opt->snd_wscale; 6097 ireq->wscale_ok = rx_opt->wscale_ok; 6098 ireq->acked = 0; 6099 ireq->ecn_ok = 0; 6100 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6101 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6102 ireq->ir_mark = inet_request_mark(sk, skb); 6103 } 6104 6105 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6106 struct sock *sk_listener, 6107 bool attach_listener) 6108 { 6109 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6110 attach_listener); 6111 6112 if (req) { 6113 struct inet_request_sock *ireq = inet_rsk(req); 6114 6115 kmemcheck_annotate_bitfield(ireq, flags); 6116 ireq->opt = NULL; 6117 atomic64_set(&ireq->ir_cookie, 0); 6118 ireq->ireq_state = TCP_NEW_SYN_RECV; 6119 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6120 ireq->ireq_family = sk_listener->sk_family; 6121 } 6122 6123 return req; 6124 } 6125 EXPORT_SYMBOL(inet_reqsk_alloc); 6126 6127 /* 6128 * Return true if a syncookie should be sent 6129 */ 6130 static bool tcp_syn_flood_action(const struct sock *sk, 6131 const struct sk_buff *skb, 6132 const char *proto) 6133 { 6134 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6135 const char *msg = "Dropping request"; 6136 bool want_cookie = false; 6137 struct net *net = sock_net(sk); 6138 6139 #ifdef CONFIG_SYN_COOKIES 6140 if (net->ipv4.sysctl_tcp_syncookies) { 6141 msg = "Sending cookies"; 6142 want_cookie = true; 6143 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6144 } else 6145 #endif 6146 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6147 6148 if (!queue->synflood_warned && 6149 net->ipv4.sysctl_tcp_syncookies != 2 && 6150 xchg(&queue->synflood_warned, 1) == 0) 6151 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6152 proto, ntohs(tcp_hdr(skb)->dest), msg); 6153 6154 return want_cookie; 6155 } 6156 6157 static void tcp_reqsk_record_syn(const struct sock *sk, 6158 struct request_sock *req, 6159 const struct sk_buff *skb) 6160 { 6161 if (tcp_sk(sk)->save_syn) { 6162 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6163 u32 *copy; 6164 6165 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6166 if (copy) { 6167 copy[0] = len; 6168 memcpy(©[1], skb_network_header(skb), len); 6169 req->saved_syn = copy; 6170 } 6171 } 6172 } 6173 6174 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6175 const struct tcp_request_sock_ops *af_ops, 6176 struct sock *sk, struct sk_buff *skb) 6177 { 6178 struct tcp_fastopen_cookie foc = { .len = -1 }; 6179 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6180 struct tcp_options_received tmp_opt; 6181 struct tcp_sock *tp = tcp_sk(sk); 6182 struct net *net = sock_net(sk); 6183 struct sock *fastopen_sk = NULL; 6184 struct dst_entry *dst = NULL; 6185 struct request_sock *req; 6186 bool want_cookie = false; 6187 struct flowi fl; 6188 6189 /* TW buckets are converted to open requests without 6190 * limitations, they conserve resources and peer is 6191 * evidently real one. 6192 */ 6193 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6194 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6195 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6196 if (!want_cookie) 6197 goto drop; 6198 } 6199 6200 6201 /* Accept backlog is full. If we have already queued enough 6202 * of warm entries in syn queue, drop request. It is better than 6203 * clogging syn queue with openreqs with exponentially increasing 6204 * timeout. 6205 */ 6206 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 6207 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6208 goto drop; 6209 } 6210 6211 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6212 if (!req) 6213 goto drop; 6214 6215 tcp_rsk(req)->af_specific = af_ops; 6216 6217 tcp_clear_options(&tmp_opt); 6218 tmp_opt.mss_clamp = af_ops->mss_clamp; 6219 tmp_opt.user_mss = tp->rx_opt.user_mss; 6220 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6221 6222 if (want_cookie && !tmp_opt.saw_tstamp) 6223 tcp_clear_options(&tmp_opt); 6224 6225 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6226 tcp_openreq_init(req, &tmp_opt, skb, sk); 6227 6228 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6229 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6230 6231 af_ops->init_req(req, sk, skb); 6232 6233 if (security_inet_conn_request(sk, skb, req)) 6234 goto drop_and_free; 6235 6236 if (!want_cookie && !isn) { 6237 /* VJ's idea. We save last timestamp seen 6238 * from the destination in peer table, when entering 6239 * state TIME-WAIT, and check against it before 6240 * accepting new connection request. 6241 * 6242 * If "isn" is not zero, this request hit alive 6243 * timewait bucket, so that all the necessary checks 6244 * are made in the function processing timewait state. 6245 */ 6246 if (tcp_death_row.sysctl_tw_recycle) { 6247 bool strict; 6248 6249 dst = af_ops->route_req(sk, &fl, req, &strict); 6250 6251 if (dst && strict && 6252 !tcp_peer_is_proven(req, dst, true, 6253 tmp_opt.saw_tstamp)) { 6254 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6255 goto drop_and_release; 6256 } 6257 } 6258 /* Kill the following clause, if you dislike this way. */ 6259 else if (!net->ipv4.sysctl_tcp_syncookies && 6260 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6261 (sysctl_max_syn_backlog >> 2)) && 6262 !tcp_peer_is_proven(req, dst, false, 6263 tmp_opt.saw_tstamp)) { 6264 /* Without syncookies last quarter of 6265 * backlog is filled with destinations, 6266 * proven to be alive. 6267 * It means that we continue to communicate 6268 * to destinations, already remembered 6269 * to the moment of synflood. 6270 */ 6271 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6272 rsk_ops->family); 6273 goto drop_and_release; 6274 } 6275 6276 isn = af_ops->init_seq(skb); 6277 } 6278 if (!dst) { 6279 dst = af_ops->route_req(sk, &fl, req, NULL); 6280 if (!dst) 6281 goto drop_and_free; 6282 } 6283 6284 tcp_ecn_create_request(req, skb, sk, dst); 6285 6286 if (want_cookie) { 6287 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6288 req->cookie_ts = tmp_opt.tstamp_ok; 6289 if (!tmp_opt.tstamp_ok) 6290 inet_rsk(req)->ecn_ok = 0; 6291 } 6292 6293 tcp_rsk(req)->snt_isn = isn; 6294 tcp_rsk(req)->txhash = net_tx_rndhash(); 6295 tcp_openreq_init_rwin(req, sk, dst); 6296 if (!want_cookie) { 6297 tcp_reqsk_record_syn(sk, req, skb); 6298 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6299 } 6300 if (fastopen_sk) { 6301 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6302 &foc, TCP_SYNACK_FASTOPEN); 6303 /* Add the child socket directly into the accept queue */ 6304 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6305 sk->sk_data_ready(sk); 6306 bh_unlock_sock(fastopen_sk); 6307 sock_put(fastopen_sk); 6308 } else { 6309 tcp_rsk(req)->tfo_listener = false; 6310 if (!want_cookie) 6311 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6312 af_ops->send_synack(sk, dst, &fl, req, &foc, 6313 !want_cookie ? TCP_SYNACK_NORMAL : 6314 TCP_SYNACK_COOKIE); 6315 if (want_cookie) { 6316 reqsk_free(req); 6317 return 0; 6318 } 6319 } 6320 reqsk_put(req); 6321 return 0; 6322 6323 drop_and_release: 6324 dst_release(dst); 6325 drop_and_free: 6326 reqsk_free(req); 6327 drop: 6328 tcp_listendrop(sk); 6329 return 0; 6330 } 6331 EXPORT_SYMBOL(tcp_conn_request); 6332