1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 247 do_div(val, skb->truesize); 248 tcp_sk(sk)->scaling_ratio = val ? val : 1; 249 } 250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 251 tcp_sk(sk)->advmss); 252 /* Account for possibly-removed options */ 253 if (unlikely(len > icsk->icsk_ack.rcv_mss + 254 MAX_TCP_OPTION_SPACE)) 255 tcp_gro_dev_warn(sk, skb, len); 256 /* If the skb has a len of exactly 1*MSS and has the PSH bit 257 * set then it is likely the end of an application write. So 258 * more data may not be arriving soon, and yet the data sender 259 * may be waiting for an ACK if cwnd-bound or using TX zero 260 * copy. So we set ICSK_ACK_PUSHED here so that 261 * tcp_cleanup_rbuf() will send an ACK immediately if the app 262 * reads all of the data and is not ping-pong. If len > MSS 263 * then this logic does not matter (and does not hurt) because 264 * tcp_cleanup_rbuf() will always ACK immediately if the app 265 * reads data and there is more than an MSS of unACKed data. 266 */ 267 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 268 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 269 } else { 270 /* Otherwise, we make more careful check taking into account, 271 * that SACKs block is variable. 272 * 273 * "len" is invariant segment length, including TCP header. 274 */ 275 len += skb->data - skb_transport_header(skb); 276 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 277 /* If PSH is not set, packet should be 278 * full sized, provided peer TCP is not badly broken. 279 * This observation (if it is correct 8)) allows 280 * to handle super-low mtu links fairly. 281 */ 282 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 283 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 284 /* Subtract also invariant (if peer is RFC compliant), 285 * tcp header plus fixed timestamp option length. 286 * Resulting "len" is MSS free of SACK jitter. 287 */ 288 len -= tcp_sk(sk)->tcp_header_len; 289 icsk->icsk_ack.last_seg_size = len; 290 if (len == lss) { 291 icsk->icsk_ack.rcv_mss = len; 292 return; 293 } 294 } 295 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 296 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 297 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 298 } 299 } 300 301 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 302 { 303 struct inet_connection_sock *icsk = inet_csk(sk); 304 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 305 306 if (quickacks == 0) 307 quickacks = 2; 308 quickacks = min(quickacks, max_quickacks); 309 if (quickacks > icsk->icsk_ack.quick) 310 icsk->icsk_ack.quick = quickacks; 311 } 312 313 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 314 { 315 struct inet_connection_sock *icsk = inet_csk(sk); 316 317 tcp_incr_quickack(sk, max_quickacks); 318 inet_csk_exit_pingpong_mode(sk); 319 icsk->icsk_ack.ato = TCP_ATO_MIN; 320 } 321 322 /* Send ACKs quickly, if "quick" count is not exhausted 323 * and the session is not interactive. 324 */ 325 326 static bool tcp_in_quickack_mode(struct sock *sk) 327 { 328 const struct inet_connection_sock *icsk = inet_csk(sk); 329 const struct dst_entry *dst = __sk_dst_get(sk); 330 331 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 332 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 333 } 334 335 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 336 { 337 if (tp->ecn_flags & TCP_ECN_OK) 338 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 339 } 340 341 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 342 { 343 if (tcp_hdr(skb)->cwr) { 344 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 345 346 /* If the sender is telling us it has entered CWR, then its 347 * cwnd may be very low (even just 1 packet), so we should ACK 348 * immediately. 349 */ 350 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 351 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 352 } 353 } 354 355 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 356 { 357 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 358 } 359 360 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 361 { 362 struct tcp_sock *tp = tcp_sk(sk); 363 364 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 365 case INET_ECN_NOT_ECT: 366 /* Funny extension: if ECT is not set on a segment, 367 * and we already seen ECT on a previous segment, 368 * it is probably a retransmit. 369 */ 370 if (tp->ecn_flags & TCP_ECN_SEEN) 371 tcp_enter_quickack_mode(sk, 2); 372 break; 373 case INET_ECN_CE: 374 if (tcp_ca_needs_ecn(sk)) 375 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 376 377 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 378 /* Better not delay acks, sender can have a very low cwnd */ 379 tcp_enter_quickack_mode(sk, 2); 380 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 381 } 382 tp->ecn_flags |= TCP_ECN_SEEN; 383 break; 384 default: 385 if (tcp_ca_needs_ecn(sk)) 386 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 387 tp->ecn_flags |= TCP_ECN_SEEN; 388 break; 389 } 390 } 391 392 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 393 { 394 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 395 __tcp_ecn_check_ce(sk, skb); 396 } 397 398 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 399 { 400 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 401 tp->ecn_flags &= ~TCP_ECN_OK; 402 } 403 404 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 405 { 406 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 407 tp->ecn_flags &= ~TCP_ECN_OK; 408 } 409 410 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 411 { 412 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 413 return true; 414 return false; 415 } 416 417 /* Buffer size and advertised window tuning. 418 * 419 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 420 */ 421 422 static void tcp_sndbuf_expand(struct sock *sk) 423 { 424 const struct tcp_sock *tp = tcp_sk(sk); 425 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 426 int sndmem, per_mss; 427 u32 nr_segs; 428 429 /* Worst case is non GSO/TSO : each frame consumes one skb 430 * and skb->head is kmalloced using power of two area of memory 431 */ 432 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 433 MAX_TCP_HEADER + 434 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 435 436 per_mss = roundup_pow_of_two(per_mss) + 437 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 438 439 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 440 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 441 442 /* Fast Recovery (RFC 5681 3.2) : 443 * Cubic needs 1.7 factor, rounded to 2 to include 444 * extra cushion (application might react slowly to EPOLLOUT) 445 */ 446 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 447 sndmem *= nr_segs * per_mss; 448 449 if (sk->sk_sndbuf < sndmem) 450 WRITE_ONCE(sk->sk_sndbuf, 451 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 452 } 453 454 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 455 * 456 * All tcp_full_space() is split to two parts: "network" buffer, allocated 457 * forward and advertised in receiver window (tp->rcv_wnd) and 458 * "application buffer", required to isolate scheduling/application 459 * latencies from network. 460 * window_clamp is maximal advertised window. It can be less than 461 * tcp_full_space(), in this case tcp_full_space() - window_clamp 462 * is reserved for "application" buffer. The less window_clamp is 463 * the smoother our behaviour from viewpoint of network, but the lower 464 * throughput and the higher sensitivity of the connection to losses. 8) 465 * 466 * rcv_ssthresh is more strict window_clamp used at "slow start" 467 * phase to predict further behaviour of this connection. 468 * It is used for two goals: 469 * - to enforce header prediction at sender, even when application 470 * requires some significant "application buffer". It is check #1. 471 * - to prevent pruning of receive queue because of misprediction 472 * of receiver window. Check #2. 473 * 474 * The scheme does not work when sender sends good segments opening 475 * window and then starts to feed us spaghetti. But it should work 476 * in common situations. Otherwise, we have to rely on queue collapsing. 477 */ 478 479 /* Slow part of check#2. */ 480 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 481 unsigned int skbtruesize) 482 { 483 const struct tcp_sock *tp = tcp_sk(sk); 484 /* Optimize this! */ 485 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 486 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 487 488 while (tp->rcv_ssthresh <= window) { 489 if (truesize <= skb->len) 490 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 491 492 truesize >>= 1; 493 window >>= 1; 494 } 495 return 0; 496 } 497 498 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 499 * can play nice with us, as sk_buff and skb->head might be either 500 * freed or shared with up to MAX_SKB_FRAGS segments. 501 * Only give a boost to drivers using page frag(s) to hold the frame(s), 502 * and if no payload was pulled in skb->head before reaching us. 503 */ 504 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 505 { 506 u32 truesize = skb->truesize; 507 508 if (adjust && !skb_headlen(skb)) { 509 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 510 /* paranoid check, some drivers might be buggy */ 511 if (unlikely((int)truesize < (int)skb->len)) 512 truesize = skb->truesize; 513 } 514 return truesize; 515 } 516 517 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 518 bool adjust) 519 { 520 struct tcp_sock *tp = tcp_sk(sk); 521 int room; 522 523 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 524 525 if (room <= 0) 526 return; 527 528 /* Check #1 */ 529 if (!tcp_under_memory_pressure(sk)) { 530 unsigned int truesize = truesize_adjust(adjust, skb); 531 int incr; 532 533 /* Check #2. Increase window, if skb with such overhead 534 * will fit to rcvbuf in future. 535 */ 536 if (tcp_win_from_space(sk, truesize) <= skb->len) 537 incr = 2 * tp->advmss; 538 else 539 incr = __tcp_grow_window(sk, skb, truesize); 540 541 if (incr) { 542 incr = max_t(int, incr, 2 * skb->len); 543 tp->rcv_ssthresh += min(room, incr); 544 inet_csk(sk)->icsk_ack.quick |= 1; 545 } 546 } else { 547 /* Under pressure: 548 * Adjust rcv_ssthresh according to reserved mem 549 */ 550 tcp_adjust_rcv_ssthresh(sk); 551 } 552 } 553 554 /* 3. Try to fixup all. It is made immediately after connection enters 555 * established state. 556 */ 557 static void tcp_init_buffer_space(struct sock *sk) 558 { 559 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 560 struct tcp_sock *tp = tcp_sk(sk); 561 int maxwin; 562 563 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 564 tcp_sndbuf_expand(sk); 565 566 tcp_mstamp_refresh(tp); 567 tp->rcvq_space.time = tp->tcp_mstamp; 568 tp->rcvq_space.seq = tp->copied_seq; 569 570 maxwin = tcp_full_space(sk); 571 572 if (tp->window_clamp >= maxwin) { 573 tp->window_clamp = maxwin; 574 575 if (tcp_app_win && maxwin > 4 * tp->advmss) 576 tp->window_clamp = max(maxwin - 577 (maxwin >> tcp_app_win), 578 4 * tp->advmss); 579 } 580 581 /* Force reservation of one segment. */ 582 if (tcp_app_win && 583 tp->window_clamp > 2 * tp->advmss && 584 tp->window_clamp + tp->advmss > maxwin) 585 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 586 587 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 588 tp->snd_cwnd_stamp = tcp_jiffies32; 589 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 590 (u32)TCP_INIT_CWND * tp->advmss); 591 } 592 593 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 594 static void tcp_clamp_window(struct sock *sk) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 struct inet_connection_sock *icsk = inet_csk(sk); 598 struct net *net = sock_net(sk); 599 int rmem2; 600 601 icsk->icsk_ack.quick = 0; 602 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 603 604 if (sk->sk_rcvbuf < rmem2 && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 606 !tcp_under_memory_pressure(sk) && 607 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 608 WRITE_ONCE(sk->sk_rcvbuf, 609 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 610 } 611 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 612 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 613 } 614 615 /* Initialize RCV_MSS value. 616 * RCV_MSS is an our guess about MSS used by the peer. 617 * We haven't any direct information about the MSS. 618 * It's better to underestimate the RCV_MSS rather than overestimate. 619 * Overestimations make us ACKing less frequently than needed. 620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 621 */ 622 void tcp_initialize_rcv_mss(struct sock *sk) 623 { 624 const struct tcp_sock *tp = tcp_sk(sk); 625 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 626 627 hint = min(hint, tp->rcv_wnd / 2); 628 hint = min(hint, TCP_MSS_DEFAULT); 629 hint = max(hint, TCP_MIN_MSS); 630 631 inet_csk(sk)->icsk_ack.rcv_mss = hint; 632 } 633 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 634 635 /* Receiver "autotuning" code. 636 * 637 * The algorithm for RTT estimation w/o timestamps is based on 638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 639 * <https://public.lanl.gov/radiant/pubs.html#DRS> 640 * 641 * More detail on this code can be found at 642 * <http://staff.psc.edu/jheffner/>, 643 * though this reference is out of date. A new paper 644 * is pending. 645 */ 646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 647 { 648 u32 new_sample = tp->rcv_rtt_est.rtt_us; 649 long m = sample; 650 651 if (new_sample != 0) { 652 /* If we sample in larger samples in the non-timestamp 653 * case, we could grossly overestimate the RTT especially 654 * with chatty applications or bulk transfer apps which 655 * are stalled on filesystem I/O. 656 * 657 * Also, since we are only going for a minimum in the 658 * non-timestamp case, we do not smooth things out 659 * else with timestamps disabled convergence takes too 660 * long. 661 */ 662 if (!win_dep) { 663 m -= (new_sample >> 3); 664 new_sample += m; 665 } else { 666 m <<= 3; 667 if (m < new_sample) 668 new_sample = m; 669 } 670 } else { 671 /* No previous measure. */ 672 new_sample = m << 3; 673 } 674 675 tp->rcv_rtt_est.rtt_us = new_sample; 676 } 677 678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 679 { 680 u32 delta_us; 681 682 if (tp->rcv_rtt_est.time == 0) 683 goto new_measure; 684 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 685 return; 686 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 687 if (!delta_us) 688 delta_us = 1; 689 tcp_rcv_rtt_update(tp, delta_us, 1); 690 691 new_measure: 692 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 693 tp->rcv_rtt_est.time = tp->tcp_mstamp; 694 } 695 696 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 697 const struct sk_buff *skb) 698 { 699 struct tcp_sock *tp = tcp_sk(sk); 700 701 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 702 return; 703 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 704 705 if (TCP_SKB_CB(skb)->end_seq - 706 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 707 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 708 u32 delta_us; 709 710 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 711 if (!delta) 712 delta = 1; 713 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 714 tcp_rcv_rtt_update(tp, delta_us, 0); 715 } 716 } 717 } 718 719 /* 720 * This function should be called every time data is copied to user space. 721 * It calculates the appropriate TCP receive buffer space. 722 */ 723 void tcp_rcv_space_adjust(struct sock *sk) 724 { 725 struct tcp_sock *tp = tcp_sk(sk); 726 u32 copied; 727 int time; 728 729 trace_tcp_rcv_space_adjust(sk); 730 731 tcp_mstamp_refresh(tp); 732 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 733 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 734 return; 735 736 /* Number of bytes copied to user in last RTT */ 737 copied = tp->copied_seq - tp->rcvq_space.seq; 738 if (copied <= tp->rcvq_space.space) 739 goto new_measure; 740 741 /* A bit of theory : 742 * copied = bytes received in previous RTT, our base window 743 * To cope with packet losses, we need a 2x factor 744 * To cope with slow start, and sender growing its cwin by 100 % 745 * every RTT, we need a 4x factor, because the ACK we are sending 746 * now is for the next RTT, not the current one : 747 * <prev RTT . ><current RTT .. ><next RTT .... > 748 */ 749 750 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 751 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 752 u64 rcvwin, grow; 753 int rcvbuf; 754 755 /* minimal window to cope with packet losses, assuming 756 * steady state. Add some cushion because of small variations. 757 */ 758 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 759 760 /* Accommodate for sender rate increase (eg. slow start) */ 761 grow = rcvwin * (copied - tp->rcvq_space.space); 762 do_div(grow, tp->rcvq_space.space); 763 rcvwin += (grow << 1); 764 765 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 766 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 767 if (rcvbuf > sk->sk_rcvbuf) { 768 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 769 770 /* Make the window clamp follow along. */ 771 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 772 } 773 } 774 tp->rcvq_space.space = copied; 775 776 new_measure: 777 tp->rcvq_space.seq = tp->copied_seq; 778 tp->rcvq_space.time = tp->tcp_mstamp; 779 } 780 781 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 782 { 783 #if IS_ENABLED(CONFIG_IPV6) 784 struct inet_connection_sock *icsk = inet_csk(sk); 785 786 if (skb->protocol == htons(ETH_P_IPV6)) 787 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 788 #endif 789 } 790 791 /* There is something which you must keep in mind when you analyze the 792 * behavior of the tp->ato delayed ack timeout interval. When a 793 * connection starts up, we want to ack as quickly as possible. The 794 * problem is that "good" TCP's do slow start at the beginning of data 795 * transmission. The means that until we send the first few ACK's the 796 * sender will sit on his end and only queue most of his data, because 797 * he can only send snd_cwnd unacked packets at any given time. For 798 * each ACK we send, he increments snd_cwnd and transmits more of his 799 * queue. -DaveM 800 */ 801 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 802 { 803 struct tcp_sock *tp = tcp_sk(sk); 804 struct inet_connection_sock *icsk = inet_csk(sk); 805 u32 now; 806 807 inet_csk_schedule_ack(sk); 808 809 tcp_measure_rcv_mss(sk, skb); 810 811 tcp_rcv_rtt_measure(tp); 812 813 now = tcp_jiffies32; 814 815 if (!icsk->icsk_ack.ato) { 816 /* The _first_ data packet received, initialize 817 * delayed ACK engine. 818 */ 819 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 820 icsk->icsk_ack.ato = TCP_ATO_MIN; 821 } else { 822 int m = now - icsk->icsk_ack.lrcvtime; 823 824 if (m <= TCP_ATO_MIN / 2) { 825 /* The fastest case is the first. */ 826 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 827 } else if (m < icsk->icsk_ack.ato) { 828 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 829 if (icsk->icsk_ack.ato > icsk->icsk_rto) 830 icsk->icsk_ack.ato = icsk->icsk_rto; 831 } else if (m > icsk->icsk_rto) { 832 /* Too long gap. Apparently sender failed to 833 * restart window, so that we send ACKs quickly. 834 */ 835 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 836 } 837 } 838 icsk->icsk_ack.lrcvtime = now; 839 tcp_save_lrcv_flowlabel(sk, skb); 840 841 tcp_ecn_check_ce(sk, skb); 842 843 if (skb->len >= 128) 844 tcp_grow_window(sk, skb, true); 845 } 846 847 /* Called to compute a smoothed rtt estimate. The data fed to this 848 * routine either comes from timestamps, or from segments that were 849 * known _not_ to have been retransmitted [see Karn/Partridge 850 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 851 * piece by Van Jacobson. 852 * NOTE: the next three routines used to be one big routine. 853 * To save cycles in the RFC 1323 implementation it was better to break 854 * it up into three procedures. -- erics 855 */ 856 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 857 { 858 struct tcp_sock *tp = tcp_sk(sk); 859 long m = mrtt_us; /* RTT */ 860 u32 srtt = tp->srtt_us; 861 862 /* The following amusing code comes from Jacobson's 863 * article in SIGCOMM '88. Note that rtt and mdev 864 * are scaled versions of rtt and mean deviation. 865 * This is designed to be as fast as possible 866 * m stands for "measurement". 867 * 868 * On a 1990 paper the rto value is changed to: 869 * RTO = rtt + 4 * mdev 870 * 871 * Funny. This algorithm seems to be very broken. 872 * These formulae increase RTO, when it should be decreased, increase 873 * too slowly, when it should be increased quickly, decrease too quickly 874 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 875 * does not matter how to _calculate_ it. Seems, it was trap 876 * that VJ failed to avoid. 8) 877 */ 878 if (srtt != 0) { 879 m -= (srtt >> 3); /* m is now error in rtt est */ 880 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 881 if (m < 0) { 882 m = -m; /* m is now abs(error) */ 883 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 884 /* This is similar to one of Eifel findings. 885 * Eifel blocks mdev updates when rtt decreases. 886 * This solution is a bit different: we use finer gain 887 * for mdev in this case (alpha*beta). 888 * Like Eifel it also prevents growth of rto, 889 * but also it limits too fast rto decreases, 890 * happening in pure Eifel. 891 */ 892 if (m > 0) 893 m >>= 3; 894 } else { 895 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 896 } 897 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 898 if (tp->mdev_us > tp->mdev_max_us) { 899 tp->mdev_max_us = tp->mdev_us; 900 if (tp->mdev_max_us > tp->rttvar_us) 901 tp->rttvar_us = tp->mdev_max_us; 902 } 903 if (after(tp->snd_una, tp->rtt_seq)) { 904 if (tp->mdev_max_us < tp->rttvar_us) 905 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 906 tp->rtt_seq = tp->snd_nxt; 907 tp->mdev_max_us = tcp_rto_min_us(sk); 908 909 tcp_bpf_rtt(sk); 910 } 911 } else { 912 /* no previous measure. */ 913 srtt = m << 3; /* take the measured time to be rtt */ 914 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 915 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 916 tp->mdev_max_us = tp->rttvar_us; 917 tp->rtt_seq = tp->snd_nxt; 918 919 tcp_bpf_rtt(sk); 920 } 921 tp->srtt_us = max(1U, srtt); 922 } 923 924 static void tcp_update_pacing_rate(struct sock *sk) 925 { 926 const struct tcp_sock *tp = tcp_sk(sk); 927 u64 rate; 928 929 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 930 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 931 932 /* current rate is (cwnd * mss) / srtt 933 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 934 * In Congestion Avoidance phase, set it to 120 % the current rate. 935 * 936 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 937 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 938 * end of slow start and should slow down. 939 */ 940 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 941 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 942 else 943 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 944 945 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 946 947 if (likely(tp->srtt_us)) 948 do_div(rate, tp->srtt_us); 949 950 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 951 * without any lock. We want to make sure compiler wont store 952 * intermediate values in this location. 953 */ 954 WRITE_ONCE(sk->sk_pacing_rate, 955 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 956 } 957 958 /* Calculate rto without backoff. This is the second half of Van Jacobson's 959 * routine referred to above. 960 */ 961 static void tcp_set_rto(struct sock *sk) 962 { 963 const struct tcp_sock *tp = tcp_sk(sk); 964 /* Old crap is replaced with new one. 8) 965 * 966 * More seriously: 967 * 1. If rtt variance happened to be less 50msec, it is hallucination. 968 * It cannot be less due to utterly erratic ACK generation made 969 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 970 * to do with delayed acks, because at cwnd>2 true delack timeout 971 * is invisible. Actually, Linux-2.4 also generates erratic 972 * ACKs in some circumstances. 973 */ 974 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 975 976 /* 2. Fixups made earlier cannot be right. 977 * If we do not estimate RTO correctly without them, 978 * all the algo is pure shit and should be replaced 979 * with correct one. It is exactly, which we pretend to do. 980 */ 981 982 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 983 * guarantees that rto is higher. 984 */ 985 tcp_bound_rto(sk); 986 } 987 988 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 989 { 990 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 991 992 if (!cwnd) 993 cwnd = TCP_INIT_CWND; 994 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 995 } 996 997 struct tcp_sacktag_state { 998 /* Timestamps for earliest and latest never-retransmitted segment 999 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1000 * but congestion control should still get an accurate delay signal. 1001 */ 1002 u64 first_sackt; 1003 u64 last_sackt; 1004 u32 reord; 1005 u32 sack_delivered; 1006 int flag; 1007 unsigned int mss_now; 1008 struct rate_sample *rate; 1009 }; 1010 1011 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1012 * and spurious retransmission information if this DSACK is unlikely caused by 1013 * sender's action: 1014 * - DSACKed sequence range is larger than maximum receiver's window. 1015 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1016 */ 1017 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1018 u32 end_seq, struct tcp_sacktag_state *state) 1019 { 1020 u32 seq_len, dup_segs = 1; 1021 1022 if (!before(start_seq, end_seq)) 1023 return 0; 1024 1025 seq_len = end_seq - start_seq; 1026 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1027 if (seq_len > tp->max_window) 1028 return 0; 1029 if (seq_len > tp->mss_cache) 1030 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1031 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1032 state->flag |= FLAG_DSACK_TLP; 1033 1034 tp->dsack_dups += dup_segs; 1035 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1036 if (tp->dsack_dups > tp->total_retrans) 1037 return 0; 1038 1039 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1040 /* We increase the RACK ordering window in rounds where we receive 1041 * DSACKs that may have been due to reordering causing RACK to trigger 1042 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1043 * without having seen reordering, or that match TLP probes (TLP 1044 * is timer-driven, not triggered by RACK). 1045 */ 1046 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1047 tp->rack.dsack_seen = 1; 1048 1049 state->flag |= FLAG_DSACKING_ACK; 1050 /* A spurious retransmission is delivered */ 1051 state->sack_delivered += dup_segs; 1052 1053 return dup_segs; 1054 } 1055 1056 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1057 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1058 * distance is approximated in full-mss packet distance ("reordering"). 1059 */ 1060 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1061 const int ts) 1062 { 1063 struct tcp_sock *tp = tcp_sk(sk); 1064 const u32 mss = tp->mss_cache; 1065 u32 fack, metric; 1066 1067 fack = tcp_highest_sack_seq(tp); 1068 if (!before(low_seq, fack)) 1069 return; 1070 1071 metric = fack - low_seq; 1072 if ((metric > tp->reordering * mss) && mss) { 1073 #if FASTRETRANS_DEBUG > 1 1074 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1075 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1076 tp->reordering, 1077 0, 1078 tp->sacked_out, 1079 tp->undo_marker ? tp->undo_retrans : 0); 1080 #endif 1081 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1082 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1083 } 1084 1085 /* This exciting event is worth to be remembered. 8) */ 1086 tp->reord_seen++; 1087 NET_INC_STATS(sock_net(sk), 1088 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1089 } 1090 1091 /* This must be called before lost_out or retrans_out are updated 1092 * on a new loss, because we want to know if all skbs previously 1093 * known to be lost have already been retransmitted, indicating 1094 * that this newly lost skb is our next skb to retransmit. 1095 */ 1096 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1097 { 1098 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1099 (tp->retransmit_skb_hint && 1100 before(TCP_SKB_CB(skb)->seq, 1101 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1102 tp->retransmit_skb_hint = skb; 1103 } 1104 1105 /* Sum the number of packets on the wire we have marked as lost, and 1106 * notify the congestion control module that the given skb was marked lost. 1107 */ 1108 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1109 { 1110 tp->lost += tcp_skb_pcount(skb); 1111 } 1112 1113 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1114 { 1115 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1116 struct tcp_sock *tp = tcp_sk(sk); 1117 1118 if (sacked & TCPCB_SACKED_ACKED) 1119 return; 1120 1121 tcp_verify_retransmit_hint(tp, skb); 1122 if (sacked & TCPCB_LOST) { 1123 if (sacked & TCPCB_SACKED_RETRANS) { 1124 /* Account for retransmits that are lost again */ 1125 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1126 tp->retrans_out -= tcp_skb_pcount(skb); 1127 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1128 tcp_skb_pcount(skb)); 1129 tcp_notify_skb_loss_event(tp, skb); 1130 } 1131 } else { 1132 tp->lost_out += tcp_skb_pcount(skb); 1133 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1134 tcp_notify_skb_loss_event(tp, skb); 1135 } 1136 } 1137 1138 /* Updates the delivered and delivered_ce counts */ 1139 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1140 bool ece_ack) 1141 { 1142 tp->delivered += delivered; 1143 if (ece_ack) 1144 tp->delivered_ce += delivered; 1145 } 1146 1147 /* This procedure tags the retransmission queue when SACKs arrive. 1148 * 1149 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1150 * Packets in queue with these bits set are counted in variables 1151 * sacked_out, retrans_out and lost_out, correspondingly. 1152 * 1153 * Valid combinations are: 1154 * Tag InFlight Description 1155 * 0 1 - orig segment is in flight. 1156 * S 0 - nothing flies, orig reached receiver. 1157 * L 0 - nothing flies, orig lost by net. 1158 * R 2 - both orig and retransmit are in flight. 1159 * L|R 1 - orig is lost, retransmit is in flight. 1160 * S|R 1 - orig reached receiver, retrans is still in flight. 1161 * (L|S|R is logically valid, it could occur when L|R is sacked, 1162 * but it is equivalent to plain S and code short-curcuits it to S. 1163 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1164 * 1165 * These 6 states form finite state machine, controlled by the following events: 1166 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1167 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1168 * 3. Loss detection event of two flavors: 1169 * A. Scoreboard estimator decided the packet is lost. 1170 * A'. Reno "three dupacks" marks head of queue lost. 1171 * B. SACK arrives sacking SND.NXT at the moment, when the 1172 * segment was retransmitted. 1173 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1174 * 1175 * It is pleasant to note, that state diagram turns out to be commutative, 1176 * so that we are allowed not to be bothered by order of our actions, 1177 * when multiple events arrive simultaneously. (see the function below). 1178 * 1179 * Reordering detection. 1180 * -------------------- 1181 * Reordering metric is maximal distance, which a packet can be displaced 1182 * in packet stream. With SACKs we can estimate it: 1183 * 1184 * 1. SACK fills old hole and the corresponding segment was not 1185 * ever retransmitted -> reordering. Alas, we cannot use it 1186 * when segment was retransmitted. 1187 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1188 * for retransmitted and already SACKed segment -> reordering.. 1189 * Both of these heuristics are not used in Loss state, when we cannot 1190 * account for retransmits accurately. 1191 * 1192 * SACK block validation. 1193 * ---------------------- 1194 * 1195 * SACK block range validation checks that the received SACK block fits to 1196 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1197 * Note that SND.UNA is not included to the range though being valid because 1198 * it means that the receiver is rather inconsistent with itself reporting 1199 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1200 * perfectly valid, however, in light of RFC2018 which explicitly states 1201 * that "SACK block MUST reflect the newest segment. Even if the newest 1202 * segment is going to be discarded ...", not that it looks very clever 1203 * in case of head skb. Due to potentional receiver driven attacks, we 1204 * choose to avoid immediate execution of a walk in write queue due to 1205 * reneging and defer head skb's loss recovery to standard loss recovery 1206 * procedure that will eventually trigger (nothing forbids us doing this). 1207 * 1208 * Implements also blockage to start_seq wrap-around. Problem lies in the 1209 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1210 * there's no guarantee that it will be before snd_nxt (n). The problem 1211 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1212 * wrap (s_w): 1213 * 1214 * <- outs wnd -> <- wrapzone -> 1215 * u e n u_w e_w s n_w 1216 * | | | | | | | 1217 * |<------------+------+----- TCP seqno space --------------+---------->| 1218 * ...-- <2^31 ->| |<--------... 1219 * ...---- >2^31 ------>| |<--------... 1220 * 1221 * Current code wouldn't be vulnerable but it's better still to discard such 1222 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1223 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1224 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1225 * equal to the ideal case (infinite seqno space without wrap caused issues). 1226 * 1227 * With D-SACK the lower bound is extended to cover sequence space below 1228 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1229 * again, D-SACK block must not to go across snd_una (for the same reason as 1230 * for the normal SACK blocks, explained above). But there all simplicity 1231 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1232 * fully below undo_marker they do not affect behavior in anyway and can 1233 * therefore be safely ignored. In rare cases (which are more or less 1234 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1235 * fragmentation and packet reordering past skb's retransmission. To consider 1236 * them correctly, the acceptable range must be extended even more though 1237 * the exact amount is rather hard to quantify. However, tp->max_window can 1238 * be used as an exaggerated estimate. 1239 */ 1240 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1241 u32 start_seq, u32 end_seq) 1242 { 1243 /* Too far in future, or reversed (interpretation is ambiguous) */ 1244 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1245 return false; 1246 1247 /* Nasty start_seq wrap-around check (see comments above) */ 1248 if (!before(start_seq, tp->snd_nxt)) 1249 return false; 1250 1251 /* In outstanding window? ...This is valid exit for D-SACKs too. 1252 * start_seq == snd_una is non-sensical (see comments above) 1253 */ 1254 if (after(start_seq, tp->snd_una)) 1255 return true; 1256 1257 if (!is_dsack || !tp->undo_marker) 1258 return false; 1259 1260 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1261 if (after(end_seq, tp->snd_una)) 1262 return false; 1263 1264 if (!before(start_seq, tp->undo_marker)) 1265 return true; 1266 1267 /* Too old */ 1268 if (!after(end_seq, tp->undo_marker)) 1269 return false; 1270 1271 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1272 * start_seq < undo_marker and end_seq >= undo_marker. 1273 */ 1274 return !before(start_seq, end_seq - tp->max_window); 1275 } 1276 1277 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1278 struct tcp_sack_block_wire *sp, int num_sacks, 1279 u32 prior_snd_una, struct tcp_sacktag_state *state) 1280 { 1281 struct tcp_sock *tp = tcp_sk(sk); 1282 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1283 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1284 u32 dup_segs; 1285 1286 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1287 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1288 } else if (num_sacks > 1) { 1289 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1290 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1291 1292 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1293 return false; 1294 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1295 } else { 1296 return false; 1297 } 1298 1299 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1300 if (!dup_segs) { /* Skip dubious DSACK */ 1301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1302 return false; 1303 } 1304 1305 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1306 1307 /* D-SACK for already forgotten data... Do dumb counting. */ 1308 if (tp->undo_marker && tp->undo_retrans > 0 && 1309 !after(end_seq_0, prior_snd_una) && 1310 after(end_seq_0, tp->undo_marker)) 1311 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1312 1313 return true; 1314 } 1315 1316 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1317 * the incoming SACK may not exactly match but we can find smaller MSS 1318 * aligned portion of it that matches. Therefore we might need to fragment 1319 * which may fail and creates some hassle (caller must handle error case 1320 * returns). 1321 * 1322 * FIXME: this could be merged to shift decision code 1323 */ 1324 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1325 u32 start_seq, u32 end_seq) 1326 { 1327 int err; 1328 bool in_sack; 1329 unsigned int pkt_len; 1330 unsigned int mss; 1331 1332 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1333 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1334 1335 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1336 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1337 mss = tcp_skb_mss(skb); 1338 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1339 1340 if (!in_sack) { 1341 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1342 if (pkt_len < mss) 1343 pkt_len = mss; 1344 } else { 1345 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1346 if (pkt_len < mss) 1347 return -EINVAL; 1348 } 1349 1350 /* Round if necessary so that SACKs cover only full MSSes 1351 * and/or the remaining small portion (if present) 1352 */ 1353 if (pkt_len > mss) { 1354 unsigned int new_len = (pkt_len / mss) * mss; 1355 if (!in_sack && new_len < pkt_len) 1356 new_len += mss; 1357 pkt_len = new_len; 1358 } 1359 1360 if (pkt_len >= skb->len && !in_sack) 1361 return 0; 1362 1363 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1364 pkt_len, mss, GFP_ATOMIC); 1365 if (err < 0) 1366 return err; 1367 } 1368 1369 return in_sack; 1370 } 1371 1372 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1373 static u8 tcp_sacktag_one(struct sock *sk, 1374 struct tcp_sacktag_state *state, u8 sacked, 1375 u32 start_seq, u32 end_seq, 1376 int dup_sack, int pcount, 1377 u64 xmit_time) 1378 { 1379 struct tcp_sock *tp = tcp_sk(sk); 1380 1381 /* Account D-SACK for retransmitted packet. */ 1382 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1383 if (tp->undo_marker && tp->undo_retrans > 0 && 1384 after(end_seq, tp->undo_marker)) 1385 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1386 if ((sacked & TCPCB_SACKED_ACKED) && 1387 before(start_seq, state->reord)) 1388 state->reord = start_seq; 1389 } 1390 1391 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1392 if (!after(end_seq, tp->snd_una)) 1393 return sacked; 1394 1395 if (!(sacked & TCPCB_SACKED_ACKED)) { 1396 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1397 1398 if (sacked & TCPCB_SACKED_RETRANS) { 1399 /* If the segment is not tagged as lost, 1400 * we do not clear RETRANS, believing 1401 * that retransmission is still in flight. 1402 */ 1403 if (sacked & TCPCB_LOST) { 1404 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1405 tp->lost_out -= pcount; 1406 tp->retrans_out -= pcount; 1407 } 1408 } else { 1409 if (!(sacked & TCPCB_RETRANS)) { 1410 /* New sack for not retransmitted frame, 1411 * which was in hole. It is reordering. 1412 */ 1413 if (before(start_seq, 1414 tcp_highest_sack_seq(tp)) && 1415 before(start_seq, state->reord)) 1416 state->reord = start_seq; 1417 1418 if (!after(end_seq, tp->high_seq)) 1419 state->flag |= FLAG_ORIG_SACK_ACKED; 1420 if (state->first_sackt == 0) 1421 state->first_sackt = xmit_time; 1422 state->last_sackt = xmit_time; 1423 } 1424 1425 if (sacked & TCPCB_LOST) { 1426 sacked &= ~TCPCB_LOST; 1427 tp->lost_out -= pcount; 1428 } 1429 } 1430 1431 sacked |= TCPCB_SACKED_ACKED; 1432 state->flag |= FLAG_DATA_SACKED; 1433 tp->sacked_out += pcount; 1434 /* Out-of-order packets delivered */ 1435 state->sack_delivered += pcount; 1436 1437 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1438 if (tp->lost_skb_hint && 1439 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1440 tp->lost_cnt_hint += pcount; 1441 } 1442 1443 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1444 * frames and clear it. undo_retrans is decreased above, L|R frames 1445 * are accounted above as well. 1446 */ 1447 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1448 sacked &= ~TCPCB_SACKED_RETRANS; 1449 tp->retrans_out -= pcount; 1450 } 1451 1452 return sacked; 1453 } 1454 1455 /* Shift newly-SACKed bytes from this skb to the immediately previous 1456 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1457 */ 1458 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1459 struct sk_buff *skb, 1460 struct tcp_sacktag_state *state, 1461 unsigned int pcount, int shifted, int mss, 1462 bool dup_sack) 1463 { 1464 struct tcp_sock *tp = tcp_sk(sk); 1465 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1466 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1467 1468 BUG_ON(!pcount); 1469 1470 /* Adjust counters and hints for the newly sacked sequence 1471 * range but discard the return value since prev is already 1472 * marked. We must tag the range first because the seq 1473 * advancement below implicitly advances 1474 * tcp_highest_sack_seq() when skb is highest_sack. 1475 */ 1476 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1477 start_seq, end_seq, dup_sack, pcount, 1478 tcp_skb_timestamp_us(skb)); 1479 tcp_rate_skb_delivered(sk, skb, state->rate); 1480 1481 if (skb == tp->lost_skb_hint) 1482 tp->lost_cnt_hint += pcount; 1483 1484 TCP_SKB_CB(prev)->end_seq += shifted; 1485 TCP_SKB_CB(skb)->seq += shifted; 1486 1487 tcp_skb_pcount_add(prev, pcount); 1488 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1489 tcp_skb_pcount_add(skb, -pcount); 1490 1491 /* When we're adding to gso_segs == 1, gso_size will be zero, 1492 * in theory this shouldn't be necessary but as long as DSACK 1493 * code can come after this skb later on it's better to keep 1494 * setting gso_size to something. 1495 */ 1496 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1497 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1498 1499 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1500 if (tcp_skb_pcount(skb) <= 1) 1501 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1502 1503 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1504 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1505 1506 if (skb->len > 0) { 1507 BUG_ON(!tcp_skb_pcount(skb)); 1508 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1509 return false; 1510 } 1511 1512 /* Whole SKB was eaten :-) */ 1513 1514 if (skb == tp->retransmit_skb_hint) 1515 tp->retransmit_skb_hint = prev; 1516 if (skb == tp->lost_skb_hint) { 1517 tp->lost_skb_hint = prev; 1518 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1519 } 1520 1521 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1522 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1523 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1524 TCP_SKB_CB(prev)->end_seq++; 1525 1526 if (skb == tcp_highest_sack(sk)) 1527 tcp_advance_highest_sack(sk, skb); 1528 1529 tcp_skb_collapse_tstamp(prev, skb); 1530 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1531 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1532 1533 tcp_rtx_queue_unlink_and_free(skb, sk); 1534 1535 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1536 1537 return true; 1538 } 1539 1540 /* I wish gso_size would have a bit more sane initialization than 1541 * something-or-zero which complicates things 1542 */ 1543 static int tcp_skb_seglen(const struct sk_buff *skb) 1544 { 1545 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1546 } 1547 1548 /* Shifting pages past head area doesn't work */ 1549 static int skb_can_shift(const struct sk_buff *skb) 1550 { 1551 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1552 } 1553 1554 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1555 int pcount, int shiftlen) 1556 { 1557 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1558 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1559 * to make sure not storing more than 65535 * 8 bytes per skb, 1560 * even if current MSS is bigger. 1561 */ 1562 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1563 return 0; 1564 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1565 return 0; 1566 return skb_shift(to, from, shiftlen); 1567 } 1568 1569 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1570 * skb. 1571 */ 1572 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1573 struct tcp_sacktag_state *state, 1574 u32 start_seq, u32 end_seq, 1575 bool dup_sack) 1576 { 1577 struct tcp_sock *tp = tcp_sk(sk); 1578 struct sk_buff *prev; 1579 int mss; 1580 int pcount = 0; 1581 int len; 1582 int in_sack; 1583 1584 /* Normally R but no L won't result in plain S */ 1585 if (!dup_sack && 1586 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1587 goto fallback; 1588 if (!skb_can_shift(skb)) 1589 goto fallback; 1590 /* This frame is about to be dropped (was ACKed). */ 1591 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1592 goto fallback; 1593 1594 /* Can only happen with delayed DSACK + discard craziness */ 1595 prev = skb_rb_prev(skb); 1596 if (!prev) 1597 goto fallback; 1598 1599 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1600 goto fallback; 1601 1602 if (!tcp_skb_can_collapse(prev, skb)) 1603 goto fallback; 1604 1605 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1606 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1607 1608 if (in_sack) { 1609 len = skb->len; 1610 pcount = tcp_skb_pcount(skb); 1611 mss = tcp_skb_seglen(skb); 1612 1613 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1614 * drop this restriction as unnecessary 1615 */ 1616 if (mss != tcp_skb_seglen(prev)) 1617 goto fallback; 1618 } else { 1619 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1620 goto noop; 1621 /* CHECKME: This is non-MSS split case only?, this will 1622 * cause skipped skbs due to advancing loop btw, original 1623 * has that feature too 1624 */ 1625 if (tcp_skb_pcount(skb) <= 1) 1626 goto noop; 1627 1628 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1629 if (!in_sack) { 1630 /* TODO: head merge to next could be attempted here 1631 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1632 * though it might not be worth of the additional hassle 1633 * 1634 * ...we can probably just fallback to what was done 1635 * previously. We could try merging non-SACKed ones 1636 * as well but it probably isn't going to buy off 1637 * because later SACKs might again split them, and 1638 * it would make skb timestamp tracking considerably 1639 * harder problem. 1640 */ 1641 goto fallback; 1642 } 1643 1644 len = end_seq - TCP_SKB_CB(skb)->seq; 1645 BUG_ON(len < 0); 1646 BUG_ON(len > skb->len); 1647 1648 /* MSS boundaries should be honoured or else pcount will 1649 * severely break even though it makes things bit trickier. 1650 * Optimize common case to avoid most of the divides 1651 */ 1652 mss = tcp_skb_mss(skb); 1653 1654 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1655 * drop this restriction as unnecessary 1656 */ 1657 if (mss != tcp_skb_seglen(prev)) 1658 goto fallback; 1659 1660 if (len == mss) { 1661 pcount = 1; 1662 } else if (len < mss) { 1663 goto noop; 1664 } else { 1665 pcount = len / mss; 1666 len = pcount * mss; 1667 } 1668 } 1669 1670 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1671 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1672 goto fallback; 1673 1674 if (!tcp_skb_shift(prev, skb, pcount, len)) 1675 goto fallback; 1676 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1677 goto out; 1678 1679 /* Hole filled allows collapsing with the next as well, this is very 1680 * useful when hole on every nth skb pattern happens 1681 */ 1682 skb = skb_rb_next(prev); 1683 if (!skb) 1684 goto out; 1685 1686 if (!skb_can_shift(skb) || 1687 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1688 (mss != tcp_skb_seglen(skb))) 1689 goto out; 1690 1691 if (!tcp_skb_can_collapse(prev, skb)) 1692 goto out; 1693 len = skb->len; 1694 pcount = tcp_skb_pcount(skb); 1695 if (tcp_skb_shift(prev, skb, pcount, len)) 1696 tcp_shifted_skb(sk, prev, skb, state, pcount, 1697 len, mss, 0); 1698 1699 out: 1700 return prev; 1701 1702 noop: 1703 return skb; 1704 1705 fallback: 1706 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1707 return NULL; 1708 } 1709 1710 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1711 struct tcp_sack_block *next_dup, 1712 struct tcp_sacktag_state *state, 1713 u32 start_seq, u32 end_seq, 1714 bool dup_sack_in) 1715 { 1716 struct tcp_sock *tp = tcp_sk(sk); 1717 struct sk_buff *tmp; 1718 1719 skb_rbtree_walk_from(skb) { 1720 int in_sack = 0; 1721 bool dup_sack = dup_sack_in; 1722 1723 /* queue is in-order => we can short-circuit the walk early */ 1724 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1725 break; 1726 1727 if (next_dup && 1728 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1729 in_sack = tcp_match_skb_to_sack(sk, skb, 1730 next_dup->start_seq, 1731 next_dup->end_seq); 1732 if (in_sack > 0) 1733 dup_sack = true; 1734 } 1735 1736 /* skb reference here is a bit tricky to get right, since 1737 * shifting can eat and free both this skb and the next, 1738 * so not even _safe variant of the loop is enough. 1739 */ 1740 if (in_sack <= 0) { 1741 tmp = tcp_shift_skb_data(sk, skb, state, 1742 start_seq, end_seq, dup_sack); 1743 if (tmp) { 1744 if (tmp != skb) { 1745 skb = tmp; 1746 continue; 1747 } 1748 1749 in_sack = 0; 1750 } else { 1751 in_sack = tcp_match_skb_to_sack(sk, skb, 1752 start_seq, 1753 end_seq); 1754 } 1755 } 1756 1757 if (unlikely(in_sack < 0)) 1758 break; 1759 1760 if (in_sack) { 1761 TCP_SKB_CB(skb)->sacked = 1762 tcp_sacktag_one(sk, 1763 state, 1764 TCP_SKB_CB(skb)->sacked, 1765 TCP_SKB_CB(skb)->seq, 1766 TCP_SKB_CB(skb)->end_seq, 1767 dup_sack, 1768 tcp_skb_pcount(skb), 1769 tcp_skb_timestamp_us(skb)); 1770 tcp_rate_skb_delivered(sk, skb, state->rate); 1771 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1772 list_del_init(&skb->tcp_tsorted_anchor); 1773 1774 if (!before(TCP_SKB_CB(skb)->seq, 1775 tcp_highest_sack_seq(tp))) 1776 tcp_advance_highest_sack(sk, skb); 1777 } 1778 } 1779 return skb; 1780 } 1781 1782 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1783 { 1784 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1785 struct sk_buff *skb; 1786 1787 while (*p) { 1788 parent = *p; 1789 skb = rb_to_skb(parent); 1790 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1791 p = &parent->rb_left; 1792 continue; 1793 } 1794 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1795 p = &parent->rb_right; 1796 continue; 1797 } 1798 return skb; 1799 } 1800 return NULL; 1801 } 1802 1803 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1804 u32 skip_to_seq) 1805 { 1806 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1807 return skb; 1808 1809 return tcp_sacktag_bsearch(sk, skip_to_seq); 1810 } 1811 1812 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1813 struct sock *sk, 1814 struct tcp_sack_block *next_dup, 1815 struct tcp_sacktag_state *state, 1816 u32 skip_to_seq) 1817 { 1818 if (!next_dup) 1819 return skb; 1820 1821 if (before(next_dup->start_seq, skip_to_seq)) { 1822 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1823 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1824 next_dup->start_seq, next_dup->end_seq, 1825 1); 1826 } 1827 1828 return skb; 1829 } 1830 1831 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1832 { 1833 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1834 } 1835 1836 static int 1837 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1838 u32 prior_snd_una, struct tcp_sacktag_state *state) 1839 { 1840 struct tcp_sock *tp = tcp_sk(sk); 1841 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1842 TCP_SKB_CB(ack_skb)->sacked); 1843 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1844 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1845 struct tcp_sack_block *cache; 1846 struct sk_buff *skb; 1847 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1848 int used_sacks; 1849 bool found_dup_sack = false; 1850 int i, j; 1851 int first_sack_index; 1852 1853 state->flag = 0; 1854 state->reord = tp->snd_nxt; 1855 1856 if (!tp->sacked_out) 1857 tcp_highest_sack_reset(sk); 1858 1859 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1860 num_sacks, prior_snd_una, state); 1861 1862 /* Eliminate too old ACKs, but take into 1863 * account more or less fresh ones, they can 1864 * contain valid SACK info. 1865 */ 1866 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1867 return 0; 1868 1869 if (!tp->packets_out) 1870 goto out; 1871 1872 used_sacks = 0; 1873 first_sack_index = 0; 1874 for (i = 0; i < num_sacks; i++) { 1875 bool dup_sack = !i && found_dup_sack; 1876 1877 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1878 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1879 1880 if (!tcp_is_sackblock_valid(tp, dup_sack, 1881 sp[used_sacks].start_seq, 1882 sp[used_sacks].end_seq)) { 1883 int mib_idx; 1884 1885 if (dup_sack) { 1886 if (!tp->undo_marker) 1887 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1888 else 1889 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1890 } else { 1891 /* Don't count olds caused by ACK reordering */ 1892 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1893 !after(sp[used_sacks].end_seq, tp->snd_una)) 1894 continue; 1895 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1896 } 1897 1898 NET_INC_STATS(sock_net(sk), mib_idx); 1899 if (i == 0) 1900 first_sack_index = -1; 1901 continue; 1902 } 1903 1904 /* Ignore very old stuff early */ 1905 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1906 if (i == 0) 1907 first_sack_index = -1; 1908 continue; 1909 } 1910 1911 used_sacks++; 1912 } 1913 1914 /* order SACK blocks to allow in order walk of the retrans queue */ 1915 for (i = used_sacks - 1; i > 0; i--) { 1916 for (j = 0; j < i; j++) { 1917 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1918 swap(sp[j], sp[j + 1]); 1919 1920 /* Track where the first SACK block goes to */ 1921 if (j == first_sack_index) 1922 first_sack_index = j + 1; 1923 } 1924 } 1925 } 1926 1927 state->mss_now = tcp_current_mss(sk); 1928 skb = NULL; 1929 i = 0; 1930 1931 if (!tp->sacked_out) { 1932 /* It's already past, so skip checking against it */ 1933 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1934 } else { 1935 cache = tp->recv_sack_cache; 1936 /* Skip empty blocks in at head of the cache */ 1937 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1938 !cache->end_seq) 1939 cache++; 1940 } 1941 1942 while (i < used_sacks) { 1943 u32 start_seq = sp[i].start_seq; 1944 u32 end_seq = sp[i].end_seq; 1945 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1946 struct tcp_sack_block *next_dup = NULL; 1947 1948 if (found_dup_sack && ((i + 1) == first_sack_index)) 1949 next_dup = &sp[i + 1]; 1950 1951 /* Skip too early cached blocks */ 1952 while (tcp_sack_cache_ok(tp, cache) && 1953 !before(start_seq, cache->end_seq)) 1954 cache++; 1955 1956 /* Can skip some work by looking recv_sack_cache? */ 1957 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1958 after(end_seq, cache->start_seq)) { 1959 1960 /* Head todo? */ 1961 if (before(start_seq, cache->start_seq)) { 1962 skb = tcp_sacktag_skip(skb, sk, start_seq); 1963 skb = tcp_sacktag_walk(skb, sk, next_dup, 1964 state, 1965 start_seq, 1966 cache->start_seq, 1967 dup_sack); 1968 } 1969 1970 /* Rest of the block already fully processed? */ 1971 if (!after(end_seq, cache->end_seq)) 1972 goto advance_sp; 1973 1974 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1975 state, 1976 cache->end_seq); 1977 1978 /* ...tail remains todo... */ 1979 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1980 /* ...but better entrypoint exists! */ 1981 skb = tcp_highest_sack(sk); 1982 if (!skb) 1983 break; 1984 cache++; 1985 goto walk; 1986 } 1987 1988 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1989 /* Check overlap against next cached too (past this one already) */ 1990 cache++; 1991 continue; 1992 } 1993 1994 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1995 skb = tcp_highest_sack(sk); 1996 if (!skb) 1997 break; 1998 } 1999 skb = tcp_sacktag_skip(skb, sk, start_seq); 2000 2001 walk: 2002 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2003 start_seq, end_seq, dup_sack); 2004 2005 advance_sp: 2006 i++; 2007 } 2008 2009 /* Clear the head of the cache sack blocks so we can skip it next time */ 2010 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2011 tp->recv_sack_cache[i].start_seq = 0; 2012 tp->recv_sack_cache[i].end_seq = 0; 2013 } 2014 for (j = 0; j < used_sacks; j++) 2015 tp->recv_sack_cache[i++] = sp[j]; 2016 2017 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2018 tcp_check_sack_reordering(sk, state->reord, 0); 2019 2020 tcp_verify_left_out(tp); 2021 out: 2022 2023 #if FASTRETRANS_DEBUG > 0 2024 WARN_ON((int)tp->sacked_out < 0); 2025 WARN_ON((int)tp->lost_out < 0); 2026 WARN_ON((int)tp->retrans_out < 0); 2027 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2028 #endif 2029 return state->flag; 2030 } 2031 2032 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2033 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2034 */ 2035 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2036 { 2037 u32 holes; 2038 2039 holes = max(tp->lost_out, 1U); 2040 holes = min(holes, tp->packets_out); 2041 2042 if ((tp->sacked_out + holes) > tp->packets_out) { 2043 tp->sacked_out = tp->packets_out - holes; 2044 return true; 2045 } 2046 return false; 2047 } 2048 2049 /* If we receive more dupacks than we expected counting segments 2050 * in assumption of absent reordering, interpret this as reordering. 2051 * The only another reason could be bug in receiver TCP. 2052 */ 2053 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2054 { 2055 struct tcp_sock *tp = tcp_sk(sk); 2056 2057 if (!tcp_limit_reno_sacked(tp)) 2058 return; 2059 2060 tp->reordering = min_t(u32, tp->packets_out + addend, 2061 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2062 tp->reord_seen++; 2063 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2064 } 2065 2066 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2067 2068 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2069 { 2070 if (num_dupack) { 2071 struct tcp_sock *tp = tcp_sk(sk); 2072 u32 prior_sacked = tp->sacked_out; 2073 s32 delivered; 2074 2075 tp->sacked_out += num_dupack; 2076 tcp_check_reno_reordering(sk, 0); 2077 delivered = tp->sacked_out - prior_sacked; 2078 if (delivered > 0) 2079 tcp_count_delivered(tp, delivered, ece_ack); 2080 tcp_verify_left_out(tp); 2081 } 2082 } 2083 2084 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2085 2086 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2087 { 2088 struct tcp_sock *tp = tcp_sk(sk); 2089 2090 if (acked > 0) { 2091 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2092 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2093 ece_ack); 2094 if (acked - 1 >= tp->sacked_out) 2095 tp->sacked_out = 0; 2096 else 2097 tp->sacked_out -= acked - 1; 2098 } 2099 tcp_check_reno_reordering(sk, acked); 2100 tcp_verify_left_out(tp); 2101 } 2102 2103 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2104 { 2105 tp->sacked_out = 0; 2106 } 2107 2108 void tcp_clear_retrans(struct tcp_sock *tp) 2109 { 2110 tp->retrans_out = 0; 2111 tp->lost_out = 0; 2112 tp->undo_marker = 0; 2113 tp->undo_retrans = -1; 2114 tp->sacked_out = 0; 2115 tp->rto_stamp = 0; 2116 tp->total_rto = 0; 2117 tp->total_rto_recoveries = 0; 2118 tp->total_rto_time = 0; 2119 } 2120 2121 static inline void tcp_init_undo(struct tcp_sock *tp) 2122 { 2123 tp->undo_marker = tp->snd_una; 2124 /* Retransmission still in flight may cause DSACKs later. */ 2125 tp->undo_retrans = tp->retrans_out ? : -1; 2126 } 2127 2128 static bool tcp_is_rack(const struct sock *sk) 2129 { 2130 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2131 TCP_RACK_LOSS_DETECTION; 2132 } 2133 2134 /* If we detect SACK reneging, forget all SACK information 2135 * and reset tags completely, otherwise preserve SACKs. If receiver 2136 * dropped its ofo queue, we will know this due to reneging detection. 2137 */ 2138 static void tcp_timeout_mark_lost(struct sock *sk) 2139 { 2140 struct tcp_sock *tp = tcp_sk(sk); 2141 struct sk_buff *skb, *head; 2142 bool is_reneg; /* is receiver reneging on SACKs? */ 2143 2144 head = tcp_rtx_queue_head(sk); 2145 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2146 if (is_reneg) { 2147 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2148 tp->sacked_out = 0; 2149 /* Mark SACK reneging until we recover from this loss event. */ 2150 tp->is_sack_reneg = 1; 2151 } else if (tcp_is_reno(tp)) { 2152 tcp_reset_reno_sack(tp); 2153 } 2154 2155 skb = head; 2156 skb_rbtree_walk_from(skb) { 2157 if (is_reneg) 2158 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2159 else if (tcp_is_rack(sk) && skb != head && 2160 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2161 continue; /* Don't mark recently sent ones lost yet */ 2162 tcp_mark_skb_lost(sk, skb); 2163 } 2164 tcp_verify_left_out(tp); 2165 tcp_clear_all_retrans_hints(tp); 2166 } 2167 2168 /* Enter Loss state. */ 2169 void tcp_enter_loss(struct sock *sk) 2170 { 2171 const struct inet_connection_sock *icsk = inet_csk(sk); 2172 struct tcp_sock *tp = tcp_sk(sk); 2173 struct net *net = sock_net(sk); 2174 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2175 u8 reordering; 2176 2177 tcp_timeout_mark_lost(sk); 2178 2179 /* Reduce ssthresh if it has not yet been made inside this window. */ 2180 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2181 !after(tp->high_seq, tp->snd_una) || 2182 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2183 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2184 tp->prior_cwnd = tcp_snd_cwnd(tp); 2185 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2186 tcp_ca_event(sk, CA_EVENT_LOSS); 2187 tcp_init_undo(tp); 2188 } 2189 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2190 tp->snd_cwnd_cnt = 0; 2191 tp->snd_cwnd_stamp = tcp_jiffies32; 2192 2193 /* Timeout in disordered state after receiving substantial DUPACKs 2194 * suggests that the degree of reordering is over-estimated. 2195 */ 2196 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2197 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2198 tp->sacked_out >= reordering) 2199 tp->reordering = min_t(unsigned int, tp->reordering, 2200 reordering); 2201 2202 tcp_set_ca_state(sk, TCP_CA_Loss); 2203 tp->high_seq = tp->snd_nxt; 2204 tcp_ecn_queue_cwr(tp); 2205 2206 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2207 * loss recovery is underway except recurring timeout(s) on 2208 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2209 */ 2210 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2211 (new_recovery || icsk->icsk_retransmits) && 2212 !inet_csk(sk)->icsk_mtup.probe_size; 2213 } 2214 2215 /* If ACK arrived pointing to a remembered SACK, it means that our 2216 * remembered SACKs do not reflect real state of receiver i.e. 2217 * receiver _host_ is heavily congested (or buggy). 2218 * 2219 * To avoid big spurious retransmission bursts due to transient SACK 2220 * scoreboard oddities that look like reneging, we give the receiver a 2221 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2222 * restore sanity to the SACK scoreboard. If the apparent reneging 2223 * persists until this RTO then we'll clear the SACK scoreboard. 2224 */ 2225 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2226 { 2227 if (flag & FLAG_SACK_RENEGING && 2228 flag & FLAG_SND_UNA_ADVANCED) { 2229 struct tcp_sock *tp = tcp_sk(sk); 2230 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2231 msecs_to_jiffies(10)); 2232 2233 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2234 delay, TCP_RTO_MAX); 2235 return true; 2236 } 2237 return false; 2238 } 2239 2240 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2241 * counter when SACK is enabled (without SACK, sacked_out is used for 2242 * that purpose). 2243 * 2244 * With reordering, holes may still be in flight, so RFC3517 recovery 2245 * uses pure sacked_out (total number of SACKed segments) even though 2246 * it violates the RFC that uses duplicate ACKs, often these are equal 2247 * but when e.g. out-of-window ACKs or packet duplication occurs, 2248 * they differ. Since neither occurs due to loss, TCP should really 2249 * ignore them. 2250 */ 2251 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2252 { 2253 return tp->sacked_out + 1; 2254 } 2255 2256 /* Linux NewReno/SACK/ECN state machine. 2257 * -------------------------------------- 2258 * 2259 * "Open" Normal state, no dubious events, fast path. 2260 * "Disorder" In all the respects it is "Open", 2261 * but requires a bit more attention. It is entered when 2262 * we see some SACKs or dupacks. It is split of "Open" 2263 * mainly to move some processing from fast path to slow one. 2264 * "CWR" CWND was reduced due to some Congestion Notification event. 2265 * It can be ECN, ICMP source quench, local device congestion. 2266 * "Recovery" CWND was reduced, we are fast-retransmitting. 2267 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2268 * 2269 * tcp_fastretrans_alert() is entered: 2270 * - each incoming ACK, if state is not "Open" 2271 * - when arrived ACK is unusual, namely: 2272 * * SACK 2273 * * Duplicate ACK. 2274 * * ECN ECE. 2275 * 2276 * Counting packets in flight is pretty simple. 2277 * 2278 * in_flight = packets_out - left_out + retrans_out 2279 * 2280 * packets_out is SND.NXT-SND.UNA counted in packets. 2281 * 2282 * retrans_out is number of retransmitted segments. 2283 * 2284 * left_out is number of segments left network, but not ACKed yet. 2285 * 2286 * left_out = sacked_out + lost_out 2287 * 2288 * sacked_out: Packets, which arrived to receiver out of order 2289 * and hence not ACKed. With SACKs this number is simply 2290 * amount of SACKed data. Even without SACKs 2291 * it is easy to give pretty reliable estimate of this number, 2292 * counting duplicate ACKs. 2293 * 2294 * lost_out: Packets lost by network. TCP has no explicit 2295 * "loss notification" feedback from network (for now). 2296 * It means that this number can be only _guessed_. 2297 * Actually, it is the heuristics to predict lossage that 2298 * distinguishes different algorithms. 2299 * 2300 * F.e. after RTO, when all the queue is considered as lost, 2301 * lost_out = packets_out and in_flight = retrans_out. 2302 * 2303 * Essentially, we have now a few algorithms detecting 2304 * lost packets. 2305 * 2306 * If the receiver supports SACK: 2307 * 2308 * RFC6675/3517: It is the conventional algorithm. A packet is 2309 * considered lost if the number of higher sequence packets 2310 * SACKed is greater than or equal the DUPACK thoreshold 2311 * (reordering). This is implemented in tcp_mark_head_lost and 2312 * tcp_update_scoreboard. 2313 * 2314 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2315 * (2017-) that checks timing instead of counting DUPACKs. 2316 * Essentially a packet is considered lost if it's not S/ACKed 2317 * after RTT + reordering_window, where both metrics are 2318 * dynamically measured and adjusted. This is implemented in 2319 * tcp_rack_mark_lost. 2320 * 2321 * If the receiver does not support SACK: 2322 * 2323 * NewReno (RFC6582): in Recovery we assume that one segment 2324 * is lost (classic Reno). While we are in Recovery and 2325 * a partial ACK arrives, we assume that one more packet 2326 * is lost (NewReno). This heuristics are the same in NewReno 2327 * and SACK. 2328 * 2329 * Really tricky (and requiring careful tuning) part of algorithm 2330 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2331 * The first determines the moment _when_ we should reduce CWND and, 2332 * hence, slow down forward transmission. In fact, it determines the moment 2333 * when we decide that hole is caused by loss, rather than by a reorder. 2334 * 2335 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2336 * holes, caused by lost packets. 2337 * 2338 * And the most logically complicated part of algorithm is undo 2339 * heuristics. We detect false retransmits due to both too early 2340 * fast retransmit (reordering) and underestimated RTO, analyzing 2341 * timestamps and D-SACKs. When we detect that some segments were 2342 * retransmitted by mistake and CWND reduction was wrong, we undo 2343 * window reduction and abort recovery phase. This logic is hidden 2344 * inside several functions named tcp_try_undo_<something>. 2345 */ 2346 2347 /* This function decides, when we should leave Disordered state 2348 * and enter Recovery phase, reducing congestion window. 2349 * 2350 * Main question: may we further continue forward transmission 2351 * with the same cwnd? 2352 */ 2353 static bool tcp_time_to_recover(struct sock *sk, int flag) 2354 { 2355 struct tcp_sock *tp = tcp_sk(sk); 2356 2357 /* Trick#1: The loss is proven. */ 2358 if (tp->lost_out) 2359 return true; 2360 2361 /* Not-A-Trick#2 : Classic rule... */ 2362 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2363 return true; 2364 2365 return false; 2366 } 2367 2368 /* Detect loss in event "A" above by marking head of queue up as lost. 2369 * For RFC3517 SACK, a segment is considered lost if it 2370 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2371 * the maximum SACKed segments to pass before reaching this limit. 2372 */ 2373 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2374 { 2375 struct tcp_sock *tp = tcp_sk(sk); 2376 struct sk_buff *skb; 2377 int cnt; 2378 /* Use SACK to deduce losses of new sequences sent during recovery */ 2379 const u32 loss_high = tp->snd_nxt; 2380 2381 WARN_ON(packets > tp->packets_out); 2382 skb = tp->lost_skb_hint; 2383 if (skb) { 2384 /* Head already handled? */ 2385 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2386 return; 2387 cnt = tp->lost_cnt_hint; 2388 } else { 2389 skb = tcp_rtx_queue_head(sk); 2390 cnt = 0; 2391 } 2392 2393 skb_rbtree_walk_from(skb) { 2394 /* TODO: do this better */ 2395 /* this is not the most efficient way to do this... */ 2396 tp->lost_skb_hint = skb; 2397 tp->lost_cnt_hint = cnt; 2398 2399 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2400 break; 2401 2402 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2403 cnt += tcp_skb_pcount(skb); 2404 2405 if (cnt > packets) 2406 break; 2407 2408 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2409 tcp_mark_skb_lost(sk, skb); 2410 2411 if (mark_head) 2412 break; 2413 } 2414 tcp_verify_left_out(tp); 2415 } 2416 2417 /* Account newly detected lost packet(s) */ 2418 2419 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2420 { 2421 struct tcp_sock *tp = tcp_sk(sk); 2422 2423 if (tcp_is_sack(tp)) { 2424 int sacked_upto = tp->sacked_out - tp->reordering; 2425 if (sacked_upto >= 0) 2426 tcp_mark_head_lost(sk, sacked_upto, 0); 2427 else if (fast_rexmit) 2428 tcp_mark_head_lost(sk, 1, 1); 2429 } 2430 } 2431 2432 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2433 { 2434 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2435 before(tp->rx_opt.rcv_tsecr, when); 2436 } 2437 2438 /* skb is spurious retransmitted if the returned timestamp echo 2439 * reply is prior to the skb transmission time 2440 */ 2441 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2442 const struct sk_buff *skb) 2443 { 2444 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2445 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2446 } 2447 2448 /* Nothing was retransmitted or returned timestamp is less 2449 * than timestamp of the first retransmission. 2450 */ 2451 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2452 { 2453 return tp->retrans_stamp && 2454 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2455 } 2456 2457 /* Undo procedures. */ 2458 2459 /* We can clear retrans_stamp when there are no retransmissions in the 2460 * window. It would seem that it is trivially available for us in 2461 * tp->retrans_out, however, that kind of assumptions doesn't consider 2462 * what will happen if errors occur when sending retransmission for the 2463 * second time. ...It could the that such segment has only 2464 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2465 * the head skb is enough except for some reneging corner cases that 2466 * are not worth the effort. 2467 * 2468 * Main reason for all this complexity is the fact that connection dying 2469 * time now depends on the validity of the retrans_stamp, in particular, 2470 * that successive retransmissions of a segment must not advance 2471 * retrans_stamp under any conditions. 2472 */ 2473 static bool tcp_any_retrans_done(const struct sock *sk) 2474 { 2475 const struct tcp_sock *tp = tcp_sk(sk); 2476 struct sk_buff *skb; 2477 2478 if (tp->retrans_out) 2479 return true; 2480 2481 skb = tcp_rtx_queue_head(sk); 2482 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2483 return true; 2484 2485 return false; 2486 } 2487 2488 static void DBGUNDO(struct sock *sk, const char *msg) 2489 { 2490 #if FASTRETRANS_DEBUG > 1 2491 struct tcp_sock *tp = tcp_sk(sk); 2492 struct inet_sock *inet = inet_sk(sk); 2493 2494 if (sk->sk_family == AF_INET) { 2495 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2496 msg, 2497 &inet->inet_daddr, ntohs(inet->inet_dport), 2498 tcp_snd_cwnd(tp), tcp_left_out(tp), 2499 tp->snd_ssthresh, tp->prior_ssthresh, 2500 tp->packets_out); 2501 } 2502 #if IS_ENABLED(CONFIG_IPV6) 2503 else if (sk->sk_family == AF_INET6) { 2504 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2505 msg, 2506 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2507 tcp_snd_cwnd(tp), tcp_left_out(tp), 2508 tp->snd_ssthresh, tp->prior_ssthresh, 2509 tp->packets_out); 2510 } 2511 #endif 2512 #endif 2513 } 2514 2515 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2516 { 2517 struct tcp_sock *tp = tcp_sk(sk); 2518 2519 if (unmark_loss) { 2520 struct sk_buff *skb; 2521 2522 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2523 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2524 } 2525 tp->lost_out = 0; 2526 tcp_clear_all_retrans_hints(tp); 2527 } 2528 2529 if (tp->prior_ssthresh) { 2530 const struct inet_connection_sock *icsk = inet_csk(sk); 2531 2532 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2533 2534 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2535 tp->snd_ssthresh = tp->prior_ssthresh; 2536 tcp_ecn_withdraw_cwr(tp); 2537 } 2538 } 2539 tp->snd_cwnd_stamp = tcp_jiffies32; 2540 tp->undo_marker = 0; 2541 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2542 } 2543 2544 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2545 { 2546 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2547 } 2548 2549 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2550 { 2551 struct tcp_sock *tp = tcp_sk(sk); 2552 2553 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2554 /* Hold old state until something *above* high_seq 2555 * is ACKed. For Reno it is MUST to prevent false 2556 * fast retransmits (RFC2582). SACK TCP is safe. */ 2557 if (!tcp_any_retrans_done(sk)) 2558 tp->retrans_stamp = 0; 2559 return true; 2560 } 2561 return false; 2562 } 2563 2564 /* People celebrate: "We love our President!" */ 2565 static bool tcp_try_undo_recovery(struct sock *sk) 2566 { 2567 struct tcp_sock *tp = tcp_sk(sk); 2568 2569 if (tcp_may_undo(tp)) { 2570 int mib_idx; 2571 2572 /* Happy end! We did not retransmit anything 2573 * or our original transmission succeeded. 2574 */ 2575 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2576 tcp_undo_cwnd_reduction(sk, false); 2577 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2578 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2579 else 2580 mib_idx = LINUX_MIB_TCPFULLUNDO; 2581 2582 NET_INC_STATS(sock_net(sk), mib_idx); 2583 } else if (tp->rack.reo_wnd_persist) { 2584 tp->rack.reo_wnd_persist--; 2585 } 2586 if (tcp_is_non_sack_preventing_reopen(sk)) 2587 return true; 2588 tcp_set_ca_state(sk, TCP_CA_Open); 2589 tp->is_sack_reneg = 0; 2590 return false; 2591 } 2592 2593 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2594 static bool tcp_try_undo_dsack(struct sock *sk) 2595 { 2596 struct tcp_sock *tp = tcp_sk(sk); 2597 2598 if (tp->undo_marker && !tp->undo_retrans) { 2599 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2600 tp->rack.reo_wnd_persist + 1); 2601 DBGUNDO(sk, "D-SACK"); 2602 tcp_undo_cwnd_reduction(sk, false); 2603 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2604 return true; 2605 } 2606 return false; 2607 } 2608 2609 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2610 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2611 { 2612 struct tcp_sock *tp = tcp_sk(sk); 2613 2614 if (frto_undo || tcp_may_undo(tp)) { 2615 tcp_undo_cwnd_reduction(sk, true); 2616 2617 DBGUNDO(sk, "partial loss"); 2618 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2619 if (frto_undo) 2620 NET_INC_STATS(sock_net(sk), 2621 LINUX_MIB_TCPSPURIOUSRTOS); 2622 inet_csk(sk)->icsk_retransmits = 0; 2623 if (tcp_is_non_sack_preventing_reopen(sk)) 2624 return true; 2625 if (frto_undo || tcp_is_sack(tp)) { 2626 tcp_set_ca_state(sk, TCP_CA_Open); 2627 tp->is_sack_reneg = 0; 2628 } 2629 return true; 2630 } 2631 return false; 2632 } 2633 2634 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2635 * It computes the number of packets to send (sndcnt) based on packets newly 2636 * delivered: 2637 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2638 * cwnd reductions across a full RTT. 2639 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2640 * But when SND_UNA is acked without further losses, 2641 * slow starts cwnd up to ssthresh to speed up the recovery. 2642 */ 2643 static void tcp_init_cwnd_reduction(struct sock *sk) 2644 { 2645 struct tcp_sock *tp = tcp_sk(sk); 2646 2647 tp->high_seq = tp->snd_nxt; 2648 tp->tlp_high_seq = 0; 2649 tp->snd_cwnd_cnt = 0; 2650 tp->prior_cwnd = tcp_snd_cwnd(tp); 2651 tp->prr_delivered = 0; 2652 tp->prr_out = 0; 2653 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2654 tcp_ecn_queue_cwr(tp); 2655 } 2656 2657 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2658 { 2659 struct tcp_sock *tp = tcp_sk(sk); 2660 int sndcnt = 0; 2661 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2662 2663 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2664 return; 2665 2666 tp->prr_delivered += newly_acked_sacked; 2667 if (delta < 0) { 2668 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2669 tp->prior_cwnd - 1; 2670 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2671 } else { 2672 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2673 newly_acked_sacked); 2674 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2675 sndcnt++; 2676 sndcnt = min(delta, sndcnt); 2677 } 2678 /* Force a fast retransmit upon entering fast recovery */ 2679 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2680 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2681 } 2682 2683 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2684 { 2685 struct tcp_sock *tp = tcp_sk(sk); 2686 2687 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2688 return; 2689 2690 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2691 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2692 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2693 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2694 tp->snd_cwnd_stamp = tcp_jiffies32; 2695 } 2696 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2697 } 2698 2699 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2700 void tcp_enter_cwr(struct sock *sk) 2701 { 2702 struct tcp_sock *tp = tcp_sk(sk); 2703 2704 tp->prior_ssthresh = 0; 2705 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2706 tp->undo_marker = 0; 2707 tcp_init_cwnd_reduction(sk); 2708 tcp_set_ca_state(sk, TCP_CA_CWR); 2709 } 2710 } 2711 EXPORT_SYMBOL(tcp_enter_cwr); 2712 2713 static void tcp_try_keep_open(struct sock *sk) 2714 { 2715 struct tcp_sock *tp = tcp_sk(sk); 2716 int state = TCP_CA_Open; 2717 2718 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2719 state = TCP_CA_Disorder; 2720 2721 if (inet_csk(sk)->icsk_ca_state != state) { 2722 tcp_set_ca_state(sk, state); 2723 tp->high_seq = tp->snd_nxt; 2724 } 2725 } 2726 2727 static void tcp_try_to_open(struct sock *sk, int flag) 2728 { 2729 struct tcp_sock *tp = tcp_sk(sk); 2730 2731 tcp_verify_left_out(tp); 2732 2733 if (!tcp_any_retrans_done(sk)) 2734 tp->retrans_stamp = 0; 2735 2736 if (flag & FLAG_ECE) 2737 tcp_enter_cwr(sk); 2738 2739 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2740 tcp_try_keep_open(sk); 2741 } 2742 } 2743 2744 static void tcp_mtup_probe_failed(struct sock *sk) 2745 { 2746 struct inet_connection_sock *icsk = inet_csk(sk); 2747 2748 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2749 icsk->icsk_mtup.probe_size = 0; 2750 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2751 } 2752 2753 static void tcp_mtup_probe_success(struct sock *sk) 2754 { 2755 struct tcp_sock *tp = tcp_sk(sk); 2756 struct inet_connection_sock *icsk = inet_csk(sk); 2757 u64 val; 2758 2759 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2760 2761 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2762 do_div(val, icsk->icsk_mtup.probe_size); 2763 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2764 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2765 2766 tp->snd_cwnd_cnt = 0; 2767 tp->snd_cwnd_stamp = tcp_jiffies32; 2768 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2769 2770 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2771 icsk->icsk_mtup.probe_size = 0; 2772 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2773 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2774 } 2775 2776 /* Do a simple retransmit without using the backoff mechanisms in 2777 * tcp_timer. This is used for path mtu discovery. 2778 * The socket is already locked here. 2779 */ 2780 void tcp_simple_retransmit(struct sock *sk) 2781 { 2782 const struct inet_connection_sock *icsk = inet_csk(sk); 2783 struct tcp_sock *tp = tcp_sk(sk); 2784 struct sk_buff *skb; 2785 int mss; 2786 2787 /* A fastopen SYN request is stored as two separate packets within 2788 * the retransmit queue, this is done by tcp_send_syn_data(). 2789 * As a result simply checking the MSS of the frames in the queue 2790 * will not work for the SYN packet. 2791 * 2792 * Us being here is an indication of a path MTU issue so we can 2793 * assume that the fastopen SYN was lost and just mark all the 2794 * frames in the retransmit queue as lost. We will use an MSS of 2795 * -1 to mark all frames as lost, otherwise compute the current MSS. 2796 */ 2797 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2798 mss = -1; 2799 else 2800 mss = tcp_current_mss(sk); 2801 2802 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2803 if (tcp_skb_seglen(skb) > mss) 2804 tcp_mark_skb_lost(sk, skb); 2805 } 2806 2807 tcp_clear_retrans_hints_partial(tp); 2808 2809 if (!tp->lost_out) 2810 return; 2811 2812 if (tcp_is_reno(tp)) 2813 tcp_limit_reno_sacked(tp); 2814 2815 tcp_verify_left_out(tp); 2816 2817 /* Don't muck with the congestion window here. 2818 * Reason is that we do not increase amount of _data_ 2819 * in network, but units changed and effective 2820 * cwnd/ssthresh really reduced now. 2821 */ 2822 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2823 tp->high_seq = tp->snd_nxt; 2824 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2825 tp->prior_ssthresh = 0; 2826 tp->undo_marker = 0; 2827 tcp_set_ca_state(sk, TCP_CA_Loss); 2828 } 2829 tcp_xmit_retransmit_queue(sk); 2830 } 2831 EXPORT_SYMBOL(tcp_simple_retransmit); 2832 2833 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2834 { 2835 struct tcp_sock *tp = tcp_sk(sk); 2836 int mib_idx; 2837 2838 if (tcp_is_reno(tp)) 2839 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2840 else 2841 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2842 2843 NET_INC_STATS(sock_net(sk), mib_idx); 2844 2845 tp->prior_ssthresh = 0; 2846 tcp_init_undo(tp); 2847 2848 if (!tcp_in_cwnd_reduction(sk)) { 2849 if (!ece_ack) 2850 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2851 tcp_init_cwnd_reduction(sk); 2852 } 2853 tcp_set_ca_state(sk, TCP_CA_Recovery); 2854 } 2855 2856 static void tcp_update_rto_time(struct tcp_sock *tp) 2857 { 2858 if (tp->rto_stamp) { 2859 tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp; 2860 tp->rto_stamp = 0; 2861 } 2862 } 2863 2864 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2865 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2866 */ 2867 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2868 int *rexmit) 2869 { 2870 struct tcp_sock *tp = tcp_sk(sk); 2871 bool recovered = !before(tp->snd_una, tp->high_seq); 2872 2873 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2874 tcp_try_undo_loss(sk, false)) 2875 return; 2876 2877 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2878 /* Step 3.b. A timeout is spurious if not all data are 2879 * lost, i.e., never-retransmitted data are (s)acked. 2880 */ 2881 if ((flag & FLAG_ORIG_SACK_ACKED) && 2882 tcp_try_undo_loss(sk, true)) 2883 return; 2884 2885 if (after(tp->snd_nxt, tp->high_seq)) { 2886 if (flag & FLAG_DATA_SACKED || num_dupack) 2887 tp->frto = 0; /* Step 3.a. loss was real */ 2888 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2889 tp->high_seq = tp->snd_nxt; 2890 /* Step 2.b. Try send new data (but deferred until cwnd 2891 * is updated in tcp_ack()). Otherwise fall back to 2892 * the conventional recovery. 2893 */ 2894 if (!tcp_write_queue_empty(sk) && 2895 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2896 *rexmit = REXMIT_NEW; 2897 return; 2898 } 2899 tp->frto = 0; 2900 } 2901 } 2902 2903 if (recovered) { 2904 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2905 tcp_try_undo_recovery(sk); 2906 return; 2907 } 2908 if (tcp_is_reno(tp)) { 2909 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2910 * delivered. Lower inflight to clock out (re)transmissions. 2911 */ 2912 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2913 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2914 else if (flag & FLAG_SND_UNA_ADVANCED) 2915 tcp_reset_reno_sack(tp); 2916 } 2917 *rexmit = REXMIT_LOST; 2918 } 2919 2920 static bool tcp_force_fast_retransmit(struct sock *sk) 2921 { 2922 struct tcp_sock *tp = tcp_sk(sk); 2923 2924 return after(tcp_highest_sack_seq(tp), 2925 tp->snd_una + tp->reordering * tp->mss_cache); 2926 } 2927 2928 /* Undo during fast recovery after partial ACK. */ 2929 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2930 bool *do_lost) 2931 { 2932 struct tcp_sock *tp = tcp_sk(sk); 2933 2934 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2935 /* Plain luck! Hole if filled with delayed 2936 * packet, rather than with a retransmit. Check reordering. 2937 */ 2938 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2939 2940 /* We are getting evidence that the reordering degree is higher 2941 * than we realized. If there are no retransmits out then we 2942 * can undo. Otherwise we clock out new packets but do not 2943 * mark more packets lost or retransmit more. 2944 */ 2945 if (tp->retrans_out) 2946 return true; 2947 2948 if (!tcp_any_retrans_done(sk)) 2949 tp->retrans_stamp = 0; 2950 2951 DBGUNDO(sk, "partial recovery"); 2952 tcp_undo_cwnd_reduction(sk, true); 2953 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2954 tcp_try_keep_open(sk); 2955 } else { 2956 /* Partial ACK arrived. Force fast retransmit. */ 2957 *do_lost = tcp_force_fast_retransmit(sk); 2958 } 2959 return false; 2960 } 2961 2962 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2963 { 2964 struct tcp_sock *tp = tcp_sk(sk); 2965 2966 if (tcp_rtx_queue_empty(sk)) 2967 return; 2968 2969 if (unlikely(tcp_is_reno(tp))) { 2970 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2971 } else if (tcp_is_rack(sk)) { 2972 u32 prior_retrans = tp->retrans_out; 2973 2974 if (tcp_rack_mark_lost(sk)) 2975 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2976 if (prior_retrans > tp->retrans_out) 2977 *ack_flag |= FLAG_LOST_RETRANS; 2978 } 2979 } 2980 2981 /* Process an event, which can update packets-in-flight not trivially. 2982 * Main goal of this function is to calculate new estimate for left_out, 2983 * taking into account both packets sitting in receiver's buffer and 2984 * packets lost by network. 2985 * 2986 * Besides that it updates the congestion state when packet loss or ECN 2987 * is detected. But it does not reduce the cwnd, it is done by the 2988 * congestion control later. 2989 * 2990 * It does _not_ decide what to send, it is made in function 2991 * tcp_xmit_retransmit_queue(). 2992 */ 2993 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2994 int num_dupack, int *ack_flag, int *rexmit) 2995 { 2996 struct inet_connection_sock *icsk = inet_csk(sk); 2997 struct tcp_sock *tp = tcp_sk(sk); 2998 int fast_rexmit = 0, flag = *ack_flag; 2999 bool ece_ack = flag & FLAG_ECE; 3000 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3001 tcp_force_fast_retransmit(sk)); 3002 3003 if (!tp->packets_out && tp->sacked_out) 3004 tp->sacked_out = 0; 3005 3006 /* Now state machine starts. 3007 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3008 if (ece_ack) 3009 tp->prior_ssthresh = 0; 3010 3011 /* B. In all the states check for reneging SACKs. */ 3012 if (tcp_check_sack_reneging(sk, flag)) 3013 return; 3014 3015 /* C. Check consistency of the current state. */ 3016 tcp_verify_left_out(tp); 3017 3018 /* D. Check state exit conditions. State can be terminated 3019 * when high_seq is ACKed. */ 3020 if (icsk->icsk_ca_state == TCP_CA_Open) { 3021 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3022 tp->retrans_stamp = 0; 3023 } else if (!before(tp->snd_una, tp->high_seq)) { 3024 switch (icsk->icsk_ca_state) { 3025 case TCP_CA_CWR: 3026 /* CWR is to be held something *above* high_seq 3027 * is ACKed for CWR bit to reach receiver. */ 3028 if (tp->snd_una != tp->high_seq) { 3029 tcp_end_cwnd_reduction(sk); 3030 tcp_set_ca_state(sk, TCP_CA_Open); 3031 } 3032 break; 3033 3034 case TCP_CA_Recovery: 3035 if (tcp_is_reno(tp)) 3036 tcp_reset_reno_sack(tp); 3037 if (tcp_try_undo_recovery(sk)) 3038 return; 3039 tcp_end_cwnd_reduction(sk); 3040 break; 3041 } 3042 } 3043 3044 /* E. Process state. */ 3045 switch (icsk->icsk_ca_state) { 3046 case TCP_CA_Recovery: 3047 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3048 if (tcp_is_reno(tp)) 3049 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3050 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3051 return; 3052 3053 if (tcp_try_undo_dsack(sk)) 3054 tcp_try_keep_open(sk); 3055 3056 tcp_identify_packet_loss(sk, ack_flag); 3057 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3058 if (!tcp_time_to_recover(sk, flag)) 3059 return; 3060 /* Undo reverts the recovery state. If loss is evident, 3061 * starts a new recovery (e.g. reordering then loss); 3062 */ 3063 tcp_enter_recovery(sk, ece_ack); 3064 } 3065 break; 3066 case TCP_CA_Loss: 3067 tcp_process_loss(sk, flag, num_dupack, rexmit); 3068 if (icsk->icsk_ca_state != TCP_CA_Loss) 3069 tcp_update_rto_time(tp); 3070 tcp_identify_packet_loss(sk, ack_flag); 3071 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3072 (*ack_flag & FLAG_LOST_RETRANS))) 3073 return; 3074 /* Change state if cwnd is undone or retransmits are lost */ 3075 fallthrough; 3076 default: 3077 if (tcp_is_reno(tp)) { 3078 if (flag & FLAG_SND_UNA_ADVANCED) 3079 tcp_reset_reno_sack(tp); 3080 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3081 } 3082 3083 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3084 tcp_try_undo_dsack(sk); 3085 3086 tcp_identify_packet_loss(sk, ack_flag); 3087 if (!tcp_time_to_recover(sk, flag)) { 3088 tcp_try_to_open(sk, flag); 3089 return; 3090 } 3091 3092 /* MTU probe failure: don't reduce cwnd */ 3093 if (icsk->icsk_ca_state < TCP_CA_CWR && 3094 icsk->icsk_mtup.probe_size && 3095 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3096 tcp_mtup_probe_failed(sk); 3097 /* Restores the reduction we did in tcp_mtup_probe() */ 3098 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3099 tcp_simple_retransmit(sk); 3100 return; 3101 } 3102 3103 /* Otherwise enter Recovery state */ 3104 tcp_enter_recovery(sk, ece_ack); 3105 fast_rexmit = 1; 3106 } 3107 3108 if (!tcp_is_rack(sk) && do_lost) 3109 tcp_update_scoreboard(sk, fast_rexmit); 3110 *rexmit = REXMIT_LOST; 3111 } 3112 3113 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3114 { 3115 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3116 struct tcp_sock *tp = tcp_sk(sk); 3117 3118 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3119 /* If the remote keeps returning delayed ACKs, eventually 3120 * the min filter would pick it up and overestimate the 3121 * prop. delay when it expires. Skip suspected delayed ACKs. 3122 */ 3123 return; 3124 } 3125 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3126 rtt_us ? : jiffies_to_usecs(1)); 3127 } 3128 3129 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3130 long seq_rtt_us, long sack_rtt_us, 3131 long ca_rtt_us, struct rate_sample *rs) 3132 { 3133 const struct tcp_sock *tp = tcp_sk(sk); 3134 3135 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3136 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3137 * Karn's algorithm forbids taking RTT if some retransmitted data 3138 * is acked (RFC6298). 3139 */ 3140 if (seq_rtt_us < 0) 3141 seq_rtt_us = sack_rtt_us; 3142 3143 /* RTTM Rule: A TSecr value received in a segment is used to 3144 * update the averaged RTT measurement only if the segment 3145 * acknowledges some new data, i.e., only if it advances the 3146 * left edge of the send window. 3147 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3148 */ 3149 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3150 flag & FLAG_ACKED) { 3151 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3152 3153 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3154 if (!delta) 3155 delta = 1; 3156 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3157 ca_rtt_us = seq_rtt_us; 3158 } 3159 } 3160 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3161 if (seq_rtt_us < 0) 3162 return false; 3163 3164 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3165 * always taken together with ACK, SACK, or TS-opts. Any negative 3166 * values will be skipped with the seq_rtt_us < 0 check above. 3167 */ 3168 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3169 tcp_rtt_estimator(sk, seq_rtt_us); 3170 tcp_set_rto(sk); 3171 3172 /* RFC6298: only reset backoff on valid RTT measurement. */ 3173 inet_csk(sk)->icsk_backoff = 0; 3174 return true; 3175 } 3176 3177 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3178 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3179 { 3180 struct rate_sample rs; 3181 long rtt_us = -1L; 3182 3183 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3184 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3185 3186 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3187 } 3188 3189 3190 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3191 { 3192 const struct inet_connection_sock *icsk = inet_csk(sk); 3193 3194 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3195 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3196 } 3197 3198 /* Restart timer after forward progress on connection. 3199 * RFC2988 recommends to restart timer to now+rto. 3200 */ 3201 void tcp_rearm_rto(struct sock *sk) 3202 { 3203 const struct inet_connection_sock *icsk = inet_csk(sk); 3204 struct tcp_sock *tp = tcp_sk(sk); 3205 3206 /* If the retrans timer is currently being used by Fast Open 3207 * for SYN-ACK retrans purpose, stay put. 3208 */ 3209 if (rcu_access_pointer(tp->fastopen_rsk)) 3210 return; 3211 3212 if (!tp->packets_out) { 3213 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3214 } else { 3215 u32 rto = inet_csk(sk)->icsk_rto; 3216 /* Offset the time elapsed after installing regular RTO */ 3217 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3218 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3219 s64 delta_us = tcp_rto_delta_us(sk); 3220 /* delta_us may not be positive if the socket is locked 3221 * when the retrans timer fires and is rescheduled. 3222 */ 3223 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3224 } 3225 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3226 TCP_RTO_MAX); 3227 } 3228 } 3229 3230 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3231 static void tcp_set_xmit_timer(struct sock *sk) 3232 { 3233 if (!tcp_schedule_loss_probe(sk, true)) 3234 tcp_rearm_rto(sk); 3235 } 3236 3237 /* If we get here, the whole TSO packet has not been acked. */ 3238 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3239 { 3240 struct tcp_sock *tp = tcp_sk(sk); 3241 u32 packets_acked; 3242 3243 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3244 3245 packets_acked = tcp_skb_pcount(skb); 3246 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3247 return 0; 3248 packets_acked -= tcp_skb_pcount(skb); 3249 3250 if (packets_acked) { 3251 BUG_ON(tcp_skb_pcount(skb) == 0); 3252 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3253 } 3254 3255 return packets_acked; 3256 } 3257 3258 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3259 const struct sk_buff *ack_skb, u32 prior_snd_una) 3260 { 3261 const struct skb_shared_info *shinfo; 3262 3263 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3264 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3265 return; 3266 3267 shinfo = skb_shinfo(skb); 3268 if (!before(shinfo->tskey, prior_snd_una) && 3269 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3270 tcp_skb_tsorted_save(skb) { 3271 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3272 } tcp_skb_tsorted_restore(skb); 3273 } 3274 } 3275 3276 /* Remove acknowledged frames from the retransmission queue. If our packet 3277 * is before the ack sequence we can discard it as it's confirmed to have 3278 * arrived at the other end. 3279 */ 3280 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3281 u32 prior_fack, u32 prior_snd_una, 3282 struct tcp_sacktag_state *sack, bool ece_ack) 3283 { 3284 const struct inet_connection_sock *icsk = inet_csk(sk); 3285 u64 first_ackt, last_ackt; 3286 struct tcp_sock *tp = tcp_sk(sk); 3287 u32 prior_sacked = tp->sacked_out; 3288 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3289 struct sk_buff *skb, *next; 3290 bool fully_acked = true; 3291 long sack_rtt_us = -1L; 3292 long seq_rtt_us = -1L; 3293 long ca_rtt_us = -1L; 3294 u32 pkts_acked = 0; 3295 bool rtt_update; 3296 int flag = 0; 3297 3298 first_ackt = 0; 3299 3300 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3301 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3302 const u32 start_seq = scb->seq; 3303 u8 sacked = scb->sacked; 3304 u32 acked_pcount; 3305 3306 /* Determine how many packets and what bytes were acked, tso and else */ 3307 if (after(scb->end_seq, tp->snd_una)) { 3308 if (tcp_skb_pcount(skb) == 1 || 3309 !after(tp->snd_una, scb->seq)) 3310 break; 3311 3312 acked_pcount = tcp_tso_acked(sk, skb); 3313 if (!acked_pcount) 3314 break; 3315 fully_acked = false; 3316 } else { 3317 acked_pcount = tcp_skb_pcount(skb); 3318 } 3319 3320 if (unlikely(sacked & TCPCB_RETRANS)) { 3321 if (sacked & TCPCB_SACKED_RETRANS) 3322 tp->retrans_out -= acked_pcount; 3323 flag |= FLAG_RETRANS_DATA_ACKED; 3324 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3325 last_ackt = tcp_skb_timestamp_us(skb); 3326 WARN_ON_ONCE(last_ackt == 0); 3327 if (!first_ackt) 3328 first_ackt = last_ackt; 3329 3330 if (before(start_seq, reord)) 3331 reord = start_seq; 3332 if (!after(scb->end_seq, tp->high_seq)) 3333 flag |= FLAG_ORIG_SACK_ACKED; 3334 } 3335 3336 if (sacked & TCPCB_SACKED_ACKED) { 3337 tp->sacked_out -= acked_pcount; 3338 } else if (tcp_is_sack(tp)) { 3339 tcp_count_delivered(tp, acked_pcount, ece_ack); 3340 if (!tcp_skb_spurious_retrans(tp, skb)) 3341 tcp_rack_advance(tp, sacked, scb->end_seq, 3342 tcp_skb_timestamp_us(skb)); 3343 } 3344 if (sacked & TCPCB_LOST) 3345 tp->lost_out -= acked_pcount; 3346 3347 tp->packets_out -= acked_pcount; 3348 pkts_acked += acked_pcount; 3349 tcp_rate_skb_delivered(sk, skb, sack->rate); 3350 3351 /* Initial outgoing SYN's get put onto the write_queue 3352 * just like anything else we transmit. It is not 3353 * true data, and if we misinform our callers that 3354 * this ACK acks real data, we will erroneously exit 3355 * connection startup slow start one packet too 3356 * quickly. This is severely frowned upon behavior. 3357 */ 3358 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3359 flag |= FLAG_DATA_ACKED; 3360 } else { 3361 flag |= FLAG_SYN_ACKED; 3362 tp->retrans_stamp = 0; 3363 } 3364 3365 if (!fully_acked) 3366 break; 3367 3368 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3369 3370 next = skb_rb_next(skb); 3371 if (unlikely(skb == tp->retransmit_skb_hint)) 3372 tp->retransmit_skb_hint = NULL; 3373 if (unlikely(skb == tp->lost_skb_hint)) 3374 tp->lost_skb_hint = NULL; 3375 tcp_highest_sack_replace(sk, skb, next); 3376 tcp_rtx_queue_unlink_and_free(skb, sk); 3377 } 3378 3379 if (!skb) 3380 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3381 3382 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3383 tp->snd_up = tp->snd_una; 3384 3385 if (skb) { 3386 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3387 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3388 flag |= FLAG_SACK_RENEGING; 3389 } 3390 3391 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3392 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3393 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3394 3395 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3396 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3397 sack->rate->prior_delivered + 1 == tp->delivered && 3398 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3399 /* Conservatively mark a delayed ACK. It's typically 3400 * from a lone runt packet over the round trip to 3401 * a receiver w/o out-of-order or CE events. 3402 */ 3403 flag |= FLAG_ACK_MAYBE_DELAYED; 3404 } 3405 } 3406 if (sack->first_sackt) { 3407 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3408 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3409 } 3410 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3411 ca_rtt_us, sack->rate); 3412 3413 if (flag & FLAG_ACKED) { 3414 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3415 if (unlikely(icsk->icsk_mtup.probe_size && 3416 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3417 tcp_mtup_probe_success(sk); 3418 } 3419 3420 if (tcp_is_reno(tp)) { 3421 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3422 3423 /* If any of the cumulatively ACKed segments was 3424 * retransmitted, non-SACK case cannot confirm that 3425 * progress was due to original transmission due to 3426 * lack of TCPCB_SACKED_ACKED bits even if some of 3427 * the packets may have been never retransmitted. 3428 */ 3429 if (flag & FLAG_RETRANS_DATA_ACKED) 3430 flag &= ~FLAG_ORIG_SACK_ACKED; 3431 } else { 3432 int delta; 3433 3434 /* Non-retransmitted hole got filled? That's reordering */ 3435 if (before(reord, prior_fack)) 3436 tcp_check_sack_reordering(sk, reord, 0); 3437 3438 delta = prior_sacked - tp->sacked_out; 3439 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3440 } 3441 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3442 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3443 tcp_skb_timestamp_us(skb))) { 3444 /* Do not re-arm RTO if the sack RTT is measured from data sent 3445 * after when the head was last (re)transmitted. Otherwise the 3446 * timeout may continue to extend in loss recovery. 3447 */ 3448 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3449 } 3450 3451 if (icsk->icsk_ca_ops->pkts_acked) { 3452 struct ack_sample sample = { .pkts_acked = pkts_acked, 3453 .rtt_us = sack->rate->rtt_us }; 3454 3455 sample.in_flight = tp->mss_cache * 3456 (tp->delivered - sack->rate->prior_delivered); 3457 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3458 } 3459 3460 #if FASTRETRANS_DEBUG > 0 3461 WARN_ON((int)tp->sacked_out < 0); 3462 WARN_ON((int)tp->lost_out < 0); 3463 WARN_ON((int)tp->retrans_out < 0); 3464 if (!tp->packets_out && tcp_is_sack(tp)) { 3465 icsk = inet_csk(sk); 3466 if (tp->lost_out) { 3467 pr_debug("Leak l=%u %d\n", 3468 tp->lost_out, icsk->icsk_ca_state); 3469 tp->lost_out = 0; 3470 } 3471 if (tp->sacked_out) { 3472 pr_debug("Leak s=%u %d\n", 3473 tp->sacked_out, icsk->icsk_ca_state); 3474 tp->sacked_out = 0; 3475 } 3476 if (tp->retrans_out) { 3477 pr_debug("Leak r=%u %d\n", 3478 tp->retrans_out, icsk->icsk_ca_state); 3479 tp->retrans_out = 0; 3480 } 3481 } 3482 #endif 3483 return flag; 3484 } 3485 3486 static void tcp_ack_probe(struct sock *sk) 3487 { 3488 struct inet_connection_sock *icsk = inet_csk(sk); 3489 struct sk_buff *head = tcp_send_head(sk); 3490 const struct tcp_sock *tp = tcp_sk(sk); 3491 3492 /* Was it a usable window open? */ 3493 if (!head) 3494 return; 3495 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3496 icsk->icsk_backoff = 0; 3497 icsk->icsk_probes_tstamp = 0; 3498 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3499 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3500 * This function is not for random using! 3501 */ 3502 } else { 3503 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3504 3505 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3506 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3507 } 3508 } 3509 3510 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3511 { 3512 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3513 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3514 } 3515 3516 /* Decide wheather to run the increase function of congestion control. */ 3517 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3518 { 3519 /* If reordering is high then always grow cwnd whenever data is 3520 * delivered regardless of its ordering. Otherwise stay conservative 3521 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3522 * new SACK or ECE mark may first advance cwnd here and later reduce 3523 * cwnd in tcp_fastretrans_alert() based on more states. 3524 */ 3525 if (tcp_sk(sk)->reordering > 3526 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3527 return flag & FLAG_FORWARD_PROGRESS; 3528 3529 return flag & FLAG_DATA_ACKED; 3530 } 3531 3532 /* The "ultimate" congestion control function that aims to replace the rigid 3533 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3534 * It's called toward the end of processing an ACK with precise rate 3535 * information. All transmission or retransmission are delayed afterwards. 3536 */ 3537 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3538 int flag, const struct rate_sample *rs) 3539 { 3540 const struct inet_connection_sock *icsk = inet_csk(sk); 3541 3542 if (icsk->icsk_ca_ops->cong_control) { 3543 icsk->icsk_ca_ops->cong_control(sk, rs); 3544 return; 3545 } 3546 3547 if (tcp_in_cwnd_reduction(sk)) { 3548 /* Reduce cwnd if state mandates */ 3549 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3550 } else if (tcp_may_raise_cwnd(sk, flag)) { 3551 /* Advance cwnd if state allows */ 3552 tcp_cong_avoid(sk, ack, acked_sacked); 3553 } 3554 tcp_update_pacing_rate(sk); 3555 } 3556 3557 /* Check that window update is acceptable. 3558 * The function assumes that snd_una<=ack<=snd_next. 3559 */ 3560 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3561 const u32 ack, const u32 ack_seq, 3562 const u32 nwin) 3563 { 3564 return after(ack, tp->snd_una) || 3565 after(ack_seq, tp->snd_wl1) || 3566 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3567 } 3568 3569 /* If we update tp->snd_una, also update tp->bytes_acked */ 3570 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3571 { 3572 u32 delta = ack - tp->snd_una; 3573 3574 sock_owned_by_me((struct sock *)tp); 3575 tp->bytes_acked += delta; 3576 tp->snd_una = ack; 3577 } 3578 3579 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3580 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3581 { 3582 u32 delta = seq - tp->rcv_nxt; 3583 3584 sock_owned_by_me((struct sock *)tp); 3585 tp->bytes_received += delta; 3586 WRITE_ONCE(tp->rcv_nxt, seq); 3587 } 3588 3589 /* Update our send window. 3590 * 3591 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3592 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3593 */ 3594 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3595 u32 ack_seq) 3596 { 3597 struct tcp_sock *tp = tcp_sk(sk); 3598 int flag = 0; 3599 u32 nwin = ntohs(tcp_hdr(skb)->window); 3600 3601 if (likely(!tcp_hdr(skb)->syn)) 3602 nwin <<= tp->rx_opt.snd_wscale; 3603 3604 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3605 flag |= FLAG_WIN_UPDATE; 3606 tcp_update_wl(tp, ack_seq); 3607 3608 if (tp->snd_wnd != nwin) { 3609 tp->snd_wnd = nwin; 3610 3611 /* Note, it is the only place, where 3612 * fast path is recovered for sending TCP. 3613 */ 3614 tp->pred_flags = 0; 3615 tcp_fast_path_check(sk); 3616 3617 if (!tcp_write_queue_empty(sk)) 3618 tcp_slow_start_after_idle_check(sk); 3619 3620 if (nwin > tp->max_window) { 3621 tp->max_window = nwin; 3622 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3623 } 3624 } 3625 } 3626 3627 tcp_snd_una_update(tp, ack); 3628 3629 return flag; 3630 } 3631 3632 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3633 u32 *last_oow_ack_time) 3634 { 3635 /* Paired with the WRITE_ONCE() in this function. */ 3636 u32 val = READ_ONCE(*last_oow_ack_time); 3637 3638 if (val) { 3639 s32 elapsed = (s32)(tcp_jiffies32 - val); 3640 3641 if (0 <= elapsed && 3642 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3643 NET_INC_STATS(net, mib_idx); 3644 return true; /* rate-limited: don't send yet! */ 3645 } 3646 } 3647 3648 /* Paired with the prior READ_ONCE() and with itself, 3649 * as we might be lockless. 3650 */ 3651 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3652 3653 return false; /* not rate-limited: go ahead, send dupack now! */ 3654 } 3655 3656 /* Return true if we're currently rate-limiting out-of-window ACKs and 3657 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3658 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3659 * attacks that send repeated SYNs or ACKs for the same connection. To 3660 * do this, we do not send a duplicate SYNACK or ACK if the remote 3661 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3662 */ 3663 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3664 int mib_idx, u32 *last_oow_ack_time) 3665 { 3666 /* Data packets without SYNs are not likely part of an ACK loop. */ 3667 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3668 !tcp_hdr(skb)->syn) 3669 return false; 3670 3671 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3672 } 3673 3674 /* RFC 5961 7 [ACK Throttling] */ 3675 static void tcp_send_challenge_ack(struct sock *sk) 3676 { 3677 struct tcp_sock *tp = tcp_sk(sk); 3678 struct net *net = sock_net(sk); 3679 u32 count, now, ack_limit; 3680 3681 /* First check our per-socket dupack rate limit. */ 3682 if (__tcp_oow_rate_limited(net, 3683 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3684 &tp->last_oow_ack_time)) 3685 return; 3686 3687 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3688 if (ack_limit == INT_MAX) 3689 goto send_ack; 3690 3691 /* Then check host-wide RFC 5961 rate limit. */ 3692 now = jiffies / HZ; 3693 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3694 u32 half = (ack_limit + 1) >> 1; 3695 3696 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3697 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3698 get_random_u32_inclusive(half, ack_limit + half - 1)); 3699 } 3700 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3701 if (count > 0) { 3702 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3703 send_ack: 3704 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3705 tcp_send_ack(sk); 3706 } 3707 } 3708 3709 static void tcp_store_ts_recent(struct tcp_sock *tp) 3710 { 3711 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3712 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3713 } 3714 3715 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3716 { 3717 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3718 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3719 * extra check below makes sure this can only happen 3720 * for pure ACK frames. -DaveM 3721 * 3722 * Not only, also it occurs for expired timestamps. 3723 */ 3724 3725 if (tcp_paws_check(&tp->rx_opt, 0)) 3726 tcp_store_ts_recent(tp); 3727 } 3728 } 3729 3730 /* This routine deals with acks during a TLP episode and ends an episode by 3731 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3732 */ 3733 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3734 { 3735 struct tcp_sock *tp = tcp_sk(sk); 3736 3737 if (before(ack, tp->tlp_high_seq)) 3738 return; 3739 3740 if (!tp->tlp_retrans) { 3741 /* TLP of new data has been acknowledged */ 3742 tp->tlp_high_seq = 0; 3743 } else if (flag & FLAG_DSACK_TLP) { 3744 /* This DSACK means original and TLP probe arrived; no loss */ 3745 tp->tlp_high_seq = 0; 3746 } else if (after(ack, tp->tlp_high_seq)) { 3747 /* ACK advances: there was a loss, so reduce cwnd. Reset 3748 * tlp_high_seq in tcp_init_cwnd_reduction() 3749 */ 3750 tcp_init_cwnd_reduction(sk); 3751 tcp_set_ca_state(sk, TCP_CA_CWR); 3752 tcp_end_cwnd_reduction(sk); 3753 tcp_try_keep_open(sk); 3754 NET_INC_STATS(sock_net(sk), 3755 LINUX_MIB_TCPLOSSPROBERECOVERY); 3756 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3757 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3758 /* Pure dupack: original and TLP probe arrived; no loss */ 3759 tp->tlp_high_seq = 0; 3760 } 3761 } 3762 3763 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3764 { 3765 const struct inet_connection_sock *icsk = inet_csk(sk); 3766 3767 if (icsk->icsk_ca_ops->in_ack_event) 3768 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3769 } 3770 3771 /* Congestion control has updated the cwnd already. So if we're in 3772 * loss recovery then now we do any new sends (for FRTO) or 3773 * retransmits (for CA_Loss or CA_recovery) that make sense. 3774 */ 3775 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3776 { 3777 struct tcp_sock *tp = tcp_sk(sk); 3778 3779 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3780 return; 3781 3782 if (unlikely(rexmit == REXMIT_NEW)) { 3783 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3784 TCP_NAGLE_OFF); 3785 if (after(tp->snd_nxt, tp->high_seq)) 3786 return; 3787 tp->frto = 0; 3788 } 3789 tcp_xmit_retransmit_queue(sk); 3790 } 3791 3792 /* Returns the number of packets newly acked or sacked by the current ACK */ 3793 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3794 { 3795 const struct net *net = sock_net(sk); 3796 struct tcp_sock *tp = tcp_sk(sk); 3797 u32 delivered; 3798 3799 delivered = tp->delivered - prior_delivered; 3800 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3801 if (flag & FLAG_ECE) 3802 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3803 3804 return delivered; 3805 } 3806 3807 /* This routine deals with incoming acks, but not outgoing ones. */ 3808 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3809 { 3810 struct inet_connection_sock *icsk = inet_csk(sk); 3811 struct tcp_sock *tp = tcp_sk(sk); 3812 struct tcp_sacktag_state sack_state; 3813 struct rate_sample rs = { .prior_delivered = 0 }; 3814 u32 prior_snd_una = tp->snd_una; 3815 bool is_sack_reneg = tp->is_sack_reneg; 3816 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3817 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3818 int num_dupack = 0; 3819 int prior_packets = tp->packets_out; 3820 u32 delivered = tp->delivered; 3821 u32 lost = tp->lost; 3822 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3823 u32 prior_fack; 3824 3825 sack_state.first_sackt = 0; 3826 sack_state.rate = &rs; 3827 sack_state.sack_delivered = 0; 3828 3829 /* We very likely will need to access rtx queue. */ 3830 prefetch(sk->tcp_rtx_queue.rb_node); 3831 3832 /* If the ack is older than previous acks 3833 * then we can probably ignore it. 3834 */ 3835 if (before(ack, prior_snd_una)) { 3836 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3837 if (before(ack, prior_snd_una - tp->max_window)) { 3838 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3839 tcp_send_challenge_ack(sk); 3840 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3841 } 3842 goto old_ack; 3843 } 3844 3845 /* If the ack includes data we haven't sent yet, discard 3846 * this segment (RFC793 Section 3.9). 3847 */ 3848 if (after(ack, tp->snd_nxt)) 3849 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3850 3851 if (after(ack, prior_snd_una)) { 3852 flag |= FLAG_SND_UNA_ADVANCED; 3853 icsk->icsk_retransmits = 0; 3854 3855 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3856 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3857 if (icsk->icsk_clean_acked) 3858 icsk->icsk_clean_acked(sk, ack); 3859 #endif 3860 } 3861 3862 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3863 rs.prior_in_flight = tcp_packets_in_flight(tp); 3864 3865 /* ts_recent update must be made after we are sure that the packet 3866 * is in window. 3867 */ 3868 if (flag & FLAG_UPDATE_TS_RECENT) 3869 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3870 3871 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3872 FLAG_SND_UNA_ADVANCED) { 3873 /* Window is constant, pure forward advance. 3874 * No more checks are required. 3875 * Note, we use the fact that SND.UNA>=SND.WL2. 3876 */ 3877 tcp_update_wl(tp, ack_seq); 3878 tcp_snd_una_update(tp, ack); 3879 flag |= FLAG_WIN_UPDATE; 3880 3881 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3882 3883 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3884 } else { 3885 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3886 3887 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3888 flag |= FLAG_DATA; 3889 else 3890 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3891 3892 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3893 3894 if (TCP_SKB_CB(skb)->sacked) 3895 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3896 &sack_state); 3897 3898 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3899 flag |= FLAG_ECE; 3900 ack_ev_flags |= CA_ACK_ECE; 3901 } 3902 3903 if (sack_state.sack_delivered) 3904 tcp_count_delivered(tp, sack_state.sack_delivered, 3905 flag & FLAG_ECE); 3906 3907 if (flag & FLAG_WIN_UPDATE) 3908 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3909 3910 tcp_in_ack_event(sk, ack_ev_flags); 3911 } 3912 3913 /* This is a deviation from RFC3168 since it states that: 3914 * "When the TCP data sender is ready to set the CWR bit after reducing 3915 * the congestion window, it SHOULD set the CWR bit only on the first 3916 * new data packet that it transmits." 3917 * We accept CWR on pure ACKs to be more robust 3918 * with widely-deployed TCP implementations that do this. 3919 */ 3920 tcp_ecn_accept_cwr(sk, skb); 3921 3922 /* We passed data and got it acked, remove any soft error 3923 * log. Something worked... 3924 */ 3925 WRITE_ONCE(sk->sk_err_soft, 0); 3926 icsk->icsk_probes_out = 0; 3927 tp->rcv_tstamp = tcp_jiffies32; 3928 if (!prior_packets) 3929 goto no_queue; 3930 3931 /* See if we can take anything off of the retransmit queue. */ 3932 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3933 &sack_state, flag & FLAG_ECE); 3934 3935 tcp_rack_update_reo_wnd(sk, &rs); 3936 3937 if (tp->tlp_high_seq) 3938 tcp_process_tlp_ack(sk, ack, flag); 3939 3940 if (tcp_ack_is_dubious(sk, flag)) { 3941 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3942 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3943 num_dupack = 1; 3944 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3945 if (!(flag & FLAG_DATA)) 3946 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3947 } 3948 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3949 &rexmit); 3950 } 3951 3952 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3953 if (flag & FLAG_SET_XMIT_TIMER) 3954 tcp_set_xmit_timer(sk); 3955 3956 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3957 sk_dst_confirm(sk); 3958 3959 delivered = tcp_newly_delivered(sk, delivered, flag); 3960 lost = tp->lost - lost; /* freshly marked lost */ 3961 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3962 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3963 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3964 tcp_xmit_recovery(sk, rexmit); 3965 return 1; 3966 3967 no_queue: 3968 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3969 if (flag & FLAG_DSACKING_ACK) { 3970 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3971 &rexmit); 3972 tcp_newly_delivered(sk, delivered, flag); 3973 } 3974 /* If this ack opens up a zero window, clear backoff. It was 3975 * being used to time the probes, and is probably far higher than 3976 * it needs to be for normal retransmission. 3977 */ 3978 tcp_ack_probe(sk); 3979 3980 if (tp->tlp_high_seq) 3981 tcp_process_tlp_ack(sk, ack, flag); 3982 return 1; 3983 3984 old_ack: 3985 /* If data was SACKed, tag it and see if we should send more data. 3986 * If data was DSACKed, see if we can undo a cwnd reduction. 3987 */ 3988 if (TCP_SKB_CB(skb)->sacked) { 3989 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3990 &sack_state); 3991 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3992 &rexmit); 3993 tcp_newly_delivered(sk, delivered, flag); 3994 tcp_xmit_recovery(sk, rexmit); 3995 } 3996 3997 return 0; 3998 } 3999 4000 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4001 bool syn, struct tcp_fastopen_cookie *foc, 4002 bool exp_opt) 4003 { 4004 /* Valid only in SYN or SYN-ACK with an even length. */ 4005 if (!foc || !syn || len < 0 || (len & 1)) 4006 return; 4007 4008 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4009 len <= TCP_FASTOPEN_COOKIE_MAX) 4010 memcpy(foc->val, cookie, len); 4011 else if (len != 0) 4012 len = -1; 4013 foc->len = len; 4014 foc->exp = exp_opt; 4015 } 4016 4017 static bool smc_parse_options(const struct tcphdr *th, 4018 struct tcp_options_received *opt_rx, 4019 const unsigned char *ptr, 4020 int opsize) 4021 { 4022 #if IS_ENABLED(CONFIG_SMC) 4023 if (static_branch_unlikely(&tcp_have_smc)) { 4024 if (th->syn && !(opsize & 1) && 4025 opsize >= TCPOLEN_EXP_SMC_BASE && 4026 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4027 opt_rx->smc_ok = 1; 4028 return true; 4029 } 4030 } 4031 #endif 4032 return false; 4033 } 4034 4035 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4036 * value on success. 4037 */ 4038 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4039 { 4040 const unsigned char *ptr = (const unsigned char *)(th + 1); 4041 int length = (th->doff * 4) - sizeof(struct tcphdr); 4042 u16 mss = 0; 4043 4044 while (length > 0) { 4045 int opcode = *ptr++; 4046 int opsize; 4047 4048 switch (opcode) { 4049 case TCPOPT_EOL: 4050 return mss; 4051 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4052 length--; 4053 continue; 4054 default: 4055 if (length < 2) 4056 return mss; 4057 opsize = *ptr++; 4058 if (opsize < 2) /* "silly options" */ 4059 return mss; 4060 if (opsize > length) 4061 return mss; /* fail on partial options */ 4062 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4063 u16 in_mss = get_unaligned_be16(ptr); 4064 4065 if (in_mss) { 4066 if (user_mss && user_mss < in_mss) 4067 in_mss = user_mss; 4068 mss = in_mss; 4069 } 4070 } 4071 ptr += opsize - 2; 4072 length -= opsize; 4073 } 4074 } 4075 return mss; 4076 } 4077 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4078 4079 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4080 * But, this can also be called on packets in the established flow when 4081 * the fast version below fails. 4082 */ 4083 void tcp_parse_options(const struct net *net, 4084 const struct sk_buff *skb, 4085 struct tcp_options_received *opt_rx, int estab, 4086 struct tcp_fastopen_cookie *foc) 4087 { 4088 const unsigned char *ptr; 4089 const struct tcphdr *th = tcp_hdr(skb); 4090 int length = (th->doff * 4) - sizeof(struct tcphdr); 4091 4092 ptr = (const unsigned char *)(th + 1); 4093 opt_rx->saw_tstamp = 0; 4094 opt_rx->saw_unknown = 0; 4095 4096 while (length > 0) { 4097 int opcode = *ptr++; 4098 int opsize; 4099 4100 switch (opcode) { 4101 case TCPOPT_EOL: 4102 return; 4103 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4104 length--; 4105 continue; 4106 default: 4107 if (length < 2) 4108 return; 4109 opsize = *ptr++; 4110 if (opsize < 2) /* "silly options" */ 4111 return; 4112 if (opsize > length) 4113 return; /* don't parse partial options */ 4114 switch (opcode) { 4115 case TCPOPT_MSS: 4116 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4117 u16 in_mss = get_unaligned_be16(ptr); 4118 if (in_mss) { 4119 if (opt_rx->user_mss && 4120 opt_rx->user_mss < in_mss) 4121 in_mss = opt_rx->user_mss; 4122 opt_rx->mss_clamp = in_mss; 4123 } 4124 } 4125 break; 4126 case TCPOPT_WINDOW: 4127 if (opsize == TCPOLEN_WINDOW && th->syn && 4128 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4129 __u8 snd_wscale = *(__u8 *)ptr; 4130 opt_rx->wscale_ok = 1; 4131 if (snd_wscale > TCP_MAX_WSCALE) { 4132 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4133 __func__, 4134 snd_wscale, 4135 TCP_MAX_WSCALE); 4136 snd_wscale = TCP_MAX_WSCALE; 4137 } 4138 opt_rx->snd_wscale = snd_wscale; 4139 } 4140 break; 4141 case TCPOPT_TIMESTAMP: 4142 if ((opsize == TCPOLEN_TIMESTAMP) && 4143 ((estab && opt_rx->tstamp_ok) || 4144 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4145 opt_rx->saw_tstamp = 1; 4146 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4147 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4148 } 4149 break; 4150 case TCPOPT_SACK_PERM: 4151 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4152 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4153 opt_rx->sack_ok = TCP_SACK_SEEN; 4154 tcp_sack_reset(opt_rx); 4155 } 4156 break; 4157 4158 case TCPOPT_SACK: 4159 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4160 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4161 opt_rx->sack_ok) { 4162 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4163 } 4164 break; 4165 #ifdef CONFIG_TCP_MD5SIG 4166 case TCPOPT_MD5SIG: 4167 /* The MD5 Hash has already been 4168 * checked (see tcp_v{4,6}_rcv()). 4169 */ 4170 break; 4171 #endif 4172 case TCPOPT_FASTOPEN: 4173 tcp_parse_fastopen_option( 4174 opsize - TCPOLEN_FASTOPEN_BASE, 4175 ptr, th->syn, foc, false); 4176 break; 4177 4178 case TCPOPT_EXP: 4179 /* Fast Open option shares code 254 using a 4180 * 16 bits magic number. 4181 */ 4182 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4183 get_unaligned_be16(ptr) == 4184 TCPOPT_FASTOPEN_MAGIC) { 4185 tcp_parse_fastopen_option(opsize - 4186 TCPOLEN_EXP_FASTOPEN_BASE, 4187 ptr + 2, th->syn, foc, true); 4188 break; 4189 } 4190 4191 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4192 break; 4193 4194 opt_rx->saw_unknown = 1; 4195 break; 4196 4197 default: 4198 opt_rx->saw_unknown = 1; 4199 } 4200 ptr += opsize-2; 4201 length -= opsize; 4202 } 4203 } 4204 } 4205 EXPORT_SYMBOL(tcp_parse_options); 4206 4207 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4208 { 4209 const __be32 *ptr = (const __be32 *)(th + 1); 4210 4211 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4212 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4213 tp->rx_opt.saw_tstamp = 1; 4214 ++ptr; 4215 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4216 ++ptr; 4217 if (*ptr) 4218 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4219 else 4220 tp->rx_opt.rcv_tsecr = 0; 4221 return true; 4222 } 4223 return false; 4224 } 4225 4226 /* Fast parse options. This hopes to only see timestamps. 4227 * If it is wrong it falls back on tcp_parse_options(). 4228 */ 4229 static bool tcp_fast_parse_options(const struct net *net, 4230 const struct sk_buff *skb, 4231 const struct tcphdr *th, struct tcp_sock *tp) 4232 { 4233 /* In the spirit of fast parsing, compare doff directly to constant 4234 * values. Because equality is used, short doff can be ignored here. 4235 */ 4236 if (th->doff == (sizeof(*th) / 4)) { 4237 tp->rx_opt.saw_tstamp = 0; 4238 return false; 4239 } else if (tp->rx_opt.tstamp_ok && 4240 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4241 if (tcp_parse_aligned_timestamp(tp, th)) 4242 return true; 4243 } 4244 4245 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4246 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4247 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4248 4249 return true; 4250 } 4251 4252 #ifdef CONFIG_TCP_MD5SIG 4253 /* 4254 * Parse MD5 Signature option 4255 */ 4256 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4257 { 4258 int length = (th->doff << 2) - sizeof(*th); 4259 const u8 *ptr = (const u8 *)(th + 1); 4260 4261 /* If not enough data remaining, we can short cut */ 4262 while (length >= TCPOLEN_MD5SIG) { 4263 int opcode = *ptr++; 4264 int opsize; 4265 4266 switch (opcode) { 4267 case TCPOPT_EOL: 4268 return NULL; 4269 case TCPOPT_NOP: 4270 length--; 4271 continue; 4272 default: 4273 opsize = *ptr++; 4274 if (opsize < 2 || opsize > length) 4275 return NULL; 4276 if (opcode == TCPOPT_MD5SIG) 4277 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4278 } 4279 ptr += opsize - 2; 4280 length -= opsize; 4281 } 4282 return NULL; 4283 } 4284 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4285 #endif 4286 4287 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4288 * 4289 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4290 * it can pass through stack. So, the following predicate verifies that 4291 * this segment is not used for anything but congestion avoidance or 4292 * fast retransmit. Moreover, we even are able to eliminate most of such 4293 * second order effects, if we apply some small "replay" window (~RTO) 4294 * to timestamp space. 4295 * 4296 * All these measures still do not guarantee that we reject wrapped ACKs 4297 * on networks with high bandwidth, when sequence space is recycled fastly, 4298 * but it guarantees that such events will be very rare and do not affect 4299 * connection seriously. This doesn't look nice, but alas, PAWS is really 4300 * buggy extension. 4301 * 4302 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4303 * states that events when retransmit arrives after original data are rare. 4304 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4305 * the biggest problem on large power networks even with minor reordering. 4306 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4307 * up to bandwidth of 18Gigabit/sec. 8) ] 4308 */ 4309 4310 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4311 { 4312 const struct tcp_sock *tp = tcp_sk(sk); 4313 const struct tcphdr *th = tcp_hdr(skb); 4314 u32 seq = TCP_SKB_CB(skb)->seq; 4315 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4316 4317 return (/* 1. Pure ACK with correct sequence number. */ 4318 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4319 4320 /* 2. ... and duplicate ACK. */ 4321 ack == tp->snd_una && 4322 4323 /* 3. ... and does not update window. */ 4324 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4325 4326 /* 4. ... and sits in replay window. */ 4327 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4328 } 4329 4330 static inline bool tcp_paws_discard(const struct sock *sk, 4331 const struct sk_buff *skb) 4332 { 4333 const struct tcp_sock *tp = tcp_sk(sk); 4334 4335 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4336 !tcp_disordered_ack(sk, skb); 4337 } 4338 4339 /* Check segment sequence number for validity. 4340 * 4341 * Segment controls are considered valid, if the segment 4342 * fits to the window after truncation to the window. Acceptability 4343 * of data (and SYN, FIN, of course) is checked separately. 4344 * See tcp_data_queue(), for example. 4345 * 4346 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4347 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4348 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4349 * (borrowed from freebsd) 4350 */ 4351 4352 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4353 u32 seq, u32 end_seq) 4354 { 4355 if (before(end_seq, tp->rcv_wup)) 4356 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4357 4358 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4359 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4360 4361 return SKB_NOT_DROPPED_YET; 4362 } 4363 4364 /* When we get a reset we do this. */ 4365 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4366 { 4367 trace_tcp_receive_reset(sk); 4368 4369 /* mptcp can't tell us to ignore reset pkts, 4370 * so just ignore the return value of mptcp_incoming_options(). 4371 */ 4372 if (sk_is_mptcp(sk)) 4373 mptcp_incoming_options(sk, skb); 4374 4375 /* We want the right error as BSD sees it (and indeed as we do). */ 4376 switch (sk->sk_state) { 4377 case TCP_SYN_SENT: 4378 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 4379 break; 4380 case TCP_CLOSE_WAIT: 4381 WRITE_ONCE(sk->sk_err, EPIPE); 4382 break; 4383 case TCP_CLOSE: 4384 return; 4385 default: 4386 WRITE_ONCE(sk->sk_err, ECONNRESET); 4387 } 4388 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4389 smp_wmb(); 4390 4391 tcp_write_queue_purge(sk); 4392 tcp_done(sk); 4393 4394 if (!sock_flag(sk, SOCK_DEAD)) 4395 sk_error_report(sk); 4396 } 4397 4398 /* 4399 * Process the FIN bit. This now behaves as it is supposed to work 4400 * and the FIN takes effect when it is validly part of sequence 4401 * space. Not before when we get holes. 4402 * 4403 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4404 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4405 * TIME-WAIT) 4406 * 4407 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4408 * close and we go into CLOSING (and later onto TIME-WAIT) 4409 * 4410 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4411 */ 4412 void tcp_fin(struct sock *sk) 4413 { 4414 struct tcp_sock *tp = tcp_sk(sk); 4415 4416 inet_csk_schedule_ack(sk); 4417 4418 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4419 sock_set_flag(sk, SOCK_DONE); 4420 4421 switch (sk->sk_state) { 4422 case TCP_SYN_RECV: 4423 case TCP_ESTABLISHED: 4424 /* Move to CLOSE_WAIT */ 4425 tcp_set_state(sk, TCP_CLOSE_WAIT); 4426 inet_csk_enter_pingpong_mode(sk); 4427 break; 4428 4429 case TCP_CLOSE_WAIT: 4430 case TCP_CLOSING: 4431 /* Received a retransmission of the FIN, do 4432 * nothing. 4433 */ 4434 break; 4435 case TCP_LAST_ACK: 4436 /* RFC793: Remain in the LAST-ACK state. */ 4437 break; 4438 4439 case TCP_FIN_WAIT1: 4440 /* This case occurs when a simultaneous close 4441 * happens, we must ack the received FIN and 4442 * enter the CLOSING state. 4443 */ 4444 tcp_send_ack(sk); 4445 tcp_set_state(sk, TCP_CLOSING); 4446 break; 4447 case TCP_FIN_WAIT2: 4448 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4449 tcp_send_ack(sk); 4450 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4451 break; 4452 default: 4453 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4454 * cases we should never reach this piece of code. 4455 */ 4456 pr_err("%s: Impossible, sk->sk_state=%d\n", 4457 __func__, sk->sk_state); 4458 break; 4459 } 4460 4461 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4462 * Probably, we should reset in this case. For now drop them. 4463 */ 4464 skb_rbtree_purge(&tp->out_of_order_queue); 4465 if (tcp_is_sack(tp)) 4466 tcp_sack_reset(&tp->rx_opt); 4467 4468 if (!sock_flag(sk, SOCK_DEAD)) { 4469 sk->sk_state_change(sk); 4470 4471 /* Do not send POLL_HUP for half duplex close. */ 4472 if (sk->sk_shutdown == SHUTDOWN_MASK || 4473 sk->sk_state == TCP_CLOSE) 4474 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4475 else 4476 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4477 } 4478 } 4479 4480 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4481 u32 end_seq) 4482 { 4483 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4484 if (before(seq, sp->start_seq)) 4485 sp->start_seq = seq; 4486 if (after(end_seq, sp->end_seq)) 4487 sp->end_seq = end_seq; 4488 return true; 4489 } 4490 return false; 4491 } 4492 4493 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4494 { 4495 struct tcp_sock *tp = tcp_sk(sk); 4496 4497 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4498 int mib_idx; 4499 4500 if (before(seq, tp->rcv_nxt)) 4501 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4502 else 4503 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4504 4505 NET_INC_STATS(sock_net(sk), mib_idx); 4506 4507 tp->rx_opt.dsack = 1; 4508 tp->duplicate_sack[0].start_seq = seq; 4509 tp->duplicate_sack[0].end_seq = end_seq; 4510 } 4511 } 4512 4513 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4514 { 4515 struct tcp_sock *tp = tcp_sk(sk); 4516 4517 if (!tp->rx_opt.dsack) 4518 tcp_dsack_set(sk, seq, end_seq); 4519 else 4520 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4521 } 4522 4523 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4524 { 4525 /* When the ACK path fails or drops most ACKs, the sender would 4526 * timeout and spuriously retransmit the same segment repeatedly. 4527 * If it seems our ACKs are not reaching the other side, 4528 * based on receiving a duplicate data segment with new flowlabel 4529 * (suggesting the sender suffered an RTO), and we are not already 4530 * repathing due to our own RTO, then rehash the socket to repath our 4531 * packets. 4532 */ 4533 #if IS_ENABLED(CONFIG_IPV6) 4534 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4535 skb->protocol == htons(ETH_P_IPV6) && 4536 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4537 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4538 sk_rethink_txhash(sk)) 4539 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4540 4541 /* Save last flowlabel after a spurious retrans. */ 4542 tcp_save_lrcv_flowlabel(sk, skb); 4543 #endif 4544 } 4545 4546 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4547 { 4548 struct tcp_sock *tp = tcp_sk(sk); 4549 4550 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4551 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4552 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4553 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4554 4555 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4556 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4557 4558 tcp_rcv_spurious_retrans(sk, skb); 4559 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4560 end_seq = tp->rcv_nxt; 4561 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4562 } 4563 } 4564 4565 tcp_send_ack(sk); 4566 } 4567 4568 /* These routines update the SACK block as out-of-order packets arrive or 4569 * in-order packets close up the sequence space. 4570 */ 4571 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4572 { 4573 int this_sack; 4574 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4575 struct tcp_sack_block *swalk = sp + 1; 4576 4577 /* See if the recent change to the first SACK eats into 4578 * or hits the sequence space of other SACK blocks, if so coalesce. 4579 */ 4580 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4581 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4582 int i; 4583 4584 /* Zap SWALK, by moving every further SACK up by one slot. 4585 * Decrease num_sacks. 4586 */ 4587 tp->rx_opt.num_sacks--; 4588 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4589 sp[i] = sp[i + 1]; 4590 continue; 4591 } 4592 this_sack++; 4593 swalk++; 4594 } 4595 } 4596 4597 void tcp_sack_compress_send_ack(struct sock *sk) 4598 { 4599 struct tcp_sock *tp = tcp_sk(sk); 4600 4601 if (!tp->compressed_ack) 4602 return; 4603 4604 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4605 __sock_put(sk); 4606 4607 /* Since we have to send one ack finally, 4608 * substract one from tp->compressed_ack to keep 4609 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4610 */ 4611 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4612 tp->compressed_ack - 1); 4613 4614 tp->compressed_ack = 0; 4615 tcp_send_ack(sk); 4616 } 4617 4618 /* Reasonable amount of sack blocks included in TCP SACK option 4619 * The max is 4, but this becomes 3 if TCP timestamps are there. 4620 * Given that SACK packets might be lost, be conservative and use 2. 4621 */ 4622 #define TCP_SACK_BLOCKS_EXPECTED 2 4623 4624 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4625 { 4626 struct tcp_sock *tp = tcp_sk(sk); 4627 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4628 int cur_sacks = tp->rx_opt.num_sacks; 4629 int this_sack; 4630 4631 if (!cur_sacks) 4632 goto new_sack; 4633 4634 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4635 if (tcp_sack_extend(sp, seq, end_seq)) { 4636 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4637 tcp_sack_compress_send_ack(sk); 4638 /* Rotate this_sack to the first one. */ 4639 for (; this_sack > 0; this_sack--, sp--) 4640 swap(*sp, *(sp - 1)); 4641 if (cur_sacks > 1) 4642 tcp_sack_maybe_coalesce(tp); 4643 return; 4644 } 4645 } 4646 4647 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4648 tcp_sack_compress_send_ack(sk); 4649 4650 /* Could not find an adjacent existing SACK, build a new one, 4651 * put it at the front, and shift everyone else down. We 4652 * always know there is at least one SACK present already here. 4653 * 4654 * If the sack array is full, forget about the last one. 4655 */ 4656 if (this_sack >= TCP_NUM_SACKS) { 4657 this_sack--; 4658 tp->rx_opt.num_sacks--; 4659 sp--; 4660 } 4661 for (; this_sack > 0; this_sack--, sp--) 4662 *sp = *(sp - 1); 4663 4664 new_sack: 4665 /* Build the new head SACK, and we're done. */ 4666 sp->start_seq = seq; 4667 sp->end_seq = end_seq; 4668 tp->rx_opt.num_sacks++; 4669 } 4670 4671 /* RCV.NXT advances, some SACKs should be eaten. */ 4672 4673 static void tcp_sack_remove(struct tcp_sock *tp) 4674 { 4675 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4676 int num_sacks = tp->rx_opt.num_sacks; 4677 int this_sack; 4678 4679 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4680 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4681 tp->rx_opt.num_sacks = 0; 4682 return; 4683 } 4684 4685 for (this_sack = 0; this_sack < num_sacks;) { 4686 /* Check if the start of the sack is covered by RCV.NXT. */ 4687 if (!before(tp->rcv_nxt, sp->start_seq)) { 4688 int i; 4689 4690 /* RCV.NXT must cover all the block! */ 4691 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4692 4693 /* Zap this SACK, by moving forward any other SACKS. */ 4694 for (i = this_sack+1; i < num_sacks; i++) 4695 tp->selective_acks[i-1] = tp->selective_acks[i]; 4696 num_sacks--; 4697 continue; 4698 } 4699 this_sack++; 4700 sp++; 4701 } 4702 tp->rx_opt.num_sacks = num_sacks; 4703 } 4704 4705 /** 4706 * tcp_try_coalesce - try to merge skb to prior one 4707 * @sk: socket 4708 * @to: prior buffer 4709 * @from: buffer to add in queue 4710 * @fragstolen: pointer to boolean 4711 * 4712 * Before queueing skb @from after @to, try to merge them 4713 * to reduce overall memory use and queue lengths, if cost is small. 4714 * Packets in ofo or receive queues can stay a long time. 4715 * Better try to coalesce them right now to avoid future collapses. 4716 * Returns true if caller should free @from instead of queueing it 4717 */ 4718 static bool tcp_try_coalesce(struct sock *sk, 4719 struct sk_buff *to, 4720 struct sk_buff *from, 4721 bool *fragstolen) 4722 { 4723 int delta; 4724 4725 *fragstolen = false; 4726 4727 /* Its possible this segment overlaps with prior segment in queue */ 4728 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4729 return false; 4730 4731 if (!mptcp_skb_can_collapse(to, from)) 4732 return false; 4733 4734 #ifdef CONFIG_TLS_DEVICE 4735 if (from->decrypted != to->decrypted) 4736 return false; 4737 #endif 4738 4739 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4740 return false; 4741 4742 atomic_add(delta, &sk->sk_rmem_alloc); 4743 sk_mem_charge(sk, delta); 4744 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4745 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4746 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4747 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4748 4749 if (TCP_SKB_CB(from)->has_rxtstamp) { 4750 TCP_SKB_CB(to)->has_rxtstamp = true; 4751 to->tstamp = from->tstamp; 4752 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4753 } 4754 4755 return true; 4756 } 4757 4758 static bool tcp_ooo_try_coalesce(struct sock *sk, 4759 struct sk_buff *to, 4760 struct sk_buff *from, 4761 bool *fragstolen) 4762 { 4763 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4764 4765 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4766 if (res) { 4767 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4768 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4769 4770 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4771 } 4772 return res; 4773 } 4774 4775 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4776 enum skb_drop_reason reason) 4777 { 4778 sk_drops_add(sk, skb); 4779 kfree_skb_reason(skb, reason); 4780 } 4781 4782 /* This one checks to see if we can put data from the 4783 * out_of_order queue into the receive_queue. 4784 */ 4785 static void tcp_ofo_queue(struct sock *sk) 4786 { 4787 struct tcp_sock *tp = tcp_sk(sk); 4788 __u32 dsack_high = tp->rcv_nxt; 4789 bool fin, fragstolen, eaten; 4790 struct sk_buff *skb, *tail; 4791 struct rb_node *p; 4792 4793 p = rb_first(&tp->out_of_order_queue); 4794 while (p) { 4795 skb = rb_to_skb(p); 4796 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4797 break; 4798 4799 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4800 __u32 dsack = dsack_high; 4801 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4802 dsack_high = TCP_SKB_CB(skb)->end_seq; 4803 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4804 } 4805 p = rb_next(p); 4806 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4807 4808 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4809 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4810 continue; 4811 } 4812 4813 tail = skb_peek_tail(&sk->sk_receive_queue); 4814 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4815 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4816 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4817 if (!eaten) 4818 __skb_queue_tail(&sk->sk_receive_queue, skb); 4819 else 4820 kfree_skb_partial(skb, fragstolen); 4821 4822 if (unlikely(fin)) { 4823 tcp_fin(sk); 4824 /* tcp_fin() purges tp->out_of_order_queue, 4825 * so we must end this loop right now. 4826 */ 4827 break; 4828 } 4829 } 4830 } 4831 4832 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4833 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4834 4835 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4836 unsigned int size) 4837 { 4838 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4839 !sk_rmem_schedule(sk, skb, size)) { 4840 4841 if (tcp_prune_queue(sk, skb) < 0) 4842 return -1; 4843 4844 while (!sk_rmem_schedule(sk, skb, size)) { 4845 if (!tcp_prune_ofo_queue(sk, skb)) 4846 return -1; 4847 } 4848 } 4849 return 0; 4850 } 4851 4852 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4853 { 4854 struct tcp_sock *tp = tcp_sk(sk); 4855 struct rb_node **p, *parent; 4856 struct sk_buff *skb1; 4857 u32 seq, end_seq; 4858 bool fragstolen; 4859 4860 tcp_save_lrcv_flowlabel(sk, skb); 4861 tcp_ecn_check_ce(sk, skb); 4862 4863 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4864 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4865 sk->sk_data_ready(sk); 4866 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4867 return; 4868 } 4869 4870 /* Disable header prediction. */ 4871 tp->pred_flags = 0; 4872 inet_csk_schedule_ack(sk); 4873 4874 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4875 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4876 seq = TCP_SKB_CB(skb)->seq; 4877 end_seq = TCP_SKB_CB(skb)->end_seq; 4878 4879 p = &tp->out_of_order_queue.rb_node; 4880 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4881 /* Initial out of order segment, build 1 SACK. */ 4882 if (tcp_is_sack(tp)) { 4883 tp->rx_opt.num_sacks = 1; 4884 tp->selective_acks[0].start_seq = seq; 4885 tp->selective_acks[0].end_seq = end_seq; 4886 } 4887 rb_link_node(&skb->rbnode, NULL, p); 4888 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4889 tp->ooo_last_skb = skb; 4890 goto end; 4891 } 4892 4893 /* In the typical case, we are adding an skb to the end of the list. 4894 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4895 */ 4896 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4897 skb, &fragstolen)) { 4898 coalesce_done: 4899 /* For non sack flows, do not grow window to force DUPACK 4900 * and trigger fast retransmit. 4901 */ 4902 if (tcp_is_sack(tp)) 4903 tcp_grow_window(sk, skb, true); 4904 kfree_skb_partial(skb, fragstolen); 4905 skb = NULL; 4906 goto add_sack; 4907 } 4908 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4909 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4910 parent = &tp->ooo_last_skb->rbnode; 4911 p = &parent->rb_right; 4912 goto insert; 4913 } 4914 4915 /* Find place to insert this segment. Handle overlaps on the way. */ 4916 parent = NULL; 4917 while (*p) { 4918 parent = *p; 4919 skb1 = rb_to_skb(parent); 4920 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4921 p = &parent->rb_left; 4922 continue; 4923 } 4924 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4925 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4926 /* All the bits are present. Drop. */ 4927 NET_INC_STATS(sock_net(sk), 4928 LINUX_MIB_TCPOFOMERGE); 4929 tcp_drop_reason(sk, skb, 4930 SKB_DROP_REASON_TCP_OFOMERGE); 4931 skb = NULL; 4932 tcp_dsack_set(sk, seq, end_seq); 4933 goto add_sack; 4934 } 4935 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4936 /* Partial overlap. */ 4937 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4938 } else { 4939 /* skb's seq == skb1's seq and skb covers skb1. 4940 * Replace skb1 with skb. 4941 */ 4942 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4943 &tp->out_of_order_queue); 4944 tcp_dsack_extend(sk, 4945 TCP_SKB_CB(skb1)->seq, 4946 TCP_SKB_CB(skb1)->end_seq); 4947 NET_INC_STATS(sock_net(sk), 4948 LINUX_MIB_TCPOFOMERGE); 4949 tcp_drop_reason(sk, skb1, 4950 SKB_DROP_REASON_TCP_OFOMERGE); 4951 goto merge_right; 4952 } 4953 } else if (tcp_ooo_try_coalesce(sk, skb1, 4954 skb, &fragstolen)) { 4955 goto coalesce_done; 4956 } 4957 p = &parent->rb_right; 4958 } 4959 insert: 4960 /* Insert segment into RB tree. */ 4961 rb_link_node(&skb->rbnode, parent, p); 4962 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4963 4964 merge_right: 4965 /* Remove other segments covered by skb. */ 4966 while ((skb1 = skb_rb_next(skb)) != NULL) { 4967 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4968 break; 4969 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4970 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4971 end_seq); 4972 break; 4973 } 4974 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4975 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4976 TCP_SKB_CB(skb1)->end_seq); 4977 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4978 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 4979 } 4980 /* If there is no skb after us, we are the last_skb ! */ 4981 if (!skb1) 4982 tp->ooo_last_skb = skb; 4983 4984 add_sack: 4985 if (tcp_is_sack(tp)) 4986 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4987 end: 4988 if (skb) { 4989 /* For non sack flows, do not grow window to force DUPACK 4990 * and trigger fast retransmit. 4991 */ 4992 if (tcp_is_sack(tp)) 4993 tcp_grow_window(sk, skb, false); 4994 skb_condense(skb); 4995 skb_set_owner_r(skb, sk); 4996 } 4997 } 4998 4999 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5000 bool *fragstolen) 5001 { 5002 int eaten; 5003 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5004 5005 eaten = (tail && 5006 tcp_try_coalesce(sk, tail, 5007 skb, fragstolen)) ? 1 : 0; 5008 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5009 if (!eaten) { 5010 __skb_queue_tail(&sk->sk_receive_queue, skb); 5011 skb_set_owner_r(skb, sk); 5012 } 5013 return eaten; 5014 } 5015 5016 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5017 { 5018 struct sk_buff *skb; 5019 int err = -ENOMEM; 5020 int data_len = 0; 5021 bool fragstolen; 5022 5023 if (size == 0) 5024 return 0; 5025 5026 if (size > PAGE_SIZE) { 5027 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5028 5029 data_len = npages << PAGE_SHIFT; 5030 size = data_len + (size & ~PAGE_MASK); 5031 } 5032 skb = alloc_skb_with_frags(size - data_len, data_len, 5033 PAGE_ALLOC_COSTLY_ORDER, 5034 &err, sk->sk_allocation); 5035 if (!skb) 5036 goto err; 5037 5038 skb_put(skb, size - data_len); 5039 skb->data_len = data_len; 5040 skb->len = size; 5041 5042 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5043 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5044 goto err_free; 5045 } 5046 5047 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5048 if (err) 5049 goto err_free; 5050 5051 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5052 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5053 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5054 5055 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5056 WARN_ON_ONCE(fragstolen); /* should not happen */ 5057 __kfree_skb(skb); 5058 } 5059 return size; 5060 5061 err_free: 5062 kfree_skb(skb); 5063 err: 5064 return err; 5065 5066 } 5067 5068 void tcp_data_ready(struct sock *sk) 5069 { 5070 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5071 sk->sk_data_ready(sk); 5072 } 5073 5074 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5075 { 5076 struct tcp_sock *tp = tcp_sk(sk); 5077 enum skb_drop_reason reason; 5078 bool fragstolen; 5079 int eaten; 5080 5081 /* If a subflow has been reset, the packet should not continue 5082 * to be processed, drop the packet. 5083 */ 5084 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5085 __kfree_skb(skb); 5086 return; 5087 } 5088 5089 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5090 __kfree_skb(skb); 5091 return; 5092 } 5093 skb_dst_drop(skb); 5094 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5095 5096 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5097 tp->rx_opt.dsack = 0; 5098 5099 /* Queue data for delivery to the user. 5100 * Packets in sequence go to the receive queue. 5101 * Out of sequence packets to the out_of_order_queue. 5102 */ 5103 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5104 if (tcp_receive_window(tp) == 0) { 5105 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5107 goto out_of_window; 5108 } 5109 5110 /* Ok. In sequence. In window. */ 5111 queue_and_out: 5112 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5113 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5114 inet_csk(sk)->icsk_ack.pending |= 5115 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5116 inet_csk_schedule_ack(sk); 5117 sk->sk_data_ready(sk); 5118 5119 if (skb_queue_len(&sk->sk_receive_queue)) { 5120 reason = SKB_DROP_REASON_PROTO_MEM; 5121 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5122 goto drop; 5123 } 5124 sk_forced_mem_schedule(sk, skb->truesize); 5125 } 5126 5127 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5128 if (skb->len) 5129 tcp_event_data_recv(sk, skb); 5130 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5131 tcp_fin(sk); 5132 5133 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5134 tcp_ofo_queue(sk); 5135 5136 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5137 * gap in queue is filled. 5138 */ 5139 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5140 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5141 } 5142 5143 if (tp->rx_opt.num_sacks) 5144 tcp_sack_remove(tp); 5145 5146 tcp_fast_path_check(sk); 5147 5148 if (eaten > 0) 5149 kfree_skb_partial(skb, fragstolen); 5150 if (!sock_flag(sk, SOCK_DEAD)) 5151 tcp_data_ready(sk); 5152 return; 5153 } 5154 5155 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5156 tcp_rcv_spurious_retrans(sk, skb); 5157 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5158 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5159 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5160 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5161 5162 out_of_window: 5163 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5164 inet_csk_schedule_ack(sk); 5165 drop: 5166 tcp_drop_reason(sk, skb, reason); 5167 return; 5168 } 5169 5170 /* Out of window. F.e. zero window probe. */ 5171 if (!before(TCP_SKB_CB(skb)->seq, 5172 tp->rcv_nxt + tcp_receive_window(tp))) { 5173 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5174 goto out_of_window; 5175 } 5176 5177 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5178 /* Partial packet, seq < rcv_next < end_seq */ 5179 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5180 5181 /* If window is closed, drop tail of packet. But after 5182 * remembering D-SACK for its head made in previous line. 5183 */ 5184 if (!tcp_receive_window(tp)) { 5185 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5186 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5187 goto out_of_window; 5188 } 5189 goto queue_and_out; 5190 } 5191 5192 tcp_data_queue_ofo(sk, skb); 5193 } 5194 5195 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5196 { 5197 if (list) 5198 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5199 5200 return skb_rb_next(skb); 5201 } 5202 5203 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5204 struct sk_buff_head *list, 5205 struct rb_root *root) 5206 { 5207 struct sk_buff *next = tcp_skb_next(skb, list); 5208 5209 if (list) 5210 __skb_unlink(skb, list); 5211 else 5212 rb_erase(&skb->rbnode, root); 5213 5214 __kfree_skb(skb); 5215 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5216 5217 return next; 5218 } 5219 5220 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5221 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5222 { 5223 struct rb_node **p = &root->rb_node; 5224 struct rb_node *parent = NULL; 5225 struct sk_buff *skb1; 5226 5227 while (*p) { 5228 parent = *p; 5229 skb1 = rb_to_skb(parent); 5230 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5231 p = &parent->rb_left; 5232 else 5233 p = &parent->rb_right; 5234 } 5235 rb_link_node(&skb->rbnode, parent, p); 5236 rb_insert_color(&skb->rbnode, root); 5237 } 5238 5239 /* Collapse contiguous sequence of skbs head..tail with 5240 * sequence numbers start..end. 5241 * 5242 * If tail is NULL, this means until the end of the queue. 5243 * 5244 * Segments with FIN/SYN are not collapsed (only because this 5245 * simplifies code) 5246 */ 5247 static void 5248 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5249 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5250 { 5251 struct sk_buff *skb = head, *n; 5252 struct sk_buff_head tmp; 5253 bool end_of_skbs; 5254 5255 /* First, check that queue is collapsible and find 5256 * the point where collapsing can be useful. 5257 */ 5258 restart: 5259 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5260 n = tcp_skb_next(skb, list); 5261 5262 /* No new bits? It is possible on ofo queue. */ 5263 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5264 skb = tcp_collapse_one(sk, skb, list, root); 5265 if (!skb) 5266 break; 5267 goto restart; 5268 } 5269 5270 /* The first skb to collapse is: 5271 * - not SYN/FIN and 5272 * - bloated or contains data before "start" or 5273 * overlaps to the next one and mptcp allow collapsing. 5274 */ 5275 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5276 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5277 before(TCP_SKB_CB(skb)->seq, start))) { 5278 end_of_skbs = false; 5279 break; 5280 } 5281 5282 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5283 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5284 end_of_skbs = false; 5285 break; 5286 } 5287 5288 /* Decided to skip this, advance start seq. */ 5289 start = TCP_SKB_CB(skb)->end_seq; 5290 } 5291 if (end_of_skbs || 5292 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5293 return; 5294 5295 __skb_queue_head_init(&tmp); 5296 5297 while (before(start, end)) { 5298 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5299 struct sk_buff *nskb; 5300 5301 nskb = alloc_skb(copy, GFP_ATOMIC); 5302 if (!nskb) 5303 break; 5304 5305 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5306 #ifdef CONFIG_TLS_DEVICE 5307 nskb->decrypted = skb->decrypted; 5308 #endif 5309 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5310 if (list) 5311 __skb_queue_before(list, skb, nskb); 5312 else 5313 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5314 skb_set_owner_r(nskb, sk); 5315 mptcp_skb_ext_move(nskb, skb); 5316 5317 /* Copy data, releasing collapsed skbs. */ 5318 while (copy > 0) { 5319 int offset = start - TCP_SKB_CB(skb)->seq; 5320 int size = TCP_SKB_CB(skb)->end_seq - start; 5321 5322 BUG_ON(offset < 0); 5323 if (size > 0) { 5324 size = min(copy, size); 5325 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5326 BUG(); 5327 TCP_SKB_CB(nskb)->end_seq += size; 5328 copy -= size; 5329 start += size; 5330 } 5331 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5332 skb = tcp_collapse_one(sk, skb, list, root); 5333 if (!skb || 5334 skb == tail || 5335 !mptcp_skb_can_collapse(nskb, skb) || 5336 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5337 goto end; 5338 #ifdef CONFIG_TLS_DEVICE 5339 if (skb->decrypted != nskb->decrypted) 5340 goto end; 5341 #endif 5342 } 5343 } 5344 } 5345 end: 5346 skb_queue_walk_safe(&tmp, skb, n) 5347 tcp_rbtree_insert(root, skb); 5348 } 5349 5350 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5351 * and tcp_collapse() them until all the queue is collapsed. 5352 */ 5353 static void tcp_collapse_ofo_queue(struct sock *sk) 5354 { 5355 struct tcp_sock *tp = tcp_sk(sk); 5356 u32 range_truesize, sum_tiny = 0; 5357 struct sk_buff *skb, *head; 5358 u32 start, end; 5359 5360 skb = skb_rb_first(&tp->out_of_order_queue); 5361 new_range: 5362 if (!skb) { 5363 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5364 return; 5365 } 5366 start = TCP_SKB_CB(skb)->seq; 5367 end = TCP_SKB_CB(skb)->end_seq; 5368 range_truesize = skb->truesize; 5369 5370 for (head = skb;;) { 5371 skb = skb_rb_next(skb); 5372 5373 /* Range is terminated when we see a gap or when 5374 * we are at the queue end. 5375 */ 5376 if (!skb || 5377 after(TCP_SKB_CB(skb)->seq, end) || 5378 before(TCP_SKB_CB(skb)->end_seq, start)) { 5379 /* Do not attempt collapsing tiny skbs */ 5380 if (range_truesize != head->truesize || 5381 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5382 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5383 head, skb, start, end); 5384 } else { 5385 sum_tiny += range_truesize; 5386 if (sum_tiny > sk->sk_rcvbuf >> 3) 5387 return; 5388 } 5389 goto new_range; 5390 } 5391 5392 range_truesize += skb->truesize; 5393 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5394 start = TCP_SKB_CB(skb)->seq; 5395 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5396 end = TCP_SKB_CB(skb)->end_seq; 5397 } 5398 } 5399 5400 /* 5401 * Clean the out-of-order queue to make room. 5402 * We drop high sequences packets to : 5403 * 1) Let a chance for holes to be filled. 5404 * This means we do not drop packets from ooo queue if their sequence 5405 * is before incoming packet sequence. 5406 * 2) not add too big latencies if thousands of packets sit there. 5407 * (But if application shrinks SO_RCVBUF, we could still end up 5408 * freeing whole queue here) 5409 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5410 * 5411 * Return true if queue has shrunk. 5412 */ 5413 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5414 { 5415 struct tcp_sock *tp = tcp_sk(sk); 5416 struct rb_node *node, *prev; 5417 bool pruned = false; 5418 int goal; 5419 5420 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5421 return false; 5422 5423 goal = sk->sk_rcvbuf >> 3; 5424 node = &tp->ooo_last_skb->rbnode; 5425 5426 do { 5427 struct sk_buff *skb = rb_to_skb(node); 5428 5429 /* If incoming skb would land last in ofo queue, stop pruning. */ 5430 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5431 break; 5432 pruned = true; 5433 prev = rb_prev(node); 5434 rb_erase(node, &tp->out_of_order_queue); 5435 goal -= skb->truesize; 5436 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5437 tp->ooo_last_skb = rb_to_skb(prev); 5438 if (!prev || goal <= 0) { 5439 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5440 !tcp_under_memory_pressure(sk)) 5441 break; 5442 goal = sk->sk_rcvbuf >> 3; 5443 } 5444 node = prev; 5445 } while (node); 5446 5447 if (pruned) { 5448 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5449 /* Reset SACK state. A conforming SACK implementation will 5450 * do the same at a timeout based retransmit. When a connection 5451 * is in a sad state like this, we care only about integrity 5452 * of the connection not performance. 5453 */ 5454 if (tp->rx_opt.sack_ok) 5455 tcp_sack_reset(&tp->rx_opt); 5456 } 5457 return pruned; 5458 } 5459 5460 /* Reduce allocated memory if we can, trying to get 5461 * the socket within its memory limits again. 5462 * 5463 * Return less than zero if we should start dropping frames 5464 * until the socket owning process reads some of the data 5465 * to stabilize the situation. 5466 */ 5467 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5468 { 5469 struct tcp_sock *tp = tcp_sk(sk); 5470 5471 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5472 5473 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5474 tcp_clamp_window(sk); 5475 else if (tcp_under_memory_pressure(sk)) 5476 tcp_adjust_rcv_ssthresh(sk); 5477 5478 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5479 return 0; 5480 5481 tcp_collapse_ofo_queue(sk); 5482 if (!skb_queue_empty(&sk->sk_receive_queue)) 5483 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5484 skb_peek(&sk->sk_receive_queue), 5485 NULL, 5486 tp->copied_seq, tp->rcv_nxt); 5487 5488 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5489 return 0; 5490 5491 /* Collapsing did not help, destructive actions follow. 5492 * This must not ever occur. */ 5493 5494 tcp_prune_ofo_queue(sk, in_skb); 5495 5496 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5497 return 0; 5498 5499 /* If we are really being abused, tell the caller to silently 5500 * drop receive data on the floor. It will get retransmitted 5501 * and hopefully then we'll have sufficient space. 5502 */ 5503 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5504 5505 /* Massive buffer overcommit. */ 5506 tp->pred_flags = 0; 5507 return -1; 5508 } 5509 5510 static bool tcp_should_expand_sndbuf(struct sock *sk) 5511 { 5512 const struct tcp_sock *tp = tcp_sk(sk); 5513 5514 /* If the user specified a specific send buffer setting, do 5515 * not modify it. 5516 */ 5517 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5518 return false; 5519 5520 /* If we are under global TCP memory pressure, do not expand. */ 5521 if (tcp_under_memory_pressure(sk)) { 5522 int unused_mem = sk_unused_reserved_mem(sk); 5523 5524 /* Adjust sndbuf according to reserved mem. But make sure 5525 * it never goes below SOCK_MIN_SNDBUF. 5526 * See sk_stream_moderate_sndbuf() for more details. 5527 */ 5528 if (unused_mem > SOCK_MIN_SNDBUF) 5529 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5530 5531 return false; 5532 } 5533 5534 /* If we are under soft global TCP memory pressure, do not expand. */ 5535 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5536 return false; 5537 5538 /* If we filled the congestion window, do not expand. */ 5539 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5540 return false; 5541 5542 return true; 5543 } 5544 5545 static void tcp_new_space(struct sock *sk) 5546 { 5547 struct tcp_sock *tp = tcp_sk(sk); 5548 5549 if (tcp_should_expand_sndbuf(sk)) { 5550 tcp_sndbuf_expand(sk); 5551 tp->snd_cwnd_stamp = tcp_jiffies32; 5552 } 5553 5554 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5555 } 5556 5557 /* Caller made space either from: 5558 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5559 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5560 * 5561 * We might be able to generate EPOLLOUT to the application if: 5562 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5563 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5564 * small enough that tcp_stream_memory_free() decides it 5565 * is time to generate EPOLLOUT. 5566 */ 5567 void tcp_check_space(struct sock *sk) 5568 { 5569 /* pairs with tcp_poll() */ 5570 smp_mb(); 5571 if (sk->sk_socket && 5572 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5573 tcp_new_space(sk); 5574 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5575 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5576 } 5577 } 5578 5579 static inline void tcp_data_snd_check(struct sock *sk) 5580 { 5581 tcp_push_pending_frames(sk); 5582 tcp_check_space(sk); 5583 } 5584 5585 /* 5586 * Check if sending an ack is needed. 5587 */ 5588 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5589 { 5590 struct tcp_sock *tp = tcp_sk(sk); 5591 unsigned long rtt, delay; 5592 5593 /* More than one full frame received... */ 5594 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5595 /* ... and right edge of window advances far enough. 5596 * (tcp_recvmsg() will send ACK otherwise). 5597 * If application uses SO_RCVLOWAT, we want send ack now if 5598 * we have not received enough bytes to satisfy the condition. 5599 */ 5600 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5601 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5602 /* We ACK each frame or... */ 5603 tcp_in_quickack_mode(sk) || 5604 /* Protocol state mandates a one-time immediate ACK */ 5605 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5606 /* If we are running from __release_sock() in user context, 5607 * Defer the ack until tcp_release_cb(). 5608 */ 5609 if (sock_owned_by_user_nocheck(sk) && 5610 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5611 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5612 return; 5613 } 5614 send_now: 5615 tcp_send_ack(sk); 5616 return; 5617 } 5618 5619 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5620 tcp_send_delayed_ack(sk); 5621 return; 5622 } 5623 5624 if (!tcp_is_sack(tp) || 5625 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5626 goto send_now; 5627 5628 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5629 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5630 tp->dup_ack_counter = 0; 5631 } 5632 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5633 tp->dup_ack_counter++; 5634 goto send_now; 5635 } 5636 tp->compressed_ack++; 5637 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5638 return; 5639 5640 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5641 5642 rtt = tp->rcv_rtt_est.rtt_us; 5643 if (tp->srtt_us && tp->srtt_us < rtt) 5644 rtt = tp->srtt_us; 5645 5646 delay = min_t(unsigned long, 5647 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5648 rtt * (NSEC_PER_USEC >> 3)/20); 5649 sock_hold(sk); 5650 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5651 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5652 HRTIMER_MODE_REL_PINNED_SOFT); 5653 } 5654 5655 static inline void tcp_ack_snd_check(struct sock *sk) 5656 { 5657 if (!inet_csk_ack_scheduled(sk)) { 5658 /* We sent a data segment already. */ 5659 return; 5660 } 5661 __tcp_ack_snd_check(sk, 1); 5662 } 5663 5664 /* 5665 * This routine is only called when we have urgent data 5666 * signaled. Its the 'slow' part of tcp_urg. It could be 5667 * moved inline now as tcp_urg is only called from one 5668 * place. We handle URGent data wrong. We have to - as 5669 * BSD still doesn't use the correction from RFC961. 5670 * For 1003.1g we should support a new option TCP_STDURG to permit 5671 * either form (or just set the sysctl tcp_stdurg). 5672 */ 5673 5674 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5675 { 5676 struct tcp_sock *tp = tcp_sk(sk); 5677 u32 ptr = ntohs(th->urg_ptr); 5678 5679 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5680 ptr--; 5681 ptr += ntohl(th->seq); 5682 5683 /* Ignore urgent data that we've already seen and read. */ 5684 if (after(tp->copied_seq, ptr)) 5685 return; 5686 5687 /* Do not replay urg ptr. 5688 * 5689 * NOTE: interesting situation not covered by specs. 5690 * Misbehaving sender may send urg ptr, pointing to segment, 5691 * which we already have in ofo queue. We are not able to fetch 5692 * such data and will stay in TCP_URG_NOTYET until will be eaten 5693 * by recvmsg(). Seems, we are not obliged to handle such wicked 5694 * situations. But it is worth to think about possibility of some 5695 * DoSes using some hypothetical application level deadlock. 5696 */ 5697 if (before(ptr, tp->rcv_nxt)) 5698 return; 5699 5700 /* Do we already have a newer (or duplicate) urgent pointer? */ 5701 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5702 return; 5703 5704 /* Tell the world about our new urgent pointer. */ 5705 sk_send_sigurg(sk); 5706 5707 /* We may be adding urgent data when the last byte read was 5708 * urgent. To do this requires some care. We cannot just ignore 5709 * tp->copied_seq since we would read the last urgent byte again 5710 * as data, nor can we alter copied_seq until this data arrives 5711 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5712 * 5713 * NOTE. Double Dutch. Rendering to plain English: author of comment 5714 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5715 * and expect that both A and B disappear from stream. This is _wrong_. 5716 * Though this happens in BSD with high probability, this is occasional. 5717 * Any application relying on this is buggy. Note also, that fix "works" 5718 * only in this artificial test. Insert some normal data between A and B and we will 5719 * decline of BSD again. Verdict: it is better to remove to trap 5720 * buggy users. 5721 */ 5722 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5723 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5724 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5725 tp->copied_seq++; 5726 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5727 __skb_unlink(skb, &sk->sk_receive_queue); 5728 __kfree_skb(skb); 5729 } 5730 } 5731 5732 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5733 WRITE_ONCE(tp->urg_seq, ptr); 5734 5735 /* Disable header prediction. */ 5736 tp->pred_flags = 0; 5737 } 5738 5739 /* This is the 'fast' part of urgent handling. */ 5740 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5741 { 5742 struct tcp_sock *tp = tcp_sk(sk); 5743 5744 /* Check if we get a new urgent pointer - normally not. */ 5745 if (unlikely(th->urg)) 5746 tcp_check_urg(sk, th); 5747 5748 /* Do we wait for any urgent data? - normally not... */ 5749 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5750 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5751 th->syn; 5752 5753 /* Is the urgent pointer pointing into this packet? */ 5754 if (ptr < skb->len) { 5755 u8 tmp; 5756 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5757 BUG(); 5758 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5759 if (!sock_flag(sk, SOCK_DEAD)) 5760 sk->sk_data_ready(sk); 5761 } 5762 } 5763 } 5764 5765 /* Accept RST for rcv_nxt - 1 after a FIN. 5766 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5767 * FIN is sent followed by a RST packet. The RST is sent with the same 5768 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5769 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5770 * ACKs on the closed socket. In addition middleboxes can drop either the 5771 * challenge ACK or a subsequent RST. 5772 */ 5773 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5774 { 5775 const struct tcp_sock *tp = tcp_sk(sk); 5776 5777 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5778 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5779 TCPF_CLOSING)); 5780 } 5781 5782 /* Does PAWS and seqno based validation of an incoming segment, flags will 5783 * play significant role here. 5784 */ 5785 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5786 const struct tcphdr *th, int syn_inerr) 5787 { 5788 struct tcp_sock *tp = tcp_sk(sk); 5789 SKB_DR(reason); 5790 5791 /* RFC1323: H1. Apply PAWS check first. */ 5792 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5793 tp->rx_opt.saw_tstamp && 5794 tcp_paws_discard(sk, skb)) { 5795 if (!th->rst) { 5796 if (unlikely(th->syn)) 5797 goto syn_challenge; 5798 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5799 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5800 LINUX_MIB_TCPACKSKIPPEDPAWS, 5801 &tp->last_oow_ack_time)) 5802 tcp_send_dupack(sk, skb); 5803 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5804 goto discard; 5805 } 5806 /* Reset is accepted even if it did not pass PAWS. */ 5807 } 5808 5809 /* Step 1: check sequence number */ 5810 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5811 if (reason) { 5812 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5813 * (RST) segments are validated by checking their SEQ-fields." 5814 * And page 69: "If an incoming segment is not acceptable, 5815 * an acknowledgment should be sent in reply (unless the RST 5816 * bit is set, if so drop the segment and return)". 5817 */ 5818 if (!th->rst) { 5819 if (th->syn) 5820 goto syn_challenge; 5821 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5822 LINUX_MIB_TCPACKSKIPPEDSEQ, 5823 &tp->last_oow_ack_time)) 5824 tcp_send_dupack(sk, skb); 5825 } else if (tcp_reset_check(sk, skb)) { 5826 goto reset; 5827 } 5828 goto discard; 5829 } 5830 5831 /* Step 2: check RST bit */ 5832 if (th->rst) { 5833 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5834 * FIN and SACK too if available): 5835 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5836 * the right-most SACK block, 5837 * then 5838 * RESET the connection 5839 * else 5840 * Send a challenge ACK 5841 */ 5842 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5843 tcp_reset_check(sk, skb)) 5844 goto reset; 5845 5846 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5847 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5848 int max_sack = sp[0].end_seq; 5849 int this_sack; 5850 5851 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5852 ++this_sack) { 5853 max_sack = after(sp[this_sack].end_seq, 5854 max_sack) ? 5855 sp[this_sack].end_seq : max_sack; 5856 } 5857 5858 if (TCP_SKB_CB(skb)->seq == max_sack) 5859 goto reset; 5860 } 5861 5862 /* Disable TFO if RST is out-of-order 5863 * and no data has been received 5864 * for current active TFO socket 5865 */ 5866 if (tp->syn_fastopen && !tp->data_segs_in && 5867 sk->sk_state == TCP_ESTABLISHED) 5868 tcp_fastopen_active_disable(sk); 5869 tcp_send_challenge_ack(sk); 5870 SKB_DR_SET(reason, TCP_RESET); 5871 goto discard; 5872 } 5873 5874 /* step 3: check security and precedence [ignored] */ 5875 5876 /* step 4: Check for a SYN 5877 * RFC 5961 4.2 : Send a challenge ack 5878 */ 5879 if (th->syn) { 5880 syn_challenge: 5881 if (syn_inerr) 5882 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5883 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5884 tcp_send_challenge_ack(sk); 5885 SKB_DR_SET(reason, TCP_INVALID_SYN); 5886 goto discard; 5887 } 5888 5889 bpf_skops_parse_hdr(sk, skb); 5890 5891 return true; 5892 5893 discard: 5894 tcp_drop_reason(sk, skb, reason); 5895 return false; 5896 5897 reset: 5898 tcp_reset(sk, skb); 5899 __kfree_skb(skb); 5900 return false; 5901 } 5902 5903 /* 5904 * TCP receive function for the ESTABLISHED state. 5905 * 5906 * It is split into a fast path and a slow path. The fast path is 5907 * disabled when: 5908 * - A zero window was announced from us - zero window probing 5909 * is only handled properly in the slow path. 5910 * - Out of order segments arrived. 5911 * - Urgent data is expected. 5912 * - There is no buffer space left 5913 * - Unexpected TCP flags/window values/header lengths are received 5914 * (detected by checking the TCP header against pred_flags) 5915 * - Data is sent in both directions. Fast path only supports pure senders 5916 * or pure receivers (this means either the sequence number or the ack 5917 * value must stay constant) 5918 * - Unexpected TCP option. 5919 * 5920 * When these conditions are not satisfied it drops into a standard 5921 * receive procedure patterned after RFC793 to handle all cases. 5922 * The first three cases are guaranteed by proper pred_flags setting, 5923 * the rest is checked inline. Fast processing is turned on in 5924 * tcp_data_queue when everything is OK. 5925 */ 5926 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5927 { 5928 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5929 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5930 struct tcp_sock *tp = tcp_sk(sk); 5931 unsigned int len = skb->len; 5932 5933 /* TCP congestion window tracking */ 5934 trace_tcp_probe(sk, skb); 5935 5936 tcp_mstamp_refresh(tp); 5937 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5938 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5939 /* 5940 * Header prediction. 5941 * The code loosely follows the one in the famous 5942 * "30 instruction TCP receive" Van Jacobson mail. 5943 * 5944 * Van's trick is to deposit buffers into socket queue 5945 * on a device interrupt, to call tcp_recv function 5946 * on the receive process context and checksum and copy 5947 * the buffer to user space. smart... 5948 * 5949 * Our current scheme is not silly either but we take the 5950 * extra cost of the net_bh soft interrupt processing... 5951 * We do checksum and copy also but from device to kernel. 5952 */ 5953 5954 tp->rx_opt.saw_tstamp = 0; 5955 5956 /* pred_flags is 0xS?10 << 16 + snd_wnd 5957 * if header_prediction is to be made 5958 * 'S' will always be tp->tcp_header_len >> 2 5959 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5960 * turn it off (when there are holes in the receive 5961 * space for instance) 5962 * PSH flag is ignored. 5963 */ 5964 5965 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5966 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5967 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5968 int tcp_header_len = tp->tcp_header_len; 5969 5970 /* Timestamp header prediction: tcp_header_len 5971 * is automatically equal to th->doff*4 due to pred_flags 5972 * match. 5973 */ 5974 5975 /* Check timestamp */ 5976 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5977 /* No? Slow path! */ 5978 if (!tcp_parse_aligned_timestamp(tp, th)) 5979 goto slow_path; 5980 5981 /* If PAWS failed, check it more carefully in slow path */ 5982 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5983 goto slow_path; 5984 5985 /* DO NOT update ts_recent here, if checksum fails 5986 * and timestamp was corrupted part, it will result 5987 * in a hung connection since we will drop all 5988 * future packets due to the PAWS test. 5989 */ 5990 } 5991 5992 if (len <= tcp_header_len) { 5993 /* Bulk data transfer: sender */ 5994 if (len == tcp_header_len) { 5995 /* Predicted packet is in window by definition. 5996 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5997 * Hence, check seq<=rcv_wup reduces to: 5998 */ 5999 if (tcp_header_len == 6000 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6001 tp->rcv_nxt == tp->rcv_wup) 6002 tcp_store_ts_recent(tp); 6003 6004 /* We know that such packets are checksummed 6005 * on entry. 6006 */ 6007 tcp_ack(sk, skb, 0); 6008 __kfree_skb(skb); 6009 tcp_data_snd_check(sk); 6010 /* When receiving pure ack in fast path, update 6011 * last ts ecr directly instead of calling 6012 * tcp_rcv_rtt_measure_ts() 6013 */ 6014 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6015 return; 6016 } else { /* Header too small */ 6017 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6018 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6019 goto discard; 6020 } 6021 } else { 6022 int eaten = 0; 6023 bool fragstolen = false; 6024 6025 if (tcp_checksum_complete(skb)) 6026 goto csum_error; 6027 6028 if ((int)skb->truesize > sk->sk_forward_alloc) 6029 goto step5; 6030 6031 /* Predicted packet is in window by definition. 6032 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6033 * Hence, check seq<=rcv_wup reduces to: 6034 */ 6035 if (tcp_header_len == 6036 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6037 tp->rcv_nxt == tp->rcv_wup) 6038 tcp_store_ts_recent(tp); 6039 6040 tcp_rcv_rtt_measure_ts(sk, skb); 6041 6042 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6043 6044 /* Bulk data transfer: receiver */ 6045 skb_dst_drop(skb); 6046 __skb_pull(skb, tcp_header_len); 6047 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6048 6049 tcp_event_data_recv(sk, skb); 6050 6051 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6052 /* Well, only one small jumplet in fast path... */ 6053 tcp_ack(sk, skb, FLAG_DATA); 6054 tcp_data_snd_check(sk); 6055 if (!inet_csk_ack_scheduled(sk)) 6056 goto no_ack; 6057 } else { 6058 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6059 } 6060 6061 __tcp_ack_snd_check(sk, 0); 6062 no_ack: 6063 if (eaten) 6064 kfree_skb_partial(skb, fragstolen); 6065 tcp_data_ready(sk); 6066 return; 6067 } 6068 } 6069 6070 slow_path: 6071 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6072 goto csum_error; 6073 6074 if (!th->ack && !th->rst && !th->syn) { 6075 reason = SKB_DROP_REASON_TCP_FLAGS; 6076 goto discard; 6077 } 6078 6079 /* 6080 * Standard slow path. 6081 */ 6082 6083 if (!tcp_validate_incoming(sk, skb, th, 1)) 6084 return; 6085 6086 step5: 6087 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6088 if ((int)reason < 0) { 6089 reason = -reason; 6090 goto discard; 6091 } 6092 tcp_rcv_rtt_measure_ts(sk, skb); 6093 6094 /* Process urgent data. */ 6095 tcp_urg(sk, skb, th); 6096 6097 /* step 7: process the segment text */ 6098 tcp_data_queue(sk, skb); 6099 6100 tcp_data_snd_check(sk); 6101 tcp_ack_snd_check(sk); 6102 return; 6103 6104 csum_error: 6105 reason = SKB_DROP_REASON_TCP_CSUM; 6106 trace_tcp_bad_csum(skb); 6107 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6108 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6109 6110 discard: 6111 tcp_drop_reason(sk, skb, reason); 6112 } 6113 EXPORT_SYMBOL(tcp_rcv_established); 6114 6115 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6116 { 6117 struct inet_connection_sock *icsk = inet_csk(sk); 6118 struct tcp_sock *tp = tcp_sk(sk); 6119 6120 tcp_mtup_init(sk); 6121 icsk->icsk_af_ops->rebuild_header(sk); 6122 tcp_init_metrics(sk); 6123 6124 /* Initialize the congestion window to start the transfer. 6125 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6126 * retransmitted. In light of RFC6298 more aggressive 1sec 6127 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6128 * retransmission has occurred. 6129 */ 6130 if (tp->total_retrans > 1 && tp->undo_marker) 6131 tcp_snd_cwnd_set(tp, 1); 6132 else 6133 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6134 tp->snd_cwnd_stamp = tcp_jiffies32; 6135 6136 bpf_skops_established(sk, bpf_op, skb); 6137 /* Initialize congestion control unless BPF initialized it already: */ 6138 if (!icsk->icsk_ca_initialized) 6139 tcp_init_congestion_control(sk); 6140 tcp_init_buffer_space(sk); 6141 } 6142 6143 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6144 { 6145 struct tcp_sock *tp = tcp_sk(sk); 6146 struct inet_connection_sock *icsk = inet_csk(sk); 6147 6148 tcp_set_state(sk, TCP_ESTABLISHED); 6149 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6150 6151 if (skb) { 6152 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6153 security_inet_conn_established(sk, skb); 6154 sk_mark_napi_id(sk, skb); 6155 } 6156 6157 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6158 6159 /* Prevent spurious tcp_cwnd_restart() on first data 6160 * packet. 6161 */ 6162 tp->lsndtime = tcp_jiffies32; 6163 6164 if (sock_flag(sk, SOCK_KEEPOPEN)) 6165 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6166 6167 if (!tp->rx_opt.snd_wscale) 6168 __tcp_fast_path_on(tp, tp->snd_wnd); 6169 else 6170 tp->pred_flags = 0; 6171 } 6172 6173 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6174 struct tcp_fastopen_cookie *cookie) 6175 { 6176 struct tcp_sock *tp = tcp_sk(sk); 6177 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6178 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6179 bool syn_drop = false; 6180 6181 if (mss == tp->rx_opt.user_mss) { 6182 struct tcp_options_received opt; 6183 6184 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6185 tcp_clear_options(&opt); 6186 opt.user_mss = opt.mss_clamp = 0; 6187 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6188 mss = opt.mss_clamp; 6189 } 6190 6191 if (!tp->syn_fastopen) { 6192 /* Ignore an unsolicited cookie */ 6193 cookie->len = -1; 6194 } else if (tp->total_retrans) { 6195 /* SYN timed out and the SYN-ACK neither has a cookie nor 6196 * acknowledges data. Presumably the remote received only 6197 * the retransmitted (regular) SYNs: either the original 6198 * SYN-data or the corresponding SYN-ACK was dropped. 6199 */ 6200 syn_drop = (cookie->len < 0 && data); 6201 } else if (cookie->len < 0 && !tp->syn_data) { 6202 /* We requested a cookie but didn't get it. If we did not use 6203 * the (old) exp opt format then try so next time (try_exp=1). 6204 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6205 */ 6206 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6207 } 6208 6209 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6210 6211 if (data) { /* Retransmit unacked data in SYN */ 6212 if (tp->total_retrans) 6213 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6214 else 6215 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6216 skb_rbtree_walk_from(data) 6217 tcp_mark_skb_lost(sk, data); 6218 tcp_xmit_retransmit_queue(sk); 6219 NET_INC_STATS(sock_net(sk), 6220 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6221 return true; 6222 } 6223 tp->syn_data_acked = tp->syn_data; 6224 if (tp->syn_data_acked) { 6225 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6226 /* SYN-data is counted as two separate packets in tcp_ack() */ 6227 if (tp->delivered > 1) 6228 --tp->delivered; 6229 } 6230 6231 tcp_fastopen_add_skb(sk, synack); 6232 6233 return false; 6234 } 6235 6236 static void smc_check_reset_syn(struct tcp_sock *tp) 6237 { 6238 #if IS_ENABLED(CONFIG_SMC) 6239 if (static_branch_unlikely(&tcp_have_smc)) { 6240 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6241 tp->syn_smc = 0; 6242 } 6243 #endif 6244 } 6245 6246 static void tcp_try_undo_spurious_syn(struct sock *sk) 6247 { 6248 struct tcp_sock *tp = tcp_sk(sk); 6249 u32 syn_stamp; 6250 6251 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6252 * spurious if the ACK's timestamp option echo value matches the 6253 * original SYN timestamp. 6254 */ 6255 syn_stamp = tp->retrans_stamp; 6256 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6257 syn_stamp == tp->rx_opt.rcv_tsecr) 6258 tp->undo_marker = 0; 6259 } 6260 6261 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6262 const struct tcphdr *th) 6263 { 6264 struct inet_connection_sock *icsk = inet_csk(sk); 6265 struct tcp_sock *tp = tcp_sk(sk); 6266 struct tcp_fastopen_cookie foc = { .len = -1 }; 6267 int saved_clamp = tp->rx_opt.mss_clamp; 6268 bool fastopen_fail; 6269 SKB_DR(reason); 6270 6271 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6272 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6273 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6274 6275 if (th->ack) { 6276 /* rfc793: 6277 * "If the state is SYN-SENT then 6278 * first check the ACK bit 6279 * If the ACK bit is set 6280 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6281 * a reset (unless the RST bit is set, if so drop 6282 * the segment and return)" 6283 */ 6284 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6285 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6286 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6287 if (icsk->icsk_retransmits == 0) 6288 inet_csk_reset_xmit_timer(sk, 6289 ICSK_TIME_RETRANS, 6290 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6291 goto reset_and_undo; 6292 } 6293 6294 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6295 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6296 tcp_time_stamp(tp))) { 6297 NET_INC_STATS(sock_net(sk), 6298 LINUX_MIB_PAWSACTIVEREJECTED); 6299 goto reset_and_undo; 6300 } 6301 6302 /* Now ACK is acceptable. 6303 * 6304 * "If the RST bit is set 6305 * If the ACK was acceptable then signal the user "error: 6306 * connection reset", drop the segment, enter CLOSED state, 6307 * delete TCB, and return." 6308 */ 6309 6310 if (th->rst) { 6311 tcp_reset(sk, skb); 6312 consume: 6313 __kfree_skb(skb); 6314 return 0; 6315 } 6316 6317 /* rfc793: 6318 * "fifth, if neither of the SYN or RST bits is set then 6319 * drop the segment and return." 6320 * 6321 * See note below! 6322 * --ANK(990513) 6323 */ 6324 if (!th->syn) { 6325 SKB_DR_SET(reason, TCP_FLAGS); 6326 goto discard_and_undo; 6327 } 6328 /* rfc793: 6329 * "If the SYN bit is on ... 6330 * are acceptable then ... 6331 * (our SYN has been ACKed), change the connection 6332 * state to ESTABLISHED..." 6333 */ 6334 6335 tcp_ecn_rcv_synack(tp, th); 6336 6337 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6338 tcp_try_undo_spurious_syn(sk); 6339 tcp_ack(sk, skb, FLAG_SLOWPATH); 6340 6341 /* Ok.. it's good. Set up sequence numbers and 6342 * move to established. 6343 */ 6344 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6345 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6346 6347 /* RFC1323: The window in SYN & SYN/ACK segments is 6348 * never scaled. 6349 */ 6350 tp->snd_wnd = ntohs(th->window); 6351 6352 if (!tp->rx_opt.wscale_ok) { 6353 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6354 tp->window_clamp = min(tp->window_clamp, 65535U); 6355 } 6356 6357 if (tp->rx_opt.saw_tstamp) { 6358 tp->rx_opt.tstamp_ok = 1; 6359 tp->tcp_header_len = 6360 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6361 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6362 tcp_store_ts_recent(tp); 6363 } else { 6364 tp->tcp_header_len = sizeof(struct tcphdr); 6365 } 6366 6367 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6368 tcp_initialize_rcv_mss(sk); 6369 6370 /* Remember, tcp_poll() does not lock socket! 6371 * Change state from SYN-SENT only after copied_seq 6372 * is initialized. */ 6373 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6374 6375 smc_check_reset_syn(tp); 6376 6377 smp_mb(); 6378 6379 tcp_finish_connect(sk, skb); 6380 6381 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6382 tcp_rcv_fastopen_synack(sk, skb, &foc); 6383 6384 if (!sock_flag(sk, SOCK_DEAD)) { 6385 sk->sk_state_change(sk); 6386 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6387 } 6388 if (fastopen_fail) 6389 return -1; 6390 if (sk->sk_write_pending || 6391 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6392 inet_csk_in_pingpong_mode(sk)) { 6393 /* Save one ACK. Data will be ready after 6394 * several ticks, if write_pending is set. 6395 * 6396 * It may be deleted, but with this feature tcpdumps 6397 * look so _wonderfully_ clever, that I was not able 6398 * to stand against the temptation 8) --ANK 6399 */ 6400 inet_csk_schedule_ack(sk); 6401 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6402 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6403 TCP_DELACK_MAX, TCP_RTO_MAX); 6404 goto consume; 6405 } 6406 tcp_send_ack(sk); 6407 return -1; 6408 } 6409 6410 /* No ACK in the segment */ 6411 6412 if (th->rst) { 6413 /* rfc793: 6414 * "If the RST bit is set 6415 * 6416 * Otherwise (no ACK) drop the segment and return." 6417 */ 6418 SKB_DR_SET(reason, TCP_RESET); 6419 goto discard_and_undo; 6420 } 6421 6422 /* PAWS check. */ 6423 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6424 tcp_paws_reject(&tp->rx_opt, 0)) { 6425 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6426 goto discard_and_undo; 6427 } 6428 if (th->syn) { 6429 /* We see SYN without ACK. It is attempt of 6430 * simultaneous connect with crossed SYNs. 6431 * Particularly, it can be connect to self. 6432 */ 6433 tcp_set_state(sk, TCP_SYN_RECV); 6434 6435 if (tp->rx_opt.saw_tstamp) { 6436 tp->rx_opt.tstamp_ok = 1; 6437 tcp_store_ts_recent(tp); 6438 tp->tcp_header_len = 6439 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6440 } else { 6441 tp->tcp_header_len = sizeof(struct tcphdr); 6442 } 6443 6444 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6445 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6446 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6447 6448 /* RFC1323: The window in SYN & SYN/ACK segments is 6449 * never scaled. 6450 */ 6451 tp->snd_wnd = ntohs(th->window); 6452 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6453 tp->max_window = tp->snd_wnd; 6454 6455 tcp_ecn_rcv_syn(tp, th); 6456 6457 tcp_mtup_init(sk); 6458 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6459 tcp_initialize_rcv_mss(sk); 6460 6461 tcp_send_synack(sk); 6462 #if 0 6463 /* Note, we could accept data and URG from this segment. 6464 * There are no obstacles to make this (except that we must 6465 * either change tcp_recvmsg() to prevent it from returning data 6466 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6467 * 6468 * However, if we ignore data in ACKless segments sometimes, 6469 * we have no reasons to accept it sometimes. 6470 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6471 * is not flawless. So, discard packet for sanity. 6472 * Uncomment this return to process the data. 6473 */ 6474 return -1; 6475 #else 6476 goto consume; 6477 #endif 6478 } 6479 /* "fifth, if neither of the SYN or RST bits is set then 6480 * drop the segment and return." 6481 */ 6482 6483 discard_and_undo: 6484 tcp_clear_options(&tp->rx_opt); 6485 tp->rx_opt.mss_clamp = saved_clamp; 6486 tcp_drop_reason(sk, skb, reason); 6487 return 0; 6488 6489 reset_and_undo: 6490 tcp_clear_options(&tp->rx_opt); 6491 tp->rx_opt.mss_clamp = saved_clamp; 6492 return 1; 6493 } 6494 6495 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6496 { 6497 struct tcp_sock *tp = tcp_sk(sk); 6498 struct request_sock *req; 6499 6500 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6501 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6502 */ 6503 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6504 tcp_try_undo_recovery(sk); 6505 6506 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6507 tcp_update_rto_time(tp); 6508 tp->retrans_stamp = 0; 6509 inet_csk(sk)->icsk_retransmits = 0; 6510 6511 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6512 * we no longer need req so release it. 6513 */ 6514 req = rcu_dereference_protected(tp->fastopen_rsk, 6515 lockdep_sock_is_held(sk)); 6516 reqsk_fastopen_remove(sk, req, false); 6517 6518 /* Re-arm the timer because data may have been sent out. 6519 * This is similar to the regular data transmission case 6520 * when new data has just been ack'ed. 6521 * 6522 * (TFO) - we could try to be more aggressive and 6523 * retransmitting any data sooner based on when they 6524 * are sent out. 6525 */ 6526 tcp_rearm_rto(sk); 6527 } 6528 6529 /* 6530 * This function implements the receiving procedure of RFC 793 for 6531 * all states except ESTABLISHED and TIME_WAIT. 6532 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6533 * address independent. 6534 */ 6535 6536 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6537 { 6538 struct tcp_sock *tp = tcp_sk(sk); 6539 struct inet_connection_sock *icsk = inet_csk(sk); 6540 const struct tcphdr *th = tcp_hdr(skb); 6541 struct request_sock *req; 6542 int queued = 0; 6543 bool acceptable; 6544 SKB_DR(reason); 6545 6546 switch (sk->sk_state) { 6547 case TCP_CLOSE: 6548 SKB_DR_SET(reason, TCP_CLOSE); 6549 goto discard; 6550 6551 case TCP_LISTEN: 6552 if (th->ack) 6553 return 1; 6554 6555 if (th->rst) { 6556 SKB_DR_SET(reason, TCP_RESET); 6557 goto discard; 6558 } 6559 if (th->syn) { 6560 if (th->fin) { 6561 SKB_DR_SET(reason, TCP_FLAGS); 6562 goto discard; 6563 } 6564 /* It is possible that we process SYN packets from backlog, 6565 * so we need to make sure to disable BH and RCU right there. 6566 */ 6567 rcu_read_lock(); 6568 local_bh_disable(); 6569 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6570 local_bh_enable(); 6571 rcu_read_unlock(); 6572 6573 if (!acceptable) 6574 return 1; 6575 consume_skb(skb); 6576 return 0; 6577 } 6578 SKB_DR_SET(reason, TCP_FLAGS); 6579 goto discard; 6580 6581 case TCP_SYN_SENT: 6582 tp->rx_opt.saw_tstamp = 0; 6583 tcp_mstamp_refresh(tp); 6584 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6585 if (queued >= 0) 6586 return queued; 6587 6588 /* Do step6 onward by hand. */ 6589 tcp_urg(sk, skb, th); 6590 __kfree_skb(skb); 6591 tcp_data_snd_check(sk); 6592 return 0; 6593 } 6594 6595 tcp_mstamp_refresh(tp); 6596 tp->rx_opt.saw_tstamp = 0; 6597 req = rcu_dereference_protected(tp->fastopen_rsk, 6598 lockdep_sock_is_held(sk)); 6599 if (req) { 6600 bool req_stolen; 6601 6602 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6603 sk->sk_state != TCP_FIN_WAIT1); 6604 6605 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6606 SKB_DR_SET(reason, TCP_FASTOPEN); 6607 goto discard; 6608 } 6609 } 6610 6611 if (!th->ack && !th->rst && !th->syn) { 6612 SKB_DR_SET(reason, TCP_FLAGS); 6613 goto discard; 6614 } 6615 if (!tcp_validate_incoming(sk, skb, th, 0)) 6616 return 0; 6617 6618 /* step 5: check the ACK field */ 6619 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6620 FLAG_UPDATE_TS_RECENT | 6621 FLAG_NO_CHALLENGE_ACK) > 0; 6622 6623 if (!acceptable) { 6624 if (sk->sk_state == TCP_SYN_RECV) 6625 return 1; /* send one RST */ 6626 tcp_send_challenge_ack(sk); 6627 SKB_DR_SET(reason, TCP_OLD_ACK); 6628 goto discard; 6629 } 6630 switch (sk->sk_state) { 6631 case TCP_SYN_RECV: 6632 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6633 if (!tp->srtt_us) 6634 tcp_synack_rtt_meas(sk, req); 6635 6636 if (req) { 6637 tcp_rcv_synrecv_state_fastopen(sk); 6638 } else { 6639 tcp_try_undo_spurious_syn(sk); 6640 tp->retrans_stamp = 0; 6641 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6642 skb); 6643 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6644 } 6645 smp_mb(); 6646 tcp_set_state(sk, TCP_ESTABLISHED); 6647 sk->sk_state_change(sk); 6648 6649 /* Note, that this wakeup is only for marginal crossed SYN case. 6650 * Passively open sockets are not waked up, because 6651 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6652 */ 6653 if (sk->sk_socket) 6654 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6655 6656 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6657 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6658 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6659 6660 if (tp->rx_opt.tstamp_ok) 6661 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6662 6663 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6664 tcp_update_pacing_rate(sk); 6665 6666 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6667 tp->lsndtime = tcp_jiffies32; 6668 6669 tcp_initialize_rcv_mss(sk); 6670 tcp_fast_path_on(tp); 6671 break; 6672 6673 case TCP_FIN_WAIT1: { 6674 int tmo; 6675 6676 if (req) 6677 tcp_rcv_synrecv_state_fastopen(sk); 6678 6679 if (tp->snd_una != tp->write_seq) 6680 break; 6681 6682 tcp_set_state(sk, TCP_FIN_WAIT2); 6683 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6684 6685 sk_dst_confirm(sk); 6686 6687 if (!sock_flag(sk, SOCK_DEAD)) { 6688 /* Wake up lingering close() */ 6689 sk->sk_state_change(sk); 6690 break; 6691 } 6692 6693 if (READ_ONCE(tp->linger2) < 0) { 6694 tcp_done(sk); 6695 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6696 return 1; 6697 } 6698 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6699 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6700 /* Receive out of order FIN after close() */ 6701 if (tp->syn_fastopen && th->fin) 6702 tcp_fastopen_active_disable(sk); 6703 tcp_done(sk); 6704 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6705 return 1; 6706 } 6707 6708 tmo = tcp_fin_time(sk); 6709 if (tmo > TCP_TIMEWAIT_LEN) { 6710 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6711 } else if (th->fin || sock_owned_by_user(sk)) { 6712 /* Bad case. We could lose such FIN otherwise. 6713 * It is not a big problem, but it looks confusing 6714 * and not so rare event. We still can lose it now, 6715 * if it spins in bh_lock_sock(), but it is really 6716 * marginal case. 6717 */ 6718 inet_csk_reset_keepalive_timer(sk, tmo); 6719 } else { 6720 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6721 goto consume; 6722 } 6723 break; 6724 } 6725 6726 case TCP_CLOSING: 6727 if (tp->snd_una == tp->write_seq) { 6728 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6729 goto consume; 6730 } 6731 break; 6732 6733 case TCP_LAST_ACK: 6734 if (tp->snd_una == tp->write_seq) { 6735 tcp_update_metrics(sk); 6736 tcp_done(sk); 6737 goto consume; 6738 } 6739 break; 6740 } 6741 6742 /* step 6: check the URG bit */ 6743 tcp_urg(sk, skb, th); 6744 6745 /* step 7: process the segment text */ 6746 switch (sk->sk_state) { 6747 case TCP_CLOSE_WAIT: 6748 case TCP_CLOSING: 6749 case TCP_LAST_ACK: 6750 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6751 /* If a subflow has been reset, the packet should not 6752 * continue to be processed, drop the packet. 6753 */ 6754 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6755 goto discard; 6756 break; 6757 } 6758 fallthrough; 6759 case TCP_FIN_WAIT1: 6760 case TCP_FIN_WAIT2: 6761 /* RFC 793 says to queue data in these states, 6762 * RFC 1122 says we MUST send a reset. 6763 * BSD 4.4 also does reset. 6764 */ 6765 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6766 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6767 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6768 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6769 tcp_reset(sk, skb); 6770 return 1; 6771 } 6772 } 6773 fallthrough; 6774 case TCP_ESTABLISHED: 6775 tcp_data_queue(sk, skb); 6776 queued = 1; 6777 break; 6778 } 6779 6780 /* tcp_data could move socket to TIME-WAIT */ 6781 if (sk->sk_state != TCP_CLOSE) { 6782 tcp_data_snd_check(sk); 6783 tcp_ack_snd_check(sk); 6784 } 6785 6786 if (!queued) { 6787 discard: 6788 tcp_drop_reason(sk, skb, reason); 6789 } 6790 return 0; 6791 6792 consume: 6793 __kfree_skb(skb); 6794 return 0; 6795 } 6796 EXPORT_SYMBOL(tcp_rcv_state_process); 6797 6798 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6799 { 6800 struct inet_request_sock *ireq = inet_rsk(req); 6801 6802 if (family == AF_INET) 6803 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6804 &ireq->ir_rmt_addr, port); 6805 #if IS_ENABLED(CONFIG_IPV6) 6806 else if (family == AF_INET6) 6807 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6808 &ireq->ir_v6_rmt_addr, port); 6809 #endif 6810 } 6811 6812 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6813 * 6814 * If we receive a SYN packet with these bits set, it means a 6815 * network is playing bad games with TOS bits. In order to 6816 * avoid possible false congestion notifications, we disable 6817 * TCP ECN negotiation. 6818 * 6819 * Exception: tcp_ca wants ECN. This is required for DCTCP 6820 * congestion control: Linux DCTCP asserts ECT on all packets, 6821 * including SYN, which is most optimal solution; however, 6822 * others, such as FreeBSD do not. 6823 * 6824 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6825 * set, indicating the use of a future TCP extension (such as AccECN). See 6826 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6827 * extensions. 6828 */ 6829 static void tcp_ecn_create_request(struct request_sock *req, 6830 const struct sk_buff *skb, 6831 const struct sock *listen_sk, 6832 const struct dst_entry *dst) 6833 { 6834 const struct tcphdr *th = tcp_hdr(skb); 6835 const struct net *net = sock_net(listen_sk); 6836 bool th_ecn = th->ece && th->cwr; 6837 bool ect, ecn_ok; 6838 u32 ecn_ok_dst; 6839 6840 if (!th_ecn) 6841 return; 6842 6843 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6844 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6845 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6846 6847 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6848 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6849 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6850 inet_rsk(req)->ecn_ok = 1; 6851 } 6852 6853 static void tcp_openreq_init(struct request_sock *req, 6854 const struct tcp_options_received *rx_opt, 6855 struct sk_buff *skb, const struct sock *sk) 6856 { 6857 struct inet_request_sock *ireq = inet_rsk(req); 6858 6859 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6860 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6861 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6862 tcp_rsk(req)->snt_synack = 0; 6863 tcp_rsk(req)->last_oow_ack_time = 0; 6864 req->mss = rx_opt->mss_clamp; 6865 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6866 ireq->tstamp_ok = rx_opt->tstamp_ok; 6867 ireq->sack_ok = rx_opt->sack_ok; 6868 ireq->snd_wscale = rx_opt->snd_wscale; 6869 ireq->wscale_ok = rx_opt->wscale_ok; 6870 ireq->acked = 0; 6871 ireq->ecn_ok = 0; 6872 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6873 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6874 ireq->ir_mark = inet_request_mark(sk, skb); 6875 #if IS_ENABLED(CONFIG_SMC) 6876 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6877 tcp_sk(sk)->smc_hs_congested(sk)); 6878 #endif 6879 } 6880 6881 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6882 struct sock *sk_listener, 6883 bool attach_listener) 6884 { 6885 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6886 attach_listener); 6887 6888 if (req) { 6889 struct inet_request_sock *ireq = inet_rsk(req); 6890 6891 ireq->ireq_opt = NULL; 6892 #if IS_ENABLED(CONFIG_IPV6) 6893 ireq->pktopts = NULL; 6894 #endif 6895 atomic64_set(&ireq->ir_cookie, 0); 6896 ireq->ireq_state = TCP_NEW_SYN_RECV; 6897 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6898 ireq->ireq_family = sk_listener->sk_family; 6899 req->timeout = TCP_TIMEOUT_INIT; 6900 } 6901 6902 return req; 6903 } 6904 EXPORT_SYMBOL(inet_reqsk_alloc); 6905 6906 /* 6907 * Return true if a syncookie should be sent 6908 */ 6909 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6910 { 6911 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6912 const char *msg = "Dropping request"; 6913 struct net *net = sock_net(sk); 6914 bool want_cookie = false; 6915 u8 syncookies; 6916 6917 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6918 6919 #ifdef CONFIG_SYN_COOKIES 6920 if (syncookies) { 6921 msg = "Sending cookies"; 6922 want_cookie = true; 6923 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6924 } else 6925 #endif 6926 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6927 6928 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 6929 xchg(&queue->synflood_warned, 1) == 0) { 6930 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 6931 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 6932 proto, inet6_rcv_saddr(sk), 6933 sk->sk_num, msg); 6934 } else { 6935 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 6936 proto, &sk->sk_rcv_saddr, 6937 sk->sk_num, msg); 6938 } 6939 } 6940 6941 return want_cookie; 6942 } 6943 6944 static void tcp_reqsk_record_syn(const struct sock *sk, 6945 struct request_sock *req, 6946 const struct sk_buff *skb) 6947 { 6948 if (tcp_sk(sk)->save_syn) { 6949 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6950 struct saved_syn *saved_syn; 6951 u32 mac_hdrlen; 6952 void *base; 6953 6954 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6955 base = skb_mac_header(skb); 6956 mac_hdrlen = skb_mac_header_len(skb); 6957 len += mac_hdrlen; 6958 } else { 6959 base = skb_network_header(skb); 6960 mac_hdrlen = 0; 6961 } 6962 6963 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6964 GFP_ATOMIC); 6965 if (saved_syn) { 6966 saved_syn->mac_hdrlen = mac_hdrlen; 6967 saved_syn->network_hdrlen = skb_network_header_len(skb); 6968 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6969 memcpy(saved_syn->data, base, len); 6970 req->saved_syn = saved_syn; 6971 } 6972 } 6973 } 6974 6975 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6976 * used for SYN cookie generation. 6977 */ 6978 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6979 const struct tcp_request_sock_ops *af_ops, 6980 struct sock *sk, struct tcphdr *th) 6981 { 6982 struct tcp_sock *tp = tcp_sk(sk); 6983 u16 mss; 6984 6985 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 6986 !inet_csk_reqsk_queue_is_full(sk)) 6987 return 0; 6988 6989 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6990 return 0; 6991 6992 if (sk_acceptq_is_full(sk)) { 6993 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6994 return 0; 6995 } 6996 6997 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6998 if (!mss) 6999 mss = af_ops->mss_clamp; 7000 7001 return mss; 7002 } 7003 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7004 7005 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7006 const struct tcp_request_sock_ops *af_ops, 7007 struct sock *sk, struct sk_buff *skb) 7008 { 7009 struct tcp_fastopen_cookie foc = { .len = -1 }; 7010 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 7011 struct tcp_options_received tmp_opt; 7012 struct tcp_sock *tp = tcp_sk(sk); 7013 struct net *net = sock_net(sk); 7014 struct sock *fastopen_sk = NULL; 7015 struct request_sock *req; 7016 bool want_cookie = false; 7017 struct dst_entry *dst; 7018 struct flowi fl; 7019 u8 syncookies; 7020 7021 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7022 7023 /* TW buckets are converted to open requests without 7024 * limitations, they conserve resources and peer is 7025 * evidently real one. 7026 */ 7027 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 7028 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 7029 if (!want_cookie) 7030 goto drop; 7031 } 7032 7033 if (sk_acceptq_is_full(sk)) { 7034 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7035 goto drop; 7036 } 7037 7038 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7039 if (!req) 7040 goto drop; 7041 7042 req->syncookie = want_cookie; 7043 tcp_rsk(req)->af_specific = af_ops; 7044 tcp_rsk(req)->ts_off = 0; 7045 #if IS_ENABLED(CONFIG_MPTCP) 7046 tcp_rsk(req)->is_mptcp = 0; 7047 #endif 7048 7049 tcp_clear_options(&tmp_opt); 7050 tmp_opt.mss_clamp = af_ops->mss_clamp; 7051 tmp_opt.user_mss = tp->rx_opt.user_mss; 7052 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7053 want_cookie ? NULL : &foc); 7054 7055 if (want_cookie && !tmp_opt.saw_tstamp) 7056 tcp_clear_options(&tmp_opt); 7057 7058 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7059 tmp_opt.smc_ok = 0; 7060 7061 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7062 tcp_openreq_init(req, &tmp_opt, skb, sk); 7063 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7064 7065 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7066 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7067 7068 dst = af_ops->route_req(sk, skb, &fl, req); 7069 if (!dst) 7070 goto drop_and_free; 7071 7072 if (tmp_opt.tstamp_ok) 7073 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7074 7075 if (!want_cookie && !isn) { 7076 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7077 7078 /* Kill the following clause, if you dislike this way. */ 7079 if (!syncookies && 7080 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7081 (max_syn_backlog >> 2)) && 7082 !tcp_peer_is_proven(req, dst)) { 7083 /* Without syncookies last quarter of 7084 * backlog is filled with destinations, 7085 * proven to be alive. 7086 * It means that we continue to communicate 7087 * to destinations, already remembered 7088 * to the moment of synflood. 7089 */ 7090 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7091 rsk_ops->family); 7092 goto drop_and_release; 7093 } 7094 7095 isn = af_ops->init_seq(skb); 7096 } 7097 7098 tcp_ecn_create_request(req, skb, sk, dst); 7099 7100 if (want_cookie) { 7101 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7102 if (!tmp_opt.tstamp_ok) 7103 inet_rsk(req)->ecn_ok = 0; 7104 } 7105 7106 tcp_rsk(req)->snt_isn = isn; 7107 tcp_rsk(req)->txhash = net_tx_rndhash(); 7108 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7109 tcp_openreq_init_rwin(req, sk, dst); 7110 sk_rx_queue_set(req_to_sk(req), skb); 7111 if (!want_cookie) { 7112 tcp_reqsk_record_syn(sk, req, skb); 7113 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7114 } 7115 if (fastopen_sk) { 7116 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7117 &foc, TCP_SYNACK_FASTOPEN, skb); 7118 /* Add the child socket directly into the accept queue */ 7119 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7120 reqsk_fastopen_remove(fastopen_sk, req, false); 7121 bh_unlock_sock(fastopen_sk); 7122 sock_put(fastopen_sk); 7123 goto drop_and_free; 7124 } 7125 sk->sk_data_ready(sk); 7126 bh_unlock_sock(fastopen_sk); 7127 sock_put(fastopen_sk); 7128 } else { 7129 tcp_rsk(req)->tfo_listener = false; 7130 if (!want_cookie) { 7131 req->timeout = tcp_timeout_init((struct sock *)req); 7132 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 7133 } 7134 af_ops->send_synack(sk, dst, &fl, req, &foc, 7135 !want_cookie ? TCP_SYNACK_NORMAL : 7136 TCP_SYNACK_COOKIE, 7137 skb); 7138 if (want_cookie) { 7139 reqsk_free(req); 7140 return 0; 7141 } 7142 } 7143 reqsk_put(req); 7144 return 0; 7145 7146 drop_and_release: 7147 dst_release(dst); 7148 drop_and_free: 7149 __reqsk_free(req); 7150 drop: 7151 tcp_listendrop(sk); 7152 return 0; 7153 } 7154 EXPORT_SYMBOL(tcp_conn_request); 7155