xref: /linux/net/ipv4/tcp_input.c (revision 05dc8c02bf40090e9ed23932b1980ead48eb8870)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained DSACK info */
107 
108 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
109 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
110 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
111 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
112 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
113 
114 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
115 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
116 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
117 
118 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
119 
120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
121 
122 /* Adapt the MSS value used to make delayed ack decision to the
123  * real world.
124  */
125 static void tcp_measure_rcv_mss(struct sock *sk,
126 				const struct sk_buff *skb)
127 {
128 	struct inet_connection_sock *icsk = inet_csk(sk);
129 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
130 	unsigned int len;
131 
132 	icsk->icsk_ack.last_seg_size = 0;
133 
134 	/* skb->len may jitter because of SACKs, even if peer
135 	 * sends good full-sized frames.
136 	 */
137 	len = skb_shinfo(skb)->gso_size ?: skb->len;
138 	if (len >= icsk->icsk_ack.rcv_mss) {
139 		icsk->icsk_ack.rcv_mss = len;
140 	} else {
141 		/* Otherwise, we make more careful check taking into account,
142 		 * that SACKs block is variable.
143 		 *
144 		 * "len" is invariant segment length, including TCP header.
145 		 */
146 		len += skb->data - skb_transport_header(skb);
147 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
148 		    /* If PSH is not set, packet should be
149 		     * full sized, provided peer TCP is not badly broken.
150 		     * This observation (if it is correct 8)) allows
151 		     * to handle super-low mtu links fairly.
152 		     */
153 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
154 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
155 			/* Subtract also invariant (if peer is RFC compliant),
156 			 * tcp header plus fixed timestamp option length.
157 			 * Resulting "len" is MSS free of SACK jitter.
158 			 */
159 			len -= tcp_sk(sk)->tcp_header_len;
160 			icsk->icsk_ack.last_seg_size = len;
161 			if (len == lss) {
162 				icsk->icsk_ack.rcv_mss = len;
163 				return;
164 			}
165 		}
166 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
167 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
168 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
169 	}
170 }
171 
172 static void tcp_incr_quickack(struct sock *sk)
173 {
174 	struct inet_connection_sock *icsk = inet_csk(sk);
175 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
176 
177 	if (quickacks==0)
178 		quickacks=2;
179 	if (quickacks > icsk->icsk_ack.quick)
180 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
181 }
182 
183 void tcp_enter_quickack_mode(struct sock *sk)
184 {
185 	struct inet_connection_sock *icsk = inet_csk(sk);
186 	tcp_incr_quickack(sk);
187 	icsk->icsk_ack.pingpong = 0;
188 	icsk->icsk_ack.ato = TCP_ATO_MIN;
189 }
190 
191 /* Send ACKs quickly, if "quick" count is not exhausted
192  * and the session is not interactive.
193  */
194 
195 static inline int tcp_in_quickack_mode(const struct sock *sk)
196 {
197 	const struct inet_connection_sock *icsk = inet_csk(sk);
198 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
199 }
200 
201 /* Buffer size and advertised window tuning.
202  *
203  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
204  */
205 
206 static void tcp_fixup_sndbuf(struct sock *sk)
207 {
208 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
209 		     sizeof(struct sk_buff);
210 
211 	if (sk->sk_sndbuf < 3 * sndmem)
212 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
213 }
214 
215 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
216  *
217  * All tcp_full_space() is split to two parts: "network" buffer, allocated
218  * forward and advertised in receiver window (tp->rcv_wnd) and
219  * "application buffer", required to isolate scheduling/application
220  * latencies from network.
221  * window_clamp is maximal advertised window. It can be less than
222  * tcp_full_space(), in this case tcp_full_space() - window_clamp
223  * is reserved for "application" buffer. The less window_clamp is
224  * the smoother our behaviour from viewpoint of network, but the lower
225  * throughput and the higher sensitivity of the connection to losses. 8)
226  *
227  * rcv_ssthresh is more strict window_clamp used at "slow start"
228  * phase to predict further behaviour of this connection.
229  * It is used for two goals:
230  * - to enforce header prediction at sender, even when application
231  *   requires some significant "application buffer". It is check #1.
232  * - to prevent pruning of receive queue because of misprediction
233  *   of receiver window. Check #2.
234  *
235  * The scheme does not work when sender sends good segments opening
236  * window and then starts to feed us spaghetti. But it should work
237  * in common situations. Otherwise, we have to rely on queue collapsing.
238  */
239 
240 /* Slow part of check#2. */
241 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
242 {
243 	struct tcp_sock *tp = tcp_sk(sk);
244 	/* Optimize this! */
245 	int truesize = tcp_win_from_space(skb->truesize)/2;
246 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
247 
248 	while (tp->rcv_ssthresh <= window) {
249 		if (truesize <= skb->len)
250 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
251 
252 		truesize >>= 1;
253 		window >>= 1;
254 	}
255 	return 0;
256 }
257 
258 static void tcp_grow_window(struct sock *sk,
259 			    struct sk_buff *skb)
260 {
261 	struct tcp_sock *tp = tcp_sk(sk);
262 
263 	/* Check #1 */
264 	if (tp->rcv_ssthresh < tp->window_clamp &&
265 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
266 	    !tcp_memory_pressure) {
267 		int incr;
268 
269 		/* Check #2. Increase window, if skb with such overhead
270 		 * will fit to rcvbuf in future.
271 		 */
272 		if (tcp_win_from_space(skb->truesize) <= skb->len)
273 			incr = 2*tp->advmss;
274 		else
275 			incr = __tcp_grow_window(sk, skb);
276 
277 		if (incr) {
278 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
279 			inet_csk(sk)->icsk_ack.quick |= 1;
280 		}
281 	}
282 }
283 
284 /* 3. Tuning rcvbuf, when connection enters established state. */
285 
286 static void tcp_fixup_rcvbuf(struct sock *sk)
287 {
288 	struct tcp_sock *tp = tcp_sk(sk);
289 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
290 
291 	/* Try to select rcvbuf so that 4 mss-sized segments
292 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
293 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
294 	 */
295 	while (tcp_win_from_space(rcvmem) < tp->advmss)
296 		rcvmem += 128;
297 	if (sk->sk_rcvbuf < 4 * rcvmem)
298 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
299 }
300 
301 /* 4. Try to fixup all. It is made immediately after connection enters
302  *    established state.
303  */
304 static void tcp_init_buffer_space(struct sock *sk)
305 {
306 	struct tcp_sock *tp = tcp_sk(sk);
307 	int maxwin;
308 
309 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
310 		tcp_fixup_rcvbuf(sk);
311 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
312 		tcp_fixup_sndbuf(sk);
313 
314 	tp->rcvq_space.space = tp->rcv_wnd;
315 
316 	maxwin = tcp_full_space(sk);
317 
318 	if (tp->window_clamp >= maxwin) {
319 		tp->window_clamp = maxwin;
320 
321 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
322 			tp->window_clamp = max(maxwin -
323 					       (maxwin >> sysctl_tcp_app_win),
324 					       4 * tp->advmss);
325 	}
326 
327 	/* Force reservation of one segment. */
328 	if (sysctl_tcp_app_win &&
329 	    tp->window_clamp > 2 * tp->advmss &&
330 	    tp->window_clamp + tp->advmss > maxwin)
331 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
332 
333 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
334 	tp->snd_cwnd_stamp = tcp_time_stamp;
335 }
336 
337 /* 5. Recalculate window clamp after socket hit its memory bounds. */
338 static void tcp_clamp_window(struct sock *sk)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 	struct inet_connection_sock *icsk = inet_csk(sk);
342 
343 	icsk->icsk_ack.quick = 0;
344 
345 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
346 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
347 	    !tcp_memory_pressure &&
348 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
349 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
350 				    sysctl_tcp_rmem[2]);
351 	}
352 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
353 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
354 }
355 
356 
357 /* Initialize RCV_MSS value.
358  * RCV_MSS is an our guess about MSS used by the peer.
359  * We haven't any direct information about the MSS.
360  * It's better to underestimate the RCV_MSS rather than overestimate.
361  * Overestimations make us ACKing less frequently than needed.
362  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
363  */
364 void tcp_initialize_rcv_mss(struct sock *sk)
365 {
366 	struct tcp_sock *tp = tcp_sk(sk);
367 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
368 
369 	hint = min(hint, tp->rcv_wnd/2);
370 	hint = min(hint, TCP_MIN_RCVMSS);
371 	hint = max(hint, TCP_MIN_MSS);
372 
373 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
374 }
375 
376 /* Receiver "autotuning" code.
377  *
378  * The algorithm for RTT estimation w/o timestamps is based on
379  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
380  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
381  *
382  * More detail on this code can be found at
383  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
384  * though this reference is out of date.  A new paper
385  * is pending.
386  */
387 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
388 {
389 	u32 new_sample = tp->rcv_rtt_est.rtt;
390 	long m = sample;
391 
392 	if (m == 0)
393 		m = 1;
394 
395 	if (new_sample != 0) {
396 		/* If we sample in larger samples in the non-timestamp
397 		 * case, we could grossly overestimate the RTT especially
398 		 * with chatty applications or bulk transfer apps which
399 		 * are stalled on filesystem I/O.
400 		 *
401 		 * Also, since we are only going for a minimum in the
402 		 * non-timestamp case, we do not smooth things out
403 		 * else with timestamps disabled convergence takes too
404 		 * long.
405 		 */
406 		if (!win_dep) {
407 			m -= (new_sample >> 3);
408 			new_sample += m;
409 		} else if (m < new_sample)
410 			new_sample = m << 3;
411 	} else {
412 		/* No previous measure. */
413 		new_sample = m << 3;
414 	}
415 
416 	if (tp->rcv_rtt_est.rtt != new_sample)
417 		tp->rcv_rtt_est.rtt = new_sample;
418 }
419 
420 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
421 {
422 	if (tp->rcv_rtt_est.time == 0)
423 		goto new_measure;
424 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
425 		return;
426 	tcp_rcv_rtt_update(tp,
427 			   jiffies - tp->rcv_rtt_est.time,
428 			   1);
429 
430 new_measure:
431 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
432 	tp->rcv_rtt_est.time = tcp_time_stamp;
433 }
434 
435 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
436 {
437 	struct tcp_sock *tp = tcp_sk(sk);
438 	if (tp->rx_opt.rcv_tsecr &&
439 	    (TCP_SKB_CB(skb)->end_seq -
440 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
441 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
442 }
443 
444 /*
445  * This function should be called every time data is copied to user space.
446  * It calculates the appropriate TCP receive buffer space.
447  */
448 void tcp_rcv_space_adjust(struct sock *sk)
449 {
450 	struct tcp_sock *tp = tcp_sk(sk);
451 	int time;
452 	int space;
453 
454 	if (tp->rcvq_space.time == 0)
455 		goto new_measure;
456 
457 	time = tcp_time_stamp - tp->rcvq_space.time;
458 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
459 	    tp->rcv_rtt_est.rtt == 0)
460 		return;
461 
462 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
463 
464 	space = max(tp->rcvq_space.space, space);
465 
466 	if (tp->rcvq_space.space != space) {
467 		int rcvmem;
468 
469 		tp->rcvq_space.space = space;
470 
471 		if (sysctl_tcp_moderate_rcvbuf &&
472 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
473 			int new_clamp = space;
474 
475 			/* Receive space grows, normalize in order to
476 			 * take into account packet headers and sk_buff
477 			 * structure overhead.
478 			 */
479 			space /= tp->advmss;
480 			if (!space)
481 				space = 1;
482 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
483 				  16 + sizeof(struct sk_buff));
484 			while (tcp_win_from_space(rcvmem) < tp->advmss)
485 				rcvmem += 128;
486 			space *= rcvmem;
487 			space = min(space, sysctl_tcp_rmem[2]);
488 			if (space > sk->sk_rcvbuf) {
489 				sk->sk_rcvbuf = space;
490 
491 				/* Make the window clamp follow along.  */
492 				tp->window_clamp = new_clamp;
493 			}
494 		}
495 	}
496 
497 new_measure:
498 	tp->rcvq_space.seq = tp->copied_seq;
499 	tp->rcvq_space.time = tcp_time_stamp;
500 }
501 
502 /* There is something which you must keep in mind when you analyze the
503  * behavior of the tp->ato delayed ack timeout interval.  When a
504  * connection starts up, we want to ack as quickly as possible.  The
505  * problem is that "good" TCP's do slow start at the beginning of data
506  * transmission.  The means that until we send the first few ACK's the
507  * sender will sit on his end and only queue most of his data, because
508  * he can only send snd_cwnd unacked packets at any given time.  For
509  * each ACK we send, he increments snd_cwnd and transmits more of his
510  * queue.  -DaveM
511  */
512 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
513 {
514 	struct tcp_sock *tp = tcp_sk(sk);
515 	struct inet_connection_sock *icsk = inet_csk(sk);
516 	u32 now;
517 
518 	inet_csk_schedule_ack(sk);
519 
520 	tcp_measure_rcv_mss(sk, skb);
521 
522 	tcp_rcv_rtt_measure(tp);
523 
524 	now = tcp_time_stamp;
525 
526 	if (!icsk->icsk_ack.ato) {
527 		/* The _first_ data packet received, initialize
528 		 * delayed ACK engine.
529 		 */
530 		tcp_incr_quickack(sk);
531 		icsk->icsk_ack.ato = TCP_ATO_MIN;
532 	} else {
533 		int m = now - icsk->icsk_ack.lrcvtime;
534 
535 		if (m <= TCP_ATO_MIN/2) {
536 			/* The fastest case is the first. */
537 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
538 		} else if (m < icsk->icsk_ack.ato) {
539 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
540 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
541 				icsk->icsk_ack.ato = icsk->icsk_rto;
542 		} else if (m > icsk->icsk_rto) {
543 			/* Too long gap. Apparently sender failed to
544 			 * restart window, so that we send ACKs quickly.
545 			 */
546 			tcp_incr_quickack(sk);
547 			sk_stream_mem_reclaim(sk);
548 		}
549 	}
550 	icsk->icsk_ack.lrcvtime = now;
551 
552 	TCP_ECN_check_ce(tp, skb);
553 
554 	if (skb->len >= 128)
555 		tcp_grow_window(sk, skb);
556 }
557 
558 static u32 tcp_rto_min(struct sock *sk)
559 {
560 	struct dst_entry *dst = __sk_dst_get(sk);
561 	u32 rto_min = TCP_RTO_MIN;
562 
563 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
564 		rto_min = dst->metrics[RTAX_RTO_MIN-1];
565 	return rto_min;
566 }
567 
568 /* Called to compute a smoothed rtt estimate. The data fed to this
569  * routine either comes from timestamps, or from segments that were
570  * known _not_ to have been retransmitted [see Karn/Partridge
571  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
572  * piece by Van Jacobson.
573  * NOTE: the next three routines used to be one big routine.
574  * To save cycles in the RFC 1323 implementation it was better to break
575  * it up into three procedures. -- erics
576  */
577 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
578 {
579 	struct tcp_sock *tp = tcp_sk(sk);
580 	long m = mrtt; /* RTT */
581 
582 	/*	The following amusing code comes from Jacobson's
583 	 *	article in SIGCOMM '88.  Note that rtt and mdev
584 	 *	are scaled versions of rtt and mean deviation.
585 	 *	This is designed to be as fast as possible
586 	 *	m stands for "measurement".
587 	 *
588 	 *	On a 1990 paper the rto value is changed to:
589 	 *	RTO = rtt + 4 * mdev
590 	 *
591 	 * Funny. This algorithm seems to be very broken.
592 	 * These formulae increase RTO, when it should be decreased, increase
593 	 * too slowly, when it should be increased quickly, decrease too quickly
594 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
595 	 * does not matter how to _calculate_ it. Seems, it was trap
596 	 * that VJ failed to avoid. 8)
597 	 */
598 	if (m == 0)
599 		m = 1;
600 	if (tp->srtt != 0) {
601 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
602 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
603 		if (m < 0) {
604 			m = -m;		/* m is now abs(error) */
605 			m -= (tp->mdev >> 2);   /* similar update on mdev */
606 			/* This is similar to one of Eifel findings.
607 			 * Eifel blocks mdev updates when rtt decreases.
608 			 * This solution is a bit different: we use finer gain
609 			 * for mdev in this case (alpha*beta).
610 			 * Like Eifel it also prevents growth of rto,
611 			 * but also it limits too fast rto decreases,
612 			 * happening in pure Eifel.
613 			 */
614 			if (m > 0)
615 				m >>= 3;
616 		} else {
617 			m -= (tp->mdev >> 2);   /* similar update on mdev */
618 		}
619 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
620 		if (tp->mdev > tp->mdev_max) {
621 			tp->mdev_max = tp->mdev;
622 			if (tp->mdev_max > tp->rttvar)
623 				tp->rttvar = tp->mdev_max;
624 		}
625 		if (after(tp->snd_una, tp->rtt_seq)) {
626 			if (tp->mdev_max < tp->rttvar)
627 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
628 			tp->rtt_seq = tp->snd_nxt;
629 			tp->mdev_max = tcp_rto_min(sk);
630 		}
631 	} else {
632 		/* no previous measure. */
633 		tp->srtt = m<<3;	/* take the measured time to be rtt */
634 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
635 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
636 		tp->rtt_seq = tp->snd_nxt;
637 	}
638 }
639 
640 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
641  * routine referred to above.
642  */
643 static inline void tcp_set_rto(struct sock *sk)
644 {
645 	const struct tcp_sock *tp = tcp_sk(sk);
646 	/* Old crap is replaced with new one. 8)
647 	 *
648 	 * More seriously:
649 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
650 	 *    It cannot be less due to utterly erratic ACK generation made
651 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
652 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
653 	 *    is invisible. Actually, Linux-2.4 also generates erratic
654 	 *    ACKs in some circumstances.
655 	 */
656 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
657 
658 	/* 2. Fixups made earlier cannot be right.
659 	 *    If we do not estimate RTO correctly without them,
660 	 *    all the algo is pure shit and should be replaced
661 	 *    with correct one. It is exactly, which we pretend to do.
662 	 */
663 }
664 
665 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
666  * guarantees that rto is higher.
667  */
668 static inline void tcp_bound_rto(struct sock *sk)
669 {
670 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
671 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
672 }
673 
674 /* Save metrics learned by this TCP session.
675    This function is called only, when TCP finishes successfully
676    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
677  */
678 void tcp_update_metrics(struct sock *sk)
679 {
680 	struct tcp_sock *tp = tcp_sk(sk);
681 	struct dst_entry *dst = __sk_dst_get(sk);
682 
683 	if (sysctl_tcp_nometrics_save)
684 		return;
685 
686 	dst_confirm(dst);
687 
688 	if (dst && (dst->flags&DST_HOST)) {
689 		const struct inet_connection_sock *icsk = inet_csk(sk);
690 		int m;
691 
692 		if (icsk->icsk_backoff || !tp->srtt) {
693 			/* This session failed to estimate rtt. Why?
694 			 * Probably, no packets returned in time.
695 			 * Reset our results.
696 			 */
697 			if (!(dst_metric_locked(dst, RTAX_RTT)))
698 				dst->metrics[RTAX_RTT-1] = 0;
699 			return;
700 		}
701 
702 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
703 
704 		/* If newly calculated rtt larger than stored one,
705 		 * store new one. Otherwise, use EWMA. Remember,
706 		 * rtt overestimation is always better than underestimation.
707 		 */
708 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
709 			if (m <= 0)
710 				dst->metrics[RTAX_RTT-1] = tp->srtt;
711 			else
712 				dst->metrics[RTAX_RTT-1] -= (m>>3);
713 		}
714 
715 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
716 			if (m < 0)
717 				m = -m;
718 
719 			/* Scale deviation to rttvar fixed point */
720 			m >>= 1;
721 			if (m < tp->mdev)
722 				m = tp->mdev;
723 
724 			if (m >= dst_metric(dst, RTAX_RTTVAR))
725 				dst->metrics[RTAX_RTTVAR-1] = m;
726 			else
727 				dst->metrics[RTAX_RTTVAR-1] -=
728 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
729 		}
730 
731 		if (tp->snd_ssthresh >= 0xFFFF) {
732 			/* Slow start still did not finish. */
733 			if (dst_metric(dst, RTAX_SSTHRESH) &&
734 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
736 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
737 			if (!dst_metric_locked(dst, RTAX_CWND) &&
738 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
739 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
740 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
741 			   icsk->icsk_ca_state == TCP_CA_Open) {
742 			/* Cong. avoidance phase, cwnd is reliable. */
743 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
744 				dst->metrics[RTAX_SSTHRESH-1] =
745 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
746 			if (!dst_metric_locked(dst, RTAX_CWND))
747 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
748 		} else {
749 			/* Else slow start did not finish, cwnd is non-sense,
750 			   ssthresh may be also invalid.
751 			 */
752 			if (!dst_metric_locked(dst, RTAX_CWND))
753 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
754 			if (dst->metrics[RTAX_SSTHRESH-1] &&
755 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
756 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
757 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
758 		}
759 
760 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
761 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
762 			    tp->reordering != sysctl_tcp_reordering)
763 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
764 		}
765 	}
766 }
767 
768 /* Numbers are taken from RFC3390.
769  *
770  * John Heffner states:
771  *
772  *	The RFC specifies a window of no more than 4380 bytes
773  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
774  *	is a bit misleading because they use a clamp at 4380 bytes
775  *	rather than use a multiplier in the relevant range.
776  */
777 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
778 {
779 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
780 
781 	if (!cwnd) {
782 		if (tp->mss_cache > 1460)
783 			cwnd = 2;
784 		else
785 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
786 	}
787 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
788 }
789 
790 /* Set slow start threshold and cwnd not falling to slow start */
791 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
792 {
793 	struct tcp_sock *tp = tcp_sk(sk);
794 	const struct inet_connection_sock *icsk = inet_csk(sk);
795 
796 	tp->prior_ssthresh = 0;
797 	tp->bytes_acked = 0;
798 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
799 		tp->undo_marker = 0;
800 		if (set_ssthresh)
801 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
802 		tp->snd_cwnd = min(tp->snd_cwnd,
803 				   tcp_packets_in_flight(tp) + 1U);
804 		tp->snd_cwnd_cnt = 0;
805 		tp->high_seq = tp->snd_nxt;
806 		tp->snd_cwnd_stamp = tcp_time_stamp;
807 		TCP_ECN_queue_cwr(tp);
808 
809 		tcp_set_ca_state(sk, TCP_CA_CWR);
810 	}
811 }
812 
813 /* Initialize metrics on socket. */
814 
815 static void tcp_init_metrics(struct sock *sk)
816 {
817 	struct tcp_sock *tp = tcp_sk(sk);
818 	struct dst_entry *dst = __sk_dst_get(sk);
819 
820 	if (dst == NULL)
821 		goto reset;
822 
823 	dst_confirm(dst);
824 
825 	if (dst_metric_locked(dst, RTAX_CWND))
826 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
827 	if (dst_metric(dst, RTAX_SSTHRESH)) {
828 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
829 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
830 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
831 	}
832 	if (dst_metric(dst, RTAX_REORDERING) &&
833 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
834 		tp->rx_opt.sack_ok &= ~2;
835 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
836 	}
837 
838 	if (dst_metric(dst, RTAX_RTT) == 0)
839 		goto reset;
840 
841 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
842 		goto reset;
843 
844 	/* Initial rtt is determined from SYN,SYN-ACK.
845 	 * The segment is small and rtt may appear much
846 	 * less than real one. Use per-dst memory
847 	 * to make it more realistic.
848 	 *
849 	 * A bit of theory. RTT is time passed after "normal" sized packet
850 	 * is sent until it is ACKed. In normal circumstances sending small
851 	 * packets force peer to delay ACKs and calculation is correct too.
852 	 * The algorithm is adaptive and, provided we follow specs, it
853 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
854 	 * tricks sort of "quick acks" for time long enough to decrease RTT
855 	 * to low value, and then abruptly stops to do it and starts to delay
856 	 * ACKs, wait for troubles.
857 	 */
858 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
859 		tp->srtt = dst_metric(dst, RTAX_RTT);
860 		tp->rtt_seq = tp->snd_nxt;
861 	}
862 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
863 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
864 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
865 	}
866 	tcp_set_rto(sk);
867 	tcp_bound_rto(sk);
868 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
869 		goto reset;
870 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
871 	tp->snd_cwnd_stamp = tcp_time_stamp;
872 	return;
873 
874 reset:
875 	/* Play conservative. If timestamps are not
876 	 * supported, TCP will fail to recalculate correct
877 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
878 	 */
879 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
880 		tp->srtt = 0;
881 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
882 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
883 	}
884 }
885 
886 static void tcp_update_reordering(struct sock *sk, const int metric,
887 				  const int ts)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	if (metric > tp->reordering) {
891 		tp->reordering = min(TCP_MAX_REORDERING, metric);
892 
893 		/* This exciting event is worth to be remembered. 8) */
894 		if (ts)
895 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
896 		else if (IsReno(tp))
897 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
898 		else if (IsFack(tp))
899 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
900 		else
901 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
902 #if FASTRETRANS_DEBUG > 1
903 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
904 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
905 		       tp->reordering,
906 		       tp->fackets_out,
907 		       tp->sacked_out,
908 		       tp->undo_marker ? tp->undo_retrans : 0);
909 #endif
910 		/* Disable FACK yet. */
911 		tp->rx_opt.sack_ok &= ~2;
912 	}
913 }
914 
915 /* This procedure tags the retransmission queue when SACKs arrive.
916  *
917  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
918  * Packets in queue with these bits set are counted in variables
919  * sacked_out, retrans_out and lost_out, correspondingly.
920  *
921  * Valid combinations are:
922  * Tag  InFlight	Description
923  * 0	1		- orig segment is in flight.
924  * S	0		- nothing flies, orig reached receiver.
925  * L	0		- nothing flies, orig lost by net.
926  * R	2		- both orig and retransmit are in flight.
927  * L|R	1		- orig is lost, retransmit is in flight.
928  * S|R  1		- orig reached receiver, retrans is still in flight.
929  * (L|S|R is logically valid, it could occur when L|R is sacked,
930  *  but it is equivalent to plain S and code short-curcuits it to S.
931  *  L|S is logically invalid, it would mean -1 packet in flight 8))
932  *
933  * These 6 states form finite state machine, controlled by the following events:
934  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
935  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
936  * 3. Loss detection event of one of three flavors:
937  *	A. Scoreboard estimator decided the packet is lost.
938  *	   A'. Reno "three dupacks" marks head of queue lost.
939  *	   A''. Its FACK modfication, head until snd.fack is lost.
940  *	B. SACK arrives sacking data transmitted after never retransmitted
941  *	   hole was sent out.
942  *	C. SACK arrives sacking SND.NXT at the moment, when the
943  *	   segment was retransmitted.
944  * 4. D-SACK added new rule: D-SACK changes any tag to S.
945  *
946  * It is pleasant to note, that state diagram turns out to be commutative,
947  * so that we are allowed not to be bothered by order of our actions,
948  * when multiple events arrive simultaneously. (see the function below).
949  *
950  * Reordering detection.
951  * --------------------
952  * Reordering metric is maximal distance, which a packet can be displaced
953  * in packet stream. With SACKs we can estimate it:
954  *
955  * 1. SACK fills old hole and the corresponding segment was not
956  *    ever retransmitted -> reordering. Alas, we cannot use it
957  *    when segment was retransmitted.
958  * 2. The last flaw is solved with D-SACK. D-SACK arrives
959  *    for retransmitted and already SACKed segment -> reordering..
960  * Both of these heuristics are not used in Loss state, when we cannot
961  * account for retransmits accurately.
962  */
963 static int
964 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
965 {
966 	const struct inet_connection_sock *icsk = inet_csk(sk);
967 	struct tcp_sock *tp = tcp_sk(sk);
968 	unsigned char *ptr = (skb_transport_header(ack_skb) +
969 			      TCP_SKB_CB(ack_skb)->sacked);
970 	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
971 	struct sk_buff *cached_skb;
972 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
973 	int reord = tp->packets_out;
974 	int prior_fackets;
975 	u32 lost_retrans = 0;
976 	int flag = 0;
977 	int found_dup_sack = 0;
978 	int cached_fack_count;
979 	int i;
980 	int first_sack_index;
981 
982 	if (!tp->sacked_out)
983 		tp->fackets_out = 0;
984 	prior_fackets = tp->fackets_out;
985 
986 	/* Check for D-SACK. */
987 	if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
988 		flag |= FLAG_DSACKING_ACK;
989 		found_dup_sack = 1;
990 		tp->rx_opt.sack_ok |= 4;
991 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
992 	} else if (num_sacks > 1 &&
993 			!after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
994 			!before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
995 		flag |= FLAG_DSACKING_ACK;
996 		found_dup_sack = 1;
997 		tp->rx_opt.sack_ok |= 4;
998 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
999 	}
1000 
1001 	/* D-SACK for already forgotten data...
1002 	 * Do dumb counting. */
1003 	if (found_dup_sack &&
1004 			!after(ntohl(sp[0].end_seq), prior_snd_una) &&
1005 			after(ntohl(sp[0].end_seq), tp->undo_marker))
1006 		tp->undo_retrans--;
1007 
1008 	/* Eliminate too old ACKs, but take into
1009 	 * account more or less fresh ones, they can
1010 	 * contain valid SACK info.
1011 	 */
1012 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1013 		return 0;
1014 
1015 	/* SACK fastpath:
1016 	 * if the only SACK change is the increase of the end_seq of
1017 	 * the first block then only apply that SACK block
1018 	 * and use retrans queue hinting otherwise slowpath */
1019 	flag = 1;
1020 	for (i = 0; i < num_sacks; i++) {
1021 		__be32 start_seq = sp[i].start_seq;
1022 		__be32 end_seq = sp[i].end_seq;
1023 
1024 		if (i == 0) {
1025 			if (tp->recv_sack_cache[i].start_seq != start_seq)
1026 				flag = 0;
1027 		} else {
1028 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1029 			    (tp->recv_sack_cache[i].end_seq != end_seq))
1030 				flag = 0;
1031 		}
1032 		tp->recv_sack_cache[i].start_seq = start_seq;
1033 		tp->recv_sack_cache[i].end_seq = end_seq;
1034 	}
1035 	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1036 	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1037 		tp->recv_sack_cache[i].start_seq = 0;
1038 		tp->recv_sack_cache[i].end_seq = 0;
1039 	}
1040 
1041 	first_sack_index = 0;
1042 	if (flag)
1043 		num_sacks = 1;
1044 	else {
1045 		int j;
1046 		tp->fastpath_skb_hint = NULL;
1047 
1048 		/* order SACK blocks to allow in order walk of the retrans queue */
1049 		for (i = num_sacks-1; i > 0; i--) {
1050 			for (j = 0; j < i; j++){
1051 				if (after(ntohl(sp[j].start_seq),
1052 					  ntohl(sp[j+1].start_seq))){
1053 					struct tcp_sack_block_wire tmp;
1054 
1055 					tmp = sp[j];
1056 					sp[j] = sp[j+1];
1057 					sp[j+1] = tmp;
1058 
1059 					/* Track where the first SACK block goes to */
1060 					if (j == first_sack_index)
1061 						first_sack_index = j+1;
1062 				}
1063 
1064 			}
1065 		}
1066 	}
1067 
1068 	/* clear flag as used for different purpose in following code */
1069 	flag = 0;
1070 
1071 	/* Use SACK fastpath hint if valid */
1072 	cached_skb = tp->fastpath_skb_hint;
1073 	cached_fack_count = tp->fastpath_cnt_hint;
1074 	if (!cached_skb) {
1075 		cached_skb = tcp_write_queue_head(sk);
1076 		cached_fack_count = 0;
1077 	}
1078 
1079 	for (i=0; i<num_sacks; i++, sp++) {
1080 		struct sk_buff *skb;
1081 		__u32 start_seq = ntohl(sp->start_seq);
1082 		__u32 end_seq = ntohl(sp->end_seq);
1083 		int fack_count;
1084 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1085 
1086 		skb = cached_skb;
1087 		fack_count = cached_fack_count;
1088 
1089 		/* Event "B" in the comment above. */
1090 		if (after(end_seq, tp->high_seq))
1091 			flag |= FLAG_DATA_LOST;
1092 
1093 		tcp_for_write_queue_from(skb, sk) {
1094 			int in_sack, pcount;
1095 			u8 sacked;
1096 
1097 			if (skb == tcp_send_head(sk))
1098 				break;
1099 
1100 			cached_skb = skb;
1101 			cached_fack_count = fack_count;
1102 			if (i == first_sack_index) {
1103 				tp->fastpath_skb_hint = skb;
1104 				tp->fastpath_cnt_hint = fack_count;
1105 			}
1106 
1107 			/* The retransmission queue is always in order, so
1108 			 * we can short-circuit the walk early.
1109 			 */
1110 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1111 				break;
1112 
1113 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1114 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1115 
1116 			pcount = tcp_skb_pcount(skb);
1117 
1118 			if (pcount > 1 && !in_sack &&
1119 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1120 				unsigned int pkt_len;
1121 
1122 				in_sack = !after(start_seq,
1123 						 TCP_SKB_CB(skb)->seq);
1124 
1125 				if (!in_sack)
1126 					pkt_len = (start_seq -
1127 						   TCP_SKB_CB(skb)->seq);
1128 				else
1129 					pkt_len = (end_seq -
1130 						   TCP_SKB_CB(skb)->seq);
1131 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1132 					break;
1133 				pcount = tcp_skb_pcount(skb);
1134 			}
1135 
1136 			fack_count += pcount;
1137 
1138 			sacked = TCP_SKB_CB(skb)->sacked;
1139 
1140 			/* Account D-SACK for retransmitted packet. */
1141 			if ((dup_sack && in_sack) &&
1142 			    (sacked & TCPCB_RETRANS) &&
1143 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1144 				tp->undo_retrans--;
1145 
1146 			/* The frame is ACKed. */
1147 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1148 				if (sacked&TCPCB_RETRANS) {
1149 					if ((dup_sack && in_sack) &&
1150 					    (sacked&TCPCB_SACKED_ACKED))
1151 						reord = min(fack_count, reord);
1152 				} else {
1153 					/* If it was in a hole, we detected reordering. */
1154 					if (fack_count < prior_fackets &&
1155 					    !(sacked&TCPCB_SACKED_ACKED))
1156 						reord = min(fack_count, reord);
1157 				}
1158 
1159 				/* Nothing to do; acked frame is about to be dropped. */
1160 				continue;
1161 			}
1162 
1163 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1164 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1165 			    (!lost_retrans || after(end_seq, lost_retrans)))
1166 				lost_retrans = end_seq;
1167 
1168 			if (!in_sack)
1169 				continue;
1170 
1171 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1172 				if (sacked & TCPCB_SACKED_RETRANS) {
1173 					/* If the segment is not tagged as lost,
1174 					 * we do not clear RETRANS, believing
1175 					 * that retransmission is still in flight.
1176 					 */
1177 					if (sacked & TCPCB_LOST) {
1178 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1179 						tp->lost_out -= tcp_skb_pcount(skb);
1180 						tp->retrans_out -= tcp_skb_pcount(skb);
1181 
1182 						/* clear lost hint */
1183 						tp->retransmit_skb_hint = NULL;
1184 					}
1185 				} else {
1186 					/* New sack for not retransmitted frame,
1187 					 * which was in hole. It is reordering.
1188 					 */
1189 					if (!(sacked & TCPCB_RETRANS) &&
1190 					    fack_count < prior_fackets)
1191 						reord = min(fack_count, reord);
1192 
1193 					if (sacked & TCPCB_LOST) {
1194 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1195 						tp->lost_out -= tcp_skb_pcount(skb);
1196 
1197 						/* clear lost hint */
1198 						tp->retransmit_skb_hint = NULL;
1199 					}
1200 					/* SACK enhanced F-RTO detection.
1201 					 * Set flag if and only if non-rexmitted
1202 					 * segments below frto_highmark are
1203 					 * SACKed (RFC4138; Appendix B).
1204 					 * Clearing correct due to in-order walk
1205 					 */
1206 					if (after(end_seq, tp->frto_highmark)) {
1207 						flag &= ~FLAG_ONLY_ORIG_SACKED;
1208 					} else {
1209 						if (!(sacked & TCPCB_RETRANS))
1210 							flag |= FLAG_ONLY_ORIG_SACKED;
1211 					}
1212 				}
1213 
1214 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1215 				flag |= FLAG_DATA_SACKED;
1216 				tp->sacked_out += tcp_skb_pcount(skb);
1217 
1218 				if (fack_count > tp->fackets_out)
1219 					tp->fackets_out = fack_count;
1220 			} else {
1221 				if (dup_sack && (sacked&TCPCB_RETRANS))
1222 					reord = min(fack_count, reord);
1223 			}
1224 
1225 			/* D-SACK. We can detect redundant retransmission
1226 			 * in S|R and plain R frames and clear it.
1227 			 * undo_retrans is decreased above, L|R frames
1228 			 * are accounted above as well.
1229 			 */
1230 			if (dup_sack &&
1231 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1232 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1233 				tp->retrans_out -= tcp_skb_pcount(skb);
1234 				tp->retransmit_skb_hint = NULL;
1235 			}
1236 		}
1237 	}
1238 
1239 	/* Check for lost retransmit. This superb idea is
1240 	 * borrowed from "ratehalving". Event "C".
1241 	 * Later note: FACK people cheated me again 8),
1242 	 * we have to account for reordering! Ugly,
1243 	 * but should help.
1244 	 */
1245 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1246 		struct sk_buff *skb;
1247 
1248 		tcp_for_write_queue(skb, sk) {
1249 			if (skb == tcp_send_head(sk))
1250 				break;
1251 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1252 				break;
1253 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1254 				continue;
1255 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1256 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1257 			    (IsFack(tp) ||
1258 			     !before(lost_retrans,
1259 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1260 				     tp->mss_cache))) {
1261 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1262 				tp->retrans_out -= tcp_skb_pcount(skb);
1263 
1264 				/* clear lost hint */
1265 				tp->retransmit_skb_hint = NULL;
1266 
1267 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1268 					tp->lost_out += tcp_skb_pcount(skb);
1269 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1270 					flag |= FLAG_DATA_SACKED;
1271 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1272 				}
1273 			}
1274 		}
1275 	}
1276 
1277 	tp->left_out = tp->sacked_out + tp->lost_out;
1278 
1279 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1280 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1281 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1282 
1283 #if FASTRETRANS_DEBUG > 0
1284 	BUG_TRAP((int)tp->sacked_out >= 0);
1285 	BUG_TRAP((int)tp->lost_out >= 0);
1286 	BUG_TRAP((int)tp->retrans_out >= 0);
1287 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1288 #endif
1289 	return flag;
1290 }
1291 
1292 /* F-RTO can only be used if TCP has never retransmitted anything other than
1293  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1294  */
1295 int tcp_use_frto(struct sock *sk)
1296 {
1297 	const struct tcp_sock *tp = tcp_sk(sk);
1298 	struct sk_buff *skb;
1299 
1300 	if (!sysctl_tcp_frto)
1301 		return 0;
1302 
1303 	if (IsSackFrto())
1304 		return 1;
1305 
1306 	/* Avoid expensive walking of rexmit queue if possible */
1307 	if (tp->retrans_out > 1)
1308 		return 0;
1309 
1310 	skb = tcp_write_queue_head(sk);
1311 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1312 	tcp_for_write_queue_from(skb, sk) {
1313 		if (skb == tcp_send_head(sk))
1314 			break;
1315 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1316 			return 0;
1317 		/* Short-circuit when first non-SACKed skb has been checked */
1318 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1319 			break;
1320 	}
1321 	return 1;
1322 }
1323 
1324 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1325  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1326  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1327  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1328  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1329  * bits are handled if the Loss state is really to be entered (in
1330  * tcp_enter_frto_loss).
1331  *
1332  * Do like tcp_enter_loss() would; when RTO expires the second time it
1333  * does:
1334  *  "Reduce ssthresh if it has not yet been made inside this window."
1335  */
1336 void tcp_enter_frto(struct sock *sk)
1337 {
1338 	const struct inet_connection_sock *icsk = inet_csk(sk);
1339 	struct tcp_sock *tp = tcp_sk(sk);
1340 	struct sk_buff *skb;
1341 
1342 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1343 	    tp->snd_una == tp->high_seq ||
1344 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1345 	     !icsk->icsk_retransmits)) {
1346 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1347 		/* Our state is too optimistic in ssthresh() call because cwnd
1348 		 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1349 		 * recovery has not yet completed. Pattern would be this: RTO,
1350 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1351 		 * up here twice).
1352 		 * RFC4138 should be more specific on what to do, even though
1353 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1354 		 * due to back-off and complexity of triggering events ...
1355 		 */
1356 		if (tp->frto_counter) {
1357 			u32 stored_cwnd;
1358 			stored_cwnd = tp->snd_cwnd;
1359 			tp->snd_cwnd = 2;
1360 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1361 			tp->snd_cwnd = stored_cwnd;
1362 		} else {
1363 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1364 		}
1365 		/* ... in theory, cong.control module could do "any tricks" in
1366 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1367 		 * counter would have to be faked before the call occurs. We
1368 		 * consider that too expensive, unlikely and hacky, so modules
1369 		 * using these in ssthresh() must deal these incompatibility
1370 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1371 		 */
1372 		tcp_ca_event(sk, CA_EVENT_FRTO);
1373 	}
1374 
1375 	tp->undo_marker = tp->snd_una;
1376 	tp->undo_retrans = 0;
1377 
1378 	skb = tcp_write_queue_head(sk);
1379 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1380 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1381 		tp->retrans_out -= tcp_skb_pcount(skb);
1382 	}
1383 	tcp_sync_left_out(tp);
1384 
1385 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1386 	 * The last condition is necessary at least in tp->frto_counter case.
1387 	 */
1388 	if (IsSackFrto() && (tp->frto_counter ||
1389 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1390 	    after(tp->high_seq, tp->snd_una)) {
1391 		tp->frto_highmark = tp->high_seq;
1392 	} else {
1393 		tp->frto_highmark = tp->snd_nxt;
1394 	}
1395 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1396 	tp->high_seq = tp->snd_nxt;
1397 	tp->frto_counter = 1;
1398 }
1399 
1400 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1401  * which indicates that we should follow the traditional RTO recovery,
1402  * i.e. mark everything lost and do go-back-N retransmission.
1403  */
1404 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1405 {
1406 	struct tcp_sock *tp = tcp_sk(sk);
1407 	struct sk_buff *skb;
1408 	int cnt = 0;
1409 
1410 	tp->sacked_out = 0;
1411 	tp->lost_out = 0;
1412 	tp->fackets_out = 0;
1413 	tp->retrans_out = 0;
1414 
1415 	tcp_for_write_queue(skb, sk) {
1416 		if (skb == tcp_send_head(sk))
1417 			break;
1418 		cnt += tcp_skb_pcount(skb);
1419 		/*
1420 		 * Count the retransmission made on RTO correctly (only when
1421 		 * waiting for the first ACK and did not get it)...
1422 		 */
1423 		if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1424 			/* For some reason this R-bit might get cleared? */
1425 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1426 				tp->retrans_out += tcp_skb_pcount(skb);
1427 			/* ...enter this if branch just for the first segment */
1428 			flag |= FLAG_DATA_ACKED;
1429 		} else {
1430 			TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1431 		}
1432 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1433 
1434 			/* Do not mark those segments lost that were
1435 			 * forward transmitted after RTO
1436 			 */
1437 			if (!after(TCP_SKB_CB(skb)->end_seq,
1438 				   tp->frto_highmark)) {
1439 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1440 				tp->lost_out += tcp_skb_pcount(skb);
1441 			}
1442 		} else {
1443 			tp->sacked_out += tcp_skb_pcount(skb);
1444 			tp->fackets_out = cnt;
1445 		}
1446 	}
1447 	tcp_sync_left_out(tp);
1448 
1449 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1450 	tp->snd_cwnd_cnt = 0;
1451 	tp->snd_cwnd_stamp = tcp_time_stamp;
1452 	tp->undo_marker = 0;
1453 	tp->frto_counter = 0;
1454 
1455 	tp->reordering = min_t(unsigned int, tp->reordering,
1456 					     sysctl_tcp_reordering);
1457 	tcp_set_ca_state(sk, TCP_CA_Loss);
1458 	tp->high_seq = tp->frto_highmark;
1459 	TCP_ECN_queue_cwr(tp);
1460 
1461 	clear_all_retrans_hints(tp);
1462 }
1463 
1464 void tcp_clear_retrans(struct tcp_sock *tp)
1465 {
1466 	tp->left_out = 0;
1467 	tp->retrans_out = 0;
1468 
1469 	tp->fackets_out = 0;
1470 	tp->sacked_out = 0;
1471 	tp->lost_out = 0;
1472 
1473 	tp->undo_marker = 0;
1474 	tp->undo_retrans = 0;
1475 }
1476 
1477 /* Enter Loss state. If "how" is not zero, forget all SACK information
1478  * and reset tags completely, otherwise preserve SACKs. If receiver
1479  * dropped its ofo queue, we will know this due to reneging detection.
1480  */
1481 void tcp_enter_loss(struct sock *sk, int how)
1482 {
1483 	const struct inet_connection_sock *icsk = inet_csk(sk);
1484 	struct tcp_sock *tp = tcp_sk(sk);
1485 	struct sk_buff *skb;
1486 	int cnt = 0;
1487 
1488 	/* Reduce ssthresh if it has not yet been made inside this window. */
1489 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1490 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1491 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1492 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1493 		tcp_ca_event(sk, CA_EVENT_LOSS);
1494 	}
1495 	tp->snd_cwnd	   = 1;
1496 	tp->snd_cwnd_cnt   = 0;
1497 	tp->snd_cwnd_stamp = tcp_time_stamp;
1498 
1499 	tp->bytes_acked = 0;
1500 	tcp_clear_retrans(tp);
1501 
1502 	/* Push undo marker, if it was plain RTO and nothing
1503 	 * was retransmitted. */
1504 	if (!how)
1505 		tp->undo_marker = tp->snd_una;
1506 
1507 	tcp_for_write_queue(skb, sk) {
1508 		if (skb == tcp_send_head(sk))
1509 			break;
1510 		cnt += tcp_skb_pcount(skb);
1511 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1512 			tp->undo_marker = 0;
1513 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1514 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1515 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1516 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1517 			tp->lost_out += tcp_skb_pcount(skb);
1518 		} else {
1519 			tp->sacked_out += tcp_skb_pcount(skb);
1520 			tp->fackets_out = cnt;
1521 		}
1522 	}
1523 	tcp_sync_left_out(tp);
1524 
1525 	tp->reordering = min_t(unsigned int, tp->reordering,
1526 					     sysctl_tcp_reordering);
1527 	tcp_set_ca_state(sk, TCP_CA_Loss);
1528 	tp->high_seq = tp->snd_nxt;
1529 	TCP_ECN_queue_cwr(tp);
1530 	/* Abort FRTO algorithm if one is in progress */
1531 	tp->frto_counter = 0;
1532 
1533 	clear_all_retrans_hints(tp);
1534 }
1535 
1536 static int tcp_check_sack_reneging(struct sock *sk)
1537 {
1538 	struct sk_buff *skb;
1539 
1540 	/* If ACK arrived pointing to a remembered SACK,
1541 	 * it means that our remembered SACKs do not reflect
1542 	 * real state of receiver i.e.
1543 	 * receiver _host_ is heavily congested (or buggy).
1544 	 * Do processing similar to RTO timeout.
1545 	 */
1546 	if ((skb = tcp_write_queue_head(sk)) != NULL &&
1547 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1548 		struct inet_connection_sock *icsk = inet_csk(sk);
1549 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1550 
1551 		tcp_enter_loss(sk, 1);
1552 		icsk->icsk_retransmits++;
1553 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1554 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1555 					  icsk->icsk_rto, TCP_RTO_MAX);
1556 		return 1;
1557 	}
1558 	return 0;
1559 }
1560 
1561 static inline int tcp_fackets_out(struct tcp_sock *tp)
1562 {
1563 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1564 }
1565 
1566 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1567 {
1568 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1569 }
1570 
1571 static inline int tcp_head_timedout(struct sock *sk)
1572 {
1573 	struct tcp_sock *tp = tcp_sk(sk);
1574 
1575 	return tp->packets_out &&
1576 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1577 }
1578 
1579 /* Linux NewReno/SACK/FACK/ECN state machine.
1580  * --------------------------------------
1581  *
1582  * "Open"	Normal state, no dubious events, fast path.
1583  * "Disorder"   In all the respects it is "Open",
1584  *		but requires a bit more attention. It is entered when
1585  *		we see some SACKs or dupacks. It is split of "Open"
1586  *		mainly to move some processing from fast path to slow one.
1587  * "CWR"	CWND was reduced due to some Congestion Notification event.
1588  *		It can be ECN, ICMP source quench, local device congestion.
1589  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1590  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1591  *
1592  * tcp_fastretrans_alert() is entered:
1593  * - each incoming ACK, if state is not "Open"
1594  * - when arrived ACK is unusual, namely:
1595  *	* SACK
1596  *	* Duplicate ACK.
1597  *	* ECN ECE.
1598  *
1599  * Counting packets in flight is pretty simple.
1600  *
1601  *	in_flight = packets_out - left_out + retrans_out
1602  *
1603  *	packets_out is SND.NXT-SND.UNA counted in packets.
1604  *
1605  *	retrans_out is number of retransmitted segments.
1606  *
1607  *	left_out is number of segments left network, but not ACKed yet.
1608  *
1609  *		left_out = sacked_out + lost_out
1610  *
1611  *     sacked_out: Packets, which arrived to receiver out of order
1612  *		   and hence not ACKed. With SACKs this number is simply
1613  *		   amount of SACKed data. Even without SACKs
1614  *		   it is easy to give pretty reliable estimate of this number,
1615  *		   counting duplicate ACKs.
1616  *
1617  *       lost_out: Packets lost by network. TCP has no explicit
1618  *		   "loss notification" feedback from network (for now).
1619  *		   It means that this number can be only _guessed_.
1620  *		   Actually, it is the heuristics to predict lossage that
1621  *		   distinguishes different algorithms.
1622  *
1623  *	F.e. after RTO, when all the queue is considered as lost,
1624  *	lost_out = packets_out and in_flight = retrans_out.
1625  *
1626  *		Essentially, we have now two algorithms counting
1627  *		lost packets.
1628  *
1629  *		FACK: It is the simplest heuristics. As soon as we decided
1630  *		that something is lost, we decide that _all_ not SACKed
1631  *		packets until the most forward SACK are lost. I.e.
1632  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1633  *		It is absolutely correct estimate, if network does not reorder
1634  *		packets. And it loses any connection to reality when reordering
1635  *		takes place. We use FACK by default until reordering
1636  *		is suspected on the path to this destination.
1637  *
1638  *		NewReno: when Recovery is entered, we assume that one segment
1639  *		is lost (classic Reno). While we are in Recovery and
1640  *		a partial ACK arrives, we assume that one more packet
1641  *		is lost (NewReno). This heuristics are the same in NewReno
1642  *		and SACK.
1643  *
1644  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1645  *  deflation etc. CWND is real congestion window, never inflated, changes
1646  *  only according to classic VJ rules.
1647  *
1648  * Really tricky (and requiring careful tuning) part of algorithm
1649  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1650  * The first determines the moment _when_ we should reduce CWND and,
1651  * hence, slow down forward transmission. In fact, it determines the moment
1652  * when we decide that hole is caused by loss, rather than by a reorder.
1653  *
1654  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1655  * holes, caused by lost packets.
1656  *
1657  * And the most logically complicated part of algorithm is undo
1658  * heuristics. We detect false retransmits due to both too early
1659  * fast retransmit (reordering) and underestimated RTO, analyzing
1660  * timestamps and D-SACKs. When we detect that some segments were
1661  * retransmitted by mistake and CWND reduction was wrong, we undo
1662  * window reduction and abort recovery phase. This logic is hidden
1663  * inside several functions named tcp_try_undo_<something>.
1664  */
1665 
1666 /* This function decides, when we should leave Disordered state
1667  * and enter Recovery phase, reducing congestion window.
1668  *
1669  * Main question: may we further continue forward transmission
1670  * with the same cwnd?
1671  */
1672 static int tcp_time_to_recover(struct sock *sk)
1673 {
1674 	struct tcp_sock *tp = tcp_sk(sk);
1675 	__u32 packets_out;
1676 
1677 	/* Do not perform any recovery during FRTO algorithm */
1678 	if (tp->frto_counter)
1679 		return 0;
1680 
1681 	/* Trick#1: The loss is proven. */
1682 	if (tp->lost_out)
1683 		return 1;
1684 
1685 	/* Not-A-Trick#2 : Classic rule... */
1686 	if (tcp_fackets_out(tp) > tp->reordering)
1687 		return 1;
1688 
1689 	/* Trick#3 : when we use RFC2988 timer restart, fast
1690 	 * retransmit can be triggered by timeout of queue head.
1691 	 */
1692 	if (tcp_head_timedout(sk))
1693 		return 1;
1694 
1695 	/* Trick#4: It is still not OK... But will it be useful to delay
1696 	 * recovery more?
1697 	 */
1698 	packets_out = tp->packets_out;
1699 	if (packets_out <= tp->reordering &&
1700 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1701 	    !tcp_may_send_now(sk)) {
1702 		/* We have nothing to send. This connection is limited
1703 		 * either by receiver window or by application.
1704 		 */
1705 		return 1;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 /* If we receive more dupacks than we expected counting segments
1712  * in assumption of absent reordering, interpret this as reordering.
1713  * The only another reason could be bug in receiver TCP.
1714  */
1715 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1716 {
1717 	struct tcp_sock *tp = tcp_sk(sk);
1718 	u32 holes;
1719 
1720 	holes = max(tp->lost_out, 1U);
1721 	holes = min(holes, tp->packets_out);
1722 
1723 	if ((tp->sacked_out + holes) > tp->packets_out) {
1724 		tp->sacked_out = tp->packets_out - holes;
1725 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1726 	}
1727 }
1728 
1729 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1730 
1731 static void tcp_add_reno_sack(struct sock *sk)
1732 {
1733 	struct tcp_sock *tp = tcp_sk(sk);
1734 	tp->sacked_out++;
1735 	tcp_check_reno_reordering(sk, 0);
1736 	tcp_sync_left_out(tp);
1737 }
1738 
1739 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1740 
1741 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1742 {
1743 	struct tcp_sock *tp = tcp_sk(sk);
1744 
1745 	if (acked > 0) {
1746 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1747 		if (acked-1 >= tp->sacked_out)
1748 			tp->sacked_out = 0;
1749 		else
1750 			tp->sacked_out -= acked-1;
1751 	}
1752 	tcp_check_reno_reordering(sk, acked);
1753 	tcp_sync_left_out(tp);
1754 }
1755 
1756 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1757 {
1758 	tp->sacked_out = 0;
1759 	tp->left_out = tp->lost_out;
1760 }
1761 
1762 /* Mark head of queue up as lost. */
1763 static void tcp_mark_head_lost(struct sock *sk,
1764 			       int packets, u32 high_seq)
1765 {
1766 	struct tcp_sock *tp = tcp_sk(sk);
1767 	struct sk_buff *skb;
1768 	int cnt;
1769 
1770 	BUG_TRAP(packets <= tp->packets_out);
1771 	if (tp->lost_skb_hint) {
1772 		skb = tp->lost_skb_hint;
1773 		cnt = tp->lost_cnt_hint;
1774 	} else {
1775 		skb = tcp_write_queue_head(sk);
1776 		cnt = 0;
1777 	}
1778 
1779 	tcp_for_write_queue_from(skb, sk) {
1780 		if (skb == tcp_send_head(sk))
1781 			break;
1782 		/* TODO: do this better */
1783 		/* this is not the most efficient way to do this... */
1784 		tp->lost_skb_hint = skb;
1785 		tp->lost_cnt_hint = cnt;
1786 		cnt += tcp_skb_pcount(skb);
1787 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1788 			break;
1789 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1790 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1791 			tp->lost_out += tcp_skb_pcount(skb);
1792 
1793 			/* clear xmit_retransmit_queue hints
1794 			 *  if this is beyond hint */
1795 			if (tp->retransmit_skb_hint != NULL &&
1796 			    before(TCP_SKB_CB(skb)->seq,
1797 				   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1798 				tp->retransmit_skb_hint = NULL;
1799 
1800 		}
1801 	}
1802 	tcp_sync_left_out(tp);
1803 }
1804 
1805 /* Account newly detected lost packet(s) */
1806 
1807 static void tcp_update_scoreboard(struct sock *sk)
1808 {
1809 	struct tcp_sock *tp = tcp_sk(sk);
1810 
1811 	if (IsFack(tp)) {
1812 		int lost = tp->fackets_out - tp->reordering;
1813 		if (lost <= 0)
1814 			lost = 1;
1815 		tcp_mark_head_lost(sk, lost, tp->high_seq);
1816 	} else {
1817 		tcp_mark_head_lost(sk, 1, tp->high_seq);
1818 	}
1819 
1820 	/* New heuristics: it is possible only after we switched
1821 	 * to restart timer each time when something is ACKed.
1822 	 * Hence, we can detect timed out packets during fast
1823 	 * retransmit without falling to slow start.
1824 	 */
1825 	if (!IsReno(tp) && tcp_head_timedout(sk)) {
1826 		struct sk_buff *skb;
1827 
1828 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1829 			: tcp_write_queue_head(sk);
1830 
1831 		tcp_for_write_queue_from(skb, sk) {
1832 			if (skb == tcp_send_head(sk))
1833 				break;
1834 			if (!tcp_skb_timedout(sk, skb))
1835 				break;
1836 
1837 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1838 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1839 				tp->lost_out += tcp_skb_pcount(skb);
1840 
1841 				/* clear xmit_retrans hint */
1842 				if (tp->retransmit_skb_hint &&
1843 				    before(TCP_SKB_CB(skb)->seq,
1844 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1845 
1846 					tp->retransmit_skb_hint = NULL;
1847 			}
1848 		}
1849 
1850 		tp->scoreboard_skb_hint = skb;
1851 
1852 		tcp_sync_left_out(tp);
1853 	}
1854 }
1855 
1856 /* CWND moderation, preventing bursts due to too big ACKs
1857  * in dubious situations.
1858  */
1859 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1860 {
1861 	tp->snd_cwnd = min(tp->snd_cwnd,
1862 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1863 	tp->snd_cwnd_stamp = tcp_time_stamp;
1864 }
1865 
1866 /* Lower bound on congestion window is slow start threshold
1867  * unless congestion avoidance choice decides to overide it.
1868  */
1869 static inline u32 tcp_cwnd_min(const struct sock *sk)
1870 {
1871 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1872 
1873 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1874 }
1875 
1876 /* Decrease cwnd each second ack. */
1877 static void tcp_cwnd_down(struct sock *sk, int flag)
1878 {
1879 	struct tcp_sock *tp = tcp_sk(sk);
1880 	int decr = tp->snd_cwnd_cnt + 1;
1881 
1882 	if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
1883 	    (IsReno(tp) && !(flag&FLAG_NOT_DUP))) {
1884 		tp->snd_cwnd_cnt = decr&1;
1885 		decr >>= 1;
1886 
1887 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1888 			tp->snd_cwnd -= decr;
1889 
1890 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1891 		tp->snd_cwnd_stamp = tcp_time_stamp;
1892 	}
1893 }
1894 
1895 /* Nothing was retransmitted or returned timestamp is less
1896  * than timestamp of the first retransmission.
1897  */
1898 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1899 {
1900 	return !tp->retrans_stamp ||
1901 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1902 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1903 }
1904 
1905 /* Undo procedures. */
1906 
1907 #if FASTRETRANS_DEBUG > 1
1908 static void DBGUNDO(struct sock *sk, const char *msg)
1909 {
1910 	struct tcp_sock *tp = tcp_sk(sk);
1911 	struct inet_sock *inet = inet_sk(sk);
1912 
1913 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1914 	       msg,
1915 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1916 	       tp->snd_cwnd, tp->left_out,
1917 	       tp->snd_ssthresh, tp->prior_ssthresh,
1918 	       tp->packets_out);
1919 }
1920 #else
1921 #define DBGUNDO(x...) do { } while (0)
1922 #endif
1923 
1924 static void tcp_undo_cwr(struct sock *sk, const int undo)
1925 {
1926 	struct tcp_sock *tp = tcp_sk(sk);
1927 
1928 	if (tp->prior_ssthresh) {
1929 		const struct inet_connection_sock *icsk = inet_csk(sk);
1930 
1931 		if (icsk->icsk_ca_ops->undo_cwnd)
1932 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1933 		else
1934 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1935 
1936 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1937 			tp->snd_ssthresh = tp->prior_ssthresh;
1938 			TCP_ECN_withdraw_cwr(tp);
1939 		}
1940 	} else {
1941 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1942 	}
1943 	tcp_moderate_cwnd(tp);
1944 	tp->snd_cwnd_stamp = tcp_time_stamp;
1945 
1946 	/* There is something screwy going on with the retrans hints after
1947 	   an undo */
1948 	clear_all_retrans_hints(tp);
1949 }
1950 
1951 static inline int tcp_may_undo(struct tcp_sock *tp)
1952 {
1953 	return tp->undo_marker &&
1954 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1955 }
1956 
1957 /* People celebrate: "We love our President!" */
1958 static int tcp_try_undo_recovery(struct sock *sk)
1959 {
1960 	struct tcp_sock *tp = tcp_sk(sk);
1961 
1962 	if (tcp_may_undo(tp)) {
1963 		/* Happy end! We did not retransmit anything
1964 		 * or our original transmission succeeded.
1965 		 */
1966 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1967 		tcp_undo_cwr(sk, 1);
1968 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1969 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1970 		else
1971 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1972 		tp->undo_marker = 0;
1973 	}
1974 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1975 		/* Hold old state until something *above* high_seq
1976 		 * is ACKed. For Reno it is MUST to prevent false
1977 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1978 		tcp_moderate_cwnd(tp);
1979 		return 1;
1980 	}
1981 	tcp_set_ca_state(sk, TCP_CA_Open);
1982 	return 0;
1983 }
1984 
1985 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1986 static void tcp_try_undo_dsack(struct sock *sk)
1987 {
1988 	struct tcp_sock *tp = tcp_sk(sk);
1989 
1990 	if (tp->undo_marker && !tp->undo_retrans) {
1991 		DBGUNDO(sk, "D-SACK");
1992 		tcp_undo_cwr(sk, 1);
1993 		tp->undo_marker = 0;
1994 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1995 	}
1996 }
1997 
1998 /* Undo during fast recovery after partial ACK. */
1999 
2000 static int tcp_try_undo_partial(struct sock *sk, int acked)
2001 {
2002 	struct tcp_sock *tp = tcp_sk(sk);
2003 	/* Partial ACK arrived. Force Hoe's retransmit. */
2004 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
2005 
2006 	if (tcp_may_undo(tp)) {
2007 		/* Plain luck! Hole if filled with delayed
2008 		 * packet, rather than with a retransmit.
2009 		 */
2010 		if (tp->retrans_out == 0)
2011 			tp->retrans_stamp = 0;
2012 
2013 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2014 
2015 		DBGUNDO(sk, "Hoe");
2016 		tcp_undo_cwr(sk, 0);
2017 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2018 
2019 		/* So... Do not make Hoe's retransmit yet.
2020 		 * If the first packet was delayed, the rest
2021 		 * ones are most probably delayed as well.
2022 		 */
2023 		failed = 0;
2024 	}
2025 	return failed;
2026 }
2027 
2028 /* Undo during loss recovery after partial ACK. */
2029 static int tcp_try_undo_loss(struct sock *sk)
2030 {
2031 	struct tcp_sock *tp = tcp_sk(sk);
2032 
2033 	if (tcp_may_undo(tp)) {
2034 		struct sk_buff *skb;
2035 		tcp_for_write_queue(skb, sk) {
2036 			if (skb == tcp_send_head(sk))
2037 				break;
2038 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2039 		}
2040 
2041 		clear_all_retrans_hints(tp);
2042 
2043 		DBGUNDO(sk, "partial loss");
2044 		tp->lost_out = 0;
2045 		tp->left_out = tp->sacked_out;
2046 		tcp_undo_cwr(sk, 1);
2047 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2048 		inet_csk(sk)->icsk_retransmits = 0;
2049 		tp->undo_marker = 0;
2050 		if (!IsReno(tp))
2051 			tcp_set_ca_state(sk, TCP_CA_Open);
2052 		return 1;
2053 	}
2054 	return 0;
2055 }
2056 
2057 static inline void tcp_complete_cwr(struct sock *sk)
2058 {
2059 	struct tcp_sock *tp = tcp_sk(sk);
2060 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2061 	tp->snd_cwnd_stamp = tcp_time_stamp;
2062 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2063 }
2064 
2065 static void tcp_try_to_open(struct sock *sk, int flag)
2066 {
2067 	struct tcp_sock *tp = tcp_sk(sk);
2068 
2069 	tcp_sync_left_out(tp);
2070 
2071 	if (tp->retrans_out == 0)
2072 		tp->retrans_stamp = 0;
2073 
2074 	if (flag&FLAG_ECE)
2075 		tcp_enter_cwr(sk, 1);
2076 
2077 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2078 		int state = TCP_CA_Open;
2079 
2080 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
2081 			state = TCP_CA_Disorder;
2082 
2083 		if (inet_csk(sk)->icsk_ca_state != state) {
2084 			tcp_set_ca_state(sk, state);
2085 			tp->high_seq = tp->snd_nxt;
2086 		}
2087 		tcp_moderate_cwnd(tp);
2088 	} else {
2089 		tcp_cwnd_down(sk, flag);
2090 	}
2091 }
2092 
2093 static void tcp_mtup_probe_failed(struct sock *sk)
2094 {
2095 	struct inet_connection_sock *icsk = inet_csk(sk);
2096 
2097 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2098 	icsk->icsk_mtup.probe_size = 0;
2099 }
2100 
2101 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2102 {
2103 	struct tcp_sock *tp = tcp_sk(sk);
2104 	struct inet_connection_sock *icsk = inet_csk(sk);
2105 
2106 	/* FIXME: breaks with very large cwnd */
2107 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2108 	tp->snd_cwnd = tp->snd_cwnd *
2109 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2110 		       icsk->icsk_mtup.probe_size;
2111 	tp->snd_cwnd_cnt = 0;
2112 	tp->snd_cwnd_stamp = tcp_time_stamp;
2113 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2114 
2115 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2116 	icsk->icsk_mtup.probe_size = 0;
2117 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2118 }
2119 
2120 
2121 /* Process an event, which can update packets-in-flight not trivially.
2122  * Main goal of this function is to calculate new estimate for left_out,
2123  * taking into account both packets sitting in receiver's buffer and
2124  * packets lost by network.
2125  *
2126  * Besides that it does CWND reduction, when packet loss is detected
2127  * and changes state of machine.
2128  *
2129  * It does _not_ decide what to send, it is made in function
2130  * tcp_xmit_retransmit_queue().
2131  */
2132 static void
2133 tcp_fastretrans_alert(struct sock *sk, int prior_packets, int flag)
2134 {
2135 	struct inet_connection_sock *icsk = inet_csk(sk);
2136 	struct tcp_sock *tp = tcp_sk(sk);
2137 	int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2138 	int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2139 				    (tp->fackets_out > tp->reordering));
2140 
2141 	/* Some technical things:
2142 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
2143 	if (!tp->packets_out)
2144 		tp->sacked_out = 0;
2145 	/* 2. SACK counts snd_fack in packets inaccurately. */
2146 	if (tp->sacked_out == 0)
2147 		tp->fackets_out = 0;
2148 
2149 	/* Now state machine starts.
2150 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2151 	if (flag&FLAG_ECE)
2152 		tp->prior_ssthresh = 0;
2153 
2154 	/* B. In all the states check for reneging SACKs. */
2155 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
2156 		return;
2157 
2158 	/* C. Process data loss notification, provided it is valid. */
2159 	if ((flag&FLAG_DATA_LOST) &&
2160 	    before(tp->snd_una, tp->high_seq) &&
2161 	    icsk->icsk_ca_state != TCP_CA_Open &&
2162 	    tp->fackets_out > tp->reordering) {
2163 		tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2164 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2165 	}
2166 
2167 	/* D. Synchronize left_out to current state. */
2168 	tcp_sync_left_out(tp);
2169 
2170 	/* E. Check state exit conditions. State can be terminated
2171 	 *    when high_seq is ACKed. */
2172 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2173 		BUG_TRAP(tp->retrans_out == 0);
2174 		tp->retrans_stamp = 0;
2175 	} else if (!before(tp->snd_una, tp->high_seq)) {
2176 		switch (icsk->icsk_ca_state) {
2177 		case TCP_CA_Loss:
2178 			icsk->icsk_retransmits = 0;
2179 			if (tcp_try_undo_recovery(sk))
2180 				return;
2181 			break;
2182 
2183 		case TCP_CA_CWR:
2184 			/* CWR is to be held something *above* high_seq
2185 			 * is ACKed for CWR bit to reach receiver. */
2186 			if (tp->snd_una != tp->high_seq) {
2187 				tcp_complete_cwr(sk);
2188 				tcp_set_ca_state(sk, TCP_CA_Open);
2189 			}
2190 			break;
2191 
2192 		case TCP_CA_Disorder:
2193 			tcp_try_undo_dsack(sk);
2194 			if (!tp->undo_marker ||
2195 			    /* For SACK case do not Open to allow to undo
2196 			     * catching for all duplicate ACKs. */
2197 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2198 				tp->undo_marker = 0;
2199 				tcp_set_ca_state(sk, TCP_CA_Open);
2200 			}
2201 			break;
2202 
2203 		case TCP_CA_Recovery:
2204 			if (IsReno(tp))
2205 				tcp_reset_reno_sack(tp);
2206 			if (tcp_try_undo_recovery(sk))
2207 				return;
2208 			tcp_complete_cwr(sk);
2209 			break;
2210 		}
2211 	}
2212 
2213 	/* F. Process state. */
2214 	switch (icsk->icsk_ca_state) {
2215 	case TCP_CA_Recovery:
2216 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2217 			if (IsReno(tp) && is_dupack)
2218 				tcp_add_reno_sack(sk);
2219 		} else {
2220 			int acked = prior_packets - tp->packets_out;
2221 			if (IsReno(tp))
2222 				tcp_remove_reno_sacks(sk, acked);
2223 			do_lost = tcp_try_undo_partial(sk, acked);
2224 		}
2225 		break;
2226 	case TCP_CA_Loss:
2227 		if (flag&FLAG_DATA_ACKED)
2228 			icsk->icsk_retransmits = 0;
2229 		if (!tcp_try_undo_loss(sk)) {
2230 			tcp_moderate_cwnd(tp);
2231 			tcp_xmit_retransmit_queue(sk);
2232 			return;
2233 		}
2234 		if (icsk->icsk_ca_state != TCP_CA_Open)
2235 			return;
2236 		/* Loss is undone; fall through to processing in Open state. */
2237 	default:
2238 		if (IsReno(tp)) {
2239 			if (flag & FLAG_SND_UNA_ADVANCED)
2240 				tcp_reset_reno_sack(tp);
2241 			if (is_dupack)
2242 				tcp_add_reno_sack(sk);
2243 		}
2244 
2245 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2246 			tcp_try_undo_dsack(sk);
2247 
2248 		if (!tcp_time_to_recover(sk)) {
2249 			tcp_try_to_open(sk, flag);
2250 			return;
2251 		}
2252 
2253 		/* MTU probe failure: don't reduce cwnd */
2254 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2255 		    icsk->icsk_mtup.probe_size &&
2256 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2257 			tcp_mtup_probe_failed(sk);
2258 			/* Restores the reduction we did in tcp_mtup_probe() */
2259 			tp->snd_cwnd++;
2260 			tcp_simple_retransmit(sk);
2261 			return;
2262 		}
2263 
2264 		/* Otherwise enter Recovery state */
2265 
2266 		if (IsReno(tp))
2267 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2268 		else
2269 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2270 
2271 		tp->high_seq = tp->snd_nxt;
2272 		tp->prior_ssthresh = 0;
2273 		tp->undo_marker = tp->snd_una;
2274 		tp->undo_retrans = tp->retrans_out;
2275 
2276 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2277 			if (!(flag&FLAG_ECE))
2278 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2279 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2280 			TCP_ECN_queue_cwr(tp);
2281 		}
2282 
2283 		tp->bytes_acked = 0;
2284 		tp->snd_cwnd_cnt = 0;
2285 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2286 	}
2287 
2288 	if (do_lost || tcp_head_timedout(sk))
2289 		tcp_update_scoreboard(sk);
2290 	tcp_cwnd_down(sk, flag);
2291 	tcp_xmit_retransmit_queue(sk);
2292 }
2293 
2294 /* Read draft-ietf-tcplw-high-performance before mucking
2295  * with this code. (Supersedes RFC1323)
2296  */
2297 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2298 {
2299 	/* RTTM Rule: A TSecr value received in a segment is used to
2300 	 * update the averaged RTT measurement only if the segment
2301 	 * acknowledges some new data, i.e., only if it advances the
2302 	 * left edge of the send window.
2303 	 *
2304 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2305 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2306 	 *
2307 	 * Changed: reset backoff as soon as we see the first valid sample.
2308 	 * If we do not, we get strongly overestimated rto. With timestamps
2309 	 * samples are accepted even from very old segments: f.e., when rtt=1
2310 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2311 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2312 	 * in window is lost... Voila.	 			--ANK (010210)
2313 	 */
2314 	struct tcp_sock *tp = tcp_sk(sk);
2315 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2316 	tcp_rtt_estimator(sk, seq_rtt);
2317 	tcp_set_rto(sk);
2318 	inet_csk(sk)->icsk_backoff = 0;
2319 	tcp_bound_rto(sk);
2320 }
2321 
2322 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2323 {
2324 	/* We don't have a timestamp. Can only use
2325 	 * packets that are not retransmitted to determine
2326 	 * rtt estimates. Also, we must not reset the
2327 	 * backoff for rto until we get a non-retransmitted
2328 	 * packet. This allows us to deal with a situation
2329 	 * where the network delay has increased suddenly.
2330 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2331 	 */
2332 
2333 	if (flag & FLAG_RETRANS_DATA_ACKED)
2334 		return;
2335 
2336 	tcp_rtt_estimator(sk, seq_rtt);
2337 	tcp_set_rto(sk);
2338 	inet_csk(sk)->icsk_backoff = 0;
2339 	tcp_bound_rto(sk);
2340 }
2341 
2342 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2343 				      const s32 seq_rtt)
2344 {
2345 	const struct tcp_sock *tp = tcp_sk(sk);
2346 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2347 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2348 		tcp_ack_saw_tstamp(sk, flag);
2349 	else if (seq_rtt >= 0)
2350 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2351 }
2352 
2353 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2354 			   u32 in_flight, int good)
2355 {
2356 	const struct inet_connection_sock *icsk = inet_csk(sk);
2357 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2358 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2359 }
2360 
2361 /* Restart timer after forward progress on connection.
2362  * RFC2988 recommends to restart timer to now+rto.
2363  */
2364 
2365 static void tcp_ack_packets_out(struct sock *sk)
2366 {
2367 	struct tcp_sock *tp = tcp_sk(sk);
2368 
2369 	if (!tp->packets_out) {
2370 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2371 	} else {
2372 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2373 	}
2374 }
2375 
2376 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2377 			 __u32 now, __s32 *seq_rtt)
2378 {
2379 	struct tcp_sock *tp = tcp_sk(sk);
2380 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2381 	__u32 seq = tp->snd_una;
2382 	__u32 packets_acked;
2383 	int acked = 0;
2384 
2385 	/* If we get here, the whole TSO packet has not been
2386 	 * acked.
2387 	 */
2388 	BUG_ON(!after(scb->end_seq, seq));
2389 
2390 	packets_acked = tcp_skb_pcount(skb);
2391 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2392 		return 0;
2393 	packets_acked -= tcp_skb_pcount(skb);
2394 
2395 	if (packets_acked) {
2396 		__u8 sacked = scb->sacked;
2397 
2398 		acked |= FLAG_DATA_ACKED;
2399 		if (sacked) {
2400 			if (sacked & TCPCB_RETRANS) {
2401 				if (sacked & TCPCB_SACKED_RETRANS)
2402 					tp->retrans_out -= packets_acked;
2403 				acked |= FLAG_RETRANS_DATA_ACKED;
2404 				*seq_rtt = -1;
2405 			} else if (*seq_rtt < 0)
2406 				*seq_rtt = now - scb->when;
2407 			if (sacked & TCPCB_SACKED_ACKED)
2408 				tp->sacked_out -= packets_acked;
2409 			if (sacked & TCPCB_LOST)
2410 				tp->lost_out -= packets_acked;
2411 			if (sacked & TCPCB_URG) {
2412 				if (tp->urg_mode &&
2413 				    !before(seq, tp->snd_up))
2414 					tp->urg_mode = 0;
2415 			}
2416 		} else if (*seq_rtt < 0)
2417 			*seq_rtt = now - scb->when;
2418 
2419 		if (tp->fackets_out) {
2420 			__u32 dval = min(tp->fackets_out, packets_acked);
2421 			tp->fackets_out -= dval;
2422 		}
2423 		/* hint's skb might be NULL but we don't need to care */
2424 		tp->fastpath_cnt_hint -= min_t(u32, packets_acked,
2425 					       tp->fastpath_cnt_hint);
2426 		tp->packets_out -= packets_acked;
2427 
2428 		BUG_ON(tcp_skb_pcount(skb) == 0);
2429 		BUG_ON(!before(scb->seq, scb->end_seq));
2430 	}
2431 
2432 	return acked;
2433 }
2434 
2435 /* Remove acknowledged frames from the retransmission queue. */
2436 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2437 {
2438 	struct tcp_sock *tp = tcp_sk(sk);
2439 	const struct inet_connection_sock *icsk = inet_csk(sk);
2440 	struct sk_buff *skb;
2441 	__u32 now = tcp_time_stamp;
2442 	int acked = 0;
2443 	int prior_packets = tp->packets_out;
2444 	__s32 seq_rtt = -1;
2445 	ktime_t last_ackt = net_invalid_timestamp();
2446 
2447 	while ((skb = tcp_write_queue_head(sk)) &&
2448 	       skb != tcp_send_head(sk)) {
2449 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2450 		__u8 sacked = scb->sacked;
2451 
2452 		/* If our packet is before the ack sequence we can
2453 		 * discard it as it's confirmed to have arrived at
2454 		 * the other end.
2455 		 */
2456 		if (after(scb->end_seq, tp->snd_una)) {
2457 			if (tcp_skb_pcount(skb) > 1 &&
2458 			    after(tp->snd_una, scb->seq))
2459 				acked |= tcp_tso_acked(sk, skb,
2460 						       now, &seq_rtt);
2461 			break;
2462 		}
2463 
2464 		/* Initial outgoing SYN's get put onto the write_queue
2465 		 * just like anything else we transmit.  It is not
2466 		 * true data, and if we misinform our callers that
2467 		 * this ACK acks real data, we will erroneously exit
2468 		 * connection startup slow start one packet too
2469 		 * quickly.  This is severely frowned upon behavior.
2470 		 */
2471 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2472 			acked |= FLAG_DATA_ACKED;
2473 		} else {
2474 			acked |= FLAG_SYN_ACKED;
2475 			tp->retrans_stamp = 0;
2476 		}
2477 
2478 		/* MTU probing checks */
2479 		if (icsk->icsk_mtup.probe_size) {
2480 			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2481 				tcp_mtup_probe_success(sk, skb);
2482 			}
2483 		}
2484 
2485 		if (sacked) {
2486 			if (sacked & TCPCB_RETRANS) {
2487 				if (sacked & TCPCB_SACKED_RETRANS)
2488 					tp->retrans_out -= tcp_skb_pcount(skb);
2489 				acked |= FLAG_RETRANS_DATA_ACKED;
2490 				seq_rtt = -1;
2491 			} else if (seq_rtt < 0) {
2492 				seq_rtt = now - scb->when;
2493 				last_ackt = skb->tstamp;
2494 			}
2495 			if (sacked & TCPCB_SACKED_ACKED)
2496 				tp->sacked_out -= tcp_skb_pcount(skb);
2497 			if (sacked & TCPCB_LOST)
2498 				tp->lost_out -= tcp_skb_pcount(skb);
2499 			if (sacked & TCPCB_URG) {
2500 				if (tp->urg_mode &&
2501 				    !before(scb->end_seq, tp->snd_up))
2502 					tp->urg_mode = 0;
2503 			}
2504 		} else if (seq_rtt < 0) {
2505 			seq_rtt = now - scb->when;
2506 			last_ackt = skb->tstamp;
2507 		}
2508 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2509 		tcp_packets_out_dec(tp, skb);
2510 		tcp_unlink_write_queue(skb, sk);
2511 		sk_stream_free_skb(sk, skb);
2512 		clear_all_retrans_hints(tp);
2513 	}
2514 
2515 	if (acked&FLAG_ACKED) {
2516 		u32 pkts_acked = prior_packets - tp->packets_out;
2517 		const struct tcp_congestion_ops *ca_ops
2518 			= inet_csk(sk)->icsk_ca_ops;
2519 
2520 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2521 		tcp_ack_packets_out(sk);
2522 
2523 		if (ca_ops->pkts_acked) {
2524 			s32 rtt_us = -1;
2525 
2526 			/* Is the ACK triggering packet unambiguous? */
2527 			if (!(acked & FLAG_RETRANS_DATA_ACKED)) {
2528 				/* High resolution needed and available? */
2529 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2530 				    !ktime_equal(last_ackt,
2531 						 net_invalid_timestamp()))
2532 					rtt_us = ktime_us_delta(ktime_get_real(),
2533 								last_ackt);
2534 				else if (seq_rtt > 0)
2535 					rtt_us = jiffies_to_usecs(seq_rtt);
2536 			}
2537 
2538 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2539 		}
2540 	}
2541 
2542 #if FASTRETRANS_DEBUG > 0
2543 	BUG_TRAP((int)tp->sacked_out >= 0);
2544 	BUG_TRAP((int)tp->lost_out >= 0);
2545 	BUG_TRAP((int)tp->retrans_out >= 0);
2546 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2547 		const struct inet_connection_sock *icsk = inet_csk(sk);
2548 		if (tp->lost_out) {
2549 			printk(KERN_DEBUG "Leak l=%u %d\n",
2550 			       tp->lost_out, icsk->icsk_ca_state);
2551 			tp->lost_out = 0;
2552 		}
2553 		if (tp->sacked_out) {
2554 			printk(KERN_DEBUG "Leak s=%u %d\n",
2555 			       tp->sacked_out, icsk->icsk_ca_state);
2556 			tp->sacked_out = 0;
2557 		}
2558 		if (tp->retrans_out) {
2559 			printk(KERN_DEBUG "Leak r=%u %d\n",
2560 			       tp->retrans_out, icsk->icsk_ca_state);
2561 			tp->retrans_out = 0;
2562 		}
2563 	}
2564 #endif
2565 	*seq_rtt_p = seq_rtt;
2566 	return acked;
2567 }
2568 
2569 static void tcp_ack_probe(struct sock *sk)
2570 {
2571 	const struct tcp_sock *tp = tcp_sk(sk);
2572 	struct inet_connection_sock *icsk = inet_csk(sk);
2573 
2574 	/* Was it a usable window open? */
2575 
2576 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2577 		   tp->snd_una + tp->snd_wnd)) {
2578 		icsk->icsk_backoff = 0;
2579 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2580 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2581 		 * This function is not for random using!
2582 		 */
2583 	} else {
2584 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2585 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2586 					  TCP_RTO_MAX);
2587 	}
2588 }
2589 
2590 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2591 {
2592 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2593 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2594 }
2595 
2596 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2597 {
2598 	const struct tcp_sock *tp = tcp_sk(sk);
2599 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2600 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2601 }
2602 
2603 /* Check that window update is acceptable.
2604  * The function assumes that snd_una<=ack<=snd_next.
2605  */
2606 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2607 					const u32 ack_seq, const u32 nwin)
2608 {
2609 	return (after(ack, tp->snd_una) ||
2610 		after(ack_seq, tp->snd_wl1) ||
2611 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2612 }
2613 
2614 /* Update our send window.
2615  *
2616  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2617  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2618  */
2619 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2620 				 u32 ack_seq)
2621 {
2622 	struct tcp_sock *tp = tcp_sk(sk);
2623 	int flag = 0;
2624 	u32 nwin = ntohs(tcp_hdr(skb)->window);
2625 
2626 	if (likely(!tcp_hdr(skb)->syn))
2627 		nwin <<= tp->rx_opt.snd_wscale;
2628 
2629 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2630 		flag |= FLAG_WIN_UPDATE;
2631 		tcp_update_wl(tp, ack, ack_seq);
2632 
2633 		if (tp->snd_wnd != nwin) {
2634 			tp->snd_wnd = nwin;
2635 
2636 			/* Note, it is the only place, where
2637 			 * fast path is recovered for sending TCP.
2638 			 */
2639 			tp->pred_flags = 0;
2640 			tcp_fast_path_check(sk);
2641 
2642 			if (nwin > tp->max_window) {
2643 				tp->max_window = nwin;
2644 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2645 			}
2646 		}
2647 	}
2648 
2649 	tp->snd_una = ack;
2650 
2651 	return flag;
2652 }
2653 
2654 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2655  * continue in congestion avoidance.
2656  */
2657 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2658 {
2659 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2660 	tp->snd_cwnd_cnt = 0;
2661 	TCP_ECN_queue_cwr(tp);
2662 	tcp_moderate_cwnd(tp);
2663 }
2664 
2665 /* A conservative spurious RTO response algorithm: reduce cwnd using
2666  * rate halving and continue in congestion avoidance.
2667  */
2668 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2669 {
2670 	tcp_enter_cwr(sk, 0);
2671 }
2672 
2673 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2674 {
2675 	if (flag&FLAG_ECE)
2676 		tcp_ratehalving_spur_to_response(sk);
2677 	else
2678 		tcp_undo_cwr(sk, 1);
2679 }
2680 
2681 /* F-RTO spurious RTO detection algorithm (RFC4138)
2682  *
2683  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2684  * comments). State (ACK number) is kept in frto_counter. When ACK advances
2685  * window (but not to or beyond highest sequence sent before RTO):
2686  *   On First ACK,  send two new segments out.
2687  *   On Second ACK, RTO was likely spurious. Do spurious response (response
2688  *                  algorithm is not part of the F-RTO detection algorithm
2689  *                  given in RFC4138 but can be selected separately).
2690  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2691  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2692  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2693  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2694  *
2695  * Rationale: if the RTO was spurious, new ACKs should arrive from the
2696  * original window even after we transmit two new data segments.
2697  *
2698  * SACK version:
2699  *   on first step, wait until first cumulative ACK arrives, then move to
2700  *   the second step. In second step, the next ACK decides.
2701  *
2702  * F-RTO is implemented (mainly) in four functions:
2703  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2704  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2705  *     called when tcp_use_frto() showed green light
2706  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2707  *   - tcp_enter_frto_loss() is called if there is not enough evidence
2708  *     to prove that the RTO is indeed spurious. It transfers the control
2709  *     from F-RTO to the conventional RTO recovery
2710  */
2711 static int tcp_process_frto(struct sock *sk, int flag)
2712 {
2713 	struct tcp_sock *tp = tcp_sk(sk);
2714 
2715 	tcp_sync_left_out(tp);
2716 
2717 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
2718 	if (flag&FLAG_DATA_ACKED)
2719 		inet_csk(sk)->icsk_retransmits = 0;
2720 
2721 	if (!before(tp->snd_una, tp->frto_highmark)) {
2722 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2723 		return 1;
2724 	}
2725 
2726 	if (!IsSackFrto() || IsReno(tp)) {
2727 		/* RFC4138 shortcoming in step 2; should also have case c):
2728 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
2729 		 * data, winupdate
2730 		 */
2731 		if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2732 			return 1;
2733 
2734 		if (!(flag&FLAG_DATA_ACKED)) {
2735 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2736 					    flag);
2737 			return 1;
2738 		}
2739 	} else {
2740 		if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2741 			/* Prevent sending of new data. */
2742 			tp->snd_cwnd = min(tp->snd_cwnd,
2743 					   tcp_packets_in_flight(tp));
2744 			return 1;
2745 		}
2746 
2747 		if ((tp->frto_counter >= 2) &&
2748 		    (!(flag&FLAG_FORWARD_PROGRESS) ||
2749 		     ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2750 			/* RFC4138 shortcoming (see comment above) */
2751 			if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2752 				return 1;
2753 
2754 			tcp_enter_frto_loss(sk, 3, flag);
2755 			return 1;
2756 		}
2757 	}
2758 
2759 	if (tp->frto_counter == 1) {
2760 		/* Sending of the next skb must be allowed or no FRTO */
2761 		if (!tcp_send_head(sk) ||
2762 		    after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2763 				     tp->snd_una + tp->snd_wnd)) {
2764 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2765 					    flag);
2766 			return 1;
2767 		}
2768 
2769 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2770 		tp->frto_counter = 2;
2771 		return 1;
2772 	} else {
2773 		switch (sysctl_tcp_frto_response) {
2774 		case 2:
2775 			tcp_undo_spur_to_response(sk, flag);
2776 			break;
2777 		case 1:
2778 			tcp_conservative_spur_to_response(tp);
2779 			break;
2780 		default:
2781 			tcp_ratehalving_spur_to_response(sk);
2782 			break;
2783 		}
2784 		tp->frto_counter = 0;
2785 	}
2786 	return 0;
2787 }
2788 
2789 /* This routine deals with incoming acks, but not outgoing ones. */
2790 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2791 {
2792 	struct inet_connection_sock *icsk = inet_csk(sk);
2793 	struct tcp_sock *tp = tcp_sk(sk);
2794 	u32 prior_snd_una = tp->snd_una;
2795 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2796 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2797 	u32 prior_in_flight;
2798 	s32 seq_rtt;
2799 	int prior_packets;
2800 	int frto_cwnd = 0;
2801 
2802 	/* If the ack is newer than sent or older than previous acks
2803 	 * then we can probably ignore it.
2804 	 */
2805 	if (after(ack, tp->snd_nxt))
2806 		goto uninteresting_ack;
2807 
2808 	if (before(ack, prior_snd_una))
2809 		goto old_ack;
2810 
2811 	if (after(ack, prior_snd_una))
2812 		flag |= FLAG_SND_UNA_ADVANCED;
2813 
2814 	if (sysctl_tcp_abc) {
2815 		if (icsk->icsk_ca_state < TCP_CA_CWR)
2816 			tp->bytes_acked += ack - prior_snd_una;
2817 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2818 			/* we assume just one segment left network */
2819 			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2820 	}
2821 
2822 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2823 		/* Window is constant, pure forward advance.
2824 		 * No more checks are required.
2825 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2826 		 */
2827 		tcp_update_wl(tp, ack, ack_seq);
2828 		tp->snd_una = ack;
2829 		flag |= FLAG_WIN_UPDATE;
2830 
2831 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2832 
2833 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2834 	} else {
2835 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2836 			flag |= FLAG_DATA;
2837 		else
2838 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2839 
2840 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2841 
2842 		if (TCP_SKB_CB(skb)->sacked)
2843 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2844 
2845 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2846 			flag |= FLAG_ECE;
2847 
2848 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2849 	}
2850 
2851 	/* We passed data and got it acked, remove any soft error
2852 	 * log. Something worked...
2853 	 */
2854 	sk->sk_err_soft = 0;
2855 	tp->rcv_tstamp = tcp_time_stamp;
2856 	prior_packets = tp->packets_out;
2857 	if (!prior_packets)
2858 		goto no_queue;
2859 
2860 	prior_in_flight = tcp_packets_in_flight(tp);
2861 
2862 	/* See if we can take anything off of the retransmit queue. */
2863 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2864 
2865 	if (tp->frto_counter)
2866 		frto_cwnd = tcp_process_frto(sk, flag);
2867 
2868 	if (tcp_ack_is_dubious(sk, flag)) {
2869 		/* Advance CWND, if state allows this. */
2870 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2871 		    tcp_may_raise_cwnd(sk, flag))
2872 			tcp_cong_avoid(sk, ack, prior_in_flight, 0);
2873 		tcp_fastretrans_alert(sk, prior_packets, flag);
2874 	} else {
2875 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2876 			tcp_cong_avoid(sk, ack, prior_in_flight, 1);
2877 	}
2878 
2879 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2880 		dst_confirm(sk->sk_dst_cache);
2881 
2882 	return 1;
2883 
2884 no_queue:
2885 	icsk->icsk_probes_out = 0;
2886 
2887 	/* If this ack opens up a zero window, clear backoff.  It was
2888 	 * being used to time the probes, and is probably far higher than
2889 	 * it needs to be for normal retransmission.
2890 	 */
2891 	if (tcp_send_head(sk))
2892 		tcp_ack_probe(sk);
2893 	return 1;
2894 
2895 old_ack:
2896 	if (TCP_SKB_CB(skb)->sacked)
2897 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2898 
2899 uninteresting_ack:
2900 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2901 	return 0;
2902 }
2903 
2904 
2905 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2906  * But, this can also be called on packets in the established flow when
2907  * the fast version below fails.
2908  */
2909 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2910 {
2911 	unsigned char *ptr;
2912 	struct tcphdr *th = tcp_hdr(skb);
2913 	int length=(th->doff*4)-sizeof(struct tcphdr);
2914 
2915 	ptr = (unsigned char *)(th + 1);
2916 	opt_rx->saw_tstamp = 0;
2917 
2918 	while (length > 0) {
2919 		int opcode=*ptr++;
2920 		int opsize;
2921 
2922 		switch (opcode) {
2923 			case TCPOPT_EOL:
2924 				return;
2925 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2926 				length--;
2927 				continue;
2928 			default:
2929 				opsize=*ptr++;
2930 				if (opsize < 2) /* "silly options" */
2931 					return;
2932 				if (opsize > length)
2933 					return;	/* don't parse partial options */
2934 				switch (opcode) {
2935 				case TCPOPT_MSS:
2936 					if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2937 						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2938 						if (in_mss) {
2939 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2940 								in_mss = opt_rx->user_mss;
2941 							opt_rx->mss_clamp = in_mss;
2942 						}
2943 					}
2944 					break;
2945 				case TCPOPT_WINDOW:
2946 					if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2947 						if (sysctl_tcp_window_scaling) {
2948 							__u8 snd_wscale = *(__u8 *) ptr;
2949 							opt_rx->wscale_ok = 1;
2950 							if (snd_wscale > 14) {
2951 								if (net_ratelimit())
2952 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2953 									       "scaling value %d >14 received.\n",
2954 									       snd_wscale);
2955 								snd_wscale = 14;
2956 							}
2957 							opt_rx->snd_wscale = snd_wscale;
2958 						}
2959 					break;
2960 				case TCPOPT_TIMESTAMP:
2961 					if (opsize==TCPOLEN_TIMESTAMP) {
2962 						if ((estab && opt_rx->tstamp_ok) ||
2963 						    (!estab && sysctl_tcp_timestamps)) {
2964 							opt_rx->saw_tstamp = 1;
2965 							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2966 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2967 						}
2968 					}
2969 					break;
2970 				case TCPOPT_SACK_PERM:
2971 					if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2972 						if (sysctl_tcp_sack) {
2973 							opt_rx->sack_ok = 1;
2974 							tcp_sack_reset(opt_rx);
2975 						}
2976 					}
2977 					break;
2978 
2979 				case TCPOPT_SACK:
2980 					if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2981 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2982 					   opt_rx->sack_ok) {
2983 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2984 					}
2985 					break;
2986 #ifdef CONFIG_TCP_MD5SIG
2987 				case TCPOPT_MD5SIG:
2988 					/*
2989 					 * The MD5 Hash has already been
2990 					 * checked (see tcp_v{4,6}_do_rcv()).
2991 					 */
2992 					break;
2993 #endif
2994 				}
2995 
2996 				ptr+=opsize-2;
2997 				length-=opsize;
2998 		}
2999 	}
3000 }
3001 
3002 /* Fast parse options. This hopes to only see timestamps.
3003  * If it is wrong it falls back on tcp_parse_options().
3004  */
3005 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3006 				  struct tcp_sock *tp)
3007 {
3008 	if (th->doff == sizeof(struct tcphdr)>>2) {
3009 		tp->rx_opt.saw_tstamp = 0;
3010 		return 0;
3011 	} else if (tp->rx_opt.tstamp_ok &&
3012 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3013 		__be32 *ptr = (__be32 *)(th + 1);
3014 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3015 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3016 			tp->rx_opt.saw_tstamp = 1;
3017 			++ptr;
3018 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3019 			++ptr;
3020 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3021 			return 1;
3022 		}
3023 	}
3024 	tcp_parse_options(skb, &tp->rx_opt, 1);
3025 	return 1;
3026 }
3027 
3028 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3029 {
3030 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3031 	tp->rx_opt.ts_recent_stamp = get_seconds();
3032 }
3033 
3034 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3035 {
3036 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3037 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3038 		 * extra check below makes sure this can only happen
3039 		 * for pure ACK frames.  -DaveM
3040 		 *
3041 		 * Not only, also it occurs for expired timestamps.
3042 		 */
3043 
3044 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3045 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3046 			tcp_store_ts_recent(tp);
3047 	}
3048 }
3049 
3050 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3051  *
3052  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3053  * it can pass through stack. So, the following predicate verifies that
3054  * this segment is not used for anything but congestion avoidance or
3055  * fast retransmit. Moreover, we even are able to eliminate most of such
3056  * second order effects, if we apply some small "replay" window (~RTO)
3057  * to timestamp space.
3058  *
3059  * All these measures still do not guarantee that we reject wrapped ACKs
3060  * on networks with high bandwidth, when sequence space is recycled fastly,
3061  * but it guarantees that such events will be very rare and do not affect
3062  * connection seriously. This doesn't look nice, but alas, PAWS is really
3063  * buggy extension.
3064  *
3065  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3066  * states that events when retransmit arrives after original data are rare.
3067  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3068  * the biggest problem on large power networks even with minor reordering.
3069  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3070  * up to bandwidth of 18Gigabit/sec. 8) ]
3071  */
3072 
3073 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3074 {
3075 	struct tcp_sock *tp = tcp_sk(sk);
3076 	struct tcphdr *th = tcp_hdr(skb);
3077 	u32 seq = TCP_SKB_CB(skb)->seq;
3078 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3079 
3080 	return (/* 1. Pure ACK with correct sequence number. */
3081 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3082 
3083 		/* 2. ... and duplicate ACK. */
3084 		ack == tp->snd_una &&
3085 
3086 		/* 3. ... and does not update window. */
3087 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3088 
3089 		/* 4. ... and sits in replay window. */
3090 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3091 }
3092 
3093 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3094 {
3095 	const struct tcp_sock *tp = tcp_sk(sk);
3096 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3097 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3098 		!tcp_disordered_ack(sk, skb));
3099 }
3100 
3101 /* Check segment sequence number for validity.
3102  *
3103  * Segment controls are considered valid, if the segment
3104  * fits to the window after truncation to the window. Acceptability
3105  * of data (and SYN, FIN, of course) is checked separately.
3106  * See tcp_data_queue(), for example.
3107  *
3108  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3109  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3110  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3111  * (borrowed from freebsd)
3112  */
3113 
3114 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3115 {
3116 	return	!before(end_seq, tp->rcv_wup) &&
3117 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3118 }
3119 
3120 /* When we get a reset we do this. */
3121 static void tcp_reset(struct sock *sk)
3122 {
3123 	/* We want the right error as BSD sees it (and indeed as we do). */
3124 	switch (sk->sk_state) {
3125 		case TCP_SYN_SENT:
3126 			sk->sk_err = ECONNREFUSED;
3127 			break;
3128 		case TCP_CLOSE_WAIT:
3129 			sk->sk_err = EPIPE;
3130 			break;
3131 		case TCP_CLOSE:
3132 			return;
3133 		default:
3134 			sk->sk_err = ECONNRESET;
3135 	}
3136 
3137 	if (!sock_flag(sk, SOCK_DEAD))
3138 		sk->sk_error_report(sk);
3139 
3140 	tcp_done(sk);
3141 }
3142 
3143 /*
3144  * 	Process the FIN bit. This now behaves as it is supposed to work
3145  *	and the FIN takes effect when it is validly part of sequence
3146  *	space. Not before when we get holes.
3147  *
3148  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3149  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3150  *	TIME-WAIT)
3151  *
3152  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3153  *	close and we go into CLOSING (and later onto TIME-WAIT)
3154  *
3155  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3156  */
3157 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3158 {
3159 	struct tcp_sock *tp = tcp_sk(sk);
3160 
3161 	inet_csk_schedule_ack(sk);
3162 
3163 	sk->sk_shutdown |= RCV_SHUTDOWN;
3164 	sock_set_flag(sk, SOCK_DONE);
3165 
3166 	switch (sk->sk_state) {
3167 		case TCP_SYN_RECV:
3168 		case TCP_ESTABLISHED:
3169 			/* Move to CLOSE_WAIT */
3170 			tcp_set_state(sk, TCP_CLOSE_WAIT);
3171 			inet_csk(sk)->icsk_ack.pingpong = 1;
3172 			break;
3173 
3174 		case TCP_CLOSE_WAIT:
3175 		case TCP_CLOSING:
3176 			/* Received a retransmission of the FIN, do
3177 			 * nothing.
3178 			 */
3179 			break;
3180 		case TCP_LAST_ACK:
3181 			/* RFC793: Remain in the LAST-ACK state. */
3182 			break;
3183 
3184 		case TCP_FIN_WAIT1:
3185 			/* This case occurs when a simultaneous close
3186 			 * happens, we must ack the received FIN and
3187 			 * enter the CLOSING state.
3188 			 */
3189 			tcp_send_ack(sk);
3190 			tcp_set_state(sk, TCP_CLOSING);
3191 			break;
3192 		case TCP_FIN_WAIT2:
3193 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3194 			tcp_send_ack(sk);
3195 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3196 			break;
3197 		default:
3198 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3199 			 * cases we should never reach this piece of code.
3200 			 */
3201 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3202 			       __FUNCTION__, sk->sk_state);
3203 			break;
3204 	}
3205 
3206 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3207 	 * Probably, we should reset in this case. For now drop them.
3208 	 */
3209 	__skb_queue_purge(&tp->out_of_order_queue);
3210 	if (tp->rx_opt.sack_ok)
3211 		tcp_sack_reset(&tp->rx_opt);
3212 	sk_stream_mem_reclaim(sk);
3213 
3214 	if (!sock_flag(sk, SOCK_DEAD)) {
3215 		sk->sk_state_change(sk);
3216 
3217 		/* Do not send POLL_HUP for half duplex close. */
3218 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3219 		    sk->sk_state == TCP_CLOSE)
3220 			sk_wake_async(sk, 1, POLL_HUP);
3221 		else
3222 			sk_wake_async(sk, 1, POLL_IN);
3223 	}
3224 }
3225 
3226 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3227 {
3228 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3229 		if (before(seq, sp->start_seq))
3230 			sp->start_seq = seq;
3231 		if (after(end_seq, sp->end_seq))
3232 			sp->end_seq = end_seq;
3233 		return 1;
3234 	}
3235 	return 0;
3236 }
3237 
3238 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3239 {
3240 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3241 		if (before(seq, tp->rcv_nxt))
3242 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3243 		else
3244 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3245 
3246 		tp->rx_opt.dsack = 1;
3247 		tp->duplicate_sack[0].start_seq = seq;
3248 		tp->duplicate_sack[0].end_seq = end_seq;
3249 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3250 	}
3251 }
3252 
3253 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3254 {
3255 	if (!tp->rx_opt.dsack)
3256 		tcp_dsack_set(tp, seq, end_seq);
3257 	else
3258 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3259 }
3260 
3261 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3262 {
3263 	struct tcp_sock *tp = tcp_sk(sk);
3264 
3265 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3266 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3267 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3268 		tcp_enter_quickack_mode(sk);
3269 
3270 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3271 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3272 
3273 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3274 				end_seq = tp->rcv_nxt;
3275 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3276 		}
3277 	}
3278 
3279 	tcp_send_ack(sk);
3280 }
3281 
3282 /* These routines update the SACK block as out-of-order packets arrive or
3283  * in-order packets close up the sequence space.
3284  */
3285 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3286 {
3287 	int this_sack;
3288 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3289 	struct tcp_sack_block *swalk = sp+1;
3290 
3291 	/* See if the recent change to the first SACK eats into
3292 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3293 	 */
3294 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3295 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3296 			int i;
3297 
3298 			/* Zap SWALK, by moving every further SACK up by one slot.
3299 			 * Decrease num_sacks.
3300 			 */
3301 			tp->rx_opt.num_sacks--;
3302 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3303 			for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3304 				sp[i] = sp[i+1];
3305 			continue;
3306 		}
3307 		this_sack++, swalk++;
3308 	}
3309 }
3310 
3311 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3312 {
3313 	__u32 tmp;
3314 
3315 	tmp = sack1->start_seq;
3316 	sack1->start_seq = sack2->start_seq;
3317 	sack2->start_seq = tmp;
3318 
3319 	tmp = sack1->end_seq;
3320 	sack1->end_seq = sack2->end_seq;
3321 	sack2->end_seq = tmp;
3322 }
3323 
3324 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3325 {
3326 	struct tcp_sock *tp = tcp_sk(sk);
3327 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3328 	int cur_sacks = tp->rx_opt.num_sacks;
3329 	int this_sack;
3330 
3331 	if (!cur_sacks)
3332 		goto new_sack;
3333 
3334 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3335 		if (tcp_sack_extend(sp, seq, end_seq)) {
3336 			/* Rotate this_sack to the first one. */
3337 			for (; this_sack>0; this_sack--, sp--)
3338 				tcp_sack_swap(sp, sp-1);
3339 			if (cur_sacks > 1)
3340 				tcp_sack_maybe_coalesce(tp);
3341 			return;
3342 		}
3343 	}
3344 
3345 	/* Could not find an adjacent existing SACK, build a new one,
3346 	 * put it at the front, and shift everyone else down.  We
3347 	 * always know there is at least one SACK present already here.
3348 	 *
3349 	 * If the sack array is full, forget about the last one.
3350 	 */
3351 	if (this_sack >= 4) {
3352 		this_sack--;
3353 		tp->rx_opt.num_sacks--;
3354 		sp--;
3355 	}
3356 	for (; this_sack > 0; this_sack--, sp--)
3357 		*sp = *(sp-1);
3358 
3359 new_sack:
3360 	/* Build the new head SACK, and we're done. */
3361 	sp->start_seq = seq;
3362 	sp->end_seq = end_seq;
3363 	tp->rx_opt.num_sacks++;
3364 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3365 }
3366 
3367 /* RCV.NXT advances, some SACKs should be eaten. */
3368 
3369 static void tcp_sack_remove(struct tcp_sock *tp)
3370 {
3371 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3372 	int num_sacks = tp->rx_opt.num_sacks;
3373 	int this_sack;
3374 
3375 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3376 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3377 		tp->rx_opt.num_sacks = 0;
3378 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3379 		return;
3380 	}
3381 
3382 	for (this_sack = 0; this_sack < num_sacks; ) {
3383 		/* Check if the start of the sack is covered by RCV.NXT. */
3384 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3385 			int i;
3386 
3387 			/* RCV.NXT must cover all the block! */
3388 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3389 
3390 			/* Zap this SACK, by moving forward any other SACKS. */
3391 			for (i=this_sack+1; i < num_sacks; i++)
3392 				tp->selective_acks[i-1] = tp->selective_acks[i];
3393 			num_sacks--;
3394 			continue;
3395 		}
3396 		this_sack++;
3397 		sp++;
3398 	}
3399 	if (num_sacks != tp->rx_opt.num_sacks) {
3400 		tp->rx_opt.num_sacks = num_sacks;
3401 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3402 	}
3403 }
3404 
3405 /* This one checks to see if we can put data from the
3406  * out_of_order queue into the receive_queue.
3407  */
3408 static void tcp_ofo_queue(struct sock *sk)
3409 {
3410 	struct tcp_sock *tp = tcp_sk(sk);
3411 	__u32 dsack_high = tp->rcv_nxt;
3412 	struct sk_buff *skb;
3413 
3414 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3415 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3416 			break;
3417 
3418 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3419 			__u32 dsack = dsack_high;
3420 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3421 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3422 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3423 		}
3424 
3425 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3426 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3427 			__skb_unlink(skb, &tp->out_of_order_queue);
3428 			__kfree_skb(skb);
3429 			continue;
3430 		}
3431 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3432 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3433 			   TCP_SKB_CB(skb)->end_seq);
3434 
3435 		__skb_unlink(skb, &tp->out_of_order_queue);
3436 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3437 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3438 		if (tcp_hdr(skb)->fin)
3439 			tcp_fin(skb, sk, tcp_hdr(skb));
3440 	}
3441 }
3442 
3443 static int tcp_prune_queue(struct sock *sk);
3444 
3445 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3446 {
3447 	struct tcphdr *th = tcp_hdr(skb);
3448 	struct tcp_sock *tp = tcp_sk(sk);
3449 	int eaten = -1;
3450 
3451 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3452 		goto drop;
3453 
3454 	__skb_pull(skb, th->doff*4);
3455 
3456 	TCP_ECN_accept_cwr(tp, skb);
3457 
3458 	if (tp->rx_opt.dsack) {
3459 		tp->rx_opt.dsack = 0;
3460 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3461 						    4 - tp->rx_opt.tstamp_ok);
3462 	}
3463 
3464 	/*  Queue data for delivery to the user.
3465 	 *  Packets in sequence go to the receive queue.
3466 	 *  Out of sequence packets to the out_of_order_queue.
3467 	 */
3468 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3469 		if (tcp_receive_window(tp) == 0)
3470 			goto out_of_window;
3471 
3472 		/* Ok. In sequence. In window. */
3473 		if (tp->ucopy.task == current &&
3474 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3475 		    sock_owned_by_user(sk) && !tp->urg_data) {
3476 			int chunk = min_t(unsigned int, skb->len,
3477 							tp->ucopy.len);
3478 
3479 			__set_current_state(TASK_RUNNING);
3480 
3481 			local_bh_enable();
3482 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3483 				tp->ucopy.len -= chunk;
3484 				tp->copied_seq += chunk;
3485 				eaten = (chunk == skb->len && !th->fin);
3486 				tcp_rcv_space_adjust(sk);
3487 			}
3488 			local_bh_disable();
3489 		}
3490 
3491 		if (eaten <= 0) {
3492 queue_and_out:
3493 			if (eaten < 0 &&
3494 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3495 			     !sk_stream_rmem_schedule(sk, skb))) {
3496 				if (tcp_prune_queue(sk) < 0 ||
3497 				    !sk_stream_rmem_schedule(sk, skb))
3498 					goto drop;
3499 			}
3500 			sk_stream_set_owner_r(skb, sk);
3501 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3502 		}
3503 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3504 		if (skb->len)
3505 			tcp_event_data_recv(sk, skb);
3506 		if (th->fin)
3507 			tcp_fin(skb, sk, th);
3508 
3509 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3510 			tcp_ofo_queue(sk);
3511 
3512 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3513 			 * gap in queue is filled.
3514 			 */
3515 			if (skb_queue_empty(&tp->out_of_order_queue))
3516 				inet_csk(sk)->icsk_ack.pingpong = 0;
3517 		}
3518 
3519 		if (tp->rx_opt.num_sacks)
3520 			tcp_sack_remove(tp);
3521 
3522 		tcp_fast_path_check(sk);
3523 
3524 		if (eaten > 0)
3525 			__kfree_skb(skb);
3526 		else if (!sock_flag(sk, SOCK_DEAD))
3527 			sk->sk_data_ready(sk, 0);
3528 		return;
3529 	}
3530 
3531 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3532 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3533 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3534 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3535 
3536 out_of_window:
3537 		tcp_enter_quickack_mode(sk);
3538 		inet_csk_schedule_ack(sk);
3539 drop:
3540 		__kfree_skb(skb);
3541 		return;
3542 	}
3543 
3544 	/* Out of window. F.e. zero window probe. */
3545 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3546 		goto out_of_window;
3547 
3548 	tcp_enter_quickack_mode(sk);
3549 
3550 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3551 		/* Partial packet, seq < rcv_next < end_seq */
3552 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3553 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3554 			   TCP_SKB_CB(skb)->end_seq);
3555 
3556 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3557 
3558 		/* If window is closed, drop tail of packet. But after
3559 		 * remembering D-SACK for its head made in previous line.
3560 		 */
3561 		if (!tcp_receive_window(tp))
3562 			goto out_of_window;
3563 		goto queue_and_out;
3564 	}
3565 
3566 	TCP_ECN_check_ce(tp, skb);
3567 
3568 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3569 	    !sk_stream_rmem_schedule(sk, skb)) {
3570 		if (tcp_prune_queue(sk) < 0 ||
3571 		    !sk_stream_rmem_schedule(sk, skb))
3572 			goto drop;
3573 	}
3574 
3575 	/* Disable header prediction. */
3576 	tp->pred_flags = 0;
3577 	inet_csk_schedule_ack(sk);
3578 
3579 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3580 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3581 
3582 	sk_stream_set_owner_r(skb, sk);
3583 
3584 	if (!skb_peek(&tp->out_of_order_queue)) {
3585 		/* Initial out of order segment, build 1 SACK. */
3586 		if (tp->rx_opt.sack_ok) {
3587 			tp->rx_opt.num_sacks = 1;
3588 			tp->rx_opt.dsack     = 0;
3589 			tp->rx_opt.eff_sacks = 1;
3590 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3591 			tp->selective_acks[0].end_seq =
3592 						TCP_SKB_CB(skb)->end_seq;
3593 		}
3594 		__skb_queue_head(&tp->out_of_order_queue,skb);
3595 	} else {
3596 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3597 		u32 seq = TCP_SKB_CB(skb)->seq;
3598 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3599 
3600 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3601 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3602 
3603 			if (!tp->rx_opt.num_sacks ||
3604 			    tp->selective_acks[0].end_seq != seq)
3605 				goto add_sack;
3606 
3607 			/* Common case: data arrive in order after hole. */
3608 			tp->selective_acks[0].end_seq = end_seq;
3609 			return;
3610 		}
3611 
3612 		/* Find place to insert this segment. */
3613 		do {
3614 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3615 				break;
3616 		} while ((skb1 = skb1->prev) !=
3617 			 (struct sk_buff*)&tp->out_of_order_queue);
3618 
3619 		/* Do skb overlap to previous one? */
3620 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3621 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3622 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3623 				/* All the bits are present. Drop. */
3624 				__kfree_skb(skb);
3625 				tcp_dsack_set(tp, seq, end_seq);
3626 				goto add_sack;
3627 			}
3628 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3629 				/* Partial overlap. */
3630 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3631 			} else {
3632 				skb1 = skb1->prev;
3633 			}
3634 		}
3635 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3636 
3637 		/* And clean segments covered by new one as whole. */
3638 		while ((skb1 = skb->next) !=
3639 		       (struct sk_buff*)&tp->out_of_order_queue &&
3640 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3641 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3642 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3643 			       break;
3644 		       }
3645 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3646 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3647 		       __kfree_skb(skb1);
3648 		}
3649 
3650 add_sack:
3651 		if (tp->rx_opt.sack_ok)
3652 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3653 	}
3654 }
3655 
3656 /* Collapse contiguous sequence of skbs head..tail with
3657  * sequence numbers start..end.
3658  * Segments with FIN/SYN are not collapsed (only because this
3659  * simplifies code)
3660  */
3661 static void
3662 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3663 	     struct sk_buff *head, struct sk_buff *tail,
3664 	     u32 start, u32 end)
3665 {
3666 	struct sk_buff *skb;
3667 
3668 	/* First, check that queue is collapsible and find
3669 	 * the point where collapsing can be useful. */
3670 	for (skb = head; skb != tail; ) {
3671 		/* No new bits? It is possible on ofo queue. */
3672 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3673 			struct sk_buff *next = skb->next;
3674 			__skb_unlink(skb, list);
3675 			__kfree_skb(skb);
3676 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3677 			skb = next;
3678 			continue;
3679 		}
3680 
3681 		/* The first skb to collapse is:
3682 		 * - not SYN/FIN and
3683 		 * - bloated or contains data before "start" or
3684 		 *   overlaps to the next one.
3685 		 */
3686 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3687 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3688 		     before(TCP_SKB_CB(skb)->seq, start) ||
3689 		     (skb->next != tail &&
3690 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3691 			break;
3692 
3693 		/* Decided to skip this, advance start seq. */
3694 		start = TCP_SKB_CB(skb)->end_seq;
3695 		skb = skb->next;
3696 	}
3697 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3698 		return;
3699 
3700 	while (before(start, end)) {
3701 		struct sk_buff *nskb;
3702 		int header = skb_headroom(skb);
3703 		int copy = SKB_MAX_ORDER(header, 0);
3704 
3705 		/* Too big header? This can happen with IPv6. */
3706 		if (copy < 0)
3707 			return;
3708 		if (end-start < copy)
3709 			copy = end-start;
3710 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3711 		if (!nskb)
3712 			return;
3713 
3714 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3715 		skb_set_network_header(nskb, (skb_network_header(skb) -
3716 					      skb->head));
3717 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
3718 						skb->head));
3719 		skb_reserve(nskb, header);
3720 		memcpy(nskb->head, skb->head, header);
3721 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3722 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3723 		__skb_insert(nskb, skb->prev, skb, list);
3724 		sk_stream_set_owner_r(nskb, sk);
3725 
3726 		/* Copy data, releasing collapsed skbs. */
3727 		while (copy > 0) {
3728 			int offset = start - TCP_SKB_CB(skb)->seq;
3729 			int size = TCP_SKB_CB(skb)->end_seq - start;
3730 
3731 			BUG_ON(offset < 0);
3732 			if (size > 0) {
3733 				size = min(copy, size);
3734 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3735 					BUG();
3736 				TCP_SKB_CB(nskb)->end_seq += size;
3737 				copy -= size;
3738 				start += size;
3739 			}
3740 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3741 				struct sk_buff *next = skb->next;
3742 				__skb_unlink(skb, list);
3743 				__kfree_skb(skb);
3744 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3745 				skb = next;
3746 				if (skb == tail ||
3747 				    tcp_hdr(skb)->syn ||
3748 				    tcp_hdr(skb)->fin)
3749 					return;
3750 			}
3751 		}
3752 	}
3753 }
3754 
3755 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3756  * and tcp_collapse() them until all the queue is collapsed.
3757  */
3758 static void tcp_collapse_ofo_queue(struct sock *sk)
3759 {
3760 	struct tcp_sock *tp = tcp_sk(sk);
3761 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3762 	struct sk_buff *head;
3763 	u32 start, end;
3764 
3765 	if (skb == NULL)
3766 		return;
3767 
3768 	start = TCP_SKB_CB(skb)->seq;
3769 	end = TCP_SKB_CB(skb)->end_seq;
3770 	head = skb;
3771 
3772 	for (;;) {
3773 		skb = skb->next;
3774 
3775 		/* Segment is terminated when we see gap or when
3776 		 * we are at the end of all the queue. */
3777 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3778 		    after(TCP_SKB_CB(skb)->seq, end) ||
3779 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3780 			tcp_collapse(sk, &tp->out_of_order_queue,
3781 				     head, skb, start, end);
3782 			head = skb;
3783 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3784 				break;
3785 			/* Start new segment */
3786 			start = TCP_SKB_CB(skb)->seq;
3787 			end = TCP_SKB_CB(skb)->end_seq;
3788 		} else {
3789 			if (before(TCP_SKB_CB(skb)->seq, start))
3790 				start = TCP_SKB_CB(skb)->seq;
3791 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3792 				end = TCP_SKB_CB(skb)->end_seq;
3793 		}
3794 	}
3795 }
3796 
3797 /* Reduce allocated memory if we can, trying to get
3798  * the socket within its memory limits again.
3799  *
3800  * Return less than zero if we should start dropping frames
3801  * until the socket owning process reads some of the data
3802  * to stabilize the situation.
3803  */
3804 static int tcp_prune_queue(struct sock *sk)
3805 {
3806 	struct tcp_sock *tp = tcp_sk(sk);
3807 
3808 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3809 
3810 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3811 
3812 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3813 		tcp_clamp_window(sk);
3814 	else if (tcp_memory_pressure)
3815 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3816 
3817 	tcp_collapse_ofo_queue(sk);
3818 	tcp_collapse(sk, &sk->sk_receive_queue,
3819 		     sk->sk_receive_queue.next,
3820 		     (struct sk_buff*)&sk->sk_receive_queue,
3821 		     tp->copied_seq, tp->rcv_nxt);
3822 	sk_stream_mem_reclaim(sk);
3823 
3824 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3825 		return 0;
3826 
3827 	/* Collapsing did not help, destructive actions follow.
3828 	 * This must not ever occur. */
3829 
3830 	/* First, purge the out_of_order queue. */
3831 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3832 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3833 		__skb_queue_purge(&tp->out_of_order_queue);
3834 
3835 		/* Reset SACK state.  A conforming SACK implementation will
3836 		 * do the same at a timeout based retransmit.  When a connection
3837 		 * is in a sad state like this, we care only about integrity
3838 		 * of the connection not performance.
3839 		 */
3840 		if (tp->rx_opt.sack_ok)
3841 			tcp_sack_reset(&tp->rx_opt);
3842 		sk_stream_mem_reclaim(sk);
3843 	}
3844 
3845 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3846 		return 0;
3847 
3848 	/* If we are really being abused, tell the caller to silently
3849 	 * drop receive data on the floor.  It will get retransmitted
3850 	 * and hopefully then we'll have sufficient space.
3851 	 */
3852 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3853 
3854 	/* Massive buffer overcommit. */
3855 	tp->pred_flags = 0;
3856 	return -1;
3857 }
3858 
3859 
3860 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3861  * As additional protections, we do not touch cwnd in retransmission phases,
3862  * and if application hit its sndbuf limit recently.
3863  */
3864 void tcp_cwnd_application_limited(struct sock *sk)
3865 {
3866 	struct tcp_sock *tp = tcp_sk(sk);
3867 
3868 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3869 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3870 		/* Limited by application or receiver window. */
3871 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3872 		u32 win_used = max(tp->snd_cwnd_used, init_win);
3873 		if (win_used < tp->snd_cwnd) {
3874 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3875 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3876 		}
3877 		tp->snd_cwnd_used = 0;
3878 	}
3879 	tp->snd_cwnd_stamp = tcp_time_stamp;
3880 }
3881 
3882 static int tcp_should_expand_sndbuf(struct sock *sk)
3883 {
3884 	struct tcp_sock *tp = tcp_sk(sk);
3885 
3886 	/* If the user specified a specific send buffer setting, do
3887 	 * not modify it.
3888 	 */
3889 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3890 		return 0;
3891 
3892 	/* If we are under global TCP memory pressure, do not expand.  */
3893 	if (tcp_memory_pressure)
3894 		return 0;
3895 
3896 	/* If we are under soft global TCP memory pressure, do not expand.  */
3897 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3898 		return 0;
3899 
3900 	/* If we filled the congestion window, do not expand.  */
3901 	if (tp->packets_out >= tp->snd_cwnd)
3902 		return 0;
3903 
3904 	return 1;
3905 }
3906 
3907 /* When incoming ACK allowed to free some skb from write_queue,
3908  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3909  * on the exit from tcp input handler.
3910  *
3911  * PROBLEM: sndbuf expansion does not work well with largesend.
3912  */
3913 static void tcp_new_space(struct sock *sk)
3914 {
3915 	struct tcp_sock *tp = tcp_sk(sk);
3916 
3917 	if (tcp_should_expand_sndbuf(sk)) {
3918 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3919 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3920 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3921 						   tp->reordering + 1);
3922 		sndmem *= 2*demanded;
3923 		if (sndmem > sk->sk_sndbuf)
3924 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3925 		tp->snd_cwnd_stamp = tcp_time_stamp;
3926 	}
3927 
3928 	sk->sk_write_space(sk);
3929 }
3930 
3931 static void tcp_check_space(struct sock *sk)
3932 {
3933 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3934 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3935 		if (sk->sk_socket &&
3936 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3937 			tcp_new_space(sk);
3938 	}
3939 }
3940 
3941 static inline void tcp_data_snd_check(struct sock *sk)
3942 {
3943 	tcp_push_pending_frames(sk);
3944 	tcp_check_space(sk);
3945 }
3946 
3947 /*
3948  * Check if sending an ack is needed.
3949  */
3950 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3951 {
3952 	struct tcp_sock *tp = tcp_sk(sk);
3953 
3954 	    /* More than one full frame received... */
3955 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3956 	     /* ... and right edge of window advances far enough.
3957 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3958 	      */
3959 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3960 	    /* We ACK each frame or... */
3961 	    tcp_in_quickack_mode(sk) ||
3962 	    /* We have out of order data. */
3963 	    (ofo_possible &&
3964 	     skb_peek(&tp->out_of_order_queue))) {
3965 		/* Then ack it now */
3966 		tcp_send_ack(sk);
3967 	} else {
3968 		/* Else, send delayed ack. */
3969 		tcp_send_delayed_ack(sk);
3970 	}
3971 }
3972 
3973 static inline void tcp_ack_snd_check(struct sock *sk)
3974 {
3975 	if (!inet_csk_ack_scheduled(sk)) {
3976 		/* We sent a data segment already. */
3977 		return;
3978 	}
3979 	__tcp_ack_snd_check(sk, 1);
3980 }
3981 
3982 /*
3983  *	This routine is only called when we have urgent data
3984  *	signaled. Its the 'slow' part of tcp_urg. It could be
3985  *	moved inline now as tcp_urg is only called from one
3986  *	place. We handle URGent data wrong. We have to - as
3987  *	BSD still doesn't use the correction from RFC961.
3988  *	For 1003.1g we should support a new option TCP_STDURG to permit
3989  *	either form (or just set the sysctl tcp_stdurg).
3990  */
3991 
3992 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3993 {
3994 	struct tcp_sock *tp = tcp_sk(sk);
3995 	u32 ptr = ntohs(th->urg_ptr);
3996 
3997 	if (ptr && !sysctl_tcp_stdurg)
3998 		ptr--;
3999 	ptr += ntohl(th->seq);
4000 
4001 	/* Ignore urgent data that we've already seen and read. */
4002 	if (after(tp->copied_seq, ptr))
4003 		return;
4004 
4005 	/* Do not replay urg ptr.
4006 	 *
4007 	 * NOTE: interesting situation not covered by specs.
4008 	 * Misbehaving sender may send urg ptr, pointing to segment,
4009 	 * which we already have in ofo queue. We are not able to fetch
4010 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4011 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4012 	 * situations. But it is worth to think about possibility of some
4013 	 * DoSes using some hypothetical application level deadlock.
4014 	 */
4015 	if (before(ptr, tp->rcv_nxt))
4016 		return;
4017 
4018 	/* Do we already have a newer (or duplicate) urgent pointer? */
4019 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4020 		return;
4021 
4022 	/* Tell the world about our new urgent pointer. */
4023 	sk_send_sigurg(sk);
4024 
4025 	/* We may be adding urgent data when the last byte read was
4026 	 * urgent. To do this requires some care. We cannot just ignore
4027 	 * tp->copied_seq since we would read the last urgent byte again
4028 	 * as data, nor can we alter copied_seq until this data arrives
4029 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4030 	 *
4031 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4032 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4033 	 * and expect that both A and B disappear from stream. This is _wrong_.
4034 	 * Though this happens in BSD with high probability, this is occasional.
4035 	 * Any application relying on this is buggy. Note also, that fix "works"
4036 	 * only in this artificial test. Insert some normal data between A and B and we will
4037 	 * decline of BSD again. Verdict: it is better to remove to trap
4038 	 * buggy users.
4039 	 */
4040 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4041 	    !sock_flag(sk, SOCK_URGINLINE) &&
4042 	    tp->copied_seq != tp->rcv_nxt) {
4043 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4044 		tp->copied_seq++;
4045 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4046 			__skb_unlink(skb, &sk->sk_receive_queue);
4047 			__kfree_skb(skb);
4048 		}
4049 	}
4050 
4051 	tp->urg_data   = TCP_URG_NOTYET;
4052 	tp->urg_seq    = ptr;
4053 
4054 	/* Disable header prediction. */
4055 	tp->pred_flags = 0;
4056 }
4057 
4058 /* This is the 'fast' part of urgent handling. */
4059 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4060 {
4061 	struct tcp_sock *tp = tcp_sk(sk);
4062 
4063 	/* Check if we get a new urgent pointer - normally not. */
4064 	if (th->urg)
4065 		tcp_check_urg(sk,th);
4066 
4067 	/* Do we wait for any urgent data? - normally not... */
4068 	if (tp->urg_data == TCP_URG_NOTYET) {
4069 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4070 			  th->syn;
4071 
4072 		/* Is the urgent pointer pointing into this packet? */
4073 		if (ptr < skb->len) {
4074 			u8 tmp;
4075 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4076 				BUG();
4077 			tp->urg_data = TCP_URG_VALID | tmp;
4078 			if (!sock_flag(sk, SOCK_DEAD))
4079 				sk->sk_data_ready(sk, 0);
4080 		}
4081 	}
4082 }
4083 
4084 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4085 {
4086 	struct tcp_sock *tp = tcp_sk(sk);
4087 	int chunk = skb->len - hlen;
4088 	int err;
4089 
4090 	local_bh_enable();
4091 	if (skb_csum_unnecessary(skb))
4092 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4093 	else
4094 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4095 						       tp->ucopy.iov);
4096 
4097 	if (!err) {
4098 		tp->ucopy.len -= chunk;
4099 		tp->copied_seq += chunk;
4100 		tcp_rcv_space_adjust(sk);
4101 	}
4102 
4103 	local_bh_disable();
4104 	return err;
4105 }
4106 
4107 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4108 {
4109 	__sum16 result;
4110 
4111 	if (sock_owned_by_user(sk)) {
4112 		local_bh_enable();
4113 		result = __tcp_checksum_complete(skb);
4114 		local_bh_disable();
4115 	} else {
4116 		result = __tcp_checksum_complete(skb);
4117 	}
4118 	return result;
4119 }
4120 
4121 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4122 {
4123 	return !skb_csum_unnecessary(skb) &&
4124 		__tcp_checksum_complete_user(sk, skb);
4125 }
4126 
4127 #ifdef CONFIG_NET_DMA
4128 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4129 {
4130 	struct tcp_sock *tp = tcp_sk(sk);
4131 	int chunk = skb->len - hlen;
4132 	int dma_cookie;
4133 	int copied_early = 0;
4134 
4135 	if (tp->ucopy.wakeup)
4136 		return 0;
4137 
4138 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4139 		tp->ucopy.dma_chan = get_softnet_dma();
4140 
4141 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4142 
4143 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4144 			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4145 
4146 		if (dma_cookie < 0)
4147 			goto out;
4148 
4149 		tp->ucopy.dma_cookie = dma_cookie;
4150 		copied_early = 1;
4151 
4152 		tp->ucopy.len -= chunk;
4153 		tp->copied_seq += chunk;
4154 		tcp_rcv_space_adjust(sk);
4155 
4156 		if ((tp->ucopy.len == 0) ||
4157 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4158 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4159 			tp->ucopy.wakeup = 1;
4160 			sk->sk_data_ready(sk, 0);
4161 		}
4162 	} else if (chunk > 0) {
4163 		tp->ucopy.wakeup = 1;
4164 		sk->sk_data_ready(sk, 0);
4165 	}
4166 out:
4167 	return copied_early;
4168 }
4169 #endif /* CONFIG_NET_DMA */
4170 
4171 /*
4172  *	TCP receive function for the ESTABLISHED state.
4173  *
4174  *	It is split into a fast path and a slow path. The fast path is
4175  * 	disabled when:
4176  *	- A zero window was announced from us - zero window probing
4177  *        is only handled properly in the slow path.
4178  *	- Out of order segments arrived.
4179  *	- Urgent data is expected.
4180  *	- There is no buffer space left
4181  *	- Unexpected TCP flags/window values/header lengths are received
4182  *	  (detected by checking the TCP header against pred_flags)
4183  *	- Data is sent in both directions. Fast path only supports pure senders
4184  *	  or pure receivers (this means either the sequence number or the ack
4185  *	  value must stay constant)
4186  *	- Unexpected TCP option.
4187  *
4188  *	When these conditions are not satisfied it drops into a standard
4189  *	receive procedure patterned after RFC793 to handle all cases.
4190  *	The first three cases are guaranteed by proper pred_flags setting,
4191  *	the rest is checked inline. Fast processing is turned on in
4192  *	tcp_data_queue when everything is OK.
4193  */
4194 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4195 			struct tcphdr *th, unsigned len)
4196 {
4197 	struct tcp_sock *tp = tcp_sk(sk);
4198 
4199 	/*
4200 	 *	Header prediction.
4201 	 *	The code loosely follows the one in the famous
4202 	 *	"30 instruction TCP receive" Van Jacobson mail.
4203 	 *
4204 	 *	Van's trick is to deposit buffers into socket queue
4205 	 *	on a device interrupt, to call tcp_recv function
4206 	 *	on the receive process context and checksum and copy
4207 	 *	the buffer to user space. smart...
4208 	 *
4209 	 *	Our current scheme is not silly either but we take the
4210 	 *	extra cost of the net_bh soft interrupt processing...
4211 	 *	We do checksum and copy also but from device to kernel.
4212 	 */
4213 
4214 	tp->rx_opt.saw_tstamp = 0;
4215 
4216 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4217 	 *	if header_prediction is to be made
4218 	 *	'S' will always be tp->tcp_header_len >> 2
4219 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4220 	 *  turn it off	(when there are holes in the receive
4221 	 *	 space for instance)
4222 	 *	PSH flag is ignored.
4223 	 */
4224 
4225 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4226 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4227 		int tcp_header_len = tp->tcp_header_len;
4228 
4229 		/* Timestamp header prediction: tcp_header_len
4230 		 * is automatically equal to th->doff*4 due to pred_flags
4231 		 * match.
4232 		 */
4233 
4234 		/* Check timestamp */
4235 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4236 			__be32 *ptr = (__be32 *)(th + 1);
4237 
4238 			/* No? Slow path! */
4239 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4240 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4241 				goto slow_path;
4242 
4243 			tp->rx_opt.saw_tstamp = 1;
4244 			++ptr;
4245 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4246 			++ptr;
4247 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4248 
4249 			/* If PAWS failed, check it more carefully in slow path */
4250 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4251 				goto slow_path;
4252 
4253 			/* DO NOT update ts_recent here, if checksum fails
4254 			 * and timestamp was corrupted part, it will result
4255 			 * in a hung connection since we will drop all
4256 			 * future packets due to the PAWS test.
4257 			 */
4258 		}
4259 
4260 		if (len <= tcp_header_len) {
4261 			/* Bulk data transfer: sender */
4262 			if (len == tcp_header_len) {
4263 				/* Predicted packet is in window by definition.
4264 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4265 				 * Hence, check seq<=rcv_wup reduces to:
4266 				 */
4267 				if (tcp_header_len ==
4268 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4269 				    tp->rcv_nxt == tp->rcv_wup)
4270 					tcp_store_ts_recent(tp);
4271 
4272 				/* We know that such packets are checksummed
4273 				 * on entry.
4274 				 */
4275 				tcp_ack(sk, skb, 0);
4276 				__kfree_skb(skb);
4277 				tcp_data_snd_check(sk);
4278 				return 0;
4279 			} else { /* Header too small */
4280 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4281 				goto discard;
4282 			}
4283 		} else {
4284 			int eaten = 0;
4285 			int copied_early = 0;
4286 
4287 			if (tp->copied_seq == tp->rcv_nxt &&
4288 			    len - tcp_header_len <= tp->ucopy.len) {
4289 #ifdef CONFIG_NET_DMA
4290 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4291 					copied_early = 1;
4292 					eaten = 1;
4293 				}
4294 #endif
4295 				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4296 					__set_current_state(TASK_RUNNING);
4297 
4298 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4299 						eaten = 1;
4300 				}
4301 				if (eaten) {
4302 					/* Predicted packet is in window by definition.
4303 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4304 					 * Hence, check seq<=rcv_wup reduces to:
4305 					 */
4306 					if (tcp_header_len ==
4307 					    (sizeof(struct tcphdr) +
4308 					     TCPOLEN_TSTAMP_ALIGNED) &&
4309 					    tp->rcv_nxt == tp->rcv_wup)
4310 						tcp_store_ts_recent(tp);
4311 
4312 					tcp_rcv_rtt_measure_ts(sk, skb);
4313 
4314 					__skb_pull(skb, tcp_header_len);
4315 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4316 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4317 				}
4318 				if (copied_early)
4319 					tcp_cleanup_rbuf(sk, skb->len);
4320 			}
4321 			if (!eaten) {
4322 				if (tcp_checksum_complete_user(sk, skb))
4323 					goto csum_error;
4324 
4325 				/* Predicted packet is in window by definition.
4326 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4327 				 * Hence, check seq<=rcv_wup reduces to:
4328 				 */
4329 				if (tcp_header_len ==
4330 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4331 				    tp->rcv_nxt == tp->rcv_wup)
4332 					tcp_store_ts_recent(tp);
4333 
4334 				tcp_rcv_rtt_measure_ts(sk, skb);
4335 
4336 				if ((int)skb->truesize > sk->sk_forward_alloc)
4337 					goto step5;
4338 
4339 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4340 
4341 				/* Bulk data transfer: receiver */
4342 				__skb_pull(skb,tcp_header_len);
4343 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4344 				sk_stream_set_owner_r(skb, sk);
4345 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4346 			}
4347 
4348 			tcp_event_data_recv(sk, skb);
4349 
4350 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4351 				/* Well, only one small jumplet in fast path... */
4352 				tcp_ack(sk, skb, FLAG_DATA);
4353 				tcp_data_snd_check(sk);
4354 				if (!inet_csk_ack_scheduled(sk))
4355 					goto no_ack;
4356 			}
4357 
4358 			__tcp_ack_snd_check(sk, 0);
4359 no_ack:
4360 #ifdef CONFIG_NET_DMA
4361 			if (copied_early)
4362 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4363 			else
4364 #endif
4365 			if (eaten)
4366 				__kfree_skb(skb);
4367 			else
4368 				sk->sk_data_ready(sk, 0);
4369 			return 0;
4370 		}
4371 	}
4372 
4373 slow_path:
4374 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4375 		goto csum_error;
4376 
4377 	/*
4378 	 * RFC1323: H1. Apply PAWS check first.
4379 	 */
4380 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4381 	    tcp_paws_discard(sk, skb)) {
4382 		if (!th->rst) {
4383 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4384 			tcp_send_dupack(sk, skb);
4385 			goto discard;
4386 		}
4387 		/* Resets are accepted even if PAWS failed.
4388 
4389 		   ts_recent update must be made after we are sure
4390 		   that the packet is in window.
4391 		 */
4392 	}
4393 
4394 	/*
4395 	 *	Standard slow path.
4396 	 */
4397 
4398 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4399 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4400 		 * (RST) segments are validated by checking their SEQ-fields."
4401 		 * And page 69: "If an incoming segment is not acceptable,
4402 		 * an acknowledgment should be sent in reply (unless the RST bit
4403 		 * is set, if so drop the segment and return)".
4404 		 */
4405 		if (!th->rst)
4406 			tcp_send_dupack(sk, skb);
4407 		goto discard;
4408 	}
4409 
4410 	if (th->rst) {
4411 		tcp_reset(sk);
4412 		goto discard;
4413 	}
4414 
4415 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4416 
4417 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4418 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4419 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4420 		tcp_reset(sk);
4421 		return 1;
4422 	}
4423 
4424 step5:
4425 	if (th->ack)
4426 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4427 
4428 	tcp_rcv_rtt_measure_ts(sk, skb);
4429 
4430 	/* Process urgent data. */
4431 	tcp_urg(sk, skb, th);
4432 
4433 	/* step 7: process the segment text */
4434 	tcp_data_queue(sk, skb);
4435 
4436 	tcp_data_snd_check(sk);
4437 	tcp_ack_snd_check(sk);
4438 	return 0;
4439 
4440 csum_error:
4441 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4442 
4443 discard:
4444 	__kfree_skb(skb);
4445 	return 0;
4446 }
4447 
4448 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4449 					 struct tcphdr *th, unsigned len)
4450 {
4451 	struct tcp_sock *tp = tcp_sk(sk);
4452 	struct inet_connection_sock *icsk = inet_csk(sk);
4453 	int saved_clamp = tp->rx_opt.mss_clamp;
4454 
4455 	tcp_parse_options(skb, &tp->rx_opt, 0);
4456 
4457 	if (th->ack) {
4458 		/* rfc793:
4459 		 * "If the state is SYN-SENT then
4460 		 *    first check the ACK bit
4461 		 *      If the ACK bit is set
4462 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4463 		 *        a reset (unless the RST bit is set, if so drop
4464 		 *        the segment and return)"
4465 		 *
4466 		 *  We do not send data with SYN, so that RFC-correct
4467 		 *  test reduces to:
4468 		 */
4469 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4470 			goto reset_and_undo;
4471 
4472 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4473 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4474 			     tcp_time_stamp)) {
4475 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4476 			goto reset_and_undo;
4477 		}
4478 
4479 		/* Now ACK is acceptable.
4480 		 *
4481 		 * "If the RST bit is set
4482 		 *    If the ACK was acceptable then signal the user "error:
4483 		 *    connection reset", drop the segment, enter CLOSED state,
4484 		 *    delete TCB, and return."
4485 		 */
4486 
4487 		if (th->rst) {
4488 			tcp_reset(sk);
4489 			goto discard;
4490 		}
4491 
4492 		/* rfc793:
4493 		 *   "fifth, if neither of the SYN or RST bits is set then
4494 		 *    drop the segment and return."
4495 		 *
4496 		 *    See note below!
4497 		 *                                        --ANK(990513)
4498 		 */
4499 		if (!th->syn)
4500 			goto discard_and_undo;
4501 
4502 		/* rfc793:
4503 		 *   "If the SYN bit is on ...
4504 		 *    are acceptable then ...
4505 		 *    (our SYN has been ACKed), change the connection
4506 		 *    state to ESTABLISHED..."
4507 		 */
4508 
4509 		TCP_ECN_rcv_synack(tp, th);
4510 
4511 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4512 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4513 
4514 		/* Ok.. it's good. Set up sequence numbers and
4515 		 * move to established.
4516 		 */
4517 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4518 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4519 
4520 		/* RFC1323: The window in SYN & SYN/ACK segments is
4521 		 * never scaled.
4522 		 */
4523 		tp->snd_wnd = ntohs(th->window);
4524 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4525 
4526 		if (!tp->rx_opt.wscale_ok) {
4527 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4528 			tp->window_clamp = min(tp->window_clamp, 65535U);
4529 		}
4530 
4531 		if (tp->rx_opt.saw_tstamp) {
4532 			tp->rx_opt.tstamp_ok	   = 1;
4533 			tp->tcp_header_len =
4534 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4535 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4536 			tcp_store_ts_recent(tp);
4537 		} else {
4538 			tp->tcp_header_len = sizeof(struct tcphdr);
4539 		}
4540 
4541 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4542 			tp->rx_opt.sack_ok |= 2;
4543 
4544 		tcp_mtup_init(sk);
4545 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4546 		tcp_initialize_rcv_mss(sk);
4547 
4548 		/* Remember, tcp_poll() does not lock socket!
4549 		 * Change state from SYN-SENT only after copied_seq
4550 		 * is initialized. */
4551 		tp->copied_seq = tp->rcv_nxt;
4552 		smp_mb();
4553 		tcp_set_state(sk, TCP_ESTABLISHED);
4554 
4555 		security_inet_conn_established(sk, skb);
4556 
4557 		/* Make sure socket is routed, for correct metrics.  */
4558 		icsk->icsk_af_ops->rebuild_header(sk);
4559 
4560 		tcp_init_metrics(sk);
4561 
4562 		tcp_init_congestion_control(sk);
4563 
4564 		/* Prevent spurious tcp_cwnd_restart() on first data
4565 		 * packet.
4566 		 */
4567 		tp->lsndtime = tcp_time_stamp;
4568 
4569 		tcp_init_buffer_space(sk);
4570 
4571 		if (sock_flag(sk, SOCK_KEEPOPEN))
4572 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4573 
4574 		if (!tp->rx_opt.snd_wscale)
4575 			__tcp_fast_path_on(tp, tp->snd_wnd);
4576 		else
4577 			tp->pred_flags = 0;
4578 
4579 		if (!sock_flag(sk, SOCK_DEAD)) {
4580 			sk->sk_state_change(sk);
4581 			sk_wake_async(sk, 0, POLL_OUT);
4582 		}
4583 
4584 		if (sk->sk_write_pending ||
4585 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4586 		    icsk->icsk_ack.pingpong) {
4587 			/* Save one ACK. Data will be ready after
4588 			 * several ticks, if write_pending is set.
4589 			 *
4590 			 * It may be deleted, but with this feature tcpdumps
4591 			 * look so _wonderfully_ clever, that I was not able
4592 			 * to stand against the temptation 8)     --ANK
4593 			 */
4594 			inet_csk_schedule_ack(sk);
4595 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4596 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4597 			tcp_incr_quickack(sk);
4598 			tcp_enter_quickack_mode(sk);
4599 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4600 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4601 
4602 discard:
4603 			__kfree_skb(skb);
4604 			return 0;
4605 		} else {
4606 			tcp_send_ack(sk);
4607 		}
4608 		return -1;
4609 	}
4610 
4611 	/* No ACK in the segment */
4612 
4613 	if (th->rst) {
4614 		/* rfc793:
4615 		 * "If the RST bit is set
4616 		 *
4617 		 *      Otherwise (no ACK) drop the segment and return."
4618 		 */
4619 
4620 		goto discard_and_undo;
4621 	}
4622 
4623 	/* PAWS check. */
4624 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4625 		goto discard_and_undo;
4626 
4627 	if (th->syn) {
4628 		/* We see SYN without ACK. It is attempt of
4629 		 * simultaneous connect with crossed SYNs.
4630 		 * Particularly, it can be connect to self.
4631 		 */
4632 		tcp_set_state(sk, TCP_SYN_RECV);
4633 
4634 		if (tp->rx_opt.saw_tstamp) {
4635 			tp->rx_opt.tstamp_ok = 1;
4636 			tcp_store_ts_recent(tp);
4637 			tp->tcp_header_len =
4638 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4639 		} else {
4640 			tp->tcp_header_len = sizeof(struct tcphdr);
4641 		}
4642 
4643 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4644 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4645 
4646 		/* RFC1323: The window in SYN & SYN/ACK segments is
4647 		 * never scaled.
4648 		 */
4649 		tp->snd_wnd    = ntohs(th->window);
4650 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4651 		tp->max_window = tp->snd_wnd;
4652 
4653 		TCP_ECN_rcv_syn(tp, th);
4654 
4655 		tcp_mtup_init(sk);
4656 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4657 		tcp_initialize_rcv_mss(sk);
4658 
4659 
4660 		tcp_send_synack(sk);
4661 #if 0
4662 		/* Note, we could accept data and URG from this segment.
4663 		 * There are no obstacles to make this.
4664 		 *
4665 		 * However, if we ignore data in ACKless segments sometimes,
4666 		 * we have no reasons to accept it sometimes.
4667 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4668 		 * is not flawless. So, discard packet for sanity.
4669 		 * Uncomment this return to process the data.
4670 		 */
4671 		return -1;
4672 #else
4673 		goto discard;
4674 #endif
4675 	}
4676 	/* "fifth, if neither of the SYN or RST bits is set then
4677 	 * drop the segment and return."
4678 	 */
4679 
4680 discard_and_undo:
4681 	tcp_clear_options(&tp->rx_opt);
4682 	tp->rx_opt.mss_clamp = saved_clamp;
4683 	goto discard;
4684 
4685 reset_and_undo:
4686 	tcp_clear_options(&tp->rx_opt);
4687 	tp->rx_opt.mss_clamp = saved_clamp;
4688 	return 1;
4689 }
4690 
4691 
4692 /*
4693  *	This function implements the receiving procedure of RFC 793 for
4694  *	all states except ESTABLISHED and TIME_WAIT.
4695  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4696  *	address independent.
4697  */
4698 
4699 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4700 			  struct tcphdr *th, unsigned len)
4701 {
4702 	struct tcp_sock *tp = tcp_sk(sk);
4703 	struct inet_connection_sock *icsk = inet_csk(sk);
4704 	int queued = 0;
4705 
4706 	tp->rx_opt.saw_tstamp = 0;
4707 
4708 	switch (sk->sk_state) {
4709 	case TCP_CLOSE:
4710 		goto discard;
4711 
4712 	case TCP_LISTEN:
4713 		if (th->ack)
4714 			return 1;
4715 
4716 		if (th->rst)
4717 			goto discard;
4718 
4719 		if (th->syn) {
4720 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4721 				return 1;
4722 
4723 			/* Now we have several options: In theory there is
4724 			 * nothing else in the frame. KA9Q has an option to
4725 			 * send data with the syn, BSD accepts data with the
4726 			 * syn up to the [to be] advertised window and
4727 			 * Solaris 2.1 gives you a protocol error. For now
4728 			 * we just ignore it, that fits the spec precisely
4729 			 * and avoids incompatibilities. It would be nice in
4730 			 * future to drop through and process the data.
4731 			 *
4732 			 * Now that TTCP is starting to be used we ought to
4733 			 * queue this data.
4734 			 * But, this leaves one open to an easy denial of
4735 			 * service attack, and SYN cookies can't defend
4736 			 * against this problem. So, we drop the data
4737 			 * in the interest of security over speed unless
4738 			 * it's still in use.
4739 			 */
4740 			kfree_skb(skb);
4741 			return 0;
4742 		}
4743 		goto discard;
4744 
4745 	case TCP_SYN_SENT:
4746 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4747 		if (queued >= 0)
4748 			return queued;
4749 
4750 		/* Do step6 onward by hand. */
4751 		tcp_urg(sk, skb, th);
4752 		__kfree_skb(skb);
4753 		tcp_data_snd_check(sk);
4754 		return 0;
4755 	}
4756 
4757 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4758 	    tcp_paws_discard(sk, skb)) {
4759 		if (!th->rst) {
4760 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4761 			tcp_send_dupack(sk, skb);
4762 			goto discard;
4763 		}
4764 		/* Reset is accepted even if it did not pass PAWS. */
4765 	}
4766 
4767 	/* step 1: check sequence number */
4768 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4769 		if (!th->rst)
4770 			tcp_send_dupack(sk, skb);
4771 		goto discard;
4772 	}
4773 
4774 	/* step 2: check RST bit */
4775 	if (th->rst) {
4776 		tcp_reset(sk);
4777 		goto discard;
4778 	}
4779 
4780 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4781 
4782 	/* step 3: check security and precedence [ignored] */
4783 
4784 	/*	step 4:
4785 	 *
4786 	 *	Check for a SYN in window.
4787 	 */
4788 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4789 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4790 		tcp_reset(sk);
4791 		return 1;
4792 	}
4793 
4794 	/* step 5: check the ACK field */
4795 	if (th->ack) {
4796 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4797 
4798 		switch (sk->sk_state) {
4799 		case TCP_SYN_RECV:
4800 			if (acceptable) {
4801 				tp->copied_seq = tp->rcv_nxt;
4802 				smp_mb();
4803 				tcp_set_state(sk, TCP_ESTABLISHED);
4804 				sk->sk_state_change(sk);
4805 
4806 				/* Note, that this wakeup is only for marginal
4807 				 * crossed SYN case. Passively open sockets
4808 				 * are not waked up, because sk->sk_sleep ==
4809 				 * NULL and sk->sk_socket == NULL.
4810 				 */
4811 				if (sk->sk_socket) {
4812 					sk_wake_async(sk,0,POLL_OUT);
4813 				}
4814 
4815 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4816 				tp->snd_wnd = ntohs(th->window) <<
4817 					      tp->rx_opt.snd_wscale;
4818 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4819 					    TCP_SKB_CB(skb)->seq);
4820 
4821 				/* tcp_ack considers this ACK as duplicate
4822 				 * and does not calculate rtt.
4823 				 * Fix it at least with timestamps.
4824 				 */
4825 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4826 				    !tp->srtt)
4827 					tcp_ack_saw_tstamp(sk, 0);
4828 
4829 				if (tp->rx_opt.tstamp_ok)
4830 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4831 
4832 				/* Make sure socket is routed, for
4833 				 * correct metrics.
4834 				 */
4835 				icsk->icsk_af_ops->rebuild_header(sk);
4836 
4837 				tcp_init_metrics(sk);
4838 
4839 				tcp_init_congestion_control(sk);
4840 
4841 				/* Prevent spurious tcp_cwnd_restart() on
4842 				 * first data packet.
4843 				 */
4844 				tp->lsndtime = tcp_time_stamp;
4845 
4846 				tcp_mtup_init(sk);
4847 				tcp_initialize_rcv_mss(sk);
4848 				tcp_init_buffer_space(sk);
4849 				tcp_fast_path_on(tp);
4850 			} else {
4851 				return 1;
4852 			}
4853 			break;
4854 
4855 		case TCP_FIN_WAIT1:
4856 			if (tp->snd_una == tp->write_seq) {
4857 				tcp_set_state(sk, TCP_FIN_WAIT2);
4858 				sk->sk_shutdown |= SEND_SHUTDOWN;
4859 				dst_confirm(sk->sk_dst_cache);
4860 
4861 				if (!sock_flag(sk, SOCK_DEAD))
4862 					/* Wake up lingering close() */
4863 					sk->sk_state_change(sk);
4864 				else {
4865 					int tmo;
4866 
4867 					if (tp->linger2 < 0 ||
4868 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4869 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4870 						tcp_done(sk);
4871 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4872 						return 1;
4873 					}
4874 
4875 					tmo = tcp_fin_time(sk);
4876 					if (tmo > TCP_TIMEWAIT_LEN) {
4877 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4878 					} else if (th->fin || sock_owned_by_user(sk)) {
4879 						/* Bad case. We could lose such FIN otherwise.
4880 						 * It is not a big problem, but it looks confusing
4881 						 * and not so rare event. We still can lose it now,
4882 						 * if it spins in bh_lock_sock(), but it is really
4883 						 * marginal case.
4884 						 */
4885 						inet_csk_reset_keepalive_timer(sk, tmo);
4886 					} else {
4887 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4888 						goto discard;
4889 					}
4890 				}
4891 			}
4892 			break;
4893 
4894 		case TCP_CLOSING:
4895 			if (tp->snd_una == tp->write_seq) {
4896 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4897 				goto discard;
4898 			}
4899 			break;
4900 
4901 		case TCP_LAST_ACK:
4902 			if (tp->snd_una == tp->write_seq) {
4903 				tcp_update_metrics(sk);
4904 				tcp_done(sk);
4905 				goto discard;
4906 			}
4907 			break;
4908 		}
4909 	} else
4910 		goto discard;
4911 
4912 	/* step 6: check the URG bit */
4913 	tcp_urg(sk, skb, th);
4914 
4915 	/* step 7: process the segment text */
4916 	switch (sk->sk_state) {
4917 	case TCP_CLOSE_WAIT:
4918 	case TCP_CLOSING:
4919 	case TCP_LAST_ACK:
4920 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4921 			break;
4922 	case TCP_FIN_WAIT1:
4923 	case TCP_FIN_WAIT2:
4924 		/* RFC 793 says to queue data in these states,
4925 		 * RFC 1122 says we MUST send a reset.
4926 		 * BSD 4.4 also does reset.
4927 		 */
4928 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4929 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4930 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4931 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4932 				tcp_reset(sk);
4933 				return 1;
4934 			}
4935 		}
4936 		/* Fall through */
4937 	case TCP_ESTABLISHED:
4938 		tcp_data_queue(sk, skb);
4939 		queued = 1;
4940 		break;
4941 	}
4942 
4943 	/* tcp_data could move socket to TIME-WAIT */
4944 	if (sk->sk_state != TCP_CLOSE) {
4945 		tcp_data_snd_check(sk);
4946 		tcp_ack_snd_check(sk);
4947 	}
4948 
4949 	if (!queued) {
4950 discard:
4951 		__kfree_skb(skb);
4952 	}
4953 	return 0;
4954 }
4955 
4956 EXPORT_SYMBOL(sysctl_tcp_ecn);
4957 EXPORT_SYMBOL(sysctl_tcp_reordering);
4958 EXPORT_SYMBOL(tcp_parse_options);
4959 EXPORT_SYMBOL(tcp_rcv_established);
4960 EXPORT_SYMBOL(tcp_rcv_state_process);
4961 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4962