xref: /linux/net/ipv4/tcp_input.c (revision 02e2af20f4f9f2aa0c84e9a30a35c02f0fbb7daa)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * INET		An implementation of the TCP/IP protocol suite for the LINUX
4   *		operating system.  INET is implemented using the  BSD Socket
5   *		interface as the means of communication with the user level.
6   *
7   *		Implementation of the Transmission Control Protocol(TCP).
8   *
9   * Authors:	Ross Biro
10   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11   *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12   *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13   *		Florian La Roche, <flla@stud.uni-sb.de>
14   *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15   *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16   *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17   *		Matthew Dillon, <dillon@apollo.west.oic.com>
18   *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19   *		Jorge Cwik, <jorge@laser.satlink.net>
20   */
21  
22  /*
23   * Changes:
24   *		Pedro Roque	:	Fast Retransmit/Recovery.
25   *					Two receive queues.
26   *					Retransmit queue handled by TCP.
27   *					Better retransmit timer handling.
28   *					New congestion avoidance.
29   *					Header prediction.
30   *					Variable renaming.
31   *
32   *		Eric		:	Fast Retransmit.
33   *		Randy Scott	:	MSS option defines.
34   *		Eric Schenk	:	Fixes to slow start algorithm.
35   *		Eric Schenk	:	Yet another double ACK bug.
36   *		Eric Schenk	:	Delayed ACK bug fixes.
37   *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38   *		David S. Miller	:	Don't allow zero congestion window.
39   *		Eric Schenk	:	Fix retransmitter so that it sends
40   *					next packet on ack of previous packet.
41   *		Andi Kleen	:	Moved open_request checking here
42   *					and process RSTs for open_requests.
43   *		Andi Kleen	:	Better prune_queue, and other fixes.
44   *		Andrey Savochkin:	Fix RTT measurements in the presence of
45   *					timestamps.
46   *		Andrey Savochkin:	Check sequence numbers correctly when
47   *					removing SACKs due to in sequence incoming
48   *					data segments.
49   *		Andi Kleen:		Make sure we never ack data there is not
50   *					enough room for. Also make this condition
51   *					a fatal error if it might still happen.
52   *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53   *					connections with MSS<min(MTU,ann. MSS)
54   *					work without delayed acks.
55   *		Andi Kleen:		Process packets with PSH set in the
56   *					fast path.
57   *		J Hadi Salim:		ECN support
58   *	 	Andrei Gurtov,
59   *		Pasi Sarolahti,
60   *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61   *					engine. Lots of bugs are found.
62   *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63   */
64  
65  #define pr_fmt(fmt) "TCP: " fmt
66  
67  #include <linux/mm.h>
68  #include <linux/slab.h>
69  #include <linux/module.h>
70  #include <linux/sysctl.h>
71  #include <linux/kernel.h>
72  #include <linux/prefetch.h>
73  #include <net/dst.h>
74  #include <net/tcp.h>
75  #include <net/inet_common.h>
76  #include <linux/ipsec.h>
77  #include <asm/unaligned.h>
78  #include <linux/errqueue.h>
79  #include <trace/events/tcp.h>
80  #include <linux/jump_label_ratelimit.h>
81  #include <net/busy_poll.h>
82  #include <net/mptcp.h>
83  
84  int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85  
86  #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87  #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88  #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89  #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90  #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91  #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92  #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93  #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94  #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95  #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96  #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97  #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98  #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99  #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100  #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101  #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102  #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103  #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104  
105  #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106  #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107  #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108  #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109  
110  #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111  #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112  
113  #define REXMIT_NONE	0 /* no loss recovery to do */
114  #define REXMIT_LOST	1 /* retransmit packets marked lost */
115  #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116  
117  #if IS_ENABLED(CONFIG_TLS_DEVICE)
118  static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119  
120  void clean_acked_data_enable(struct inet_connection_sock *icsk,
121  			     void (*cad)(struct sock *sk, u32 ack_seq))
122  {
123  	icsk->icsk_clean_acked = cad;
124  	static_branch_deferred_inc(&clean_acked_data_enabled);
125  }
126  EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127  
128  void clean_acked_data_disable(struct inet_connection_sock *icsk)
129  {
130  	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131  	icsk->icsk_clean_acked = NULL;
132  }
133  EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134  
135  void clean_acked_data_flush(void)
136  {
137  	static_key_deferred_flush(&clean_acked_data_enabled);
138  }
139  EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140  #endif
141  
142  #ifdef CONFIG_CGROUP_BPF
143  static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144  {
145  	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146  		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147  				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148  	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149  						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150  	struct bpf_sock_ops_kern sock_ops;
151  
152  	if (likely(!unknown_opt && !parse_all_opt))
153  		return;
154  
155  	/* The skb will be handled in the
156  	 * bpf_skops_established() or
157  	 * bpf_skops_write_hdr_opt().
158  	 */
159  	switch (sk->sk_state) {
160  	case TCP_SYN_RECV:
161  	case TCP_SYN_SENT:
162  	case TCP_LISTEN:
163  		return;
164  	}
165  
166  	sock_owned_by_me(sk);
167  
168  	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169  	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170  	sock_ops.is_fullsock = 1;
171  	sock_ops.sk = sk;
172  	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173  
174  	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175  }
176  
177  static void bpf_skops_established(struct sock *sk, int bpf_op,
178  				  struct sk_buff *skb)
179  {
180  	struct bpf_sock_ops_kern sock_ops;
181  
182  	sock_owned_by_me(sk);
183  
184  	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185  	sock_ops.op = bpf_op;
186  	sock_ops.is_fullsock = 1;
187  	sock_ops.sk = sk;
188  	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189  	if (skb)
190  		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191  
192  	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193  }
194  #else
195  static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196  {
197  }
198  
199  static void bpf_skops_established(struct sock *sk, int bpf_op,
200  				  struct sk_buff *skb)
201  {
202  }
203  #endif
204  
205  static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206  			     unsigned int len)
207  {
208  	static bool __once __read_mostly;
209  
210  	if (!__once) {
211  		struct net_device *dev;
212  
213  		__once = true;
214  
215  		rcu_read_lock();
216  		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217  		if (!dev || len >= dev->mtu)
218  			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219  				dev ? dev->name : "Unknown driver");
220  		rcu_read_unlock();
221  	}
222  }
223  
224  /* Adapt the MSS value used to make delayed ack decision to the
225   * real world.
226   */
227  static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228  {
229  	struct inet_connection_sock *icsk = inet_csk(sk);
230  	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231  	unsigned int len;
232  
233  	icsk->icsk_ack.last_seg_size = 0;
234  
235  	/* skb->len may jitter because of SACKs, even if peer
236  	 * sends good full-sized frames.
237  	 */
238  	len = skb_shinfo(skb)->gso_size ? : skb->len;
239  	if (len >= icsk->icsk_ack.rcv_mss) {
240  		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241  					       tcp_sk(sk)->advmss);
242  		/* Account for possibly-removed options */
243  		if (unlikely(len > icsk->icsk_ack.rcv_mss +
244  				   MAX_TCP_OPTION_SPACE))
245  			tcp_gro_dev_warn(sk, skb, len);
246  	} else {
247  		/* Otherwise, we make more careful check taking into account,
248  		 * that SACKs block is variable.
249  		 *
250  		 * "len" is invariant segment length, including TCP header.
251  		 */
252  		len += skb->data - skb_transport_header(skb);
253  		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254  		    /* If PSH is not set, packet should be
255  		     * full sized, provided peer TCP is not badly broken.
256  		     * This observation (if it is correct 8)) allows
257  		     * to handle super-low mtu links fairly.
258  		     */
259  		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260  		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261  			/* Subtract also invariant (if peer is RFC compliant),
262  			 * tcp header plus fixed timestamp option length.
263  			 * Resulting "len" is MSS free of SACK jitter.
264  			 */
265  			len -= tcp_sk(sk)->tcp_header_len;
266  			icsk->icsk_ack.last_seg_size = len;
267  			if (len == lss) {
268  				icsk->icsk_ack.rcv_mss = len;
269  				return;
270  			}
271  		}
272  		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273  			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274  		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275  	}
276  }
277  
278  static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279  {
280  	struct inet_connection_sock *icsk = inet_csk(sk);
281  	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282  
283  	if (quickacks == 0)
284  		quickacks = 2;
285  	quickacks = min(quickacks, max_quickacks);
286  	if (quickacks > icsk->icsk_ack.quick)
287  		icsk->icsk_ack.quick = quickacks;
288  }
289  
290  void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291  {
292  	struct inet_connection_sock *icsk = inet_csk(sk);
293  
294  	tcp_incr_quickack(sk, max_quickacks);
295  	inet_csk_exit_pingpong_mode(sk);
296  	icsk->icsk_ack.ato = TCP_ATO_MIN;
297  }
298  EXPORT_SYMBOL(tcp_enter_quickack_mode);
299  
300  /* Send ACKs quickly, if "quick" count is not exhausted
301   * and the session is not interactive.
302   */
303  
304  static bool tcp_in_quickack_mode(struct sock *sk)
305  {
306  	const struct inet_connection_sock *icsk = inet_csk(sk);
307  	const struct dst_entry *dst = __sk_dst_get(sk);
308  
309  	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310  		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311  }
312  
313  static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314  {
315  	if (tp->ecn_flags & TCP_ECN_OK)
316  		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317  }
318  
319  static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320  {
321  	if (tcp_hdr(skb)->cwr) {
322  		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323  
324  		/* If the sender is telling us it has entered CWR, then its
325  		 * cwnd may be very low (even just 1 packet), so we should ACK
326  		 * immediately.
327  		 */
328  		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329  			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330  	}
331  }
332  
333  static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334  {
335  	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336  }
337  
338  static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339  {
340  	struct tcp_sock *tp = tcp_sk(sk);
341  
342  	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343  	case INET_ECN_NOT_ECT:
344  		/* Funny extension: if ECT is not set on a segment,
345  		 * and we already seen ECT on a previous segment,
346  		 * it is probably a retransmit.
347  		 */
348  		if (tp->ecn_flags & TCP_ECN_SEEN)
349  			tcp_enter_quickack_mode(sk, 2);
350  		break;
351  	case INET_ECN_CE:
352  		if (tcp_ca_needs_ecn(sk))
353  			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354  
355  		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356  			/* Better not delay acks, sender can have a very low cwnd */
357  			tcp_enter_quickack_mode(sk, 2);
358  			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359  		}
360  		tp->ecn_flags |= TCP_ECN_SEEN;
361  		break;
362  	default:
363  		if (tcp_ca_needs_ecn(sk))
364  			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365  		tp->ecn_flags |= TCP_ECN_SEEN;
366  		break;
367  	}
368  }
369  
370  static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371  {
372  	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373  		__tcp_ecn_check_ce(sk, skb);
374  }
375  
376  static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377  {
378  	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379  		tp->ecn_flags &= ~TCP_ECN_OK;
380  }
381  
382  static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383  {
384  	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385  		tp->ecn_flags &= ~TCP_ECN_OK;
386  }
387  
388  static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389  {
390  	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391  		return true;
392  	return false;
393  }
394  
395  /* Buffer size and advertised window tuning.
396   *
397   * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398   */
399  
400  static void tcp_sndbuf_expand(struct sock *sk)
401  {
402  	const struct tcp_sock *tp = tcp_sk(sk);
403  	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404  	int sndmem, per_mss;
405  	u32 nr_segs;
406  
407  	/* Worst case is non GSO/TSO : each frame consumes one skb
408  	 * and skb->head is kmalloced using power of two area of memory
409  	 */
410  	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411  		  MAX_TCP_HEADER +
412  		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413  
414  	per_mss = roundup_pow_of_two(per_mss) +
415  		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
416  
417  	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
418  	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419  
420  	/* Fast Recovery (RFC 5681 3.2) :
421  	 * Cubic needs 1.7 factor, rounded to 2 to include
422  	 * extra cushion (application might react slowly to EPOLLOUT)
423  	 */
424  	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425  	sndmem *= nr_segs * per_mss;
426  
427  	if (sk->sk_sndbuf < sndmem)
428  		WRITE_ONCE(sk->sk_sndbuf,
429  			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
430  }
431  
432  /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433   *
434   * All tcp_full_space() is split to two parts: "network" buffer, allocated
435   * forward and advertised in receiver window (tp->rcv_wnd) and
436   * "application buffer", required to isolate scheduling/application
437   * latencies from network.
438   * window_clamp is maximal advertised window. It can be less than
439   * tcp_full_space(), in this case tcp_full_space() - window_clamp
440   * is reserved for "application" buffer. The less window_clamp is
441   * the smoother our behaviour from viewpoint of network, but the lower
442   * throughput and the higher sensitivity of the connection to losses. 8)
443   *
444   * rcv_ssthresh is more strict window_clamp used at "slow start"
445   * phase to predict further behaviour of this connection.
446   * It is used for two goals:
447   * - to enforce header prediction at sender, even when application
448   *   requires some significant "application buffer". It is check #1.
449   * - to prevent pruning of receive queue because of misprediction
450   *   of receiver window. Check #2.
451   *
452   * The scheme does not work when sender sends good segments opening
453   * window and then starts to feed us spaghetti. But it should work
454   * in common situations. Otherwise, we have to rely on queue collapsing.
455   */
456  
457  /* Slow part of check#2. */
458  static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459  			     unsigned int skbtruesize)
460  {
461  	struct tcp_sock *tp = tcp_sk(sk);
462  	/* Optimize this! */
463  	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464  	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
465  
466  	while (tp->rcv_ssthresh <= window) {
467  		if (truesize <= skb->len)
468  			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469  
470  		truesize >>= 1;
471  		window >>= 1;
472  	}
473  	return 0;
474  }
475  
476  /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477   * can play nice with us, as sk_buff and skb->head might be either
478   * freed or shared with up to MAX_SKB_FRAGS segments.
479   * Only give a boost to drivers using page frag(s) to hold the frame(s),
480   * and if no payload was pulled in skb->head before reaching us.
481   */
482  static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483  {
484  	u32 truesize = skb->truesize;
485  
486  	if (adjust && !skb_headlen(skb)) {
487  		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488  		/* paranoid check, some drivers might be buggy */
489  		if (unlikely((int)truesize < (int)skb->len))
490  			truesize = skb->truesize;
491  	}
492  	return truesize;
493  }
494  
495  static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496  			    bool adjust)
497  {
498  	struct tcp_sock *tp = tcp_sk(sk);
499  	int room;
500  
501  	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502  
503  	if (room <= 0)
504  		return;
505  
506  	/* Check #1 */
507  	if (!tcp_under_memory_pressure(sk)) {
508  		unsigned int truesize = truesize_adjust(adjust, skb);
509  		int incr;
510  
511  		/* Check #2. Increase window, if skb with such overhead
512  		 * will fit to rcvbuf in future.
513  		 */
514  		if (tcp_win_from_space(sk, truesize) <= skb->len)
515  			incr = 2 * tp->advmss;
516  		else
517  			incr = __tcp_grow_window(sk, skb, truesize);
518  
519  		if (incr) {
520  			incr = max_t(int, incr, 2 * skb->len);
521  			tp->rcv_ssthresh += min(room, incr);
522  			inet_csk(sk)->icsk_ack.quick |= 1;
523  		}
524  	} else {
525  		/* Under pressure:
526  		 * Adjust rcv_ssthresh according to reserved mem
527  		 */
528  		tcp_adjust_rcv_ssthresh(sk);
529  	}
530  }
531  
532  /* 3. Try to fixup all. It is made immediately after connection enters
533   *    established state.
534   */
535  static void tcp_init_buffer_space(struct sock *sk)
536  {
537  	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
538  	struct tcp_sock *tp = tcp_sk(sk);
539  	int maxwin;
540  
541  	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
542  		tcp_sndbuf_expand(sk);
543  
544  	tcp_mstamp_refresh(tp);
545  	tp->rcvq_space.time = tp->tcp_mstamp;
546  	tp->rcvq_space.seq = tp->copied_seq;
547  
548  	maxwin = tcp_full_space(sk);
549  
550  	if (tp->window_clamp >= maxwin) {
551  		tp->window_clamp = maxwin;
552  
553  		if (tcp_app_win && maxwin > 4 * tp->advmss)
554  			tp->window_clamp = max(maxwin -
555  					       (maxwin >> tcp_app_win),
556  					       4 * tp->advmss);
557  	}
558  
559  	/* Force reservation of one segment. */
560  	if (tcp_app_win &&
561  	    tp->window_clamp > 2 * tp->advmss &&
562  	    tp->window_clamp + tp->advmss > maxwin)
563  		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
564  
565  	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
566  	tp->snd_cwnd_stamp = tcp_jiffies32;
567  	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
568  				    (u32)TCP_INIT_CWND * tp->advmss);
569  }
570  
571  /* 4. Recalculate window clamp after socket hit its memory bounds. */
572  static void tcp_clamp_window(struct sock *sk)
573  {
574  	struct tcp_sock *tp = tcp_sk(sk);
575  	struct inet_connection_sock *icsk = inet_csk(sk);
576  	struct net *net = sock_net(sk);
577  
578  	icsk->icsk_ack.quick = 0;
579  
580  	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
581  	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
582  	    !tcp_under_memory_pressure(sk) &&
583  	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
584  		WRITE_ONCE(sk->sk_rcvbuf,
585  			   min(atomic_read(&sk->sk_rmem_alloc),
586  			       net->ipv4.sysctl_tcp_rmem[2]));
587  	}
588  	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
589  		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
590  }
591  
592  /* Initialize RCV_MSS value.
593   * RCV_MSS is an our guess about MSS used by the peer.
594   * We haven't any direct information about the MSS.
595   * It's better to underestimate the RCV_MSS rather than overestimate.
596   * Overestimations make us ACKing less frequently than needed.
597   * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
598   */
599  void tcp_initialize_rcv_mss(struct sock *sk)
600  {
601  	const struct tcp_sock *tp = tcp_sk(sk);
602  	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
603  
604  	hint = min(hint, tp->rcv_wnd / 2);
605  	hint = min(hint, TCP_MSS_DEFAULT);
606  	hint = max(hint, TCP_MIN_MSS);
607  
608  	inet_csk(sk)->icsk_ack.rcv_mss = hint;
609  }
610  EXPORT_SYMBOL(tcp_initialize_rcv_mss);
611  
612  /* Receiver "autotuning" code.
613   *
614   * The algorithm for RTT estimation w/o timestamps is based on
615   * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
616   * <https://public.lanl.gov/radiant/pubs.html#DRS>
617   *
618   * More detail on this code can be found at
619   * <http://staff.psc.edu/jheffner/>,
620   * though this reference is out of date.  A new paper
621   * is pending.
622   */
623  static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
624  {
625  	u32 new_sample = tp->rcv_rtt_est.rtt_us;
626  	long m = sample;
627  
628  	if (new_sample != 0) {
629  		/* If we sample in larger samples in the non-timestamp
630  		 * case, we could grossly overestimate the RTT especially
631  		 * with chatty applications or bulk transfer apps which
632  		 * are stalled on filesystem I/O.
633  		 *
634  		 * Also, since we are only going for a minimum in the
635  		 * non-timestamp case, we do not smooth things out
636  		 * else with timestamps disabled convergence takes too
637  		 * long.
638  		 */
639  		if (!win_dep) {
640  			m -= (new_sample >> 3);
641  			new_sample += m;
642  		} else {
643  			m <<= 3;
644  			if (m < new_sample)
645  				new_sample = m;
646  		}
647  	} else {
648  		/* No previous measure. */
649  		new_sample = m << 3;
650  	}
651  
652  	tp->rcv_rtt_est.rtt_us = new_sample;
653  }
654  
655  static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
656  {
657  	u32 delta_us;
658  
659  	if (tp->rcv_rtt_est.time == 0)
660  		goto new_measure;
661  	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
662  		return;
663  	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
664  	if (!delta_us)
665  		delta_us = 1;
666  	tcp_rcv_rtt_update(tp, delta_us, 1);
667  
668  new_measure:
669  	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
670  	tp->rcv_rtt_est.time = tp->tcp_mstamp;
671  }
672  
673  static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
674  					  const struct sk_buff *skb)
675  {
676  	struct tcp_sock *tp = tcp_sk(sk);
677  
678  	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
679  		return;
680  	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
681  
682  	if (TCP_SKB_CB(skb)->end_seq -
683  	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
684  		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
685  		u32 delta_us;
686  
687  		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
688  			if (!delta)
689  				delta = 1;
690  			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
691  			tcp_rcv_rtt_update(tp, delta_us, 0);
692  		}
693  	}
694  }
695  
696  /*
697   * This function should be called every time data is copied to user space.
698   * It calculates the appropriate TCP receive buffer space.
699   */
700  void tcp_rcv_space_adjust(struct sock *sk)
701  {
702  	struct tcp_sock *tp = tcp_sk(sk);
703  	u32 copied;
704  	int time;
705  
706  	trace_tcp_rcv_space_adjust(sk);
707  
708  	tcp_mstamp_refresh(tp);
709  	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
710  	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
711  		return;
712  
713  	/* Number of bytes copied to user in last RTT */
714  	copied = tp->copied_seq - tp->rcvq_space.seq;
715  	if (copied <= tp->rcvq_space.space)
716  		goto new_measure;
717  
718  	/* A bit of theory :
719  	 * copied = bytes received in previous RTT, our base window
720  	 * To cope with packet losses, we need a 2x factor
721  	 * To cope with slow start, and sender growing its cwin by 100 %
722  	 * every RTT, we need a 4x factor, because the ACK we are sending
723  	 * now is for the next RTT, not the current one :
724  	 * <prev RTT . ><current RTT .. ><next RTT .... >
725  	 */
726  
727  	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
728  	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
729  		int rcvmem, rcvbuf;
730  		u64 rcvwin, grow;
731  
732  		/* minimal window to cope with packet losses, assuming
733  		 * steady state. Add some cushion because of small variations.
734  		 */
735  		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
736  
737  		/* Accommodate for sender rate increase (eg. slow start) */
738  		grow = rcvwin * (copied - tp->rcvq_space.space);
739  		do_div(grow, tp->rcvq_space.space);
740  		rcvwin += (grow << 1);
741  
742  		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
743  		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
744  			rcvmem += 128;
745  
746  		do_div(rcvwin, tp->advmss);
747  		rcvbuf = min_t(u64, rcvwin * rcvmem,
748  			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
749  		if (rcvbuf > sk->sk_rcvbuf) {
750  			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
751  
752  			/* Make the window clamp follow along.  */
753  			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
754  		}
755  	}
756  	tp->rcvq_space.space = copied;
757  
758  new_measure:
759  	tp->rcvq_space.seq = tp->copied_seq;
760  	tp->rcvq_space.time = tp->tcp_mstamp;
761  }
762  
763  /* There is something which you must keep in mind when you analyze the
764   * behavior of the tp->ato delayed ack timeout interval.  When a
765   * connection starts up, we want to ack as quickly as possible.  The
766   * problem is that "good" TCP's do slow start at the beginning of data
767   * transmission.  The means that until we send the first few ACK's the
768   * sender will sit on his end and only queue most of his data, because
769   * he can only send snd_cwnd unacked packets at any given time.  For
770   * each ACK we send, he increments snd_cwnd and transmits more of his
771   * queue.  -DaveM
772   */
773  static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
774  {
775  	struct tcp_sock *tp = tcp_sk(sk);
776  	struct inet_connection_sock *icsk = inet_csk(sk);
777  	u32 now;
778  
779  	inet_csk_schedule_ack(sk);
780  
781  	tcp_measure_rcv_mss(sk, skb);
782  
783  	tcp_rcv_rtt_measure(tp);
784  
785  	now = tcp_jiffies32;
786  
787  	if (!icsk->icsk_ack.ato) {
788  		/* The _first_ data packet received, initialize
789  		 * delayed ACK engine.
790  		 */
791  		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
792  		icsk->icsk_ack.ato = TCP_ATO_MIN;
793  	} else {
794  		int m = now - icsk->icsk_ack.lrcvtime;
795  
796  		if (m <= TCP_ATO_MIN / 2) {
797  			/* The fastest case is the first. */
798  			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
799  		} else if (m < icsk->icsk_ack.ato) {
800  			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
801  			if (icsk->icsk_ack.ato > icsk->icsk_rto)
802  				icsk->icsk_ack.ato = icsk->icsk_rto;
803  		} else if (m > icsk->icsk_rto) {
804  			/* Too long gap. Apparently sender failed to
805  			 * restart window, so that we send ACKs quickly.
806  			 */
807  			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
808  			sk_mem_reclaim(sk);
809  		}
810  	}
811  	icsk->icsk_ack.lrcvtime = now;
812  
813  	tcp_ecn_check_ce(sk, skb);
814  
815  	if (skb->len >= 128)
816  		tcp_grow_window(sk, skb, true);
817  }
818  
819  /* Called to compute a smoothed rtt estimate. The data fed to this
820   * routine either comes from timestamps, or from segments that were
821   * known _not_ to have been retransmitted [see Karn/Partridge
822   * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
823   * piece by Van Jacobson.
824   * NOTE: the next three routines used to be one big routine.
825   * To save cycles in the RFC 1323 implementation it was better to break
826   * it up into three procedures. -- erics
827   */
828  static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
829  {
830  	struct tcp_sock *tp = tcp_sk(sk);
831  	long m = mrtt_us; /* RTT */
832  	u32 srtt = tp->srtt_us;
833  
834  	/*	The following amusing code comes from Jacobson's
835  	 *	article in SIGCOMM '88.  Note that rtt and mdev
836  	 *	are scaled versions of rtt and mean deviation.
837  	 *	This is designed to be as fast as possible
838  	 *	m stands for "measurement".
839  	 *
840  	 *	On a 1990 paper the rto value is changed to:
841  	 *	RTO = rtt + 4 * mdev
842  	 *
843  	 * Funny. This algorithm seems to be very broken.
844  	 * These formulae increase RTO, when it should be decreased, increase
845  	 * too slowly, when it should be increased quickly, decrease too quickly
846  	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
847  	 * does not matter how to _calculate_ it. Seems, it was trap
848  	 * that VJ failed to avoid. 8)
849  	 */
850  	if (srtt != 0) {
851  		m -= (srtt >> 3);	/* m is now error in rtt est */
852  		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
853  		if (m < 0) {
854  			m = -m;		/* m is now abs(error) */
855  			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
856  			/* This is similar to one of Eifel findings.
857  			 * Eifel blocks mdev updates when rtt decreases.
858  			 * This solution is a bit different: we use finer gain
859  			 * for mdev in this case (alpha*beta).
860  			 * Like Eifel it also prevents growth of rto,
861  			 * but also it limits too fast rto decreases,
862  			 * happening in pure Eifel.
863  			 */
864  			if (m > 0)
865  				m >>= 3;
866  		} else {
867  			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
868  		}
869  		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
870  		if (tp->mdev_us > tp->mdev_max_us) {
871  			tp->mdev_max_us = tp->mdev_us;
872  			if (tp->mdev_max_us > tp->rttvar_us)
873  				tp->rttvar_us = tp->mdev_max_us;
874  		}
875  		if (after(tp->snd_una, tp->rtt_seq)) {
876  			if (tp->mdev_max_us < tp->rttvar_us)
877  				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
878  			tp->rtt_seq = tp->snd_nxt;
879  			tp->mdev_max_us = tcp_rto_min_us(sk);
880  
881  			tcp_bpf_rtt(sk);
882  		}
883  	} else {
884  		/* no previous measure. */
885  		srtt = m << 3;		/* take the measured time to be rtt */
886  		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
887  		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
888  		tp->mdev_max_us = tp->rttvar_us;
889  		tp->rtt_seq = tp->snd_nxt;
890  
891  		tcp_bpf_rtt(sk);
892  	}
893  	tp->srtt_us = max(1U, srtt);
894  }
895  
896  static void tcp_update_pacing_rate(struct sock *sk)
897  {
898  	const struct tcp_sock *tp = tcp_sk(sk);
899  	u64 rate;
900  
901  	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
902  	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
903  
904  	/* current rate is (cwnd * mss) / srtt
905  	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
906  	 * In Congestion Avoidance phase, set it to 120 % the current rate.
907  	 *
908  	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
909  	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
910  	 *	 end of slow start and should slow down.
911  	 */
912  	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
913  		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
914  	else
915  		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
916  
917  	rate *= max(tp->snd_cwnd, tp->packets_out);
918  
919  	if (likely(tp->srtt_us))
920  		do_div(rate, tp->srtt_us);
921  
922  	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
923  	 * without any lock. We want to make sure compiler wont store
924  	 * intermediate values in this location.
925  	 */
926  	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
927  					     sk->sk_max_pacing_rate));
928  }
929  
930  /* Calculate rto without backoff.  This is the second half of Van Jacobson's
931   * routine referred to above.
932   */
933  static void tcp_set_rto(struct sock *sk)
934  {
935  	const struct tcp_sock *tp = tcp_sk(sk);
936  	/* Old crap is replaced with new one. 8)
937  	 *
938  	 * More seriously:
939  	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
940  	 *    It cannot be less due to utterly erratic ACK generation made
941  	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
942  	 *    to do with delayed acks, because at cwnd>2 true delack timeout
943  	 *    is invisible. Actually, Linux-2.4 also generates erratic
944  	 *    ACKs in some circumstances.
945  	 */
946  	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
947  
948  	/* 2. Fixups made earlier cannot be right.
949  	 *    If we do not estimate RTO correctly without them,
950  	 *    all the algo is pure shit and should be replaced
951  	 *    with correct one. It is exactly, which we pretend to do.
952  	 */
953  
954  	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
955  	 * guarantees that rto is higher.
956  	 */
957  	tcp_bound_rto(sk);
958  }
959  
960  __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
961  {
962  	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
963  
964  	if (!cwnd)
965  		cwnd = TCP_INIT_CWND;
966  	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
967  }
968  
969  struct tcp_sacktag_state {
970  	/* Timestamps for earliest and latest never-retransmitted segment
971  	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
972  	 * but congestion control should still get an accurate delay signal.
973  	 */
974  	u64	first_sackt;
975  	u64	last_sackt;
976  	u32	reord;
977  	u32	sack_delivered;
978  	int	flag;
979  	unsigned int mss_now;
980  	struct rate_sample *rate;
981  };
982  
983  /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
984   * and spurious retransmission information if this DSACK is unlikely caused by
985   * sender's action:
986   * - DSACKed sequence range is larger than maximum receiver's window.
987   * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
988   */
989  static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
990  			  u32 end_seq, struct tcp_sacktag_state *state)
991  {
992  	u32 seq_len, dup_segs = 1;
993  
994  	if (!before(start_seq, end_seq))
995  		return 0;
996  
997  	seq_len = end_seq - start_seq;
998  	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
999  	if (seq_len > tp->max_window)
1000  		return 0;
1001  	if (seq_len > tp->mss_cache)
1002  		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1003  	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1004  		state->flag |= FLAG_DSACK_TLP;
1005  
1006  	tp->dsack_dups += dup_segs;
1007  	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1008  	if (tp->dsack_dups > tp->total_retrans)
1009  		return 0;
1010  
1011  	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1012  	/* We increase the RACK ordering window in rounds where we receive
1013  	 * DSACKs that may have been due to reordering causing RACK to trigger
1014  	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1015  	 * without having seen reordering, or that match TLP probes (TLP
1016  	 * is timer-driven, not triggered by RACK).
1017  	 */
1018  	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1019  		tp->rack.dsack_seen = 1;
1020  
1021  	state->flag |= FLAG_DSACKING_ACK;
1022  	/* A spurious retransmission is delivered */
1023  	state->sack_delivered += dup_segs;
1024  
1025  	return dup_segs;
1026  }
1027  
1028  /* It's reordering when higher sequence was delivered (i.e. sacked) before
1029   * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1030   * distance is approximated in full-mss packet distance ("reordering").
1031   */
1032  static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1033  				      const int ts)
1034  {
1035  	struct tcp_sock *tp = tcp_sk(sk);
1036  	const u32 mss = tp->mss_cache;
1037  	u32 fack, metric;
1038  
1039  	fack = tcp_highest_sack_seq(tp);
1040  	if (!before(low_seq, fack))
1041  		return;
1042  
1043  	metric = fack - low_seq;
1044  	if ((metric > tp->reordering * mss) && mss) {
1045  #if FASTRETRANS_DEBUG > 1
1046  		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1047  			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1048  			 tp->reordering,
1049  			 0,
1050  			 tp->sacked_out,
1051  			 tp->undo_marker ? tp->undo_retrans : 0);
1052  #endif
1053  		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1054  				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1055  	}
1056  
1057  	/* This exciting event is worth to be remembered. 8) */
1058  	tp->reord_seen++;
1059  	NET_INC_STATS(sock_net(sk),
1060  		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1061  }
1062  
1063   /* This must be called before lost_out or retrans_out are updated
1064    * on a new loss, because we want to know if all skbs previously
1065    * known to be lost have already been retransmitted, indicating
1066    * that this newly lost skb is our next skb to retransmit.
1067    */
1068  static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1069  {
1070  	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1071  	    (tp->retransmit_skb_hint &&
1072  	     before(TCP_SKB_CB(skb)->seq,
1073  		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1074  		tp->retransmit_skb_hint = skb;
1075  }
1076  
1077  /* Sum the number of packets on the wire we have marked as lost, and
1078   * notify the congestion control module that the given skb was marked lost.
1079   */
1080  static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1081  {
1082  	tp->lost += tcp_skb_pcount(skb);
1083  }
1084  
1085  void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1086  {
1087  	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1088  	struct tcp_sock *tp = tcp_sk(sk);
1089  
1090  	if (sacked & TCPCB_SACKED_ACKED)
1091  		return;
1092  
1093  	tcp_verify_retransmit_hint(tp, skb);
1094  	if (sacked & TCPCB_LOST) {
1095  		if (sacked & TCPCB_SACKED_RETRANS) {
1096  			/* Account for retransmits that are lost again */
1097  			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1098  			tp->retrans_out -= tcp_skb_pcount(skb);
1099  			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1100  				      tcp_skb_pcount(skb));
1101  			tcp_notify_skb_loss_event(tp, skb);
1102  		}
1103  	} else {
1104  		tp->lost_out += tcp_skb_pcount(skb);
1105  		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1106  		tcp_notify_skb_loss_event(tp, skb);
1107  	}
1108  }
1109  
1110  /* Updates the delivered and delivered_ce counts */
1111  static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1112  				bool ece_ack)
1113  {
1114  	tp->delivered += delivered;
1115  	if (ece_ack)
1116  		tp->delivered_ce += delivered;
1117  }
1118  
1119  /* This procedure tags the retransmission queue when SACKs arrive.
1120   *
1121   * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1122   * Packets in queue with these bits set are counted in variables
1123   * sacked_out, retrans_out and lost_out, correspondingly.
1124   *
1125   * Valid combinations are:
1126   * Tag  InFlight	Description
1127   * 0	1		- orig segment is in flight.
1128   * S	0		- nothing flies, orig reached receiver.
1129   * L	0		- nothing flies, orig lost by net.
1130   * R	2		- both orig and retransmit are in flight.
1131   * L|R	1		- orig is lost, retransmit is in flight.
1132   * S|R  1		- orig reached receiver, retrans is still in flight.
1133   * (L|S|R is logically valid, it could occur when L|R is sacked,
1134   *  but it is equivalent to plain S and code short-curcuits it to S.
1135   *  L|S is logically invalid, it would mean -1 packet in flight 8))
1136   *
1137   * These 6 states form finite state machine, controlled by the following events:
1138   * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1139   * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1140   * 3. Loss detection event of two flavors:
1141   *	A. Scoreboard estimator decided the packet is lost.
1142   *	   A'. Reno "three dupacks" marks head of queue lost.
1143   *	B. SACK arrives sacking SND.NXT at the moment, when the
1144   *	   segment was retransmitted.
1145   * 4. D-SACK added new rule: D-SACK changes any tag to S.
1146   *
1147   * It is pleasant to note, that state diagram turns out to be commutative,
1148   * so that we are allowed not to be bothered by order of our actions,
1149   * when multiple events arrive simultaneously. (see the function below).
1150   *
1151   * Reordering detection.
1152   * --------------------
1153   * Reordering metric is maximal distance, which a packet can be displaced
1154   * in packet stream. With SACKs we can estimate it:
1155   *
1156   * 1. SACK fills old hole and the corresponding segment was not
1157   *    ever retransmitted -> reordering. Alas, we cannot use it
1158   *    when segment was retransmitted.
1159   * 2. The last flaw is solved with D-SACK. D-SACK arrives
1160   *    for retransmitted and already SACKed segment -> reordering..
1161   * Both of these heuristics are not used in Loss state, when we cannot
1162   * account for retransmits accurately.
1163   *
1164   * SACK block validation.
1165   * ----------------------
1166   *
1167   * SACK block range validation checks that the received SACK block fits to
1168   * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1169   * Note that SND.UNA is not included to the range though being valid because
1170   * it means that the receiver is rather inconsistent with itself reporting
1171   * SACK reneging when it should advance SND.UNA. Such SACK block this is
1172   * perfectly valid, however, in light of RFC2018 which explicitly states
1173   * that "SACK block MUST reflect the newest segment.  Even if the newest
1174   * segment is going to be discarded ...", not that it looks very clever
1175   * in case of head skb. Due to potentional receiver driven attacks, we
1176   * choose to avoid immediate execution of a walk in write queue due to
1177   * reneging and defer head skb's loss recovery to standard loss recovery
1178   * procedure that will eventually trigger (nothing forbids us doing this).
1179   *
1180   * Implements also blockage to start_seq wrap-around. Problem lies in the
1181   * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1182   * there's no guarantee that it will be before snd_nxt (n). The problem
1183   * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1184   * wrap (s_w):
1185   *
1186   *         <- outs wnd ->                          <- wrapzone ->
1187   *         u     e      n                         u_w   e_w  s n_w
1188   *         |     |      |                          |     |   |  |
1189   * |<------------+------+----- TCP seqno space --------------+---------->|
1190   * ...-- <2^31 ->|                                           |<--------...
1191   * ...---- >2^31 ------>|                                    |<--------...
1192   *
1193   * Current code wouldn't be vulnerable but it's better still to discard such
1194   * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1195   * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1196   * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1197   * equal to the ideal case (infinite seqno space without wrap caused issues).
1198   *
1199   * With D-SACK the lower bound is extended to cover sequence space below
1200   * SND.UNA down to undo_marker, which is the last point of interest. Yet
1201   * again, D-SACK block must not to go across snd_una (for the same reason as
1202   * for the normal SACK blocks, explained above). But there all simplicity
1203   * ends, TCP might receive valid D-SACKs below that. As long as they reside
1204   * fully below undo_marker they do not affect behavior in anyway and can
1205   * therefore be safely ignored. In rare cases (which are more or less
1206   * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1207   * fragmentation and packet reordering past skb's retransmission. To consider
1208   * them correctly, the acceptable range must be extended even more though
1209   * the exact amount is rather hard to quantify. However, tp->max_window can
1210   * be used as an exaggerated estimate.
1211   */
1212  static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1213  				   u32 start_seq, u32 end_seq)
1214  {
1215  	/* Too far in future, or reversed (interpretation is ambiguous) */
1216  	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1217  		return false;
1218  
1219  	/* Nasty start_seq wrap-around check (see comments above) */
1220  	if (!before(start_seq, tp->snd_nxt))
1221  		return false;
1222  
1223  	/* In outstanding window? ...This is valid exit for D-SACKs too.
1224  	 * start_seq == snd_una is non-sensical (see comments above)
1225  	 */
1226  	if (after(start_seq, tp->snd_una))
1227  		return true;
1228  
1229  	if (!is_dsack || !tp->undo_marker)
1230  		return false;
1231  
1232  	/* ...Then it's D-SACK, and must reside below snd_una completely */
1233  	if (after(end_seq, tp->snd_una))
1234  		return false;
1235  
1236  	if (!before(start_seq, tp->undo_marker))
1237  		return true;
1238  
1239  	/* Too old */
1240  	if (!after(end_seq, tp->undo_marker))
1241  		return false;
1242  
1243  	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1244  	 *   start_seq < undo_marker and end_seq >= undo_marker.
1245  	 */
1246  	return !before(start_seq, end_seq - tp->max_window);
1247  }
1248  
1249  static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1250  			    struct tcp_sack_block_wire *sp, int num_sacks,
1251  			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1252  {
1253  	struct tcp_sock *tp = tcp_sk(sk);
1254  	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1255  	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1256  	u32 dup_segs;
1257  
1258  	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1259  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1260  	} else if (num_sacks > 1) {
1261  		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1262  		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1263  
1264  		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1265  			return false;
1266  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1267  	} else {
1268  		return false;
1269  	}
1270  
1271  	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1272  	if (!dup_segs) {	/* Skip dubious DSACK */
1273  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1274  		return false;
1275  	}
1276  
1277  	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1278  
1279  	/* D-SACK for already forgotten data... Do dumb counting. */
1280  	if (tp->undo_marker && tp->undo_retrans > 0 &&
1281  	    !after(end_seq_0, prior_snd_una) &&
1282  	    after(end_seq_0, tp->undo_marker))
1283  		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1284  
1285  	return true;
1286  }
1287  
1288  /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1289   * the incoming SACK may not exactly match but we can find smaller MSS
1290   * aligned portion of it that matches. Therefore we might need to fragment
1291   * which may fail and creates some hassle (caller must handle error case
1292   * returns).
1293   *
1294   * FIXME: this could be merged to shift decision code
1295   */
1296  static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1297  				  u32 start_seq, u32 end_seq)
1298  {
1299  	int err;
1300  	bool in_sack;
1301  	unsigned int pkt_len;
1302  	unsigned int mss;
1303  
1304  	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1305  		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1306  
1307  	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1308  	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1309  		mss = tcp_skb_mss(skb);
1310  		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1311  
1312  		if (!in_sack) {
1313  			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1314  			if (pkt_len < mss)
1315  				pkt_len = mss;
1316  		} else {
1317  			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1318  			if (pkt_len < mss)
1319  				return -EINVAL;
1320  		}
1321  
1322  		/* Round if necessary so that SACKs cover only full MSSes
1323  		 * and/or the remaining small portion (if present)
1324  		 */
1325  		if (pkt_len > mss) {
1326  			unsigned int new_len = (pkt_len / mss) * mss;
1327  			if (!in_sack && new_len < pkt_len)
1328  				new_len += mss;
1329  			pkt_len = new_len;
1330  		}
1331  
1332  		if (pkt_len >= skb->len && !in_sack)
1333  			return 0;
1334  
1335  		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1336  				   pkt_len, mss, GFP_ATOMIC);
1337  		if (err < 0)
1338  			return err;
1339  	}
1340  
1341  	return in_sack;
1342  }
1343  
1344  /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1345  static u8 tcp_sacktag_one(struct sock *sk,
1346  			  struct tcp_sacktag_state *state, u8 sacked,
1347  			  u32 start_seq, u32 end_seq,
1348  			  int dup_sack, int pcount,
1349  			  u64 xmit_time)
1350  {
1351  	struct tcp_sock *tp = tcp_sk(sk);
1352  
1353  	/* Account D-SACK for retransmitted packet. */
1354  	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1355  		if (tp->undo_marker && tp->undo_retrans > 0 &&
1356  		    after(end_seq, tp->undo_marker))
1357  			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1358  		if ((sacked & TCPCB_SACKED_ACKED) &&
1359  		    before(start_seq, state->reord))
1360  				state->reord = start_seq;
1361  	}
1362  
1363  	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1364  	if (!after(end_seq, tp->snd_una))
1365  		return sacked;
1366  
1367  	if (!(sacked & TCPCB_SACKED_ACKED)) {
1368  		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1369  
1370  		if (sacked & TCPCB_SACKED_RETRANS) {
1371  			/* If the segment is not tagged as lost,
1372  			 * we do not clear RETRANS, believing
1373  			 * that retransmission is still in flight.
1374  			 */
1375  			if (sacked & TCPCB_LOST) {
1376  				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1377  				tp->lost_out -= pcount;
1378  				tp->retrans_out -= pcount;
1379  			}
1380  		} else {
1381  			if (!(sacked & TCPCB_RETRANS)) {
1382  				/* New sack for not retransmitted frame,
1383  				 * which was in hole. It is reordering.
1384  				 */
1385  				if (before(start_seq,
1386  					   tcp_highest_sack_seq(tp)) &&
1387  				    before(start_seq, state->reord))
1388  					state->reord = start_seq;
1389  
1390  				if (!after(end_seq, tp->high_seq))
1391  					state->flag |= FLAG_ORIG_SACK_ACKED;
1392  				if (state->first_sackt == 0)
1393  					state->first_sackt = xmit_time;
1394  				state->last_sackt = xmit_time;
1395  			}
1396  
1397  			if (sacked & TCPCB_LOST) {
1398  				sacked &= ~TCPCB_LOST;
1399  				tp->lost_out -= pcount;
1400  			}
1401  		}
1402  
1403  		sacked |= TCPCB_SACKED_ACKED;
1404  		state->flag |= FLAG_DATA_SACKED;
1405  		tp->sacked_out += pcount;
1406  		/* Out-of-order packets delivered */
1407  		state->sack_delivered += pcount;
1408  
1409  		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1410  		if (tp->lost_skb_hint &&
1411  		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1412  			tp->lost_cnt_hint += pcount;
1413  	}
1414  
1415  	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1416  	 * frames and clear it. undo_retrans is decreased above, L|R frames
1417  	 * are accounted above as well.
1418  	 */
1419  	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1420  		sacked &= ~TCPCB_SACKED_RETRANS;
1421  		tp->retrans_out -= pcount;
1422  	}
1423  
1424  	return sacked;
1425  }
1426  
1427  /* Shift newly-SACKed bytes from this skb to the immediately previous
1428   * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1429   */
1430  static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1431  			    struct sk_buff *skb,
1432  			    struct tcp_sacktag_state *state,
1433  			    unsigned int pcount, int shifted, int mss,
1434  			    bool dup_sack)
1435  {
1436  	struct tcp_sock *tp = tcp_sk(sk);
1437  	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1438  	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1439  
1440  	BUG_ON(!pcount);
1441  
1442  	/* Adjust counters and hints for the newly sacked sequence
1443  	 * range but discard the return value since prev is already
1444  	 * marked. We must tag the range first because the seq
1445  	 * advancement below implicitly advances
1446  	 * tcp_highest_sack_seq() when skb is highest_sack.
1447  	 */
1448  	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1449  			start_seq, end_seq, dup_sack, pcount,
1450  			tcp_skb_timestamp_us(skb));
1451  	tcp_rate_skb_delivered(sk, skb, state->rate);
1452  
1453  	if (skb == tp->lost_skb_hint)
1454  		tp->lost_cnt_hint += pcount;
1455  
1456  	TCP_SKB_CB(prev)->end_seq += shifted;
1457  	TCP_SKB_CB(skb)->seq += shifted;
1458  
1459  	tcp_skb_pcount_add(prev, pcount);
1460  	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1461  	tcp_skb_pcount_add(skb, -pcount);
1462  
1463  	/* When we're adding to gso_segs == 1, gso_size will be zero,
1464  	 * in theory this shouldn't be necessary but as long as DSACK
1465  	 * code can come after this skb later on it's better to keep
1466  	 * setting gso_size to something.
1467  	 */
1468  	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1469  		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1470  
1471  	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1472  	if (tcp_skb_pcount(skb) <= 1)
1473  		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1474  
1475  	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1476  	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1477  
1478  	if (skb->len > 0) {
1479  		BUG_ON(!tcp_skb_pcount(skb));
1480  		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1481  		return false;
1482  	}
1483  
1484  	/* Whole SKB was eaten :-) */
1485  
1486  	if (skb == tp->retransmit_skb_hint)
1487  		tp->retransmit_skb_hint = prev;
1488  	if (skb == tp->lost_skb_hint) {
1489  		tp->lost_skb_hint = prev;
1490  		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1491  	}
1492  
1493  	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1494  	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1495  	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1496  		TCP_SKB_CB(prev)->end_seq++;
1497  
1498  	if (skb == tcp_highest_sack(sk))
1499  		tcp_advance_highest_sack(sk, skb);
1500  
1501  	tcp_skb_collapse_tstamp(prev, skb);
1502  	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1503  		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1504  
1505  	tcp_rtx_queue_unlink_and_free(skb, sk);
1506  
1507  	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1508  
1509  	return true;
1510  }
1511  
1512  /* I wish gso_size would have a bit more sane initialization than
1513   * something-or-zero which complicates things
1514   */
1515  static int tcp_skb_seglen(const struct sk_buff *skb)
1516  {
1517  	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1518  }
1519  
1520  /* Shifting pages past head area doesn't work */
1521  static int skb_can_shift(const struct sk_buff *skb)
1522  {
1523  	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1524  }
1525  
1526  int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1527  		  int pcount, int shiftlen)
1528  {
1529  	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1530  	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1531  	 * to make sure not storing more than 65535 * 8 bytes per skb,
1532  	 * even if current MSS is bigger.
1533  	 */
1534  	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1535  		return 0;
1536  	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1537  		return 0;
1538  	return skb_shift(to, from, shiftlen);
1539  }
1540  
1541  /* Try collapsing SACK blocks spanning across multiple skbs to a single
1542   * skb.
1543   */
1544  static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1545  					  struct tcp_sacktag_state *state,
1546  					  u32 start_seq, u32 end_seq,
1547  					  bool dup_sack)
1548  {
1549  	struct tcp_sock *tp = tcp_sk(sk);
1550  	struct sk_buff *prev;
1551  	int mss;
1552  	int pcount = 0;
1553  	int len;
1554  	int in_sack;
1555  
1556  	/* Normally R but no L won't result in plain S */
1557  	if (!dup_sack &&
1558  	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1559  		goto fallback;
1560  	if (!skb_can_shift(skb))
1561  		goto fallback;
1562  	/* This frame is about to be dropped (was ACKed). */
1563  	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1564  		goto fallback;
1565  
1566  	/* Can only happen with delayed DSACK + discard craziness */
1567  	prev = skb_rb_prev(skb);
1568  	if (!prev)
1569  		goto fallback;
1570  
1571  	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1572  		goto fallback;
1573  
1574  	if (!tcp_skb_can_collapse(prev, skb))
1575  		goto fallback;
1576  
1577  	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1578  		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1579  
1580  	if (in_sack) {
1581  		len = skb->len;
1582  		pcount = tcp_skb_pcount(skb);
1583  		mss = tcp_skb_seglen(skb);
1584  
1585  		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586  		 * drop this restriction as unnecessary
1587  		 */
1588  		if (mss != tcp_skb_seglen(prev))
1589  			goto fallback;
1590  	} else {
1591  		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1592  			goto noop;
1593  		/* CHECKME: This is non-MSS split case only?, this will
1594  		 * cause skipped skbs due to advancing loop btw, original
1595  		 * has that feature too
1596  		 */
1597  		if (tcp_skb_pcount(skb) <= 1)
1598  			goto noop;
1599  
1600  		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1601  		if (!in_sack) {
1602  			/* TODO: head merge to next could be attempted here
1603  			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1604  			 * though it might not be worth of the additional hassle
1605  			 *
1606  			 * ...we can probably just fallback to what was done
1607  			 * previously. We could try merging non-SACKed ones
1608  			 * as well but it probably isn't going to buy off
1609  			 * because later SACKs might again split them, and
1610  			 * it would make skb timestamp tracking considerably
1611  			 * harder problem.
1612  			 */
1613  			goto fallback;
1614  		}
1615  
1616  		len = end_seq - TCP_SKB_CB(skb)->seq;
1617  		BUG_ON(len < 0);
1618  		BUG_ON(len > skb->len);
1619  
1620  		/* MSS boundaries should be honoured or else pcount will
1621  		 * severely break even though it makes things bit trickier.
1622  		 * Optimize common case to avoid most of the divides
1623  		 */
1624  		mss = tcp_skb_mss(skb);
1625  
1626  		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1627  		 * drop this restriction as unnecessary
1628  		 */
1629  		if (mss != tcp_skb_seglen(prev))
1630  			goto fallback;
1631  
1632  		if (len == mss) {
1633  			pcount = 1;
1634  		} else if (len < mss) {
1635  			goto noop;
1636  		} else {
1637  			pcount = len / mss;
1638  			len = pcount * mss;
1639  		}
1640  	}
1641  
1642  	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1643  	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1644  		goto fallback;
1645  
1646  	if (!tcp_skb_shift(prev, skb, pcount, len))
1647  		goto fallback;
1648  	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1649  		goto out;
1650  
1651  	/* Hole filled allows collapsing with the next as well, this is very
1652  	 * useful when hole on every nth skb pattern happens
1653  	 */
1654  	skb = skb_rb_next(prev);
1655  	if (!skb)
1656  		goto out;
1657  
1658  	if (!skb_can_shift(skb) ||
1659  	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1660  	    (mss != tcp_skb_seglen(skb)))
1661  		goto out;
1662  
1663  	if (!tcp_skb_can_collapse(prev, skb))
1664  		goto out;
1665  	len = skb->len;
1666  	pcount = tcp_skb_pcount(skb);
1667  	if (tcp_skb_shift(prev, skb, pcount, len))
1668  		tcp_shifted_skb(sk, prev, skb, state, pcount,
1669  				len, mss, 0);
1670  
1671  out:
1672  	return prev;
1673  
1674  noop:
1675  	return skb;
1676  
1677  fallback:
1678  	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1679  	return NULL;
1680  }
1681  
1682  static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1683  					struct tcp_sack_block *next_dup,
1684  					struct tcp_sacktag_state *state,
1685  					u32 start_seq, u32 end_seq,
1686  					bool dup_sack_in)
1687  {
1688  	struct tcp_sock *tp = tcp_sk(sk);
1689  	struct sk_buff *tmp;
1690  
1691  	skb_rbtree_walk_from(skb) {
1692  		int in_sack = 0;
1693  		bool dup_sack = dup_sack_in;
1694  
1695  		/* queue is in-order => we can short-circuit the walk early */
1696  		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1697  			break;
1698  
1699  		if (next_dup  &&
1700  		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1701  			in_sack = tcp_match_skb_to_sack(sk, skb,
1702  							next_dup->start_seq,
1703  							next_dup->end_seq);
1704  			if (in_sack > 0)
1705  				dup_sack = true;
1706  		}
1707  
1708  		/* skb reference here is a bit tricky to get right, since
1709  		 * shifting can eat and free both this skb and the next,
1710  		 * so not even _safe variant of the loop is enough.
1711  		 */
1712  		if (in_sack <= 0) {
1713  			tmp = tcp_shift_skb_data(sk, skb, state,
1714  						 start_seq, end_seq, dup_sack);
1715  			if (tmp) {
1716  				if (tmp != skb) {
1717  					skb = tmp;
1718  					continue;
1719  				}
1720  
1721  				in_sack = 0;
1722  			} else {
1723  				in_sack = tcp_match_skb_to_sack(sk, skb,
1724  								start_seq,
1725  								end_seq);
1726  			}
1727  		}
1728  
1729  		if (unlikely(in_sack < 0))
1730  			break;
1731  
1732  		if (in_sack) {
1733  			TCP_SKB_CB(skb)->sacked =
1734  				tcp_sacktag_one(sk,
1735  						state,
1736  						TCP_SKB_CB(skb)->sacked,
1737  						TCP_SKB_CB(skb)->seq,
1738  						TCP_SKB_CB(skb)->end_seq,
1739  						dup_sack,
1740  						tcp_skb_pcount(skb),
1741  						tcp_skb_timestamp_us(skb));
1742  			tcp_rate_skb_delivered(sk, skb, state->rate);
1743  			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1744  				list_del_init(&skb->tcp_tsorted_anchor);
1745  
1746  			if (!before(TCP_SKB_CB(skb)->seq,
1747  				    tcp_highest_sack_seq(tp)))
1748  				tcp_advance_highest_sack(sk, skb);
1749  		}
1750  	}
1751  	return skb;
1752  }
1753  
1754  static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1755  {
1756  	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1757  	struct sk_buff *skb;
1758  
1759  	while (*p) {
1760  		parent = *p;
1761  		skb = rb_to_skb(parent);
1762  		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1763  			p = &parent->rb_left;
1764  			continue;
1765  		}
1766  		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1767  			p = &parent->rb_right;
1768  			continue;
1769  		}
1770  		return skb;
1771  	}
1772  	return NULL;
1773  }
1774  
1775  static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1776  					u32 skip_to_seq)
1777  {
1778  	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1779  		return skb;
1780  
1781  	return tcp_sacktag_bsearch(sk, skip_to_seq);
1782  }
1783  
1784  static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1785  						struct sock *sk,
1786  						struct tcp_sack_block *next_dup,
1787  						struct tcp_sacktag_state *state,
1788  						u32 skip_to_seq)
1789  {
1790  	if (!next_dup)
1791  		return skb;
1792  
1793  	if (before(next_dup->start_seq, skip_to_seq)) {
1794  		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1795  		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1796  				       next_dup->start_seq, next_dup->end_seq,
1797  				       1);
1798  	}
1799  
1800  	return skb;
1801  }
1802  
1803  static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1804  {
1805  	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1806  }
1807  
1808  static int
1809  tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1810  			u32 prior_snd_una, struct tcp_sacktag_state *state)
1811  {
1812  	struct tcp_sock *tp = tcp_sk(sk);
1813  	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1814  				    TCP_SKB_CB(ack_skb)->sacked);
1815  	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1816  	struct tcp_sack_block sp[TCP_NUM_SACKS];
1817  	struct tcp_sack_block *cache;
1818  	struct sk_buff *skb;
1819  	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1820  	int used_sacks;
1821  	bool found_dup_sack = false;
1822  	int i, j;
1823  	int first_sack_index;
1824  
1825  	state->flag = 0;
1826  	state->reord = tp->snd_nxt;
1827  
1828  	if (!tp->sacked_out)
1829  		tcp_highest_sack_reset(sk);
1830  
1831  	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1832  					 num_sacks, prior_snd_una, state);
1833  
1834  	/* Eliminate too old ACKs, but take into
1835  	 * account more or less fresh ones, they can
1836  	 * contain valid SACK info.
1837  	 */
1838  	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1839  		return 0;
1840  
1841  	if (!tp->packets_out)
1842  		goto out;
1843  
1844  	used_sacks = 0;
1845  	first_sack_index = 0;
1846  	for (i = 0; i < num_sacks; i++) {
1847  		bool dup_sack = !i && found_dup_sack;
1848  
1849  		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1850  		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1851  
1852  		if (!tcp_is_sackblock_valid(tp, dup_sack,
1853  					    sp[used_sacks].start_seq,
1854  					    sp[used_sacks].end_seq)) {
1855  			int mib_idx;
1856  
1857  			if (dup_sack) {
1858  				if (!tp->undo_marker)
1859  					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1860  				else
1861  					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1862  			} else {
1863  				/* Don't count olds caused by ACK reordering */
1864  				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1865  				    !after(sp[used_sacks].end_seq, tp->snd_una))
1866  					continue;
1867  				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1868  			}
1869  
1870  			NET_INC_STATS(sock_net(sk), mib_idx);
1871  			if (i == 0)
1872  				first_sack_index = -1;
1873  			continue;
1874  		}
1875  
1876  		/* Ignore very old stuff early */
1877  		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1878  			if (i == 0)
1879  				first_sack_index = -1;
1880  			continue;
1881  		}
1882  
1883  		used_sacks++;
1884  	}
1885  
1886  	/* order SACK blocks to allow in order walk of the retrans queue */
1887  	for (i = used_sacks - 1; i > 0; i--) {
1888  		for (j = 0; j < i; j++) {
1889  			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1890  				swap(sp[j], sp[j + 1]);
1891  
1892  				/* Track where the first SACK block goes to */
1893  				if (j == first_sack_index)
1894  					first_sack_index = j + 1;
1895  			}
1896  		}
1897  	}
1898  
1899  	state->mss_now = tcp_current_mss(sk);
1900  	skb = NULL;
1901  	i = 0;
1902  
1903  	if (!tp->sacked_out) {
1904  		/* It's already past, so skip checking against it */
1905  		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1906  	} else {
1907  		cache = tp->recv_sack_cache;
1908  		/* Skip empty blocks in at head of the cache */
1909  		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1910  		       !cache->end_seq)
1911  			cache++;
1912  	}
1913  
1914  	while (i < used_sacks) {
1915  		u32 start_seq = sp[i].start_seq;
1916  		u32 end_seq = sp[i].end_seq;
1917  		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1918  		struct tcp_sack_block *next_dup = NULL;
1919  
1920  		if (found_dup_sack && ((i + 1) == first_sack_index))
1921  			next_dup = &sp[i + 1];
1922  
1923  		/* Skip too early cached blocks */
1924  		while (tcp_sack_cache_ok(tp, cache) &&
1925  		       !before(start_seq, cache->end_seq))
1926  			cache++;
1927  
1928  		/* Can skip some work by looking recv_sack_cache? */
1929  		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1930  		    after(end_seq, cache->start_seq)) {
1931  
1932  			/* Head todo? */
1933  			if (before(start_seq, cache->start_seq)) {
1934  				skb = tcp_sacktag_skip(skb, sk, start_seq);
1935  				skb = tcp_sacktag_walk(skb, sk, next_dup,
1936  						       state,
1937  						       start_seq,
1938  						       cache->start_seq,
1939  						       dup_sack);
1940  			}
1941  
1942  			/* Rest of the block already fully processed? */
1943  			if (!after(end_seq, cache->end_seq))
1944  				goto advance_sp;
1945  
1946  			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1947  						       state,
1948  						       cache->end_seq);
1949  
1950  			/* ...tail remains todo... */
1951  			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1952  				/* ...but better entrypoint exists! */
1953  				skb = tcp_highest_sack(sk);
1954  				if (!skb)
1955  					break;
1956  				cache++;
1957  				goto walk;
1958  			}
1959  
1960  			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1961  			/* Check overlap against next cached too (past this one already) */
1962  			cache++;
1963  			continue;
1964  		}
1965  
1966  		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1967  			skb = tcp_highest_sack(sk);
1968  			if (!skb)
1969  				break;
1970  		}
1971  		skb = tcp_sacktag_skip(skb, sk, start_seq);
1972  
1973  walk:
1974  		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1975  				       start_seq, end_seq, dup_sack);
1976  
1977  advance_sp:
1978  		i++;
1979  	}
1980  
1981  	/* Clear the head of the cache sack blocks so we can skip it next time */
1982  	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1983  		tp->recv_sack_cache[i].start_seq = 0;
1984  		tp->recv_sack_cache[i].end_seq = 0;
1985  	}
1986  	for (j = 0; j < used_sacks; j++)
1987  		tp->recv_sack_cache[i++] = sp[j];
1988  
1989  	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1990  		tcp_check_sack_reordering(sk, state->reord, 0);
1991  
1992  	tcp_verify_left_out(tp);
1993  out:
1994  
1995  #if FASTRETRANS_DEBUG > 0
1996  	WARN_ON((int)tp->sacked_out < 0);
1997  	WARN_ON((int)tp->lost_out < 0);
1998  	WARN_ON((int)tp->retrans_out < 0);
1999  	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2000  #endif
2001  	return state->flag;
2002  }
2003  
2004  /* Limits sacked_out so that sum with lost_out isn't ever larger than
2005   * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2006   */
2007  static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2008  {
2009  	u32 holes;
2010  
2011  	holes = max(tp->lost_out, 1U);
2012  	holes = min(holes, tp->packets_out);
2013  
2014  	if ((tp->sacked_out + holes) > tp->packets_out) {
2015  		tp->sacked_out = tp->packets_out - holes;
2016  		return true;
2017  	}
2018  	return false;
2019  }
2020  
2021  /* If we receive more dupacks than we expected counting segments
2022   * in assumption of absent reordering, interpret this as reordering.
2023   * The only another reason could be bug in receiver TCP.
2024   */
2025  static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2026  {
2027  	struct tcp_sock *tp = tcp_sk(sk);
2028  
2029  	if (!tcp_limit_reno_sacked(tp))
2030  		return;
2031  
2032  	tp->reordering = min_t(u32, tp->packets_out + addend,
2033  			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
2034  	tp->reord_seen++;
2035  	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2036  }
2037  
2038  /* Emulate SACKs for SACKless connection: account for a new dupack. */
2039  
2040  static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2041  {
2042  	if (num_dupack) {
2043  		struct tcp_sock *tp = tcp_sk(sk);
2044  		u32 prior_sacked = tp->sacked_out;
2045  		s32 delivered;
2046  
2047  		tp->sacked_out += num_dupack;
2048  		tcp_check_reno_reordering(sk, 0);
2049  		delivered = tp->sacked_out - prior_sacked;
2050  		if (delivered > 0)
2051  			tcp_count_delivered(tp, delivered, ece_ack);
2052  		tcp_verify_left_out(tp);
2053  	}
2054  }
2055  
2056  /* Account for ACK, ACKing some data in Reno Recovery phase. */
2057  
2058  static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2059  {
2060  	struct tcp_sock *tp = tcp_sk(sk);
2061  
2062  	if (acked > 0) {
2063  		/* One ACK acked hole. The rest eat duplicate ACKs. */
2064  		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2065  				    ece_ack);
2066  		if (acked - 1 >= tp->sacked_out)
2067  			tp->sacked_out = 0;
2068  		else
2069  			tp->sacked_out -= acked - 1;
2070  	}
2071  	tcp_check_reno_reordering(sk, acked);
2072  	tcp_verify_left_out(tp);
2073  }
2074  
2075  static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2076  {
2077  	tp->sacked_out = 0;
2078  }
2079  
2080  void tcp_clear_retrans(struct tcp_sock *tp)
2081  {
2082  	tp->retrans_out = 0;
2083  	tp->lost_out = 0;
2084  	tp->undo_marker = 0;
2085  	tp->undo_retrans = -1;
2086  	tp->sacked_out = 0;
2087  }
2088  
2089  static inline void tcp_init_undo(struct tcp_sock *tp)
2090  {
2091  	tp->undo_marker = tp->snd_una;
2092  	/* Retransmission still in flight may cause DSACKs later. */
2093  	tp->undo_retrans = tp->retrans_out ? : -1;
2094  }
2095  
2096  static bool tcp_is_rack(const struct sock *sk)
2097  {
2098  	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2099  }
2100  
2101  /* If we detect SACK reneging, forget all SACK information
2102   * and reset tags completely, otherwise preserve SACKs. If receiver
2103   * dropped its ofo queue, we will know this due to reneging detection.
2104   */
2105  static void tcp_timeout_mark_lost(struct sock *sk)
2106  {
2107  	struct tcp_sock *tp = tcp_sk(sk);
2108  	struct sk_buff *skb, *head;
2109  	bool is_reneg;			/* is receiver reneging on SACKs? */
2110  
2111  	head = tcp_rtx_queue_head(sk);
2112  	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2113  	if (is_reneg) {
2114  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2115  		tp->sacked_out = 0;
2116  		/* Mark SACK reneging until we recover from this loss event. */
2117  		tp->is_sack_reneg = 1;
2118  	} else if (tcp_is_reno(tp)) {
2119  		tcp_reset_reno_sack(tp);
2120  	}
2121  
2122  	skb = head;
2123  	skb_rbtree_walk_from(skb) {
2124  		if (is_reneg)
2125  			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2126  		else if (tcp_is_rack(sk) && skb != head &&
2127  			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2128  			continue; /* Don't mark recently sent ones lost yet */
2129  		tcp_mark_skb_lost(sk, skb);
2130  	}
2131  	tcp_verify_left_out(tp);
2132  	tcp_clear_all_retrans_hints(tp);
2133  }
2134  
2135  /* Enter Loss state. */
2136  void tcp_enter_loss(struct sock *sk)
2137  {
2138  	const struct inet_connection_sock *icsk = inet_csk(sk);
2139  	struct tcp_sock *tp = tcp_sk(sk);
2140  	struct net *net = sock_net(sk);
2141  	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2142  
2143  	tcp_timeout_mark_lost(sk);
2144  
2145  	/* Reduce ssthresh if it has not yet been made inside this window. */
2146  	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2147  	    !after(tp->high_seq, tp->snd_una) ||
2148  	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2149  		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2150  		tp->prior_cwnd = tp->snd_cwnd;
2151  		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2152  		tcp_ca_event(sk, CA_EVENT_LOSS);
2153  		tcp_init_undo(tp);
2154  	}
2155  	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2156  	tp->snd_cwnd_cnt   = 0;
2157  	tp->snd_cwnd_stamp = tcp_jiffies32;
2158  
2159  	/* Timeout in disordered state after receiving substantial DUPACKs
2160  	 * suggests that the degree of reordering is over-estimated.
2161  	 */
2162  	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2163  	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2164  		tp->reordering = min_t(unsigned int, tp->reordering,
2165  				       net->ipv4.sysctl_tcp_reordering);
2166  	tcp_set_ca_state(sk, TCP_CA_Loss);
2167  	tp->high_seq = tp->snd_nxt;
2168  	tcp_ecn_queue_cwr(tp);
2169  
2170  	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2171  	 * loss recovery is underway except recurring timeout(s) on
2172  	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2173  	 */
2174  	tp->frto = net->ipv4.sysctl_tcp_frto &&
2175  		   (new_recovery || icsk->icsk_retransmits) &&
2176  		   !inet_csk(sk)->icsk_mtup.probe_size;
2177  }
2178  
2179  /* If ACK arrived pointing to a remembered SACK, it means that our
2180   * remembered SACKs do not reflect real state of receiver i.e.
2181   * receiver _host_ is heavily congested (or buggy).
2182   *
2183   * To avoid big spurious retransmission bursts due to transient SACK
2184   * scoreboard oddities that look like reneging, we give the receiver a
2185   * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2186   * restore sanity to the SACK scoreboard. If the apparent reneging
2187   * persists until this RTO then we'll clear the SACK scoreboard.
2188   */
2189  static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2190  {
2191  	if (flag & FLAG_SACK_RENEGING) {
2192  		struct tcp_sock *tp = tcp_sk(sk);
2193  		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2194  					  msecs_to_jiffies(10));
2195  
2196  		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2197  					  delay, TCP_RTO_MAX);
2198  		return true;
2199  	}
2200  	return false;
2201  }
2202  
2203  /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2204   * counter when SACK is enabled (without SACK, sacked_out is used for
2205   * that purpose).
2206   *
2207   * With reordering, holes may still be in flight, so RFC3517 recovery
2208   * uses pure sacked_out (total number of SACKed segments) even though
2209   * it violates the RFC that uses duplicate ACKs, often these are equal
2210   * but when e.g. out-of-window ACKs or packet duplication occurs,
2211   * they differ. Since neither occurs due to loss, TCP should really
2212   * ignore them.
2213   */
2214  static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2215  {
2216  	return tp->sacked_out + 1;
2217  }
2218  
2219  /* Linux NewReno/SACK/ECN state machine.
2220   * --------------------------------------
2221   *
2222   * "Open"	Normal state, no dubious events, fast path.
2223   * "Disorder"   In all the respects it is "Open",
2224   *		but requires a bit more attention. It is entered when
2225   *		we see some SACKs or dupacks. It is split of "Open"
2226   *		mainly to move some processing from fast path to slow one.
2227   * "CWR"	CWND was reduced due to some Congestion Notification event.
2228   *		It can be ECN, ICMP source quench, local device congestion.
2229   * "Recovery"	CWND was reduced, we are fast-retransmitting.
2230   * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2231   *
2232   * tcp_fastretrans_alert() is entered:
2233   * - each incoming ACK, if state is not "Open"
2234   * - when arrived ACK is unusual, namely:
2235   *	* SACK
2236   *	* Duplicate ACK.
2237   *	* ECN ECE.
2238   *
2239   * Counting packets in flight is pretty simple.
2240   *
2241   *	in_flight = packets_out - left_out + retrans_out
2242   *
2243   *	packets_out is SND.NXT-SND.UNA counted in packets.
2244   *
2245   *	retrans_out is number of retransmitted segments.
2246   *
2247   *	left_out is number of segments left network, but not ACKed yet.
2248   *
2249   *		left_out = sacked_out + lost_out
2250   *
2251   *     sacked_out: Packets, which arrived to receiver out of order
2252   *		   and hence not ACKed. With SACKs this number is simply
2253   *		   amount of SACKed data. Even without SACKs
2254   *		   it is easy to give pretty reliable estimate of this number,
2255   *		   counting duplicate ACKs.
2256   *
2257   *       lost_out: Packets lost by network. TCP has no explicit
2258   *		   "loss notification" feedback from network (for now).
2259   *		   It means that this number can be only _guessed_.
2260   *		   Actually, it is the heuristics to predict lossage that
2261   *		   distinguishes different algorithms.
2262   *
2263   *	F.e. after RTO, when all the queue is considered as lost,
2264   *	lost_out = packets_out and in_flight = retrans_out.
2265   *
2266   *		Essentially, we have now a few algorithms detecting
2267   *		lost packets.
2268   *
2269   *		If the receiver supports SACK:
2270   *
2271   *		RFC6675/3517: It is the conventional algorithm. A packet is
2272   *		considered lost if the number of higher sequence packets
2273   *		SACKed is greater than or equal the DUPACK thoreshold
2274   *		(reordering). This is implemented in tcp_mark_head_lost and
2275   *		tcp_update_scoreboard.
2276   *
2277   *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2278   *		(2017-) that checks timing instead of counting DUPACKs.
2279   *		Essentially a packet is considered lost if it's not S/ACKed
2280   *		after RTT + reordering_window, where both metrics are
2281   *		dynamically measured and adjusted. This is implemented in
2282   *		tcp_rack_mark_lost.
2283   *
2284   *		If the receiver does not support SACK:
2285   *
2286   *		NewReno (RFC6582): in Recovery we assume that one segment
2287   *		is lost (classic Reno). While we are in Recovery and
2288   *		a partial ACK arrives, we assume that one more packet
2289   *		is lost (NewReno). This heuristics are the same in NewReno
2290   *		and SACK.
2291   *
2292   * Really tricky (and requiring careful tuning) part of algorithm
2293   * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2294   * The first determines the moment _when_ we should reduce CWND and,
2295   * hence, slow down forward transmission. In fact, it determines the moment
2296   * when we decide that hole is caused by loss, rather than by a reorder.
2297   *
2298   * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2299   * holes, caused by lost packets.
2300   *
2301   * And the most logically complicated part of algorithm is undo
2302   * heuristics. We detect false retransmits due to both too early
2303   * fast retransmit (reordering) and underestimated RTO, analyzing
2304   * timestamps and D-SACKs. When we detect that some segments were
2305   * retransmitted by mistake and CWND reduction was wrong, we undo
2306   * window reduction and abort recovery phase. This logic is hidden
2307   * inside several functions named tcp_try_undo_<something>.
2308   */
2309  
2310  /* This function decides, when we should leave Disordered state
2311   * and enter Recovery phase, reducing congestion window.
2312   *
2313   * Main question: may we further continue forward transmission
2314   * with the same cwnd?
2315   */
2316  static bool tcp_time_to_recover(struct sock *sk, int flag)
2317  {
2318  	struct tcp_sock *tp = tcp_sk(sk);
2319  
2320  	/* Trick#1: The loss is proven. */
2321  	if (tp->lost_out)
2322  		return true;
2323  
2324  	/* Not-A-Trick#2 : Classic rule... */
2325  	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2326  		return true;
2327  
2328  	return false;
2329  }
2330  
2331  /* Detect loss in event "A" above by marking head of queue up as lost.
2332   * For RFC3517 SACK, a segment is considered lost if it
2333   * has at least tp->reordering SACKed seqments above it; "packets" refers to
2334   * the maximum SACKed segments to pass before reaching this limit.
2335   */
2336  static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2337  {
2338  	struct tcp_sock *tp = tcp_sk(sk);
2339  	struct sk_buff *skb;
2340  	int cnt;
2341  	/* Use SACK to deduce losses of new sequences sent during recovery */
2342  	const u32 loss_high = tp->snd_nxt;
2343  
2344  	WARN_ON(packets > tp->packets_out);
2345  	skb = tp->lost_skb_hint;
2346  	if (skb) {
2347  		/* Head already handled? */
2348  		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2349  			return;
2350  		cnt = tp->lost_cnt_hint;
2351  	} else {
2352  		skb = tcp_rtx_queue_head(sk);
2353  		cnt = 0;
2354  	}
2355  
2356  	skb_rbtree_walk_from(skb) {
2357  		/* TODO: do this better */
2358  		/* this is not the most efficient way to do this... */
2359  		tp->lost_skb_hint = skb;
2360  		tp->lost_cnt_hint = cnt;
2361  
2362  		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2363  			break;
2364  
2365  		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2366  			cnt += tcp_skb_pcount(skb);
2367  
2368  		if (cnt > packets)
2369  			break;
2370  
2371  		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2372  			tcp_mark_skb_lost(sk, skb);
2373  
2374  		if (mark_head)
2375  			break;
2376  	}
2377  	tcp_verify_left_out(tp);
2378  }
2379  
2380  /* Account newly detected lost packet(s) */
2381  
2382  static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2383  {
2384  	struct tcp_sock *tp = tcp_sk(sk);
2385  
2386  	if (tcp_is_sack(tp)) {
2387  		int sacked_upto = tp->sacked_out - tp->reordering;
2388  		if (sacked_upto >= 0)
2389  			tcp_mark_head_lost(sk, sacked_upto, 0);
2390  		else if (fast_rexmit)
2391  			tcp_mark_head_lost(sk, 1, 1);
2392  	}
2393  }
2394  
2395  static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2396  {
2397  	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2398  	       before(tp->rx_opt.rcv_tsecr, when);
2399  }
2400  
2401  /* skb is spurious retransmitted if the returned timestamp echo
2402   * reply is prior to the skb transmission time
2403   */
2404  static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2405  				     const struct sk_buff *skb)
2406  {
2407  	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2408  	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2409  }
2410  
2411  /* Nothing was retransmitted or returned timestamp is less
2412   * than timestamp of the first retransmission.
2413   */
2414  static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2415  {
2416  	return tp->retrans_stamp &&
2417  	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2418  }
2419  
2420  /* Undo procedures. */
2421  
2422  /* We can clear retrans_stamp when there are no retransmissions in the
2423   * window. It would seem that it is trivially available for us in
2424   * tp->retrans_out, however, that kind of assumptions doesn't consider
2425   * what will happen if errors occur when sending retransmission for the
2426   * second time. ...It could the that such segment has only
2427   * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2428   * the head skb is enough except for some reneging corner cases that
2429   * are not worth the effort.
2430   *
2431   * Main reason for all this complexity is the fact that connection dying
2432   * time now depends on the validity of the retrans_stamp, in particular,
2433   * that successive retransmissions of a segment must not advance
2434   * retrans_stamp under any conditions.
2435   */
2436  static bool tcp_any_retrans_done(const struct sock *sk)
2437  {
2438  	const struct tcp_sock *tp = tcp_sk(sk);
2439  	struct sk_buff *skb;
2440  
2441  	if (tp->retrans_out)
2442  		return true;
2443  
2444  	skb = tcp_rtx_queue_head(sk);
2445  	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2446  		return true;
2447  
2448  	return false;
2449  }
2450  
2451  static void DBGUNDO(struct sock *sk, const char *msg)
2452  {
2453  #if FASTRETRANS_DEBUG > 1
2454  	struct tcp_sock *tp = tcp_sk(sk);
2455  	struct inet_sock *inet = inet_sk(sk);
2456  
2457  	if (sk->sk_family == AF_INET) {
2458  		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2459  			 msg,
2460  			 &inet->inet_daddr, ntohs(inet->inet_dport),
2461  			 tp->snd_cwnd, tcp_left_out(tp),
2462  			 tp->snd_ssthresh, tp->prior_ssthresh,
2463  			 tp->packets_out);
2464  	}
2465  #if IS_ENABLED(CONFIG_IPV6)
2466  	else if (sk->sk_family == AF_INET6) {
2467  		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2468  			 msg,
2469  			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2470  			 tp->snd_cwnd, tcp_left_out(tp),
2471  			 tp->snd_ssthresh, tp->prior_ssthresh,
2472  			 tp->packets_out);
2473  	}
2474  #endif
2475  #endif
2476  }
2477  
2478  static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2479  {
2480  	struct tcp_sock *tp = tcp_sk(sk);
2481  
2482  	if (unmark_loss) {
2483  		struct sk_buff *skb;
2484  
2485  		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2486  			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2487  		}
2488  		tp->lost_out = 0;
2489  		tcp_clear_all_retrans_hints(tp);
2490  	}
2491  
2492  	if (tp->prior_ssthresh) {
2493  		const struct inet_connection_sock *icsk = inet_csk(sk);
2494  
2495  		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2496  
2497  		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2498  			tp->snd_ssthresh = tp->prior_ssthresh;
2499  			tcp_ecn_withdraw_cwr(tp);
2500  		}
2501  	}
2502  	tp->snd_cwnd_stamp = tcp_jiffies32;
2503  	tp->undo_marker = 0;
2504  	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2505  }
2506  
2507  static inline bool tcp_may_undo(const struct tcp_sock *tp)
2508  {
2509  	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2510  }
2511  
2512  /* People celebrate: "We love our President!" */
2513  static bool tcp_try_undo_recovery(struct sock *sk)
2514  {
2515  	struct tcp_sock *tp = tcp_sk(sk);
2516  
2517  	if (tcp_may_undo(tp)) {
2518  		int mib_idx;
2519  
2520  		/* Happy end! We did not retransmit anything
2521  		 * or our original transmission succeeded.
2522  		 */
2523  		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2524  		tcp_undo_cwnd_reduction(sk, false);
2525  		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2526  			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2527  		else
2528  			mib_idx = LINUX_MIB_TCPFULLUNDO;
2529  
2530  		NET_INC_STATS(sock_net(sk), mib_idx);
2531  	} else if (tp->rack.reo_wnd_persist) {
2532  		tp->rack.reo_wnd_persist--;
2533  	}
2534  	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2535  		/* Hold old state until something *above* high_seq
2536  		 * is ACKed. For Reno it is MUST to prevent false
2537  		 * fast retransmits (RFC2582). SACK TCP is safe. */
2538  		if (!tcp_any_retrans_done(sk))
2539  			tp->retrans_stamp = 0;
2540  		return true;
2541  	}
2542  	tcp_set_ca_state(sk, TCP_CA_Open);
2543  	tp->is_sack_reneg = 0;
2544  	return false;
2545  }
2546  
2547  /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2548  static bool tcp_try_undo_dsack(struct sock *sk)
2549  {
2550  	struct tcp_sock *tp = tcp_sk(sk);
2551  
2552  	if (tp->undo_marker && !tp->undo_retrans) {
2553  		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2554  					       tp->rack.reo_wnd_persist + 1);
2555  		DBGUNDO(sk, "D-SACK");
2556  		tcp_undo_cwnd_reduction(sk, false);
2557  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2558  		return true;
2559  	}
2560  	return false;
2561  }
2562  
2563  /* Undo during loss recovery after partial ACK or using F-RTO. */
2564  static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2565  {
2566  	struct tcp_sock *tp = tcp_sk(sk);
2567  
2568  	if (frto_undo || tcp_may_undo(tp)) {
2569  		tcp_undo_cwnd_reduction(sk, true);
2570  
2571  		DBGUNDO(sk, "partial loss");
2572  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2573  		if (frto_undo)
2574  			NET_INC_STATS(sock_net(sk),
2575  					LINUX_MIB_TCPSPURIOUSRTOS);
2576  		inet_csk(sk)->icsk_retransmits = 0;
2577  		if (frto_undo || tcp_is_sack(tp)) {
2578  			tcp_set_ca_state(sk, TCP_CA_Open);
2579  			tp->is_sack_reneg = 0;
2580  		}
2581  		return true;
2582  	}
2583  	return false;
2584  }
2585  
2586  /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2587   * It computes the number of packets to send (sndcnt) based on packets newly
2588   * delivered:
2589   *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2590   *	cwnd reductions across a full RTT.
2591   *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2592   *      But when SND_UNA is acked without further losses,
2593   *      slow starts cwnd up to ssthresh to speed up the recovery.
2594   */
2595  static void tcp_init_cwnd_reduction(struct sock *sk)
2596  {
2597  	struct tcp_sock *tp = tcp_sk(sk);
2598  
2599  	tp->high_seq = tp->snd_nxt;
2600  	tp->tlp_high_seq = 0;
2601  	tp->snd_cwnd_cnt = 0;
2602  	tp->prior_cwnd = tp->snd_cwnd;
2603  	tp->prr_delivered = 0;
2604  	tp->prr_out = 0;
2605  	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2606  	tcp_ecn_queue_cwr(tp);
2607  }
2608  
2609  void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2610  {
2611  	struct tcp_sock *tp = tcp_sk(sk);
2612  	int sndcnt = 0;
2613  	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2614  
2615  	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2616  		return;
2617  
2618  	tp->prr_delivered += newly_acked_sacked;
2619  	if (delta < 0) {
2620  		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2621  			       tp->prior_cwnd - 1;
2622  		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2623  	} else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2624  		sndcnt = min_t(int, delta,
2625  			       max_t(int, tp->prr_delivered - tp->prr_out,
2626  				     newly_acked_sacked) + 1);
2627  	} else {
2628  		sndcnt = min(delta, newly_acked_sacked);
2629  	}
2630  	/* Force a fast retransmit upon entering fast recovery */
2631  	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2632  	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2633  }
2634  
2635  static inline void tcp_end_cwnd_reduction(struct sock *sk)
2636  {
2637  	struct tcp_sock *tp = tcp_sk(sk);
2638  
2639  	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2640  		return;
2641  
2642  	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2643  	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2644  	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2645  		tp->snd_cwnd = tp->snd_ssthresh;
2646  		tp->snd_cwnd_stamp = tcp_jiffies32;
2647  	}
2648  	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2649  }
2650  
2651  /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2652  void tcp_enter_cwr(struct sock *sk)
2653  {
2654  	struct tcp_sock *tp = tcp_sk(sk);
2655  
2656  	tp->prior_ssthresh = 0;
2657  	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2658  		tp->undo_marker = 0;
2659  		tcp_init_cwnd_reduction(sk);
2660  		tcp_set_ca_state(sk, TCP_CA_CWR);
2661  	}
2662  }
2663  EXPORT_SYMBOL(tcp_enter_cwr);
2664  
2665  static void tcp_try_keep_open(struct sock *sk)
2666  {
2667  	struct tcp_sock *tp = tcp_sk(sk);
2668  	int state = TCP_CA_Open;
2669  
2670  	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2671  		state = TCP_CA_Disorder;
2672  
2673  	if (inet_csk(sk)->icsk_ca_state != state) {
2674  		tcp_set_ca_state(sk, state);
2675  		tp->high_seq = tp->snd_nxt;
2676  	}
2677  }
2678  
2679  static void tcp_try_to_open(struct sock *sk, int flag)
2680  {
2681  	struct tcp_sock *tp = tcp_sk(sk);
2682  
2683  	tcp_verify_left_out(tp);
2684  
2685  	if (!tcp_any_retrans_done(sk))
2686  		tp->retrans_stamp = 0;
2687  
2688  	if (flag & FLAG_ECE)
2689  		tcp_enter_cwr(sk);
2690  
2691  	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2692  		tcp_try_keep_open(sk);
2693  	}
2694  }
2695  
2696  static void tcp_mtup_probe_failed(struct sock *sk)
2697  {
2698  	struct inet_connection_sock *icsk = inet_csk(sk);
2699  
2700  	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2701  	icsk->icsk_mtup.probe_size = 0;
2702  	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2703  }
2704  
2705  static void tcp_mtup_probe_success(struct sock *sk)
2706  {
2707  	struct tcp_sock *tp = tcp_sk(sk);
2708  	struct inet_connection_sock *icsk = inet_csk(sk);
2709  
2710  	/* FIXME: breaks with very large cwnd */
2711  	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2712  	tp->snd_cwnd = tp->snd_cwnd *
2713  		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2714  		       icsk->icsk_mtup.probe_size;
2715  	tp->snd_cwnd_cnt = 0;
2716  	tp->snd_cwnd_stamp = tcp_jiffies32;
2717  	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2718  
2719  	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2720  	icsk->icsk_mtup.probe_size = 0;
2721  	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2722  	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2723  }
2724  
2725  /* Do a simple retransmit without using the backoff mechanisms in
2726   * tcp_timer. This is used for path mtu discovery.
2727   * The socket is already locked here.
2728   */
2729  void tcp_simple_retransmit(struct sock *sk)
2730  {
2731  	const struct inet_connection_sock *icsk = inet_csk(sk);
2732  	struct tcp_sock *tp = tcp_sk(sk);
2733  	struct sk_buff *skb;
2734  	int mss;
2735  
2736  	/* A fastopen SYN request is stored as two separate packets within
2737  	 * the retransmit queue, this is done by tcp_send_syn_data().
2738  	 * As a result simply checking the MSS of the frames in the queue
2739  	 * will not work for the SYN packet.
2740  	 *
2741  	 * Us being here is an indication of a path MTU issue so we can
2742  	 * assume that the fastopen SYN was lost and just mark all the
2743  	 * frames in the retransmit queue as lost. We will use an MSS of
2744  	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2745  	 */
2746  	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2747  		mss = -1;
2748  	else
2749  		mss = tcp_current_mss(sk);
2750  
2751  	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2752  		if (tcp_skb_seglen(skb) > mss)
2753  			tcp_mark_skb_lost(sk, skb);
2754  	}
2755  
2756  	tcp_clear_retrans_hints_partial(tp);
2757  
2758  	if (!tp->lost_out)
2759  		return;
2760  
2761  	if (tcp_is_reno(tp))
2762  		tcp_limit_reno_sacked(tp);
2763  
2764  	tcp_verify_left_out(tp);
2765  
2766  	/* Don't muck with the congestion window here.
2767  	 * Reason is that we do not increase amount of _data_
2768  	 * in network, but units changed and effective
2769  	 * cwnd/ssthresh really reduced now.
2770  	 */
2771  	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2772  		tp->high_seq = tp->snd_nxt;
2773  		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2774  		tp->prior_ssthresh = 0;
2775  		tp->undo_marker = 0;
2776  		tcp_set_ca_state(sk, TCP_CA_Loss);
2777  	}
2778  	tcp_xmit_retransmit_queue(sk);
2779  }
2780  EXPORT_SYMBOL(tcp_simple_retransmit);
2781  
2782  void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2783  {
2784  	struct tcp_sock *tp = tcp_sk(sk);
2785  	int mib_idx;
2786  
2787  	if (tcp_is_reno(tp))
2788  		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2789  	else
2790  		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2791  
2792  	NET_INC_STATS(sock_net(sk), mib_idx);
2793  
2794  	tp->prior_ssthresh = 0;
2795  	tcp_init_undo(tp);
2796  
2797  	if (!tcp_in_cwnd_reduction(sk)) {
2798  		if (!ece_ack)
2799  			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2800  		tcp_init_cwnd_reduction(sk);
2801  	}
2802  	tcp_set_ca_state(sk, TCP_CA_Recovery);
2803  }
2804  
2805  /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2806   * recovered or spurious. Otherwise retransmits more on partial ACKs.
2807   */
2808  static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2809  			     int *rexmit)
2810  {
2811  	struct tcp_sock *tp = tcp_sk(sk);
2812  	bool recovered = !before(tp->snd_una, tp->high_seq);
2813  
2814  	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2815  	    tcp_try_undo_loss(sk, false))
2816  		return;
2817  
2818  	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2819  		/* Step 3.b. A timeout is spurious if not all data are
2820  		 * lost, i.e., never-retransmitted data are (s)acked.
2821  		 */
2822  		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2823  		    tcp_try_undo_loss(sk, true))
2824  			return;
2825  
2826  		if (after(tp->snd_nxt, tp->high_seq)) {
2827  			if (flag & FLAG_DATA_SACKED || num_dupack)
2828  				tp->frto = 0; /* Step 3.a. loss was real */
2829  		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2830  			tp->high_seq = tp->snd_nxt;
2831  			/* Step 2.b. Try send new data (but deferred until cwnd
2832  			 * is updated in tcp_ack()). Otherwise fall back to
2833  			 * the conventional recovery.
2834  			 */
2835  			if (!tcp_write_queue_empty(sk) &&
2836  			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2837  				*rexmit = REXMIT_NEW;
2838  				return;
2839  			}
2840  			tp->frto = 0;
2841  		}
2842  	}
2843  
2844  	if (recovered) {
2845  		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2846  		tcp_try_undo_recovery(sk);
2847  		return;
2848  	}
2849  	if (tcp_is_reno(tp)) {
2850  		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2851  		 * delivered. Lower inflight to clock out (re)tranmissions.
2852  		 */
2853  		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2854  			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2855  		else if (flag & FLAG_SND_UNA_ADVANCED)
2856  			tcp_reset_reno_sack(tp);
2857  	}
2858  	*rexmit = REXMIT_LOST;
2859  }
2860  
2861  static bool tcp_force_fast_retransmit(struct sock *sk)
2862  {
2863  	struct tcp_sock *tp = tcp_sk(sk);
2864  
2865  	return after(tcp_highest_sack_seq(tp),
2866  		     tp->snd_una + tp->reordering * tp->mss_cache);
2867  }
2868  
2869  /* Undo during fast recovery after partial ACK. */
2870  static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2871  				 bool *do_lost)
2872  {
2873  	struct tcp_sock *tp = tcp_sk(sk);
2874  
2875  	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2876  		/* Plain luck! Hole if filled with delayed
2877  		 * packet, rather than with a retransmit. Check reordering.
2878  		 */
2879  		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2880  
2881  		/* We are getting evidence that the reordering degree is higher
2882  		 * than we realized. If there are no retransmits out then we
2883  		 * can undo. Otherwise we clock out new packets but do not
2884  		 * mark more packets lost or retransmit more.
2885  		 */
2886  		if (tp->retrans_out)
2887  			return true;
2888  
2889  		if (!tcp_any_retrans_done(sk))
2890  			tp->retrans_stamp = 0;
2891  
2892  		DBGUNDO(sk, "partial recovery");
2893  		tcp_undo_cwnd_reduction(sk, true);
2894  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2895  		tcp_try_keep_open(sk);
2896  	} else {
2897  		/* Partial ACK arrived. Force fast retransmit. */
2898  		*do_lost = tcp_force_fast_retransmit(sk);
2899  	}
2900  	return false;
2901  }
2902  
2903  static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2904  {
2905  	struct tcp_sock *tp = tcp_sk(sk);
2906  
2907  	if (tcp_rtx_queue_empty(sk))
2908  		return;
2909  
2910  	if (unlikely(tcp_is_reno(tp))) {
2911  		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2912  	} else if (tcp_is_rack(sk)) {
2913  		u32 prior_retrans = tp->retrans_out;
2914  
2915  		if (tcp_rack_mark_lost(sk))
2916  			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2917  		if (prior_retrans > tp->retrans_out)
2918  			*ack_flag |= FLAG_LOST_RETRANS;
2919  	}
2920  }
2921  
2922  /* Process an event, which can update packets-in-flight not trivially.
2923   * Main goal of this function is to calculate new estimate for left_out,
2924   * taking into account both packets sitting in receiver's buffer and
2925   * packets lost by network.
2926   *
2927   * Besides that it updates the congestion state when packet loss or ECN
2928   * is detected. But it does not reduce the cwnd, it is done by the
2929   * congestion control later.
2930   *
2931   * It does _not_ decide what to send, it is made in function
2932   * tcp_xmit_retransmit_queue().
2933   */
2934  static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2935  				  int num_dupack, int *ack_flag, int *rexmit)
2936  {
2937  	struct inet_connection_sock *icsk = inet_csk(sk);
2938  	struct tcp_sock *tp = tcp_sk(sk);
2939  	int fast_rexmit = 0, flag = *ack_flag;
2940  	bool ece_ack = flag & FLAG_ECE;
2941  	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2942  				      tcp_force_fast_retransmit(sk));
2943  
2944  	if (!tp->packets_out && tp->sacked_out)
2945  		tp->sacked_out = 0;
2946  
2947  	/* Now state machine starts.
2948  	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2949  	if (ece_ack)
2950  		tp->prior_ssthresh = 0;
2951  
2952  	/* B. In all the states check for reneging SACKs. */
2953  	if (tcp_check_sack_reneging(sk, flag))
2954  		return;
2955  
2956  	/* C. Check consistency of the current state. */
2957  	tcp_verify_left_out(tp);
2958  
2959  	/* D. Check state exit conditions. State can be terminated
2960  	 *    when high_seq is ACKed. */
2961  	if (icsk->icsk_ca_state == TCP_CA_Open) {
2962  		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2963  		tp->retrans_stamp = 0;
2964  	} else if (!before(tp->snd_una, tp->high_seq)) {
2965  		switch (icsk->icsk_ca_state) {
2966  		case TCP_CA_CWR:
2967  			/* CWR is to be held something *above* high_seq
2968  			 * is ACKed for CWR bit to reach receiver. */
2969  			if (tp->snd_una != tp->high_seq) {
2970  				tcp_end_cwnd_reduction(sk);
2971  				tcp_set_ca_state(sk, TCP_CA_Open);
2972  			}
2973  			break;
2974  
2975  		case TCP_CA_Recovery:
2976  			if (tcp_is_reno(tp))
2977  				tcp_reset_reno_sack(tp);
2978  			if (tcp_try_undo_recovery(sk))
2979  				return;
2980  			tcp_end_cwnd_reduction(sk);
2981  			break;
2982  		}
2983  	}
2984  
2985  	/* E. Process state. */
2986  	switch (icsk->icsk_ca_state) {
2987  	case TCP_CA_Recovery:
2988  		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2989  			if (tcp_is_reno(tp))
2990  				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2991  		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2992  			return;
2993  
2994  		if (tcp_try_undo_dsack(sk))
2995  			tcp_try_keep_open(sk);
2996  
2997  		tcp_identify_packet_loss(sk, ack_flag);
2998  		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2999  			if (!tcp_time_to_recover(sk, flag))
3000  				return;
3001  			/* Undo reverts the recovery state. If loss is evident,
3002  			 * starts a new recovery (e.g. reordering then loss);
3003  			 */
3004  			tcp_enter_recovery(sk, ece_ack);
3005  		}
3006  		break;
3007  	case TCP_CA_Loss:
3008  		tcp_process_loss(sk, flag, num_dupack, rexmit);
3009  		tcp_identify_packet_loss(sk, ack_flag);
3010  		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3011  		      (*ack_flag & FLAG_LOST_RETRANS)))
3012  			return;
3013  		/* Change state if cwnd is undone or retransmits are lost */
3014  		fallthrough;
3015  	default:
3016  		if (tcp_is_reno(tp)) {
3017  			if (flag & FLAG_SND_UNA_ADVANCED)
3018  				tcp_reset_reno_sack(tp);
3019  			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3020  		}
3021  
3022  		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3023  			tcp_try_undo_dsack(sk);
3024  
3025  		tcp_identify_packet_loss(sk, ack_flag);
3026  		if (!tcp_time_to_recover(sk, flag)) {
3027  			tcp_try_to_open(sk, flag);
3028  			return;
3029  		}
3030  
3031  		/* MTU probe failure: don't reduce cwnd */
3032  		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3033  		    icsk->icsk_mtup.probe_size &&
3034  		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3035  			tcp_mtup_probe_failed(sk);
3036  			/* Restores the reduction we did in tcp_mtup_probe() */
3037  			tp->snd_cwnd++;
3038  			tcp_simple_retransmit(sk);
3039  			return;
3040  		}
3041  
3042  		/* Otherwise enter Recovery state */
3043  		tcp_enter_recovery(sk, ece_ack);
3044  		fast_rexmit = 1;
3045  	}
3046  
3047  	if (!tcp_is_rack(sk) && do_lost)
3048  		tcp_update_scoreboard(sk, fast_rexmit);
3049  	*rexmit = REXMIT_LOST;
3050  }
3051  
3052  static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3053  {
3054  	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3055  	struct tcp_sock *tp = tcp_sk(sk);
3056  
3057  	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3058  		/* If the remote keeps returning delayed ACKs, eventually
3059  		 * the min filter would pick it up and overestimate the
3060  		 * prop. delay when it expires. Skip suspected delayed ACKs.
3061  		 */
3062  		return;
3063  	}
3064  	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3065  			   rtt_us ? : jiffies_to_usecs(1));
3066  }
3067  
3068  static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3069  			       long seq_rtt_us, long sack_rtt_us,
3070  			       long ca_rtt_us, struct rate_sample *rs)
3071  {
3072  	const struct tcp_sock *tp = tcp_sk(sk);
3073  
3074  	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3075  	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3076  	 * Karn's algorithm forbids taking RTT if some retransmitted data
3077  	 * is acked (RFC6298).
3078  	 */
3079  	if (seq_rtt_us < 0)
3080  		seq_rtt_us = sack_rtt_us;
3081  
3082  	/* RTTM Rule: A TSecr value received in a segment is used to
3083  	 * update the averaged RTT measurement only if the segment
3084  	 * acknowledges some new data, i.e., only if it advances the
3085  	 * left edge of the send window.
3086  	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3087  	 */
3088  	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3089  	    flag & FLAG_ACKED) {
3090  		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3091  
3092  		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3093  			if (!delta)
3094  				delta = 1;
3095  			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3096  			ca_rtt_us = seq_rtt_us;
3097  		}
3098  	}
3099  	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3100  	if (seq_rtt_us < 0)
3101  		return false;
3102  
3103  	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3104  	 * always taken together with ACK, SACK, or TS-opts. Any negative
3105  	 * values will be skipped with the seq_rtt_us < 0 check above.
3106  	 */
3107  	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3108  	tcp_rtt_estimator(sk, seq_rtt_us);
3109  	tcp_set_rto(sk);
3110  
3111  	/* RFC6298: only reset backoff on valid RTT measurement. */
3112  	inet_csk(sk)->icsk_backoff = 0;
3113  	return true;
3114  }
3115  
3116  /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3117  void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3118  {
3119  	struct rate_sample rs;
3120  	long rtt_us = -1L;
3121  
3122  	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3123  		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3124  
3125  	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3126  }
3127  
3128  
3129  static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3130  {
3131  	const struct inet_connection_sock *icsk = inet_csk(sk);
3132  
3133  	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3134  	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3135  }
3136  
3137  /* Restart timer after forward progress on connection.
3138   * RFC2988 recommends to restart timer to now+rto.
3139   */
3140  void tcp_rearm_rto(struct sock *sk)
3141  {
3142  	const struct inet_connection_sock *icsk = inet_csk(sk);
3143  	struct tcp_sock *tp = tcp_sk(sk);
3144  
3145  	/* If the retrans timer is currently being used by Fast Open
3146  	 * for SYN-ACK retrans purpose, stay put.
3147  	 */
3148  	if (rcu_access_pointer(tp->fastopen_rsk))
3149  		return;
3150  
3151  	if (!tp->packets_out) {
3152  		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3153  	} else {
3154  		u32 rto = inet_csk(sk)->icsk_rto;
3155  		/* Offset the time elapsed after installing regular RTO */
3156  		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3157  		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3158  			s64 delta_us = tcp_rto_delta_us(sk);
3159  			/* delta_us may not be positive if the socket is locked
3160  			 * when the retrans timer fires and is rescheduled.
3161  			 */
3162  			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3163  		}
3164  		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3165  				     TCP_RTO_MAX);
3166  	}
3167  }
3168  
3169  /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3170  static void tcp_set_xmit_timer(struct sock *sk)
3171  {
3172  	if (!tcp_schedule_loss_probe(sk, true))
3173  		tcp_rearm_rto(sk);
3174  }
3175  
3176  /* If we get here, the whole TSO packet has not been acked. */
3177  static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3178  {
3179  	struct tcp_sock *tp = tcp_sk(sk);
3180  	u32 packets_acked;
3181  
3182  	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3183  
3184  	packets_acked = tcp_skb_pcount(skb);
3185  	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3186  		return 0;
3187  	packets_acked -= tcp_skb_pcount(skb);
3188  
3189  	if (packets_acked) {
3190  		BUG_ON(tcp_skb_pcount(skb) == 0);
3191  		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3192  	}
3193  
3194  	return packets_acked;
3195  }
3196  
3197  static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3198  			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3199  {
3200  	const struct skb_shared_info *shinfo;
3201  
3202  	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3203  	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3204  		return;
3205  
3206  	shinfo = skb_shinfo(skb);
3207  	if (!before(shinfo->tskey, prior_snd_una) &&
3208  	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3209  		tcp_skb_tsorted_save(skb) {
3210  			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3211  		} tcp_skb_tsorted_restore(skb);
3212  	}
3213  }
3214  
3215  /* Remove acknowledged frames from the retransmission queue. If our packet
3216   * is before the ack sequence we can discard it as it's confirmed to have
3217   * arrived at the other end.
3218   */
3219  static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3220  			       u32 prior_fack, u32 prior_snd_una,
3221  			       struct tcp_sacktag_state *sack, bool ece_ack)
3222  {
3223  	const struct inet_connection_sock *icsk = inet_csk(sk);
3224  	u64 first_ackt, last_ackt;
3225  	struct tcp_sock *tp = tcp_sk(sk);
3226  	u32 prior_sacked = tp->sacked_out;
3227  	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3228  	struct sk_buff *skb, *next;
3229  	bool fully_acked = true;
3230  	long sack_rtt_us = -1L;
3231  	long seq_rtt_us = -1L;
3232  	long ca_rtt_us = -1L;
3233  	u32 pkts_acked = 0;
3234  	bool rtt_update;
3235  	int flag = 0;
3236  
3237  	first_ackt = 0;
3238  
3239  	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3240  		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3241  		const u32 start_seq = scb->seq;
3242  		u8 sacked = scb->sacked;
3243  		u32 acked_pcount;
3244  
3245  		/* Determine how many packets and what bytes were acked, tso and else */
3246  		if (after(scb->end_seq, tp->snd_una)) {
3247  			if (tcp_skb_pcount(skb) == 1 ||
3248  			    !after(tp->snd_una, scb->seq))
3249  				break;
3250  
3251  			acked_pcount = tcp_tso_acked(sk, skb);
3252  			if (!acked_pcount)
3253  				break;
3254  			fully_acked = false;
3255  		} else {
3256  			acked_pcount = tcp_skb_pcount(skb);
3257  		}
3258  
3259  		if (unlikely(sacked & TCPCB_RETRANS)) {
3260  			if (sacked & TCPCB_SACKED_RETRANS)
3261  				tp->retrans_out -= acked_pcount;
3262  			flag |= FLAG_RETRANS_DATA_ACKED;
3263  		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3264  			last_ackt = tcp_skb_timestamp_us(skb);
3265  			WARN_ON_ONCE(last_ackt == 0);
3266  			if (!first_ackt)
3267  				first_ackt = last_ackt;
3268  
3269  			if (before(start_seq, reord))
3270  				reord = start_seq;
3271  			if (!after(scb->end_seq, tp->high_seq))
3272  				flag |= FLAG_ORIG_SACK_ACKED;
3273  		}
3274  
3275  		if (sacked & TCPCB_SACKED_ACKED) {
3276  			tp->sacked_out -= acked_pcount;
3277  		} else if (tcp_is_sack(tp)) {
3278  			tcp_count_delivered(tp, acked_pcount, ece_ack);
3279  			if (!tcp_skb_spurious_retrans(tp, skb))
3280  				tcp_rack_advance(tp, sacked, scb->end_seq,
3281  						 tcp_skb_timestamp_us(skb));
3282  		}
3283  		if (sacked & TCPCB_LOST)
3284  			tp->lost_out -= acked_pcount;
3285  
3286  		tp->packets_out -= acked_pcount;
3287  		pkts_acked += acked_pcount;
3288  		tcp_rate_skb_delivered(sk, skb, sack->rate);
3289  
3290  		/* Initial outgoing SYN's get put onto the write_queue
3291  		 * just like anything else we transmit.  It is not
3292  		 * true data, and if we misinform our callers that
3293  		 * this ACK acks real data, we will erroneously exit
3294  		 * connection startup slow start one packet too
3295  		 * quickly.  This is severely frowned upon behavior.
3296  		 */
3297  		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3298  			flag |= FLAG_DATA_ACKED;
3299  		} else {
3300  			flag |= FLAG_SYN_ACKED;
3301  			tp->retrans_stamp = 0;
3302  		}
3303  
3304  		if (!fully_acked)
3305  			break;
3306  
3307  		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3308  
3309  		next = skb_rb_next(skb);
3310  		if (unlikely(skb == tp->retransmit_skb_hint))
3311  			tp->retransmit_skb_hint = NULL;
3312  		if (unlikely(skb == tp->lost_skb_hint))
3313  			tp->lost_skb_hint = NULL;
3314  		tcp_highest_sack_replace(sk, skb, next);
3315  		tcp_rtx_queue_unlink_and_free(skb, sk);
3316  	}
3317  
3318  	if (!skb)
3319  		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3320  
3321  	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3322  		tp->snd_up = tp->snd_una;
3323  
3324  	if (skb) {
3325  		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3326  		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3327  			flag |= FLAG_SACK_RENEGING;
3328  	}
3329  
3330  	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3331  		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3332  		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3333  
3334  		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3335  		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3336  		    sack->rate->prior_delivered + 1 == tp->delivered &&
3337  		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3338  			/* Conservatively mark a delayed ACK. It's typically
3339  			 * from a lone runt packet over the round trip to
3340  			 * a receiver w/o out-of-order or CE events.
3341  			 */
3342  			flag |= FLAG_ACK_MAYBE_DELAYED;
3343  		}
3344  	}
3345  	if (sack->first_sackt) {
3346  		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3347  		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3348  	}
3349  	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3350  					ca_rtt_us, sack->rate);
3351  
3352  	if (flag & FLAG_ACKED) {
3353  		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3354  		if (unlikely(icsk->icsk_mtup.probe_size &&
3355  			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3356  			tcp_mtup_probe_success(sk);
3357  		}
3358  
3359  		if (tcp_is_reno(tp)) {
3360  			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3361  
3362  			/* If any of the cumulatively ACKed segments was
3363  			 * retransmitted, non-SACK case cannot confirm that
3364  			 * progress was due to original transmission due to
3365  			 * lack of TCPCB_SACKED_ACKED bits even if some of
3366  			 * the packets may have been never retransmitted.
3367  			 */
3368  			if (flag & FLAG_RETRANS_DATA_ACKED)
3369  				flag &= ~FLAG_ORIG_SACK_ACKED;
3370  		} else {
3371  			int delta;
3372  
3373  			/* Non-retransmitted hole got filled? That's reordering */
3374  			if (before(reord, prior_fack))
3375  				tcp_check_sack_reordering(sk, reord, 0);
3376  
3377  			delta = prior_sacked - tp->sacked_out;
3378  			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3379  		}
3380  	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3381  		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3382  						    tcp_skb_timestamp_us(skb))) {
3383  		/* Do not re-arm RTO if the sack RTT is measured from data sent
3384  		 * after when the head was last (re)transmitted. Otherwise the
3385  		 * timeout may continue to extend in loss recovery.
3386  		 */
3387  		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3388  	}
3389  
3390  	if (icsk->icsk_ca_ops->pkts_acked) {
3391  		struct ack_sample sample = { .pkts_acked = pkts_acked,
3392  					     .rtt_us = sack->rate->rtt_us };
3393  
3394  		sample.in_flight = tp->mss_cache *
3395  			(tp->delivered - sack->rate->prior_delivered);
3396  		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3397  	}
3398  
3399  #if FASTRETRANS_DEBUG > 0
3400  	WARN_ON((int)tp->sacked_out < 0);
3401  	WARN_ON((int)tp->lost_out < 0);
3402  	WARN_ON((int)tp->retrans_out < 0);
3403  	if (!tp->packets_out && tcp_is_sack(tp)) {
3404  		icsk = inet_csk(sk);
3405  		if (tp->lost_out) {
3406  			pr_debug("Leak l=%u %d\n",
3407  				 tp->lost_out, icsk->icsk_ca_state);
3408  			tp->lost_out = 0;
3409  		}
3410  		if (tp->sacked_out) {
3411  			pr_debug("Leak s=%u %d\n",
3412  				 tp->sacked_out, icsk->icsk_ca_state);
3413  			tp->sacked_out = 0;
3414  		}
3415  		if (tp->retrans_out) {
3416  			pr_debug("Leak r=%u %d\n",
3417  				 tp->retrans_out, icsk->icsk_ca_state);
3418  			tp->retrans_out = 0;
3419  		}
3420  	}
3421  #endif
3422  	return flag;
3423  }
3424  
3425  static void tcp_ack_probe(struct sock *sk)
3426  {
3427  	struct inet_connection_sock *icsk = inet_csk(sk);
3428  	struct sk_buff *head = tcp_send_head(sk);
3429  	const struct tcp_sock *tp = tcp_sk(sk);
3430  
3431  	/* Was it a usable window open? */
3432  	if (!head)
3433  		return;
3434  	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3435  		icsk->icsk_backoff = 0;
3436  		icsk->icsk_probes_tstamp = 0;
3437  		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3438  		/* Socket must be waked up by subsequent tcp_data_snd_check().
3439  		 * This function is not for random using!
3440  		 */
3441  	} else {
3442  		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3443  
3444  		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3445  		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3446  	}
3447  }
3448  
3449  static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3450  {
3451  	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3452  		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3453  }
3454  
3455  /* Decide wheather to run the increase function of congestion control. */
3456  static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3457  {
3458  	/* If reordering is high then always grow cwnd whenever data is
3459  	 * delivered regardless of its ordering. Otherwise stay conservative
3460  	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3461  	 * new SACK or ECE mark may first advance cwnd here and later reduce
3462  	 * cwnd in tcp_fastretrans_alert() based on more states.
3463  	 */
3464  	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3465  		return flag & FLAG_FORWARD_PROGRESS;
3466  
3467  	return flag & FLAG_DATA_ACKED;
3468  }
3469  
3470  /* The "ultimate" congestion control function that aims to replace the rigid
3471   * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3472   * It's called toward the end of processing an ACK with precise rate
3473   * information. All transmission or retransmission are delayed afterwards.
3474   */
3475  static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3476  			     int flag, const struct rate_sample *rs)
3477  {
3478  	const struct inet_connection_sock *icsk = inet_csk(sk);
3479  
3480  	if (icsk->icsk_ca_ops->cong_control) {
3481  		icsk->icsk_ca_ops->cong_control(sk, rs);
3482  		return;
3483  	}
3484  
3485  	if (tcp_in_cwnd_reduction(sk)) {
3486  		/* Reduce cwnd if state mandates */
3487  		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3488  	} else if (tcp_may_raise_cwnd(sk, flag)) {
3489  		/* Advance cwnd if state allows */
3490  		tcp_cong_avoid(sk, ack, acked_sacked);
3491  	}
3492  	tcp_update_pacing_rate(sk);
3493  }
3494  
3495  /* Check that window update is acceptable.
3496   * The function assumes that snd_una<=ack<=snd_next.
3497   */
3498  static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3499  					const u32 ack, const u32 ack_seq,
3500  					const u32 nwin)
3501  {
3502  	return	after(ack, tp->snd_una) ||
3503  		after(ack_seq, tp->snd_wl1) ||
3504  		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3505  }
3506  
3507  /* If we update tp->snd_una, also update tp->bytes_acked */
3508  static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3509  {
3510  	u32 delta = ack - tp->snd_una;
3511  
3512  	sock_owned_by_me((struct sock *)tp);
3513  	tp->bytes_acked += delta;
3514  	tp->snd_una = ack;
3515  }
3516  
3517  /* If we update tp->rcv_nxt, also update tp->bytes_received */
3518  static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3519  {
3520  	u32 delta = seq - tp->rcv_nxt;
3521  
3522  	sock_owned_by_me((struct sock *)tp);
3523  	tp->bytes_received += delta;
3524  	WRITE_ONCE(tp->rcv_nxt, seq);
3525  }
3526  
3527  /* Update our send window.
3528   *
3529   * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3530   * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3531   */
3532  static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3533  				 u32 ack_seq)
3534  {
3535  	struct tcp_sock *tp = tcp_sk(sk);
3536  	int flag = 0;
3537  	u32 nwin = ntohs(tcp_hdr(skb)->window);
3538  
3539  	if (likely(!tcp_hdr(skb)->syn))
3540  		nwin <<= tp->rx_opt.snd_wscale;
3541  
3542  	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3543  		flag |= FLAG_WIN_UPDATE;
3544  		tcp_update_wl(tp, ack_seq);
3545  
3546  		if (tp->snd_wnd != nwin) {
3547  			tp->snd_wnd = nwin;
3548  
3549  			/* Note, it is the only place, where
3550  			 * fast path is recovered for sending TCP.
3551  			 */
3552  			tp->pred_flags = 0;
3553  			tcp_fast_path_check(sk);
3554  
3555  			if (!tcp_write_queue_empty(sk))
3556  				tcp_slow_start_after_idle_check(sk);
3557  
3558  			if (nwin > tp->max_window) {
3559  				tp->max_window = nwin;
3560  				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3561  			}
3562  		}
3563  	}
3564  
3565  	tcp_snd_una_update(tp, ack);
3566  
3567  	return flag;
3568  }
3569  
3570  static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3571  				   u32 *last_oow_ack_time)
3572  {
3573  	if (*last_oow_ack_time) {
3574  		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3575  
3576  		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3577  			NET_INC_STATS(net, mib_idx);
3578  			return true;	/* rate-limited: don't send yet! */
3579  		}
3580  	}
3581  
3582  	*last_oow_ack_time = tcp_jiffies32;
3583  
3584  	return false;	/* not rate-limited: go ahead, send dupack now! */
3585  }
3586  
3587  /* Return true if we're currently rate-limiting out-of-window ACKs and
3588   * thus shouldn't send a dupack right now. We rate-limit dupacks in
3589   * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3590   * attacks that send repeated SYNs or ACKs for the same connection. To
3591   * do this, we do not send a duplicate SYNACK or ACK if the remote
3592   * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3593   */
3594  bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3595  			  int mib_idx, u32 *last_oow_ack_time)
3596  {
3597  	/* Data packets without SYNs are not likely part of an ACK loop. */
3598  	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3599  	    !tcp_hdr(skb)->syn)
3600  		return false;
3601  
3602  	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3603  }
3604  
3605  /* RFC 5961 7 [ACK Throttling] */
3606  static void tcp_send_challenge_ack(struct sock *sk)
3607  {
3608  	/* unprotected vars, we dont care of overwrites */
3609  	static u32 challenge_timestamp;
3610  	static unsigned int challenge_count;
3611  	struct tcp_sock *tp = tcp_sk(sk);
3612  	struct net *net = sock_net(sk);
3613  	u32 count, now;
3614  
3615  	/* First check our per-socket dupack rate limit. */
3616  	if (__tcp_oow_rate_limited(net,
3617  				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3618  				   &tp->last_oow_ack_time))
3619  		return;
3620  
3621  	/* Then check host-wide RFC 5961 rate limit. */
3622  	now = jiffies / HZ;
3623  	if (now != challenge_timestamp) {
3624  		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3625  		u32 half = (ack_limit + 1) >> 1;
3626  
3627  		challenge_timestamp = now;
3628  		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3629  	}
3630  	count = READ_ONCE(challenge_count);
3631  	if (count > 0) {
3632  		WRITE_ONCE(challenge_count, count - 1);
3633  		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3634  		tcp_send_ack(sk);
3635  	}
3636  }
3637  
3638  static void tcp_store_ts_recent(struct tcp_sock *tp)
3639  {
3640  	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3641  	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3642  }
3643  
3644  static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3645  {
3646  	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3647  		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3648  		 * extra check below makes sure this can only happen
3649  		 * for pure ACK frames.  -DaveM
3650  		 *
3651  		 * Not only, also it occurs for expired timestamps.
3652  		 */
3653  
3654  		if (tcp_paws_check(&tp->rx_opt, 0))
3655  			tcp_store_ts_recent(tp);
3656  	}
3657  }
3658  
3659  /* This routine deals with acks during a TLP episode and ends an episode by
3660   * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3661   */
3662  static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3663  {
3664  	struct tcp_sock *tp = tcp_sk(sk);
3665  
3666  	if (before(ack, tp->tlp_high_seq))
3667  		return;
3668  
3669  	if (!tp->tlp_retrans) {
3670  		/* TLP of new data has been acknowledged */
3671  		tp->tlp_high_seq = 0;
3672  	} else if (flag & FLAG_DSACK_TLP) {
3673  		/* This DSACK means original and TLP probe arrived; no loss */
3674  		tp->tlp_high_seq = 0;
3675  	} else if (after(ack, tp->tlp_high_seq)) {
3676  		/* ACK advances: there was a loss, so reduce cwnd. Reset
3677  		 * tlp_high_seq in tcp_init_cwnd_reduction()
3678  		 */
3679  		tcp_init_cwnd_reduction(sk);
3680  		tcp_set_ca_state(sk, TCP_CA_CWR);
3681  		tcp_end_cwnd_reduction(sk);
3682  		tcp_try_keep_open(sk);
3683  		NET_INC_STATS(sock_net(sk),
3684  				LINUX_MIB_TCPLOSSPROBERECOVERY);
3685  	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3686  			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3687  		/* Pure dupack: original and TLP probe arrived; no loss */
3688  		tp->tlp_high_seq = 0;
3689  	}
3690  }
3691  
3692  static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3693  {
3694  	const struct inet_connection_sock *icsk = inet_csk(sk);
3695  
3696  	if (icsk->icsk_ca_ops->in_ack_event)
3697  		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3698  }
3699  
3700  /* Congestion control has updated the cwnd already. So if we're in
3701   * loss recovery then now we do any new sends (for FRTO) or
3702   * retransmits (for CA_Loss or CA_recovery) that make sense.
3703   */
3704  static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3705  {
3706  	struct tcp_sock *tp = tcp_sk(sk);
3707  
3708  	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3709  		return;
3710  
3711  	if (unlikely(rexmit == REXMIT_NEW)) {
3712  		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3713  					  TCP_NAGLE_OFF);
3714  		if (after(tp->snd_nxt, tp->high_seq))
3715  			return;
3716  		tp->frto = 0;
3717  	}
3718  	tcp_xmit_retransmit_queue(sk);
3719  }
3720  
3721  /* Returns the number of packets newly acked or sacked by the current ACK */
3722  static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3723  {
3724  	const struct net *net = sock_net(sk);
3725  	struct tcp_sock *tp = tcp_sk(sk);
3726  	u32 delivered;
3727  
3728  	delivered = tp->delivered - prior_delivered;
3729  	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3730  	if (flag & FLAG_ECE)
3731  		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3732  
3733  	return delivered;
3734  }
3735  
3736  /* This routine deals with incoming acks, but not outgoing ones. */
3737  static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3738  {
3739  	struct inet_connection_sock *icsk = inet_csk(sk);
3740  	struct tcp_sock *tp = tcp_sk(sk);
3741  	struct tcp_sacktag_state sack_state;
3742  	struct rate_sample rs = { .prior_delivered = 0 };
3743  	u32 prior_snd_una = tp->snd_una;
3744  	bool is_sack_reneg = tp->is_sack_reneg;
3745  	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3746  	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3747  	int num_dupack = 0;
3748  	int prior_packets = tp->packets_out;
3749  	u32 delivered = tp->delivered;
3750  	u32 lost = tp->lost;
3751  	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3752  	u32 prior_fack;
3753  
3754  	sack_state.first_sackt = 0;
3755  	sack_state.rate = &rs;
3756  	sack_state.sack_delivered = 0;
3757  
3758  	/* We very likely will need to access rtx queue. */
3759  	prefetch(sk->tcp_rtx_queue.rb_node);
3760  
3761  	/* If the ack is older than previous acks
3762  	 * then we can probably ignore it.
3763  	 */
3764  	if (before(ack, prior_snd_una)) {
3765  		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3766  		if (before(ack, prior_snd_una - tp->max_window)) {
3767  			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3768  				tcp_send_challenge_ack(sk);
3769  			return -1;
3770  		}
3771  		goto old_ack;
3772  	}
3773  
3774  	/* If the ack includes data we haven't sent yet, discard
3775  	 * this segment (RFC793 Section 3.9).
3776  	 */
3777  	if (after(ack, tp->snd_nxt))
3778  		return -1;
3779  
3780  	if (after(ack, prior_snd_una)) {
3781  		flag |= FLAG_SND_UNA_ADVANCED;
3782  		icsk->icsk_retransmits = 0;
3783  
3784  #if IS_ENABLED(CONFIG_TLS_DEVICE)
3785  		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3786  			if (icsk->icsk_clean_acked)
3787  				icsk->icsk_clean_acked(sk, ack);
3788  #endif
3789  	}
3790  
3791  	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3792  	rs.prior_in_flight = tcp_packets_in_flight(tp);
3793  
3794  	/* ts_recent update must be made after we are sure that the packet
3795  	 * is in window.
3796  	 */
3797  	if (flag & FLAG_UPDATE_TS_RECENT)
3798  		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3799  
3800  	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3801  	    FLAG_SND_UNA_ADVANCED) {
3802  		/* Window is constant, pure forward advance.
3803  		 * No more checks are required.
3804  		 * Note, we use the fact that SND.UNA>=SND.WL2.
3805  		 */
3806  		tcp_update_wl(tp, ack_seq);
3807  		tcp_snd_una_update(tp, ack);
3808  		flag |= FLAG_WIN_UPDATE;
3809  
3810  		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3811  
3812  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3813  	} else {
3814  		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3815  
3816  		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3817  			flag |= FLAG_DATA;
3818  		else
3819  			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3820  
3821  		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3822  
3823  		if (TCP_SKB_CB(skb)->sacked)
3824  			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3825  							&sack_state);
3826  
3827  		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3828  			flag |= FLAG_ECE;
3829  			ack_ev_flags |= CA_ACK_ECE;
3830  		}
3831  
3832  		if (sack_state.sack_delivered)
3833  			tcp_count_delivered(tp, sack_state.sack_delivered,
3834  					    flag & FLAG_ECE);
3835  
3836  		if (flag & FLAG_WIN_UPDATE)
3837  			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3838  
3839  		tcp_in_ack_event(sk, ack_ev_flags);
3840  	}
3841  
3842  	/* This is a deviation from RFC3168 since it states that:
3843  	 * "When the TCP data sender is ready to set the CWR bit after reducing
3844  	 * the congestion window, it SHOULD set the CWR bit only on the first
3845  	 * new data packet that it transmits."
3846  	 * We accept CWR on pure ACKs to be more robust
3847  	 * with widely-deployed TCP implementations that do this.
3848  	 */
3849  	tcp_ecn_accept_cwr(sk, skb);
3850  
3851  	/* We passed data and got it acked, remove any soft error
3852  	 * log. Something worked...
3853  	 */
3854  	sk->sk_err_soft = 0;
3855  	icsk->icsk_probes_out = 0;
3856  	tp->rcv_tstamp = tcp_jiffies32;
3857  	if (!prior_packets)
3858  		goto no_queue;
3859  
3860  	/* See if we can take anything off of the retransmit queue. */
3861  	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3862  				    &sack_state, flag & FLAG_ECE);
3863  
3864  	tcp_rack_update_reo_wnd(sk, &rs);
3865  
3866  	if (tp->tlp_high_seq)
3867  		tcp_process_tlp_ack(sk, ack, flag);
3868  
3869  	if (tcp_ack_is_dubious(sk, flag)) {
3870  		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3871  			num_dupack = 1;
3872  			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3873  			if (!(flag & FLAG_DATA))
3874  				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3875  		}
3876  		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3877  				      &rexmit);
3878  	}
3879  
3880  	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3881  	if (flag & FLAG_SET_XMIT_TIMER)
3882  		tcp_set_xmit_timer(sk);
3883  
3884  	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3885  		sk_dst_confirm(sk);
3886  
3887  	delivered = tcp_newly_delivered(sk, delivered, flag);
3888  	lost = tp->lost - lost;			/* freshly marked lost */
3889  	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3890  	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3891  	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3892  	tcp_xmit_recovery(sk, rexmit);
3893  	return 1;
3894  
3895  no_queue:
3896  	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3897  	if (flag & FLAG_DSACKING_ACK) {
3898  		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3899  				      &rexmit);
3900  		tcp_newly_delivered(sk, delivered, flag);
3901  	}
3902  	/* If this ack opens up a zero window, clear backoff.  It was
3903  	 * being used to time the probes, and is probably far higher than
3904  	 * it needs to be for normal retransmission.
3905  	 */
3906  	tcp_ack_probe(sk);
3907  
3908  	if (tp->tlp_high_seq)
3909  		tcp_process_tlp_ack(sk, ack, flag);
3910  	return 1;
3911  
3912  old_ack:
3913  	/* If data was SACKed, tag it and see if we should send more data.
3914  	 * If data was DSACKed, see if we can undo a cwnd reduction.
3915  	 */
3916  	if (TCP_SKB_CB(skb)->sacked) {
3917  		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3918  						&sack_state);
3919  		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3920  				      &rexmit);
3921  		tcp_newly_delivered(sk, delivered, flag);
3922  		tcp_xmit_recovery(sk, rexmit);
3923  	}
3924  
3925  	return 0;
3926  }
3927  
3928  static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3929  				      bool syn, struct tcp_fastopen_cookie *foc,
3930  				      bool exp_opt)
3931  {
3932  	/* Valid only in SYN or SYN-ACK with an even length.  */
3933  	if (!foc || !syn || len < 0 || (len & 1))
3934  		return;
3935  
3936  	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3937  	    len <= TCP_FASTOPEN_COOKIE_MAX)
3938  		memcpy(foc->val, cookie, len);
3939  	else if (len != 0)
3940  		len = -1;
3941  	foc->len = len;
3942  	foc->exp = exp_opt;
3943  }
3944  
3945  static bool smc_parse_options(const struct tcphdr *th,
3946  			      struct tcp_options_received *opt_rx,
3947  			      const unsigned char *ptr,
3948  			      int opsize)
3949  {
3950  #if IS_ENABLED(CONFIG_SMC)
3951  	if (static_branch_unlikely(&tcp_have_smc)) {
3952  		if (th->syn && !(opsize & 1) &&
3953  		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3954  		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3955  			opt_rx->smc_ok = 1;
3956  			return true;
3957  		}
3958  	}
3959  #endif
3960  	return false;
3961  }
3962  
3963  /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3964   * value on success.
3965   */
3966  static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3967  {
3968  	const unsigned char *ptr = (const unsigned char *)(th + 1);
3969  	int length = (th->doff * 4) - sizeof(struct tcphdr);
3970  	u16 mss = 0;
3971  
3972  	while (length > 0) {
3973  		int opcode = *ptr++;
3974  		int opsize;
3975  
3976  		switch (opcode) {
3977  		case TCPOPT_EOL:
3978  			return mss;
3979  		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3980  			length--;
3981  			continue;
3982  		default:
3983  			if (length < 2)
3984  				return mss;
3985  			opsize = *ptr++;
3986  			if (opsize < 2) /* "silly options" */
3987  				return mss;
3988  			if (opsize > length)
3989  				return mss;	/* fail on partial options */
3990  			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3991  				u16 in_mss = get_unaligned_be16(ptr);
3992  
3993  				if (in_mss) {
3994  					if (user_mss && user_mss < in_mss)
3995  						in_mss = user_mss;
3996  					mss = in_mss;
3997  				}
3998  			}
3999  			ptr += opsize - 2;
4000  			length -= opsize;
4001  		}
4002  	}
4003  	return mss;
4004  }
4005  
4006  /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4007   * But, this can also be called on packets in the established flow when
4008   * the fast version below fails.
4009   */
4010  void tcp_parse_options(const struct net *net,
4011  		       const struct sk_buff *skb,
4012  		       struct tcp_options_received *opt_rx, int estab,
4013  		       struct tcp_fastopen_cookie *foc)
4014  {
4015  	const unsigned char *ptr;
4016  	const struct tcphdr *th = tcp_hdr(skb);
4017  	int length = (th->doff * 4) - sizeof(struct tcphdr);
4018  
4019  	ptr = (const unsigned char *)(th + 1);
4020  	opt_rx->saw_tstamp = 0;
4021  	opt_rx->saw_unknown = 0;
4022  
4023  	while (length > 0) {
4024  		int opcode = *ptr++;
4025  		int opsize;
4026  
4027  		switch (opcode) {
4028  		case TCPOPT_EOL:
4029  			return;
4030  		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4031  			length--;
4032  			continue;
4033  		default:
4034  			if (length < 2)
4035  				return;
4036  			opsize = *ptr++;
4037  			if (opsize < 2) /* "silly options" */
4038  				return;
4039  			if (opsize > length)
4040  				return;	/* don't parse partial options */
4041  			switch (opcode) {
4042  			case TCPOPT_MSS:
4043  				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4044  					u16 in_mss = get_unaligned_be16(ptr);
4045  					if (in_mss) {
4046  						if (opt_rx->user_mss &&
4047  						    opt_rx->user_mss < in_mss)
4048  							in_mss = opt_rx->user_mss;
4049  						opt_rx->mss_clamp = in_mss;
4050  					}
4051  				}
4052  				break;
4053  			case TCPOPT_WINDOW:
4054  				if (opsize == TCPOLEN_WINDOW && th->syn &&
4055  				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
4056  					__u8 snd_wscale = *(__u8 *)ptr;
4057  					opt_rx->wscale_ok = 1;
4058  					if (snd_wscale > TCP_MAX_WSCALE) {
4059  						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4060  								     __func__,
4061  								     snd_wscale,
4062  								     TCP_MAX_WSCALE);
4063  						snd_wscale = TCP_MAX_WSCALE;
4064  					}
4065  					opt_rx->snd_wscale = snd_wscale;
4066  				}
4067  				break;
4068  			case TCPOPT_TIMESTAMP:
4069  				if ((opsize == TCPOLEN_TIMESTAMP) &&
4070  				    ((estab && opt_rx->tstamp_ok) ||
4071  				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4072  					opt_rx->saw_tstamp = 1;
4073  					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4074  					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4075  				}
4076  				break;
4077  			case TCPOPT_SACK_PERM:
4078  				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4079  				    !estab && net->ipv4.sysctl_tcp_sack) {
4080  					opt_rx->sack_ok = TCP_SACK_SEEN;
4081  					tcp_sack_reset(opt_rx);
4082  				}
4083  				break;
4084  
4085  			case TCPOPT_SACK:
4086  				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4087  				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4088  				   opt_rx->sack_ok) {
4089  					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4090  				}
4091  				break;
4092  #ifdef CONFIG_TCP_MD5SIG
4093  			case TCPOPT_MD5SIG:
4094  				/*
4095  				 * The MD5 Hash has already been
4096  				 * checked (see tcp_v{4,6}_do_rcv()).
4097  				 */
4098  				break;
4099  #endif
4100  			case TCPOPT_FASTOPEN:
4101  				tcp_parse_fastopen_option(
4102  					opsize - TCPOLEN_FASTOPEN_BASE,
4103  					ptr, th->syn, foc, false);
4104  				break;
4105  
4106  			case TCPOPT_EXP:
4107  				/* Fast Open option shares code 254 using a
4108  				 * 16 bits magic number.
4109  				 */
4110  				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4111  				    get_unaligned_be16(ptr) ==
4112  				    TCPOPT_FASTOPEN_MAGIC) {
4113  					tcp_parse_fastopen_option(opsize -
4114  						TCPOLEN_EXP_FASTOPEN_BASE,
4115  						ptr + 2, th->syn, foc, true);
4116  					break;
4117  				}
4118  
4119  				if (smc_parse_options(th, opt_rx, ptr, opsize))
4120  					break;
4121  
4122  				opt_rx->saw_unknown = 1;
4123  				break;
4124  
4125  			default:
4126  				opt_rx->saw_unknown = 1;
4127  			}
4128  			ptr += opsize-2;
4129  			length -= opsize;
4130  		}
4131  	}
4132  }
4133  EXPORT_SYMBOL(tcp_parse_options);
4134  
4135  static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4136  {
4137  	const __be32 *ptr = (const __be32 *)(th + 1);
4138  
4139  	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4140  			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4141  		tp->rx_opt.saw_tstamp = 1;
4142  		++ptr;
4143  		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4144  		++ptr;
4145  		if (*ptr)
4146  			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4147  		else
4148  			tp->rx_opt.rcv_tsecr = 0;
4149  		return true;
4150  	}
4151  	return false;
4152  }
4153  
4154  /* Fast parse options. This hopes to only see timestamps.
4155   * If it is wrong it falls back on tcp_parse_options().
4156   */
4157  static bool tcp_fast_parse_options(const struct net *net,
4158  				   const struct sk_buff *skb,
4159  				   const struct tcphdr *th, struct tcp_sock *tp)
4160  {
4161  	/* In the spirit of fast parsing, compare doff directly to constant
4162  	 * values.  Because equality is used, short doff can be ignored here.
4163  	 */
4164  	if (th->doff == (sizeof(*th) / 4)) {
4165  		tp->rx_opt.saw_tstamp = 0;
4166  		return false;
4167  	} else if (tp->rx_opt.tstamp_ok &&
4168  		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4169  		if (tcp_parse_aligned_timestamp(tp, th))
4170  			return true;
4171  	}
4172  
4173  	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4174  	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4175  		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4176  
4177  	return true;
4178  }
4179  
4180  #ifdef CONFIG_TCP_MD5SIG
4181  /*
4182   * Parse MD5 Signature option
4183   */
4184  const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4185  {
4186  	int length = (th->doff << 2) - sizeof(*th);
4187  	const u8 *ptr = (const u8 *)(th + 1);
4188  
4189  	/* If not enough data remaining, we can short cut */
4190  	while (length >= TCPOLEN_MD5SIG) {
4191  		int opcode = *ptr++;
4192  		int opsize;
4193  
4194  		switch (opcode) {
4195  		case TCPOPT_EOL:
4196  			return NULL;
4197  		case TCPOPT_NOP:
4198  			length--;
4199  			continue;
4200  		default:
4201  			opsize = *ptr++;
4202  			if (opsize < 2 || opsize > length)
4203  				return NULL;
4204  			if (opcode == TCPOPT_MD5SIG)
4205  				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4206  		}
4207  		ptr += opsize - 2;
4208  		length -= opsize;
4209  	}
4210  	return NULL;
4211  }
4212  EXPORT_SYMBOL(tcp_parse_md5sig_option);
4213  #endif
4214  
4215  /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4216   *
4217   * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4218   * it can pass through stack. So, the following predicate verifies that
4219   * this segment is not used for anything but congestion avoidance or
4220   * fast retransmit. Moreover, we even are able to eliminate most of such
4221   * second order effects, if we apply some small "replay" window (~RTO)
4222   * to timestamp space.
4223   *
4224   * All these measures still do not guarantee that we reject wrapped ACKs
4225   * on networks with high bandwidth, when sequence space is recycled fastly,
4226   * but it guarantees that such events will be very rare and do not affect
4227   * connection seriously. This doesn't look nice, but alas, PAWS is really
4228   * buggy extension.
4229   *
4230   * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4231   * states that events when retransmit arrives after original data are rare.
4232   * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4233   * the biggest problem on large power networks even with minor reordering.
4234   * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4235   * up to bandwidth of 18Gigabit/sec. 8) ]
4236   */
4237  
4238  static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4239  {
4240  	const struct tcp_sock *tp = tcp_sk(sk);
4241  	const struct tcphdr *th = tcp_hdr(skb);
4242  	u32 seq = TCP_SKB_CB(skb)->seq;
4243  	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4244  
4245  	return (/* 1. Pure ACK with correct sequence number. */
4246  		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4247  
4248  		/* 2. ... and duplicate ACK. */
4249  		ack == tp->snd_una &&
4250  
4251  		/* 3. ... and does not update window. */
4252  		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4253  
4254  		/* 4. ... and sits in replay window. */
4255  		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4256  }
4257  
4258  static inline bool tcp_paws_discard(const struct sock *sk,
4259  				   const struct sk_buff *skb)
4260  {
4261  	const struct tcp_sock *tp = tcp_sk(sk);
4262  
4263  	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4264  	       !tcp_disordered_ack(sk, skb);
4265  }
4266  
4267  /* Check segment sequence number for validity.
4268   *
4269   * Segment controls are considered valid, if the segment
4270   * fits to the window after truncation to the window. Acceptability
4271   * of data (and SYN, FIN, of course) is checked separately.
4272   * See tcp_data_queue(), for example.
4273   *
4274   * Also, controls (RST is main one) are accepted using RCV.WUP instead
4275   * of RCV.NXT. Peer still did not advance his SND.UNA when we
4276   * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4277   * (borrowed from freebsd)
4278   */
4279  
4280  static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4281  {
4282  	return	!before(end_seq, tp->rcv_wup) &&
4283  		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4284  }
4285  
4286  /* When we get a reset we do this. */
4287  void tcp_reset(struct sock *sk, struct sk_buff *skb)
4288  {
4289  	trace_tcp_receive_reset(sk);
4290  
4291  	/* mptcp can't tell us to ignore reset pkts,
4292  	 * so just ignore the return value of mptcp_incoming_options().
4293  	 */
4294  	if (sk_is_mptcp(sk))
4295  		mptcp_incoming_options(sk, skb);
4296  
4297  	/* We want the right error as BSD sees it (and indeed as we do). */
4298  	switch (sk->sk_state) {
4299  	case TCP_SYN_SENT:
4300  		sk->sk_err = ECONNREFUSED;
4301  		break;
4302  	case TCP_CLOSE_WAIT:
4303  		sk->sk_err = EPIPE;
4304  		break;
4305  	case TCP_CLOSE:
4306  		return;
4307  	default:
4308  		sk->sk_err = ECONNRESET;
4309  	}
4310  	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4311  	smp_wmb();
4312  
4313  	tcp_write_queue_purge(sk);
4314  	tcp_done(sk);
4315  
4316  	if (!sock_flag(sk, SOCK_DEAD))
4317  		sk_error_report(sk);
4318  }
4319  
4320  /*
4321   * 	Process the FIN bit. This now behaves as it is supposed to work
4322   *	and the FIN takes effect when it is validly part of sequence
4323   *	space. Not before when we get holes.
4324   *
4325   *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4326   *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4327   *	TIME-WAIT)
4328   *
4329   *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4330   *	close and we go into CLOSING (and later onto TIME-WAIT)
4331   *
4332   *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4333   */
4334  void tcp_fin(struct sock *sk)
4335  {
4336  	struct tcp_sock *tp = tcp_sk(sk);
4337  
4338  	inet_csk_schedule_ack(sk);
4339  
4340  	sk->sk_shutdown |= RCV_SHUTDOWN;
4341  	sock_set_flag(sk, SOCK_DONE);
4342  
4343  	switch (sk->sk_state) {
4344  	case TCP_SYN_RECV:
4345  	case TCP_ESTABLISHED:
4346  		/* Move to CLOSE_WAIT */
4347  		tcp_set_state(sk, TCP_CLOSE_WAIT);
4348  		inet_csk_enter_pingpong_mode(sk);
4349  		break;
4350  
4351  	case TCP_CLOSE_WAIT:
4352  	case TCP_CLOSING:
4353  		/* Received a retransmission of the FIN, do
4354  		 * nothing.
4355  		 */
4356  		break;
4357  	case TCP_LAST_ACK:
4358  		/* RFC793: Remain in the LAST-ACK state. */
4359  		break;
4360  
4361  	case TCP_FIN_WAIT1:
4362  		/* This case occurs when a simultaneous close
4363  		 * happens, we must ack the received FIN and
4364  		 * enter the CLOSING state.
4365  		 */
4366  		tcp_send_ack(sk);
4367  		tcp_set_state(sk, TCP_CLOSING);
4368  		break;
4369  	case TCP_FIN_WAIT2:
4370  		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4371  		tcp_send_ack(sk);
4372  		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4373  		break;
4374  	default:
4375  		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4376  		 * cases we should never reach this piece of code.
4377  		 */
4378  		pr_err("%s: Impossible, sk->sk_state=%d\n",
4379  		       __func__, sk->sk_state);
4380  		break;
4381  	}
4382  
4383  	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4384  	 * Probably, we should reset in this case. For now drop them.
4385  	 */
4386  	skb_rbtree_purge(&tp->out_of_order_queue);
4387  	if (tcp_is_sack(tp))
4388  		tcp_sack_reset(&tp->rx_opt);
4389  	sk_mem_reclaim(sk);
4390  
4391  	if (!sock_flag(sk, SOCK_DEAD)) {
4392  		sk->sk_state_change(sk);
4393  
4394  		/* Do not send POLL_HUP for half duplex close. */
4395  		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4396  		    sk->sk_state == TCP_CLOSE)
4397  			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4398  		else
4399  			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4400  	}
4401  }
4402  
4403  static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4404  				  u32 end_seq)
4405  {
4406  	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4407  		if (before(seq, sp->start_seq))
4408  			sp->start_seq = seq;
4409  		if (after(end_seq, sp->end_seq))
4410  			sp->end_seq = end_seq;
4411  		return true;
4412  	}
4413  	return false;
4414  }
4415  
4416  static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4417  {
4418  	struct tcp_sock *tp = tcp_sk(sk);
4419  
4420  	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4421  		int mib_idx;
4422  
4423  		if (before(seq, tp->rcv_nxt))
4424  			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4425  		else
4426  			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4427  
4428  		NET_INC_STATS(sock_net(sk), mib_idx);
4429  
4430  		tp->rx_opt.dsack = 1;
4431  		tp->duplicate_sack[0].start_seq = seq;
4432  		tp->duplicate_sack[0].end_seq = end_seq;
4433  	}
4434  }
4435  
4436  static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4437  {
4438  	struct tcp_sock *tp = tcp_sk(sk);
4439  
4440  	if (!tp->rx_opt.dsack)
4441  		tcp_dsack_set(sk, seq, end_seq);
4442  	else
4443  		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4444  }
4445  
4446  static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4447  {
4448  	/* When the ACK path fails or drops most ACKs, the sender would
4449  	 * timeout and spuriously retransmit the same segment repeatedly.
4450  	 * The receiver remembers and reflects via DSACKs. Leverage the
4451  	 * DSACK state and change the txhash to re-route speculatively.
4452  	 */
4453  	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4454  	    sk_rethink_txhash(sk))
4455  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4456  }
4457  
4458  static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4459  {
4460  	struct tcp_sock *tp = tcp_sk(sk);
4461  
4462  	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4463  	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4464  		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4465  		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4466  
4467  		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4468  			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4469  
4470  			tcp_rcv_spurious_retrans(sk, skb);
4471  			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4472  				end_seq = tp->rcv_nxt;
4473  			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4474  		}
4475  	}
4476  
4477  	tcp_send_ack(sk);
4478  }
4479  
4480  /* These routines update the SACK block as out-of-order packets arrive or
4481   * in-order packets close up the sequence space.
4482   */
4483  static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4484  {
4485  	int this_sack;
4486  	struct tcp_sack_block *sp = &tp->selective_acks[0];
4487  	struct tcp_sack_block *swalk = sp + 1;
4488  
4489  	/* See if the recent change to the first SACK eats into
4490  	 * or hits the sequence space of other SACK blocks, if so coalesce.
4491  	 */
4492  	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4493  		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4494  			int i;
4495  
4496  			/* Zap SWALK, by moving every further SACK up by one slot.
4497  			 * Decrease num_sacks.
4498  			 */
4499  			tp->rx_opt.num_sacks--;
4500  			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4501  				sp[i] = sp[i + 1];
4502  			continue;
4503  		}
4504  		this_sack++;
4505  		swalk++;
4506  	}
4507  }
4508  
4509  static void tcp_sack_compress_send_ack(struct sock *sk)
4510  {
4511  	struct tcp_sock *tp = tcp_sk(sk);
4512  
4513  	if (!tp->compressed_ack)
4514  		return;
4515  
4516  	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4517  		__sock_put(sk);
4518  
4519  	/* Since we have to send one ack finally,
4520  	 * substract one from tp->compressed_ack to keep
4521  	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4522  	 */
4523  	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4524  		      tp->compressed_ack - 1);
4525  
4526  	tp->compressed_ack = 0;
4527  	tcp_send_ack(sk);
4528  }
4529  
4530  /* Reasonable amount of sack blocks included in TCP SACK option
4531   * The max is 4, but this becomes 3 if TCP timestamps are there.
4532   * Given that SACK packets might be lost, be conservative and use 2.
4533   */
4534  #define TCP_SACK_BLOCKS_EXPECTED 2
4535  
4536  static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4537  {
4538  	struct tcp_sock *tp = tcp_sk(sk);
4539  	struct tcp_sack_block *sp = &tp->selective_acks[0];
4540  	int cur_sacks = tp->rx_opt.num_sacks;
4541  	int this_sack;
4542  
4543  	if (!cur_sacks)
4544  		goto new_sack;
4545  
4546  	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4547  		if (tcp_sack_extend(sp, seq, end_seq)) {
4548  			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4549  				tcp_sack_compress_send_ack(sk);
4550  			/* Rotate this_sack to the first one. */
4551  			for (; this_sack > 0; this_sack--, sp--)
4552  				swap(*sp, *(sp - 1));
4553  			if (cur_sacks > 1)
4554  				tcp_sack_maybe_coalesce(tp);
4555  			return;
4556  		}
4557  	}
4558  
4559  	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4560  		tcp_sack_compress_send_ack(sk);
4561  
4562  	/* Could not find an adjacent existing SACK, build a new one,
4563  	 * put it at the front, and shift everyone else down.  We
4564  	 * always know there is at least one SACK present already here.
4565  	 *
4566  	 * If the sack array is full, forget about the last one.
4567  	 */
4568  	if (this_sack >= TCP_NUM_SACKS) {
4569  		this_sack--;
4570  		tp->rx_opt.num_sacks--;
4571  		sp--;
4572  	}
4573  	for (; this_sack > 0; this_sack--, sp--)
4574  		*sp = *(sp - 1);
4575  
4576  new_sack:
4577  	/* Build the new head SACK, and we're done. */
4578  	sp->start_seq = seq;
4579  	sp->end_seq = end_seq;
4580  	tp->rx_opt.num_sacks++;
4581  }
4582  
4583  /* RCV.NXT advances, some SACKs should be eaten. */
4584  
4585  static void tcp_sack_remove(struct tcp_sock *tp)
4586  {
4587  	struct tcp_sack_block *sp = &tp->selective_acks[0];
4588  	int num_sacks = tp->rx_opt.num_sacks;
4589  	int this_sack;
4590  
4591  	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4592  	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4593  		tp->rx_opt.num_sacks = 0;
4594  		return;
4595  	}
4596  
4597  	for (this_sack = 0; this_sack < num_sacks;) {
4598  		/* Check if the start of the sack is covered by RCV.NXT. */
4599  		if (!before(tp->rcv_nxt, sp->start_seq)) {
4600  			int i;
4601  
4602  			/* RCV.NXT must cover all the block! */
4603  			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4604  
4605  			/* Zap this SACK, by moving forward any other SACKS. */
4606  			for (i = this_sack+1; i < num_sacks; i++)
4607  				tp->selective_acks[i-1] = tp->selective_acks[i];
4608  			num_sacks--;
4609  			continue;
4610  		}
4611  		this_sack++;
4612  		sp++;
4613  	}
4614  	tp->rx_opt.num_sacks = num_sacks;
4615  }
4616  
4617  /**
4618   * tcp_try_coalesce - try to merge skb to prior one
4619   * @sk: socket
4620   * @to: prior buffer
4621   * @from: buffer to add in queue
4622   * @fragstolen: pointer to boolean
4623   *
4624   * Before queueing skb @from after @to, try to merge them
4625   * to reduce overall memory use and queue lengths, if cost is small.
4626   * Packets in ofo or receive queues can stay a long time.
4627   * Better try to coalesce them right now to avoid future collapses.
4628   * Returns true if caller should free @from instead of queueing it
4629   */
4630  static bool tcp_try_coalesce(struct sock *sk,
4631  			     struct sk_buff *to,
4632  			     struct sk_buff *from,
4633  			     bool *fragstolen)
4634  {
4635  	int delta;
4636  
4637  	*fragstolen = false;
4638  
4639  	/* Its possible this segment overlaps with prior segment in queue */
4640  	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4641  		return false;
4642  
4643  	if (!mptcp_skb_can_collapse(to, from))
4644  		return false;
4645  
4646  #ifdef CONFIG_TLS_DEVICE
4647  	if (from->decrypted != to->decrypted)
4648  		return false;
4649  #endif
4650  
4651  	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4652  		return false;
4653  
4654  	atomic_add(delta, &sk->sk_rmem_alloc);
4655  	sk_mem_charge(sk, delta);
4656  	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4657  	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4658  	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4659  	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4660  
4661  	if (TCP_SKB_CB(from)->has_rxtstamp) {
4662  		TCP_SKB_CB(to)->has_rxtstamp = true;
4663  		to->tstamp = from->tstamp;
4664  		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4665  	}
4666  
4667  	return true;
4668  }
4669  
4670  static bool tcp_ooo_try_coalesce(struct sock *sk,
4671  			     struct sk_buff *to,
4672  			     struct sk_buff *from,
4673  			     bool *fragstolen)
4674  {
4675  	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4676  
4677  	/* In case tcp_drop() is called later, update to->gso_segs */
4678  	if (res) {
4679  		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4680  			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4681  
4682  		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4683  	}
4684  	return res;
4685  }
4686  
4687  static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4688  			    enum skb_drop_reason reason)
4689  {
4690  	sk_drops_add(sk, skb);
4691  	kfree_skb_reason(skb, reason);
4692  }
4693  
4694  static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4695  {
4696  	tcp_drop_reason(sk, skb, SKB_DROP_REASON_NOT_SPECIFIED);
4697  }
4698  
4699  /* This one checks to see if we can put data from the
4700   * out_of_order queue into the receive_queue.
4701   */
4702  static void tcp_ofo_queue(struct sock *sk)
4703  {
4704  	struct tcp_sock *tp = tcp_sk(sk);
4705  	__u32 dsack_high = tp->rcv_nxt;
4706  	bool fin, fragstolen, eaten;
4707  	struct sk_buff *skb, *tail;
4708  	struct rb_node *p;
4709  
4710  	p = rb_first(&tp->out_of_order_queue);
4711  	while (p) {
4712  		skb = rb_to_skb(p);
4713  		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4714  			break;
4715  
4716  		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4717  			__u32 dsack = dsack_high;
4718  			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4719  				dsack_high = TCP_SKB_CB(skb)->end_seq;
4720  			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4721  		}
4722  		p = rb_next(p);
4723  		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4724  
4725  		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4726  			tcp_drop(sk, skb);
4727  			continue;
4728  		}
4729  
4730  		tail = skb_peek_tail(&sk->sk_receive_queue);
4731  		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4732  		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4733  		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4734  		if (!eaten)
4735  			__skb_queue_tail(&sk->sk_receive_queue, skb);
4736  		else
4737  			kfree_skb_partial(skb, fragstolen);
4738  
4739  		if (unlikely(fin)) {
4740  			tcp_fin(sk);
4741  			/* tcp_fin() purges tp->out_of_order_queue,
4742  			 * so we must end this loop right now.
4743  			 */
4744  			break;
4745  		}
4746  	}
4747  }
4748  
4749  static bool tcp_prune_ofo_queue(struct sock *sk);
4750  static int tcp_prune_queue(struct sock *sk);
4751  
4752  static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4753  				 unsigned int size)
4754  {
4755  	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4756  	    !sk_rmem_schedule(sk, skb, size)) {
4757  
4758  		if (tcp_prune_queue(sk) < 0)
4759  			return -1;
4760  
4761  		while (!sk_rmem_schedule(sk, skb, size)) {
4762  			if (!tcp_prune_ofo_queue(sk))
4763  				return -1;
4764  		}
4765  	}
4766  	return 0;
4767  }
4768  
4769  static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4770  {
4771  	struct tcp_sock *tp = tcp_sk(sk);
4772  	struct rb_node **p, *parent;
4773  	struct sk_buff *skb1;
4774  	u32 seq, end_seq;
4775  	bool fragstolen;
4776  
4777  	tcp_ecn_check_ce(sk, skb);
4778  
4779  	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4780  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4781  		sk->sk_data_ready(sk);
4782  		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4783  		return;
4784  	}
4785  
4786  	/* Disable header prediction. */
4787  	tp->pred_flags = 0;
4788  	inet_csk_schedule_ack(sk);
4789  
4790  	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4791  	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4792  	seq = TCP_SKB_CB(skb)->seq;
4793  	end_seq = TCP_SKB_CB(skb)->end_seq;
4794  
4795  	p = &tp->out_of_order_queue.rb_node;
4796  	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4797  		/* Initial out of order segment, build 1 SACK. */
4798  		if (tcp_is_sack(tp)) {
4799  			tp->rx_opt.num_sacks = 1;
4800  			tp->selective_acks[0].start_seq = seq;
4801  			tp->selective_acks[0].end_seq = end_seq;
4802  		}
4803  		rb_link_node(&skb->rbnode, NULL, p);
4804  		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4805  		tp->ooo_last_skb = skb;
4806  		goto end;
4807  	}
4808  
4809  	/* In the typical case, we are adding an skb to the end of the list.
4810  	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4811  	 */
4812  	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4813  				 skb, &fragstolen)) {
4814  coalesce_done:
4815  		/* For non sack flows, do not grow window to force DUPACK
4816  		 * and trigger fast retransmit.
4817  		 */
4818  		if (tcp_is_sack(tp))
4819  			tcp_grow_window(sk, skb, true);
4820  		kfree_skb_partial(skb, fragstolen);
4821  		skb = NULL;
4822  		goto add_sack;
4823  	}
4824  	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4825  	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4826  		parent = &tp->ooo_last_skb->rbnode;
4827  		p = &parent->rb_right;
4828  		goto insert;
4829  	}
4830  
4831  	/* Find place to insert this segment. Handle overlaps on the way. */
4832  	parent = NULL;
4833  	while (*p) {
4834  		parent = *p;
4835  		skb1 = rb_to_skb(parent);
4836  		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4837  			p = &parent->rb_left;
4838  			continue;
4839  		}
4840  		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4841  			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4842  				/* All the bits are present. Drop. */
4843  				NET_INC_STATS(sock_net(sk),
4844  					      LINUX_MIB_TCPOFOMERGE);
4845  				tcp_drop_reason(sk, skb,
4846  						SKB_DROP_REASON_TCP_OFOMERGE);
4847  				skb = NULL;
4848  				tcp_dsack_set(sk, seq, end_seq);
4849  				goto add_sack;
4850  			}
4851  			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4852  				/* Partial overlap. */
4853  				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4854  			} else {
4855  				/* skb's seq == skb1's seq and skb covers skb1.
4856  				 * Replace skb1 with skb.
4857  				 */
4858  				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4859  						&tp->out_of_order_queue);
4860  				tcp_dsack_extend(sk,
4861  						 TCP_SKB_CB(skb1)->seq,
4862  						 TCP_SKB_CB(skb1)->end_seq);
4863  				NET_INC_STATS(sock_net(sk),
4864  					      LINUX_MIB_TCPOFOMERGE);
4865  				tcp_drop_reason(sk, skb1,
4866  						SKB_DROP_REASON_TCP_OFOMERGE);
4867  				goto merge_right;
4868  			}
4869  		} else if (tcp_ooo_try_coalesce(sk, skb1,
4870  						skb, &fragstolen)) {
4871  			goto coalesce_done;
4872  		}
4873  		p = &parent->rb_right;
4874  	}
4875  insert:
4876  	/* Insert segment into RB tree. */
4877  	rb_link_node(&skb->rbnode, parent, p);
4878  	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4879  
4880  merge_right:
4881  	/* Remove other segments covered by skb. */
4882  	while ((skb1 = skb_rb_next(skb)) != NULL) {
4883  		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4884  			break;
4885  		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4886  			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4887  					 end_seq);
4888  			break;
4889  		}
4890  		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4891  		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4892  				 TCP_SKB_CB(skb1)->end_seq);
4893  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4894  		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4895  	}
4896  	/* If there is no skb after us, we are the last_skb ! */
4897  	if (!skb1)
4898  		tp->ooo_last_skb = skb;
4899  
4900  add_sack:
4901  	if (tcp_is_sack(tp))
4902  		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4903  end:
4904  	if (skb) {
4905  		/* For non sack flows, do not grow window to force DUPACK
4906  		 * and trigger fast retransmit.
4907  		 */
4908  		if (tcp_is_sack(tp))
4909  			tcp_grow_window(sk, skb, false);
4910  		skb_condense(skb);
4911  		skb_set_owner_r(skb, sk);
4912  	}
4913  }
4914  
4915  static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4916  				      bool *fragstolen)
4917  {
4918  	int eaten;
4919  	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4920  
4921  	eaten = (tail &&
4922  		 tcp_try_coalesce(sk, tail,
4923  				  skb, fragstolen)) ? 1 : 0;
4924  	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4925  	if (!eaten) {
4926  		__skb_queue_tail(&sk->sk_receive_queue, skb);
4927  		skb_set_owner_r(skb, sk);
4928  	}
4929  	return eaten;
4930  }
4931  
4932  int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4933  {
4934  	struct sk_buff *skb;
4935  	int err = -ENOMEM;
4936  	int data_len = 0;
4937  	bool fragstolen;
4938  
4939  	if (size == 0)
4940  		return 0;
4941  
4942  	if (size > PAGE_SIZE) {
4943  		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4944  
4945  		data_len = npages << PAGE_SHIFT;
4946  		size = data_len + (size & ~PAGE_MASK);
4947  	}
4948  	skb = alloc_skb_with_frags(size - data_len, data_len,
4949  				   PAGE_ALLOC_COSTLY_ORDER,
4950  				   &err, sk->sk_allocation);
4951  	if (!skb)
4952  		goto err;
4953  
4954  	skb_put(skb, size - data_len);
4955  	skb->data_len = data_len;
4956  	skb->len = size;
4957  
4958  	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4959  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4960  		goto err_free;
4961  	}
4962  
4963  	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4964  	if (err)
4965  		goto err_free;
4966  
4967  	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4968  	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4969  	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4970  
4971  	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4972  		WARN_ON_ONCE(fragstolen); /* should not happen */
4973  		__kfree_skb(skb);
4974  	}
4975  	return size;
4976  
4977  err_free:
4978  	kfree_skb(skb);
4979  err:
4980  	return err;
4981  
4982  }
4983  
4984  void tcp_data_ready(struct sock *sk)
4985  {
4986  	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4987  		sk->sk_data_ready(sk);
4988  }
4989  
4990  static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4991  {
4992  	struct tcp_sock *tp = tcp_sk(sk);
4993  	enum skb_drop_reason reason;
4994  	bool fragstolen;
4995  	int eaten;
4996  
4997  	/* If a subflow has been reset, the packet should not continue
4998  	 * to be processed, drop the packet.
4999  	 */
5000  	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5001  		__kfree_skb(skb);
5002  		return;
5003  	}
5004  
5005  	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5006  		__kfree_skb(skb);
5007  		return;
5008  	}
5009  	skb_dst_drop(skb);
5010  	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5011  
5012  	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5013  	tp->rx_opt.dsack = 0;
5014  
5015  	/*  Queue data for delivery to the user.
5016  	 *  Packets in sequence go to the receive queue.
5017  	 *  Out of sequence packets to the out_of_order_queue.
5018  	 */
5019  	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5020  		if (tcp_receive_window(tp) == 0) {
5021  			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5022  			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5023  			goto out_of_window;
5024  		}
5025  
5026  		/* Ok. In sequence. In window. */
5027  queue_and_out:
5028  		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5029  			sk_forced_mem_schedule(sk, skb->truesize);
5030  		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5031  			reason = SKB_DROP_REASON_PROTO_MEM;
5032  			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5033  			sk->sk_data_ready(sk);
5034  			goto drop;
5035  		}
5036  
5037  		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5038  		if (skb->len)
5039  			tcp_event_data_recv(sk, skb);
5040  		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5041  			tcp_fin(sk);
5042  
5043  		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5044  			tcp_ofo_queue(sk);
5045  
5046  			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5047  			 * gap in queue is filled.
5048  			 */
5049  			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5050  				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5051  		}
5052  
5053  		if (tp->rx_opt.num_sacks)
5054  			tcp_sack_remove(tp);
5055  
5056  		tcp_fast_path_check(sk);
5057  
5058  		if (eaten > 0)
5059  			kfree_skb_partial(skb, fragstolen);
5060  		if (!sock_flag(sk, SOCK_DEAD))
5061  			tcp_data_ready(sk);
5062  		return;
5063  	}
5064  
5065  	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5066  		tcp_rcv_spurious_retrans(sk, skb);
5067  		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5068  		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5069  		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5070  		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5071  
5072  out_of_window:
5073  		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5074  		inet_csk_schedule_ack(sk);
5075  drop:
5076  		tcp_drop_reason(sk, skb, reason);
5077  		return;
5078  	}
5079  
5080  	/* Out of window. F.e. zero window probe. */
5081  	if (!before(TCP_SKB_CB(skb)->seq,
5082  		    tp->rcv_nxt + tcp_receive_window(tp))) {
5083  		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5084  		goto out_of_window;
5085  	}
5086  
5087  	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5088  		/* Partial packet, seq < rcv_next < end_seq */
5089  		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5090  
5091  		/* If window is closed, drop tail of packet. But after
5092  		 * remembering D-SACK for its head made in previous line.
5093  		 */
5094  		if (!tcp_receive_window(tp)) {
5095  			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5096  			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5097  			goto out_of_window;
5098  		}
5099  		goto queue_and_out;
5100  	}
5101  
5102  	tcp_data_queue_ofo(sk, skb);
5103  }
5104  
5105  static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5106  {
5107  	if (list)
5108  		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5109  
5110  	return skb_rb_next(skb);
5111  }
5112  
5113  static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5114  					struct sk_buff_head *list,
5115  					struct rb_root *root)
5116  {
5117  	struct sk_buff *next = tcp_skb_next(skb, list);
5118  
5119  	if (list)
5120  		__skb_unlink(skb, list);
5121  	else
5122  		rb_erase(&skb->rbnode, root);
5123  
5124  	__kfree_skb(skb);
5125  	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5126  
5127  	return next;
5128  }
5129  
5130  /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5131  void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5132  {
5133  	struct rb_node **p = &root->rb_node;
5134  	struct rb_node *parent = NULL;
5135  	struct sk_buff *skb1;
5136  
5137  	while (*p) {
5138  		parent = *p;
5139  		skb1 = rb_to_skb(parent);
5140  		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5141  			p = &parent->rb_left;
5142  		else
5143  			p = &parent->rb_right;
5144  	}
5145  	rb_link_node(&skb->rbnode, parent, p);
5146  	rb_insert_color(&skb->rbnode, root);
5147  }
5148  
5149  /* Collapse contiguous sequence of skbs head..tail with
5150   * sequence numbers start..end.
5151   *
5152   * If tail is NULL, this means until the end of the queue.
5153   *
5154   * Segments with FIN/SYN are not collapsed (only because this
5155   * simplifies code)
5156   */
5157  static void
5158  tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5159  	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5160  {
5161  	struct sk_buff *skb = head, *n;
5162  	struct sk_buff_head tmp;
5163  	bool end_of_skbs;
5164  
5165  	/* First, check that queue is collapsible and find
5166  	 * the point where collapsing can be useful.
5167  	 */
5168  restart:
5169  	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5170  		n = tcp_skb_next(skb, list);
5171  
5172  		/* No new bits? It is possible on ofo queue. */
5173  		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5174  			skb = tcp_collapse_one(sk, skb, list, root);
5175  			if (!skb)
5176  				break;
5177  			goto restart;
5178  		}
5179  
5180  		/* The first skb to collapse is:
5181  		 * - not SYN/FIN and
5182  		 * - bloated or contains data before "start" or
5183  		 *   overlaps to the next one and mptcp allow collapsing.
5184  		 */
5185  		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5186  		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5187  		     before(TCP_SKB_CB(skb)->seq, start))) {
5188  			end_of_skbs = false;
5189  			break;
5190  		}
5191  
5192  		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5193  		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5194  			end_of_skbs = false;
5195  			break;
5196  		}
5197  
5198  		/* Decided to skip this, advance start seq. */
5199  		start = TCP_SKB_CB(skb)->end_seq;
5200  	}
5201  	if (end_of_skbs ||
5202  	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5203  		return;
5204  
5205  	__skb_queue_head_init(&tmp);
5206  
5207  	while (before(start, end)) {
5208  		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5209  		struct sk_buff *nskb;
5210  
5211  		nskb = alloc_skb(copy, GFP_ATOMIC);
5212  		if (!nskb)
5213  			break;
5214  
5215  		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5216  #ifdef CONFIG_TLS_DEVICE
5217  		nskb->decrypted = skb->decrypted;
5218  #endif
5219  		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5220  		if (list)
5221  			__skb_queue_before(list, skb, nskb);
5222  		else
5223  			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5224  		skb_set_owner_r(nskb, sk);
5225  		mptcp_skb_ext_move(nskb, skb);
5226  
5227  		/* Copy data, releasing collapsed skbs. */
5228  		while (copy > 0) {
5229  			int offset = start - TCP_SKB_CB(skb)->seq;
5230  			int size = TCP_SKB_CB(skb)->end_seq - start;
5231  
5232  			BUG_ON(offset < 0);
5233  			if (size > 0) {
5234  				size = min(copy, size);
5235  				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5236  					BUG();
5237  				TCP_SKB_CB(nskb)->end_seq += size;
5238  				copy -= size;
5239  				start += size;
5240  			}
5241  			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5242  				skb = tcp_collapse_one(sk, skb, list, root);
5243  				if (!skb ||
5244  				    skb == tail ||
5245  				    !mptcp_skb_can_collapse(nskb, skb) ||
5246  				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5247  					goto end;
5248  #ifdef CONFIG_TLS_DEVICE
5249  				if (skb->decrypted != nskb->decrypted)
5250  					goto end;
5251  #endif
5252  			}
5253  		}
5254  	}
5255  end:
5256  	skb_queue_walk_safe(&tmp, skb, n)
5257  		tcp_rbtree_insert(root, skb);
5258  }
5259  
5260  /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5261   * and tcp_collapse() them until all the queue is collapsed.
5262   */
5263  static void tcp_collapse_ofo_queue(struct sock *sk)
5264  {
5265  	struct tcp_sock *tp = tcp_sk(sk);
5266  	u32 range_truesize, sum_tiny = 0;
5267  	struct sk_buff *skb, *head;
5268  	u32 start, end;
5269  
5270  	skb = skb_rb_first(&tp->out_of_order_queue);
5271  new_range:
5272  	if (!skb) {
5273  		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5274  		return;
5275  	}
5276  	start = TCP_SKB_CB(skb)->seq;
5277  	end = TCP_SKB_CB(skb)->end_seq;
5278  	range_truesize = skb->truesize;
5279  
5280  	for (head = skb;;) {
5281  		skb = skb_rb_next(skb);
5282  
5283  		/* Range is terminated when we see a gap or when
5284  		 * we are at the queue end.
5285  		 */
5286  		if (!skb ||
5287  		    after(TCP_SKB_CB(skb)->seq, end) ||
5288  		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5289  			/* Do not attempt collapsing tiny skbs */
5290  			if (range_truesize != head->truesize ||
5291  			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5292  				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5293  					     head, skb, start, end);
5294  			} else {
5295  				sum_tiny += range_truesize;
5296  				if (sum_tiny > sk->sk_rcvbuf >> 3)
5297  					return;
5298  			}
5299  			goto new_range;
5300  		}
5301  
5302  		range_truesize += skb->truesize;
5303  		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5304  			start = TCP_SKB_CB(skb)->seq;
5305  		if (after(TCP_SKB_CB(skb)->end_seq, end))
5306  			end = TCP_SKB_CB(skb)->end_seq;
5307  	}
5308  }
5309  
5310  /*
5311   * Clean the out-of-order queue to make room.
5312   * We drop high sequences packets to :
5313   * 1) Let a chance for holes to be filled.
5314   * 2) not add too big latencies if thousands of packets sit there.
5315   *    (But if application shrinks SO_RCVBUF, we could still end up
5316   *     freeing whole queue here)
5317   * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5318   *
5319   * Return true if queue has shrunk.
5320   */
5321  static bool tcp_prune_ofo_queue(struct sock *sk)
5322  {
5323  	struct tcp_sock *tp = tcp_sk(sk);
5324  	struct rb_node *node, *prev;
5325  	int goal;
5326  
5327  	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5328  		return false;
5329  
5330  	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5331  	goal = sk->sk_rcvbuf >> 3;
5332  	node = &tp->ooo_last_skb->rbnode;
5333  	do {
5334  		prev = rb_prev(node);
5335  		rb_erase(node, &tp->out_of_order_queue);
5336  		goal -= rb_to_skb(node)->truesize;
5337  		tcp_drop(sk, rb_to_skb(node));
5338  		if (!prev || goal <= 0) {
5339  			sk_mem_reclaim(sk);
5340  			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5341  			    !tcp_under_memory_pressure(sk))
5342  				break;
5343  			goal = sk->sk_rcvbuf >> 3;
5344  		}
5345  		node = prev;
5346  	} while (node);
5347  	tp->ooo_last_skb = rb_to_skb(prev);
5348  
5349  	/* Reset SACK state.  A conforming SACK implementation will
5350  	 * do the same at a timeout based retransmit.  When a connection
5351  	 * is in a sad state like this, we care only about integrity
5352  	 * of the connection not performance.
5353  	 */
5354  	if (tp->rx_opt.sack_ok)
5355  		tcp_sack_reset(&tp->rx_opt);
5356  	return true;
5357  }
5358  
5359  /* Reduce allocated memory if we can, trying to get
5360   * the socket within its memory limits again.
5361   *
5362   * Return less than zero if we should start dropping frames
5363   * until the socket owning process reads some of the data
5364   * to stabilize the situation.
5365   */
5366  static int tcp_prune_queue(struct sock *sk)
5367  {
5368  	struct tcp_sock *tp = tcp_sk(sk);
5369  
5370  	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5371  
5372  	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5373  		tcp_clamp_window(sk);
5374  	else if (tcp_under_memory_pressure(sk))
5375  		tcp_adjust_rcv_ssthresh(sk);
5376  
5377  	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5378  		return 0;
5379  
5380  	tcp_collapse_ofo_queue(sk);
5381  	if (!skb_queue_empty(&sk->sk_receive_queue))
5382  		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5383  			     skb_peek(&sk->sk_receive_queue),
5384  			     NULL,
5385  			     tp->copied_seq, tp->rcv_nxt);
5386  	sk_mem_reclaim(sk);
5387  
5388  	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5389  		return 0;
5390  
5391  	/* Collapsing did not help, destructive actions follow.
5392  	 * This must not ever occur. */
5393  
5394  	tcp_prune_ofo_queue(sk);
5395  
5396  	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5397  		return 0;
5398  
5399  	/* If we are really being abused, tell the caller to silently
5400  	 * drop receive data on the floor.  It will get retransmitted
5401  	 * and hopefully then we'll have sufficient space.
5402  	 */
5403  	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5404  
5405  	/* Massive buffer overcommit. */
5406  	tp->pred_flags = 0;
5407  	return -1;
5408  }
5409  
5410  static bool tcp_should_expand_sndbuf(struct sock *sk)
5411  {
5412  	const struct tcp_sock *tp = tcp_sk(sk);
5413  
5414  	/* If the user specified a specific send buffer setting, do
5415  	 * not modify it.
5416  	 */
5417  	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5418  		return false;
5419  
5420  	/* If we are under global TCP memory pressure, do not expand.  */
5421  	if (tcp_under_memory_pressure(sk)) {
5422  		int unused_mem = sk_unused_reserved_mem(sk);
5423  
5424  		/* Adjust sndbuf according to reserved mem. But make sure
5425  		 * it never goes below SOCK_MIN_SNDBUF.
5426  		 * See sk_stream_moderate_sndbuf() for more details.
5427  		 */
5428  		if (unused_mem > SOCK_MIN_SNDBUF)
5429  			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5430  
5431  		return false;
5432  	}
5433  
5434  	/* If we are under soft global TCP memory pressure, do not expand.  */
5435  	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5436  		return false;
5437  
5438  	/* If we filled the congestion window, do not expand.  */
5439  	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5440  		return false;
5441  
5442  	return true;
5443  }
5444  
5445  static void tcp_new_space(struct sock *sk)
5446  {
5447  	struct tcp_sock *tp = tcp_sk(sk);
5448  
5449  	if (tcp_should_expand_sndbuf(sk)) {
5450  		tcp_sndbuf_expand(sk);
5451  		tp->snd_cwnd_stamp = tcp_jiffies32;
5452  	}
5453  
5454  	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5455  }
5456  
5457  static void tcp_check_space(struct sock *sk)
5458  {
5459  	/* pairs with tcp_poll() */
5460  	smp_mb();
5461  	if (sk->sk_socket &&
5462  	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5463  		tcp_new_space(sk);
5464  		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5465  			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5466  	}
5467  }
5468  
5469  static inline void tcp_data_snd_check(struct sock *sk)
5470  {
5471  	tcp_push_pending_frames(sk);
5472  	tcp_check_space(sk);
5473  }
5474  
5475  /*
5476   * Check if sending an ack is needed.
5477   */
5478  static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5479  {
5480  	struct tcp_sock *tp = tcp_sk(sk);
5481  	unsigned long rtt, delay;
5482  
5483  	    /* More than one full frame received... */
5484  	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5485  	     /* ... and right edge of window advances far enough.
5486  	      * (tcp_recvmsg() will send ACK otherwise).
5487  	      * If application uses SO_RCVLOWAT, we want send ack now if
5488  	      * we have not received enough bytes to satisfy the condition.
5489  	      */
5490  	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5491  	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5492  	    /* We ACK each frame or... */
5493  	    tcp_in_quickack_mode(sk) ||
5494  	    /* Protocol state mandates a one-time immediate ACK */
5495  	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5496  send_now:
5497  		tcp_send_ack(sk);
5498  		return;
5499  	}
5500  
5501  	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5502  		tcp_send_delayed_ack(sk);
5503  		return;
5504  	}
5505  
5506  	if (!tcp_is_sack(tp) ||
5507  	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5508  		goto send_now;
5509  
5510  	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5511  		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5512  		tp->dup_ack_counter = 0;
5513  	}
5514  	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5515  		tp->dup_ack_counter++;
5516  		goto send_now;
5517  	}
5518  	tp->compressed_ack++;
5519  	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5520  		return;
5521  
5522  	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5523  
5524  	rtt = tp->rcv_rtt_est.rtt_us;
5525  	if (tp->srtt_us && tp->srtt_us < rtt)
5526  		rtt = tp->srtt_us;
5527  
5528  	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5529  		      rtt * (NSEC_PER_USEC >> 3)/20);
5530  	sock_hold(sk);
5531  	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5532  			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5533  			       HRTIMER_MODE_REL_PINNED_SOFT);
5534  }
5535  
5536  static inline void tcp_ack_snd_check(struct sock *sk)
5537  {
5538  	if (!inet_csk_ack_scheduled(sk)) {
5539  		/* We sent a data segment already. */
5540  		return;
5541  	}
5542  	__tcp_ack_snd_check(sk, 1);
5543  }
5544  
5545  /*
5546   *	This routine is only called when we have urgent data
5547   *	signaled. Its the 'slow' part of tcp_urg. It could be
5548   *	moved inline now as tcp_urg is only called from one
5549   *	place. We handle URGent data wrong. We have to - as
5550   *	BSD still doesn't use the correction from RFC961.
5551   *	For 1003.1g we should support a new option TCP_STDURG to permit
5552   *	either form (or just set the sysctl tcp_stdurg).
5553   */
5554  
5555  static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5556  {
5557  	struct tcp_sock *tp = tcp_sk(sk);
5558  	u32 ptr = ntohs(th->urg_ptr);
5559  
5560  	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5561  		ptr--;
5562  	ptr += ntohl(th->seq);
5563  
5564  	/* Ignore urgent data that we've already seen and read. */
5565  	if (after(tp->copied_seq, ptr))
5566  		return;
5567  
5568  	/* Do not replay urg ptr.
5569  	 *
5570  	 * NOTE: interesting situation not covered by specs.
5571  	 * Misbehaving sender may send urg ptr, pointing to segment,
5572  	 * which we already have in ofo queue. We are not able to fetch
5573  	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5574  	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5575  	 * situations. But it is worth to think about possibility of some
5576  	 * DoSes using some hypothetical application level deadlock.
5577  	 */
5578  	if (before(ptr, tp->rcv_nxt))
5579  		return;
5580  
5581  	/* Do we already have a newer (or duplicate) urgent pointer? */
5582  	if (tp->urg_data && !after(ptr, tp->urg_seq))
5583  		return;
5584  
5585  	/* Tell the world about our new urgent pointer. */
5586  	sk_send_sigurg(sk);
5587  
5588  	/* We may be adding urgent data when the last byte read was
5589  	 * urgent. To do this requires some care. We cannot just ignore
5590  	 * tp->copied_seq since we would read the last urgent byte again
5591  	 * as data, nor can we alter copied_seq until this data arrives
5592  	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5593  	 *
5594  	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5595  	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5596  	 * and expect that both A and B disappear from stream. This is _wrong_.
5597  	 * Though this happens in BSD with high probability, this is occasional.
5598  	 * Any application relying on this is buggy. Note also, that fix "works"
5599  	 * only in this artificial test. Insert some normal data between A and B and we will
5600  	 * decline of BSD again. Verdict: it is better to remove to trap
5601  	 * buggy users.
5602  	 */
5603  	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5604  	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5605  		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5606  		tp->copied_seq++;
5607  		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5608  			__skb_unlink(skb, &sk->sk_receive_queue);
5609  			__kfree_skb(skb);
5610  		}
5611  	}
5612  
5613  	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5614  	WRITE_ONCE(tp->urg_seq, ptr);
5615  
5616  	/* Disable header prediction. */
5617  	tp->pred_flags = 0;
5618  }
5619  
5620  /* This is the 'fast' part of urgent handling. */
5621  static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5622  {
5623  	struct tcp_sock *tp = tcp_sk(sk);
5624  
5625  	/* Check if we get a new urgent pointer - normally not. */
5626  	if (unlikely(th->urg))
5627  		tcp_check_urg(sk, th);
5628  
5629  	/* Do we wait for any urgent data? - normally not... */
5630  	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5631  		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5632  			  th->syn;
5633  
5634  		/* Is the urgent pointer pointing into this packet? */
5635  		if (ptr < skb->len) {
5636  			u8 tmp;
5637  			if (skb_copy_bits(skb, ptr, &tmp, 1))
5638  				BUG();
5639  			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5640  			if (!sock_flag(sk, SOCK_DEAD))
5641  				sk->sk_data_ready(sk);
5642  		}
5643  	}
5644  }
5645  
5646  /* Accept RST for rcv_nxt - 1 after a FIN.
5647   * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5648   * FIN is sent followed by a RST packet. The RST is sent with the same
5649   * sequence number as the FIN, and thus according to RFC 5961 a challenge
5650   * ACK should be sent. However, Mac OSX rate limits replies to challenge
5651   * ACKs on the closed socket. In addition middleboxes can drop either the
5652   * challenge ACK or a subsequent RST.
5653   */
5654  static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5655  {
5656  	struct tcp_sock *tp = tcp_sk(sk);
5657  
5658  	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5659  			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5660  					       TCPF_CLOSING));
5661  }
5662  
5663  /* Does PAWS and seqno based validation of an incoming segment, flags will
5664   * play significant role here.
5665   */
5666  static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5667  				  const struct tcphdr *th, int syn_inerr)
5668  {
5669  	struct tcp_sock *tp = tcp_sk(sk);
5670  	bool rst_seq_match = false;
5671  
5672  	/* RFC1323: H1. Apply PAWS check first. */
5673  	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5674  	    tp->rx_opt.saw_tstamp &&
5675  	    tcp_paws_discard(sk, skb)) {
5676  		if (!th->rst) {
5677  			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5678  			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5679  						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5680  						  &tp->last_oow_ack_time))
5681  				tcp_send_dupack(sk, skb);
5682  			goto discard;
5683  		}
5684  		/* Reset is accepted even if it did not pass PAWS. */
5685  	}
5686  
5687  	/* Step 1: check sequence number */
5688  	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5689  		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5690  		 * (RST) segments are validated by checking their SEQ-fields."
5691  		 * And page 69: "If an incoming segment is not acceptable,
5692  		 * an acknowledgment should be sent in reply (unless the RST
5693  		 * bit is set, if so drop the segment and return)".
5694  		 */
5695  		if (!th->rst) {
5696  			if (th->syn)
5697  				goto syn_challenge;
5698  			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5699  						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5700  						  &tp->last_oow_ack_time))
5701  				tcp_send_dupack(sk, skb);
5702  		} else if (tcp_reset_check(sk, skb)) {
5703  			tcp_reset(sk, skb);
5704  		}
5705  		goto discard;
5706  	}
5707  
5708  	/* Step 2: check RST bit */
5709  	if (th->rst) {
5710  		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5711  		 * FIN and SACK too if available):
5712  		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5713  		 * the right-most SACK block,
5714  		 * then
5715  		 *     RESET the connection
5716  		 * else
5717  		 *     Send a challenge ACK
5718  		 */
5719  		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5720  		    tcp_reset_check(sk, skb)) {
5721  			rst_seq_match = true;
5722  		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5723  			struct tcp_sack_block *sp = &tp->selective_acks[0];
5724  			int max_sack = sp[0].end_seq;
5725  			int this_sack;
5726  
5727  			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5728  			     ++this_sack) {
5729  				max_sack = after(sp[this_sack].end_seq,
5730  						 max_sack) ?
5731  					sp[this_sack].end_seq : max_sack;
5732  			}
5733  
5734  			if (TCP_SKB_CB(skb)->seq == max_sack)
5735  				rst_seq_match = true;
5736  		}
5737  
5738  		if (rst_seq_match)
5739  			tcp_reset(sk, skb);
5740  		else {
5741  			/* Disable TFO if RST is out-of-order
5742  			 * and no data has been received
5743  			 * for current active TFO socket
5744  			 */
5745  			if (tp->syn_fastopen && !tp->data_segs_in &&
5746  			    sk->sk_state == TCP_ESTABLISHED)
5747  				tcp_fastopen_active_disable(sk);
5748  			tcp_send_challenge_ack(sk);
5749  		}
5750  		goto discard;
5751  	}
5752  
5753  	/* step 3: check security and precedence [ignored] */
5754  
5755  	/* step 4: Check for a SYN
5756  	 * RFC 5961 4.2 : Send a challenge ack
5757  	 */
5758  	if (th->syn) {
5759  syn_challenge:
5760  		if (syn_inerr)
5761  			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5762  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5763  		tcp_send_challenge_ack(sk);
5764  		goto discard;
5765  	}
5766  
5767  	bpf_skops_parse_hdr(sk, skb);
5768  
5769  	return true;
5770  
5771  discard:
5772  	tcp_drop(sk, skb);
5773  	return false;
5774  }
5775  
5776  /*
5777   *	TCP receive function for the ESTABLISHED state.
5778   *
5779   *	It is split into a fast path and a slow path. The fast path is
5780   * 	disabled when:
5781   *	- A zero window was announced from us - zero window probing
5782   *        is only handled properly in the slow path.
5783   *	- Out of order segments arrived.
5784   *	- Urgent data is expected.
5785   *	- There is no buffer space left
5786   *	- Unexpected TCP flags/window values/header lengths are received
5787   *	  (detected by checking the TCP header against pred_flags)
5788   *	- Data is sent in both directions. Fast path only supports pure senders
5789   *	  or pure receivers (this means either the sequence number or the ack
5790   *	  value must stay constant)
5791   *	- Unexpected TCP option.
5792   *
5793   *	When these conditions are not satisfied it drops into a standard
5794   *	receive procedure patterned after RFC793 to handle all cases.
5795   *	The first three cases are guaranteed by proper pred_flags setting,
5796   *	the rest is checked inline. Fast processing is turned on in
5797   *	tcp_data_queue when everything is OK.
5798   */
5799  void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5800  {
5801  	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5802  	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5803  	struct tcp_sock *tp = tcp_sk(sk);
5804  	unsigned int len = skb->len;
5805  
5806  	/* TCP congestion window tracking */
5807  	trace_tcp_probe(sk, skb);
5808  
5809  	tcp_mstamp_refresh(tp);
5810  	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5811  		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5812  	/*
5813  	 *	Header prediction.
5814  	 *	The code loosely follows the one in the famous
5815  	 *	"30 instruction TCP receive" Van Jacobson mail.
5816  	 *
5817  	 *	Van's trick is to deposit buffers into socket queue
5818  	 *	on a device interrupt, to call tcp_recv function
5819  	 *	on the receive process context and checksum and copy
5820  	 *	the buffer to user space. smart...
5821  	 *
5822  	 *	Our current scheme is not silly either but we take the
5823  	 *	extra cost of the net_bh soft interrupt processing...
5824  	 *	We do checksum and copy also but from device to kernel.
5825  	 */
5826  
5827  	tp->rx_opt.saw_tstamp = 0;
5828  
5829  	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5830  	 *	if header_prediction is to be made
5831  	 *	'S' will always be tp->tcp_header_len >> 2
5832  	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5833  	 *  turn it off	(when there are holes in the receive
5834  	 *	 space for instance)
5835  	 *	PSH flag is ignored.
5836  	 */
5837  
5838  	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5839  	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5840  	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5841  		int tcp_header_len = tp->tcp_header_len;
5842  
5843  		/* Timestamp header prediction: tcp_header_len
5844  		 * is automatically equal to th->doff*4 due to pred_flags
5845  		 * match.
5846  		 */
5847  
5848  		/* Check timestamp */
5849  		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5850  			/* No? Slow path! */
5851  			if (!tcp_parse_aligned_timestamp(tp, th))
5852  				goto slow_path;
5853  
5854  			/* If PAWS failed, check it more carefully in slow path */
5855  			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5856  				goto slow_path;
5857  
5858  			/* DO NOT update ts_recent here, if checksum fails
5859  			 * and timestamp was corrupted part, it will result
5860  			 * in a hung connection since we will drop all
5861  			 * future packets due to the PAWS test.
5862  			 */
5863  		}
5864  
5865  		if (len <= tcp_header_len) {
5866  			/* Bulk data transfer: sender */
5867  			if (len == tcp_header_len) {
5868  				/* Predicted packet is in window by definition.
5869  				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5870  				 * Hence, check seq<=rcv_wup reduces to:
5871  				 */
5872  				if (tcp_header_len ==
5873  				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5874  				    tp->rcv_nxt == tp->rcv_wup)
5875  					tcp_store_ts_recent(tp);
5876  
5877  				/* We know that such packets are checksummed
5878  				 * on entry.
5879  				 */
5880  				tcp_ack(sk, skb, 0);
5881  				__kfree_skb(skb);
5882  				tcp_data_snd_check(sk);
5883  				/* When receiving pure ack in fast path, update
5884  				 * last ts ecr directly instead of calling
5885  				 * tcp_rcv_rtt_measure_ts()
5886  				 */
5887  				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5888  				return;
5889  			} else { /* Header too small */
5890  				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5891  				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5892  				goto discard;
5893  			}
5894  		} else {
5895  			int eaten = 0;
5896  			bool fragstolen = false;
5897  
5898  			if (tcp_checksum_complete(skb))
5899  				goto csum_error;
5900  
5901  			if ((int)skb->truesize > sk->sk_forward_alloc)
5902  				goto step5;
5903  
5904  			/* Predicted packet is in window by definition.
5905  			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5906  			 * Hence, check seq<=rcv_wup reduces to:
5907  			 */
5908  			if (tcp_header_len ==
5909  			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5910  			    tp->rcv_nxt == tp->rcv_wup)
5911  				tcp_store_ts_recent(tp);
5912  
5913  			tcp_rcv_rtt_measure_ts(sk, skb);
5914  
5915  			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5916  
5917  			/* Bulk data transfer: receiver */
5918  			__skb_pull(skb, tcp_header_len);
5919  			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5920  
5921  			tcp_event_data_recv(sk, skb);
5922  
5923  			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5924  				/* Well, only one small jumplet in fast path... */
5925  				tcp_ack(sk, skb, FLAG_DATA);
5926  				tcp_data_snd_check(sk);
5927  				if (!inet_csk_ack_scheduled(sk))
5928  					goto no_ack;
5929  			} else {
5930  				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5931  			}
5932  
5933  			__tcp_ack_snd_check(sk, 0);
5934  no_ack:
5935  			if (eaten)
5936  				kfree_skb_partial(skb, fragstolen);
5937  			tcp_data_ready(sk);
5938  			return;
5939  		}
5940  	}
5941  
5942  slow_path:
5943  	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5944  		goto csum_error;
5945  
5946  	if (!th->ack && !th->rst && !th->syn) {
5947  		reason = SKB_DROP_REASON_TCP_FLAGS;
5948  		goto discard;
5949  	}
5950  
5951  	/*
5952  	 *	Standard slow path.
5953  	 */
5954  
5955  	if (!tcp_validate_incoming(sk, skb, th, 1))
5956  		return;
5957  
5958  step5:
5959  	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5960  		goto discard;
5961  
5962  	tcp_rcv_rtt_measure_ts(sk, skb);
5963  
5964  	/* Process urgent data. */
5965  	tcp_urg(sk, skb, th);
5966  
5967  	/* step 7: process the segment text */
5968  	tcp_data_queue(sk, skb);
5969  
5970  	tcp_data_snd_check(sk);
5971  	tcp_ack_snd_check(sk);
5972  	return;
5973  
5974  csum_error:
5975  	reason = SKB_DROP_REASON_TCP_CSUM;
5976  	trace_tcp_bad_csum(skb);
5977  	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5978  	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5979  
5980  discard:
5981  	tcp_drop_reason(sk, skb, reason);
5982  }
5983  EXPORT_SYMBOL(tcp_rcv_established);
5984  
5985  void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5986  {
5987  	struct inet_connection_sock *icsk = inet_csk(sk);
5988  	struct tcp_sock *tp = tcp_sk(sk);
5989  
5990  	tcp_mtup_init(sk);
5991  	icsk->icsk_af_ops->rebuild_header(sk);
5992  	tcp_init_metrics(sk);
5993  
5994  	/* Initialize the congestion window to start the transfer.
5995  	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5996  	 * retransmitted. In light of RFC6298 more aggressive 1sec
5997  	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5998  	 * retransmission has occurred.
5999  	 */
6000  	if (tp->total_retrans > 1 && tp->undo_marker)
6001  		tp->snd_cwnd = 1;
6002  	else
6003  		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
6004  	tp->snd_cwnd_stamp = tcp_jiffies32;
6005  
6006  	bpf_skops_established(sk, bpf_op, skb);
6007  	/* Initialize congestion control unless BPF initialized it already: */
6008  	if (!icsk->icsk_ca_initialized)
6009  		tcp_init_congestion_control(sk);
6010  	tcp_init_buffer_space(sk);
6011  }
6012  
6013  void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6014  {
6015  	struct tcp_sock *tp = tcp_sk(sk);
6016  	struct inet_connection_sock *icsk = inet_csk(sk);
6017  
6018  	tcp_set_state(sk, TCP_ESTABLISHED);
6019  	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6020  
6021  	if (skb) {
6022  		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6023  		security_inet_conn_established(sk, skb);
6024  		sk_mark_napi_id(sk, skb);
6025  	}
6026  
6027  	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6028  
6029  	/* Prevent spurious tcp_cwnd_restart() on first data
6030  	 * packet.
6031  	 */
6032  	tp->lsndtime = tcp_jiffies32;
6033  
6034  	if (sock_flag(sk, SOCK_KEEPOPEN))
6035  		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6036  
6037  	if (!tp->rx_opt.snd_wscale)
6038  		__tcp_fast_path_on(tp, tp->snd_wnd);
6039  	else
6040  		tp->pred_flags = 0;
6041  }
6042  
6043  static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6044  				    struct tcp_fastopen_cookie *cookie)
6045  {
6046  	struct tcp_sock *tp = tcp_sk(sk);
6047  	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6048  	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6049  	bool syn_drop = false;
6050  
6051  	if (mss == tp->rx_opt.user_mss) {
6052  		struct tcp_options_received opt;
6053  
6054  		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6055  		tcp_clear_options(&opt);
6056  		opt.user_mss = opt.mss_clamp = 0;
6057  		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6058  		mss = opt.mss_clamp;
6059  	}
6060  
6061  	if (!tp->syn_fastopen) {
6062  		/* Ignore an unsolicited cookie */
6063  		cookie->len = -1;
6064  	} else if (tp->total_retrans) {
6065  		/* SYN timed out and the SYN-ACK neither has a cookie nor
6066  		 * acknowledges data. Presumably the remote received only
6067  		 * the retransmitted (regular) SYNs: either the original
6068  		 * SYN-data or the corresponding SYN-ACK was dropped.
6069  		 */
6070  		syn_drop = (cookie->len < 0 && data);
6071  	} else if (cookie->len < 0 && !tp->syn_data) {
6072  		/* We requested a cookie but didn't get it. If we did not use
6073  		 * the (old) exp opt format then try so next time (try_exp=1).
6074  		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6075  		 */
6076  		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6077  	}
6078  
6079  	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6080  
6081  	if (data) { /* Retransmit unacked data in SYN */
6082  		if (tp->total_retrans)
6083  			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6084  		else
6085  			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6086  		skb_rbtree_walk_from(data)
6087  			 tcp_mark_skb_lost(sk, data);
6088  		tcp_xmit_retransmit_queue(sk);
6089  		NET_INC_STATS(sock_net(sk),
6090  				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6091  		return true;
6092  	}
6093  	tp->syn_data_acked = tp->syn_data;
6094  	if (tp->syn_data_acked) {
6095  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6096  		/* SYN-data is counted as two separate packets in tcp_ack() */
6097  		if (tp->delivered > 1)
6098  			--tp->delivered;
6099  	}
6100  
6101  	tcp_fastopen_add_skb(sk, synack);
6102  
6103  	return false;
6104  }
6105  
6106  static void smc_check_reset_syn(struct tcp_sock *tp)
6107  {
6108  #if IS_ENABLED(CONFIG_SMC)
6109  	if (static_branch_unlikely(&tcp_have_smc)) {
6110  		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6111  			tp->syn_smc = 0;
6112  	}
6113  #endif
6114  }
6115  
6116  static void tcp_try_undo_spurious_syn(struct sock *sk)
6117  {
6118  	struct tcp_sock *tp = tcp_sk(sk);
6119  	u32 syn_stamp;
6120  
6121  	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6122  	 * spurious if the ACK's timestamp option echo value matches the
6123  	 * original SYN timestamp.
6124  	 */
6125  	syn_stamp = tp->retrans_stamp;
6126  	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6127  	    syn_stamp == tp->rx_opt.rcv_tsecr)
6128  		tp->undo_marker = 0;
6129  }
6130  
6131  static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6132  					 const struct tcphdr *th)
6133  {
6134  	struct inet_connection_sock *icsk = inet_csk(sk);
6135  	struct tcp_sock *tp = tcp_sk(sk);
6136  	struct tcp_fastopen_cookie foc = { .len = -1 };
6137  	int saved_clamp = tp->rx_opt.mss_clamp;
6138  	bool fastopen_fail;
6139  
6140  	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6141  	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6142  		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6143  
6144  	if (th->ack) {
6145  		/* rfc793:
6146  		 * "If the state is SYN-SENT then
6147  		 *    first check the ACK bit
6148  		 *      If the ACK bit is set
6149  		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6150  		 *        a reset (unless the RST bit is set, if so drop
6151  		 *        the segment and return)"
6152  		 */
6153  		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6154  		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6155  			/* Previous FIN/ACK or RST/ACK might be ignored. */
6156  			if (icsk->icsk_retransmits == 0)
6157  				inet_csk_reset_xmit_timer(sk,
6158  						ICSK_TIME_RETRANS,
6159  						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6160  			goto reset_and_undo;
6161  		}
6162  
6163  		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6164  		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6165  			     tcp_time_stamp(tp))) {
6166  			NET_INC_STATS(sock_net(sk),
6167  					LINUX_MIB_PAWSACTIVEREJECTED);
6168  			goto reset_and_undo;
6169  		}
6170  
6171  		/* Now ACK is acceptable.
6172  		 *
6173  		 * "If the RST bit is set
6174  		 *    If the ACK was acceptable then signal the user "error:
6175  		 *    connection reset", drop the segment, enter CLOSED state,
6176  		 *    delete TCB, and return."
6177  		 */
6178  
6179  		if (th->rst) {
6180  			tcp_reset(sk, skb);
6181  			goto discard;
6182  		}
6183  
6184  		/* rfc793:
6185  		 *   "fifth, if neither of the SYN or RST bits is set then
6186  		 *    drop the segment and return."
6187  		 *
6188  		 *    See note below!
6189  		 *                                        --ANK(990513)
6190  		 */
6191  		if (!th->syn)
6192  			goto discard_and_undo;
6193  
6194  		/* rfc793:
6195  		 *   "If the SYN bit is on ...
6196  		 *    are acceptable then ...
6197  		 *    (our SYN has been ACKed), change the connection
6198  		 *    state to ESTABLISHED..."
6199  		 */
6200  
6201  		tcp_ecn_rcv_synack(tp, th);
6202  
6203  		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6204  		tcp_try_undo_spurious_syn(sk);
6205  		tcp_ack(sk, skb, FLAG_SLOWPATH);
6206  
6207  		/* Ok.. it's good. Set up sequence numbers and
6208  		 * move to established.
6209  		 */
6210  		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6211  		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6212  
6213  		/* RFC1323: The window in SYN & SYN/ACK segments is
6214  		 * never scaled.
6215  		 */
6216  		tp->snd_wnd = ntohs(th->window);
6217  
6218  		if (!tp->rx_opt.wscale_ok) {
6219  			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6220  			tp->window_clamp = min(tp->window_clamp, 65535U);
6221  		}
6222  
6223  		if (tp->rx_opt.saw_tstamp) {
6224  			tp->rx_opt.tstamp_ok	   = 1;
6225  			tp->tcp_header_len =
6226  				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6227  			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6228  			tcp_store_ts_recent(tp);
6229  		} else {
6230  			tp->tcp_header_len = sizeof(struct tcphdr);
6231  		}
6232  
6233  		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6234  		tcp_initialize_rcv_mss(sk);
6235  
6236  		/* Remember, tcp_poll() does not lock socket!
6237  		 * Change state from SYN-SENT only after copied_seq
6238  		 * is initialized. */
6239  		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6240  
6241  		smc_check_reset_syn(tp);
6242  
6243  		smp_mb();
6244  
6245  		tcp_finish_connect(sk, skb);
6246  
6247  		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6248  				tcp_rcv_fastopen_synack(sk, skb, &foc);
6249  
6250  		if (!sock_flag(sk, SOCK_DEAD)) {
6251  			sk->sk_state_change(sk);
6252  			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6253  		}
6254  		if (fastopen_fail)
6255  			return -1;
6256  		if (sk->sk_write_pending ||
6257  		    icsk->icsk_accept_queue.rskq_defer_accept ||
6258  		    inet_csk_in_pingpong_mode(sk)) {
6259  			/* Save one ACK. Data will be ready after
6260  			 * several ticks, if write_pending is set.
6261  			 *
6262  			 * It may be deleted, but with this feature tcpdumps
6263  			 * look so _wonderfully_ clever, that I was not able
6264  			 * to stand against the temptation 8)     --ANK
6265  			 */
6266  			inet_csk_schedule_ack(sk);
6267  			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6268  			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6269  						  TCP_DELACK_MAX, TCP_RTO_MAX);
6270  
6271  discard:
6272  			tcp_drop(sk, skb);
6273  			return 0;
6274  		} else {
6275  			tcp_send_ack(sk);
6276  		}
6277  		return -1;
6278  	}
6279  
6280  	/* No ACK in the segment */
6281  
6282  	if (th->rst) {
6283  		/* rfc793:
6284  		 * "If the RST bit is set
6285  		 *
6286  		 *      Otherwise (no ACK) drop the segment and return."
6287  		 */
6288  
6289  		goto discard_and_undo;
6290  	}
6291  
6292  	/* PAWS check. */
6293  	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6294  	    tcp_paws_reject(&tp->rx_opt, 0))
6295  		goto discard_and_undo;
6296  
6297  	if (th->syn) {
6298  		/* We see SYN without ACK. It is attempt of
6299  		 * simultaneous connect with crossed SYNs.
6300  		 * Particularly, it can be connect to self.
6301  		 */
6302  		tcp_set_state(sk, TCP_SYN_RECV);
6303  
6304  		if (tp->rx_opt.saw_tstamp) {
6305  			tp->rx_opt.tstamp_ok = 1;
6306  			tcp_store_ts_recent(tp);
6307  			tp->tcp_header_len =
6308  				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6309  		} else {
6310  			tp->tcp_header_len = sizeof(struct tcphdr);
6311  		}
6312  
6313  		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6314  		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6315  		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6316  
6317  		/* RFC1323: The window in SYN & SYN/ACK segments is
6318  		 * never scaled.
6319  		 */
6320  		tp->snd_wnd    = ntohs(th->window);
6321  		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6322  		tp->max_window = tp->snd_wnd;
6323  
6324  		tcp_ecn_rcv_syn(tp, th);
6325  
6326  		tcp_mtup_init(sk);
6327  		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6328  		tcp_initialize_rcv_mss(sk);
6329  
6330  		tcp_send_synack(sk);
6331  #if 0
6332  		/* Note, we could accept data and URG from this segment.
6333  		 * There are no obstacles to make this (except that we must
6334  		 * either change tcp_recvmsg() to prevent it from returning data
6335  		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6336  		 *
6337  		 * However, if we ignore data in ACKless segments sometimes,
6338  		 * we have no reasons to accept it sometimes.
6339  		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6340  		 * is not flawless. So, discard packet for sanity.
6341  		 * Uncomment this return to process the data.
6342  		 */
6343  		return -1;
6344  #else
6345  		goto discard;
6346  #endif
6347  	}
6348  	/* "fifth, if neither of the SYN or RST bits is set then
6349  	 * drop the segment and return."
6350  	 */
6351  
6352  discard_and_undo:
6353  	tcp_clear_options(&tp->rx_opt);
6354  	tp->rx_opt.mss_clamp = saved_clamp;
6355  	goto discard;
6356  
6357  reset_and_undo:
6358  	tcp_clear_options(&tp->rx_opt);
6359  	tp->rx_opt.mss_clamp = saved_clamp;
6360  	return 1;
6361  }
6362  
6363  static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6364  {
6365  	struct request_sock *req;
6366  
6367  	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6368  	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6369  	 */
6370  	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6371  		tcp_try_undo_loss(sk, false);
6372  
6373  	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6374  	tcp_sk(sk)->retrans_stamp = 0;
6375  	inet_csk(sk)->icsk_retransmits = 0;
6376  
6377  	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6378  	 * we no longer need req so release it.
6379  	 */
6380  	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6381  					lockdep_sock_is_held(sk));
6382  	reqsk_fastopen_remove(sk, req, false);
6383  
6384  	/* Re-arm the timer because data may have been sent out.
6385  	 * This is similar to the regular data transmission case
6386  	 * when new data has just been ack'ed.
6387  	 *
6388  	 * (TFO) - we could try to be more aggressive and
6389  	 * retransmitting any data sooner based on when they
6390  	 * are sent out.
6391  	 */
6392  	tcp_rearm_rto(sk);
6393  }
6394  
6395  /*
6396   *	This function implements the receiving procedure of RFC 793 for
6397   *	all states except ESTABLISHED and TIME_WAIT.
6398   *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6399   *	address independent.
6400   */
6401  
6402  int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6403  {
6404  	struct tcp_sock *tp = tcp_sk(sk);
6405  	struct inet_connection_sock *icsk = inet_csk(sk);
6406  	const struct tcphdr *th = tcp_hdr(skb);
6407  	struct request_sock *req;
6408  	int queued = 0;
6409  	bool acceptable;
6410  
6411  	switch (sk->sk_state) {
6412  	case TCP_CLOSE:
6413  		goto discard;
6414  
6415  	case TCP_LISTEN:
6416  		if (th->ack)
6417  			return 1;
6418  
6419  		if (th->rst)
6420  			goto discard;
6421  
6422  		if (th->syn) {
6423  			if (th->fin)
6424  				goto discard;
6425  			/* It is possible that we process SYN packets from backlog,
6426  			 * so we need to make sure to disable BH and RCU right there.
6427  			 */
6428  			rcu_read_lock();
6429  			local_bh_disable();
6430  			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6431  			local_bh_enable();
6432  			rcu_read_unlock();
6433  
6434  			if (!acceptable)
6435  				return 1;
6436  			consume_skb(skb);
6437  			return 0;
6438  		}
6439  		goto discard;
6440  
6441  	case TCP_SYN_SENT:
6442  		tp->rx_opt.saw_tstamp = 0;
6443  		tcp_mstamp_refresh(tp);
6444  		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6445  		if (queued >= 0)
6446  			return queued;
6447  
6448  		/* Do step6 onward by hand. */
6449  		tcp_urg(sk, skb, th);
6450  		__kfree_skb(skb);
6451  		tcp_data_snd_check(sk);
6452  		return 0;
6453  	}
6454  
6455  	tcp_mstamp_refresh(tp);
6456  	tp->rx_opt.saw_tstamp = 0;
6457  	req = rcu_dereference_protected(tp->fastopen_rsk,
6458  					lockdep_sock_is_held(sk));
6459  	if (req) {
6460  		bool req_stolen;
6461  
6462  		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6463  		    sk->sk_state != TCP_FIN_WAIT1);
6464  
6465  		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6466  			goto discard;
6467  	}
6468  
6469  	if (!th->ack && !th->rst && !th->syn)
6470  		goto discard;
6471  
6472  	if (!tcp_validate_incoming(sk, skb, th, 0))
6473  		return 0;
6474  
6475  	/* step 5: check the ACK field */
6476  	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6477  				      FLAG_UPDATE_TS_RECENT |
6478  				      FLAG_NO_CHALLENGE_ACK) > 0;
6479  
6480  	if (!acceptable) {
6481  		if (sk->sk_state == TCP_SYN_RECV)
6482  			return 1;	/* send one RST */
6483  		tcp_send_challenge_ack(sk);
6484  		goto discard;
6485  	}
6486  	switch (sk->sk_state) {
6487  	case TCP_SYN_RECV:
6488  		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6489  		if (!tp->srtt_us)
6490  			tcp_synack_rtt_meas(sk, req);
6491  
6492  		if (req) {
6493  			tcp_rcv_synrecv_state_fastopen(sk);
6494  		} else {
6495  			tcp_try_undo_spurious_syn(sk);
6496  			tp->retrans_stamp = 0;
6497  			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6498  					  skb);
6499  			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6500  		}
6501  		smp_mb();
6502  		tcp_set_state(sk, TCP_ESTABLISHED);
6503  		sk->sk_state_change(sk);
6504  
6505  		/* Note, that this wakeup is only for marginal crossed SYN case.
6506  		 * Passively open sockets are not waked up, because
6507  		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6508  		 */
6509  		if (sk->sk_socket)
6510  			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6511  
6512  		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6513  		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6514  		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6515  
6516  		if (tp->rx_opt.tstamp_ok)
6517  			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6518  
6519  		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6520  			tcp_update_pacing_rate(sk);
6521  
6522  		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6523  		tp->lsndtime = tcp_jiffies32;
6524  
6525  		tcp_initialize_rcv_mss(sk);
6526  		tcp_fast_path_on(tp);
6527  		break;
6528  
6529  	case TCP_FIN_WAIT1: {
6530  		int tmo;
6531  
6532  		if (req)
6533  			tcp_rcv_synrecv_state_fastopen(sk);
6534  
6535  		if (tp->snd_una != tp->write_seq)
6536  			break;
6537  
6538  		tcp_set_state(sk, TCP_FIN_WAIT2);
6539  		sk->sk_shutdown |= SEND_SHUTDOWN;
6540  
6541  		sk_dst_confirm(sk);
6542  
6543  		if (!sock_flag(sk, SOCK_DEAD)) {
6544  			/* Wake up lingering close() */
6545  			sk->sk_state_change(sk);
6546  			break;
6547  		}
6548  
6549  		if (tp->linger2 < 0) {
6550  			tcp_done(sk);
6551  			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6552  			return 1;
6553  		}
6554  		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6555  		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6556  			/* Receive out of order FIN after close() */
6557  			if (tp->syn_fastopen && th->fin)
6558  				tcp_fastopen_active_disable(sk);
6559  			tcp_done(sk);
6560  			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6561  			return 1;
6562  		}
6563  
6564  		tmo = tcp_fin_time(sk);
6565  		if (tmo > TCP_TIMEWAIT_LEN) {
6566  			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6567  		} else if (th->fin || sock_owned_by_user(sk)) {
6568  			/* Bad case. We could lose such FIN otherwise.
6569  			 * It is not a big problem, but it looks confusing
6570  			 * and not so rare event. We still can lose it now,
6571  			 * if it spins in bh_lock_sock(), but it is really
6572  			 * marginal case.
6573  			 */
6574  			inet_csk_reset_keepalive_timer(sk, tmo);
6575  		} else {
6576  			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6577  			goto discard;
6578  		}
6579  		break;
6580  	}
6581  
6582  	case TCP_CLOSING:
6583  		if (tp->snd_una == tp->write_seq) {
6584  			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6585  			goto discard;
6586  		}
6587  		break;
6588  
6589  	case TCP_LAST_ACK:
6590  		if (tp->snd_una == tp->write_seq) {
6591  			tcp_update_metrics(sk);
6592  			tcp_done(sk);
6593  			goto discard;
6594  		}
6595  		break;
6596  	}
6597  
6598  	/* step 6: check the URG bit */
6599  	tcp_urg(sk, skb, th);
6600  
6601  	/* step 7: process the segment text */
6602  	switch (sk->sk_state) {
6603  	case TCP_CLOSE_WAIT:
6604  	case TCP_CLOSING:
6605  	case TCP_LAST_ACK:
6606  		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6607  			/* If a subflow has been reset, the packet should not
6608  			 * continue to be processed, drop the packet.
6609  			 */
6610  			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6611  				goto discard;
6612  			break;
6613  		}
6614  		fallthrough;
6615  	case TCP_FIN_WAIT1:
6616  	case TCP_FIN_WAIT2:
6617  		/* RFC 793 says to queue data in these states,
6618  		 * RFC 1122 says we MUST send a reset.
6619  		 * BSD 4.4 also does reset.
6620  		 */
6621  		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6622  			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6623  			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6624  				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6625  				tcp_reset(sk, skb);
6626  				return 1;
6627  			}
6628  		}
6629  		fallthrough;
6630  	case TCP_ESTABLISHED:
6631  		tcp_data_queue(sk, skb);
6632  		queued = 1;
6633  		break;
6634  	}
6635  
6636  	/* tcp_data could move socket to TIME-WAIT */
6637  	if (sk->sk_state != TCP_CLOSE) {
6638  		tcp_data_snd_check(sk);
6639  		tcp_ack_snd_check(sk);
6640  	}
6641  
6642  	if (!queued) {
6643  discard:
6644  		tcp_drop(sk, skb);
6645  	}
6646  	return 0;
6647  }
6648  EXPORT_SYMBOL(tcp_rcv_state_process);
6649  
6650  static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6651  {
6652  	struct inet_request_sock *ireq = inet_rsk(req);
6653  
6654  	if (family == AF_INET)
6655  		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6656  				    &ireq->ir_rmt_addr, port);
6657  #if IS_ENABLED(CONFIG_IPV6)
6658  	else if (family == AF_INET6)
6659  		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6660  				    &ireq->ir_v6_rmt_addr, port);
6661  #endif
6662  }
6663  
6664  /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6665   *
6666   * If we receive a SYN packet with these bits set, it means a
6667   * network is playing bad games with TOS bits. In order to
6668   * avoid possible false congestion notifications, we disable
6669   * TCP ECN negotiation.
6670   *
6671   * Exception: tcp_ca wants ECN. This is required for DCTCP
6672   * congestion control: Linux DCTCP asserts ECT on all packets,
6673   * including SYN, which is most optimal solution; however,
6674   * others, such as FreeBSD do not.
6675   *
6676   * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6677   * set, indicating the use of a future TCP extension (such as AccECN). See
6678   * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6679   * extensions.
6680   */
6681  static void tcp_ecn_create_request(struct request_sock *req,
6682  				   const struct sk_buff *skb,
6683  				   const struct sock *listen_sk,
6684  				   const struct dst_entry *dst)
6685  {
6686  	const struct tcphdr *th = tcp_hdr(skb);
6687  	const struct net *net = sock_net(listen_sk);
6688  	bool th_ecn = th->ece && th->cwr;
6689  	bool ect, ecn_ok;
6690  	u32 ecn_ok_dst;
6691  
6692  	if (!th_ecn)
6693  		return;
6694  
6695  	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6696  	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6697  	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6698  
6699  	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6700  	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6701  	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6702  		inet_rsk(req)->ecn_ok = 1;
6703  }
6704  
6705  static void tcp_openreq_init(struct request_sock *req,
6706  			     const struct tcp_options_received *rx_opt,
6707  			     struct sk_buff *skb, const struct sock *sk)
6708  {
6709  	struct inet_request_sock *ireq = inet_rsk(req);
6710  
6711  	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6712  	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6713  	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6714  	tcp_rsk(req)->snt_synack = 0;
6715  	tcp_rsk(req)->last_oow_ack_time = 0;
6716  	req->mss = rx_opt->mss_clamp;
6717  	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6718  	ireq->tstamp_ok = rx_opt->tstamp_ok;
6719  	ireq->sack_ok = rx_opt->sack_ok;
6720  	ireq->snd_wscale = rx_opt->snd_wscale;
6721  	ireq->wscale_ok = rx_opt->wscale_ok;
6722  	ireq->acked = 0;
6723  	ireq->ecn_ok = 0;
6724  	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6725  	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6726  	ireq->ir_mark = inet_request_mark(sk, skb);
6727  #if IS_ENABLED(CONFIG_SMC)
6728  	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6729  			tcp_sk(sk)->smc_hs_congested(sk));
6730  #endif
6731  }
6732  
6733  struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6734  				      struct sock *sk_listener,
6735  				      bool attach_listener)
6736  {
6737  	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6738  					       attach_listener);
6739  
6740  	if (req) {
6741  		struct inet_request_sock *ireq = inet_rsk(req);
6742  
6743  		ireq->ireq_opt = NULL;
6744  #if IS_ENABLED(CONFIG_IPV6)
6745  		ireq->pktopts = NULL;
6746  #endif
6747  		atomic64_set(&ireq->ir_cookie, 0);
6748  		ireq->ireq_state = TCP_NEW_SYN_RECV;
6749  		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6750  		ireq->ireq_family = sk_listener->sk_family;
6751  		req->timeout = TCP_TIMEOUT_INIT;
6752  	}
6753  
6754  	return req;
6755  }
6756  EXPORT_SYMBOL(inet_reqsk_alloc);
6757  
6758  /*
6759   * Return true if a syncookie should be sent
6760   */
6761  static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6762  {
6763  	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6764  	const char *msg = "Dropping request";
6765  	bool want_cookie = false;
6766  	struct net *net = sock_net(sk);
6767  
6768  #ifdef CONFIG_SYN_COOKIES
6769  	if (net->ipv4.sysctl_tcp_syncookies) {
6770  		msg = "Sending cookies";
6771  		want_cookie = true;
6772  		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6773  	} else
6774  #endif
6775  		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6776  
6777  	if (!queue->synflood_warned &&
6778  	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6779  	    xchg(&queue->synflood_warned, 1) == 0)
6780  		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6781  				     proto, sk->sk_num, msg);
6782  
6783  	return want_cookie;
6784  }
6785  
6786  static void tcp_reqsk_record_syn(const struct sock *sk,
6787  				 struct request_sock *req,
6788  				 const struct sk_buff *skb)
6789  {
6790  	if (tcp_sk(sk)->save_syn) {
6791  		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6792  		struct saved_syn *saved_syn;
6793  		u32 mac_hdrlen;
6794  		void *base;
6795  
6796  		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6797  			base = skb_mac_header(skb);
6798  			mac_hdrlen = skb_mac_header_len(skb);
6799  			len += mac_hdrlen;
6800  		} else {
6801  			base = skb_network_header(skb);
6802  			mac_hdrlen = 0;
6803  		}
6804  
6805  		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6806  				    GFP_ATOMIC);
6807  		if (saved_syn) {
6808  			saved_syn->mac_hdrlen = mac_hdrlen;
6809  			saved_syn->network_hdrlen = skb_network_header_len(skb);
6810  			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6811  			memcpy(saved_syn->data, base, len);
6812  			req->saved_syn = saved_syn;
6813  		}
6814  	}
6815  }
6816  
6817  /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6818   * used for SYN cookie generation.
6819   */
6820  u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6821  			  const struct tcp_request_sock_ops *af_ops,
6822  			  struct sock *sk, struct tcphdr *th)
6823  {
6824  	struct tcp_sock *tp = tcp_sk(sk);
6825  	u16 mss;
6826  
6827  	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6828  	    !inet_csk_reqsk_queue_is_full(sk))
6829  		return 0;
6830  
6831  	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6832  		return 0;
6833  
6834  	if (sk_acceptq_is_full(sk)) {
6835  		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6836  		return 0;
6837  	}
6838  
6839  	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6840  	if (!mss)
6841  		mss = af_ops->mss_clamp;
6842  
6843  	return mss;
6844  }
6845  EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6846  
6847  int tcp_conn_request(struct request_sock_ops *rsk_ops,
6848  		     const struct tcp_request_sock_ops *af_ops,
6849  		     struct sock *sk, struct sk_buff *skb)
6850  {
6851  	struct tcp_fastopen_cookie foc = { .len = -1 };
6852  	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6853  	struct tcp_options_received tmp_opt;
6854  	struct tcp_sock *tp = tcp_sk(sk);
6855  	struct net *net = sock_net(sk);
6856  	struct sock *fastopen_sk = NULL;
6857  	struct request_sock *req;
6858  	bool want_cookie = false;
6859  	struct dst_entry *dst;
6860  	struct flowi fl;
6861  
6862  	/* TW buckets are converted to open requests without
6863  	 * limitations, they conserve resources and peer is
6864  	 * evidently real one.
6865  	 */
6866  	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6867  	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6868  		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6869  		if (!want_cookie)
6870  			goto drop;
6871  	}
6872  
6873  	if (sk_acceptq_is_full(sk)) {
6874  		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6875  		goto drop;
6876  	}
6877  
6878  	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6879  	if (!req)
6880  		goto drop;
6881  
6882  	req->syncookie = want_cookie;
6883  	tcp_rsk(req)->af_specific = af_ops;
6884  	tcp_rsk(req)->ts_off = 0;
6885  #if IS_ENABLED(CONFIG_MPTCP)
6886  	tcp_rsk(req)->is_mptcp = 0;
6887  #endif
6888  
6889  	tcp_clear_options(&tmp_opt);
6890  	tmp_opt.mss_clamp = af_ops->mss_clamp;
6891  	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6892  	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6893  			  want_cookie ? NULL : &foc);
6894  
6895  	if (want_cookie && !tmp_opt.saw_tstamp)
6896  		tcp_clear_options(&tmp_opt);
6897  
6898  	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6899  		tmp_opt.smc_ok = 0;
6900  
6901  	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6902  	tcp_openreq_init(req, &tmp_opt, skb, sk);
6903  	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6904  
6905  	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6906  	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6907  
6908  	dst = af_ops->route_req(sk, skb, &fl, req);
6909  	if (!dst)
6910  		goto drop_and_free;
6911  
6912  	if (tmp_opt.tstamp_ok)
6913  		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6914  
6915  	if (!want_cookie && !isn) {
6916  		/* Kill the following clause, if you dislike this way. */
6917  		if (!net->ipv4.sysctl_tcp_syncookies &&
6918  		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6919  		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6920  		    !tcp_peer_is_proven(req, dst)) {
6921  			/* Without syncookies last quarter of
6922  			 * backlog is filled with destinations,
6923  			 * proven to be alive.
6924  			 * It means that we continue to communicate
6925  			 * to destinations, already remembered
6926  			 * to the moment of synflood.
6927  			 */
6928  			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6929  				    rsk_ops->family);
6930  			goto drop_and_release;
6931  		}
6932  
6933  		isn = af_ops->init_seq(skb);
6934  	}
6935  
6936  	tcp_ecn_create_request(req, skb, sk, dst);
6937  
6938  	if (want_cookie) {
6939  		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6940  		if (!tmp_opt.tstamp_ok)
6941  			inet_rsk(req)->ecn_ok = 0;
6942  	}
6943  
6944  	tcp_rsk(req)->snt_isn = isn;
6945  	tcp_rsk(req)->txhash = net_tx_rndhash();
6946  	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6947  	tcp_openreq_init_rwin(req, sk, dst);
6948  	sk_rx_queue_set(req_to_sk(req), skb);
6949  	if (!want_cookie) {
6950  		tcp_reqsk_record_syn(sk, req, skb);
6951  		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6952  	}
6953  	if (fastopen_sk) {
6954  		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6955  				    &foc, TCP_SYNACK_FASTOPEN, skb);
6956  		/* Add the child socket directly into the accept queue */
6957  		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6958  			reqsk_fastopen_remove(fastopen_sk, req, false);
6959  			bh_unlock_sock(fastopen_sk);
6960  			sock_put(fastopen_sk);
6961  			goto drop_and_free;
6962  		}
6963  		sk->sk_data_ready(sk);
6964  		bh_unlock_sock(fastopen_sk);
6965  		sock_put(fastopen_sk);
6966  	} else {
6967  		tcp_rsk(req)->tfo_listener = false;
6968  		if (!want_cookie) {
6969  			req->timeout = tcp_timeout_init((struct sock *)req);
6970  			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
6971  		}
6972  		af_ops->send_synack(sk, dst, &fl, req, &foc,
6973  				    !want_cookie ? TCP_SYNACK_NORMAL :
6974  						   TCP_SYNACK_COOKIE,
6975  				    skb);
6976  		if (want_cookie) {
6977  			reqsk_free(req);
6978  			return 0;
6979  		}
6980  	}
6981  	reqsk_put(req);
6982  	return 0;
6983  
6984  drop_and_release:
6985  	dst_release(dst);
6986  drop_and_free:
6987  	__reqsk_free(req);
6988  drop:
6989  	tcp_listendrop(sk);
6990  	return 0;
6991  }
6992  EXPORT_SYMBOL(tcp_conn_request);
6993