1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 84 int sysctl_tcp_max_reordering __read_mostly = 300; 85 EXPORT_SYMBOL(sysctl_tcp_reordering); 86 int sysctl_tcp_dsack __read_mostly = 1; 87 int sysctl_tcp_app_win __read_mostly = 31; 88 int sysctl_tcp_adv_win_scale __read_mostly = 1; 89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 90 91 /* rfc5961 challenge ack rate limiting */ 92 int sysctl_tcp_challenge_ack_limit = 100; 93 94 int sysctl_tcp_stdurg __read_mostly; 95 int sysctl_tcp_rfc1337 __read_mostly; 96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 97 int sysctl_tcp_frto __read_mostly = 2; 98 99 int sysctl_tcp_thin_dupack __read_mostly; 100 101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 102 int sysctl_tcp_early_retrans __read_mostly = 3; 103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 104 105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 111 #define FLAG_ECE 0x40 /* ECE in this ACK */ 112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 118 119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 123 124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 126 127 /* Adapt the MSS value used to make delayed ack decision to the 128 * real world. 129 */ 130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 131 { 132 struct inet_connection_sock *icsk = inet_csk(sk); 133 const unsigned int lss = icsk->icsk_ack.last_seg_size; 134 unsigned int len; 135 136 icsk->icsk_ack.last_seg_size = 0; 137 138 /* skb->len may jitter because of SACKs, even if peer 139 * sends good full-sized frames. 140 */ 141 len = skb_shinfo(skb)->gso_size ? : skb->len; 142 if (len >= icsk->icsk_ack.rcv_mss) { 143 icsk->icsk_ack.rcv_mss = len; 144 } else { 145 /* Otherwise, we make more careful check taking into account, 146 * that SACKs block is variable. 147 * 148 * "len" is invariant segment length, including TCP header. 149 */ 150 len += skb->data - skb_transport_header(skb); 151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 152 /* If PSH is not set, packet should be 153 * full sized, provided peer TCP is not badly broken. 154 * This observation (if it is correct 8)) allows 155 * to handle super-low mtu links fairly. 156 */ 157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 159 /* Subtract also invariant (if peer is RFC compliant), 160 * tcp header plus fixed timestamp option length. 161 * Resulting "len" is MSS free of SACK jitter. 162 */ 163 len -= tcp_sk(sk)->tcp_header_len; 164 icsk->icsk_ack.last_seg_size = len; 165 if (len == lss) { 166 icsk->icsk_ack.rcv_mss = len; 167 return; 168 } 169 } 170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 173 } 174 } 175 176 static void tcp_incr_quickack(struct sock *sk) 177 { 178 struct inet_connection_sock *icsk = inet_csk(sk); 179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 180 181 if (quickacks == 0) 182 quickacks = 2; 183 if (quickacks > icsk->icsk_ack.quick) 184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 185 } 186 187 static void tcp_enter_quickack_mode(struct sock *sk) 188 { 189 struct inet_connection_sock *icsk = inet_csk(sk); 190 tcp_incr_quickack(sk); 191 icsk->icsk_ack.pingpong = 0; 192 icsk->icsk_ack.ato = TCP_ATO_MIN; 193 } 194 195 /* Send ACKs quickly, if "quick" count is not exhausted 196 * and the session is not interactive. 197 */ 198 199 static inline bool tcp_in_quickack_mode(const struct sock *sk) 200 { 201 const struct inet_connection_sock *icsk = inet_csk(sk); 202 203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 204 } 205 206 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 207 { 208 if (tp->ecn_flags & TCP_ECN_OK) 209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 210 } 211 212 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 213 { 214 if (tcp_hdr(skb)->cwr) 215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 216 } 217 218 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 219 { 220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 221 } 222 223 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 224 { 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 226 case INET_ECN_NOT_ECT: 227 /* Funny extension: if ECT is not set on a segment, 228 * and we already seen ECT on a previous segment, 229 * it is probably a retransmit. 230 */ 231 if (tp->ecn_flags & TCP_ECN_SEEN) 232 tcp_enter_quickack_mode((struct sock *)tp); 233 break; 234 case INET_ECN_CE: 235 if (tcp_ca_needs_ecn((struct sock *)tp)) 236 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 237 238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 239 /* Better not delay acks, sender can have a very low cwnd */ 240 tcp_enter_quickack_mode((struct sock *)tp); 241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 242 } 243 tp->ecn_flags |= TCP_ECN_SEEN; 244 break; 245 default: 246 if (tcp_ca_needs_ecn((struct sock *)tp)) 247 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 248 tp->ecn_flags |= TCP_ECN_SEEN; 249 break; 250 } 251 } 252 253 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 254 { 255 if (tp->ecn_flags & TCP_ECN_OK) 256 __tcp_ecn_check_ce(tp, skb); 257 } 258 259 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 260 { 261 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 262 tp->ecn_flags &= ~TCP_ECN_OK; 263 } 264 265 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 266 { 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 268 tp->ecn_flags &= ~TCP_ECN_OK; 269 } 270 271 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 274 return true; 275 return false; 276 } 277 278 /* Buffer size and advertised window tuning. 279 * 280 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 281 */ 282 283 static void tcp_sndbuf_expand(struct sock *sk) 284 { 285 const struct tcp_sock *tp = tcp_sk(sk); 286 int sndmem, per_mss; 287 u32 nr_segs; 288 289 /* Worst case is non GSO/TSO : each frame consumes one skb 290 * and skb->head is kmalloced using power of two area of memory 291 */ 292 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 293 MAX_TCP_HEADER + 294 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 295 296 per_mss = roundup_pow_of_two(per_mss) + 297 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 298 299 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 300 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 301 302 /* Fast Recovery (RFC 5681 3.2) : 303 * Cubic needs 1.7 factor, rounded to 2 to include 304 * extra cushion (application might react slowly to POLLOUT) 305 */ 306 sndmem = 2 * nr_segs * per_mss; 307 308 if (sk->sk_sndbuf < sndmem) 309 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 310 } 311 312 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 313 * 314 * All tcp_full_space() is split to two parts: "network" buffer, allocated 315 * forward and advertised in receiver window (tp->rcv_wnd) and 316 * "application buffer", required to isolate scheduling/application 317 * latencies from network. 318 * window_clamp is maximal advertised window. It can be less than 319 * tcp_full_space(), in this case tcp_full_space() - window_clamp 320 * is reserved for "application" buffer. The less window_clamp is 321 * the smoother our behaviour from viewpoint of network, but the lower 322 * throughput and the higher sensitivity of the connection to losses. 8) 323 * 324 * rcv_ssthresh is more strict window_clamp used at "slow start" 325 * phase to predict further behaviour of this connection. 326 * It is used for two goals: 327 * - to enforce header prediction at sender, even when application 328 * requires some significant "application buffer". It is check #1. 329 * - to prevent pruning of receive queue because of misprediction 330 * of receiver window. Check #2. 331 * 332 * The scheme does not work when sender sends good segments opening 333 * window and then starts to feed us spaghetti. But it should work 334 * in common situations. Otherwise, we have to rely on queue collapsing. 335 */ 336 337 /* Slow part of check#2. */ 338 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 /* Optimize this! */ 342 int truesize = tcp_win_from_space(skb->truesize) >> 1; 343 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 344 345 while (tp->rcv_ssthresh <= window) { 346 if (truesize <= skb->len) 347 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 348 349 truesize >>= 1; 350 window >>= 1; 351 } 352 return 0; 353 } 354 355 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 356 { 357 struct tcp_sock *tp = tcp_sk(sk); 358 359 /* Check #1 */ 360 if (tp->rcv_ssthresh < tp->window_clamp && 361 (int)tp->rcv_ssthresh < tcp_space(sk) && 362 !tcp_under_memory_pressure(sk)) { 363 int incr; 364 365 /* Check #2. Increase window, if skb with such overhead 366 * will fit to rcvbuf in future. 367 */ 368 if (tcp_win_from_space(skb->truesize) <= skb->len) 369 incr = 2 * tp->advmss; 370 else 371 incr = __tcp_grow_window(sk, skb); 372 373 if (incr) { 374 incr = max_t(int, incr, 2 * skb->len); 375 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 376 tp->window_clamp); 377 inet_csk(sk)->icsk_ack.quick |= 1; 378 } 379 } 380 } 381 382 /* 3. Tuning rcvbuf, when connection enters established state. */ 383 static void tcp_fixup_rcvbuf(struct sock *sk) 384 { 385 u32 mss = tcp_sk(sk)->advmss; 386 int rcvmem; 387 388 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 389 tcp_default_init_rwnd(mss); 390 391 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 392 * Allow enough cushion so that sender is not limited by our window 393 */ 394 if (sysctl_tcp_moderate_rcvbuf) 395 rcvmem <<= 2; 396 397 if (sk->sk_rcvbuf < rcvmem) 398 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 399 } 400 401 /* 4. Try to fixup all. It is made immediately after connection enters 402 * established state. 403 */ 404 void tcp_init_buffer_space(struct sock *sk) 405 { 406 struct tcp_sock *tp = tcp_sk(sk); 407 int maxwin; 408 409 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 410 tcp_fixup_rcvbuf(sk); 411 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 412 tcp_sndbuf_expand(sk); 413 414 tp->rcvq_space.space = tp->rcv_wnd; 415 tp->rcvq_space.time = tcp_time_stamp; 416 tp->rcvq_space.seq = tp->copied_seq; 417 418 maxwin = tcp_full_space(sk); 419 420 if (tp->window_clamp >= maxwin) { 421 tp->window_clamp = maxwin; 422 423 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 424 tp->window_clamp = max(maxwin - 425 (maxwin >> sysctl_tcp_app_win), 426 4 * tp->advmss); 427 } 428 429 /* Force reservation of one segment. */ 430 if (sysctl_tcp_app_win && 431 tp->window_clamp > 2 * tp->advmss && 432 tp->window_clamp + tp->advmss > maxwin) 433 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 434 435 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 436 tp->snd_cwnd_stamp = tcp_time_stamp; 437 } 438 439 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 440 static void tcp_clamp_window(struct sock *sk) 441 { 442 struct tcp_sock *tp = tcp_sk(sk); 443 struct inet_connection_sock *icsk = inet_csk(sk); 444 445 icsk->icsk_ack.quick = 0; 446 447 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 448 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 449 !tcp_under_memory_pressure(sk) && 450 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 451 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 452 sysctl_tcp_rmem[2]); 453 } 454 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 455 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 456 } 457 458 /* Initialize RCV_MSS value. 459 * RCV_MSS is an our guess about MSS used by the peer. 460 * We haven't any direct information about the MSS. 461 * It's better to underestimate the RCV_MSS rather than overestimate. 462 * Overestimations make us ACKing less frequently than needed. 463 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 464 */ 465 void tcp_initialize_rcv_mss(struct sock *sk) 466 { 467 const struct tcp_sock *tp = tcp_sk(sk); 468 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 469 470 hint = min(hint, tp->rcv_wnd / 2); 471 hint = min(hint, TCP_MSS_DEFAULT); 472 hint = max(hint, TCP_MIN_MSS); 473 474 inet_csk(sk)->icsk_ack.rcv_mss = hint; 475 } 476 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 477 478 /* Receiver "autotuning" code. 479 * 480 * The algorithm for RTT estimation w/o timestamps is based on 481 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 482 * <http://public.lanl.gov/radiant/pubs.html#DRS> 483 * 484 * More detail on this code can be found at 485 * <http://staff.psc.edu/jheffner/>, 486 * though this reference is out of date. A new paper 487 * is pending. 488 */ 489 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 490 { 491 u32 new_sample = tp->rcv_rtt_est.rtt; 492 long m = sample; 493 494 if (m == 0) 495 m = 1; 496 497 if (new_sample != 0) { 498 /* If we sample in larger samples in the non-timestamp 499 * case, we could grossly overestimate the RTT especially 500 * with chatty applications or bulk transfer apps which 501 * are stalled on filesystem I/O. 502 * 503 * Also, since we are only going for a minimum in the 504 * non-timestamp case, we do not smooth things out 505 * else with timestamps disabled convergence takes too 506 * long. 507 */ 508 if (!win_dep) { 509 m -= (new_sample >> 3); 510 new_sample += m; 511 } else { 512 m <<= 3; 513 if (m < new_sample) 514 new_sample = m; 515 } 516 } else { 517 /* No previous measure. */ 518 new_sample = m << 3; 519 } 520 521 if (tp->rcv_rtt_est.rtt != new_sample) 522 tp->rcv_rtt_est.rtt = new_sample; 523 } 524 525 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 526 { 527 if (tp->rcv_rtt_est.time == 0) 528 goto new_measure; 529 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 530 return; 531 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 532 533 new_measure: 534 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 535 tp->rcv_rtt_est.time = tcp_time_stamp; 536 } 537 538 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 539 const struct sk_buff *skb) 540 { 541 struct tcp_sock *tp = tcp_sk(sk); 542 if (tp->rx_opt.rcv_tsecr && 543 (TCP_SKB_CB(skb)->end_seq - 544 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 545 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 546 } 547 548 /* 549 * This function should be called every time data is copied to user space. 550 * It calculates the appropriate TCP receive buffer space. 551 */ 552 void tcp_rcv_space_adjust(struct sock *sk) 553 { 554 struct tcp_sock *tp = tcp_sk(sk); 555 int time; 556 int copied; 557 558 time = tcp_time_stamp - tp->rcvq_space.time; 559 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 560 return; 561 562 /* Number of bytes copied to user in last RTT */ 563 copied = tp->copied_seq - tp->rcvq_space.seq; 564 if (copied <= tp->rcvq_space.space) 565 goto new_measure; 566 567 /* A bit of theory : 568 * copied = bytes received in previous RTT, our base window 569 * To cope with packet losses, we need a 2x factor 570 * To cope with slow start, and sender growing its cwin by 100 % 571 * every RTT, we need a 4x factor, because the ACK we are sending 572 * now is for the next RTT, not the current one : 573 * <prev RTT . ><current RTT .. ><next RTT .... > 574 */ 575 576 if (sysctl_tcp_moderate_rcvbuf && 577 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 578 int rcvwin, rcvmem, rcvbuf; 579 580 /* minimal window to cope with packet losses, assuming 581 * steady state. Add some cushion because of small variations. 582 */ 583 rcvwin = (copied << 1) + 16 * tp->advmss; 584 585 /* If rate increased by 25%, 586 * assume slow start, rcvwin = 3 * copied 587 * If rate increased by 50%, 588 * assume sender can use 2x growth, rcvwin = 4 * copied 589 */ 590 if (copied >= 591 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 592 if (copied >= 593 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 594 rcvwin <<= 1; 595 else 596 rcvwin += (rcvwin >> 1); 597 } 598 599 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 600 while (tcp_win_from_space(rcvmem) < tp->advmss) 601 rcvmem += 128; 602 603 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 604 if (rcvbuf > sk->sk_rcvbuf) { 605 sk->sk_rcvbuf = rcvbuf; 606 607 /* Make the window clamp follow along. */ 608 tp->window_clamp = rcvwin; 609 } 610 } 611 tp->rcvq_space.space = copied; 612 613 new_measure: 614 tp->rcvq_space.seq = tp->copied_seq; 615 tp->rcvq_space.time = tcp_time_stamp; 616 } 617 618 /* There is something which you must keep in mind when you analyze the 619 * behavior of the tp->ato delayed ack timeout interval. When a 620 * connection starts up, we want to ack as quickly as possible. The 621 * problem is that "good" TCP's do slow start at the beginning of data 622 * transmission. The means that until we send the first few ACK's the 623 * sender will sit on his end and only queue most of his data, because 624 * he can only send snd_cwnd unacked packets at any given time. For 625 * each ACK we send, he increments snd_cwnd and transmits more of his 626 * queue. -DaveM 627 */ 628 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 629 { 630 struct tcp_sock *tp = tcp_sk(sk); 631 struct inet_connection_sock *icsk = inet_csk(sk); 632 u32 now; 633 634 inet_csk_schedule_ack(sk); 635 636 tcp_measure_rcv_mss(sk, skb); 637 638 tcp_rcv_rtt_measure(tp); 639 640 now = tcp_time_stamp; 641 642 if (!icsk->icsk_ack.ato) { 643 /* The _first_ data packet received, initialize 644 * delayed ACK engine. 645 */ 646 tcp_incr_quickack(sk); 647 icsk->icsk_ack.ato = TCP_ATO_MIN; 648 } else { 649 int m = now - icsk->icsk_ack.lrcvtime; 650 651 if (m <= TCP_ATO_MIN / 2) { 652 /* The fastest case is the first. */ 653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 654 } else if (m < icsk->icsk_ack.ato) { 655 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 656 if (icsk->icsk_ack.ato > icsk->icsk_rto) 657 icsk->icsk_ack.ato = icsk->icsk_rto; 658 } else if (m > icsk->icsk_rto) { 659 /* Too long gap. Apparently sender failed to 660 * restart window, so that we send ACKs quickly. 661 */ 662 tcp_incr_quickack(sk); 663 sk_mem_reclaim(sk); 664 } 665 } 666 icsk->icsk_ack.lrcvtime = now; 667 668 tcp_ecn_check_ce(tp, skb); 669 670 if (skb->len >= 128) 671 tcp_grow_window(sk, skb); 672 } 673 674 /* Called to compute a smoothed rtt estimate. The data fed to this 675 * routine either comes from timestamps, or from segments that were 676 * known _not_ to have been retransmitted [see Karn/Partridge 677 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 678 * piece by Van Jacobson. 679 * NOTE: the next three routines used to be one big routine. 680 * To save cycles in the RFC 1323 implementation it was better to break 681 * it up into three procedures. -- erics 682 */ 683 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 684 { 685 struct tcp_sock *tp = tcp_sk(sk); 686 long m = mrtt_us; /* RTT */ 687 u32 srtt = tp->srtt_us; 688 689 /* The following amusing code comes from Jacobson's 690 * article in SIGCOMM '88. Note that rtt and mdev 691 * are scaled versions of rtt and mean deviation. 692 * This is designed to be as fast as possible 693 * m stands for "measurement". 694 * 695 * On a 1990 paper the rto value is changed to: 696 * RTO = rtt + 4 * mdev 697 * 698 * Funny. This algorithm seems to be very broken. 699 * These formulae increase RTO, when it should be decreased, increase 700 * too slowly, when it should be increased quickly, decrease too quickly 701 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 702 * does not matter how to _calculate_ it. Seems, it was trap 703 * that VJ failed to avoid. 8) 704 */ 705 if (srtt != 0) { 706 m -= (srtt >> 3); /* m is now error in rtt est */ 707 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 708 if (m < 0) { 709 m = -m; /* m is now abs(error) */ 710 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 711 /* This is similar to one of Eifel findings. 712 * Eifel blocks mdev updates when rtt decreases. 713 * This solution is a bit different: we use finer gain 714 * for mdev in this case (alpha*beta). 715 * Like Eifel it also prevents growth of rto, 716 * but also it limits too fast rto decreases, 717 * happening in pure Eifel. 718 */ 719 if (m > 0) 720 m >>= 3; 721 } else { 722 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 723 } 724 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 725 if (tp->mdev_us > tp->mdev_max_us) { 726 tp->mdev_max_us = tp->mdev_us; 727 if (tp->mdev_max_us > tp->rttvar_us) 728 tp->rttvar_us = tp->mdev_max_us; 729 } 730 if (after(tp->snd_una, tp->rtt_seq)) { 731 if (tp->mdev_max_us < tp->rttvar_us) 732 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 733 tp->rtt_seq = tp->snd_nxt; 734 tp->mdev_max_us = tcp_rto_min_us(sk); 735 } 736 } else { 737 /* no previous measure. */ 738 srtt = m << 3; /* take the measured time to be rtt */ 739 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 740 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 741 tp->mdev_max_us = tp->rttvar_us; 742 tp->rtt_seq = tp->snd_nxt; 743 } 744 tp->srtt_us = max(1U, srtt); 745 } 746 747 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 748 * Note: TCP stack does not yet implement pacing. 749 * FQ packet scheduler can be used to implement cheap but effective 750 * TCP pacing, to smooth the burst on large writes when packets 751 * in flight is significantly lower than cwnd (or rwin) 752 */ 753 static void tcp_update_pacing_rate(struct sock *sk) 754 { 755 const struct tcp_sock *tp = tcp_sk(sk); 756 u64 rate; 757 758 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 759 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3); 760 761 rate *= max(tp->snd_cwnd, tp->packets_out); 762 763 if (likely(tp->srtt_us)) 764 do_div(rate, tp->srtt_us); 765 766 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 767 * without any lock. We want to make sure compiler wont store 768 * intermediate values in this location. 769 */ 770 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 771 sk->sk_max_pacing_rate); 772 } 773 774 /* Calculate rto without backoff. This is the second half of Van Jacobson's 775 * routine referred to above. 776 */ 777 static void tcp_set_rto(struct sock *sk) 778 { 779 const struct tcp_sock *tp = tcp_sk(sk); 780 /* Old crap is replaced with new one. 8) 781 * 782 * More seriously: 783 * 1. If rtt variance happened to be less 50msec, it is hallucination. 784 * It cannot be less due to utterly erratic ACK generation made 785 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 786 * to do with delayed acks, because at cwnd>2 true delack timeout 787 * is invisible. Actually, Linux-2.4 also generates erratic 788 * ACKs in some circumstances. 789 */ 790 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 791 792 /* 2. Fixups made earlier cannot be right. 793 * If we do not estimate RTO correctly without them, 794 * all the algo is pure shit and should be replaced 795 * with correct one. It is exactly, which we pretend to do. 796 */ 797 798 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 799 * guarantees that rto is higher. 800 */ 801 tcp_bound_rto(sk); 802 } 803 804 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 805 { 806 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 807 808 if (!cwnd) 809 cwnd = TCP_INIT_CWND; 810 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 811 } 812 813 /* 814 * Packet counting of FACK is based on in-order assumptions, therefore TCP 815 * disables it when reordering is detected 816 */ 817 void tcp_disable_fack(struct tcp_sock *tp) 818 { 819 /* RFC3517 uses different metric in lost marker => reset on change */ 820 if (tcp_is_fack(tp)) 821 tp->lost_skb_hint = NULL; 822 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 823 } 824 825 /* Take a notice that peer is sending D-SACKs */ 826 static void tcp_dsack_seen(struct tcp_sock *tp) 827 { 828 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 829 } 830 831 static void tcp_update_reordering(struct sock *sk, const int metric, 832 const int ts) 833 { 834 struct tcp_sock *tp = tcp_sk(sk); 835 if (metric > tp->reordering) { 836 int mib_idx; 837 838 tp->reordering = min(sysctl_tcp_max_reordering, metric); 839 840 /* This exciting event is worth to be remembered. 8) */ 841 if (ts) 842 mib_idx = LINUX_MIB_TCPTSREORDER; 843 else if (tcp_is_reno(tp)) 844 mib_idx = LINUX_MIB_TCPRENOREORDER; 845 else if (tcp_is_fack(tp)) 846 mib_idx = LINUX_MIB_TCPFACKREORDER; 847 else 848 mib_idx = LINUX_MIB_TCPSACKREORDER; 849 850 NET_INC_STATS_BH(sock_net(sk), mib_idx); 851 #if FASTRETRANS_DEBUG > 1 852 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 854 tp->reordering, 855 tp->fackets_out, 856 tp->sacked_out, 857 tp->undo_marker ? tp->undo_retrans : 0); 858 #endif 859 tcp_disable_fack(tp); 860 } 861 862 if (metric > 0) 863 tcp_disable_early_retrans(tp); 864 } 865 866 /* This must be called before lost_out is incremented */ 867 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 868 { 869 if (!tp->retransmit_skb_hint || 870 before(TCP_SKB_CB(skb)->seq, 871 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 872 tp->retransmit_skb_hint = skb; 873 874 if (!tp->lost_out || 875 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 877 } 878 879 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 880 { 881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 882 tcp_verify_retransmit_hint(tp, skb); 883 884 tp->lost_out += tcp_skb_pcount(skb); 885 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 886 } 887 } 888 889 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 890 struct sk_buff *skb) 891 { 892 tcp_verify_retransmit_hint(tp, skb); 893 894 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 895 tp->lost_out += tcp_skb_pcount(skb); 896 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 897 } 898 } 899 900 /* This procedure tags the retransmission queue when SACKs arrive. 901 * 902 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 903 * Packets in queue with these bits set are counted in variables 904 * sacked_out, retrans_out and lost_out, correspondingly. 905 * 906 * Valid combinations are: 907 * Tag InFlight Description 908 * 0 1 - orig segment is in flight. 909 * S 0 - nothing flies, orig reached receiver. 910 * L 0 - nothing flies, orig lost by net. 911 * R 2 - both orig and retransmit are in flight. 912 * L|R 1 - orig is lost, retransmit is in flight. 913 * S|R 1 - orig reached receiver, retrans is still in flight. 914 * (L|S|R is logically valid, it could occur when L|R is sacked, 915 * but it is equivalent to plain S and code short-curcuits it to S. 916 * L|S is logically invalid, it would mean -1 packet in flight 8)) 917 * 918 * These 6 states form finite state machine, controlled by the following events: 919 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 920 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 921 * 3. Loss detection event of two flavors: 922 * A. Scoreboard estimator decided the packet is lost. 923 * A'. Reno "three dupacks" marks head of queue lost. 924 * A''. Its FACK modification, head until snd.fack is lost. 925 * B. SACK arrives sacking SND.NXT at the moment, when the 926 * segment was retransmitted. 927 * 4. D-SACK added new rule: D-SACK changes any tag to S. 928 * 929 * It is pleasant to note, that state diagram turns out to be commutative, 930 * so that we are allowed not to be bothered by order of our actions, 931 * when multiple events arrive simultaneously. (see the function below). 932 * 933 * Reordering detection. 934 * -------------------- 935 * Reordering metric is maximal distance, which a packet can be displaced 936 * in packet stream. With SACKs we can estimate it: 937 * 938 * 1. SACK fills old hole and the corresponding segment was not 939 * ever retransmitted -> reordering. Alas, we cannot use it 940 * when segment was retransmitted. 941 * 2. The last flaw is solved with D-SACK. D-SACK arrives 942 * for retransmitted and already SACKed segment -> reordering.. 943 * Both of these heuristics are not used in Loss state, when we cannot 944 * account for retransmits accurately. 945 * 946 * SACK block validation. 947 * ---------------------- 948 * 949 * SACK block range validation checks that the received SACK block fits to 950 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 951 * Note that SND.UNA is not included to the range though being valid because 952 * it means that the receiver is rather inconsistent with itself reporting 953 * SACK reneging when it should advance SND.UNA. Such SACK block this is 954 * perfectly valid, however, in light of RFC2018 which explicitly states 955 * that "SACK block MUST reflect the newest segment. Even if the newest 956 * segment is going to be discarded ...", not that it looks very clever 957 * in case of head skb. Due to potentional receiver driven attacks, we 958 * choose to avoid immediate execution of a walk in write queue due to 959 * reneging and defer head skb's loss recovery to standard loss recovery 960 * procedure that will eventually trigger (nothing forbids us doing this). 961 * 962 * Implements also blockage to start_seq wrap-around. Problem lies in the 963 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 964 * there's no guarantee that it will be before snd_nxt (n). The problem 965 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 966 * wrap (s_w): 967 * 968 * <- outs wnd -> <- wrapzone -> 969 * u e n u_w e_w s n_w 970 * | | | | | | | 971 * |<------------+------+----- TCP seqno space --------------+---------->| 972 * ...-- <2^31 ->| |<--------... 973 * ...---- >2^31 ------>| |<--------... 974 * 975 * Current code wouldn't be vulnerable but it's better still to discard such 976 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 977 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 978 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 979 * equal to the ideal case (infinite seqno space without wrap caused issues). 980 * 981 * With D-SACK the lower bound is extended to cover sequence space below 982 * SND.UNA down to undo_marker, which is the last point of interest. Yet 983 * again, D-SACK block must not to go across snd_una (for the same reason as 984 * for the normal SACK blocks, explained above). But there all simplicity 985 * ends, TCP might receive valid D-SACKs below that. As long as they reside 986 * fully below undo_marker they do not affect behavior in anyway and can 987 * therefore be safely ignored. In rare cases (which are more or less 988 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 989 * fragmentation and packet reordering past skb's retransmission. To consider 990 * them correctly, the acceptable range must be extended even more though 991 * the exact amount is rather hard to quantify. However, tp->max_window can 992 * be used as an exaggerated estimate. 993 */ 994 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 995 u32 start_seq, u32 end_seq) 996 { 997 /* Too far in future, or reversed (interpretation is ambiguous) */ 998 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 999 return false; 1000 1001 /* Nasty start_seq wrap-around check (see comments above) */ 1002 if (!before(start_seq, tp->snd_nxt)) 1003 return false; 1004 1005 /* In outstanding window? ...This is valid exit for D-SACKs too. 1006 * start_seq == snd_una is non-sensical (see comments above) 1007 */ 1008 if (after(start_seq, tp->snd_una)) 1009 return true; 1010 1011 if (!is_dsack || !tp->undo_marker) 1012 return false; 1013 1014 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1015 if (after(end_seq, tp->snd_una)) 1016 return false; 1017 1018 if (!before(start_seq, tp->undo_marker)) 1019 return true; 1020 1021 /* Too old */ 1022 if (!after(end_seq, tp->undo_marker)) 1023 return false; 1024 1025 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1026 * start_seq < undo_marker and end_seq >= undo_marker. 1027 */ 1028 return !before(start_seq, end_seq - tp->max_window); 1029 } 1030 1031 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1032 * Event "B". Later note: FACK people cheated me again 8), we have to account 1033 * for reordering! Ugly, but should help. 1034 * 1035 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1036 * less than what is now known to be received by the other end (derived from 1037 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1038 * retransmitted skbs to avoid some costly processing per ACKs. 1039 */ 1040 static void tcp_mark_lost_retrans(struct sock *sk) 1041 { 1042 const struct inet_connection_sock *icsk = inet_csk(sk); 1043 struct tcp_sock *tp = tcp_sk(sk); 1044 struct sk_buff *skb; 1045 int cnt = 0; 1046 u32 new_low_seq = tp->snd_nxt; 1047 u32 received_upto = tcp_highest_sack_seq(tp); 1048 1049 if (!tcp_is_fack(tp) || !tp->retrans_out || 1050 !after(received_upto, tp->lost_retrans_low) || 1051 icsk->icsk_ca_state != TCP_CA_Recovery) 1052 return; 1053 1054 tcp_for_write_queue(skb, sk) { 1055 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1056 1057 if (skb == tcp_send_head(sk)) 1058 break; 1059 if (cnt == tp->retrans_out) 1060 break; 1061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1062 continue; 1063 1064 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1065 continue; 1066 1067 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1068 * constraint here (see above) but figuring out that at 1069 * least tp->reordering SACK blocks reside between ack_seq 1070 * and received_upto is not easy task to do cheaply with 1071 * the available datastructures. 1072 * 1073 * Whether FACK should check here for tp->reordering segs 1074 * in-between one could argue for either way (it would be 1075 * rather simple to implement as we could count fack_count 1076 * during the walk and do tp->fackets_out - fack_count). 1077 */ 1078 if (after(received_upto, ack_seq)) { 1079 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1080 tp->retrans_out -= tcp_skb_pcount(skb); 1081 1082 tcp_skb_mark_lost_uncond_verify(tp, skb); 1083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1084 } else { 1085 if (before(ack_seq, new_low_seq)) 1086 new_low_seq = ack_seq; 1087 cnt += tcp_skb_pcount(skb); 1088 } 1089 } 1090 1091 if (tp->retrans_out) 1092 tp->lost_retrans_low = new_low_seq; 1093 } 1094 1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1096 struct tcp_sack_block_wire *sp, int num_sacks, 1097 u32 prior_snd_una) 1098 { 1099 struct tcp_sock *tp = tcp_sk(sk); 1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1102 bool dup_sack = false; 1103 1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1105 dup_sack = true; 1106 tcp_dsack_seen(tp); 1107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1108 } else if (num_sacks > 1) { 1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1111 1112 if (!after(end_seq_0, end_seq_1) && 1113 !before(start_seq_0, start_seq_1)) { 1114 dup_sack = true; 1115 tcp_dsack_seen(tp); 1116 NET_INC_STATS_BH(sock_net(sk), 1117 LINUX_MIB_TCPDSACKOFORECV); 1118 } 1119 } 1120 1121 /* D-SACK for already forgotten data... Do dumb counting. */ 1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1123 !after(end_seq_0, prior_snd_una) && 1124 after(end_seq_0, tp->undo_marker)) 1125 tp->undo_retrans--; 1126 1127 return dup_sack; 1128 } 1129 1130 struct tcp_sacktag_state { 1131 int reord; 1132 int fack_count; 1133 /* Timestamps for earliest and latest never-retransmitted segment 1134 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1135 * but congestion control should still get an accurate delay signal. 1136 */ 1137 struct skb_mstamp first_sackt; 1138 struct skb_mstamp last_sackt; 1139 int flag; 1140 }; 1141 1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1143 * the incoming SACK may not exactly match but we can find smaller MSS 1144 * aligned portion of it that matches. Therefore we might need to fragment 1145 * which may fail and creates some hassle (caller must handle error case 1146 * returns). 1147 * 1148 * FIXME: this could be merged to shift decision code 1149 */ 1150 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1151 u32 start_seq, u32 end_seq) 1152 { 1153 int err; 1154 bool in_sack; 1155 unsigned int pkt_len; 1156 unsigned int mss; 1157 1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1159 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1160 1161 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1162 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1163 mss = tcp_skb_mss(skb); 1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1165 1166 if (!in_sack) { 1167 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1168 if (pkt_len < mss) 1169 pkt_len = mss; 1170 } else { 1171 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1172 if (pkt_len < mss) 1173 return -EINVAL; 1174 } 1175 1176 /* Round if necessary so that SACKs cover only full MSSes 1177 * and/or the remaining small portion (if present) 1178 */ 1179 if (pkt_len > mss) { 1180 unsigned int new_len = (pkt_len / mss) * mss; 1181 if (!in_sack && new_len < pkt_len) { 1182 new_len += mss; 1183 if (new_len >= skb->len) 1184 return 0; 1185 } 1186 pkt_len = new_len; 1187 } 1188 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1189 if (err < 0) 1190 return err; 1191 } 1192 1193 return in_sack; 1194 } 1195 1196 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1197 static u8 tcp_sacktag_one(struct sock *sk, 1198 struct tcp_sacktag_state *state, u8 sacked, 1199 u32 start_seq, u32 end_seq, 1200 int dup_sack, int pcount, 1201 const struct skb_mstamp *xmit_time) 1202 { 1203 struct tcp_sock *tp = tcp_sk(sk); 1204 int fack_count = state->fack_count; 1205 1206 /* Account D-SACK for retransmitted packet. */ 1207 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1208 if (tp->undo_marker && tp->undo_retrans > 0 && 1209 after(end_seq, tp->undo_marker)) 1210 tp->undo_retrans--; 1211 if (sacked & TCPCB_SACKED_ACKED) 1212 state->reord = min(fack_count, state->reord); 1213 } 1214 1215 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1216 if (!after(end_seq, tp->snd_una)) 1217 return sacked; 1218 1219 if (!(sacked & TCPCB_SACKED_ACKED)) { 1220 if (sacked & TCPCB_SACKED_RETRANS) { 1221 /* If the segment is not tagged as lost, 1222 * we do not clear RETRANS, believing 1223 * that retransmission is still in flight. 1224 */ 1225 if (sacked & TCPCB_LOST) { 1226 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1227 tp->lost_out -= pcount; 1228 tp->retrans_out -= pcount; 1229 } 1230 } else { 1231 if (!(sacked & TCPCB_RETRANS)) { 1232 /* New sack for not retransmitted frame, 1233 * which was in hole. It is reordering. 1234 */ 1235 if (before(start_seq, 1236 tcp_highest_sack_seq(tp))) 1237 state->reord = min(fack_count, 1238 state->reord); 1239 if (!after(end_seq, tp->high_seq)) 1240 state->flag |= FLAG_ORIG_SACK_ACKED; 1241 if (state->first_sackt.v64 == 0) 1242 state->first_sackt = *xmit_time; 1243 state->last_sackt = *xmit_time; 1244 } 1245 1246 if (sacked & TCPCB_LOST) { 1247 sacked &= ~TCPCB_LOST; 1248 tp->lost_out -= pcount; 1249 } 1250 } 1251 1252 sacked |= TCPCB_SACKED_ACKED; 1253 state->flag |= FLAG_DATA_SACKED; 1254 tp->sacked_out += pcount; 1255 1256 fack_count += pcount; 1257 1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1259 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1261 tp->lost_cnt_hint += pcount; 1262 1263 if (fack_count > tp->fackets_out) 1264 tp->fackets_out = fack_count; 1265 } 1266 1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1268 * frames and clear it. undo_retrans is decreased above, L|R frames 1269 * are accounted above as well. 1270 */ 1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1272 sacked &= ~TCPCB_SACKED_RETRANS; 1273 tp->retrans_out -= pcount; 1274 } 1275 1276 return sacked; 1277 } 1278 1279 /* Shift newly-SACKed bytes from this skb to the immediately previous 1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1281 */ 1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1283 struct tcp_sacktag_state *state, 1284 unsigned int pcount, int shifted, int mss, 1285 bool dup_sack) 1286 { 1287 struct tcp_sock *tp = tcp_sk(sk); 1288 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1291 1292 BUG_ON(!pcount); 1293 1294 /* Adjust counters and hints for the newly sacked sequence 1295 * range but discard the return value since prev is already 1296 * marked. We must tag the range first because the seq 1297 * advancement below implicitly advances 1298 * tcp_highest_sack_seq() when skb is highest_sack. 1299 */ 1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1301 start_seq, end_seq, dup_sack, pcount, 1302 &skb->skb_mstamp); 1303 1304 if (skb == tp->lost_skb_hint) 1305 tp->lost_cnt_hint += pcount; 1306 1307 TCP_SKB_CB(prev)->end_seq += shifted; 1308 TCP_SKB_CB(skb)->seq += shifted; 1309 1310 tcp_skb_pcount_add(prev, pcount); 1311 BUG_ON(tcp_skb_pcount(skb) < pcount); 1312 tcp_skb_pcount_add(skb, -pcount); 1313 1314 /* When we're adding to gso_segs == 1, gso_size will be zero, 1315 * in theory this shouldn't be necessary but as long as DSACK 1316 * code can come after this skb later on it's better to keep 1317 * setting gso_size to something. 1318 */ 1319 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1320 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1321 1322 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1323 if (tcp_skb_pcount(skb) <= 1) 1324 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1325 1326 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1327 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1328 1329 if (skb->len > 0) { 1330 BUG_ON(!tcp_skb_pcount(skb)); 1331 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1332 return false; 1333 } 1334 1335 /* Whole SKB was eaten :-) */ 1336 1337 if (skb == tp->retransmit_skb_hint) 1338 tp->retransmit_skb_hint = prev; 1339 if (skb == tp->lost_skb_hint) { 1340 tp->lost_skb_hint = prev; 1341 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1342 } 1343 1344 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1345 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1346 TCP_SKB_CB(prev)->end_seq++; 1347 1348 if (skb == tcp_highest_sack(sk)) 1349 tcp_advance_highest_sack(sk, skb); 1350 1351 tcp_unlink_write_queue(skb, sk); 1352 sk_wmem_free_skb(sk, skb); 1353 1354 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1355 1356 return true; 1357 } 1358 1359 /* I wish gso_size would have a bit more sane initialization than 1360 * something-or-zero which complicates things 1361 */ 1362 static int tcp_skb_seglen(const struct sk_buff *skb) 1363 { 1364 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1365 } 1366 1367 /* Shifting pages past head area doesn't work */ 1368 static int skb_can_shift(const struct sk_buff *skb) 1369 { 1370 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1371 } 1372 1373 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1374 * skb. 1375 */ 1376 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1377 struct tcp_sacktag_state *state, 1378 u32 start_seq, u32 end_seq, 1379 bool dup_sack) 1380 { 1381 struct tcp_sock *tp = tcp_sk(sk); 1382 struct sk_buff *prev; 1383 int mss; 1384 int pcount = 0; 1385 int len; 1386 int in_sack; 1387 1388 if (!sk_can_gso(sk)) 1389 goto fallback; 1390 1391 /* Normally R but no L won't result in plain S */ 1392 if (!dup_sack && 1393 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1394 goto fallback; 1395 if (!skb_can_shift(skb)) 1396 goto fallback; 1397 /* This frame is about to be dropped (was ACKed). */ 1398 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1399 goto fallback; 1400 1401 /* Can only happen with delayed DSACK + discard craziness */ 1402 if (unlikely(skb == tcp_write_queue_head(sk))) 1403 goto fallback; 1404 prev = tcp_write_queue_prev(sk, skb); 1405 1406 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1407 goto fallback; 1408 1409 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1410 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1411 1412 if (in_sack) { 1413 len = skb->len; 1414 pcount = tcp_skb_pcount(skb); 1415 mss = tcp_skb_seglen(skb); 1416 1417 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1418 * drop this restriction as unnecessary 1419 */ 1420 if (mss != tcp_skb_seglen(prev)) 1421 goto fallback; 1422 } else { 1423 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1424 goto noop; 1425 /* CHECKME: This is non-MSS split case only?, this will 1426 * cause skipped skbs due to advancing loop btw, original 1427 * has that feature too 1428 */ 1429 if (tcp_skb_pcount(skb) <= 1) 1430 goto noop; 1431 1432 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1433 if (!in_sack) { 1434 /* TODO: head merge to next could be attempted here 1435 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1436 * though it might not be worth of the additional hassle 1437 * 1438 * ...we can probably just fallback to what was done 1439 * previously. We could try merging non-SACKed ones 1440 * as well but it probably isn't going to buy off 1441 * because later SACKs might again split them, and 1442 * it would make skb timestamp tracking considerably 1443 * harder problem. 1444 */ 1445 goto fallback; 1446 } 1447 1448 len = end_seq - TCP_SKB_CB(skb)->seq; 1449 BUG_ON(len < 0); 1450 BUG_ON(len > skb->len); 1451 1452 /* MSS boundaries should be honoured or else pcount will 1453 * severely break even though it makes things bit trickier. 1454 * Optimize common case to avoid most of the divides 1455 */ 1456 mss = tcp_skb_mss(skb); 1457 1458 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1459 * drop this restriction as unnecessary 1460 */ 1461 if (mss != tcp_skb_seglen(prev)) 1462 goto fallback; 1463 1464 if (len == mss) { 1465 pcount = 1; 1466 } else if (len < mss) { 1467 goto noop; 1468 } else { 1469 pcount = len / mss; 1470 len = pcount * mss; 1471 } 1472 } 1473 1474 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1475 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1476 goto fallback; 1477 1478 if (!skb_shift(prev, skb, len)) 1479 goto fallback; 1480 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1481 goto out; 1482 1483 /* Hole filled allows collapsing with the next as well, this is very 1484 * useful when hole on every nth skb pattern happens 1485 */ 1486 if (prev == tcp_write_queue_tail(sk)) 1487 goto out; 1488 skb = tcp_write_queue_next(sk, prev); 1489 1490 if (!skb_can_shift(skb) || 1491 (skb == tcp_send_head(sk)) || 1492 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1493 (mss != tcp_skb_seglen(skb))) 1494 goto out; 1495 1496 len = skb->len; 1497 if (skb_shift(prev, skb, len)) { 1498 pcount += tcp_skb_pcount(skb); 1499 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1500 } 1501 1502 out: 1503 state->fack_count += pcount; 1504 return prev; 1505 1506 noop: 1507 return skb; 1508 1509 fallback: 1510 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1511 return NULL; 1512 } 1513 1514 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1515 struct tcp_sack_block *next_dup, 1516 struct tcp_sacktag_state *state, 1517 u32 start_seq, u32 end_seq, 1518 bool dup_sack_in) 1519 { 1520 struct tcp_sock *tp = tcp_sk(sk); 1521 struct sk_buff *tmp; 1522 1523 tcp_for_write_queue_from(skb, sk) { 1524 int in_sack = 0; 1525 bool dup_sack = dup_sack_in; 1526 1527 if (skb == tcp_send_head(sk)) 1528 break; 1529 1530 /* queue is in-order => we can short-circuit the walk early */ 1531 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1532 break; 1533 1534 if (next_dup && 1535 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1536 in_sack = tcp_match_skb_to_sack(sk, skb, 1537 next_dup->start_seq, 1538 next_dup->end_seq); 1539 if (in_sack > 0) 1540 dup_sack = true; 1541 } 1542 1543 /* skb reference here is a bit tricky to get right, since 1544 * shifting can eat and free both this skb and the next, 1545 * so not even _safe variant of the loop is enough. 1546 */ 1547 if (in_sack <= 0) { 1548 tmp = tcp_shift_skb_data(sk, skb, state, 1549 start_seq, end_seq, dup_sack); 1550 if (tmp) { 1551 if (tmp != skb) { 1552 skb = tmp; 1553 continue; 1554 } 1555 1556 in_sack = 0; 1557 } else { 1558 in_sack = tcp_match_skb_to_sack(sk, skb, 1559 start_seq, 1560 end_seq); 1561 } 1562 } 1563 1564 if (unlikely(in_sack < 0)) 1565 break; 1566 1567 if (in_sack) { 1568 TCP_SKB_CB(skb)->sacked = 1569 tcp_sacktag_one(sk, 1570 state, 1571 TCP_SKB_CB(skb)->sacked, 1572 TCP_SKB_CB(skb)->seq, 1573 TCP_SKB_CB(skb)->end_seq, 1574 dup_sack, 1575 tcp_skb_pcount(skb), 1576 &skb->skb_mstamp); 1577 1578 if (!before(TCP_SKB_CB(skb)->seq, 1579 tcp_highest_sack_seq(tp))) 1580 tcp_advance_highest_sack(sk, skb); 1581 } 1582 1583 state->fack_count += tcp_skb_pcount(skb); 1584 } 1585 return skb; 1586 } 1587 1588 /* Avoid all extra work that is being done by sacktag while walking in 1589 * a normal way 1590 */ 1591 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1592 struct tcp_sacktag_state *state, 1593 u32 skip_to_seq) 1594 { 1595 tcp_for_write_queue_from(skb, sk) { 1596 if (skb == tcp_send_head(sk)) 1597 break; 1598 1599 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1600 break; 1601 1602 state->fack_count += tcp_skb_pcount(skb); 1603 } 1604 return skb; 1605 } 1606 1607 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1608 struct sock *sk, 1609 struct tcp_sack_block *next_dup, 1610 struct tcp_sacktag_state *state, 1611 u32 skip_to_seq) 1612 { 1613 if (!next_dup) 1614 return skb; 1615 1616 if (before(next_dup->start_seq, skip_to_seq)) { 1617 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1618 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1619 next_dup->start_seq, next_dup->end_seq, 1620 1); 1621 } 1622 1623 return skb; 1624 } 1625 1626 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1627 { 1628 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1629 } 1630 1631 static int 1632 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1633 u32 prior_snd_una, struct tcp_sacktag_state *state) 1634 { 1635 struct tcp_sock *tp = tcp_sk(sk); 1636 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1637 TCP_SKB_CB(ack_skb)->sacked); 1638 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1639 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1640 struct tcp_sack_block *cache; 1641 struct sk_buff *skb; 1642 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1643 int used_sacks; 1644 bool found_dup_sack = false; 1645 int i, j; 1646 int first_sack_index; 1647 1648 state->flag = 0; 1649 state->reord = tp->packets_out; 1650 1651 if (!tp->sacked_out) { 1652 if (WARN_ON(tp->fackets_out)) 1653 tp->fackets_out = 0; 1654 tcp_highest_sack_reset(sk); 1655 } 1656 1657 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1658 num_sacks, prior_snd_una); 1659 if (found_dup_sack) 1660 state->flag |= FLAG_DSACKING_ACK; 1661 1662 /* Eliminate too old ACKs, but take into 1663 * account more or less fresh ones, they can 1664 * contain valid SACK info. 1665 */ 1666 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1667 return 0; 1668 1669 if (!tp->packets_out) 1670 goto out; 1671 1672 used_sacks = 0; 1673 first_sack_index = 0; 1674 for (i = 0; i < num_sacks; i++) { 1675 bool dup_sack = !i && found_dup_sack; 1676 1677 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1678 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1679 1680 if (!tcp_is_sackblock_valid(tp, dup_sack, 1681 sp[used_sacks].start_seq, 1682 sp[used_sacks].end_seq)) { 1683 int mib_idx; 1684 1685 if (dup_sack) { 1686 if (!tp->undo_marker) 1687 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1688 else 1689 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1690 } else { 1691 /* Don't count olds caused by ACK reordering */ 1692 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1693 !after(sp[used_sacks].end_seq, tp->snd_una)) 1694 continue; 1695 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1696 } 1697 1698 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1699 if (i == 0) 1700 first_sack_index = -1; 1701 continue; 1702 } 1703 1704 /* Ignore very old stuff early */ 1705 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1706 continue; 1707 1708 used_sacks++; 1709 } 1710 1711 /* order SACK blocks to allow in order walk of the retrans queue */ 1712 for (i = used_sacks - 1; i > 0; i--) { 1713 for (j = 0; j < i; j++) { 1714 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1715 swap(sp[j], sp[j + 1]); 1716 1717 /* Track where the first SACK block goes to */ 1718 if (j == first_sack_index) 1719 first_sack_index = j + 1; 1720 } 1721 } 1722 } 1723 1724 skb = tcp_write_queue_head(sk); 1725 state->fack_count = 0; 1726 i = 0; 1727 1728 if (!tp->sacked_out) { 1729 /* It's already past, so skip checking against it */ 1730 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1731 } else { 1732 cache = tp->recv_sack_cache; 1733 /* Skip empty blocks in at head of the cache */ 1734 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1735 !cache->end_seq) 1736 cache++; 1737 } 1738 1739 while (i < used_sacks) { 1740 u32 start_seq = sp[i].start_seq; 1741 u32 end_seq = sp[i].end_seq; 1742 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1743 struct tcp_sack_block *next_dup = NULL; 1744 1745 if (found_dup_sack && ((i + 1) == first_sack_index)) 1746 next_dup = &sp[i + 1]; 1747 1748 /* Skip too early cached blocks */ 1749 while (tcp_sack_cache_ok(tp, cache) && 1750 !before(start_seq, cache->end_seq)) 1751 cache++; 1752 1753 /* Can skip some work by looking recv_sack_cache? */ 1754 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1755 after(end_seq, cache->start_seq)) { 1756 1757 /* Head todo? */ 1758 if (before(start_seq, cache->start_seq)) { 1759 skb = tcp_sacktag_skip(skb, sk, state, 1760 start_seq); 1761 skb = tcp_sacktag_walk(skb, sk, next_dup, 1762 state, 1763 start_seq, 1764 cache->start_seq, 1765 dup_sack); 1766 } 1767 1768 /* Rest of the block already fully processed? */ 1769 if (!after(end_seq, cache->end_seq)) 1770 goto advance_sp; 1771 1772 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1773 state, 1774 cache->end_seq); 1775 1776 /* ...tail remains todo... */ 1777 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1778 /* ...but better entrypoint exists! */ 1779 skb = tcp_highest_sack(sk); 1780 if (!skb) 1781 break; 1782 state->fack_count = tp->fackets_out; 1783 cache++; 1784 goto walk; 1785 } 1786 1787 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1788 /* Check overlap against next cached too (past this one already) */ 1789 cache++; 1790 continue; 1791 } 1792 1793 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1794 skb = tcp_highest_sack(sk); 1795 if (!skb) 1796 break; 1797 state->fack_count = tp->fackets_out; 1798 } 1799 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1800 1801 walk: 1802 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1803 start_seq, end_seq, dup_sack); 1804 1805 advance_sp: 1806 i++; 1807 } 1808 1809 /* Clear the head of the cache sack blocks so we can skip it next time */ 1810 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1811 tp->recv_sack_cache[i].start_seq = 0; 1812 tp->recv_sack_cache[i].end_seq = 0; 1813 } 1814 for (j = 0; j < used_sacks; j++) 1815 tp->recv_sack_cache[i++] = sp[j]; 1816 1817 if ((state->reord < tp->fackets_out) && 1818 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1819 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1820 1821 tcp_mark_lost_retrans(sk); 1822 tcp_verify_left_out(tp); 1823 out: 1824 1825 #if FASTRETRANS_DEBUG > 0 1826 WARN_ON((int)tp->sacked_out < 0); 1827 WARN_ON((int)tp->lost_out < 0); 1828 WARN_ON((int)tp->retrans_out < 0); 1829 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1830 #endif 1831 return state->flag; 1832 } 1833 1834 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1835 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1836 */ 1837 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1838 { 1839 u32 holes; 1840 1841 holes = max(tp->lost_out, 1U); 1842 holes = min(holes, tp->packets_out); 1843 1844 if ((tp->sacked_out + holes) > tp->packets_out) { 1845 tp->sacked_out = tp->packets_out - holes; 1846 return true; 1847 } 1848 return false; 1849 } 1850 1851 /* If we receive more dupacks than we expected counting segments 1852 * in assumption of absent reordering, interpret this as reordering. 1853 * The only another reason could be bug in receiver TCP. 1854 */ 1855 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1856 { 1857 struct tcp_sock *tp = tcp_sk(sk); 1858 if (tcp_limit_reno_sacked(tp)) 1859 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1860 } 1861 1862 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1863 1864 static void tcp_add_reno_sack(struct sock *sk) 1865 { 1866 struct tcp_sock *tp = tcp_sk(sk); 1867 tp->sacked_out++; 1868 tcp_check_reno_reordering(sk, 0); 1869 tcp_verify_left_out(tp); 1870 } 1871 1872 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1873 1874 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1875 { 1876 struct tcp_sock *tp = tcp_sk(sk); 1877 1878 if (acked > 0) { 1879 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1880 if (acked - 1 >= tp->sacked_out) 1881 tp->sacked_out = 0; 1882 else 1883 tp->sacked_out -= acked - 1; 1884 } 1885 tcp_check_reno_reordering(sk, acked); 1886 tcp_verify_left_out(tp); 1887 } 1888 1889 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1890 { 1891 tp->sacked_out = 0; 1892 } 1893 1894 void tcp_clear_retrans(struct tcp_sock *tp) 1895 { 1896 tp->retrans_out = 0; 1897 tp->lost_out = 0; 1898 tp->undo_marker = 0; 1899 tp->undo_retrans = -1; 1900 tp->fackets_out = 0; 1901 tp->sacked_out = 0; 1902 } 1903 1904 static inline void tcp_init_undo(struct tcp_sock *tp) 1905 { 1906 tp->undo_marker = tp->snd_una; 1907 /* Retransmission still in flight may cause DSACKs later. */ 1908 tp->undo_retrans = tp->retrans_out ? : -1; 1909 } 1910 1911 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1912 * and reset tags completely, otherwise preserve SACKs. If receiver 1913 * dropped its ofo queue, we will know this due to reneging detection. 1914 */ 1915 void tcp_enter_loss(struct sock *sk) 1916 { 1917 const struct inet_connection_sock *icsk = inet_csk(sk); 1918 struct tcp_sock *tp = tcp_sk(sk); 1919 struct sk_buff *skb; 1920 bool new_recovery = false; 1921 bool is_reneg; /* is receiver reneging on SACKs? */ 1922 1923 /* Reduce ssthresh if it has not yet been made inside this window. */ 1924 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1925 !after(tp->high_seq, tp->snd_una) || 1926 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1927 new_recovery = true; 1928 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1929 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1930 tcp_ca_event(sk, CA_EVENT_LOSS); 1931 tcp_init_undo(tp); 1932 } 1933 tp->snd_cwnd = 1; 1934 tp->snd_cwnd_cnt = 0; 1935 tp->snd_cwnd_stamp = tcp_time_stamp; 1936 1937 tp->retrans_out = 0; 1938 tp->lost_out = 0; 1939 1940 if (tcp_is_reno(tp)) 1941 tcp_reset_reno_sack(tp); 1942 1943 skb = tcp_write_queue_head(sk); 1944 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1945 if (is_reneg) { 1946 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1947 tp->sacked_out = 0; 1948 tp->fackets_out = 0; 1949 } 1950 tcp_clear_all_retrans_hints(tp); 1951 1952 tcp_for_write_queue(skb, sk) { 1953 if (skb == tcp_send_head(sk)) 1954 break; 1955 1956 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1957 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1958 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1959 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1960 tp->lost_out += tcp_skb_pcount(skb); 1961 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1962 } 1963 } 1964 tcp_verify_left_out(tp); 1965 1966 /* Timeout in disordered state after receiving substantial DUPACKs 1967 * suggests that the degree of reordering is over-estimated. 1968 */ 1969 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1970 tp->sacked_out >= sysctl_tcp_reordering) 1971 tp->reordering = min_t(unsigned int, tp->reordering, 1972 sysctl_tcp_reordering); 1973 tcp_set_ca_state(sk, TCP_CA_Loss); 1974 tp->high_seq = tp->snd_nxt; 1975 tcp_ecn_queue_cwr(tp); 1976 1977 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1978 * loss recovery is underway except recurring timeout(s) on 1979 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1980 */ 1981 tp->frto = sysctl_tcp_frto && 1982 (new_recovery || icsk->icsk_retransmits) && 1983 !inet_csk(sk)->icsk_mtup.probe_size; 1984 } 1985 1986 /* If ACK arrived pointing to a remembered SACK, it means that our 1987 * remembered SACKs do not reflect real state of receiver i.e. 1988 * receiver _host_ is heavily congested (or buggy). 1989 * 1990 * To avoid big spurious retransmission bursts due to transient SACK 1991 * scoreboard oddities that look like reneging, we give the receiver a 1992 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1993 * restore sanity to the SACK scoreboard. If the apparent reneging 1994 * persists until this RTO then we'll clear the SACK scoreboard. 1995 */ 1996 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1997 { 1998 if (flag & FLAG_SACK_RENEGING) { 1999 struct tcp_sock *tp = tcp_sk(sk); 2000 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2001 msecs_to_jiffies(10)); 2002 2003 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2004 delay, TCP_RTO_MAX); 2005 return true; 2006 } 2007 return false; 2008 } 2009 2010 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2011 { 2012 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2013 } 2014 2015 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2016 * counter when SACK is enabled (without SACK, sacked_out is used for 2017 * that purpose). 2018 * 2019 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2020 * segments up to the highest received SACK block so far and holes in 2021 * between them. 2022 * 2023 * With reordering, holes may still be in flight, so RFC3517 recovery 2024 * uses pure sacked_out (total number of SACKed segments) even though 2025 * it violates the RFC that uses duplicate ACKs, often these are equal 2026 * but when e.g. out-of-window ACKs or packet duplication occurs, 2027 * they differ. Since neither occurs due to loss, TCP should really 2028 * ignore them. 2029 */ 2030 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2031 { 2032 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2033 } 2034 2035 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2036 { 2037 struct tcp_sock *tp = tcp_sk(sk); 2038 unsigned long delay; 2039 2040 /* Delay early retransmit and entering fast recovery for 2041 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2042 * available, or RTO is scheduled to fire first. 2043 */ 2044 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2045 (flag & FLAG_ECE) || !tp->srtt_us) 2046 return false; 2047 2048 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2049 msecs_to_jiffies(2)); 2050 2051 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2052 return false; 2053 2054 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2055 TCP_RTO_MAX); 2056 return true; 2057 } 2058 2059 /* Linux NewReno/SACK/FACK/ECN state machine. 2060 * -------------------------------------- 2061 * 2062 * "Open" Normal state, no dubious events, fast path. 2063 * "Disorder" In all the respects it is "Open", 2064 * but requires a bit more attention. It is entered when 2065 * we see some SACKs or dupacks. It is split of "Open" 2066 * mainly to move some processing from fast path to slow one. 2067 * "CWR" CWND was reduced due to some Congestion Notification event. 2068 * It can be ECN, ICMP source quench, local device congestion. 2069 * "Recovery" CWND was reduced, we are fast-retransmitting. 2070 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2071 * 2072 * tcp_fastretrans_alert() is entered: 2073 * - each incoming ACK, if state is not "Open" 2074 * - when arrived ACK is unusual, namely: 2075 * * SACK 2076 * * Duplicate ACK. 2077 * * ECN ECE. 2078 * 2079 * Counting packets in flight is pretty simple. 2080 * 2081 * in_flight = packets_out - left_out + retrans_out 2082 * 2083 * packets_out is SND.NXT-SND.UNA counted in packets. 2084 * 2085 * retrans_out is number of retransmitted segments. 2086 * 2087 * left_out is number of segments left network, but not ACKed yet. 2088 * 2089 * left_out = sacked_out + lost_out 2090 * 2091 * sacked_out: Packets, which arrived to receiver out of order 2092 * and hence not ACKed. With SACKs this number is simply 2093 * amount of SACKed data. Even without SACKs 2094 * it is easy to give pretty reliable estimate of this number, 2095 * counting duplicate ACKs. 2096 * 2097 * lost_out: Packets lost by network. TCP has no explicit 2098 * "loss notification" feedback from network (for now). 2099 * It means that this number can be only _guessed_. 2100 * Actually, it is the heuristics to predict lossage that 2101 * distinguishes different algorithms. 2102 * 2103 * F.e. after RTO, when all the queue is considered as lost, 2104 * lost_out = packets_out and in_flight = retrans_out. 2105 * 2106 * Essentially, we have now two algorithms counting 2107 * lost packets. 2108 * 2109 * FACK: It is the simplest heuristics. As soon as we decided 2110 * that something is lost, we decide that _all_ not SACKed 2111 * packets until the most forward SACK are lost. I.e. 2112 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2113 * It is absolutely correct estimate, if network does not reorder 2114 * packets. And it loses any connection to reality when reordering 2115 * takes place. We use FACK by default until reordering 2116 * is suspected on the path to this destination. 2117 * 2118 * NewReno: when Recovery is entered, we assume that one segment 2119 * is lost (classic Reno). While we are in Recovery and 2120 * a partial ACK arrives, we assume that one more packet 2121 * is lost (NewReno). This heuristics are the same in NewReno 2122 * and SACK. 2123 * 2124 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2125 * deflation etc. CWND is real congestion window, never inflated, changes 2126 * only according to classic VJ rules. 2127 * 2128 * Really tricky (and requiring careful tuning) part of algorithm 2129 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2130 * The first determines the moment _when_ we should reduce CWND and, 2131 * hence, slow down forward transmission. In fact, it determines the moment 2132 * when we decide that hole is caused by loss, rather than by a reorder. 2133 * 2134 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2135 * holes, caused by lost packets. 2136 * 2137 * And the most logically complicated part of algorithm is undo 2138 * heuristics. We detect false retransmits due to both too early 2139 * fast retransmit (reordering) and underestimated RTO, analyzing 2140 * timestamps and D-SACKs. When we detect that some segments were 2141 * retransmitted by mistake and CWND reduction was wrong, we undo 2142 * window reduction and abort recovery phase. This logic is hidden 2143 * inside several functions named tcp_try_undo_<something>. 2144 */ 2145 2146 /* This function decides, when we should leave Disordered state 2147 * and enter Recovery phase, reducing congestion window. 2148 * 2149 * Main question: may we further continue forward transmission 2150 * with the same cwnd? 2151 */ 2152 static bool tcp_time_to_recover(struct sock *sk, int flag) 2153 { 2154 struct tcp_sock *tp = tcp_sk(sk); 2155 __u32 packets_out; 2156 2157 /* Trick#1: The loss is proven. */ 2158 if (tp->lost_out) 2159 return true; 2160 2161 /* Not-A-Trick#2 : Classic rule... */ 2162 if (tcp_dupack_heuristics(tp) > tp->reordering) 2163 return true; 2164 2165 /* Trick#4: It is still not OK... But will it be useful to delay 2166 * recovery more? 2167 */ 2168 packets_out = tp->packets_out; 2169 if (packets_out <= tp->reordering && 2170 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2171 !tcp_may_send_now(sk)) { 2172 /* We have nothing to send. This connection is limited 2173 * either by receiver window or by application. 2174 */ 2175 return true; 2176 } 2177 2178 /* If a thin stream is detected, retransmit after first 2179 * received dupack. Employ only if SACK is supported in order 2180 * to avoid possible corner-case series of spurious retransmissions 2181 * Use only if there are no unsent data. 2182 */ 2183 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2184 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2185 tcp_is_sack(tp) && !tcp_send_head(sk)) 2186 return true; 2187 2188 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2189 * retransmissions due to small network reorderings, we implement 2190 * Mitigation A.3 in the RFC and delay the retransmission for a short 2191 * interval if appropriate. 2192 */ 2193 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2194 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2195 !tcp_may_send_now(sk)) 2196 return !tcp_pause_early_retransmit(sk, flag); 2197 2198 return false; 2199 } 2200 2201 /* Detect loss in event "A" above by marking head of queue up as lost. 2202 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2203 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2204 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2205 * the maximum SACKed segments to pass before reaching this limit. 2206 */ 2207 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2208 { 2209 struct tcp_sock *tp = tcp_sk(sk); 2210 struct sk_buff *skb; 2211 int cnt, oldcnt; 2212 int err; 2213 unsigned int mss; 2214 /* Use SACK to deduce losses of new sequences sent during recovery */ 2215 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2216 2217 WARN_ON(packets > tp->packets_out); 2218 if (tp->lost_skb_hint) { 2219 skb = tp->lost_skb_hint; 2220 cnt = tp->lost_cnt_hint; 2221 /* Head already handled? */ 2222 if (mark_head && skb != tcp_write_queue_head(sk)) 2223 return; 2224 } else { 2225 skb = tcp_write_queue_head(sk); 2226 cnt = 0; 2227 } 2228 2229 tcp_for_write_queue_from(skb, sk) { 2230 if (skb == tcp_send_head(sk)) 2231 break; 2232 /* TODO: do this better */ 2233 /* this is not the most efficient way to do this... */ 2234 tp->lost_skb_hint = skb; 2235 tp->lost_cnt_hint = cnt; 2236 2237 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2238 break; 2239 2240 oldcnt = cnt; 2241 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2242 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2243 cnt += tcp_skb_pcount(skb); 2244 2245 if (cnt > packets) { 2246 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2247 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2248 (oldcnt >= packets)) 2249 break; 2250 2251 mss = tcp_skb_mss(skb); 2252 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, 2253 mss, GFP_ATOMIC); 2254 if (err < 0) 2255 break; 2256 cnt = packets; 2257 } 2258 2259 tcp_skb_mark_lost(tp, skb); 2260 2261 if (mark_head) 2262 break; 2263 } 2264 tcp_verify_left_out(tp); 2265 } 2266 2267 /* Account newly detected lost packet(s) */ 2268 2269 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2270 { 2271 struct tcp_sock *tp = tcp_sk(sk); 2272 2273 if (tcp_is_reno(tp)) { 2274 tcp_mark_head_lost(sk, 1, 1); 2275 } else if (tcp_is_fack(tp)) { 2276 int lost = tp->fackets_out - tp->reordering; 2277 if (lost <= 0) 2278 lost = 1; 2279 tcp_mark_head_lost(sk, lost, 0); 2280 } else { 2281 int sacked_upto = tp->sacked_out - tp->reordering; 2282 if (sacked_upto >= 0) 2283 tcp_mark_head_lost(sk, sacked_upto, 0); 2284 else if (fast_rexmit) 2285 tcp_mark_head_lost(sk, 1, 1); 2286 } 2287 } 2288 2289 /* CWND moderation, preventing bursts due to too big ACKs 2290 * in dubious situations. 2291 */ 2292 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2293 { 2294 tp->snd_cwnd = min(tp->snd_cwnd, 2295 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2296 tp->snd_cwnd_stamp = tcp_time_stamp; 2297 } 2298 2299 /* Nothing was retransmitted or returned timestamp is less 2300 * than timestamp of the first retransmission. 2301 */ 2302 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2303 { 2304 return !tp->retrans_stamp || 2305 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2306 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2307 } 2308 2309 /* Undo procedures. */ 2310 2311 /* We can clear retrans_stamp when there are no retransmissions in the 2312 * window. It would seem that it is trivially available for us in 2313 * tp->retrans_out, however, that kind of assumptions doesn't consider 2314 * what will happen if errors occur when sending retransmission for the 2315 * second time. ...It could the that such segment has only 2316 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2317 * the head skb is enough except for some reneging corner cases that 2318 * are not worth the effort. 2319 * 2320 * Main reason for all this complexity is the fact that connection dying 2321 * time now depends on the validity of the retrans_stamp, in particular, 2322 * that successive retransmissions of a segment must not advance 2323 * retrans_stamp under any conditions. 2324 */ 2325 static bool tcp_any_retrans_done(const struct sock *sk) 2326 { 2327 const struct tcp_sock *tp = tcp_sk(sk); 2328 struct sk_buff *skb; 2329 2330 if (tp->retrans_out) 2331 return true; 2332 2333 skb = tcp_write_queue_head(sk); 2334 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2335 return true; 2336 2337 return false; 2338 } 2339 2340 #if FASTRETRANS_DEBUG > 1 2341 static void DBGUNDO(struct sock *sk, const char *msg) 2342 { 2343 struct tcp_sock *tp = tcp_sk(sk); 2344 struct inet_sock *inet = inet_sk(sk); 2345 2346 if (sk->sk_family == AF_INET) { 2347 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2348 msg, 2349 &inet->inet_daddr, ntohs(inet->inet_dport), 2350 tp->snd_cwnd, tcp_left_out(tp), 2351 tp->snd_ssthresh, tp->prior_ssthresh, 2352 tp->packets_out); 2353 } 2354 #if IS_ENABLED(CONFIG_IPV6) 2355 else if (sk->sk_family == AF_INET6) { 2356 struct ipv6_pinfo *np = inet6_sk(sk); 2357 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2358 msg, 2359 &np->daddr, ntohs(inet->inet_dport), 2360 tp->snd_cwnd, tcp_left_out(tp), 2361 tp->snd_ssthresh, tp->prior_ssthresh, 2362 tp->packets_out); 2363 } 2364 #endif 2365 } 2366 #else 2367 #define DBGUNDO(x...) do { } while (0) 2368 #endif 2369 2370 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2371 { 2372 struct tcp_sock *tp = tcp_sk(sk); 2373 2374 if (unmark_loss) { 2375 struct sk_buff *skb; 2376 2377 tcp_for_write_queue(skb, sk) { 2378 if (skb == tcp_send_head(sk)) 2379 break; 2380 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2381 } 2382 tp->lost_out = 0; 2383 tcp_clear_all_retrans_hints(tp); 2384 } 2385 2386 if (tp->prior_ssthresh) { 2387 const struct inet_connection_sock *icsk = inet_csk(sk); 2388 2389 if (icsk->icsk_ca_ops->undo_cwnd) 2390 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2391 else 2392 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2393 2394 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2395 tp->snd_ssthresh = tp->prior_ssthresh; 2396 tcp_ecn_withdraw_cwr(tp); 2397 } 2398 } else { 2399 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2400 } 2401 tp->snd_cwnd_stamp = tcp_time_stamp; 2402 tp->undo_marker = 0; 2403 } 2404 2405 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2406 { 2407 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2408 } 2409 2410 /* People celebrate: "We love our President!" */ 2411 static bool tcp_try_undo_recovery(struct sock *sk) 2412 { 2413 struct tcp_sock *tp = tcp_sk(sk); 2414 2415 if (tcp_may_undo(tp)) { 2416 int mib_idx; 2417 2418 /* Happy end! We did not retransmit anything 2419 * or our original transmission succeeded. 2420 */ 2421 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2422 tcp_undo_cwnd_reduction(sk, false); 2423 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2424 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2425 else 2426 mib_idx = LINUX_MIB_TCPFULLUNDO; 2427 2428 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2429 } 2430 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2431 /* Hold old state until something *above* high_seq 2432 * is ACKed. For Reno it is MUST to prevent false 2433 * fast retransmits (RFC2582). SACK TCP is safe. */ 2434 tcp_moderate_cwnd(tp); 2435 if (!tcp_any_retrans_done(sk)) 2436 tp->retrans_stamp = 0; 2437 return true; 2438 } 2439 tcp_set_ca_state(sk, TCP_CA_Open); 2440 return false; 2441 } 2442 2443 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2444 static bool tcp_try_undo_dsack(struct sock *sk) 2445 { 2446 struct tcp_sock *tp = tcp_sk(sk); 2447 2448 if (tp->undo_marker && !tp->undo_retrans) { 2449 DBGUNDO(sk, "D-SACK"); 2450 tcp_undo_cwnd_reduction(sk, false); 2451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2452 return true; 2453 } 2454 return false; 2455 } 2456 2457 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2458 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2459 { 2460 struct tcp_sock *tp = tcp_sk(sk); 2461 2462 if (frto_undo || tcp_may_undo(tp)) { 2463 tcp_undo_cwnd_reduction(sk, true); 2464 2465 DBGUNDO(sk, "partial loss"); 2466 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2467 if (frto_undo) 2468 NET_INC_STATS_BH(sock_net(sk), 2469 LINUX_MIB_TCPSPURIOUSRTOS); 2470 inet_csk(sk)->icsk_retransmits = 0; 2471 if (frto_undo || tcp_is_sack(tp)) 2472 tcp_set_ca_state(sk, TCP_CA_Open); 2473 return true; 2474 } 2475 return false; 2476 } 2477 2478 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2479 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2480 * It computes the number of packets to send (sndcnt) based on packets newly 2481 * delivered: 2482 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2483 * cwnd reductions across a full RTT. 2484 * 2) If packets in flight is lower than ssthresh (such as due to excess 2485 * losses and/or application stalls), do not perform any further cwnd 2486 * reductions, but instead slow start up to ssthresh. 2487 */ 2488 static void tcp_init_cwnd_reduction(struct sock *sk) 2489 { 2490 struct tcp_sock *tp = tcp_sk(sk); 2491 2492 tp->high_seq = tp->snd_nxt; 2493 tp->tlp_high_seq = 0; 2494 tp->snd_cwnd_cnt = 0; 2495 tp->prior_cwnd = tp->snd_cwnd; 2496 tp->prr_delivered = 0; 2497 tp->prr_out = 0; 2498 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2499 tcp_ecn_queue_cwr(tp); 2500 } 2501 2502 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2503 int fast_rexmit) 2504 { 2505 struct tcp_sock *tp = tcp_sk(sk); 2506 int sndcnt = 0; 2507 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2508 int newly_acked_sacked = prior_unsacked - 2509 (tp->packets_out - tp->sacked_out); 2510 2511 tp->prr_delivered += newly_acked_sacked; 2512 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2513 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2514 tp->prior_cwnd - 1; 2515 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2516 } else { 2517 sndcnt = min_t(int, delta, 2518 max_t(int, tp->prr_delivered - tp->prr_out, 2519 newly_acked_sacked) + 1); 2520 } 2521 2522 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2523 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2524 } 2525 2526 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2527 { 2528 struct tcp_sock *tp = tcp_sk(sk); 2529 2530 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2531 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2532 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2533 tp->snd_cwnd = tp->snd_ssthresh; 2534 tp->snd_cwnd_stamp = tcp_time_stamp; 2535 } 2536 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2537 } 2538 2539 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2540 void tcp_enter_cwr(struct sock *sk) 2541 { 2542 struct tcp_sock *tp = tcp_sk(sk); 2543 2544 tp->prior_ssthresh = 0; 2545 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2546 tp->undo_marker = 0; 2547 tcp_init_cwnd_reduction(sk); 2548 tcp_set_ca_state(sk, TCP_CA_CWR); 2549 } 2550 } 2551 EXPORT_SYMBOL(tcp_enter_cwr); 2552 2553 static void tcp_try_keep_open(struct sock *sk) 2554 { 2555 struct tcp_sock *tp = tcp_sk(sk); 2556 int state = TCP_CA_Open; 2557 2558 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2559 state = TCP_CA_Disorder; 2560 2561 if (inet_csk(sk)->icsk_ca_state != state) { 2562 tcp_set_ca_state(sk, state); 2563 tp->high_seq = tp->snd_nxt; 2564 } 2565 } 2566 2567 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2568 { 2569 struct tcp_sock *tp = tcp_sk(sk); 2570 2571 tcp_verify_left_out(tp); 2572 2573 if (!tcp_any_retrans_done(sk)) 2574 tp->retrans_stamp = 0; 2575 2576 if (flag & FLAG_ECE) 2577 tcp_enter_cwr(sk); 2578 2579 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2580 tcp_try_keep_open(sk); 2581 } else { 2582 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2583 } 2584 } 2585 2586 static void tcp_mtup_probe_failed(struct sock *sk) 2587 { 2588 struct inet_connection_sock *icsk = inet_csk(sk); 2589 2590 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2591 icsk->icsk_mtup.probe_size = 0; 2592 } 2593 2594 static void tcp_mtup_probe_success(struct sock *sk) 2595 { 2596 struct tcp_sock *tp = tcp_sk(sk); 2597 struct inet_connection_sock *icsk = inet_csk(sk); 2598 2599 /* FIXME: breaks with very large cwnd */ 2600 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2601 tp->snd_cwnd = tp->snd_cwnd * 2602 tcp_mss_to_mtu(sk, tp->mss_cache) / 2603 icsk->icsk_mtup.probe_size; 2604 tp->snd_cwnd_cnt = 0; 2605 tp->snd_cwnd_stamp = tcp_time_stamp; 2606 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2607 2608 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2609 icsk->icsk_mtup.probe_size = 0; 2610 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2611 } 2612 2613 /* Do a simple retransmit without using the backoff mechanisms in 2614 * tcp_timer. This is used for path mtu discovery. 2615 * The socket is already locked here. 2616 */ 2617 void tcp_simple_retransmit(struct sock *sk) 2618 { 2619 const struct inet_connection_sock *icsk = inet_csk(sk); 2620 struct tcp_sock *tp = tcp_sk(sk); 2621 struct sk_buff *skb; 2622 unsigned int mss = tcp_current_mss(sk); 2623 u32 prior_lost = tp->lost_out; 2624 2625 tcp_for_write_queue(skb, sk) { 2626 if (skb == tcp_send_head(sk)) 2627 break; 2628 if (tcp_skb_seglen(skb) > mss && 2629 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2630 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2631 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2632 tp->retrans_out -= tcp_skb_pcount(skb); 2633 } 2634 tcp_skb_mark_lost_uncond_verify(tp, skb); 2635 } 2636 } 2637 2638 tcp_clear_retrans_hints_partial(tp); 2639 2640 if (prior_lost == tp->lost_out) 2641 return; 2642 2643 if (tcp_is_reno(tp)) 2644 tcp_limit_reno_sacked(tp); 2645 2646 tcp_verify_left_out(tp); 2647 2648 /* Don't muck with the congestion window here. 2649 * Reason is that we do not increase amount of _data_ 2650 * in network, but units changed and effective 2651 * cwnd/ssthresh really reduced now. 2652 */ 2653 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2654 tp->high_seq = tp->snd_nxt; 2655 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2656 tp->prior_ssthresh = 0; 2657 tp->undo_marker = 0; 2658 tcp_set_ca_state(sk, TCP_CA_Loss); 2659 } 2660 tcp_xmit_retransmit_queue(sk); 2661 } 2662 EXPORT_SYMBOL(tcp_simple_retransmit); 2663 2664 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2665 { 2666 struct tcp_sock *tp = tcp_sk(sk); 2667 int mib_idx; 2668 2669 if (tcp_is_reno(tp)) 2670 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2671 else 2672 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2673 2674 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2675 2676 tp->prior_ssthresh = 0; 2677 tcp_init_undo(tp); 2678 2679 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2680 if (!ece_ack) 2681 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2682 tcp_init_cwnd_reduction(sk); 2683 } 2684 tcp_set_ca_state(sk, TCP_CA_Recovery); 2685 } 2686 2687 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2688 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2689 */ 2690 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2691 { 2692 struct tcp_sock *tp = tcp_sk(sk); 2693 bool recovered = !before(tp->snd_una, tp->high_seq); 2694 2695 if ((flag & FLAG_SND_UNA_ADVANCED) && 2696 tcp_try_undo_loss(sk, false)) 2697 return; 2698 2699 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2700 /* Step 3.b. A timeout is spurious if not all data are 2701 * lost, i.e., never-retransmitted data are (s)acked. 2702 */ 2703 if ((flag & FLAG_ORIG_SACK_ACKED) && 2704 tcp_try_undo_loss(sk, true)) 2705 return; 2706 2707 if (after(tp->snd_nxt, tp->high_seq)) { 2708 if (flag & FLAG_DATA_SACKED || is_dupack) 2709 tp->frto = 0; /* Step 3.a. loss was real */ 2710 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2711 tp->high_seq = tp->snd_nxt; 2712 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2713 TCP_NAGLE_OFF); 2714 if (after(tp->snd_nxt, tp->high_seq)) 2715 return; /* Step 2.b */ 2716 tp->frto = 0; 2717 } 2718 } 2719 2720 if (recovered) { 2721 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2722 tcp_try_undo_recovery(sk); 2723 return; 2724 } 2725 if (tcp_is_reno(tp)) { 2726 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2727 * delivered. Lower inflight to clock out (re)tranmissions. 2728 */ 2729 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2730 tcp_add_reno_sack(sk); 2731 else if (flag & FLAG_SND_UNA_ADVANCED) 2732 tcp_reset_reno_sack(tp); 2733 } 2734 tcp_xmit_retransmit_queue(sk); 2735 } 2736 2737 /* Undo during fast recovery after partial ACK. */ 2738 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2739 const int prior_unsacked) 2740 { 2741 struct tcp_sock *tp = tcp_sk(sk); 2742 2743 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2744 /* Plain luck! Hole if filled with delayed 2745 * packet, rather than with a retransmit. 2746 */ 2747 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2748 2749 /* We are getting evidence that the reordering degree is higher 2750 * than we realized. If there are no retransmits out then we 2751 * can undo. Otherwise we clock out new packets but do not 2752 * mark more packets lost or retransmit more. 2753 */ 2754 if (tp->retrans_out) { 2755 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2756 return true; 2757 } 2758 2759 if (!tcp_any_retrans_done(sk)) 2760 tp->retrans_stamp = 0; 2761 2762 DBGUNDO(sk, "partial recovery"); 2763 tcp_undo_cwnd_reduction(sk, true); 2764 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2765 tcp_try_keep_open(sk); 2766 return true; 2767 } 2768 return false; 2769 } 2770 2771 /* Process an event, which can update packets-in-flight not trivially. 2772 * Main goal of this function is to calculate new estimate for left_out, 2773 * taking into account both packets sitting in receiver's buffer and 2774 * packets lost by network. 2775 * 2776 * Besides that it does CWND reduction, when packet loss is detected 2777 * and changes state of machine. 2778 * 2779 * It does _not_ decide what to send, it is made in function 2780 * tcp_xmit_retransmit_queue(). 2781 */ 2782 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2783 const int prior_unsacked, 2784 bool is_dupack, int flag) 2785 { 2786 struct inet_connection_sock *icsk = inet_csk(sk); 2787 struct tcp_sock *tp = tcp_sk(sk); 2788 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2789 (tcp_fackets_out(tp) > tp->reordering)); 2790 int fast_rexmit = 0; 2791 2792 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2793 tp->sacked_out = 0; 2794 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2795 tp->fackets_out = 0; 2796 2797 /* Now state machine starts. 2798 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2799 if (flag & FLAG_ECE) 2800 tp->prior_ssthresh = 0; 2801 2802 /* B. In all the states check for reneging SACKs. */ 2803 if (tcp_check_sack_reneging(sk, flag)) 2804 return; 2805 2806 /* C. Check consistency of the current state. */ 2807 tcp_verify_left_out(tp); 2808 2809 /* D. Check state exit conditions. State can be terminated 2810 * when high_seq is ACKed. */ 2811 if (icsk->icsk_ca_state == TCP_CA_Open) { 2812 WARN_ON(tp->retrans_out != 0); 2813 tp->retrans_stamp = 0; 2814 } else if (!before(tp->snd_una, tp->high_seq)) { 2815 switch (icsk->icsk_ca_state) { 2816 case TCP_CA_CWR: 2817 /* CWR is to be held something *above* high_seq 2818 * is ACKed for CWR bit to reach receiver. */ 2819 if (tp->snd_una != tp->high_seq) { 2820 tcp_end_cwnd_reduction(sk); 2821 tcp_set_ca_state(sk, TCP_CA_Open); 2822 } 2823 break; 2824 2825 case TCP_CA_Recovery: 2826 if (tcp_is_reno(tp)) 2827 tcp_reset_reno_sack(tp); 2828 if (tcp_try_undo_recovery(sk)) 2829 return; 2830 tcp_end_cwnd_reduction(sk); 2831 break; 2832 } 2833 } 2834 2835 /* E. Process state. */ 2836 switch (icsk->icsk_ca_state) { 2837 case TCP_CA_Recovery: 2838 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2839 if (tcp_is_reno(tp) && is_dupack) 2840 tcp_add_reno_sack(sk); 2841 } else { 2842 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2843 return; 2844 /* Partial ACK arrived. Force fast retransmit. */ 2845 do_lost = tcp_is_reno(tp) || 2846 tcp_fackets_out(tp) > tp->reordering; 2847 } 2848 if (tcp_try_undo_dsack(sk)) { 2849 tcp_try_keep_open(sk); 2850 return; 2851 } 2852 break; 2853 case TCP_CA_Loss: 2854 tcp_process_loss(sk, flag, is_dupack); 2855 if (icsk->icsk_ca_state != TCP_CA_Open) 2856 return; 2857 /* Fall through to processing in Open state. */ 2858 default: 2859 if (tcp_is_reno(tp)) { 2860 if (flag & FLAG_SND_UNA_ADVANCED) 2861 tcp_reset_reno_sack(tp); 2862 if (is_dupack) 2863 tcp_add_reno_sack(sk); 2864 } 2865 2866 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2867 tcp_try_undo_dsack(sk); 2868 2869 if (!tcp_time_to_recover(sk, flag)) { 2870 tcp_try_to_open(sk, flag, prior_unsacked); 2871 return; 2872 } 2873 2874 /* MTU probe failure: don't reduce cwnd */ 2875 if (icsk->icsk_ca_state < TCP_CA_CWR && 2876 icsk->icsk_mtup.probe_size && 2877 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2878 tcp_mtup_probe_failed(sk); 2879 /* Restores the reduction we did in tcp_mtup_probe() */ 2880 tp->snd_cwnd++; 2881 tcp_simple_retransmit(sk); 2882 return; 2883 } 2884 2885 /* Otherwise enter Recovery state */ 2886 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2887 fast_rexmit = 1; 2888 } 2889 2890 if (do_lost) 2891 tcp_update_scoreboard(sk, fast_rexmit); 2892 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2893 tcp_xmit_retransmit_queue(sk); 2894 } 2895 2896 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2897 long seq_rtt_us, long sack_rtt_us) 2898 { 2899 const struct tcp_sock *tp = tcp_sk(sk); 2900 2901 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2902 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2903 * Karn's algorithm forbids taking RTT if some retransmitted data 2904 * is acked (RFC6298). 2905 */ 2906 if (flag & FLAG_RETRANS_DATA_ACKED) 2907 seq_rtt_us = -1L; 2908 2909 if (seq_rtt_us < 0) 2910 seq_rtt_us = sack_rtt_us; 2911 2912 /* RTTM Rule: A TSecr value received in a segment is used to 2913 * update the averaged RTT measurement only if the segment 2914 * acknowledges some new data, i.e., only if it advances the 2915 * left edge of the send window. 2916 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2917 */ 2918 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2919 flag & FLAG_ACKED) 2920 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2921 2922 if (seq_rtt_us < 0) 2923 return false; 2924 2925 tcp_rtt_estimator(sk, seq_rtt_us); 2926 tcp_set_rto(sk); 2927 2928 /* RFC6298: only reset backoff on valid RTT measurement. */ 2929 inet_csk(sk)->icsk_backoff = 0; 2930 return true; 2931 } 2932 2933 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2934 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2935 { 2936 struct tcp_sock *tp = tcp_sk(sk); 2937 long seq_rtt_us = -1L; 2938 2939 if (synack_stamp && !tp->total_retrans) 2940 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); 2941 2942 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2943 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2944 */ 2945 if (!tp->srtt_us) 2946 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); 2947 } 2948 2949 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2950 { 2951 const struct inet_connection_sock *icsk = inet_csk(sk); 2952 2953 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2954 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2955 } 2956 2957 /* Restart timer after forward progress on connection. 2958 * RFC2988 recommends to restart timer to now+rto. 2959 */ 2960 void tcp_rearm_rto(struct sock *sk) 2961 { 2962 const struct inet_connection_sock *icsk = inet_csk(sk); 2963 struct tcp_sock *tp = tcp_sk(sk); 2964 2965 /* If the retrans timer is currently being used by Fast Open 2966 * for SYN-ACK retrans purpose, stay put. 2967 */ 2968 if (tp->fastopen_rsk) 2969 return; 2970 2971 if (!tp->packets_out) { 2972 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2973 } else { 2974 u32 rto = inet_csk(sk)->icsk_rto; 2975 /* Offset the time elapsed after installing regular RTO */ 2976 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2977 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2978 struct sk_buff *skb = tcp_write_queue_head(sk); 2979 const u32 rto_time_stamp = 2980 tcp_skb_timestamp(skb) + rto; 2981 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2982 /* delta may not be positive if the socket is locked 2983 * when the retrans timer fires and is rescheduled. 2984 */ 2985 if (delta > 0) 2986 rto = delta; 2987 } 2988 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2989 TCP_RTO_MAX); 2990 } 2991 } 2992 2993 /* This function is called when the delayed ER timer fires. TCP enters 2994 * fast recovery and performs fast-retransmit. 2995 */ 2996 void tcp_resume_early_retransmit(struct sock *sk) 2997 { 2998 struct tcp_sock *tp = tcp_sk(sk); 2999 3000 tcp_rearm_rto(sk); 3001 3002 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3003 if (!tp->do_early_retrans) 3004 return; 3005 3006 tcp_enter_recovery(sk, false); 3007 tcp_update_scoreboard(sk, 1); 3008 tcp_xmit_retransmit_queue(sk); 3009 } 3010 3011 /* If we get here, the whole TSO packet has not been acked. */ 3012 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3013 { 3014 struct tcp_sock *tp = tcp_sk(sk); 3015 u32 packets_acked; 3016 3017 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3018 3019 packets_acked = tcp_skb_pcount(skb); 3020 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3021 return 0; 3022 packets_acked -= tcp_skb_pcount(skb); 3023 3024 if (packets_acked) { 3025 BUG_ON(tcp_skb_pcount(skb) == 0); 3026 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3027 } 3028 3029 return packets_acked; 3030 } 3031 3032 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3033 u32 prior_snd_una) 3034 { 3035 const struct skb_shared_info *shinfo; 3036 3037 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3038 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK))) 3039 return; 3040 3041 shinfo = skb_shinfo(skb); 3042 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) && 3043 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)) 3044 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3045 } 3046 3047 /* Remove acknowledged frames from the retransmission queue. If our packet 3048 * is before the ack sequence we can discard it as it's confirmed to have 3049 * arrived at the other end. 3050 */ 3051 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3052 u32 prior_snd_una, 3053 struct tcp_sacktag_state *sack) 3054 { 3055 const struct inet_connection_sock *icsk = inet_csk(sk); 3056 struct skb_mstamp first_ackt, last_ackt, now; 3057 struct tcp_sock *tp = tcp_sk(sk); 3058 u32 prior_sacked = tp->sacked_out; 3059 u32 reord = tp->packets_out; 3060 bool fully_acked = true; 3061 long sack_rtt_us = -1L; 3062 long seq_rtt_us = -1L; 3063 long ca_rtt_us = -1L; 3064 struct sk_buff *skb; 3065 u32 pkts_acked = 0; 3066 bool rtt_update; 3067 int flag = 0; 3068 3069 first_ackt.v64 = 0; 3070 3071 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3072 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3073 u8 sacked = scb->sacked; 3074 u32 acked_pcount; 3075 3076 tcp_ack_tstamp(sk, skb, prior_snd_una); 3077 3078 /* Determine how many packets and what bytes were acked, tso and else */ 3079 if (after(scb->end_seq, tp->snd_una)) { 3080 if (tcp_skb_pcount(skb) == 1 || 3081 !after(tp->snd_una, scb->seq)) 3082 break; 3083 3084 acked_pcount = tcp_tso_acked(sk, skb); 3085 if (!acked_pcount) 3086 break; 3087 3088 fully_acked = false; 3089 } else { 3090 /* Speedup tcp_unlink_write_queue() and next loop */ 3091 prefetchw(skb->next); 3092 acked_pcount = tcp_skb_pcount(skb); 3093 } 3094 3095 if (unlikely(sacked & TCPCB_RETRANS)) { 3096 if (sacked & TCPCB_SACKED_RETRANS) 3097 tp->retrans_out -= acked_pcount; 3098 flag |= FLAG_RETRANS_DATA_ACKED; 3099 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3100 last_ackt = skb->skb_mstamp; 3101 WARN_ON_ONCE(last_ackt.v64 == 0); 3102 if (!first_ackt.v64) 3103 first_ackt = last_ackt; 3104 3105 reord = min(pkts_acked, reord); 3106 if (!after(scb->end_seq, tp->high_seq)) 3107 flag |= FLAG_ORIG_SACK_ACKED; 3108 } 3109 3110 if (sacked & TCPCB_SACKED_ACKED) 3111 tp->sacked_out -= acked_pcount; 3112 if (sacked & TCPCB_LOST) 3113 tp->lost_out -= acked_pcount; 3114 3115 tp->packets_out -= acked_pcount; 3116 pkts_acked += acked_pcount; 3117 3118 /* Initial outgoing SYN's get put onto the write_queue 3119 * just like anything else we transmit. It is not 3120 * true data, and if we misinform our callers that 3121 * this ACK acks real data, we will erroneously exit 3122 * connection startup slow start one packet too 3123 * quickly. This is severely frowned upon behavior. 3124 */ 3125 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3126 flag |= FLAG_DATA_ACKED; 3127 } else { 3128 flag |= FLAG_SYN_ACKED; 3129 tp->retrans_stamp = 0; 3130 } 3131 3132 if (!fully_acked) 3133 break; 3134 3135 tcp_unlink_write_queue(skb, sk); 3136 sk_wmem_free_skb(sk, skb); 3137 if (unlikely(skb == tp->retransmit_skb_hint)) 3138 tp->retransmit_skb_hint = NULL; 3139 if (unlikely(skb == tp->lost_skb_hint)) 3140 tp->lost_skb_hint = NULL; 3141 } 3142 3143 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3144 tp->snd_up = tp->snd_una; 3145 3146 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3147 flag |= FLAG_SACK_RENEGING; 3148 3149 skb_mstamp_get(&now); 3150 if (likely(first_ackt.v64)) { 3151 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3152 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3153 } 3154 if (sack->first_sackt.v64) { 3155 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt); 3156 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt); 3157 } 3158 3159 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); 3160 3161 if (flag & FLAG_ACKED) { 3162 tcp_rearm_rto(sk); 3163 if (unlikely(icsk->icsk_mtup.probe_size && 3164 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3165 tcp_mtup_probe_success(sk); 3166 } 3167 3168 if (tcp_is_reno(tp)) { 3169 tcp_remove_reno_sacks(sk, pkts_acked); 3170 } else { 3171 int delta; 3172 3173 /* Non-retransmitted hole got filled? That's reordering */ 3174 if (reord < prior_fackets) 3175 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3176 3177 delta = tcp_is_fack(tp) ? pkts_acked : 3178 prior_sacked - tp->sacked_out; 3179 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3180 } 3181 3182 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3183 3184 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3185 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3186 /* Do not re-arm RTO if the sack RTT is measured from data sent 3187 * after when the head was last (re)transmitted. Otherwise the 3188 * timeout may continue to extend in loss recovery. 3189 */ 3190 tcp_rearm_rto(sk); 3191 } 3192 3193 if (icsk->icsk_ca_ops->pkts_acked) 3194 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us); 3195 3196 #if FASTRETRANS_DEBUG > 0 3197 WARN_ON((int)tp->sacked_out < 0); 3198 WARN_ON((int)tp->lost_out < 0); 3199 WARN_ON((int)tp->retrans_out < 0); 3200 if (!tp->packets_out && tcp_is_sack(tp)) { 3201 icsk = inet_csk(sk); 3202 if (tp->lost_out) { 3203 pr_debug("Leak l=%u %d\n", 3204 tp->lost_out, icsk->icsk_ca_state); 3205 tp->lost_out = 0; 3206 } 3207 if (tp->sacked_out) { 3208 pr_debug("Leak s=%u %d\n", 3209 tp->sacked_out, icsk->icsk_ca_state); 3210 tp->sacked_out = 0; 3211 } 3212 if (tp->retrans_out) { 3213 pr_debug("Leak r=%u %d\n", 3214 tp->retrans_out, icsk->icsk_ca_state); 3215 tp->retrans_out = 0; 3216 } 3217 } 3218 #endif 3219 return flag; 3220 } 3221 3222 static void tcp_ack_probe(struct sock *sk) 3223 { 3224 const struct tcp_sock *tp = tcp_sk(sk); 3225 struct inet_connection_sock *icsk = inet_csk(sk); 3226 3227 /* Was it a usable window open? */ 3228 3229 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3230 icsk->icsk_backoff = 0; 3231 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3232 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3233 * This function is not for random using! 3234 */ 3235 } else { 3236 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3237 3238 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3239 when, TCP_RTO_MAX); 3240 } 3241 } 3242 3243 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3244 { 3245 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3246 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3247 } 3248 3249 /* Decide wheather to run the increase function of congestion control. */ 3250 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3251 { 3252 if (tcp_in_cwnd_reduction(sk)) 3253 return false; 3254 3255 /* If reordering is high then always grow cwnd whenever data is 3256 * delivered regardless of its ordering. Otherwise stay conservative 3257 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3258 * new SACK or ECE mark may first advance cwnd here and later reduce 3259 * cwnd in tcp_fastretrans_alert() based on more states. 3260 */ 3261 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3262 return flag & FLAG_FORWARD_PROGRESS; 3263 3264 return flag & FLAG_DATA_ACKED; 3265 } 3266 3267 /* Check that window update is acceptable. 3268 * The function assumes that snd_una<=ack<=snd_next. 3269 */ 3270 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3271 const u32 ack, const u32 ack_seq, 3272 const u32 nwin) 3273 { 3274 return after(ack, tp->snd_una) || 3275 after(ack_seq, tp->snd_wl1) || 3276 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3277 } 3278 3279 /* If we update tp->snd_una, also update tp->bytes_acked */ 3280 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3281 { 3282 u32 delta = ack - tp->snd_una; 3283 3284 u64_stats_update_begin(&tp->syncp); 3285 tp->bytes_acked += delta; 3286 u64_stats_update_end(&tp->syncp); 3287 tp->snd_una = ack; 3288 } 3289 3290 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3291 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3292 { 3293 u32 delta = seq - tp->rcv_nxt; 3294 3295 u64_stats_update_begin(&tp->syncp); 3296 tp->bytes_received += delta; 3297 u64_stats_update_end(&tp->syncp); 3298 tp->rcv_nxt = seq; 3299 } 3300 3301 /* Update our send window. 3302 * 3303 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3304 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3305 */ 3306 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3307 u32 ack_seq) 3308 { 3309 struct tcp_sock *tp = tcp_sk(sk); 3310 int flag = 0; 3311 u32 nwin = ntohs(tcp_hdr(skb)->window); 3312 3313 if (likely(!tcp_hdr(skb)->syn)) 3314 nwin <<= tp->rx_opt.snd_wscale; 3315 3316 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3317 flag |= FLAG_WIN_UPDATE; 3318 tcp_update_wl(tp, ack_seq); 3319 3320 if (tp->snd_wnd != nwin) { 3321 tp->snd_wnd = nwin; 3322 3323 /* Note, it is the only place, where 3324 * fast path is recovered for sending TCP. 3325 */ 3326 tp->pred_flags = 0; 3327 tcp_fast_path_check(sk); 3328 3329 if (nwin > tp->max_window) { 3330 tp->max_window = nwin; 3331 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3332 } 3333 } 3334 } 3335 3336 tcp_snd_una_update(tp, ack); 3337 3338 return flag; 3339 } 3340 3341 /* Return true if we're currently rate-limiting out-of-window ACKs and 3342 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3343 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3344 * attacks that send repeated SYNs or ACKs for the same connection. To 3345 * do this, we do not send a duplicate SYNACK or ACK if the remote 3346 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3347 */ 3348 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3349 int mib_idx, u32 *last_oow_ack_time) 3350 { 3351 /* Data packets without SYNs are not likely part of an ACK loop. */ 3352 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3353 !tcp_hdr(skb)->syn) 3354 goto not_rate_limited; 3355 3356 if (*last_oow_ack_time) { 3357 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3358 3359 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3360 NET_INC_STATS_BH(net, mib_idx); 3361 return true; /* rate-limited: don't send yet! */ 3362 } 3363 } 3364 3365 *last_oow_ack_time = tcp_time_stamp; 3366 3367 not_rate_limited: 3368 return false; /* not rate-limited: go ahead, send dupack now! */ 3369 } 3370 3371 /* RFC 5961 7 [ACK Throttling] */ 3372 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3373 { 3374 /* unprotected vars, we dont care of overwrites */ 3375 static u32 challenge_timestamp; 3376 static unsigned int challenge_count; 3377 struct tcp_sock *tp = tcp_sk(sk); 3378 u32 now; 3379 3380 /* First check our per-socket dupack rate limit. */ 3381 if (tcp_oow_rate_limited(sock_net(sk), skb, 3382 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3383 &tp->last_oow_ack_time)) 3384 return; 3385 3386 /* Then check the check host-wide RFC 5961 rate limit. */ 3387 now = jiffies / HZ; 3388 if (now != challenge_timestamp) { 3389 challenge_timestamp = now; 3390 challenge_count = 0; 3391 } 3392 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3393 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3394 tcp_send_ack(sk); 3395 } 3396 } 3397 3398 static void tcp_store_ts_recent(struct tcp_sock *tp) 3399 { 3400 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3401 tp->rx_opt.ts_recent_stamp = get_seconds(); 3402 } 3403 3404 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3405 { 3406 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3407 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3408 * extra check below makes sure this can only happen 3409 * for pure ACK frames. -DaveM 3410 * 3411 * Not only, also it occurs for expired timestamps. 3412 */ 3413 3414 if (tcp_paws_check(&tp->rx_opt, 0)) 3415 tcp_store_ts_recent(tp); 3416 } 3417 } 3418 3419 /* This routine deals with acks during a TLP episode. 3420 * We mark the end of a TLP episode on receiving TLP dupack or when 3421 * ack is after tlp_high_seq. 3422 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3423 */ 3424 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3425 { 3426 struct tcp_sock *tp = tcp_sk(sk); 3427 3428 if (before(ack, tp->tlp_high_seq)) 3429 return; 3430 3431 if (flag & FLAG_DSACKING_ACK) { 3432 /* This DSACK means original and TLP probe arrived; no loss */ 3433 tp->tlp_high_seq = 0; 3434 } else if (after(ack, tp->tlp_high_seq)) { 3435 /* ACK advances: there was a loss, so reduce cwnd. Reset 3436 * tlp_high_seq in tcp_init_cwnd_reduction() 3437 */ 3438 tcp_init_cwnd_reduction(sk); 3439 tcp_set_ca_state(sk, TCP_CA_CWR); 3440 tcp_end_cwnd_reduction(sk); 3441 tcp_try_keep_open(sk); 3442 NET_INC_STATS_BH(sock_net(sk), 3443 LINUX_MIB_TCPLOSSPROBERECOVERY); 3444 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3445 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3446 /* Pure dupack: original and TLP probe arrived; no loss */ 3447 tp->tlp_high_seq = 0; 3448 } 3449 } 3450 3451 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3452 { 3453 const struct inet_connection_sock *icsk = inet_csk(sk); 3454 3455 if (icsk->icsk_ca_ops->in_ack_event) 3456 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3457 } 3458 3459 /* This routine deals with incoming acks, but not outgoing ones. */ 3460 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3461 { 3462 struct inet_connection_sock *icsk = inet_csk(sk); 3463 struct tcp_sock *tp = tcp_sk(sk); 3464 struct tcp_sacktag_state sack_state; 3465 u32 prior_snd_una = tp->snd_una; 3466 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3467 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3468 bool is_dupack = false; 3469 u32 prior_fackets; 3470 int prior_packets = tp->packets_out; 3471 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3472 int acked = 0; /* Number of packets newly acked */ 3473 3474 sack_state.first_sackt.v64 = 0; 3475 3476 /* We very likely will need to access write queue head. */ 3477 prefetchw(sk->sk_write_queue.next); 3478 3479 /* If the ack is older than previous acks 3480 * then we can probably ignore it. 3481 */ 3482 if (before(ack, prior_snd_una)) { 3483 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3484 if (before(ack, prior_snd_una - tp->max_window)) { 3485 tcp_send_challenge_ack(sk, skb); 3486 return -1; 3487 } 3488 goto old_ack; 3489 } 3490 3491 /* If the ack includes data we haven't sent yet, discard 3492 * this segment (RFC793 Section 3.9). 3493 */ 3494 if (after(ack, tp->snd_nxt)) 3495 goto invalid_ack; 3496 3497 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3498 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3499 tcp_rearm_rto(sk); 3500 3501 if (after(ack, prior_snd_una)) { 3502 flag |= FLAG_SND_UNA_ADVANCED; 3503 icsk->icsk_retransmits = 0; 3504 } 3505 3506 prior_fackets = tp->fackets_out; 3507 3508 /* ts_recent update must be made after we are sure that the packet 3509 * is in window. 3510 */ 3511 if (flag & FLAG_UPDATE_TS_RECENT) 3512 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3513 3514 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3515 /* Window is constant, pure forward advance. 3516 * No more checks are required. 3517 * Note, we use the fact that SND.UNA>=SND.WL2. 3518 */ 3519 tcp_update_wl(tp, ack_seq); 3520 tcp_snd_una_update(tp, ack); 3521 flag |= FLAG_WIN_UPDATE; 3522 3523 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3524 3525 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3526 } else { 3527 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3528 3529 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3530 flag |= FLAG_DATA; 3531 else 3532 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3533 3534 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3535 3536 if (TCP_SKB_CB(skb)->sacked) 3537 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3538 &sack_state); 3539 3540 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3541 flag |= FLAG_ECE; 3542 ack_ev_flags |= CA_ACK_ECE; 3543 } 3544 3545 if (flag & FLAG_WIN_UPDATE) 3546 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3547 3548 tcp_in_ack_event(sk, ack_ev_flags); 3549 } 3550 3551 /* We passed data and got it acked, remove any soft error 3552 * log. Something worked... 3553 */ 3554 sk->sk_err_soft = 0; 3555 icsk->icsk_probes_out = 0; 3556 tp->rcv_tstamp = tcp_time_stamp; 3557 if (!prior_packets) 3558 goto no_queue; 3559 3560 /* See if we can take anything off of the retransmit queue. */ 3561 acked = tp->packets_out; 3562 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, 3563 &sack_state); 3564 acked -= tp->packets_out; 3565 3566 /* Advance cwnd if state allows */ 3567 if (tcp_may_raise_cwnd(sk, flag)) 3568 tcp_cong_avoid(sk, ack, acked); 3569 3570 if (tcp_ack_is_dubious(sk, flag)) { 3571 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3572 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3573 is_dupack, flag); 3574 } 3575 if (tp->tlp_high_seq) 3576 tcp_process_tlp_ack(sk, ack, flag); 3577 3578 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3579 struct dst_entry *dst = __sk_dst_get(sk); 3580 if (dst) 3581 dst_confirm(dst); 3582 } 3583 3584 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3585 tcp_schedule_loss_probe(sk); 3586 tcp_update_pacing_rate(sk); 3587 return 1; 3588 3589 no_queue: 3590 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3591 if (flag & FLAG_DSACKING_ACK) 3592 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3593 is_dupack, flag); 3594 /* If this ack opens up a zero window, clear backoff. It was 3595 * being used to time the probes, and is probably far higher than 3596 * it needs to be for normal retransmission. 3597 */ 3598 if (tcp_send_head(sk)) 3599 tcp_ack_probe(sk); 3600 3601 if (tp->tlp_high_seq) 3602 tcp_process_tlp_ack(sk, ack, flag); 3603 return 1; 3604 3605 invalid_ack: 3606 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3607 return -1; 3608 3609 old_ack: 3610 /* If data was SACKed, tag it and see if we should send more data. 3611 * If data was DSACKed, see if we can undo a cwnd reduction. 3612 */ 3613 if (TCP_SKB_CB(skb)->sacked) { 3614 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3615 &sack_state); 3616 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3617 is_dupack, flag); 3618 } 3619 3620 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3621 return 0; 3622 } 3623 3624 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3625 bool syn, struct tcp_fastopen_cookie *foc, 3626 bool exp_opt) 3627 { 3628 /* Valid only in SYN or SYN-ACK with an even length. */ 3629 if (!foc || !syn || len < 0 || (len & 1)) 3630 return; 3631 3632 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3633 len <= TCP_FASTOPEN_COOKIE_MAX) 3634 memcpy(foc->val, cookie, len); 3635 else if (len != 0) 3636 len = -1; 3637 foc->len = len; 3638 foc->exp = exp_opt; 3639 } 3640 3641 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3642 * But, this can also be called on packets in the established flow when 3643 * the fast version below fails. 3644 */ 3645 void tcp_parse_options(const struct sk_buff *skb, 3646 struct tcp_options_received *opt_rx, int estab, 3647 struct tcp_fastopen_cookie *foc) 3648 { 3649 const unsigned char *ptr; 3650 const struct tcphdr *th = tcp_hdr(skb); 3651 int length = (th->doff * 4) - sizeof(struct tcphdr); 3652 3653 ptr = (const unsigned char *)(th + 1); 3654 opt_rx->saw_tstamp = 0; 3655 3656 while (length > 0) { 3657 int opcode = *ptr++; 3658 int opsize; 3659 3660 switch (opcode) { 3661 case TCPOPT_EOL: 3662 return; 3663 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3664 length--; 3665 continue; 3666 default: 3667 opsize = *ptr++; 3668 if (opsize < 2) /* "silly options" */ 3669 return; 3670 if (opsize > length) 3671 return; /* don't parse partial options */ 3672 switch (opcode) { 3673 case TCPOPT_MSS: 3674 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3675 u16 in_mss = get_unaligned_be16(ptr); 3676 if (in_mss) { 3677 if (opt_rx->user_mss && 3678 opt_rx->user_mss < in_mss) 3679 in_mss = opt_rx->user_mss; 3680 opt_rx->mss_clamp = in_mss; 3681 } 3682 } 3683 break; 3684 case TCPOPT_WINDOW: 3685 if (opsize == TCPOLEN_WINDOW && th->syn && 3686 !estab && sysctl_tcp_window_scaling) { 3687 __u8 snd_wscale = *(__u8 *)ptr; 3688 opt_rx->wscale_ok = 1; 3689 if (snd_wscale > 14) { 3690 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3691 __func__, 3692 snd_wscale); 3693 snd_wscale = 14; 3694 } 3695 opt_rx->snd_wscale = snd_wscale; 3696 } 3697 break; 3698 case TCPOPT_TIMESTAMP: 3699 if ((opsize == TCPOLEN_TIMESTAMP) && 3700 ((estab && opt_rx->tstamp_ok) || 3701 (!estab && sysctl_tcp_timestamps))) { 3702 opt_rx->saw_tstamp = 1; 3703 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3704 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3705 } 3706 break; 3707 case TCPOPT_SACK_PERM: 3708 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3709 !estab && sysctl_tcp_sack) { 3710 opt_rx->sack_ok = TCP_SACK_SEEN; 3711 tcp_sack_reset(opt_rx); 3712 } 3713 break; 3714 3715 case TCPOPT_SACK: 3716 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3717 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3718 opt_rx->sack_ok) { 3719 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3720 } 3721 break; 3722 #ifdef CONFIG_TCP_MD5SIG 3723 case TCPOPT_MD5SIG: 3724 /* 3725 * The MD5 Hash has already been 3726 * checked (see tcp_v{4,6}_do_rcv()). 3727 */ 3728 break; 3729 #endif 3730 case TCPOPT_FASTOPEN: 3731 tcp_parse_fastopen_option( 3732 opsize - TCPOLEN_FASTOPEN_BASE, 3733 ptr, th->syn, foc, false); 3734 break; 3735 3736 case TCPOPT_EXP: 3737 /* Fast Open option shares code 254 using a 3738 * 16 bits magic number. 3739 */ 3740 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3741 get_unaligned_be16(ptr) == 3742 TCPOPT_FASTOPEN_MAGIC) 3743 tcp_parse_fastopen_option(opsize - 3744 TCPOLEN_EXP_FASTOPEN_BASE, 3745 ptr + 2, th->syn, foc, true); 3746 break; 3747 3748 } 3749 ptr += opsize-2; 3750 length -= opsize; 3751 } 3752 } 3753 } 3754 EXPORT_SYMBOL(tcp_parse_options); 3755 3756 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3757 { 3758 const __be32 *ptr = (const __be32 *)(th + 1); 3759 3760 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3761 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3762 tp->rx_opt.saw_tstamp = 1; 3763 ++ptr; 3764 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3765 ++ptr; 3766 if (*ptr) 3767 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3768 else 3769 tp->rx_opt.rcv_tsecr = 0; 3770 return true; 3771 } 3772 return false; 3773 } 3774 3775 /* Fast parse options. This hopes to only see timestamps. 3776 * If it is wrong it falls back on tcp_parse_options(). 3777 */ 3778 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3779 const struct tcphdr *th, struct tcp_sock *tp) 3780 { 3781 /* In the spirit of fast parsing, compare doff directly to constant 3782 * values. Because equality is used, short doff can be ignored here. 3783 */ 3784 if (th->doff == (sizeof(*th) / 4)) { 3785 tp->rx_opt.saw_tstamp = 0; 3786 return false; 3787 } else if (tp->rx_opt.tstamp_ok && 3788 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3789 if (tcp_parse_aligned_timestamp(tp, th)) 3790 return true; 3791 } 3792 3793 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3794 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3795 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3796 3797 return true; 3798 } 3799 3800 #ifdef CONFIG_TCP_MD5SIG 3801 /* 3802 * Parse MD5 Signature option 3803 */ 3804 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3805 { 3806 int length = (th->doff << 2) - sizeof(*th); 3807 const u8 *ptr = (const u8 *)(th + 1); 3808 3809 /* If the TCP option is too short, we can short cut */ 3810 if (length < TCPOLEN_MD5SIG) 3811 return NULL; 3812 3813 while (length > 0) { 3814 int opcode = *ptr++; 3815 int opsize; 3816 3817 switch (opcode) { 3818 case TCPOPT_EOL: 3819 return NULL; 3820 case TCPOPT_NOP: 3821 length--; 3822 continue; 3823 default: 3824 opsize = *ptr++; 3825 if (opsize < 2 || opsize > length) 3826 return NULL; 3827 if (opcode == TCPOPT_MD5SIG) 3828 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3829 } 3830 ptr += opsize - 2; 3831 length -= opsize; 3832 } 3833 return NULL; 3834 } 3835 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3836 #endif 3837 3838 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3839 * 3840 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3841 * it can pass through stack. So, the following predicate verifies that 3842 * this segment is not used for anything but congestion avoidance or 3843 * fast retransmit. Moreover, we even are able to eliminate most of such 3844 * second order effects, if we apply some small "replay" window (~RTO) 3845 * to timestamp space. 3846 * 3847 * All these measures still do not guarantee that we reject wrapped ACKs 3848 * on networks with high bandwidth, when sequence space is recycled fastly, 3849 * but it guarantees that such events will be very rare and do not affect 3850 * connection seriously. This doesn't look nice, but alas, PAWS is really 3851 * buggy extension. 3852 * 3853 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3854 * states that events when retransmit arrives after original data are rare. 3855 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3856 * the biggest problem on large power networks even with minor reordering. 3857 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3858 * up to bandwidth of 18Gigabit/sec. 8) ] 3859 */ 3860 3861 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3862 { 3863 const struct tcp_sock *tp = tcp_sk(sk); 3864 const struct tcphdr *th = tcp_hdr(skb); 3865 u32 seq = TCP_SKB_CB(skb)->seq; 3866 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3867 3868 return (/* 1. Pure ACK with correct sequence number. */ 3869 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3870 3871 /* 2. ... and duplicate ACK. */ 3872 ack == tp->snd_una && 3873 3874 /* 3. ... and does not update window. */ 3875 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3876 3877 /* 4. ... and sits in replay window. */ 3878 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3879 } 3880 3881 static inline bool tcp_paws_discard(const struct sock *sk, 3882 const struct sk_buff *skb) 3883 { 3884 const struct tcp_sock *tp = tcp_sk(sk); 3885 3886 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3887 !tcp_disordered_ack(sk, skb); 3888 } 3889 3890 /* Check segment sequence number for validity. 3891 * 3892 * Segment controls are considered valid, if the segment 3893 * fits to the window after truncation to the window. Acceptability 3894 * of data (and SYN, FIN, of course) is checked separately. 3895 * See tcp_data_queue(), for example. 3896 * 3897 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3898 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3899 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3900 * (borrowed from freebsd) 3901 */ 3902 3903 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3904 { 3905 return !before(end_seq, tp->rcv_wup) && 3906 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3907 } 3908 3909 /* When we get a reset we do this. */ 3910 void tcp_reset(struct sock *sk) 3911 { 3912 /* We want the right error as BSD sees it (and indeed as we do). */ 3913 switch (sk->sk_state) { 3914 case TCP_SYN_SENT: 3915 sk->sk_err = ECONNREFUSED; 3916 break; 3917 case TCP_CLOSE_WAIT: 3918 sk->sk_err = EPIPE; 3919 break; 3920 case TCP_CLOSE: 3921 return; 3922 default: 3923 sk->sk_err = ECONNRESET; 3924 } 3925 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3926 smp_wmb(); 3927 3928 if (!sock_flag(sk, SOCK_DEAD)) 3929 sk->sk_error_report(sk); 3930 3931 tcp_done(sk); 3932 } 3933 3934 /* 3935 * Process the FIN bit. This now behaves as it is supposed to work 3936 * and the FIN takes effect when it is validly part of sequence 3937 * space. Not before when we get holes. 3938 * 3939 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3940 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3941 * TIME-WAIT) 3942 * 3943 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3944 * close and we go into CLOSING (and later onto TIME-WAIT) 3945 * 3946 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3947 */ 3948 static void tcp_fin(struct sock *sk) 3949 { 3950 struct tcp_sock *tp = tcp_sk(sk); 3951 const struct dst_entry *dst; 3952 3953 inet_csk_schedule_ack(sk); 3954 3955 sk->sk_shutdown |= RCV_SHUTDOWN; 3956 sock_set_flag(sk, SOCK_DONE); 3957 3958 switch (sk->sk_state) { 3959 case TCP_SYN_RECV: 3960 case TCP_ESTABLISHED: 3961 /* Move to CLOSE_WAIT */ 3962 tcp_set_state(sk, TCP_CLOSE_WAIT); 3963 dst = __sk_dst_get(sk); 3964 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3965 inet_csk(sk)->icsk_ack.pingpong = 1; 3966 break; 3967 3968 case TCP_CLOSE_WAIT: 3969 case TCP_CLOSING: 3970 /* Received a retransmission of the FIN, do 3971 * nothing. 3972 */ 3973 break; 3974 case TCP_LAST_ACK: 3975 /* RFC793: Remain in the LAST-ACK state. */ 3976 break; 3977 3978 case TCP_FIN_WAIT1: 3979 /* This case occurs when a simultaneous close 3980 * happens, we must ack the received FIN and 3981 * enter the CLOSING state. 3982 */ 3983 tcp_send_ack(sk); 3984 tcp_set_state(sk, TCP_CLOSING); 3985 break; 3986 case TCP_FIN_WAIT2: 3987 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3988 tcp_send_ack(sk); 3989 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3990 break; 3991 default: 3992 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3993 * cases we should never reach this piece of code. 3994 */ 3995 pr_err("%s: Impossible, sk->sk_state=%d\n", 3996 __func__, sk->sk_state); 3997 break; 3998 } 3999 4000 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4001 * Probably, we should reset in this case. For now drop them. 4002 */ 4003 __skb_queue_purge(&tp->out_of_order_queue); 4004 if (tcp_is_sack(tp)) 4005 tcp_sack_reset(&tp->rx_opt); 4006 sk_mem_reclaim(sk); 4007 4008 if (!sock_flag(sk, SOCK_DEAD)) { 4009 sk->sk_state_change(sk); 4010 4011 /* Do not send POLL_HUP for half duplex close. */ 4012 if (sk->sk_shutdown == SHUTDOWN_MASK || 4013 sk->sk_state == TCP_CLOSE) 4014 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4015 else 4016 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4017 } 4018 } 4019 4020 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4021 u32 end_seq) 4022 { 4023 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4024 if (before(seq, sp->start_seq)) 4025 sp->start_seq = seq; 4026 if (after(end_seq, sp->end_seq)) 4027 sp->end_seq = end_seq; 4028 return true; 4029 } 4030 return false; 4031 } 4032 4033 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4034 { 4035 struct tcp_sock *tp = tcp_sk(sk); 4036 4037 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4038 int mib_idx; 4039 4040 if (before(seq, tp->rcv_nxt)) 4041 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4042 else 4043 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4044 4045 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4046 4047 tp->rx_opt.dsack = 1; 4048 tp->duplicate_sack[0].start_seq = seq; 4049 tp->duplicate_sack[0].end_seq = end_seq; 4050 } 4051 } 4052 4053 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4054 { 4055 struct tcp_sock *tp = tcp_sk(sk); 4056 4057 if (!tp->rx_opt.dsack) 4058 tcp_dsack_set(sk, seq, end_seq); 4059 else 4060 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4061 } 4062 4063 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4064 { 4065 struct tcp_sock *tp = tcp_sk(sk); 4066 4067 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4068 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4069 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4070 tcp_enter_quickack_mode(sk); 4071 4072 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4073 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4074 4075 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4076 end_seq = tp->rcv_nxt; 4077 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4078 } 4079 } 4080 4081 tcp_send_ack(sk); 4082 } 4083 4084 /* These routines update the SACK block as out-of-order packets arrive or 4085 * in-order packets close up the sequence space. 4086 */ 4087 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4088 { 4089 int this_sack; 4090 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4091 struct tcp_sack_block *swalk = sp + 1; 4092 4093 /* See if the recent change to the first SACK eats into 4094 * or hits the sequence space of other SACK blocks, if so coalesce. 4095 */ 4096 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4097 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4098 int i; 4099 4100 /* Zap SWALK, by moving every further SACK up by one slot. 4101 * Decrease num_sacks. 4102 */ 4103 tp->rx_opt.num_sacks--; 4104 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4105 sp[i] = sp[i + 1]; 4106 continue; 4107 } 4108 this_sack++, swalk++; 4109 } 4110 } 4111 4112 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4113 { 4114 struct tcp_sock *tp = tcp_sk(sk); 4115 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4116 int cur_sacks = tp->rx_opt.num_sacks; 4117 int this_sack; 4118 4119 if (!cur_sacks) 4120 goto new_sack; 4121 4122 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4123 if (tcp_sack_extend(sp, seq, end_seq)) { 4124 /* Rotate this_sack to the first one. */ 4125 for (; this_sack > 0; this_sack--, sp--) 4126 swap(*sp, *(sp - 1)); 4127 if (cur_sacks > 1) 4128 tcp_sack_maybe_coalesce(tp); 4129 return; 4130 } 4131 } 4132 4133 /* Could not find an adjacent existing SACK, build a new one, 4134 * put it at the front, and shift everyone else down. We 4135 * always know there is at least one SACK present already here. 4136 * 4137 * If the sack array is full, forget about the last one. 4138 */ 4139 if (this_sack >= TCP_NUM_SACKS) { 4140 this_sack--; 4141 tp->rx_opt.num_sacks--; 4142 sp--; 4143 } 4144 for (; this_sack > 0; this_sack--, sp--) 4145 *sp = *(sp - 1); 4146 4147 new_sack: 4148 /* Build the new head SACK, and we're done. */ 4149 sp->start_seq = seq; 4150 sp->end_seq = end_seq; 4151 tp->rx_opt.num_sacks++; 4152 } 4153 4154 /* RCV.NXT advances, some SACKs should be eaten. */ 4155 4156 static void tcp_sack_remove(struct tcp_sock *tp) 4157 { 4158 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4159 int num_sacks = tp->rx_opt.num_sacks; 4160 int this_sack; 4161 4162 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4163 if (skb_queue_empty(&tp->out_of_order_queue)) { 4164 tp->rx_opt.num_sacks = 0; 4165 return; 4166 } 4167 4168 for (this_sack = 0; this_sack < num_sacks;) { 4169 /* Check if the start of the sack is covered by RCV.NXT. */ 4170 if (!before(tp->rcv_nxt, sp->start_seq)) { 4171 int i; 4172 4173 /* RCV.NXT must cover all the block! */ 4174 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4175 4176 /* Zap this SACK, by moving forward any other SACKS. */ 4177 for (i = this_sack+1; i < num_sacks; i++) 4178 tp->selective_acks[i-1] = tp->selective_acks[i]; 4179 num_sacks--; 4180 continue; 4181 } 4182 this_sack++; 4183 sp++; 4184 } 4185 tp->rx_opt.num_sacks = num_sacks; 4186 } 4187 4188 /** 4189 * tcp_try_coalesce - try to merge skb to prior one 4190 * @sk: socket 4191 * @to: prior buffer 4192 * @from: buffer to add in queue 4193 * @fragstolen: pointer to boolean 4194 * 4195 * Before queueing skb @from after @to, try to merge them 4196 * to reduce overall memory use and queue lengths, if cost is small. 4197 * Packets in ofo or receive queues can stay a long time. 4198 * Better try to coalesce them right now to avoid future collapses. 4199 * Returns true if caller should free @from instead of queueing it 4200 */ 4201 static bool tcp_try_coalesce(struct sock *sk, 4202 struct sk_buff *to, 4203 struct sk_buff *from, 4204 bool *fragstolen) 4205 { 4206 int delta; 4207 4208 *fragstolen = false; 4209 4210 /* Its possible this segment overlaps with prior segment in queue */ 4211 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4212 return false; 4213 4214 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4215 return false; 4216 4217 atomic_add(delta, &sk->sk_rmem_alloc); 4218 sk_mem_charge(sk, delta); 4219 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4220 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4221 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4222 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4223 return true; 4224 } 4225 4226 /* This one checks to see if we can put data from the 4227 * out_of_order queue into the receive_queue. 4228 */ 4229 static void tcp_ofo_queue(struct sock *sk) 4230 { 4231 struct tcp_sock *tp = tcp_sk(sk); 4232 __u32 dsack_high = tp->rcv_nxt; 4233 struct sk_buff *skb, *tail; 4234 bool fragstolen, eaten; 4235 4236 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4237 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4238 break; 4239 4240 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4241 __u32 dsack = dsack_high; 4242 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4243 dsack_high = TCP_SKB_CB(skb)->end_seq; 4244 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4245 } 4246 4247 __skb_unlink(skb, &tp->out_of_order_queue); 4248 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4249 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4250 __kfree_skb(skb); 4251 continue; 4252 } 4253 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4254 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4255 TCP_SKB_CB(skb)->end_seq); 4256 4257 tail = skb_peek_tail(&sk->sk_receive_queue); 4258 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4259 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4260 if (!eaten) 4261 __skb_queue_tail(&sk->sk_receive_queue, skb); 4262 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4263 tcp_fin(sk); 4264 if (eaten) 4265 kfree_skb_partial(skb, fragstolen); 4266 } 4267 } 4268 4269 static bool tcp_prune_ofo_queue(struct sock *sk); 4270 static int tcp_prune_queue(struct sock *sk); 4271 4272 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4273 unsigned int size) 4274 { 4275 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4276 !sk_rmem_schedule(sk, skb, size)) { 4277 4278 if (tcp_prune_queue(sk) < 0) 4279 return -1; 4280 4281 if (!sk_rmem_schedule(sk, skb, size)) { 4282 if (!tcp_prune_ofo_queue(sk)) 4283 return -1; 4284 4285 if (!sk_rmem_schedule(sk, skb, size)) 4286 return -1; 4287 } 4288 } 4289 return 0; 4290 } 4291 4292 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4293 { 4294 struct tcp_sock *tp = tcp_sk(sk); 4295 struct sk_buff *skb1; 4296 u32 seq, end_seq; 4297 4298 tcp_ecn_check_ce(tp, skb); 4299 4300 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4301 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4302 __kfree_skb(skb); 4303 return; 4304 } 4305 4306 /* Disable header prediction. */ 4307 tp->pred_flags = 0; 4308 inet_csk_schedule_ack(sk); 4309 4310 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4311 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4312 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4313 4314 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4315 if (!skb1) { 4316 /* Initial out of order segment, build 1 SACK. */ 4317 if (tcp_is_sack(tp)) { 4318 tp->rx_opt.num_sacks = 1; 4319 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4320 tp->selective_acks[0].end_seq = 4321 TCP_SKB_CB(skb)->end_seq; 4322 } 4323 __skb_queue_head(&tp->out_of_order_queue, skb); 4324 goto end; 4325 } 4326 4327 seq = TCP_SKB_CB(skb)->seq; 4328 end_seq = TCP_SKB_CB(skb)->end_seq; 4329 4330 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4331 bool fragstolen; 4332 4333 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4334 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4335 } else { 4336 tcp_grow_window(sk, skb); 4337 kfree_skb_partial(skb, fragstolen); 4338 skb = NULL; 4339 } 4340 4341 if (!tp->rx_opt.num_sacks || 4342 tp->selective_acks[0].end_seq != seq) 4343 goto add_sack; 4344 4345 /* Common case: data arrive in order after hole. */ 4346 tp->selective_acks[0].end_seq = end_seq; 4347 goto end; 4348 } 4349 4350 /* Find place to insert this segment. */ 4351 while (1) { 4352 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4353 break; 4354 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4355 skb1 = NULL; 4356 break; 4357 } 4358 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4359 } 4360 4361 /* Do skb overlap to previous one? */ 4362 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4363 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4364 /* All the bits are present. Drop. */ 4365 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4366 __kfree_skb(skb); 4367 skb = NULL; 4368 tcp_dsack_set(sk, seq, end_seq); 4369 goto add_sack; 4370 } 4371 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4372 /* Partial overlap. */ 4373 tcp_dsack_set(sk, seq, 4374 TCP_SKB_CB(skb1)->end_seq); 4375 } else { 4376 if (skb_queue_is_first(&tp->out_of_order_queue, 4377 skb1)) 4378 skb1 = NULL; 4379 else 4380 skb1 = skb_queue_prev( 4381 &tp->out_of_order_queue, 4382 skb1); 4383 } 4384 } 4385 if (!skb1) 4386 __skb_queue_head(&tp->out_of_order_queue, skb); 4387 else 4388 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4389 4390 /* And clean segments covered by new one as whole. */ 4391 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4392 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4393 4394 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4395 break; 4396 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4397 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4398 end_seq); 4399 break; 4400 } 4401 __skb_unlink(skb1, &tp->out_of_order_queue); 4402 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4403 TCP_SKB_CB(skb1)->end_seq); 4404 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4405 __kfree_skb(skb1); 4406 } 4407 4408 add_sack: 4409 if (tcp_is_sack(tp)) 4410 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4411 end: 4412 if (skb) { 4413 tcp_grow_window(sk, skb); 4414 skb_set_owner_r(skb, sk); 4415 } 4416 } 4417 4418 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4419 bool *fragstolen) 4420 { 4421 int eaten; 4422 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4423 4424 __skb_pull(skb, hdrlen); 4425 eaten = (tail && 4426 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4427 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4428 if (!eaten) { 4429 __skb_queue_tail(&sk->sk_receive_queue, skb); 4430 skb_set_owner_r(skb, sk); 4431 } 4432 return eaten; 4433 } 4434 4435 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4436 { 4437 struct sk_buff *skb; 4438 bool fragstolen; 4439 4440 if (size == 0) 4441 return 0; 4442 4443 skb = alloc_skb(size, sk->sk_allocation); 4444 if (!skb) 4445 goto err; 4446 4447 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4448 goto err_free; 4449 4450 if (memcpy_from_msg(skb_put(skb, size), msg, size)) 4451 goto err_free; 4452 4453 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4454 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4455 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4456 4457 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4458 WARN_ON_ONCE(fragstolen); /* should not happen */ 4459 __kfree_skb(skb); 4460 } 4461 return size; 4462 4463 err_free: 4464 kfree_skb(skb); 4465 err: 4466 return -ENOMEM; 4467 } 4468 4469 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4470 { 4471 struct tcp_sock *tp = tcp_sk(sk); 4472 int eaten = -1; 4473 bool fragstolen = false; 4474 4475 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4476 goto drop; 4477 4478 skb_dst_drop(skb); 4479 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4480 4481 tcp_ecn_accept_cwr(tp, skb); 4482 4483 tp->rx_opt.dsack = 0; 4484 4485 /* Queue data for delivery to the user. 4486 * Packets in sequence go to the receive queue. 4487 * Out of sequence packets to the out_of_order_queue. 4488 */ 4489 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4490 if (tcp_receive_window(tp) == 0) 4491 goto out_of_window; 4492 4493 /* Ok. In sequence. In window. */ 4494 if (tp->ucopy.task == current && 4495 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4496 sock_owned_by_user(sk) && !tp->urg_data) { 4497 int chunk = min_t(unsigned int, skb->len, 4498 tp->ucopy.len); 4499 4500 __set_current_state(TASK_RUNNING); 4501 4502 local_bh_enable(); 4503 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4504 tp->ucopy.len -= chunk; 4505 tp->copied_seq += chunk; 4506 eaten = (chunk == skb->len); 4507 tcp_rcv_space_adjust(sk); 4508 } 4509 local_bh_disable(); 4510 } 4511 4512 if (eaten <= 0) { 4513 queue_and_out: 4514 if (eaten < 0) { 4515 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4516 sk_forced_mem_schedule(sk, skb->truesize); 4517 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4518 goto drop; 4519 } 4520 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4521 } 4522 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4523 if (skb->len) 4524 tcp_event_data_recv(sk, skb); 4525 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4526 tcp_fin(sk); 4527 4528 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4529 tcp_ofo_queue(sk); 4530 4531 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4532 * gap in queue is filled. 4533 */ 4534 if (skb_queue_empty(&tp->out_of_order_queue)) 4535 inet_csk(sk)->icsk_ack.pingpong = 0; 4536 } 4537 4538 if (tp->rx_opt.num_sacks) 4539 tcp_sack_remove(tp); 4540 4541 tcp_fast_path_check(sk); 4542 4543 if (eaten > 0) 4544 kfree_skb_partial(skb, fragstolen); 4545 if (!sock_flag(sk, SOCK_DEAD)) 4546 sk->sk_data_ready(sk); 4547 return; 4548 } 4549 4550 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4551 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4552 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4553 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4554 4555 out_of_window: 4556 tcp_enter_quickack_mode(sk); 4557 inet_csk_schedule_ack(sk); 4558 drop: 4559 __kfree_skb(skb); 4560 return; 4561 } 4562 4563 /* Out of window. F.e. zero window probe. */ 4564 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4565 goto out_of_window; 4566 4567 tcp_enter_quickack_mode(sk); 4568 4569 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4570 /* Partial packet, seq < rcv_next < end_seq */ 4571 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4572 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4573 TCP_SKB_CB(skb)->end_seq); 4574 4575 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4576 4577 /* If window is closed, drop tail of packet. But after 4578 * remembering D-SACK for its head made in previous line. 4579 */ 4580 if (!tcp_receive_window(tp)) 4581 goto out_of_window; 4582 goto queue_and_out; 4583 } 4584 4585 tcp_data_queue_ofo(sk, skb); 4586 } 4587 4588 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4589 struct sk_buff_head *list) 4590 { 4591 struct sk_buff *next = NULL; 4592 4593 if (!skb_queue_is_last(list, skb)) 4594 next = skb_queue_next(list, skb); 4595 4596 __skb_unlink(skb, list); 4597 __kfree_skb(skb); 4598 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4599 4600 return next; 4601 } 4602 4603 /* Collapse contiguous sequence of skbs head..tail with 4604 * sequence numbers start..end. 4605 * 4606 * If tail is NULL, this means until the end of the list. 4607 * 4608 * Segments with FIN/SYN are not collapsed (only because this 4609 * simplifies code) 4610 */ 4611 static void 4612 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4613 struct sk_buff *head, struct sk_buff *tail, 4614 u32 start, u32 end) 4615 { 4616 struct sk_buff *skb, *n; 4617 bool end_of_skbs; 4618 4619 /* First, check that queue is collapsible and find 4620 * the point where collapsing can be useful. */ 4621 skb = head; 4622 restart: 4623 end_of_skbs = true; 4624 skb_queue_walk_from_safe(list, skb, n) { 4625 if (skb == tail) 4626 break; 4627 /* No new bits? It is possible on ofo queue. */ 4628 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4629 skb = tcp_collapse_one(sk, skb, list); 4630 if (!skb) 4631 break; 4632 goto restart; 4633 } 4634 4635 /* The first skb to collapse is: 4636 * - not SYN/FIN and 4637 * - bloated or contains data before "start" or 4638 * overlaps to the next one. 4639 */ 4640 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4641 (tcp_win_from_space(skb->truesize) > skb->len || 4642 before(TCP_SKB_CB(skb)->seq, start))) { 4643 end_of_skbs = false; 4644 break; 4645 } 4646 4647 if (!skb_queue_is_last(list, skb)) { 4648 struct sk_buff *next = skb_queue_next(list, skb); 4649 if (next != tail && 4650 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4651 end_of_skbs = false; 4652 break; 4653 } 4654 } 4655 4656 /* Decided to skip this, advance start seq. */ 4657 start = TCP_SKB_CB(skb)->end_seq; 4658 } 4659 if (end_of_skbs || 4660 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4661 return; 4662 4663 while (before(start, end)) { 4664 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4665 struct sk_buff *nskb; 4666 4667 nskb = alloc_skb(copy, GFP_ATOMIC); 4668 if (!nskb) 4669 return; 4670 4671 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4672 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4673 __skb_queue_before(list, skb, nskb); 4674 skb_set_owner_r(nskb, sk); 4675 4676 /* Copy data, releasing collapsed skbs. */ 4677 while (copy > 0) { 4678 int offset = start - TCP_SKB_CB(skb)->seq; 4679 int size = TCP_SKB_CB(skb)->end_seq - start; 4680 4681 BUG_ON(offset < 0); 4682 if (size > 0) { 4683 size = min(copy, size); 4684 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4685 BUG(); 4686 TCP_SKB_CB(nskb)->end_seq += size; 4687 copy -= size; 4688 start += size; 4689 } 4690 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4691 skb = tcp_collapse_one(sk, skb, list); 4692 if (!skb || 4693 skb == tail || 4694 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4695 return; 4696 } 4697 } 4698 } 4699 } 4700 4701 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4702 * and tcp_collapse() them until all the queue is collapsed. 4703 */ 4704 static void tcp_collapse_ofo_queue(struct sock *sk) 4705 { 4706 struct tcp_sock *tp = tcp_sk(sk); 4707 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4708 struct sk_buff *head; 4709 u32 start, end; 4710 4711 if (!skb) 4712 return; 4713 4714 start = TCP_SKB_CB(skb)->seq; 4715 end = TCP_SKB_CB(skb)->end_seq; 4716 head = skb; 4717 4718 for (;;) { 4719 struct sk_buff *next = NULL; 4720 4721 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4722 next = skb_queue_next(&tp->out_of_order_queue, skb); 4723 skb = next; 4724 4725 /* Segment is terminated when we see gap or when 4726 * we are at the end of all the queue. */ 4727 if (!skb || 4728 after(TCP_SKB_CB(skb)->seq, end) || 4729 before(TCP_SKB_CB(skb)->end_seq, start)) { 4730 tcp_collapse(sk, &tp->out_of_order_queue, 4731 head, skb, start, end); 4732 head = skb; 4733 if (!skb) 4734 break; 4735 /* Start new segment */ 4736 start = TCP_SKB_CB(skb)->seq; 4737 end = TCP_SKB_CB(skb)->end_seq; 4738 } else { 4739 if (before(TCP_SKB_CB(skb)->seq, start)) 4740 start = TCP_SKB_CB(skb)->seq; 4741 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4742 end = TCP_SKB_CB(skb)->end_seq; 4743 } 4744 } 4745 } 4746 4747 /* 4748 * Purge the out-of-order queue. 4749 * Return true if queue was pruned. 4750 */ 4751 static bool tcp_prune_ofo_queue(struct sock *sk) 4752 { 4753 struct tcp_sock *tp = tcp_sk(sk); 4754 bool res = false; 4755 4756 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4757 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4758 __skb_queue_purge(&tp->out_of_order_queue); 4759 4760 /* Reset SACK state. A conforming SACK implementation will 4761 * do the same at a timeout based retransmit. When a connection 4762 * is in a sad state like this, we care only about integrity 4763 * of the connection not performance. 4764 */ 4765 if (tp->rx_opt.sack_ok) 4766 tcp_sack_reset(&tp->rx_opt); 4767 sk_mem_reclaim(sk); 4768 res = true; 4769 } 4770 return res; 4771 } 4772 4773 /* Reduce allocated memory if we can, trying to get 4774 * the socket within its memory limits again. 4775 * 4776 * Return less than zero if we should start dropping frames 4777 * until the socket owning process reads some of the data 4778 * to stabilize the situation. 4779 */ 4780 static int tcp_prune_queue(struct sock *sk) 4781 { 4782 struct tcp_sock *tp = tcp_sk(sk); 4783 4784 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4785 4786 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4787 4788 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4789 tcp_clamp_window(sk); 4790 else if (tcp_under_memory_pressure(sk)) 4791 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4792 4793 tcp_collapse_ofo_queue(sk); 4794 if (!skb_queue_empty(&sk->sk_receive_queue)) 4795 tcp_collapse(sk, &sk->sk_receive_queue, 4796 skb_peek(&sk->sk_receive_queue), 4797 NULL, 4798 tp->copied_seq, tp->rcv_nxt); 4799 sk_mem_reclaim(sk); 4800 4801 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4802 return 0; 4803 4804 /* Collapsing did not help, destructive actions follow. 4805 * This must not ever occur. */ 4806 4807 tcp_prune_ofo_queue(sk); 4808 4809 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4810 return 0; 4811 4812 /* If we are really being abused, tell the caller to silently 4813 * drop receive data on the floor. It will get retransmitted 4814 * and hopefully then we'll have sufficient space. 4815 */ 4816 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4817 4818 /* Massive buffer overcommit. */ 4819 tp->pred_flags = 0; 4820 return -1; 4821 } 4822 4823 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4824 { 4825 const struct tcp_sock *tp = tcp_sk(sk); 4826 4827 /* If the user specified a specific send buffer setting, do 4828 * not modify it. 4829 */ 4830 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4831 return false; 4832 4833 /* If we are under global TCP memory pressure, do not expand. */ 4834 if (tcp_under_memory_pressure(sk)) 4835 return false; 4836 4837 /* If we are under soft global TCP memory pressure, do not expand. */ 4838 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4839 return false; 4840 4841 /* If we filled the congestion window, do not expand. */ 4842 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4843 return false; 4844 4845 return true; 4846 } 4847 4848 /* When incoming ACK allowed to free some skb from write_queue, 4849 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4850 * on the exit from tcp input handler. 4851 * 4852 * PROBLEM: sndbuf expansion does not work well with largesend. 4853 */ 4854 static void tcp_new_space(struct sock *sk) 4855 { 4856 struct tcp_sock *tp = tcp_sk(sk); 4857 4858 if (tcp_should_expand_sndbuf(sk)) { 4859 tcp_sndbuf_expand(sk); 4860 tp->snd_cwnd_stamp = tcp_time_stamp; 4861 } 4862 4863 sk->sk_write_space(sk); 4864 } 4865 4866 static void tcp_check_space(struct sock *sk) 4867 { 4868 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4869 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4870 /* pairs with tcp_poll() */ 4871 smp_mb__after_atomic(); 4872 if (sk->sk_socket && 4873 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4874 tcp_new_space(sk); 4875 } 4876 } 4877 4878 static inline void tcp_data_snd_check(struct sock *sk) 4879 { 4880 tcp_push_pending_frames(sk); 4881 tcp_check_space(sk); 4882 } 4883 4884 /* 4885 * Check if sending an ack is needed. 4886 */ 4887 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4888 { 4889 struct tcp_sock *tp = tcp_sk(sk); 4890 4891 /* More than one full frame received... */ 4892 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4893 /* ... and right edge of window advances far enough. 4894 * (tcp_recvmsg() will send ACK otherwise). Or... 4895 */ 4896 __tcp_select_window(sk) >= tp->rcv_wnd) || 4897 /* We ACK each frame or... */ 4898 tcp_in_quickack_mode(sk) || 4899 /* We have out of order data. */ 4900 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4901 /* Then ack it now */ 4902 tcp_send_ack(sk); 4903 } else { 4904 /* Else, send delayed ack. */ 4905 tcp_send_delayed_ack(sk); 4906 } 4907 } 4908 4909 static inline void tcp_ack_snd_check(struct sock *sk) 4910 { 4911 if (!inet_csk_ack_scheduled(sk)) { 4912 /* We sent a data segment already. */ 4913 return; 4914 } 4915 __tcp_ack_snd_check(sk, 1); 4916 } 4917 4918 /* 4919 * This routine is only called when we have urgent data 4920 * signaled. Its the 'slow' part of tcp_urg. It could be 4921 * moved inline now as tcp_urg is only called from one 4922 * place. We handle URGent data wrong. We have to - as 4923 * BSD still doesn't use the correction from RFC961. 4924 * For 1003.1g we should support a new option TCP_STDURG to permit 4925 * either form (or just set the sysctl tcp_stdurg). 4926 */ 4927 4928 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4929 { 4930 struct tcp_sock *tp = tcp_sk(sk); 4931 u32 ptr = ntohs(th->urg_ptr); 4932 4933 if (ptr && !sysctl_tcp_stdurg) 4934 ptr--; 4935 ptr += ntohl(th->seq); 4936 4937 /* Ignore urgent data that we've already seen and read. */ 4938 if (after(tp->copied_seq, ptr)) 4939 return; 4940 4941 /* Do not replay urg ptr. 4942 * 4943 * NOTE: interesting situation not covered by specs. 4944 * Misbehaving sender may send urg ptr, pointing to segment, 4945 * which we already have in ofo queue. We are not able to fetch 4946 * such data and will stay in TCP_URG_NOTYET until will be eaten 4947 * by recvmsg(). Seems, we are not obliged to handle such wicked 4948 * situations. But it is worth to think about possibility of some 4949 * DoSes using some hypothetical application level deadlock. 4950 */ 4951 if (before(ptr, tp->rcv_nxt)) 4952 return; 4953 4954 /* Do we already have a newer (or duplicate) urgent pointer? */ 4955 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4956 return; 4957 4958 /* Tell the world about our new urgent pointer. */ 4959 sk_send_sigurg(sk); 4960 4961 /* We may be adding urgent data when the last byte read was 4962 * urgent. To do this requires some care. We cannot just ignore 4963 * tp->copied_seq since we would read the last urgent byte again 4964 * as data, nor can we alter copied_seq until this data arrives 4965 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4966 * 4967 * NOTE. Double Dutch. Rendering to plain English: author of comment 4968 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4969 * and expect that both A and B disappear from stream. This is _wrong_. 4970 * Though this happens in BSD with high probability, this is occasional. 4971 * Any application relying on this is buggy. Note also, that fix "works" 4972 * only in this artificial test. Insert some normal data between A and B and we will 4973 * decline of BSD again. Verdict: it is better to remove to trap 4974 * buggy users. 4975 */ 4976 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4977 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4978 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4979 tp->copied_seq++; 4980 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4981 __skb_unlink(skb, &sk->sk_receive_queue); 4982 __kfree_skb(skb); 4983 } 4984 } 4985 4986 tp->urg_data = TCP_URG_NOTYET; 4987 tp->urg_seq = ptr; 4988 4989 /* Disable header prediction. */ 4990 tp->pred_flags = 0; 4991 } 4992 4993 /* This is the 'fast' part of urgent handling. */ 4994 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4995 { 4996 struct tcp_sock *tp = tcp_sk(sk); 4997 4998 /* Check if we get a new urgent pointer - normally not. */ 4999 if (th->urg) 5000 tcp_check_urg(sk, th); 5001 5002 /* Do we wait for any urgent data? - normally not... */ 5003 if (tp->urg_data == TCP_URG_NOTYET) { 5004 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5005 th->syn; 5006 5007 /* Is the urgent pointer pointing into this packet? */ 5008 if (ptr < skb->len) { 5009 u8 tmp; 5010 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5011 BUG(); 5012 tp->urg_data = TCP_URG_VALID | tmp; 5013 if (!sock_flag(sk, SOCK_DEAD)) 5014 sk->sk_data_ready(sk); 5015 } 5016 } 5017 } 5018 5019 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5020 { 5021 struct tcp_sock *tp = tcp_sk(sk); 5022 int chunk = skb->len - hlen; 5023 int err; 5024 5025 local_bh_enable(); 5026 if (skb_csum_unnecessary(skb)) 5027 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5028 else 5029 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5030 5031 if (!err) { 5032 tp->ucopy.len -= chunk; 5033 tp->copied_seq += chunk; 5034 tcp_rcv_space_adjust(sk); 5035 } 5036 5037 local_bh_disable(); 5038 return err; 5039 } 5040 5041 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5042 struct sk_buff *skb) 5043 { 5044 __sum16 result; 5045 5046 if (sock_owned_by_user(sk)) { 5047 local_bh_enable(); 5048 result = __tcp_checksum_complete(skb); 5049 local_bh_disable(); 5050 } else { 5051 result = __tcp_checksum_complete(skb); 5052 } 5053 return result; 5054 } 5055 5056 static inline bool tcp_checksum_complete_user(struct sock *sk, 5057 struct sk_buff *skb) 5058 { 5059 return !skb_csum_unnecessary(skb) && 5060 __tcp_checksum_complete_user(sk, skb); 5061 } 5062 5063 /* Does PAWS and seqno based validation of an incoming segment, flags will 5064 * play significant role here. 5065 */ 5066 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5067 const struct tcphdr *th, int syn_inerr) 5068 { 5069 struct tcp_sock *tp = tcp_sk(sk); 5070 5071 /* RFC1323: H1. Apply PAWS check first. */ 5072 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5073 tcp_paws_discard(sk, skb)) { 5074 if (!th->rst) { 5075 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5076 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5077 LINUX_MIB_TCPACKSKIPPEDPAWS, 5078 &tp->last_oow_ack_time)) 5079 tcp_send_dupack(sk, skb); 5080 goto discard; 5081 } 5082 /* Reset is accepted even if it did not pass PAWS. */ 5083 } 5084 5085 /* Step 1: check sequence number */ 5086 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5087 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5088 * (RST) segments are validated by checking their SEQ-fields." 5089 * And page 69: "If an incoming segment is not acceptable, 5090 * an acknowledgment should be sent in reply (unless the RST 5091 * bit is set, if so drop the segment and return)". 5092 */ 5093 if (!th->rst) { 5094 if (th->syn) 5095 goto syn_challenge; 5096 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5097 LINUX_MIB_TCPACKSKIPPEDSEQ, 5098 &tp->last_oow_ack_time)) 5099 tcp_send_dupack(sk, skb); 5100 } 5101 goto discard; 5102 } 5103 5104 /* Step 2: check RST bit */ 5105 if (th->rst) { 5106 /* RFC 5961 3.2 : 5107 * If sequence number exactly matches RCV.NXT, then 5108 * RESET the connection 5109 * else 5110 * Send a challenge ACK 5111 */ 5112 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5113 tcp_reset(sk); 5114 else 5115 tcp_send_challenge_ack(sk, skb); 5116 goto discard; 5117 } 5118 5119 /* step 3: check security and precedence [ignored] */ 5120 5121 /* step 4: Check for a SYN 5122 * RFC 5961 4.2 : Send a challenge ack 5123 */ 5124 if (th->syn) { 5125 syn_challenge: 5126 if (syn_inerr) 5127 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5128 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5129 tcp_send_challenge_ack(sk, skb); 5130 goto discard; 5131 } 5132 5133 return true; 5134 5135 discard: 5136 __kfree_skb(skb); 5137 return false; 5138 } 5139 5140 /* 5141 * TCP receive function for the ESTABLISHED state. 5142 * 5143 * It is split into a fast path and a slow path. The fast path is 5144 * disabled when: 5145 * - A zero window was announced from us - zero window probing 5146 * is only handled properly in the slow path. 5147 * - Out of order segments arrived. 5148 * - Urgent data is expected. 5149 * - There is no buffer space left 5150 * - Unexpected TCP flags/window values/header lengths are received 5151 * (detected by checking the TCP header against pred_flags) 5152 * - Data is sent in both directions. Fast path only supports pure senders 5153 * or pure receivers (this means either the sequence number or the ack 5154 * value must stay constant) 5155 * - Unexpected TCP option. 5156 * 5157 * When these conditions are not satisfied it drops into a standard 5158 * receive procedure patterned after RFC793 to handle all cases. 5159 * The first three cases are guaranteed by proper pred_flags setting, 5160 * the rest is checked inline. Fast processing is turned on in 5161 * tcp_data_queue when everything is OK. 5162 */ 5163 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5164 const struct tcphdr *th, unsigned int len) 5165 { 5166 struct tcp_sock *tp = tcp_sk(sk); 5167 5168 if (unlikely(!sk->sk_rx_dst)) 5169 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5170 /* 5171 * Header prediction. 5172 * The code loosely follows the one in the famous 5173 * "30 instruction TCP receive" Van Jacobson mail. 5174 * 5175 * Van's trick is to deposit buffers into socket queue 5176 * on a device interrupt, to call tcp_recv function 5177 * on the receive process context and checksum and copy 5178 * the buffer to user space. smart... 5179 * 5180 * Our current scheme is not silly either but we take the 5181 * extra cost of the net_bh soft interrupt processing... 5182 * We do checksum and copy also but from device to kernel. 5183 */ 5184 5185 tp->rx_opt.saw_tstamp = 0; 5186 5187 /* pred_flags is 0xS?10 << 16 + snd_wnd 5188 * if header_prediction is to be made 5189 * 'S' will always be tp->tcp_header_len >> 2 5190 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5191 * turn it off (when there are holes in the receive 5192 * space for instance) 5193 * PSH flag is ignored. 5194 */ 5195 5196 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5197 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5198 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5199 int tcp_header_len = tp->tcp_header_len; 5200 5201 /* Timestamp header prediction: tcp_header_len 5202 * is automatically equal to th->doff*4 due to pred_flags 5203 * match. 5204 */ 5205 5206 /* Check timestamp */ 5207 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5208 /* No? Slow path! */ 5209 if (!tcp_parse_aligned_timestamp(tp, th)) 5210 goto slow_path; 5211 5212 /* If PAWS failed, check it more carefully in slow path */ 5213 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5214 goto slow_path; 5215 5216 /* DO NOT update ts_recent here, if checksum fails 5217 * and timestamp was corrupted part, it will result 5218 * in a hung connection since we will drop all 5219 * future packets due to the PAWS test. 5220 */ 5221 } 5222 5223 if (len <= tcp_header_len) { 5224 /* Bulk data transfer: sender */ 5225 if (len == tcp_header_len) { 5226 /* Predicted packet is in window by definition. 5227 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5228 * Hence, check seq<=rcv_wup reduces to: 5229 */ 5230 if (tcp_header_len == 5231 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5232 tp->rcv_nxt == tp->rcv_wup) 5233 tcp_store_ts_recent(tp); 5234 5235 /* We know that such packets are checksummed 5236 * on entry. 5237 */ 5238 tcp_ack(sk, skb, 0); 5239 __kfree_skb(skb); 5240 tcp_data_snd_check(sk); 5241 return; 5242 } else { /* Header too small */ 5243 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5244 goto discard; 5245 } 5246 } else { 5247 int eaten = 0; 5248 bool fragstolen = false; 5249 5250 if (tp->ucopy.task == current && 5251 tp->copied_seq == tp->rcv_nxt && 5252 len - tcp_header_len <= tp->ucopy.len && 5253 sock_owned_by_user(sk)) { 5254 __set_current_state(TASK_RUNNING); 5255 5256 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5257 /* Predicted packet is in window by definition. 5258 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5259 * Hence, check seq<=rcv_wup reduces to: 5260 */ 5261 if (tcp_header_len == 5262 (sizeof(struct tcphdr) + 5263 TCPOLEN_TSTAMP_ALIGNED) && 5264 tp->rcv_nxt == tp->rcv_wup) 5265 tcp_store_ts_recent(tp); 5266 5267 tcp_rcv_rtt_measure_ts(sk, skb); 5268 5269 __skb_pull(skb, tcp_header_len); 5270 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5271 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5272 eaten = 1; 5273 } 5274 } 5275 if (!eaten) { 5276 if (tcp_checksum_complete_user(sk, skb)) 5277 goto csum_error; 5278 5279 if ((int)skb->truesize > sk->sk_forward_alloc) 5280 goto step5; 5281 5282 /* Predicted packet is in window by definition. 5283 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5284 * Hence, check seq<=rcv_wup reduces to: 5285 */ 5286 if (tcp_header_len == 5287 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5288 tp->rcv_nxt == tp->rcv_wup) 5289 tcp_store_ts_recent(tp); 5290 5291 tcp_rcv_rtt_measure_ts(sk, skb); 5292 5293 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5294 5295 /* Bulk data transfer: receiver */ 5296 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5297 &fragstolen); 5298 } 5299 5300 tcp_event_data_recv(sk, skb); 5301 5302 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5303 /* Well, only one small jumplet in fast path... */ 5304 tcp_ack(sk, skb, FLAG_DATA); 5305 tcp_data_snd_check(sk); 5306 if (!inet_csk_ack_scheduled(sk)) 5307 goto no_ack; 5308 } 5309 5310 __tcp_ack_snd_check(sk, 0); 5311 no_ack: 5312 if (eaten) 5313 kfree_skb_partial(skb, fragstolen); 5314 sk->sk_data_ready(sk); 5315 return; 5316 } 5317 } 5318 5319 slow_path: 5320 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5321 goto csum_error; 5322 5323 if (!th->ack && !th->rst && !th->syn) 5324 goto discard; 5325 5326 /* 5327 * Standard slow path. 5328 */ 5329 5330 if (!tcp_validate_incoming(sk, skb, th, 1)) 5331 return; 5332 5333 step5: 5334 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5335 goto discard; 5336 5337 tcp_rcv_rtt_measure_ts(sk, skb); 5338 5339 /* Process urgent data. */ 5340 tcp_urg(sk, skb, th); 5341 5342 /* step 7: process the segment text */ 5343 tcp_data_queue(sk, skb); 5344 5345 tcp_data_snd_check(sk); 5346 tcp_ack_snd_check(sk); 5347 return; 5348 5349 csum_error: 5350 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5351 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5352 5353 discard: 5354 __kfree_skb(skb); 5355 } 5356 EXPORT_SYMBOL(tcp_rcv_established); 5357 5358 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5359 { 5360 struct tcp_sock *tp = tcp_sk(sk); 5361 struct inet_connection_sock *icsk = inet_csk(sk); 5362 5363 tcp_set_state(sk, TCP_ESTABLISHED); 5364 5365 if (skb) { 5366 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5367 security_inet_conn_established(sk, skb); 5368 } 5369 5370 /* Make sure socket is routed, for correct metrics. */ 5371 icsk->icsk_af_ops->rebuild_header(sk); 5372 5373 tcp_init_metrics(sk); 5374 5375 tcp_init_congestion_control(sk); 5376 5377 /* Prevent spurious tcp_cwnd_restart() on first data 5378 * packet. 5379 */ 5380 tp->lsndtime = tcp_time_stamp; 5381 5382 tcp_init_buffer_space(sk); 5383 5384 if (sock_flag(sk, SOCK_KEEPOPEN)) 5385 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5386 5387 if (!tp->rx_opt.snd_wscale) 5388 __tcp_fast_path_on(tp, tp->snd_wnd); 5389 else 5390 tp->pred_flags = 0; 5391 5392 if (!sock_flag(sk, SOCK_DEAD)) { 5393 sk->sk_state_change(sk); 5394 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5395 } 5396 } 5397 5398 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5399 struct tcp_fastopen_cookie *cookie) 5400 { 5401 struct tcp_sock *tp = tcp_sk(sk); 5402 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5403 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5404 bool syn_drop = false; 5405 5406 if (mss == tp->rx_opt.user_mss) { 5407 struct tcp_options_received opt; 5408 5409 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5410 tcp_clear_options(&opt); 5411 opt.user_mss = opt.mss_clamp = 0; 5412 tcp_parse_options(synack, &opt, 0, NULL); 5413 mss = opt.mss_clamp; 5414 } 5415 5416 if (!tp->syn_fastopen) { 5417 /* Ignore an unsolicited cookie */ 5418 cookie->len = -1; 5419 } else if (tp->total_retrans) { 5420 /* SYN timed out and the SYN-ACK neither has a cookie nor 5421 * acknowledges data. Presumably the remote received only 5422 * the retransmitted (regular) SYNs: either the original 5423 * SYN-data or the corresponding SYN-ACK was dropped. 5424 */ 5425 syn_drop = (cookie->len < 0 && data); 5426 } else if (cookie->len < 0 && !tp->syn_data) { 5427 /* We requested a cookie but didn't get it. If we did not use 5428 * the (old) exp opt format then try so next time (try_exp=1). 5429 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5430 */ 5431 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5432 } 5433 5434 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5435 5436 if (data) { /* Retransmit unacked data in SYN */ 5437 tcp_for_write_queue_from(data, sk) { 5438 if (data == tcp_send_head(sk) || 5439 __tcp_retransmit_skb(sk, data)) 5440 break; 5441 } 5442 tcp_rearm_rto(sk); 5443 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5444 return true; 5445 } 5446 tp->syn_data_acked = tp->syn_data; 5447 if (tp->syn_data_acked) 5448 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5449 return false; 5450 } 5451 5452 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5453 const struct tcphdr *th, unsigned int len) 5454 { 5455 struct inet_connection_sock *icsk = inet_csk(sk); 5456 struct tcp_sock *tp = tcp_sk(sk); 5457 struct tcp_fastopen_cookie foc = { .len = -1 }; 5458 int saved_clamp = tp->rx_opt.mss_clamp; 5459 5460 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5461 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5462 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5463 5464 if (th->ack) { 5465 /* rfc793: 5466 * "If the state is SYN-SENT then 5467 * first check the ACK bit 5468 * If the ACK bit is set 5469 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5470 * a reset (unless the RST bit is set, if so drop 5471 * the segment and return)" 5472 */ 5473 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5474 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5475 goto reset_and_undo; 5476 5477 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5478 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5479 tcp_time_stamp)) { 5480 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5481 goto reset_and_undo; 5482 } 5483 5484 /* Now ACK is acceptable. 5485 * 5486 * "If the RST bit is set 5487 * If the ACK was acceptable then signal the user "error: 5488 * connection reset", drop the segment, enter CLOSED state, 5489 * delete TCB, and return." 5490 */ 5491 5492 if (th->rst) { 5493 tcp_reset(sk); 5494 goto discard; 5495 } 5496 5497 /* rfc793: 5498 * "fifth, if neither of the SYN or RST bits is set then 5499 * drop the segment and return." 5500 * 5501 * See note below! 5502 * --ANK(990513) 5503 */ 5504 if (!th->syn) 5505 goto discard_and_undo; 5506 5507 /* rfc793: 5508 * "If the SYN bit is on ... 5509 * are acceptable then ... 5510 * (our SYN has been ACKed), change the connection 5511 * state to ESTABLISHED..." 5512 */ 5513 5514 tcp_ecn_rcv_synack(tp, th); 5515 5516 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5517 tcp_ack(sk, skb, FLAG_SLOWPATH); 5518 5519 /* Ok.. it's good. Set up sequence numbers and 5520 * move to established. 5521 */ 5522 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5523 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5524 5525 /* RFC1323: The window in SYN & SYN/ACK segments is 5526 * never scaled. 5527 */ 5528 tp->snd_wnd = ntohs(th->window); 5529 5530 if (!tp->rx_opt.wscale_ok) { 5531 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5532 tp->window_clamp = min(tp->window_clamp, 65535U); 5533 } 5534 5535 if (tp->rx_opt.saw_tstamp) { 5536 tp->rx_opt.tstamp_ok = 1; 5537 tp->tcp_header_len = 5538 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5539 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5540 tcp_store_ts_recent(tp); 5541 } else { 5542 tp->tcp_header_len = sizeof(struct tcphdr); 5543 } 5544 5545 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5546 tcp_enable_fack(tp); 5547 5548 tcp_mtup_init(sk); 5549 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5550 tcp_initialize_rcv_mss(sk); 5551 5552 /* Remember, tcp_poll() does not lock socket! 5553 * Change state from SYN-SENT only after copied_seq 5554 * is initialized. */ 5555 tp->copied_seq = tp->rcv_nxt; 5556 5557 smp_mb(); 5558 5559 tcp_finish_connect(sk, skb); 5560 5561 if ((tp->syn_fastopen || tp->syn_data) && 5562 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5563 return -1; 5564 5565 if (sk->sk_write_pending || 5566 icsk->icsk_accept_queue.rskq_defer_accept || 5567 icsk->icsk_ack.pingpong) { 5568 /* Save one ACK. Data will be ready after 5569 * several ticks, if write_pending is set. 5570 * 5571 * It may be deleted, but with this feature tcpdumps 5572 * look so _wonderfully_ clever, that I was not able 5573 * to stand against the temptation 8) --ANK 5574 */ 5575 inet_csk_schedule_ack(sk); 5576 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5577 tcp_enter_quickack_mode(sk); 5578 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5579 TCP_DELACK_MAX, TCP_RTO_MAX); 5580 5581 discard: 5582 __kfree_skb(skb); 5583 return 0; 5584 } else { 5585 tcp_send_ack(sk); 5586 } 5587 return -1; 5588 } 5589 5590 /* No ACK in the segment */ 5591 5592 if (th->rst) { 5593 /* rfc793: 5594 * "If the RST bit is set 5595 * 5596 * Otherwise (no ACK) drop the segment and return." 5597 */ 5598 5599 goto discard_and_undo; 5600 } 5601 5602 /* PAWS check. */ 5603 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5604 tcp_paws_reject(&tp->rx_opt, 0)) 5605 goto discard_and_undo; 5606 5607 if (th->syn) { 5608 /* We see SYN without ACK. It is attempt of 5609 * simultaneous connect with crossed SYNs. 5610 * Particularly, it can be connect to self. 5611 */ 5612 tcp_set_state(sk, TCP_SYN_RECV); 5613 5614 if (tp->rx_opt.saw_tstamp) { 5615 tp->rx_opt.tstamp_ok = 1; 5616 tcp_store_ts_recent(tp); 5617 tp->tcp_header_len = 5618 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5619 } else { 5620 tp->tcp_header_len = sizeof(struct tcphdr); 5621 } 5622 5623 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5624 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5625 5626 /* RFC1323: The window in SYN & SYN/ACK segments is 5627 * never scaled. 5628 */ 5629 tp->snd_wnd = ntohs(th->window); 5630 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5631 tp->max_window = tp->snd_wnd; 5632 5633 tcp_ecn_rcv_syn(tp, th); 5634 5635 tcp_mtup_init(sk); 5636 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5637 tcp_initialize_rcv_mss(sk); 5638 5639 tcp_send_synack(sk); 5640 #if 0 5641 /* Note, we could accept data and URG from this segment. 5642 * There are no obstacles to make this (except that we must 5643 * either change tcp_recvmsg() to prevent it from returning data 5644 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5645 * 5646 * However, if we ignore data in ACKless segments sometimes, 5647 * we have no reasons to accept it sometimes. 5648 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5649 * is not flawless. So, discard packet for sanity. 5650 * Uncomment this return to process the data. 5651 */ 5652 return -1; 5653 #else 5654 goto discard; 5655 #endif 5656 } 5657 /* "fifth, if neither of the SYN or RST bits is set then 5658 * drop the segment and return." 5659 */ 5660 5661 discard_and_undo: 5662 tcp_clear_options(&tp->rx_opt); 5663 tp->rx_opt.mss_clamp = saved_clamp; 5664 goto discard; 5665 5666 reset_and_undo: 5667 tcp_clear_options(&tp->rx_opt); 5668 tp->rx_opt.mss_clamp = saved_clamp; 5669 return 1; 5670 } 5671 5672 /* 5673 * This function implements the receiving procedure of RFC 793 for 5674 * all states except ESTABLISHED and TIME_WAIT. 5675 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5676 * address independent. 5677 */ 5678 5679 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5680 const struct tcphdr *th, unsigned int len) 5681 { 5682 struct tcp_sock *tp = tcp_sk(sk); 5683 struct inet_connection_sock *icsk = inet_csk(sk); 5684 struct request_sock *req; 5685 int queued = 0; 5686 bool acceptable; 5687 u32 synack_stamp; 5688 5689 tp->rx_opt.saw_tstamp = 0; 5690 5691 switch (sk->sk_state) { 5692 case TCP_CLOSE: 5693 goto discard; 5694 5695 case TCP_LISTEN: 5696 if (th->ack) 5697 return 1; 5698 5699 if (th->rst) 5700 goto discard; 5701 5702 if (th->syn) { 5703 if (th->fin) 5704 goto discard; 5705 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5706 return 1; 5707 5708 /* Now we have several options: In theory there is 5709 * nothing else in the frame. KA9Q has an option to 5710 * send data with the syn, BSD accepts data with the 5711 * syn up to the [to be] advertised window and 5712 * Solaris 2.1 gives you a protocol error. For now 5713 * we just ignore it, that fits the spec precisely 5714 * and avoids incompatibilities. It would be nice in 5715 * future to drop through and process the data. 5716 * 5717 * Now that TTCP is starting to be used we ought to 5718 * queue this data. 5719 * But, this leaves one open to an easy denial of 5720 * service attack, and SYN cookies can't defend 5721 * against this problem. So, we drop the data 5722 * in the interest of security over speed unless 5723 * it's still in use. 5724 */ 5725 kfree_skb(skb); 5726 return 0; 5727 } 5728 goto discard; 5729 5730 case TCP_SYN_SENT: 5731 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5732 if (queued >= 0) 5733 return queued; 5734 5735 /* Do step6 onward by hand. */ 5736 tcp_urg(sk, skb, th); 5737 __kfree_skb(skb); 5738 tcp_data_snd_check(sk); 5739 return 0; 5740 } 5741 5742 req = tp->fastopen_rsk; 5743 if (req) { 5744 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5745 sk->sk_state != TCP_FIN_WAIT1); 5746 5747 if (!tcp_check_req(sk, skb, req, true)) 5748 goto discard; 5749 } 5750 5751 if (!th->ack && !th->rst && !th->syn) 5752 goto discard; 5753 5754 if (!tcp_validate_incoming(sk, skb, th, 0)) 5755 return 0; 5756 5757 /* step 5: check the ACK field */ 5758 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5759 FLAG_UPDATE_TS_RECENT) > 0; 5760 5761 switch (sk->sk_state) { 5762 case TCP_SYN_RECV: 5763 if (!acceptable) 5764 return 1; 5765 5766 /* Once we leave TCP_SYN_RECV, we no longer need req 5767 * so release it. 5768 */ 5769 if (req) { 5770 synack_stamp = tcp_rsk(req)->snt_synack; 5771 tp->total_retrans = req->num_retrans; 5772 reqsk_fastopen_remove(sk, req, false); 5773 } else { 5774 synack_stamp = tp->lsndtime; 5775 /* Make sure socket is routed, for correct metrics. */ 5776 icsk->icsk_af_ops->rebuild_header(sk); 5777 tcp_init_congestion_control(sk); 5778 5779 tcp_mtup_init(sk); 5780 tp->copied_seq = tp->rcv_nxt; 5781 tcp_init_buffer_space(sk); 5782 } 5783 smp_mb(); 5784 tcp_set_state(sk, TCP_ESTABLISHED); 5785 sk->sk_state_change(sk); 5786 5787 /* Note, that this wakeup is only for marginal crossed SYN case. 5788 * Passively open sockets are not waked up, because 5789 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5790 */ 5791 if (sk->sk_socket) 5792 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5793 5794 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5795 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5796 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5797 tcp_synack_rtt_meas(sk, synack_stamp); 5798 5799 if (tp->rx_opt.tstamp_ok) 5800 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5801 5802 if (req) { 5803 /* Re-arm the timer because data may have been sent out. 5804 * This is similar to the regular data transmission case 5805 * when new data has just been ack'ed. 5806 * 5807 * (TFO) - we could try to be more aggressive and 5808 * retransmitting any data sooner based on when they 5809 * are sent out. 5810 */ 5811 tcp_rearm_rto(sk); 5812 } else 5813 tcp_init_metrics(sk); 5814 5815 tcp_update_pacing_rate(sk); 5816 5817 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5818 tp->lsndtime = tcp_time_stamp; 5819 5820 tcp_initialize_rcv_mss(sk); 5821 tcp_fast_path_on(tp); 5822 break; 5823 5824 case TCP_FIN_WAIT1: { 5825 struct dst_entry *dst; 5826 int tmo; 5827 5828 /* If we enter the TCP_FIN_WAIT1 state and we are a 5829 * Fast Open socket and this is the first acceptable 5830 * ACK we have received, this would have acknowledged 5831 * our SYNACK so stop the SYNACK timer. 5832 */ 5833 if (req) { 5834 /* Return RST if ack_seq is invalid. 5835 * Note that RFC793 only says to generate a 5836 * DUPACK for it but for TCP Fast Open it seems 5837 * better to treat this case like TCP_SYN_RECV 5838 * above. 5839 */ 5840 if (!acceptable) 5841 return 1; 5842 /* We no longer need the request sock. */ 5843 reqsk_fastopen_remove(sk, req, false); 5844 tcp_rearm_rto(sk); 5845 } 5846 if (tp->snd_una != tp->write_seq) 5847 break; 5848 5849 tcp_set_state(sk, TCP_FIN_WAIT2); 5850 sk->sk_shutdown |= SEND_SHUTDOWN; 5851 5852 dst = __sk_dst_get(sk); 5853 if (dst) 5854 dst_confirm(dst); 5855 5856 if (!sock_flag(sk, SOCK_DEAD)) { 5857 /* Wake up lingering close() */ 5858 sk->sk_state_change(sk); 5859 break; 5860 } 5861 5862 if (tp->linger2 < 0 || 5863 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5864 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5865 tcp_done(sk); 5866 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5867 return 1; 5868 } 5869 5870 tmo = tcp_fin_time(sk); 5871 if (tmo > TCP_TIMEWAIT_LEN) { 5872 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5873 } else if (th->fin || sock_owned_by_user(sk)) { 5874 /* Bad case. We could lose such FIN otherwise. 5875 * It is not a big problem, but it looks confusing 5876 * and not so rare event. We still can lose it now, 5877 * if it spins in bh_lock_sock(), but it is really 5878 * marginal case. 5879 */ 5880 inet_csk_reset_keepalive_timer(sk, tmo); 5881 } else { 5882 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5883 goto discard; 5884 } 5885 break; 5886 } 5887 5888 case TCP_CLOSING: 5889 if (tp->snd_una == tp->write_seq) { 5890 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5891 goto discard; 5892 } 5893 break; 5894 5895 case TCP_LAST_ACK: 5896 if (tp->snd_una == tp->write_seq) { 5897 tcp_update_metrics(sk); 5898 tcp_done(sk); 5899 goto discard; 5900 } 5901 break; 5902 } 5903 5904 /* step 6: check the URG bit */ 5905 tcp_urg(sk, skb, th); 5906 5907 /* step 7: process the segment text */ 5908 switch (sk->sk_state) { 5909 case TCP_CLOSE_WAIT: 5910 case TCP_CLOSING: 5911 case TCP_LAST_ACK: 5912 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5913 break; 5914 case TCP_FIN_WAIT1: 5915 case TCP_FIN_WAIT2: 5916 /* RFC 793 says to queue data in these states, 5917 * RFC 1122 says we MUST send a reset. 5918 * BSD 4.4 also does reset. 5919 */ 5920 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5921 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5922 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5923 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5924 tcp_reset(sk); 5925 return 1; 5926 } 5927 } 5928 /* Fall through */ 5929 case TCP_ESTABLISHED: 5930 tcp_data_queue(sk, skb); 5931 queued = 1; 5932 break; 5933 } 5934 5935 /* tcp_data could move socket to TIME-WAIT */ 5936 if (sk->sk_state != TCP_CLOSE) { 5937 tcp_data_snd_check(sk); 5938 tcp_ack_snd_check(sk); 5939 } 5940 5941 if (!queued) { 5942 discard: 5943 __kfree_skb(skb); 5944 } 5945 return 0; 5946 } 5947 EXPORT_SYMBOL(tcp_rcv_state_process); 5948 5949 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 5950 { 5951 struct inet_request_sock *ireq = inet_rsk(req); 5952 5953 if (family == AF_INET) 5954 net_dbg_ratelimited("drop open request from %pI4/%u\n", 5955 &ireq->ir_rmt_addr, port); 5956 #if IS_ENABLED(CONFIG_IPV6) 5957 else if (family == AF_INET6) 5958 net_dbg_ratelimited("drop open request from %pI6/%u\n", 5959 &ireq->ir_v6_rmt_addr, port); 5960 #endif 5961 } 5962 5963 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 5964 * 5965 * If we receive a SYN packet with these bits set, it means a 5966 * network is playing bad games with TOS bits. In order to 5967 * avoid possible false congestion notifications, we disable 5968 * TCP ECN negotiation. 5969 * 5970 * Exception: tcp_ca wants ECN. This is required for DCTCP 5971 * congestion control: Linux DCTCP asserts ECT on all packets, 5972 * including SYN, which is most optimal solution; however, 5973 * others, such as FreeBSD do not. 5974 */ 5975 static void tcp_ecn_create_request(struct request_sock *req, 5976 const struct sk_buff *skb, 5977 const struct sock *listen_sk, 5978 const struct dst_entry *dst) 5979 { 5980 const struct tcphdr *th = tcp_hdr(skb); 5981 const struct net *net = sock_net(listen_sk); 5982 bool th_ecn = th->ece && th->cwr; 5983 bool ect, ecn_ok; 5984 5985 if (!th_ecn) 5986 return; 5987 5988 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 5989 ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN); 5990 5991 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk)) 5992 inet_rsk(req)->ecn_ok = 1; 5993 } 5994 5995 static void tcp_openreq_init(struct request_sock *req, 5996 const struct tcp_options_received *rx_opt, 5997 struct sk_buff *skb, const struct sock *sk) 5998 { 5999 struct inet_request_sock *ireq = inet_rsk(req); 6000 6001 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6002 req->cookie_ts = 0; 6003 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6004 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6005 tcp_rsk(req)->snt_synack = tcp_time_stamp; 6006 tcp_rsk(req)->last_oow_ack_time = 0; 6007 req->mss = rx_opt->mss_clamp; 6008 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6009 ireq->tstamp_ok = rx_opt->tstamp_ok; 6010 ireq->sack_ok = rx_opt->sack_ok; 6011 ireq->snd_wscale = rx_opt->snd_wscale; 6012 ireq->wscale_ok = rx_opt->wscale_ok; 6013 ireq->acked = 0; 6014 ireq->ecn_ok = 0; 6015 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6016 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6017 ireq->ir_mark = inet_request_mark(sk, skb); 6018 } 6019 6020 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6021 struct sock *sk_listener) 6022 { 6023 struct request_sock *req = reqsk_alloc(ops, sk_listener); 6024 6025 if (req) { 6026 struct inet_request_sock *ireq = inet_rsk(req); 6027 6028 kmemcheck_annotate_bitfield(ireq, flags); 6029 ireq->opt = NULL; 6030 atomic64_set(&ireq->ir_cookie, 0); 6031 ireq->ireq_state = TCP_NEW_SYN_RECV; 6032 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6033 ireq->ireq_family = sk_listener->sk_family; 6034 } 6035 6036 return req; 6037 } 6038 EXPORT_SYMBOL(inet_reqsk_alloc); 6039 6040 /* 6041 * Return true if a syncookie should be sent 6042 */ 6043 static bool tcp_syn_flood_action(struct sock *sk, 6044 const struct sk_buff *skb, 6045 const char *proto) 6046 { 6047 const char *msg = "Dropping request"; 6048 bool want_cookie = false; 6049 struct listen_sock *lopt; 6050 6051 #ifdef CONFIG_SYN_COOKIES 6052 if (sysctl_tcp_syncookies) { 6053 msg = "Sending cookies"; 6054 want_cookie = true; 6055 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6056 } else 6057 #endif 6058 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6059 6060 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt; 6061 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) { 6062 lopt->synflood_warned = 1; 6063 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6064 proto, ntohs(tcp_hdr(skb)->dest), msg); 6065 } 6066 return want_cookie; 6067 } 6068 6069 static void tcp_reqsk_record_syn(const struct sock *sk, 6070 struct request_sock *req, 6071 const struct sk_buff *skb) 6072 { 6073 if (tcp_sk(sk)->save_syn) { 6074 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6075 u32 *copy; 6076 6077 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6078 if (copy) { 6079 copy[0] = len; 6080 memcpy(©[1], skb_network_header(skb), len); 6081 req->saved_syn = copy; 6082 } 6083 } 6084 } 6085 6086 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6087 const struct tcp_request_sock_ops *af_ops, 6088 struct sock *sk, struct sk_buff *skb) 6089 { 6090 struct tcp_options_received tmp_opt; 6091 struct request_sock *req; 6092 struct tcp_sock *tp = tcp_sk(sk); 6093 struct dst_entry *dst = NULL; 6094 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6095 bool want_cookie = false, fastopen; 6096 struct flowi fl; 6097 struct tcp_fastopen_cookie foc = { .len = -1 }; 6098 int err; 6099 6100 6101 /* TW buckets are converted to open requests without 6102 * limitations, they conserve resources and peer is 6103 * evidently real one. 6104 */ 6105 if ((sysctl_tcp_syncookies == 2 || 6106 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6107 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6108 if (!want_cookie) 6109 goto drop; 6110 } 6111 6112 6113 /* Accept backlog is full. If we have already queued enough 6114 * of warm entries in syn queue, drop request. It is better than 6115 * clogging syn queue with openreqs with exponentially increasing 6116 * timeout. 6117 */ 6118 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 6119 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6120 goto drop; 6121 } 6122 6123 req = inet_reqsk_alloc(rsk_ops, sk); 6124 if (!req) 6125 goto drop; 6126 6127 tcp_rsk(req)->af_specific = af_ops; 6128 6129 tcp_clear_options(&tmp_opt); 6130 tmp_opt.mss_clamp = af_ops->mss_clamp; 6131 tmp_opt.user_mss = tp->rx_opt.user_mss; 6132 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6133 6134 if (want_cookie && !tmp_opt.saw_tstamp) 6135 tcp_clear_options(&tmp_opt); 6136 6137 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6138 tcp_openreq_init(req, &tmp_opt, skb, sk); 6139 6140 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6141 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if; 6142 6143 af_ops->init_req(req, sk, skb); 6144 6145 if (security_inet_conn_request(sk, skb, req)) 6146 goto drop_and_free; 6147 6148 if (!want_cookie && !isn) { 6149 /* VJ's idea. We save last timestamp seen 6150 * from the destination in peer table, when entering 6151 * state TIME-WAIT, and check against it before 6152 * accepting new connection request. 6153 * 6154 * If "isn" is not zero, this request hit alive 6155 * timewait bucket, so that all the necessary checks 6156 * are made in the function processing timewait state. 6157 */ 6158 if (tcp_death_row.sysctl_tw_recycle) { 6159 bool strict; 6160 6161 dst = af_ops->route_req(sk, &fl, req, &strict); 6162 6163 if (dst && strict && 6164 !tcp_peer_is_proven(req, dst, true, 6165 tmp_opt.saw_tstamp)) { 6166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6167 goto drop_and_release; 6168 } 6169 } 6170 /* Kill the following clause, if you dislike this way. */ 6171 else if (!sysctl_tcp_syncookies && 6172 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6173 (sysctl_max_syn_backlog >> 2)) && 6174 !tcp_peer_is_proven(req, dst, false, 6175 tmp_opt.saw_tstamp)) { 6176 /* Without syncookies last quarter of 6177 * backlog is filled with destinations, 6178 * proven to be alive. 6179 * It means that we continue to communicate 6180 * to destinations, already remembered 6181 * to the moment of synflood. 6182 */ 6183 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6184 rsk_ops->family); 6185 goto drop_and_release; 6186 } 6187 6188 isn = af_ops->init_seq(skb); 6189 } 6190 if (!dst) { 6191 dst = af_ops->route_req(sk, &fl, req, NULL); 6192 if (!dst) 6193 goto drop_and_free; 6194 } 6195 6196 tcp_ecn_create_request(req, skb, sk, dst); 6197 6198 if (want_cookie) { 6199 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6200 req->cookie_ts = tmp_opt.tstamp_ok; 6201 if (!tmp_opt.tstamp_ok) 6202 inet_rsk(req)->ecn_ok = 0; 6203 } 6204 6205 tcp_rsk(req)->snt_isn = isn; 6206 tcp_openreq_init_rwin(req, sk, dst); 6207 fastopen = !want_cookie && 6208 tcp_try_fastopen(sk, skb, req, &foc, dst); 6209 err = af_ops->send_synack(sk, dst, &fl, req, 6210 skb_get_queue_mapping(skb), &foc); 6211 if (!fastopen) { 6212 if (err || want_cookie) 6213 goto drop_and_free; 6214 6215 tcp_rsk(req)->tfo_listener = false; 6216 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6217 } 6218 tcp_reqsk_record_syn(sk, req, skb); 6219 6220 return 0; 6221 6222 drop_and_release: 6223 dst_release(dst); 6224 drop_and_free: 6225 reqsk_free(req); 6226 drop: 6227 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 6228 return 0; 6229 } 6230 EXPORT_SYMBOL(tcp_conn_request); 6231