xref: /linux/net/ipv4/tcp_input.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93 
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 
99 int sysctl_tcp_thin_dupack __read_mostly;
100 
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104 
105 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
106 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
107 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
108 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
109 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
110 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
111 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
112 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
114 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
118 
119 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 /* Adapt the MSS value used to make delayed ack decision to the
128  * real world.
129  */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 	struct inet_connection_sock *icsk = inet_csk(sk);
133 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 	unsigned int len;
135 
136 	icsk->icsk_ack.last_seg_size = 0;
137 
138 	/* skb->len may jitter because of SACKs, even if peer
139 	 * sends good full-sized frames.
140 	 */
141 	len = skb_shinfo(skb)->gso_size ? : skb->len;
142 	if (len >= icsk->icsk_ack.rcv_mss) {
143 		icsk->icsk_ack.rcv_mss = len;
144 	} else {
145 		/* Otherwise, we make more careful check taking into account,
146 		 * that SACKs block is variable.
147 		 *
148 		 * "len" is invariant segment length, including TCP header.
149 		 */
150 		len += skb->data - skb_transport_header(skb);
151 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 		    /* If PSH is not set, packet should be
153 		     * full sized, provided peer TCP is not badly broken.
154 		     * This observation (if it is correct 8)) allows
155 		     * to handle super-low mtu links fairly.
156 		     */
157 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 			/* Subtract also invariant (if peer is RFC compliant),
160 			 * tcp header plus fixed timestamp option length.
161 			 * Resulting "len" is MSS free of SACK jitter.
162 			 */
163 			len -= tcp_sk(sk)->tcp_header_len;
164 			icsk->icsk_ack.last_seg_size = len;
165 			if (len == lss) {
166 				icsk->icsk_ack.rcv_mss = len;
167 				return;
168 			}
169 		}
170 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 	}
174 }
175 
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 	struct inet_connection_sock *icsk = inet_csk(sk);
179 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180 
181 	if (quickacks == 0)
182 		quickacks = 2;
183 	if (quickacks > icsk->icsk_ack.quick)
184 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186 
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 	struct inet_connection_sock *icsk = inet_csk(sk);
190 	tcp_incr_quickack(sk);
191 	icsk->icsk_ack.pingpong = 0;
192 	icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194 
195 /* Send ACKs quickly, if "quick" count is not exhausted
196  * and the session is not interactive.
197  */
198 
199 static inline bool tcp_in_quickack_mode(const struct sock *sk)
200 {
201 	const struct inet_connection_sock *icsk = inet_csk(sk);
202 
203 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 }
205 
206 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
207 {
208 	if (tp->ecn_flags & TCP_ECN_OK)
209 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 }
211 
212 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213 {
214 	if (tcp_hdr(skb)->cwr)
215 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 }
217 
218 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
219 {
220 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 }
222 
223 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224 {
225 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 	case INET_ECN_NOT_ECT:
227 		/* Funny extension: if ECT is not set on a segment,
228 		 * and we already seen ECT on a previous segment,
229 		 * it is probably a retransmit.
230 		 */
231 		if (tp->ecn_flags & TCP_ECN_SEEN)
232 			tcp_enter_quickack_mode((struct sock *)tp);
233 		break;
234 	case INET_ECN_CE:
235 		if (tcp_ca_needs_ecn((struct sock *)tp))
236 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
237 
238 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 			/* Better not delay acks, sender can have a very low cwnd */
240 			tcp_enter_quickack_mode((struct sock *)tp);
241 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242 		}
243 		tp->ecn_flags |= TCP_ECN_SEEN;
244 		break;
245 	default:
246 		if (tcp_ca_needs_ecn((struct sock *)tp))
247 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
248 		tp->ecn_flags |= TCP_ECN_SEEN;
249 		break;
250 	}
251 }
252 
253 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
254 {
255 	if (tp->ecn_flags & TCP_ECN_OK)
256 		__tcp_ecn_check_ce(tp, skb);
257 }
258 
259 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
262 		tp->ecn_flags &= ~TCP_ECN_OK;
263 }
264 
265 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
268 		tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270 
271 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
274 		return true;
275 	return false;
276 }
277 
278 /* Buffer size and advertised window tuning.
279  *
280  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
281  */
282 
283 static void tcp_sndbuf_expand(struct sock *sk)
284 {
285 	const struct tcp_sock *tp = tcp_sk(sk);
286 	int sndmem, per_mss;
287 	u32 nr_segs;
288 
289 	/* Worst case is non GSO/TSO : each frame consumes one skb
290 	 * and skb->head is kmalloced using power of two area of memory
291 	 */
292 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
293 		  MAX_TCP_HEADER +
294 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
295 
296 	per_mss = roundup_pow_of_two(per_mss) +
297 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
298 
299 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
300 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
301 
302 	/* Fast Recovery (RFC 5681 3.2) :
303 	 * Cubic needs 1.7 factor, rounded to 2 to include
304 	 * extra cushion (application might react slowly to POLLOUT)
305 	 */
306 	sndmem = 2 * nr_segs * per_mss;
307 
308 	if (sk->sk_sndbuf < sndmem)
309 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
310 }
311 
312 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
313  *
314  * All tcp_full_space() is split to two parts: "network" buffer, allocated
315  * forward and advertised in receiver window (tp->rcv_wnd) and
316  * "application buffer", required to isolate scheduling/application
317  * latencies from network.
318  * window_clamp is maximal advertised window. It can be less than
319  * tcp_full_space(), in this case tcp_full_space() - window_clamp
320  * is reserved for "application" buffer. The less window_clamp is
321  * the smoother our behaviour from viewpoint of network, but the lower
322  * throughput and the higher sensitivity of the connection to losses. 8)
323  *
324  * rcv_ssthresh is more strict window_clamp used at "slow start"
325  * phase to predict further behaviour of this connection.
326  * It is used for two goals:
327  * - to enforce header prediction at sender, even when application
328  *   requires some significant "application buffer". It is check #1.
329  * - to prevent pruning of receive queue because of misprediction
330  *   of receiver window. Check #2.
331  *
332  * The scheme does not work when sender sends good segments opening
333  * window and then starts to feed us spaghetti. But it should work
334  * in common situations. Otherwise, we have to rely on queue collapsing.
335  */
336 
337 /* Slow part of check#2. */
338 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 	/* Optimize this! */
342 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
343 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
344 
345 	while (tp->rcv_ssthresh <= window) {
346 		if (truesize <= skb->len)
347 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
348 
349 		truesize >>= 1;
350 		window >>= 1;
351 	}
352 	return 0;
353 }
354 
355 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
356 {
357 	struct tcp_sock *tp = tcp_sk(sk);
358 
359 	/* Check #1 */
360 	if (tp->rcv_ssthresh < tp->window_clamp &&
361 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
362 	    !tcp_under_memory_pressure(sk)) {
363 		int incr;
364 
365 		/* Check #2. Increase window, if skb with such overhead
366 		 * will fit to rcvbuf in future.
367 		 */
368 		if (tcp_win_from_space(skb->truesize) <= skb->len)
369 			incr = 2 * tp->advmss;
370 		else
371 			incr = __tcp_grow_window(sk, skb);
372 
373 		if (incr) {
374 			incr = max_t(int, incr, 2 * skb->len);
375 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
376 					       tp->window_clamp);
377 			inet_csk(sk)->icsk_ack.quick |= 1;
378 		}
379 	}
380 }
381 
382 /* 3. Tuning rcvbuf, when connection enters established state. */
383 static void tcp_fixup_rcvbuf(struct sock *sk)
384 {
385 	u32 mss = tcp_sk(sk)->advmss;
386 	int rcvmem;
387 
388 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
389 		 tcp_default_init_rwnd(mss);
390 
391 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
392 	 * Allow enough cushion so that sender is not limited by our window
393 	 */
394 	if (sysctl_tcp_moderate_rcvbuf)
395 		rcvmem <<= 2;
396 
397 	if (sk->sk_rcvbuf < rcvmem)
398 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
399 }
400 
401 /* 4. Try to fixup all. It is made immediately after connection enters
402  *    established state.
403  */
404 void tcp_init_buffer_space(struct sock *sk)
405 {
406 	struct tcp_sock *tp = tcp_sk(sk);
407 	int maxwin;
408 
409 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
410 		tcp_fixup_rcvbuf(sk);
411 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
412 		tcp_sndbuf_expand(sk);
413 
414 	tp->rcvq_space.space = tp->rcv_wnd;
415 	tp->rcvq_space.time = tcp_time_stamp;
416 	tp->rcvq_space.seq = tp->copied_seq;
417 
418 	maxwin = tcp_full_space(sk);
419 
420 	if (tp->window_clamp >= maxwin) {
421 		tp->window_clamp = maxwin;
422 
423 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
424 			tp->window_clamp = max(maxwin -
425 					       (maxwin >> sysctl_tcp_app_win),
426 					       4 * tp->advmss);
427 	}
428 
429 	/* Force reservation of one segment. */
430 	if (sysctl_tcp_app_win &&
431 	    tp->window_clamp > 2 * tp->advmss &&
432 	    tp->window_clamp + tp->advmss > maxwin)
433 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
434 
435 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
436 	tp->snd_cwnd_stamp = tcp_time_stamp;
437 }
438 
439 /* 5. Recalculate window clamp after socket hit its memory bounds. */
440 static void tcp_clamp_window(struct sock *sk)
441 {
442 	struct tcp_sock *tp = tcp_sk(sk);
443 	struct inet_connection_sock *icsk = inet_csk(sk);
444 
445 	icsk->icsk_ack.quick = 0;
446 
447 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
448 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
449 	    !tcp_under_memory_pressure(sk) &&
450 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
451 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
452 				    sysctl_tcp_rmem[2]);
453 	}
454 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
455 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
456 }
457 
458 /* Initialize RCV_MSS value.
459  * RCV_MSS is an our guess about MSS used by the peer.
460  * We haven't any direct information about the MSS.
461  * It's better to underestimate the RCV_MSS rather than overestimate.
462  * Overestimations make us ACKing less frequently than needed.
463  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
464  */
465 void tcp_initialize_rcv_mss(struct sock *sk)
466 {
467 	const struct tcp_sock *tp = tcp_sk(sk);
468 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
469 
470 	hint = min(hint, tp->rcv_wnd / 2);
471 	hint = min(hint, TCP_MSS_DEFAULT);
472 	hint = max(hint, TCP_MIN_MSS);
473 
474 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
475 }
476 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
477 
478 /* Receiver "autotuning" code.
479  *
480  * The algorithm for RTT estimation w/o timestamps is based on
481  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
482  * <http://public.lanl.gov/radiant/pubs.html#DRS>
483  *
484  * More detail on this code can be found at
485  * <http://staff.psc.edu/jheffner/>,
486  * though this reference is out of date.  A new paper
487  * is pending.
488  */
489 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
490 {
491 	u32 new_sample = tp->rcv_rtt_est.rtt;
492 	long m = sample;
493 
494 	if (m == 0)
495 		m = 1;
496 
497 	if (new_sample != 0) {
498 		/* If we sample in larger samples in the non-timestamp
499 		 * case, we could grossly overestimate the RTT especially
500 		 * with chatty applications or bulk transfer apps which
501 		 * are stalled on filesystem I/O.
502 		 *
503 		 * Also, since we are only going for a minimum in the
504 		 * non-timestamp case, we do not smooth things out
505 		 * else with timestamps disabled convergence takes too
506 		 * long.
507 		 */
508 		if (!win_dep) {
509 			m -= (new_sample >> 3);
510 			new_sample += m;
511 		} else {
512 			m <<= 3;
513 			if (m < new_sample)
514 				new_sample = m;
515 		}
516 	} else {
517 		/* No previous measure. */
518 		new_sample = m << 3;
519 	}
520 
521 	if (tp->rcv_rtt_est.rtt != new_sample)
522 		tp->rcv_rtt_est.rtt = new_sample;
523 }
524 
525 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
526 {
527 	if (tp->rcv_rtt_est.time == 0)
528 		goto new_measure;
529 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
530 		return;
531 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
532 
533 new_measure:
534 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
535 	tp->rcv_rtt_est.time = tcp_time_stamp;
536 }
537 
538 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
539 					  const struct sk_buff *skb)
540 {
541 	struct tcp_sock *tp = tcp_sk(sk);
542 	if (tp->rx_opt.rcv_tsecr &&
543 	    (TCP_SKB_CB(skb)->end_seq -
544 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
545 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
546 }
547 
548 /*
549  * This function should be called every time data is copied to user space.
550  * It calculates the appropriate TCP receive buffer space.
551  */
552 void tcp_rcv_space_adjust(struct sock *sk)
553 {
554 	struct tcp_sock *tp = tcp_sk(sk);
555 	int time;
556 	int copied;
557 
558 	time = tcp_time_stamp - tp->rcvq_space.time;
559 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
560 		return;
561 
562 	/* Number of bytes copied to user in last RTT */
563 	copied = tp->copied_seq - tp->rcvq_space.seq;
564 	if (copied <= tp->rcvq_space.space)
565 		goto new_measure;
566 
567 	/* A bit of theory :
568 	 * copied = bytes received in previous RTT, our base window
569 	 * To cope with packet losses, we need a 2x factor
570 	 * To cope with slow start, and sender growing its cwin by 100 %
571 	 * every RTT, we need a 4x factor, because the ACK we are sending
572 	 * now is for the next RTT, not the current one :
573 	 * <prev RTT . ><current RTT .. ><next RTT .... >
574 	 */
575 
576 	if (sysctl_tcp_moderate_rcvbuf &&
577 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
578 		int rcvwin, rcvmem, rcvbuf;
579 
580 		/* minimal window to cope with packet losses, assuming
581 		 * steady state. Add some cushion because of small variations.
582 		 */
583 		rcvwin = (copied << 1) + 16 * tp->advmss;
584 
585 		/* If rate increased by 25%,
586 		 *	assume slow start, rcvwin = 3 * copied
587 		 * If rate increased by 50%,
588 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
589 		 */
590 		if (copied >=
591 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
592 			if (copied >=
593 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
594 				rcvwin <<= 1;
595 			else
596 				rcvwin += (rcvwin >> 1);
597 		}
598 
599 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
600 		while (tcp_win_from_space(rcvmem) < tp->advmss)
601 			rcvmem += 128;
602 
603 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
604 		if (rcvbuf > sk->sk_rcvbuf) {
605 			sk->sk_rcvbuf = rcvbuf;
606 
607 			/* Make the window clamp follow along.  */
608 			tp->window_clamp = rcvwin;
609 		}
610 	}
611 	tp->rcvq_space.space = copied;
612 
613 new_measure:
614 	tp->rcvq_space.seq = tp->copied_seq;
615 	tp->rcvq_space.time = tcp_time_stamp;
616 }
617 
618 /* There is something which you must keep in mind when you analyze the
619  * behavior of the tp->ato delayed ack timeout interval.  When a
620  * connection starts up, we want to ack as quickly as possible.  The
621  * problem is that "good" TCP's do slow start at the beginning of data
622  * transmission.  The means that until we send the first few ACK's the
623  * sender will sit on his end and only queue most of his data, because
624  * he can only send snd_cwnd unacked packets at any given time.  For
625  * each ACK we send, he increments snd_cwnd and transmits more of his
626  * queue.  -DaveM
627  */
628 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
629 {
630 	struct tcp_sock *tp = tcp_sk(sk);
631 	struct inet_connection_sock *icsk = inet_csk(sk);
632 	u32 now;
633 
634 	inet_csk_schedule_ack(sk);
635 
636 	tcp_measure_rcv_mss(sk, skb);
637 
638 	tcp_rcv_rtt_measure(tp);
639 
640 	now = tcp_time_stamp;
641 
642 	if (!icsk->icsk_ack.ato) {
643 		/* The _first_ data packet received, initialize
644 		 * delayed ACK engine.
645 		 */
646 		tcp_incr_quickack(sk);
647 		icsk->icsk_ack.ato = TCP_ATO_MIN;
648 	} else {
649 		int m = now - icsk->icsk_ack.lrcvtime;
650 
651 		if (m <= TCP_ATO_MIN / 2) {
652 			/* The fastest case is the first. */
653 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
654 		} else if (m < icsk->icsk_ack.ato) {
655 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
656 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
657 				icsk->icsk_ack.ato = icsk->icsk_rto;
658 		} else if (m > icsk->icsk_rto) {
659 			/* Too long gap. Apparently sender failed to
660 			 * restart window, so that we send ACKs quickly.
661 			 */
662 			tcp_incr_quickack(sk);
663 			sk_mem_reclaim(sk);
664 		}
665 	}
666 	icsk->icsk_ack.lrcvtime = now;
667 
668 	tcp_ecn_check_ce(tp, skb);
669 
670 	if (skb->len >= 128)
671 		tcp_grow_window(sk, skb);
672 }
673 
674 /* Called to compute a smoothed rtt estimate. The data fed to this
675  * routine either comes from timestamps, or from segments that were
676  * known _not_ to have been retransmitted [see Karn/Partridge
677  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
678  * piece by Van Jacobson.
679  * NOTE: the next three routines used to be one big routine.
680  * To save cycles in the RFC 1323 implementation it was better to break
681  * it up into three procedures. -- erics
682  */
683 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
684 {
685 	struct tcp_sock *tp = tcp_sk(sk);
686 	long m = mrtt_us; /* RTT */
687 	u32 srtt = tp->srtt_us;
688 
689 	/*	The following amusing code comes from Jacobson's
690 	 *	article in SIGCOMM '88.  Note that rtt and mdev
691 	 *	are scaled versions of rtt and mean deviation.
692 	 *	This is designed to be as fast as possible
693 	 *	m stands for "measurement".
694 	 *
695 	 *	On a 1990 paper the rto value is changed to:
696 	 *	RTO = rtt + 4 * mdev
697 	 *
698 	 * Funny. This algorithm seems to be very broken.
699 	 * These formulae increase RTO, when it should be decreased, increase
700 	 * too slowly, when it should be increased quickly, decrease too quickly
701 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
702 	 * does not matter how to _calculate_ it. Seems, it was trap
703 	 * that VJ failed to avoid. 8)
704 	 */
705 	if (srtt != 0) {
706 		m -= (srtt >> 3);	/* m is now error in rtt est */
707 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
708 		if (m < 0) {
709 			m = -m;		/* m is now abs(error) */
710 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
711 			/* This is similar to one of Eifel findings.
712 			 * Eifel blocks mdev updates when rtt decreases.
713 			 * This solution is a bit different: we use finer gain
714 			 * for mdev in this case (alpha*beta).
715 			 * Like Eifel it also prevents growth of rto,
716 			 * but also it limits too fast rto decreases,
717 			 * happening in pure Eifel.
718 			 */
719 			if (m > 0)
720 				m >>= 3;
721 		} else {
722 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
723 		}
724 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
725 		if (tp->mdev_us > tp->mdev_max_us) {
726 			tp->mdev_max_us = tp->mdev_us;
727 			if (tp->mdev_max_us > tp->rttvar_us)
728 				tp->rttvar_us = tp->mdev_max_us;
729 		}
730 		if (after(tp->snd_una, tp->rtt_seq)) {
731 			if (tp->mdev_max_us < tp->rttvar_us)
732 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
733 			tp->rtt_seq = tp->snd_nxt;
734 			tp->mdev_max_us = tcp_rto_min_us(sk);
735 		}
736 	} else {
737 		/* no previous measure. */
738 		srtt = m << 3;		/* take the measured time to be rtt */
739 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
740 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
741 		tp->mdev_max_us = tp->rttvar_us;
742 		tp->rtt_seq = tp->snd_nxt;
743 	}
744 	tp->srtt_us = max(1U, srtt);
745 }
746 
747 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
748  * Note: TCP stack does not yet implement pacing.
749  * FQ packet scheduler can be used to implement cheap but effective
750  * TCP pacing, to smooth the burst on large writes when packets
751  * in flight is significantly lower than cwnd (or rwin)
752  */
753 static void tcp_update_pacing_rate(struct sock *sk)
754 {
755 	const struct tcp_sock *tp = tcp_sk(sk);
756 	u64 rate;
757 
758 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
759 	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
760 
761 	rate *= max(tp->snd_cwnd, tp->packets_out);
762 
763 	if (likely(tp->srtt_us))
764 		do_div(rate, tp->srtt_us);
765 
766 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
767 	 * without any lock. We want to make sure compiler wont store
768 	 * intermediate values in this location.
769 	 */
770 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
771 						sk->sk_max_pacing_rate);
772 }
773 
774 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
775  * routine referred to above.
776  */
777 static void tcp_set_rto(struct sock *sk)
778 {
779 	const struct tcp_sock *tp = tcp_sk(sk);
780 	/* Old crap is replaced with new one. 8)
781 	 *
782 	 * More seriously:
783 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
784 	 *    It cannot be less due to utterly erratic ACK generation made
785 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
786 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
787 	 *    is invisible. Actually, Linux-2.4 also generates erratic
788 	 *    ACKs in some circumstances.
789 	 */
790 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
791 
792 	/* 2. Fixups made earlier cannot be right.
793 	 *    If we do not estimate RTO correctly without them,
794 	 *    all the algo is pure shit and should be replaced
795 	 *    with correct one. It is exactly, which we pretend to do.
796 	 */
797 
798 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
799 	 * guarantees that rto is higher.
800 	 */
801 	tcp_bound_rto(sk);
802 }
803 
804 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
805 {
806 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
807 
808 	if (!cwnd)
809 		cwnd = TCP_INIT_CWND;
810 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
811 }
812 
813 /*
814  * Packet counting of FACK is based on in-order assumptions, therefore TCP
815  * disables it when reordering is detected
816  */
817 void tcp_disable_fack(struct tcp_sock *tp)
818 {
819 	/* RFC3517 uses different metric in lost marker => reset on change */
820 	if (tcp_is_fack(tp))
821 		tp->lost_skb_hint = NULL;
822 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
823 }
824 
825 /* Take a notice that peer is sending D-SACKs */
826 static void tcp_dsack_seen(struct tcp_sock *tp)
827 {
828 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
829 }
830 
831 static void tcp_update_reordering(struct sock *sk, const int metric,
832 				  const int ts)
833 {
834 	struct tcp_sock *tp = tcp_sk(sk);
835 	if (metric > tp->reordering) {
836 		int mib_idx;
837 
838 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
839 
840 		/* This exciting event is worth to be remembered. 8) */
841 		if (ts)
842 			mib_idx = LINUX_MIB_TCPTSREORDER;
843 		else if (tcp_is_reno(tp))
844 			mib_idx = LINUX_MIB_TCPRENOREORDER;
845 		else if (tcp_is_fack(tp))
846 			mib_idx = LINUX_MIB_TCPFACKREORDER;
847 		else
848 			mib_idx = LINUX_MIB_TCPSACKREORDER;
849 
850 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
851 #if FASTRETRANS_DEBUG > 1
852 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
853 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854 			 tp->reordering,
855 			 tp->fackets_out,
856 			 tp->sacked_out,
857 			 tp->undo_marker ? tp->undo_retrans : 0);
858 #endif
859 		tcp_disable_fack(tp);
860 	}
861 
862 	if (metric > 0)
863 		tcp_disable_early_retrans(tp);
864 }
865 
866 /* This must be called before lost_out is incremented */
867 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
868 {
869 	if (!tp->retransmit_skb_hint ||
870 	    before(TCP_SKB_CB(skb)->seq,
871 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
872 		tp->retransmit_skb_hint = skb;
873 
874 	if (!tp->lost_out ||
875 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
876 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
877 }
878 
879 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
880 {
881 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 		tcp_verify_retransmit_hint(tp, skb);
883 
884 		tp->lost_out += tcp_skb_pcount(skb);
885 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
886 	}
887 }
888 
889 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
890 					    struct sk_buff *skb)
891 {
892 	tcp_verify_retransmit_hint(tp, skb);
893 
894 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
895 		tp->lost_out += tcp_skb_pcount(skb);
896 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
897 	}
898 }
899 
900 /* This procedure tags the retransmission queue when SACKs arrive.
901  *
902  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
903  * Packets in queue with these bits set are counted in variables
904  * sacked_out, retrans_out and lost_out, correspondingly.
905  *
906  * Valid combinations are:
907  * Tag  InFlight	Description
908  * 0	1		- orig segment is in flight.
909  * S	0		- nothing flies, orig reached receiver.
910  * L	0		- nothing flies, orig lost by net.
911  * R	2		- both orig and retransmit are in flight.
912  * L|R	1		- orig is lost, retransmit is in flight.
913  * S|R  1		- orig reached receiver, retrans is still in flight.
914  * (L|S|R is logically valid, it could occur when L|R is sacked,
915  *  but it is equivalent to plain S and code short-curcuits it to S.
916  *  L|S is logically invalid, it would mean -1 packet in flight 8))
917  *
918  * These 6 states form finite state machine, controlled by the following events:
919  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
920  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
921  * 3. Loss detection event of two flavors:
922  *	A. Scoreboard estimator decided the packet is lost.
923  *	   A'. Reno "three dupacks" marks head of queue lost.
924  *	   A''. Its FACK modification, head until snd.fack is lost.
925  *	B. SACK arrives sacking SND.NXT at the moment, when the
926  *	   segment was retransmitted.
927  * 4. D-SACK added new rule: D-SACK changes any tag to S.
928  *
929  * It is pleasant to note, that state diagram turns out to be commutative,
930  * so that we are allowed not to be bothered by order of our actions,
931  * when multiple events arrive simultaneously. (see the function below).
932  *
933  * Reordering detection.
934  * --------------------
935  * Reordering metric is maximal distance, which a packet can be displaced
936  * in packet stream. With SACKs we can estimate it:
937  *
938  * 1. SACK fills old hole and the corresponding segment was not
939  *    ever retransmitted -> reordering. Alas, we cannot use it
940  *    when segment was retransmitted.
941  * 2. The last flaw is solved with D-SACK. D-SACK arrives
942  *    for retransmitted and already SACKed segment -> reordering..
943  * Both of these heuristics are not used in Loss state, when we cannot
944  * account for retransmits accurately.
945  *
946  * SACK block validation.
947  * ----------------------
948  *
949  * SACK block range validation checks that the received SACK block fits to
950  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
951  * Note that SND.UNA is not included to the range though being valid because
952  * it means that the receiver is rather inconsistent with itself reporting
953  * SACK reneging when it should advance SND.UNA. Such SACK block this is
954  * perfectly valid, however, in light of RFC2018 which explicitly states
955  * that "SACK block MUST reflect the newest segment.  Even if the newest
956  * segment is going to be discarded ...", not that it looks very clever
957  * in case of head skb. Due to potentional receiver driven attacks, we
958  * choose to avoid immediate execution of a walk in write queue due to
959  * reneging and defer head skb's loss recovery to standard loss recovery
960  * procedure that will eventually trigger (nothing forbids us doing this).
961  *
962  * Implements also blockage to start_seq wrap-around. Problem lies in the
963  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
964  * there's no guarantee that it will be before snd_nxt (n). The problem
965  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
966  * wrap (s_w):
967  *
968  *         <- outs wnd ->                          <- wrapzone ->
969  *         u     e      n                         u_w   e_w  s n_w
970  *         |     |      |                          |     |   |  |
971  * |<------------+------+----- TCP seqno space --------------+---------->|
972  * ...-- <2^31 ->|                                           |<--------...
973  * ...---- >2^31 ------>|                                    |<--------...
974  *
975  * Current code wouldn't be vulnerable but it's better still to discard such
976  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
977  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
978  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
979  * equal to the ideal case (infinite seqno space without wrap caused issues).
980  *
981  * With D-SACK the lower bound is extended to cover sequence space below
982  * SND.UNA down to undo_marker, which is the last point of interest. Yet
983  * again, D-SACK block must not to go across snd_una (for the same reason as
984  * for the normal SACK blocks, explained above). But there all simplicity
985  * ends, TCP might receive valid D-SACKs below that. As long as they reside
986  * fully below undo_marker they do not affect behavior in anyway and can
987  * therefore be safely ignored. In rare cases (which are more or less
988  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
989  * fragmentation and packet reordering past skb's retransmission. To consider
990  * them correctly, the acceptable range must be extended even more though
991  * the exact amount is rather hard to quantify. However, tp->max_window can
992  * be used as an exaggerated estimate.
993  */
994 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
995 				   u32 start_seq, u32 end_seq)
996 {
997 	/* Too far in future, or reversed (interpretation is ambiguous) */
998 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
999 		return false;
1000 
1001 	/* Nasty start_seq wrap-around check (see comments above) */
1002 	if (!before(start_seq, tp->snd_nxt))
1003 		return false;
1004 
1005 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1006 	 * start_seq == snd_una is non-sensical (see comments above)
1007 	 */
1008 	if (after(start_seq, tp->snd_una))
1009 		return true;
1010 
1011 	if (!is_dsack || !tp->undo_marker)
1012 		return false;
1013 
1014 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1015 	if (after(end_seq, tp->snd_una))
1016 		return false;
1017 
1018 	if (!before(start_seq, tp->undo_marker))
1019 		return true;
1020 
1021 	/* Too old */
1022 	if (!after(end_seq, tp->undo_marker))
1023 		return false;
1024 
1025 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1026 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1027 	 */
1028 	return !before(start_seq, end_seq - tp->max_window);
1029 }
1030 
1031 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1032  * Event "B". Later note: FACK people cheated me again 8), we have to account
1033  * for reordering! Ugly, but should help.
1034  *
1035  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1036  * less than what is now known to be received by the other end (derived from
1037  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1038  * retransmitted skbs to avoid some costly processing per ACKs.
1039  */
1040 static void tcp_mark_lost_retrans(struct sock *sk)
1041 {
1042 	const struct inet_connection_sock *icsk = inet_csk(sk);
1043 	struct tcp_sock *tp = tcp_sk(sk);
1044 	struct sk_buff *skb;
1045 	int cnt = 0;
1046 	u32 new_low_seq = tp->snd_nxt;
1047 	u32 received_upto = tcp_highest_sack_seq(tp);
1048 
1049 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1050 	    !after(received_upto, tp->lost_retrans_low) ||
1051 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1052 		return;
1053 
1054 	tcp_for_write_queue(skb, sk) {
1055 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1056 
1057 		if (skb == tcp_send_head(sk))
1058 			break;
1059 		if (cnt == tp->retrans_out)
1060 			break;
1061 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1062 			continue;
1063 
1064 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1065 			continue;
1066 
1067 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1068 		 * constraint here (see above) but figuring out that at
1069 		 * least tp->reordering SACK blocks reside between ack_seq
1070 		 * and received_upto is not easy task to do cheaply with
1071 		 * the available datastructures.
1072 		 *
1073 		 * Whether FACK should check here for tp->reordering segs
1074 		 * in-between one could argue for either way (it would be
1075 		 * rather simple to implement as we could count fack_count
1076 		 * during the walk and do tp->fackets_out - fack_count).
1077 		 */
1078 		if (after(received_upto, ack_seq)) {
1079 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1080 			tp->retrans_out -= tcp_skb_pcount(skb);
1081 
1082 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1083 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1084 		} else {
1085 			if (before(ack_seq, new_low_seq))
1086 				new_low_seq = ack_seq;
1087 			cnt += tcp_skb_pcount(skb);
1088 		}
1089 	}
1090 
1091 	if (tp->retrans_out)
1092 		tp->lost_retrans_low = new_low_seq;
1093 }
1094 
1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 			    struct tcp_sack_block_wire *sp, int num_sacks,
1097 			    u32 prior_snd_una)
1098 {
1099 	struct tcp_sock *tp = tcp_sk(sk);
1100 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 	bool dup_sack = false;
1103 
1104 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 		dup_sack = true;
1106 		tcp_dsack_seen(tp);
1107 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 	} else if (num_sacks > 1) {
1109 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111 
1112 		if (!after(end_seq_0, end_seq_1) &&
1113 		    !before(start_seq_0, start_seq_1)) {
1114 			dup_sack = true;
1115 			tcp_dsack_seen(tp);
1116 			NET_INC_STATS_BH(sock_net(sk),
1117 					LINUX_MIB_TCPDSACKOFORECV);
1118 		}
1119 	}
1120 
1121 	/* D-SACK for already forgotten data... Do dumb counting. */
1122 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 	    !after(end_seq_0, prior_snd_una) &&
1124 	    after(end_seq_0, tp->undo_marker))
1125 		tp->undo_retrans--;
1126 
1127 	return dup_sack;
1128 }
1129 
1130 struct tcp_sacktag_state {
1131 	int	reord;
1132 	int	fack_count;
1133 	/* Timestamps for earliest and latest never-retransmitted segment
1134 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1135 	 * but congestion control should still get an accurate delay signal.
1136 	 */
1137 	struct skb_mstamp first_sackt;
1138 	struct skb_mstamp last_sackt;
1139 	int	flag;
1140 };
1141 
1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1143  * the incoming SACK may not exactly match but we can find smaller MSS
1144  * aligned portion of it that matches. Therefore we might need to fragment
1145  * which may fail and creates some hassle (caller must handle error case
1146  * returns).
1147  *
1148  * FIXME: this could be merged to shift decision code
1149  */
1150 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1151 				  u32 start_seq, u32 end_seq)
1152 {
1153 	int err;
1154 	bool in_sack;
1155 	unsigned int pkt_len;
1156 	unsigned int mss;
1157 
1158 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1159 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1160 
1161 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1162 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1163 		mss = tcp_skb_mss(skb);
1164 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1165 
1166 		if (!in_sack) {
1167 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1168 			if (pkt_len < mss)
1169 				pkt_len = mss;
1170 		} else {
1171 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1172 			if (pkt_len < mss)
1173 				return -EINVAL;
1174 		}
1175 
1176 		/* Round if necessary so that SACKs cover only full MSSes
1177 		 * and/or the remaining small portion (if present)
1178 		 */
1179 		if (pkt_len > mss) {
1180 			unsigned int new_len = (pkt_len / mss) * mss;
1181 			if (!in_sack && new_len < pkt_len) {
1182 				new_len += mss;
1183 				if (new_len >= skb->len)
1184 					return 0;
1185 			}
1186 			pkt_len = new_len;
1187 		}
1188 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1189 		if (err < 0)
1190 			return err;
1191 	}
1192 
1193 	return in_sack;
1194 }
1195 
1196 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197 static u8 tcp_sacktag_one(struct sock *sk,
1198 			  struct tcp_sacktag_state *state, u8 sacked,
1199 			  u32 start_seq, u32 end_seq,
1200 			  int dup_sack, int pcount,
1201 			  const struct skb_mstamp *xmit_time)
1202 {
1203 	struct tcp_sock *tp = tcp_sk(sk);
1204 	int fack_count = state->fack_count;
1205 
1206 	/* Account D-SACK for retransmitted packet. */
1207 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1208 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1209 		    after(end_seq, tp->undo_marker))
1210 			tp->undo_retrans--;
1211 		if (sacked & TCPCB_SACKED_ACKED)
1212 			state->reord = min(fack_count, state->reord);
1213 	}
1214 
1215 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216 	if (!after(end_seq, tp->snd_una))
1217 		return sacked;
1218 
1219 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1220 		if (sacked & TCPCB_SACKED_RETRANS) {
1221 			/* If the segment is not tagged as lost,
1222 			 * we do not clear RETRANS, believing
1223 			 * that retransmission is still in flight.
1224 			 */
1225 			if (sacked & TCPCB_LOST) {
1226 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1227 				tp->lost_out -= pcount;
1228 				tp->retrans_out -= pcount;
1229 			}
1230 		} else {
1231 			if (!(sacked & TCPCB_RETRANS)) {
1232 				/* New sack for not retransmitted frame,
1233 				 * which was in hole. It is reordering.
1234 				 */
1235 				if (before(start_seq,
1236 					   tcp_highest_sack_seq(tp)))
1237 					state->reord = min(fack_count,
1238 							   state->reord);
1239 				if (!after(end_seq, tp->high_seq))
1240 					state->flag |= FLAG_ORIG_SACK_ACKED;
1241 				if (state->first_sackt.v64 == 0)
1242 					state->first_sackt = *xmit_time;
1243 				state->last_sackt = *xmit_time;
1244 			}
1245 
1246 			if (sacked & TCPCB_LOST) {
1247 				sacked &= ~TCPCB_LOST;
1248 				tp->lost_out -= pcount;
1249 			}
1250 		}
1251 
1252 		sacked |= TCPCB_SACKED_ACKED;
1253 		state->flag |= FLAG_DATA_SACKED;
1254 		tp->sacked_out += pcount;
1255 
1256 		fack_count += pcount;
1257 
1258 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1260 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261 			tp->lost_cnt_hint += pcount;
1262 
1263 		if (fack_count > tp->fackets_out)
1264 			tp->fackets_out = fack_count;
1265 	}
1266 
1267 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 	 * are accounted above as well.
1270 	 */
1271 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 		sacked &= ~TCPCB_SACKED_RETRANS;
1273 		tp->retrans_out -= pcount;
1274 	}
1275 
1276 	return sacked;
1277 }
1278 
1279 /* Shift newly-SACKed bytes from this skb to the immediately previous
1280  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281  */
1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1283 			    struct tcp_sacktag_state *state,
1284 			    unsigned int pcount, int shifted, int mss,
1285 			    bool dup_sack)
1286 {
1287 	struct tcp_sock *tp = tcp_sk(sk);
1288 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1289 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1290 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1291 
1292 	BUG_ON(!pcount);
1293 
1294 	/* Adjust counters and hints for the newly sacked sequence
1295 	 * range but discard the return value since prev is already
1296 	 * marked. We must tag the range first because the seq
1297 	 * advancement below implicitly advances
1298 	 * tcp_highest_sack_seq() when skb is highest_sack.
1299 	 */
1300 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 			start_seq, end_seq, dup_sack, pcount,
1302 			&skb->skb_mstamp);
1303 
1304 	if (skb == tp->lost_skb_hint)
1305 		tp->lost_cnt_hint += pcount;
1306 
1307 	TCP_SKB_CB(prev)->end_seq += shifted;
1308 	TCP_SKB_CB(skb)->seq += shifted;
1309 
1310 	tcp_skb_pcount_add(prev, pcount);
1311 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1312 	tcp_skb_pcount_add(skb, -pcount);
1313 
1314 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1315 	 * in theory this shouldn't be necessary but as long as DSACK
1316 	 * code can come after this skb later on it's better to keep
1317 	 * setting gso_size to something.
1318 	 */
1319 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1320 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1321 
1322 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1323 	if (tcp_skb_pcount(skb) <= 1)
1324 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1325 
1326 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1327 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1328 
1329 	if (skb->len > 0) {
1330 		BUG_ON(!tcp_skb_pcount(skb));
1331 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1332 		return false;
1333 	}
1334 
1335 	/* Whole SKB was eaten :-) */
1336 
1337 	if (skb == tp->retransmit_skb_hint)
1338 		tp->retransmit_skb_hint = prev;
1339 	if (skb == tp->lost_skb_hint) {
1340 		tp->lost_skb_hint = prev;
1341 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1342 	}
1343 
1344 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1345 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1346 		TCP_SKB_CB(prev)->end_seq++;
1347 
1348 	if (skb == tcp_highest_sack(sk))
1349 		tcp_advance_highest_sack(sk, skb);
1350 
1351 	tcp_unlink_write_queue(skb, sk);
1352 	sk_wmem_free_skb(sk, skb);
1353 
1354 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1355 
1356 	return true;
1357 }
1358 
1359 /* I wish gso_size would have a bit more sane initialization than
1360  * something-or-zero which complicates things
1361  */
1362 static int tcp_skb_seglen(const struct sk_buff *skb)
1363 {
1364 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1365 }
1366 
1367 /* Shifting pages past head area doesn't work */
1368 static int skb_can_shift(const struct sk_buff *skb)
1369 {
1370 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1371 }
1372 
1373 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1374  * skb.
1375  */
1376 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1377 					  struct tcp_sacktag_state *state,
1378 					  u32 start_seq, u32 end_seq,
1379 					  bool dup_sack)
1380 {
1381 	struct tcp_sock *tp = tcp_sk(sk);
1382 	struct sk_buff *prev;
1383 	int mss;
1384 	int pcount = 0;
1385 	int len;
1386 	int in_sack;
1387 
1388 	if (!sk_can_gso(sk))
1389 		goto fallback;
1390 
1391 	/* Normally R but no L won't result in plain S */
1392 	if (!dup_sack &&
1393 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1394 		goto fallback;
1395 	if (!skb_can_shift(skb))
1396 		goto fallback;
1397 	/* This frame is about to be dropped (was ACKed). */
1398 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1399 		goto fallback;
1400 
1401 	/* Can only happen with delayed DSACK + discard craziness */
1402 	if (unlikely(skb == tcp_write_queue_head(sk)))
1403 		goto fallback;
1404 	prev = tcp_write_queue_prev(sk, skb);
1405 
1406 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1407 		goto fallback;
1408 
1409 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1410 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1411 
1412 	if (in_sack) {
1413 		len = skb->len;
1414 		pcount = tcp_skb_pcount(skb);
1415 		mss = tcp_skb_seglen(skb);
1416 
1417 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1418 		 * drop this restriction as unnecessary
1419 		 */
1420 		if (mss != tcp_skb_seglen(prev))
1421 			goto fallback;
1422 	} else {
1423 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1424 			goto noop;
1425 		/* CHECKME: This is non-MSS split case only?, this will
1426 		 * cause skipped skbs due to advancing loop btw, original
1427 		 * has that feature too
1428 		 */
1429 		if (tcp_skb_pcount(skb) <= 1)
1430 			goto noop;
1431 
1432 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1433 		if (!in_sack) {
1434 			/* TODO: head merge to next could be attempted here
1435 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1436 			 * though it might not be worth of the additional hassle
1437 			 *
1438 			 * ...we can probably just fallback to what was done
1439 			 * previously. We could try merging non-SACKed ones
1440 			 * as well but it probably isn't going to buy off
1441 			 * because later SACKs might again split them, and
1442 			 * it would make skb timestamp tracking considerably
1443 			 * harder problem.
1444 			 */
1445 			goto fallback;
1446 		}
1447 
1448 		len = end_seq - TCP_SKB_CB(skb)->seq;
1449 		BUG_ON(len < 0);
1450 		BUG_ON(len > skb->len);
1451 
1452 		/* MSS boundaries should be honoured or else pcount will
1453 		 * severely break even though it makes things bit trickier.
1454 		 * Optimize common case to avoid most of the divides
1455 		 */
1456 		mss = tcp_skb_mss(skb);
1457 
1458 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1459 		 * drop this restriction as unnecessary
1460 		 */
1461 		if (mss != tcp_skb_seglen(prev))
1462 			goto fallback;
1463 
1464 		if (len == mss) {
1465 			pcount = 1;
1466 		} else if (len < mss) {
1467 			goto noop;
1468 		} else {
1469 			pcount = len / mss;
1470 			len = pcount * mss;
1471 		}
1472 	}
1473 
1474 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1475 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1476 		goto fallback;
1477 
1478 	if (!skb_shift(prev, skb, len))
1479 		goto fallback;
1480 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1481 		goto out;
1482 
1483 	/* Hole filled allows collapsing with the next as well, this is very
1484 	 * useful when hole on every nth skb pattern happens
1485 	 */
1486 	if (prev == tcp_write_queue_tail(sk))
1487 		goto out;
1488 	skb = tcp_write_queue_next(sk, prev);
1489 
1490 	if (!skb_can_shift(skb) ||
1491 	    (skb == tcp_send_head(sk)) ||
1492 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1493 	    (mss != tcp_skb_seglen(skb)))
1494 		goto out;
1495 
1496 	len = skb->len;
1497 	if (skb_shift(prev, skb, len)) {
1498 		pcount += tcp_skb_pcount(skb);
1499 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1500 	}
1501 
1502 out:
1503 	state->fack_count += pcount;
1504 	return prev;
1505 
1506 noop:
1507 	return skb;
1508 
1509 fallback:
1510 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1511 	return NULL;
1512 }
1513 
1514 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1515 					struct tcp_sack_block *next_dup,
1516 					struct tcp_sacktag_state *state,
1517 					u32 start_seq, u32 end_seq,
1518 					bool dup_sack_in)
1519 {
1520 	struct tcp_sock *tp = tcp_sk(sk);
1521 	struct sk_buff *tmp;
1522 
1523 	tcp_for_write_queue_from(skb, sk) {
1524 		int in_sack = 0;
1525 		bool dup_sack = dup_sack_in;
1526 
1527 		if (skb == tcp_send_head(sk))
1528 			break;
1529 
1530 		/* queue is in-order => we can short-circuit the walk early */
1531 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1532 			break;
1533 
1534 		if (next_dup  &&
1535 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1536 			in_sack = tcp_match_skb_to_sack(sk, skb,
1537 							next_dup->start_seq,
1538 							next_dup->end_seq);
1539 			if (in_sack > 0)
1540 				dup_sack = true;
1541 		}
1542 
1543 		/* skb reference here is a bit tricky to get right, since
1544 		 * shifting can eat and free both this skb and the next,
1545 		 * so not even _safe variant of the loop is enough.
1546 		 */
1547 		if (in_sack <= 0) {
1548 			tmp = tcp_shift_skb_data(sk, skb, state,
1549 						 start_seq, end_seq, dup_sack);
1550 			if (tmp) {
1551 				if (tmp != skb) {
1552 					skb = tmp;
1553 					continue;
1554 				}
1555 
1556 				in_sack = 0;
1557 			} else {
1558 				in_sack = tcp_match_skb_to_sack(sk, skb,
1559 								start_seq,
1560 								end_seq);
1561 			}
1562 		}
1563 
1564 		if (unlikely(in_sack < 0))
1565 			break;
1566 
1567 		if (in_sack) {
1568 			TCP_SKB_CB(skb)->sacked =
1569 				tcp_sacktag_one(sk,
1570 						state,
1571 						TCP_SKB_CB(skb)->sacked,
1572 						TCP_SKB_CB(skb)->seq,
1573 						TCP_SKB_CB(skb)->end_seq,
1574 						dup_sack,
1575 						tcp_skb_pcount(skb),
1576 						&skb->skb_mstamp);
1577 
1578 			if (!before(TCP_SKB_CB(skb)->seq,
1579 				    tcp_highest_sack_seq(tp)))
1580 				tcp_advance_highest_sack(sk, skb);
1581 		}
1582 
1583 		state->fack_count += tcp_skb_pcount(skb);
1584 	}
1585 	return skb;
1586 }
1587 
1588 /* Avoid all extra work that is being done by sacktag while walking in
1589  * a normal way
1590  */
1591 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1592 					struct tcp_sacktag_state *state,
1593 					u32 skip_to_seq)
1594 {
1595 	tcp_for_write_queue_from(skb, sk) {
1596 		if (skb == tcp_send_head(sk))
1597 			break;
1598 
1599 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1600 			break;
1601 
1602 		state->fack_count += tcp_skb_pcount(skb);
1603 	}
1604 	return skb;
1605 }
1606 
1607 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1608 						struct sock *sk,
1609 						struct tcp_sack_block *next_dup,
1610 						struct tcp_sacktag_state *state,
1611 						u32 skip_to_seq)
1612 {
1613 	if (!next_dup)
1614 		return skb;
1615 
1616 	if (before(next_dup->start_seq, skip_to_seq)) {
1617 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1618 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1619 				       next_dup->start_seq, next_dup->end_seq,
1620 				       1);
1621 	}
1622 
1623 	return skb;
1624 }
1625 
1626 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1627 {
1628 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1629 }
1630 
1631 static int
1632 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1633 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1634 {
1635 	struct tcp_sock *tp = tcp_sk(sk);
1636 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1637 				    TCP_SKB_CB(ack_skb)->sacked);
1638 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1639 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1640 	struct tcp_sack_block *cache;
1641 	struct sk_buff *skb;
1642 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1643 	int used_sacks;
1644 	bool found_dup_sack = false;
1645 	int i, j;
1646 	int first_sack_index;
1647 
1648 	state->flag = 0;
1649 	state->reord = tp->packets_out;
1650 
1651 	if (!tp->sacked_out) {
1652 		if (WARN_ON(tp->fackets_out))
1653 			tp->fackets_out = 0;
1654 		tcp_highest_sack_reset(sk);
1655 	}
1656 
1657 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1658 					 num_sacks, prior_snd_una);
1659 	if (found_dup_sack)
1660 		state->flag |= FLAG_DSACKING_ACK;
1661 
1662 	/* Eliminate too old ACKs, but take into
1663 	 * account more or less fresh ones, they can
1664 	 * contain valid SACK info.
1665 	 */
1666 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1667 		return 0;
1668 
1669 	if (!tp->packets_out)
1670 		goto out;
1671 
1672 	used_sacks = 0;
1673 	first_sack_index = 0;
1674 	for (i = 0; i < num_sacks; i++) {
1675 		bool dup_sack = !i && found_dup_sack;
1676 
1677 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1678 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1679 
1680 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1681 					    sp[used_sacks].start_seq,
1682 					    sp[used_sacks].end_seq)) {
1683 			int mib_idx;
1684 
1685 			if (dup_sack) {
1686 				if (!tp->undo_marker)
1687 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1688 				else
1689 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1690 			} else {
1691 				/* Don't count olds caused by ACK reordering */
1692 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1693 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1694 					continue;
1695 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1696 			}
1697 
1698 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1699 			if (i == 0)
1700 				first_sack_index = -1;
1701 			continue;
1702 		}
1703 
1704 		/* Ignore very old stuff early */
1705 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1706 			continue;
1707 
1708 		used_sacks++;
1709 	}
1710 
1711 	/* order SACK blocks to allow in order walk of the retrans queue */
1712 	for (i = used_sacks - 1; i > 0; i--) {
1713 		for (j = 0; j < i; j++) {
1714 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1715 				swap(sp[j], sp[j + 1]);
1716 
1717 				/* Track where the first SACK block goes to */
1718 				if (j == first_sack_index)
1719 					first_sack_index = j + 1;
1720 			}
1721 		}
1722 	}
1723 
1724 	skb = tcp_write_queue_head(sk);
1725 	state->fack_count = 0;
1726 	i = 0;
1727 
1728 	if (!tp->sacked_out) {
1729 		/* It's already past, so skip checking against it */
1730 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1731 	} else {
1732 		cache = tp->recv_sack_cache;
1733 		/* Skip empty blocks in at head of the cache */
1734 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1735 		       !cache->end_seq)
1736 			cache++;
1737 	}
1738 
1739 	while (i < used_sacks) {
1740 		u32 start_seq = sp[i].start_seq;
1741 		u32 end_seq = sp[i].end_seq;
1742 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1743 		struct tcp_sack_block *next_dup = NULL;
1744 
1745 		if (found_dup_sack && ((i + 1) == first_sack_index))
1746 			next_dup = &sp[i + 1];
1747 
1748 		/* Skip too early cached blocks */
1749 		while (tcp_sack_cache_ok(tp, cache) &&
1750 		       !before(start_seq, cache->end_seq))
1751 			cache++;
1752 
1753 		/* Can skip some work by looking recv_sack_cache? */
1754 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1755 		    after(end_seq, cache->start_seq)) {
1756 
1757 			/* Head todo? */
1758 			if (before(start_seq, cache->start_seq)) {
1759 				skb = tcp_sacktag_skip(skb, sk, state,
1760 						       start_seq);
1761 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1762 						       state,
1763 						       start_seq,
1764 						       cache->start_seq,
1765 						       dup_sack);
1766 			}
1767 
1768 			/* Rest of the block already fully processed? */
1769 			if (!after(end_seq, cache->end_seq))
1770 				goto advance_sp;
1771 
1772 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1773 						       state,
1774 						       cache->end_seq);
1775 
1776 			/* ...tail remains todo... */
1777 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1778 				/* ...but better entrypoint exists! */
1779 				skb = tcp_highest_sack(sk);
1780 				if (!skb)
1781 					break;
1782 				state->fack_count = tp->fackets_out;
1783 				cache++;
1784 				goto walk;
1785 			}
1786 
1787 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1788 			/* Check overlap against next cached too (past this one already) */
1789 			cache++;
1790 			continue;
1791 		}
1792 
1793 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1794 			skb = tcp_highest_sack(sk);
1795 			if (!skb)
1796 				break;
1797 			state->fack_count = tp->fackets_out;
1798 		}
1799 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1800 
1801 walk:
1802 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1803 				       start_seq, end_seq, dup_sack);
1804 
1805 advance_sp:
1806 		i++;
1807 	}
1808 
1809 	/* Clear the head of the cache sack blocks so we can skip it next time */
1810 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1811 		tp->recv_sack_cache[i].start_seq = 0;
1812 		tp->recv_sack_cache[i].end_seq = 0;
1813 	}
1814 	for (j = 0; j < used_sacks; j++)
1815 		tp->recv_sack_cache[i++] = sp[j];
1816 
1817 	if ((state->reord < tp->fackets_out) &&
1818 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1819 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1820 
1821 	tcp_mark_lost_retrans(sk);
1822 	tcp_verify_left_out(tp);
1823 out:
1824 
1825 #if FASTRETRANS_DEBUG > 0
1826 	WARN_ON((int)tp->sacked_out < 0);
1827 	WARN_ON((int)tp->lost_out < 0);
1828 	WARN_ON((int)tp->retrans_out < 0);
1829 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1830 #endif
1831 	return state->flag;
1832 }
1833 
1834 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1835  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1836  */
1837 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1838 {
1839 	u32 holes;
1840 
1841 	holes = max(tp->lost_out, 1U);
1842 	holes = min(holes, tp->packets_out);
1843 
1844 	if ((tp->sacked_out + holes) > tp->packets_out) {
1845 		tp->sacked_out = tp->packets_out - holes;
1846 		return true;
1847 	}
1848 	return false;
1849 }
1850 
1851 /* If we receive more dupacks than we expected counting segments
1852  * in assumption of absent reordering, interpret this as reordering.
1853  * The only another reason could be bug in receiver TCP.
1854  */
1855 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1856 {
1857 	struct tcp_sock *tp = tcp_sk(sk);
1858 	if (tcp_limit_reno_sacked(tp))
1859 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1860 }
1861 
1862 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1863 
1864 static void tcp_add_reno_sack(struct sock *sk)
1865 {
1866 	struct tcp_sock *tp = tcp_sk(sk);
1867 	tp->sacked_out++;
1868 	tcp_check_reno_reordering(sk, 0);
1869 	tcp_verify_left_out(tp);
1870 }
1871 
1872 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1873 
1874 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1875 {
1876 	struct tcp_sock *tp = tcp_sk(sk);
1877 
1878 	if (acked > 0) {
1879 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1880 		if (acked - 1 >= tp->sacked_out)
1881 			tp->sacked_out = 0;
1882 		else
1883 			tp->sacked_out -= acked - 1;
1884 	}
1885 	tcp_check_reno_reordering(sk, acked);
1886 	tcp_verify_left_out(tp);
1887 }
1888 
1889 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1890 {
1891 	tp->sacked_out = 0;
1892 }
1893 
1894 void tcp_clear_retrans(struct tcp_sock *tp)
1895 {
1896 	tp->retrans_out = 0;
1897 	tp->lost_out = 0;
1898 	tp->undo_marker = 0;
1899 	tp->undo_retrans = -1;
1900 	tp->fackets_out = 0;
1901 	tp->sacked_out = 0;
1902 }
1903 
1904 static inline void tcp_init_undo(struct tcp_sock *tp)
1905 {
1906 	tp->undo_marker = tp->snd_una;
1907 	/* Retransmission still in flight may cause DSACKs later. */
1908 	tp->undo_retrans = tp->retrans_out ? : -1;
1909 }
1910 
1911 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1912  * and reset tags completely, otherwise preserve SACKs. If receiver
1913  * dropped its ofo queue, we will know this due to reneging detection.
1914  */
1915 void tcp_enter_loss(struct sock *sk)
1916 {
1917 	const struct inet_connection_sock *icsk = inet_csk(sk);
1918 	struct tcp_sock *tp = tcp_sk(sk);
1919 	struct sk_buff *skb;
1920 	bool new_recovery = false;
1921 	bool is_reneg;			/* is receiver reneging on SACKs? */
1922 
1923 	/* Reduce ssthresh if it has not yet been made inside this window. */
1924 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1925 	    !after(tp->high_seq, tp->snd_una) ||
1926 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1927 		new_recovery = true;
1928 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1929 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1930 		tcp_ca_event(sk, CA_EVENT_LOSS);
1931 		tcp_init_undo(tp);
1932 	}
1933 	tp->snd_cwnd	   = 1;
1934 	tp->snd_cwnd_cnt   = 0;
1935 	tp->snd_cwnd_stamp = tcp_time_stamp;
1936 
1937 	tp->retrans_out = 0;
1938 	tp->lost_out = 0;
1939 
1940 	if (tcp_is_reno(tp))
1941 		tcp_reset_reno_sack(tp);
1942 
1943 	skb = tcp_write_queue_head(sk);
1944 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1945 	if (is_reneg) {
1946 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1947 		tp->sacked_out = 0;
1948 		tp->fackets_out = 0;
1949 	}
1950 	tcp_clear_all_retrans_hints(tp);
1951 
1952 	tcp_for_write_queue(skb, sk) {
1953 		if (skb == tcp_send_head(sk))
1954 			break;
1955 
1956 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1957 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1958 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1959 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1960 			tp->lost_out += tcp_skb_pcount(skb);
1961 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1962 		}
1963 	}
1964 	tcp_verify_left_out(tp);
1965 
1966 	/* Timeout in disordered state after receiving substantial DUPACKs
1967 	 * suggests that the degree of reordering is over-estimated.
1968 	 */
1969 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1970 	    tp->sacked_out >= sysctl_tcp_reordering)
1971 		tp->reordering = min_t(unsigned int, tp->reordering,
1972 				       sysctl_tcp_reordering);
1973 	tcp_set_ca_state(sk, TCP_CA_Loss);
1974 	tp->high_seq = tp->snd_nxt;
1975 	tcp_ecn_queue_cwr(tp);
1976 
1977 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1978 	 * loss recovery is underway except recurring timeout(s) on
1979 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1980 	 */
1981 	tp->frto = sysctl_tcp_frto &&
1982 		   (new_recovery || icsk->icsk_retransmits) &&
1983 		   !inet_csk(sk)->icsk_mtup.probe_size;
1984 }
1985 
1986 /* If ACK arrived pointing to a remembered SACK, it means that our
1987  * remembered SACKs do not reflect real state of receiver i.e.
1988  * receiver _host_ is heavily congested (or buggy).
1989  *
1990  * To avoid big spurious retransmission bursts due to transient SACK
1991  * scoreboard oddities that look like reneging, we give the receiver a
1992  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1993  * restore sanity to the SACK scoreboard. If the apparent reneging
1994  * persists until this RTO then we'll clear the SACK scoreboard.
1995  */
1996 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1997 {
1998 	if (flag & FLAG_SACK_RENEGING) {
1999 		struct tcp_sock *tp = tcp_sk(sk);
2000 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2001 					  msecs_to_jiffies(10));
2002 
2003 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2004 					  delay, TCP_RTO_MAX);
2005 		return true;
2006 	}
2007 	return false;
2008 }
2009 
2010 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2011 {
2012 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2013 }
2014 
2015 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2016  * counter when SACK is enabled (without SACK, sacked_out is used for
2017  * that purpose).
2018  *
2019  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2020  * segments up to the highest received SACK block so far and holes in
2021  * between them.
2022  *
2023  * With reordering, holes may still be in flight, so RFC3517 recovery
2024  * uses pure sacked_out (total number of SACKed segments) even though
2025  * it violates the RFC that uses duplicate ACKs, often these are equal
2026  * but when e.g. out-of-window ACKs or packet duplication occurs,
2027  * they differ. Since neither occurs due to loss, TCP should really
2028  * ignore them.
2029  */
2030 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2031 {
2032 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2033 }
2034 
2035 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2036 {
2037 	struct tcp_sock *tp = tcp_sk(sk);
2038 	unsigned long delay;
2039 
2040 	/* Delay early retransmit and entering fast recovery for
2041 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2042 	 * available, or RTO is scheduled to fire first.
2043 	 */
2044 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2045 	    (flag & FLAG_ECE) || !tp->srtt_us)
2046 		return false;
2047 
2048 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2049 		    msecs_to_jiffies(2));
2050 
2051 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2052 		return false;
2053 
2054 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2055 				  TCP_RTO_MAX);
2056 	return true;
2057 }
2058 
2059 /* Linux NewReno/SACK/FACK/ECN state machine.
2060  * --------------------------------------
2061  *
2062  * "Open"	Normal state, no dubious events, fast path.
2063  * "Disorder"   In all the respects it is "Open",
2064  *		but requires a bit more attention. It is entered when
2065  *		we see some SACKs or dupacks. It is split of "Open"
2066  *		mainly to move some processing from fast path to slow one.
2067  * "CWR"	CWND was reduced due to some Congestion Notification event.
2068  *		It can be ECN, ICMP source quench, local device congestion.
2069  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2070  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2071  *
2072  * tcp_fastretrans_alert() is entered:
2073  * - each incoming ACK, if state is not "Open"
2074  * - when arrived ACK is unusual, namely:
2075  *	* SACK
2076  *	* Duplicate ACK.
2077  *	* ECN ECE.
2078  *
2079  * Counting packets in flight is pretty simple.
2080  *
2081  *	in_flight = packets_out - left_out + retrans_out
2082  *
2083  *	packets_out is SND.NXT-SND.UNA counted in packets.
2084  *
2085  *	retrans_out is number of retransmitted segments.
2086  *
2087  *	left_out is number of segments left network, but not ACKed yet.
2088  *
2089  *		left_out = sacked_out + lost_out
2090  *
2091  *     sacked_out: Packets, which arrived to receiver out of order
2092  *		   and hence not ACKed. With SACKs this number is simply
2093  *		   amount of SACKed data. Even without SACKs
2094  *		   it is easy to give pretty reliable estimate of this number,
2095  *		   counting duplicate ACKs.
2096  *
2097  *       lost_out: Packets lost by network. TCP has no explicit
2098  *		   "loss notification" feedback from network (for now).
2099  *		   It means that this number can be only _guessed_.
2100  *		   Actually, it is the heuristics to predict lossage that
2101  *		   distinguishes different algorithms.
2102  *
2103  *	F.e. after RTO, when all the queue is considered as lost,
2104  *	lost_out = packets_out and in_flight = retrans_out.
2105  *
2106  *		Essentially, we have now two algorithms counting
2107  *		lost packets.
2108  *
2109  *		FACK: It is the simplest heuristics. As soon as we decided
2110  *		that something is lost, we decide that _all_ not SACKed
2111  *		packets until the most forward SACK are lost. I.e.
2112  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2113  *		It is absolutely correct estimate, if network does not reorder
2114  *		packets. And it loses any connection to reality when reordering
2115  *		takes place. We use FACK by default until reordering
2116  *		is suspected on the path to this destination.
2117  *
2118  *		NewReno: when Recovery is entered, we assume that one segment
2119  *		is lost (classic Reno). While we are in Recovery and
2120  *		a partial ACK arrives, we assume that one more packet
2121  *		is lost (NewReno). This heuristics are the same in NewReno
2122  *		and SACK.
2123  *
2124  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2125  *  deflation etc. CWND is real congestion window, never inflated, changes
2126  *  only according to classic VJ rules.
2127  *
2128  * Really tricky (and requiring careful tuning) part of algorithm
2129  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2130  * The first determines the moment _when_ we should reduce CWND and,
2131  * hence, slow down forward transmission. In fact, it determines the moment
2132  * when we decide that hole is caused by loss, rather than by a reorder.
2133  *
2134  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2135  * holes, caused by lost packets.
2136  *
2137  * And the most logically complicated part of algorithm is undo
2138  * heuristics. We detect false retransmits due to both too early
2139  * fast retransmit (reordering) and underestimated RTO, analyzing
2140  * timestamps and D-SACKs. When we detect that some segments were
2141  * retransmitted by mistake and CWND reduction was wrong, we undo
2142  * window reduction and abort recovery phase. This logic is hidden
2143  * inside several functions named tcp_try_undo_<something>.
2144  */
2145 
2146 /* This function decides, when we should leave Disordered state
2147  * and enter Recovery phase, reducing congestion window.
2148  *
2149  * Main question: may we further continue forward transmission
2150  * with the same cwnd?
2151  */
2152 static bool tcp_time_to_recover(struct sock *sk, int flag)
2153 {
2154 	struct tcp_sock *tp = tcp_sk(sk);
2155 	__u32 packets_out;
2156 
2157 	/* Trick#1: The loss is proven. */
2158 	if (tp->lost_out)
2159 		return true;
2160 
2161 	/* Not-A-Trick#2 : Classic rule... */
2162 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2163 		return true;
2164 
2165 	/* Trick#4: It is still not OK... But will it be useful to delay
2166 	 * recovery more?
2167 	 */
2168 	packets_out = tp->packets_out;
2169 	if (packets_out <= tp->reordering &&
2170 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2171 	    !tcp_may_send_now(sk)) {
2172 		/* We have nothing to send. This connection is limited
2173 		 * either by receiver window or by application.
2174 		 */
2175 		return true;
2176 	}
2177 
2178 	/* If a thin stream is detected, retransmit after first
2179 	 * received dupack. Employ only if SACK is supported in order
2180 	 * to avoid possible corner-case series of spurious retransmissions
2181 	 * Use only if there are no unsent data.
2182 	 */
2183 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2184 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2185 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2186 		return true;
2187 
2188 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2189 	 * retransmissions due to small network reorderings, we implement
2190 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2191 	 * interval if appropriate.
2192 	 */
2193 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2194 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2195 	    !tcp_may_send_now(sk))
2196 		return !tcp_pause_early_retransmit(sk, flag);
2197 
2198 	return false;
2199 }
2200 
2201 /* Detect loss in event "A" above by marking head of queue up as lost.
2202  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2203  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2204  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2205  * the maximum SACKed segments to pass before reaching this limit.
2206  */
2207 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2208 {
2209 	struct tcp_sock *tp = tcp_sk(sk);
2210 	struct sk_buff *skb;
2211 	int cnt, oldcnt;
2212 	int err;
2213 	unsigned int mss;
2214 	/* Use SACK to deduce losses of new sequences sent during recovery */
2215 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2216 
2217 	WARN_ON(packets > tp->packets_out);
2218 	if (tp->lost_skb_hint) {
2219 		skb = tp->lost_skb_hint;
2220 		cnt = tp->lost_cnt_hint;
2221 		/* Head already handled? */
2222 		if (mark_head && skb != tcp_write_queue_head(sk))
2223 			return;
2224 	} else {
2225 		skb = tcp_write_queue_head(sk);
2226 		cnt = 0;
2227 	}
2228 
2229 	tcp_for_write_queue_from(skb, sk) {
2230 		if (skb == tcp_send_head(sk))
2231 			break;
2232 		/* TODO: do this better */
2233 		/* this is not the most efficient way to do this... */
2234 		tp->lost_skb_hint = skb;
2235 		tp->lost_cnt_hint = cnt;
2236 
2237 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2238 			break;
2239 
2240 		oldcnt = cnt;
2241 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2242 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2243 			cnt += tcp_skb_pcount(skb);
2244 
2245 		if (cnt > packets) {
2246 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2247 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2248 			    (oldcnt >= packets))
2249 				break;
2250 
2251 			mss = tcp_skb_mss(skb);
2252 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2253 					   mss, GFP_ATOMIC);
2254 			if (err < 0)
2255 				break;
2256 			cnt = packets;
2257 		}
2258 
2259 		tcp_skb_mark_lost(tp, skb);
2260 
2261 		if (mark_head)
2262 			break;
2263 	}
2264 	tcp_verify_left_out(tp);
2265 }
2266 
2267 /* Account newly detected lost packet(s) */
2268 
2269 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2270 {
2271 	struct tcp_sock *tp = tcp_sk(sk);
2272 
2273 	if (tcp_is_reno(tp)) {
2274 		tcp_mark_head_lost(sk, 1, 1);
2275 	} else if (tcp_is_fack(tp)) {
2276 		int lost = tp->fackets_out - tp->reordering;
2277 		if (lost <= 0)
2278 			lost = 1;
2279 		tcp_mark_head_lost(sk, lost, 0);
2280 	} else {
2281 		int sacked_upto = tp->sacked_out - tp->reordering;
2282 		if (sacked_upto >= 0)
2283 			tcp_mark_head_lost(sk, sacked_upto, 0);
2284 		else if (fast_rexmit)
2285 			tcp_mark_head_lost(sk, 1, 1);
2286 	}
2287 }
2288 
2289 /* CWND moderation, preventing bursts due to too big ACKs
2290  * in dubious situations.
2291  */
2292 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2293 {
2294 	tp->snd_cwnd = min(tp->snd_cwnd,
2295 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2296 	tp->snd_cwnd_stamp = tcp_time_stamp;
2297 }
2298 
2299 /* Nothing was retransmitted or returned timestamp is less
2300  * than timestamp of the first retransmission.
2301  */
2302 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2303 {
2304 	return !tp->retrans_stamp ||
2305 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2306 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2307 }
2308 
2309 /* Undo procedures. */
2310 
2311 /* We can clear retrans_stamp when there are no retransmissions in the
2312  * window. It would seem that it is trivially available for us in
2313  * tp->retrans_out, however, that kind of assumptions doesn't consider
2314  * what will happen if errors occur when sending retransmission for the
2315  * second time. ...It could the that such segment has only
2316  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2317  * the head skb is enough except for some reneging corner cases that
2318  * are not worth the effort.
2319  *
2320  * Main reason for all this complexity is the fact that connection dying
2321  * time now depends on the validity of the retrans_stamp, in particular,
2322  * that successive retransmissions of a segment must not advance
2323  * retrans_stamp under any conditions.
2324  */
2325 static bool tcp_any_retrans_done(const struct sock *sk)
2326 {
2327 	const struct tcp_sock *tp = tcp_sk(sk);
2328 	struct sk_buff *skb;
2329 
2330 	if (tp->retrans_out)
2331 		return true;
2332 
2333 	skb = tcp_write_queue_head(sk);
2334 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2335 		return true;
2336 
2337 	return false;
2338 }
2339 
2340 #if FASTRETRANS_DEBUG > 1
2341 static void DBGUNDO(struct sock *sk, const char *msg)
2342 {
2343 	struct tcp_sock *tp = tcp_sk(sk);
2344 	struct inet_sock *inet = inet_sk(sk);
2345 
2346 	if (sk->sk_family == AF_INET) {
2347 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2348 			 msg,
2349 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2350 			 tp->snd_cwnd, tcp_left_out(tp),
2351 			 tp->snd_ssthresh, tp->prior_ssthresh,
2352 			 tp->packets_out);
2353 	}
2354 #if IS_ENABLED(CONFIG_IPV6)
2355 	else if (sk->sk_family == AF_INET6) {
2356 		struct ipv6_pinfo *np = inet6_sk(sk);
2357 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2358 			 msg,
2359 			 &np->daddr, ntohs(inet->inet_dport),
2360 			 tp->snd_cwnd, tcp_left_out(tp),
2361 			 tp->snd_ssthresh, tp->prior_ssthresh,
2362 			 tp->packets_out);
2363 	}
2364 #endif
2365 }
2366 #else
2367 #define DBGUNDO(x...) do { } while (0)
2368 #endif
2369 
2370 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2371 {
2372 	struct tcp_sock *tp = tcp_sk(sk);
2373 
2374 	if (unmark_loss) {
2375 		struct sk_buff *skb;
2376 
2377 		tcp_for_write_queue(skb, sk) {
2378 			if (skb == tcp_send_head(sk))
2379 				break;
2380 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2381 		}
2382 		tp->lost_out = 0;
2383 		tcp_clear_all_retrans_hints(tp);
2384 	}
2385 
2386 	if (tp->prior_ssthresh) {
2387 		const struct inet_connection_sock *icsk = inet_csk(sk);
2388 
2389 		if (icsk->icsk_ca_ops->undo_cwnd)
2390 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2391 		else
2392 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2393 
2394 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2395 			tp->snd_ssthresh = tp->prior_ssthresh;
2396 			tcp_ecn_withdraw_cwr(tp);
2397 		}
2398 	} else {
2399 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2400 	}
2401 	tp->snd_cwnd_stamp = tcp_time_stamp;
2402 	tp->undo_marker = 0;
2403 }
2404 
2405 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2406 {
2407 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2408 }
2409 
2410 /* People celebrate: "We love our President!" */
2411 static bool tcp_try_undo_recovery(struct sock *sk)
2412 {
2413 	struct tcp_sock *tp = tcp_sk(sk);
2414 
2415 	if (tcp_may_undo(tp)) {
2416 		int mib_idx;
2417 
2418 		/* Happy end! We did not retransmit anything
2419 		 * or our original transmission succeeded.
2420 		 */
2421 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2422 		tcp_undo_cwnd_reduction(sk, false);
2423 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2424 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2425 		else
2426 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2427 
2428 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2429 	}
2430 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2431 		/* Hold old state until something *above* high_seq
2432 		 * is ACKed. For Reno it is MUST to prevent false
2433 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2434 		tcp_moderate_cwnd(tp);
2435 		if (!tcp_any_retrans_done(sk))
2436 			tp->retrans_stamp = 0;
2437 		return true;
2438 	}
2439 	tcp_set_ca_state(sk, TCP_CA_Open);
2440 	return false;
2441 }
2442 
2443 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2444 static bool tcp_try_undo_dsack(struct sock *sk)
2445 {
2446 	struct tcp_sock *tp = tcp_sk(sk);
2447 
2448 	if (tp->undo_marker && !tp->undo_retrans) {
2449 		DBGUNDO(sk, "D-SACK");
2450 		tcp_undo_cwnd_reduction(sk, false);
2451 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2452 		return true;
2453 	}
2454 	return false;
2455 }
2456 
2457 /* Undo during loss recovery after partial ACK or using F-RTO. */
2458 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2459 {
2460 	struct tcp_sock *tp = tcp_sk(sk);
2461 
2462 	if (frto_undo || tcp_may_undo(tp)) {
2463 		tcp_undo_cwnd_reduction(sk, true);
2464 
2465 		DBGUNDO(sk, "partial loss");
2466 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2467 		if (frto_undo)
2468 			NET_INC_STATS_BH(sock_net(sk),
2469 					 LINUX_MIB_TCPSPURIOUSRTOS);
2470 		inet_csk(sk)->icsk_retransmits = 0;
2471 		if (frto_undo || tcp_is_sack(tp))
2472 			tcp_set_ca_state(sk, TCP_CA_Open);
2473 		return true;
2474 	}
2475 	return false;
2476 }
2477 
2478 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2479  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2480  * It computes the number of packets to send (sndcnt) based on packets newly
2481  * delivered:
2482  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2483  *	cwnd reductions across a full RTT.
2484  *   2) If packets in flight is lower than ssthresh (such as due to excess
2485  *	losses and/or application stalls), do not perform any further cwnd
2486  *	reductions, but instead slow start up to ssthresh.
2487  */
2488 static void tcp_init_cwnd_reduction(struct sock *sk)
2489 {
2490 	struct tcp_sock *tp = tcp_sk(sk);
2491 
2492 	tp->high_seq = tp->snd_nxt;
2493 	tp->tlp_high_seq = 0;
2494 	tp->snd_cwnd_cnt = 0;
2495 	tp->prior_cwnd = tp->snd_cwnd;
2496 	tp->prr_delivered = 0;
2497 	tp->prr_out = 0;
2498 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2499 	tcp_ecn_queue_cwr(tp);
2500 }
2501 
2502 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2503 			       int fast_rexmit)
2504 {
2505 	struct tcp_sock *tp = tcp_sk(sk);
2506 	int sndcnt = 0;
2507 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2508 	int newly_acked_sacked = prior_unsacked -
2509 				 (tp->packets_out - tp->sacked_out);
2510 
2511 	tp->prr_delivered += newly_acked_sacked;
2512 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2513 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2514 			       tp->prior_cwnd - 1;
2515 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2516 	} else {
2517 		sndcnt = min_t(int, delta,
2518 			       max_t(int, tp->prr_delivered - tp->prr_out,
2519 				     newly_acked_sacked) + 1);
2520 	}
2521 
2522 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2523 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2524 }
2525 
2526 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2527 {
2528 	struct tcp_sock *tp = tcp_sk(sk);
2529 
2530 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2531 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2532 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2533 		tp->snd_cwnd = tp->snd_ssthresh;
2534 		tp->snd_cwnd_stamp = tcp_time_stamp;
2535 	}
2536 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2537 }
2538 
2539 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2540 void tcp_enter_cwr(struct sock *sk)
2541 {
2542 	struct tcp_sock *tp = tcp_sk(sk);
2543 
2544 	tp->prior_ssthresh = 0;
2545 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2546 		tp->undo_marker = 0;
2547 		tcp_init_cwnd_reduction(sk);
2548 		tcp_set_ca_state(sk, TCP_CA_CWR);
2549 	}
2550 }
2551 EXPORT_SYMBOL(tcp_enter_cwr);
2552 
2553 static void tcp_try_keep_open(struct sock *sk)
2554 {
2555 	struct tcp_sock *tp = tcp_sk(sk);
2556 	int state = TCP_CA_Open;
2557 
2558 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2559 		state = TCP_CA_Disorder;
2560 
2561 	if (inet_csk(sk)->icsk_ca_state != state) {
2562 		tcp_set_ca_state(sk, state);
2563 		tp->high_seq = tp->snd_nxt;
2564 	}
2565 }
2566 
2567 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 
2571 	tcp_verify_left_out(tp);
2572 
2573 	if (!tcp_any_retrans_done(sk))
2574 		tp->retrans_stamp = 0;
2575 
2576 	if (flag & FLAG_ECE)
2577 		tcp_enter_cwr(sk);
2578 
2579 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2580 		tcp_try_keep_open(sk);
2581 	} else {
2582 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2583 	}
2584 }
2585 
2586 static void tcp_mtup_probe_failed(struct sock *sk)
2587 {
2588 	struct inet_connection_sock *icsk = inet_csk(sk);
2589 
2590 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2591 	icsk->icsk_mtup.probe_size = 0;
2592 }
2593 
2594 static void tcp_mtup_probe_success(struct sock *sk)
2595 {
2596 	struct tcp_sock *tp = tcp_sk(sk);
2597 	struct inet_connection_sock *icsk = inet_csk(sk);
2598 
2599 	/* FIXME: breaks with very large cwnd */
2600 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2601 	tp->snd_cwnd = tp->snd_cwnd *
2602 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2603 		       icsk->icsk_mtup.probe_size;
2604 	tp->snd_cwnd_cnt = 0;
2605 	tp->snd_cwnd_stamp = tcp_time_stamp;
2606 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2607 
2608 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2609 	icsk->icsk_mtup.probe_size = 0;
2610 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2611 }
2612 
2613 /* Do a simple retransmit without using the backoff mechanisms in
2614  * tcp_timer. This is used for path mtu discovery.
2615  * The socket is already locked here.
2616  */
2617 void tcp_simple_retransmit(struct sock *sk)
2618 {
2619 	const struct inet_connection_sock *icsk = inet_csk(sk);
2620 	struct tcp_sock *tp = tcp_sk(sk);
2621 	struct sk_buff *skb;
2622 	unsigned int mss = tcp_current_mss(sk);
2623 	u32 prior_lost = tp->lost_out;
2624 
2625 	tcp_for_write_queue(skb, sk) {
2626 		if (skb == tcp_send_head(sk))
2627 			break;
2628 		if (tcp_skb_seglen(skb) > mss &&
2629 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2630 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2631 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2632 				tp->retrans_out -= tcp_skb_pcount(skb);
2633 			}
2634 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2635 		}
2636 	}
2637 
2638 	tcp_clear_retrans_hints_partial(tp);
2639 
2640 	if (prior_lost == tp->lost_out)
2641 		return;
2642 
2643 	if (tcp_is_reno(tp))
2644 		tcp_limit_reno_sacked(tp);
2645 
2646 	tcp_verify_left_out(tp);
2647 
2648 	/* Don't muck with the congestion window here.
2649 	 * Reason is that we do not increase amount of _data_
2650 	 * in network, but units changed and effective
2651 	 * cwnd/ssthresh really reduced now.
2652 	 */
2653 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2654 		tp->high_seq = tp->snd_nxt;
2655 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2656 		tp->prior_ssthresh = 0;
2657 		tp->undo_marker = 0;
2658 		tcp_set_ca_state(sk, TCP_CA_Loss);
2659 	}
2660 	tcp_xmit_retransmit_queue(sk);
2661 }
2662 EXPORT_SYMBOL(tcp_simple_retransmit);
2663 
2664 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2665 {
2666 	struct tcp_sock *tp = tcp_sk(sk);
2667 	int mib_idx;
2668 
2669 	if (tcp_is_reno(tp))
2670 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2671 	else
2672 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2673 
2674 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2675 
2676 	tp->prior_ssthresh = 0;
2677 	tcp_init_undo(tp);
2678 
2679 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2680 		if (!ece_ack)
2681 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2682 		tcp_init_cwnd_reduction(sk);
2683 	}
2684 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2685 }
2686 
2687 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2688  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2689  */
2690 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2691 {
2692 	struct tcp_sock *tp = tcp_sk(sk);
2693 	bool recovered = !before(tp->snd_una, tp->high_seq);
2694 
2695 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2696 	    tcp_try_undo_loss(sk, false))
2697 		return;
2698 
2699 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2700 		/* Step 3.b. A timeout is spurious if not all data are
2701 		 * lost, i.e., never-retransmitted data are (s)acked.
2702 		 */
2703 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2704 		    tcp_try_undo_loss(sk, true))
2705 			return;
2706 
2707 		if (after(tp->snd_nxt, tp->high_seq)) {
2708 			if (flag & FLAG_DATA_SACKED || is_dupack)
2709 				tp->frto = 0; /* Step 3.a. loss was real */
2710 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2711 			tp->high_seq = tp->snd_nxt;
2712 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2713 						  TCP_NAGLE_OFF);
2714 			if (after(tp->snd_nxt, tp->high_seq))
2715 				return; /* Step 2.b */
2716 			tp->frto = 0;
2717 		}
2718 	}
2719 
2720 	if (recovered) {
2721 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2722 		tcp_try_undo_recovery(sk);
2723 		return;
2724 	}
2725 	if (tcp_is_reno(tp)) {
2726 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2727 		 * delivered. Lower inflight to clock out (re)tranmissions.
2728 		 */
2729 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2730 			tcp_add_reno_sack(sk);
2731 		else if (flag & FLAG_SND_UNA_ADVANCED)
2732 			tcp_reset_reno_sack(tp);
2733 	}
2734 	tcp_xmit_retransmit_queue(sk);
2735 }
2736 
2737 /* Undo during fast recovery after partial ACK. */
2738 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2739 				 const int prior_unsacked)
2740 {
2741 	struct tcp_sock *tp = tcp_sk(sk);
2742 
2743 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2744 		/* Plain luck! Hole if filled with delayed
2745 		 * packet, rather than with a retransmit.
2746 		 */
2747 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2748 
2749 		/* We are getting evidence that the reordering degree is higher
2750 		 * than we realized. If there are no retransmits out then we
2751 		 * can undo. Otherwise we clock out new packets but do not
2752 		 * mark more packets lost or retransmit more.
2753 		 */
2754 		if (tp->retrans_out) {
2755 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2756 			return true;
2757 		}
2758 
2759 		if (!tcp_any_retrans_done(sk))
2760 			tp->retrans_stamp = 0;
2761 
2762 		DBGUNDO(sk, "partial recovery");
2763 		tcp_undo_cwnd_reduction(sk, true);
2764 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2765 		tcp_try_keep_open(sk);
2766 		return true;
2767 	}
2768 	return false;
2769 }
2770 
2771 /* Process an event, which can update packets-in-flight not trivially.
2772  * Main goal of this function is to calculate new estimate for left_out,
2773  * taking into account both packets sitting in receiver's buffer and
2774  * packets lost by network.
2775  *
2776  * Besides that it does CWND reduction, when packet loss is detected
2777  * and changes state of machine.
2778  *
2779  * It does _not_ decide what to send, it is made in function
2780  * tcp_xmit_retransmit_queue().
2781  */
2782 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2783 				  const int prior_unsacked,
2784 				  bool is_dupack, int flag)
2785 {
2786 	struct inet_connection_sock *icsk = inet_csk(sk);
2787 	struct tcp_sock *tp = tcp_sk(sk);
2788 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2789 				    (tcp_fackets_out(tp) > tp->reordering));
2790 	int fast_rexmit = 0;
2791 
2792 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2793 		tp->sacked_out = 0;
2794 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2795 		tp->fackets_out = 0;
2796 
2797 	/* Now state machine starts.
2798 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2799 	if (flag & FLAG_ECE)
2800 		tp->prior_ssthresh = 0;
2801 
2802 	/* B. In all the states check for reneging SACKs. */
2803 	if (tcp_check_sack_reneging(sk, flag))
2804 		return;
2805 
2806 	/* C. Check consistency of the current state. */
2807 	tcp_verify_left_out(tp);
2808 
2809 	/* D. Check state exit conditions. State can be terminated
2810 	 *    when high_seq is ACKed. */
2811 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2812 		WARN_ON(tp->retrans_out != 0);
2813 		tp->retrans_stamp = 0;
2814 	} else if (!before(tp->snd_una, tp->high_seq)) {
2815 		switch (icsk->icsk_ca_state) {
2816 		case TCP_CA_CWR:
2817 			/* CWR is to be held something *above* high_seq
2818 			 * is ACKed for CWR bit to reach receiver. */
2819 			if (tp->snd_una != tp->high_seq) {
2820 				tcp_end_cwnd_reduction(sk);
2821 				tcp_set_ca_state(sk, TCP_CA_Open);
2822 			}
2823 			break;
2824 
2825 		case TCP_CA_Recovery:
2826 			if (tcp_is_reno(tp))
2827 				tcp_reset_reno_sack(tp);
2828 			if (tcp_try_undo_recovery(sk))
2829 				return;
2830 			tcp_end_cwnd_reduction(sk);
2831 			break;
2832 		}
2833 	}
2834 
2835 	/* E. Process state. */
2836 	switch (icsk->icsk_ca_state) {
2837 	case TCP_CA_Recovery:
2838 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2839 			if (tcp_is_reno(tp) && is_dupack)
2840 				tcp_add_reno_sack(sk);
2841 		} else {
2842 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2843 				return;
2844 			/* Partial ACK arrived. Force fast retransmit. */
2845 			do_lost = tcp_is_reno(tp) ||
2846 				  tcp_fackets_out(tp) > tp->reordering;
2847 		}
2848 		if (tcp_try_undo_dsack(sk)) {
2849 			tcp_try_keep_open(sk);
2850 			return;
2851 		}
2852 		break;
2853 	case TCP_CA_Loss:
2854 		tcp_process_loss(sk, flag, is_dupack);
2855 		if (icsk->icsk_ca_state != TCP_CA_Open)
2856 			return;
2857 		/* Fall through to processing in Open state. */
2858 	default:
2859 		if (tcp_is_reno(tp)) {
2860 			if (flag & FLAG_SND_UNA_ADVANCED)
2861 				tcp_reset_reno_sack(tp);
2862 			if (is_dupack)
2863 				tcp_add_reno_sack(sk);
2864 		}
2865 
2866 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2867 			tcp_try_undo_dsack(sk);
2868 
2869 		if (!tcp_time_to_recover(sk, flag)) {
2870 			tcp_try_to_open(sk, flag, prior_unsacked);
2871 			return;
2872 		}
2873 
2874 		/* MTU probe failure: don't reduce cwnd */
2875 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2876 		    icsk->icsk_mtup.probe_size &&
2877 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2878 			tcp_mtup_probe_failed(sk);
2879 			/* Restores the reduction we did in tcp_mtup_probe() */
2880 			tp->snd_cwnd++;
2881 			tcp_simple_retransmit(sk);
2882 			return;
2883 		}
2884 
2885 		/* Otherwise enter Recovery state */
2886 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2887 		fast_rexmit = 1;
2888 	}
2889 
2890 	if (do_lost)
2891 		tcp_update_scoreboard(sk, fast_rexmit);
2892 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2893 	tcp_xmit_retransmit_queue(sk);
2894 }
2895 
2896 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2897 				      long seq_rtt_us, long sack_rtt_us)
2898 {
2899 	const struct tcp_sock *tp = tcp_sk(sk);
2900 
2901 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2902 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2903 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2904 	 * is acked (RFC6298).
2905 	 */
2906 	if (flag & FLAG_RETRANS_DATA_ACKED)
2907 		seq_rtt_us = -1L;
2908 
2909 	if (seq_rtt_us < 0)
2910 		seq_rtt_us = sack_rtt_us;
2911 
2912 	/* RTTM Rule: A TSecr value received in a segment is used to
2913 	 * update the averaged RTT measurement only if the segment
2914 	 * acknowledges some new data, i.e., only if it advances the
2915 	 * left edge of the send window.
2916 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2917 	 */
2918 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2919 	    flag & FLAG_ACKED)
2920 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2921 
2922 	if (seq_rtt_us < 0)
2923 		return false;
2924 
2925 	tcp_rtt_estimator(sk, seq_rtt_us);
2926 	tcp_set_rto(sk);
2927 
2928 	/* RFC6298: only reset backoff on valid RTT measurement. */
2929 	inet_csk(sk)->icsk_backoff = 0;
2930 	return true;
2931 }
2932 
2933 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2934 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2935 {
2936 	struct tcp_sock *tp = tcp_sk(sk);
2937 	long seq_rtt_us = -1L;
2938 
2939 	if (synack_stamp && !tp->total_retrans)
2940 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2941 
2942 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2943 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2944 	 */
2945 	if (!tp->srtt_us)
2946 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2947 }
2948 
2949 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2950 {
2951 	const struct inet_connection_sock *icsk = inet_csk(sk);
2952 
2953 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2954 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2955 }
2956 
2957 /* Restart timer after forward progress on connection.
2958  * RFC2988 recommends to restart timer to now+rto.
2959  */
2960 void tcp_rearm_rto(struct sock *sk)
2961 {
2962 	const struct inet_connection_sock *icsk = inet_csk(sk);
2963 	struct tcp_sock *tp = tcp_sk(sk);
2964 
2965 	/* If the retrans timer is currently being used by Fast Open
2966 	 * for SYN-ACK retrans purpose, stay put.
2967 	 */
2968 	if (tp->fastopen_rsk)
2969 		return;
2970 
2971 	if (!tp->packets_out) {
2972 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2973 	} else {
2974 		u32 rto = inet_csk(sk)->icsk_rto;
2975 		/* Offset the time elapsed after installing regular RTO */
2976 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2977 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2978 			struct sk_buff *skb = tcp_write_queue_head(sk);
2979 			const u32 rto_time_stamp =
2980 				tcp_skb_timestamp(skb) + rto;
2981 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2982 			/* delta may not be positive if the socket is locked
2983 			 * when the retrans timer fires and is rescheduled.
2984 			 */
2985 			if (delta > 0)
2986 				rto = delta;
2987 		}
2988 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2989 					  TCP_RTO_MAX);
2990 	}
2991 }
2992 
2993 /* This function is called when the delayed ER timer fires. TCP enters
2994  * fast recovery and performs fast-retransmit.
2995  */
2996 void tcp_resume_early_retransmit(struct sock *sk)
2997 {
2998 	struct tcp_sock *tp = tcp_sk(sk);
2999 
3000 	tcp_rearm_rto(sk);
3001 
3002 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3003 	if (!tp->do_early_retrans)
3004 		return;
3005 
3006 	tcp_enter_recovery(sk, false);
3007 	tcp_update_scoreboard(sk, 1);
3008 	tcp_xmit_retransmit_queue(sk);
3009 }
3010 
3011 /* If we get here, the whole TSO packet has not been acked. */
3012 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3013 {
3014 	struct tcp_sock *tp = tcp_sk(sk);
3015 	u32 packets_acked;
3016 
3017 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3018 
3019 	packets_acked = tcp_skb_pcount(skb);
3020 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3021 		return 0;
3022 	packets_acked -= tcp_skb_pcount(skb);
3023 
3024 	if (packets_acked) {
3025 		BUG_ON(tcp_skb_pcount(skb) == 0);
3026 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3027 	}
3028 
3029 	return packets_acked;
3030 }
3031 
3032 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3033 			   u32 prior_snd_una)
3034 {
3035 	const struct skb_shared_info *shinfo;
3036 
3037 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3038 	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3039 		return;
3040 
3041 	shinfo = skb_shinfo(skb);
3042 	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3043 	    between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3044 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3045 }
3046 
3047 /* Remove acknowledged frames from the retransmission queue. If our packet
3048  * is before the ack sequence we can discard it as it's confirmed to have
3049  * arrived at the other end.
3050  */
3051 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3052 			       u32 prior_snd_una,
3053 			       struct tcp_sacktag_state *sack)
3054 {
3055 	const struct inet_connection_sock *icsk = inet_csk(sk);
3056 	struct skb_mstamp first_ackt, last_ackt, now;
3057 	struct tcp_sock *tp = tcp_sk(sk);
3058 	u32 prior_sacked = tp->sacked_out;
3059 	u32 reord = tp->packets_out;
3060 	bool fully_acked = true;
3061 	long sack_rtt_us = -1L;
3062 	long seq_rtt_us = -1L;
3063 	long ca_rtt_us = -1L;
3064 	struct sk_buff *skb;
3065 	u32 pkts_acked = 0;
3066 	bool rtt_update;
3067 	int flag = 0;
3068 
3069 	first_ackt.v64 = 0;
3070 
3071 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3072 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3073 		u8 sacked = scb->sacked;
3074 		u32 acked_pcount;
3075 
3076 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3077 
3078 		/* Determine how many packets and what bytes were acked, tso and else */
3079 		if (after(scb->end_seq, tp->snd_una)) {
3080 			if (tcp_skb_pcount(skb) == 1 ||
3081 			    !after(tp->snd_una, scb->seq))
3082 				break;
3083 
3084 			acked_pcount = tcp_tso_acked(sk, skb);
3085 			if (!acked_pcount)
3086 				break;
3087 
3088 			fully_acked = false;
3089 		} else {
3090 			/* Speedup tcp_unlink_write_queue() and next loop */
3091 			prefetchw(skb->next);
3092 			acked_pcount = tcp_skb_pcount(skb);
3093 		}
3094 
3095 		if (unlikely(sacked & TCPCB_RETRANS)) {
3096 			if (sacked & TCPCB_SACKED_RETRANS)
3097 				tp->retrans_out -= acked_pcount;
3098 			flag |= FLAG_RETRANS_DATA_ACKED;
3099 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3100 			last_ackt = skb->skb_mstamp;
3101 			WARN_ON_ONCE(last_ackt.v64 == 0);
3102 			if (!first_ackt.v64)
3103 				first_ackt = last_ackt;
3104 
3105 			reord = min(pkts_acked, reord);
3106 			if (!after(scb->end_seq, tp->high_seq))
3107 				flag |= FLAG_ORIG_SACK_ACKED;
3108 		}
3109 
3110 		if (sacked & TCPCB_SACKED_ACKED)
3111 			tp->sacked_out -= acked_pcount;
3112 		if (sacked & TCPCB_LOST)
3113 			tp->lost_out -= acked_pcount;
3114 
3115 		tp->packets_out -= acked_pcount;
3116 		pkts_acked += acked_pcount;
3117 
3118 		/* Initial outgoing SYN's get put onto the write_queue
3119 		 * just like anything else we transmit.  It is not
3120 		 * true data, and if we misinform our callers that
3121 		 * this ACK acks real data, we will erroneously exit
3122 		 * connection startup slow start one packet too
3123 		 * quickly.  This is severely frowned upon behavior.
3124 		 */
3125 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3126 			flag |= FLAG_DATA_ACKED;
3127 		} else {
3128 			flag |= FLAG_SYN_ACKED;
3129 			tp->retrans_stamp = 0;
3130 		}
3131 
3132 		if (!fully_acked)
3133 			break;
3134 
3135 		tcp_unlink_write_queue(skb, sk);
3136 		sk_wmem_free_skb(sk, skb);
3137 		if (unlikely(skb == tp->retransmit_skb_hint))
3138 			tp->retransmit_skb_hint = NULL;
3139 		if (unlikely(skb == tp->lost_skb_hint))
3140 			tp->lost_skb_hint = NULL;
3141 	}
3142 
3143 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3144 		tp->snd_up = tp->snd_una;
3145 
3146 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3147 		flag |= FLAG_SACK_RENEGING;
3148 
3149 	skb_mstamp_get(&now);
3150 	if (likely(first_ackt.v64)) {
3151 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3152 		ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3153 	}
3154 	if (sack->first_sackt.v64) {
3155 		sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3156 		ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3157 	}
3158 
3159 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3160 
3161 	if (flag & FLAG_ACKED) {
3162 		tcp_rearm_rto(sk);
3163 		if (unlikely(icsk->icsk_mtup.probe_size &&
3164 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3165 			tcp_mtup_probe_success(sk);
3166 		}
3167 
3168 		if (tcp_is_reno(tp)) {
3169 			tcp_remove_reno_sacks(sk, pkts_acked);
3170 		} else {
3171 			int delta;
3172 
3173 			/* Non-retransmitted hole got filled? That's reordering */
3174 			if (reord < prior_fackets)
3175 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3176 
3177 			delta = tcp_is_fack(tp) ? pkts_acked :
3178 						  prior_sacked - tp->sacked_out;
3179 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3180 		}
3181 
3182 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3183 
3184 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3185 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3186 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3187 		 * after when the head was last (re)transmitted. Otherwise the
3188 		 * timeout may continue to extend in loss recovery.
3189 		 */
3190 		tcp_rearm_rto(sk);
3191 	}
3192 
3193 	if (icsk->icsk_ca_ops->pkts_acked)
3194 		icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3195 
3196 #if FASTRETRANS_DEBUG > 0
3197 	WARN_ON((int)tp->sacked_out < 0);
3198 	WARN_ON((int)tp->lost_out < 0);
3199 	WARN_ON((int)tp->retrans_out < 0);
3200 	if (!tp->packets_out && tcp_is_sack(tp)) {
3201 		icsk = inet_csk(sk);
3202 		if (tp->lost_out) {
3203 			pr_debug("Leak l=%u %d\n",
3204 				 tp->lost_out, icsk->icsk_ca_state);
3205 			tp->lost_out = 0;
3206 		}
3207 		if (tp->sacked_out) {
3208 			pr_debug("Leak s=%u %d\n",
3209 				 tp->sacked_out, icsk->icsk_ca_state);
3210 			tp->sacked_out = 0;
3211 		}
3212 		if (tp->retrans_out) {
3213 			pr_debug("Leak r=%u %d\n",
3214 				 tp->retrans_out, icsk->icsk_ca_state);
3215 			tp->retrans_out = 0;
3216 		}
3217 	}
3218 #endif
3219 	return flag;
3220 }
3221 
3222 static void tcp_ack_probe(struct sock *sk)
3223 {
3224 	const struct tcp_sock *tp = tcp_sk(sk);
3225 	struct inet_connection_sock *icsk = inet_csk(sk);
3226 
3227 	/* Was it a usable window open? */
3228 
3229 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3230 		icsk->icsk_backoff = 0;
3231 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3232 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3233 		 * This function is not for random using!
3234 		 */
3235 	} else {
3236 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3237 
3238 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3239 					  when, TCP_RTO_MAX);
3240 	}
3241 }
3242 
3243 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3244 {
3245 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3246 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3247 }
3248 
3249 /* Decide wheather to run the increase function of congestion control. */
3250 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3251 {
3252 	if (tcp_in_cwnd_reduction(sk))
3253 		return false;
3254 
3255 	/* If reordering is high then always grow cwnd whenever data is
3256 	 * delivered regardless of its ordering. Otherwise stay conservative
3257 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3258 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3259 	 * cwnd in tcp_fastretrans_alert() based on more states.
3260 	 */
3261 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3262 		return flag & FLAG_FORWARD_PROGRESS;
3263 
3264 	return flag & FLAG_DATA_ACKED;
3265 }
3266 
3267 /* Check that window update is acceptable.
3268  * The function assumes that snd_una<=ack<=snd_next.
3269  */
3270 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3271 					const u32 ack, const u32 ack_seq,
3272 					const u32 nwin)
3273 {
3274 	return	after(ack, tp->snd_una) ||
3275 		after(ack_seq, tp->snd_wl1) ||
3276 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3277 }
3278 
3279 /* If we update tp->snd_una, also update tp->bytes_acked */
3280 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3281 {
3282 	u32 delta = ack - tp->snd_una;
3283 
3284 	u64_stats_update_begin(&tp->syncp);
3285 	tp->bytes_acked += delta;
3286 	u64_stats_update_end(&tp->syncp);
3287 	tp->snd_una = ack;
3288 }
3289 
3290 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3291 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3292 {
3293 	u32 delta = seq - tp->rcv_nxt;
3294 
3295 	u64_stats_update_begin(&tp->syncp);
3296 	tp->bytes_received += delta;
3297 	u64_stats_update_end(&tp->syncp);
3298 	tp->rcv_nxt = seq;
3299 }
3300 
3301 /* Update our send window.
3302  *
3303  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3304  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3305  */
3306 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3307 				 u32 ack_seq)
3308 {
3309 	struct tcp_sock *tp = tcp_sk(sk);
3310 	int flag = 0;
3311 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3312 
3313 	if (likely(!tcp_hdr(skb)->syn))
3314 		nwin <<= tp->rx_opt.snd_wscale;
3315 
3316 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3317 		flag |= FLAG_WIN_UPDATE;
3318 		tcp_update_wl(tp, ack_seq);
3319 
3320 		if (tp->snd_wnd != nwin) {
3321 			tp->snd_wnd = nwin;
3322 
3323 			/* Note, it is the only place, where
3324 			 * fast path is recovered for sending TCP.
3325 			 */
3326 			tp->pred_flags = 0;
3327 			tcp_fast_path_check(sk);
3328 
3329 			if (nwin > tp->max_window) {
3330 				tp->max_window = nwin;
3331 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3332 			}
3333 		}
3334 	}
3335 
3336 	tcp_snd_una_update(tp, ack);
3337 
3338 	return flag;
3339 }
3340 
3341 /* Return true if we're currently rate-limiting out-of-window ACKs and
3342  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3343  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3344  * attacks that send repeated SYNs or ACKs for the same connection. To
3345  * do this, we do not send a duplicate SYNACK or ACK if the remote
3346  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3347  */
3348 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3349 			  int mib_idx, u32 *last_oow_ack_time)
3350 {
3351 	/* Data packets without SYNs are not likely part of an ACK loop. */
3352 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3353 	    !tcp_hdr(skb)->syn)
3354 		goto not_rate_limited;
3355 
3356 	if (*last_oow_ack_time) {
3357 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3358 
3359 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3360 			NET_INC_STATS_BH(net, mib_idx);
3361 			return true;	/* rate-limited: don't send yet! */
3362 		}
3363 	}
3364 
3365 	*last_oow_ack_time = tcp_time_stamp;
3366 
3367 not_rate_limited:
3368 	return false;	/* not rate-limited: go ahead, send dupack now! */
3369 }
3370 
3371 /* RFC 5961 7 [ACK Throttling] */
3372 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3373 {
3374 	/* unprotected vars, we dont care of overwrites */
3375 	static u32 challenge_timestamp;
3376 	static unsigned int challenge_count;
3377 	struct tcp_sock *tp = tcp_sk(sk);
3378 	u32 now;
3379 
3380 	/* First check our per-socket dupack rate limit. */
3381 	if (tcp_oow_rate_limited(sock_net(sk), skb,
3382 				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3383 				 &tp->last_oow_ack_time))
3384 		return;
3385 
3386 	/* Then check the check host-wide RFC 5961 rate limit. */
3387 	now = jiffies / HZ;
3388 	if (now != challenge_timestamp) {
3389 		challenge_timestamp = now;
3390 		challenge_count = 0;
3391 	}
3392 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3393 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3394 		tcp_send_ack(sk);
3395 	}
3396 }
3397 
3398 static void tcp_store_ts_recent(struct tcp_sock *tp)
3399 {
3400 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3401 	tp->rx_opt.ts_recent_stamp = get_seconds();
3402 }
3403 
3404 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3405 {
3406 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3407 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3408 		 * extra check below makes sure this can only happen
3409 		 * for pure ACK frames.  -DaveM
3410 		 *
3411 		 * Not only, also it occurs for expired timestamps.
3412 		 */
3413 
3414 		if (tcp_paws_check(&tp->rx_opt, 0))
3415 			tcp_store_ts_recent(tp);
3416 	}
3417 }
3418 
3419 /* This routine deals with acks during a TLP episode.
3420  * We mark the end of a TLP episode on receiving TLP dupack or when
3421  * ack is after tlp_high_seq.
3422  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3423  */
3424 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3425 {
3426 	struct tcp_sock *tp = tcp_sk(sk);
3427 
3428 	if (before(ack, tp->tlp_high_seq))
3429 		return;
3430 
3431 	if (flag & FLAG_DSACKING_ACK) {
3432 		/* This DSACK means original and TLP probe arrived; no loss */
3433 		tp->tlp_high_seq = 0;
3434 	} else if (after(ack, tp->tlp_high_seq)) {
3435 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3436 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3437 		 */
3438 		tcp_init_cwnd_reduction(sk);
3439 		tcp_set_ca_state(sk, TCP_CA_CWR);
3440 		tcp_end_cwnd_reduction(sk);
3441 		tcp_try_keep_open(sk);
3442 		NET_INC_STATS_BH(sock_net(sk),
3443 				 LINUX_MIB_TCPLOSSPROBERECOVERY);
3444 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3445 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3446 		/* Pure dupack: original and TLP probe arrived; no loss */
3447 		tp->tlp_high_seq = 0;
3448 	}
3449 }
3450 
3451 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3452 {
3453 	const struct inet_connection_sock *icsk = inet_csk(sk);
3454 
3455 	if (icsk->icsk_ca_ops->in_ack_event)
3456 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3457 }
3458 
3459 /* This routine deals with incoming acks, but not outgoing ones. */
3460 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3461 {
3462 	struct inet_connection_sock *icsk = inet_csk(sk);
3463 	struct tcp_sock *tp = tcp_sk(sk);
3464 	struct tcp_sacktag_state sack_state;
3465 	u32 prior_snd_una = tp->snd_una;
3466 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3467 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3468 	bool is_dupack = false;
3469 	u32 prior_fackets;
3470 	int prior_packets = tp->packets_out;
3471 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3472 	int acked = 0; /* Number of packets newly acked */
3473 
3474 	sack_state.first_sackt.v64 = 0;
3475 
3476 	/* We very likely will need to access write queue head. */
3477 	prefetchw(sk->sk_write_queue.next);
3478 
3479 	/* If the ack is older than previous acks
3480 	 * then we can probably ignore it.
3481 	 */
3482 	if (before(ack, prior_snd_una)) {
3483 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3484 		if (before(ack, prior_snd_una - tp->max_window)) {
3485 			tcp_send_challenge_ack(sk, skb);
3486 			return -1;
3487 		}
3488 		goto old_ack;
3489 	}
3490 
3491 	/* If the ack includes data we haven't sent yet, discard
3492 	 * this segment (RFC793 Section 3.9).
3493 	 */
3494 	if (after(ack, tp->snd_nxt))
3495 		goto invalid_ack;
3496 
3497 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3498 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3499 		tcp_rearm_rto(sk);
3500 
3501 	if (after(ack, prior_snd_una)) {
3502 		flag |= FLAG_SND_UNA_ADVANCED;
3503 		icsk->icsk_retransmits = 0;
3504 	}
3505 
3506 	prior_fackets = tp->fackets_out;
3507 
3508 	/* ts_recent update must be made after we are sure that the packet
3509 	 * is in window.
3510 	 */
3511 	if (flag & FLAG_UPDATE_TS_RECENT)
3512 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3513 
3514 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3515 		/* Window is constant, pure forward advance.
3516 		 * No more checks are required.
3517 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3518 		 */
3519 		tcp_update_wl(tp, ack_seq);
3520 		tcp_snd_una_update(tp, ack);
3521 		flag |= FLAG_WIN_UPDATE;
3522 
3523 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3524 
3525 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3526 	} else {
3527 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3528 
3529 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3530 			flag |= FLAG_DATA;
3531 		else
3532 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3533 
3534 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3535 
3536 		if (TCP_SKB_CB(skb)->sacked)
3537 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3538 							&sack_state);
3539 
3540 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3541 			flag |= FLAG_ECE;
3542 			ack_ev_flags |= CA_ACK_ECE;
3543 		}
3544 
3545 		if (flag & FLAG_WIN_UPDATE)
3546 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3547 
3548 		tcp_in_ack_event(sk, ack_ev_flags);
3549 	}
3550 
3551 	/* We passed data and got it acked, remove any soft error
3552 	 * log. Something worked...
3553 	 */
3554 	sk->sk_err_soft = 0;
3555 	icsk->icsk_probes_out = 0;
3556 	tp->rcv_tstamp = tcp_time_stamp;
3557 	if (!prior_packets)
3558 		goto no_queue;
3559 
3560 	/* See if we can take anything off of the retransmit queue. */
3561 	acked = tp->packets_out;
3562 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3563 				    &sack_state);
3564 	acked -= tp->packets_out;
3565 
3566 	/* Advance cwnd if state allows */
3567 	if (tcp_may_raise_cwnd(sk, flag))
3568 		tcp_cong_avoid(sk, ack, acked);
3569 
3570 	if (tcp_ack_is_dubious(sk, flag)) {
3571 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3572 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3573 				      is_dupack, flag);
3574 	}
3575 	if (tp->tlp_high_seq)
3576 		tcp_process_tlp_ack(sk, ack, flag);
3577 
3578 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3579 		struct dst_entry *dst = __sk_dst_get(sk);
3580 		if (dst)
3581 			dst_confirm(dst);
3582 	}
3583 
3584 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3585 		tcp_schedule_loss_probe(sk);
3586 	tcp_update_pacing_rate(sk);
3587 	return 1;
3588 
3589 no_queue:
3590 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3591 	if (flag & FLAG_DSACKING_ACK)
3592 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3593 				      is_dupack, flag);
3594 	/* If this ack opens up a zero window, clear backoff.  It was
3595 	 * being used to time the probes, and is probably far higher than
3596 	 * it needs to be for normal retransmission.
3597 	 */
3598 	if (tcp_send_head(sk))
3599 		tcp_ack_probe(sk);
3600 
3601 	if (tp->tlp_high_seq)
3602 		tcp_process_tlp_ack(sk, ack, flag);
3603 	return 1;
3604 
3605 invalid_ack:
3606 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3607 	return -1;
3608 
3609 old_ack:
3610 	/* If data was SACKed, tag it and see if we should send more data.
3611 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3612 	 */
3613 	if (TCP_SKB_CB(skb)->sacked) {
3614 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3615 						&sack_state);
3616 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3617 				      is_dupack, flag);
3618 	}
3619 
3620 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3621 	return 0;
3622 }
3623 
3624 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3625 				      bool syn, struct tcp_fastopen_cookie *foc,
3626 				      bool exp_opt)
3627 {
3628 	/* Valid only in SYN or SYN-ACK with an even length.  */
3629 	if (!foc || !syn || len < 0 || (len & 1))
3630 		return;
3631 
3632 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3633 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3634 		memcpy(foc->val, cookie, len);
3635 	else if (len != 0)
3636 		len = -1;
3637 	foc->len = len;
3638 	foc->exp = exp_opt;
3639 }
3640 
3641 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3642  * But, this can also be called on packets in the established flow when
3643  * the fast version below fails.
3644  */
3645 void tcp_parse_options(const struct sk_buff *skb,
3646 		       struct tcp_options_received *opt_rx, int estab,
3647 		       struct tcp_fastopen_cookie *foc)
3648 {
3649 	const unsigned char *ptr;
3650 	const struct tcphdr *th = tcp_hdr(skb);
3651 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3652 
3653 	ptr = (const unsigned char *)(th + 1);
3654 	opt_rx->saw_tstamp = 0;
3655 
3656 	while (length > 0) {
3657 		int opcode = *ptr++;
3658 		int opsize;
3659 
3660 		switch (opcode) {
3661 		case TCPOPT_EOL:
3662 			return;
3663 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3664 			length--;
3665 			continue;
3666 		default:
3667 			opsize = *ptr++;
3668 			if (opsize < 2) /* "silly options" */
3669 				return;
3670 			if (opsize > length)
3671 				return;	/* don't parse partial options */
3672 			switch (opcode) {
3673 			case TCPOPT_MSS:
3674 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3675 					u16 in_mss = get_unaligned_be16(ptr);
3676 					if (in_mss) {
3677 						if (opt_rx->user_mss &&
3678 						    opt_rx->user_mss < in_mss)
3679 							in_mss = opt_rx->user_mss;
3680 						opt_rx->mss_clamp = in_mss;
3681 					}
3682 				}
3683 				break;
3684 			case TCPOPT_WINDOW:
3685 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3686 				    !estab && sysctl_tcp_window_scaling) {
3687 					__u8 snd_wscale = *(__u8 *)ptr;
3688 					opt_rx->wscale_ok = 1;
3689 					if (snd_wscale > 14) {
3690 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3691 								     __func__,
3692 								     snd_wscale);
3693 						snd_wscale = 14;
3694 					}
3695 					opt_rx->snd_wscale = snd_wscale;
3696 				}
3697 				break;
3698 			case TCPOPT_TIMESTAMP:
3699 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3700 				    ((estab && opt_rx->tstamp_ok) ||
3701 				     (!estab && sysctl_tcp_timestamps))) {
3702 					opt_rx->saw_tstamp = 1;
3703 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3704 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3705 				}
3706 				break;
3707 			case TCPOPT_SACK_PERM:
3708 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3709 				    !estab && sysctl_tcp_sack) {
3710 					opt_rx->sack_ok = TCP_SACK_SEEN;
3711 					tcp_sack_reset(opt_rx);
3712 				}
3713 				break;
3714 
3715 			case TCPOPT_SACK:
3716 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3717 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3718 				   opt_rx->sack_ok) {
3719 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3720 				}
3721 				break;
3722 #ifdef CONFIG_TCP_MD5SIG
3723 			case TCPOPT_MD5SIG:
3724 				/*
3725 				 * The MD5 Hash has already been
3726 				 * checked (see tcp_v{4,6}_do_rcv()).
3727 				 */
3728 				break;
3729 #endif
3730 			case TCPOPT_FASTOPEN:
3731 				tcp_parse_fastopen_option(
3732 					opsize - TCPOLEN_FASTOPEN_BASE,
3733 					ptr, th->syn, foc, false);
3734 				break;
3735 
3736 			case TCPOPT_EXP:
3737 				/* Fast Open option shares code 254 using a
3738 				 * 16 bits magic number.
3739 				 */
3740 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3741 				    get_unaligned_be16(ptr) ==
3742 				    TCPOPT_FASTOPEN_MAGIC)
3743 					tcp_parse_fastopen_option(opsize -
3744 						TCPOLEN_EXP_FASTOPEN_BASE,
3745 						ptr + 2, th->syn, foc, true);
3746 				break;
3747 
3748 			}
3749 			ptr += opsize-2;
3750 			length -= opsize;
3751 		}
3752 	}
3753 }
3754 EXPORT_SYMBOL(tcp_parse_options);
3755 
3756 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3757 {
3758 	const __be32 *ptr = (const __be32 *)(th + 1);
3759 
3760 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3761 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3762 		tp->rx_opt.saw_tstamp = 1;
3763 		++ptr;
3764 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3765 		++ptr;
3766 		if (*ptr)
3767 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3768 		else
3769 			tp->rx_opt.rcv_tsecr = 0;
3770 		return true;
3771 	}
3772 	return false;
3773 }
3774 
3775 /* Fast parse options. This hopes to only see timestamps.
3776  * If it is wrong it falls back on tcp_parse_options().
3777  */
3778 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3779 				   const struct tcphdr *th, struct tcp_sock *tp)
3780 {
3781 	/* In the spirit of fast parsing, compare doff directly to constant
3782 	 * values.  Because equality is used, short doff can be ignored here.
3783 	 */
3784 	if (th->doff == (sizeof(*th) / 4)) {
3785 		tp->rx_opt.saw_tstamp = 0;
3786 		return false;
3787 	} else if (tp->rx_opt.tstamp_ok &&
3788 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3789 		if (tcp_parse_aligned_timestamp(tp, th))
3790 			return true;
3791 	}
3792 
3793 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3794 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3795 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3796 
3797 	return true;
3798 }
3799 
3800 #ifdef CONFIG_TCP_MD5SIG
3801 /*
3802  * Parse MD5 Signature option
3803  */
3804 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3805 {
3806 	int length = (th->doff << 2) - sizeof(*th);
3807 	const u8 *ptr = (const u8 *)(th + 1);
3808 
3809 	/* If the TCP option is too short, we can short cut */
3810 	if (length < TCPOLEN_MD5SIG)
3811 		return NULL;
3812 
3813 	while (length > 0) {
3814 		int opcode = *ptr++;
3815 		int opsize;
3816 
3817 		switch (opcode) {
3818 		case TCPOPT_EOL:
3819 			return NULL;
3820 		case TCPOPT_NOP:
3821 			length--;
3822 			continue;
3823 		default:
3824 			opsize = *ptr++;
3825 			if (opsize < 2 || opsize > length)
3826 				return NULL;
3827 			if (opcode == TCPOPT_MD5SIG)
3828 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3829 		}
3830 		ptr += opsize - 2;
3831 		length -= opsize;
3832 	}
3833 	return NULL;
3834 }
3835 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3836 #endif
3837 
3838 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3839  *
3840  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3841  * it can pass through stack. So, the following predicate verifies that
3842  * this segment is not used for anything but congestion avoidance or
3843  * fast retransmit. Moreover, we even are able to eliminate most of such
3844  * second order effects, if we apply some small "replay" window (~RTO)
3845  * to timestamp space.
3846  *
3847  * All these measures still do not guarantee that we reject wrapped ACKs
3848  * on networks with high bandwidth, when sequence space is recycled fastly,
3849  * but it guarantees that such events will be very rare and do not affect
3850  * connection seriously. This doesn't look nice, but alas, PAWS is really
3851  * buggy extension.
3852  *
3853  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3854  * states that events when retransmit arrives after original data are rare.
3855  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3856  * the biggest problem on large power networks even with minor reordering.
3857  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3858  * up to bandwidth of 18Gigabit/sec. 8) ]
3859  */
3860 
3861 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3862 {
3863 	const struct tcp_sock *tp = tcp_sk(sk);
3864 	const struct tcphdr *th = tcp_hdr(skb);
3865 	u32 seq = TCP_SKB_CB(skb)->seq;
3866 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3867 
3868 	return (/* 1. Pure ACK with correct sequence number. */
3869 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3870 
3871 		/* 2. ... and duplicate ACK. */
3872 		ack == tp->snd_una &&
3873 
3874 		/* 3. ... and does not update window. */
3875 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3876 
3877 		/* 4. ... and sits in replay window. */
3878 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3879 }
3880 
3881 static inline bool tcp_paws_discard(const struct sock *sk,
3882 				   const struct sk_buff *skb)
3883 {
3884 	const struct tcp_sock *tp = tcp_sk(sk);
3885 
3886 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3887 	       !tcp_disordered_ack(sk, skb);
3888 }
3889 
3890 /* Check segment sequence number for validity.
3891  *
3892  * Segment controls are considered valid, if the segment
3893  * fits to the window after truncation to the window. Acceptability
3894  * of data (and SYN, FIN, of course) is checked separately.
3895  * See tcp_data_queue(), for example.
3896  *
3897  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3898  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3899  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3900  * (borrowed from freebsd)
3901  */
3902 
3903 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3904 {
3905 	return	!before(end_seq, tp->rcv_wup) &&
3906 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3907 }
3908 
3909 /* When we get a reset we do this. */
3910 void tcp_reset(struct sock *sk)
3911 {
3912 	/* We want the right error as BSD sees it (and indeed as we do). */
3913 	switch (sk->sk_state) {
3914 	case TCP_SYN_SENT:
3915 		sk->sk_err = ECONNREFUSED;
3916 		break;
3917 	case TCP_CLOSE_WAIT:
3918 		sk->sk_err = EPIPE;
3919 		break;
3920 	case TCP_CLOSE:
3921 		return;
3922 	default:
3923 		sk->sk_err = ECONNRESET;
3924 	}
3925 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3926 	smp_wmb();
3927 
3928 	if (!sock_flag(sk, SOCK_DEAD))
3929 		sk->sk_error_report(sk);
3930 
3931 	tcp_done(sk);
3932 }
3933 
3934 /*
3935  * 	Process the FIN bit. This now behaves as it is supposed to work
3936  *	and the FIN takes effect when it is validly part of sequence
3937  *	space. Not before when we get holes.
3938  *
3939  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3940  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3941  *	TIME-WAIT)
3942  *
3943  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3944  *	close and we go into CLOSING (and later onto TIME-WAIT)
3945  *
3946  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3947  */
3948 static void tcp_fin(struct sock *sk)
3949 {
3950 	struct tcp_sock *tp = tcp_sk(sk);
3951 	const struct dst_entry *dst;
3952 
3953 	inet_csk_schedule_ack(sk);
3954 
3955 	sk->sk_shutdown |= RCV_SHUTDOWN;
3956 	sock_set_flag(sk, SOCK_DONE);
3957 
3958 	switch (sk->sk_state) {
3959 	case TCP_SYN_RECV:
3960 	case TCP_ESTABLISHED:
3961 		/* Move to CLOSE_WAIT */
3962 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3963 		dst = __sk_dst_get(sk);
3964 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3965 			inet_csk(sk)->icsk_ack.pingpong = 1;
3966 		break;
3967 
3968 	case TCP_CLOSE_WAIT:
3969 	case TCP_CLOSING:
3970 		/* Received a retransmission of the FIN, do
3971 		 * nothing.
3972 		 */
3973 		break;
3974 	case TCP_LAST_ACK:
3975 		/* RFC793: Remain in the LAST-ACK state. */
3976 		break;
3977 
3978 	case TCP_FIN_WAIT1:
3979 		/* This case occurs when a simultaneous close
3980 		 * happens, we must ack the received FIN and
3981 		 * enter the CLOSING state.
3982 		 */
3983 		tcp_send_ack(sk);
3984 		tcp_set_state(sk, TCP_CLOSING);
3985 		break;
3986 	case TCP_FIN_WAIT2:
3987 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3988 		tcp_send_ack(sk);
3989 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3990 		break;
3991 	default:
3992 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3993 		 * cases we should never reach this piece of code.
3994 		 */
3995 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3996 		       __func__, sk->sk_state);
3997 		break;
3998 	}
3999 
4000 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4001 	 * Probably, we should reset in this case. For now drop them.
4002 	 */
4003 	__skb_queue_purge(&tp->out_of_order_queue);
4004 	if (tcp_is_sack(tp))
4005 		tcp_sack_reset(&tp->rx_opt);
4006 	sk_mem_reclaim(sk);
4007 
4008 	if (!sock_flag(sk, SOCK_DEAD)) {
4009 		sk->sk_state_change(sk);
4010 
4011 		/* Do not send POLL_HUP for half duplex close. */
4012 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4013 		    sk->sk_state == TCP_CLOSE)
4014 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4015 		else
4016 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4017 	}
4018 }
4019 
4020 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4021 				  u32 end_seq)
4022 {
4023 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4024 		if (before(seq, sp->start_seq))
4025 			sp->start_seq = seq;
4026 		if (after(end_seq, sp->end_seq))
4027 			sp->end_seq = end_seq;
4028 		return true;
4029 	}
4030 	return false;
4031 }
4032 
4033 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4034 {
4035 	struct tcp_sock *tp = tcp_sk(sk);
4036 
4037 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4038 		int mib_idx;
4039 
4040 		if (before(seq, tp->rcv_nxt))
4041 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4042 		else
4043 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4044 
4045 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4046 
4047 		tp->rx_opt.dsack = 1;
4048 		tp->duplicate_sack[0].start_seq = seq;
4049 		tp->duplicate_sack[0].end_seq = end_seq;
4050 	}
4051 }
4052 
4053 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4054 {
4055 	struct tcp_sock *tp = tcp_sk(sk);
4056 
4057 	if (!tp->rx_opt.dsack)
4058 		tcp_dsack_set(sk, seq, end_seq);
4059 	else
4060 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4061 }
4062 
4063 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4064 {
4065 	struct tcp_sock *tp = tcp_sk(sk);
4066 
4067 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4068 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4069 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4070 		tcp_enter_quickack_mode(sk);
4071 
4072 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4073 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4074 
4075 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4076 				end_seq = tp->rcv_nxt;
4077 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4078 		}
4079 	}
4080 
4081 	tcp_send_ack(sk);
4082 }
4083 
4084 /* These routines update the SACK block as out-of-order packets arrive or
4085  * in-order packets close up the sequence space.
4086  */
4087 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4088 {
4089 	int this_sack;
4090 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4091 	struct tcp_sack_block *swalk = sp + 1;
4092 
4093 	/* See if the recent change to the first SACK eats into
4094 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4095 	 */
4096 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4097 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4098 			int i;
4099 
4100 			/* Zap SWALK, by moving every further SACK up by one slot.
4101 			 * Decrease num_sacks.
4102 			 */
4103 			tp->rx_opt.num_sacks--;
4104 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4105 				sp[i] = sp[i + 1];
4106 			continue;
4107 		}
4108 		this_sack++, swalk++;
4109 	}
4110 }
4111 
4112 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4113 {
4114 	struct tcp_sock *tp = tcp_sk(sk);
4115 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4116 	int cur_sacks = tp->rx_opt.num_sacks;
4117 	int this_sack;
4118 
4119 	if (!cur_sacks)
4120 		goto new_sack;
4121 
4122 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4123 		if (tcp_sack_extend(sp, seq, end_seq)) {
4124 			/* Rotate this_sack to the first one. */
4125 			for (; this_sack > 0; this_sack--, sp--)
4126 				swap(*sp, *(sp - 1));
4127 			if (cur_sacks > 1)
4128 				tcp_sack_maybe_coalesce(tp);
4129 			return;
4130 		}
4131 	}
4132 
4133 	/* Could not find an adjacent existing SACK, build a new one,
4134 	 * put it at the front, and shift everyone else down.  We
4135 	 * always know there is at least one SACK present already here.
4136 	 *
4137 	 * If the sack array is full, forget about the last one.
4138 	 */
4139 	if (this_sack >= TCP_NUM_SACKS) {
4140 		this_sack--;
4141 		tp->rx_opt.num_sacks--;
4142 		sp--;
4143 	}
4144 	for (; this_sack > 0; this_sack--, sp--)
4145 		*sp = *(sp - 1);
4146 
4147 new_sack:
4148 	/* Build the new head SACK, and we're done. */
4149 	sp->start_seq = seq;
4150 	sp->end_seq = end_seq;
4151 	tp->rx_opt.num_sacks++;
4152 }
4153 
4154 /* RCV.NXT advances, some SACKs should be eaten. */
4155 
4156 static void tcp_sack_remove(struct tcp_sock *tp)
4157 {
4158 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4159 	int num_sacks = tp->rx_opt.num_sacks;
4160 	int this_sack;
4161 
4162 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4163 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4164 		tp->rx_opt.num_sacks = 0;
4165 		return;
4166 	}
4167 
4168 	for (this_sack = 0; this_sack < num_sacks;) {
4169 		/* Check if the start of the sack is covered by RCV.NXT. */
4170 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4171 			int i;
4172 
4173 			/* RCV.NXT must cover all the block! */
4174 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4175 
4176 			/* Zap this SACK, by moving forward any other SACKS. */
4177 			for (i = this_sack+1; i < num_sacks; i++)
4178 				tp->selective_acks[i-1] = tp->selective_acks[i];
4179 			num_sacks--;
4180 			continue;
4181 		}
4182 		this_sack++;
4183 		sp++;
4184 	}
4185 	tp->rx_opt.num_sacks = num_sacks;
4186 }
4187 
4188 /**
4189  * tcp_try_coalesce - try to merge skb to prior one
4190  * @sk: socket
4191  * @to: prior buffer
4192  * @from: buffer to add in queue
4193  * @fragstolen: pointer to boolean
4194  *
4195  * Before queueing skb @from after @to, try to merge them
4196  * to reduce overall memory use and queue lengths, if cost is small.
4197  * Packets in ofo or receive queues can stay a long time.
4198  * Better try to coalesce them right now to avoid future collapses.
4199  * Returns true if caller should free @from instead of queueing it
4200  */
4201 static bool tcp_try_coalesce(struct sock *sk,
4202 			     struct sk_buff *to,
4203 			     struct sk_buff *from,
4204 			     bool *fragstolen)
4205 {
4206 	int delta;
4207 
4208 	*fragstolen = false;
4209 
4210 	/* Its possible this segment overlaps with prior segment in queue */
4211 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4212 		return false;
4213 
4214 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4215 		return false;
4216 
4217 	atomic_add(delta, &sk->sk_rmem_alloc);
4218 	sk_mem_charge(sk, delta);
4219 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4220 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4221 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4222 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4223 	return true;
4224 }
4225 
4226 /* This one checks to see if we can put data from the
4227  * out_of_order queue into the receive_queue.
4228  */
4229 static void tcp_ofo_queue(struct sock *sk)
4230 {
4231 	struct tcp_sock *tp = tcp_sk(sk);
4232 	__u32 dsack_high = tp->rcv_nxt;
4233 	struct sk_buff *skb, *tail;
4234 	bool fragstolen, eaten;
4235 
4236 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4237 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4238 			break;
4239 
4240 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4241 			__u32 dsack = dsack_high;
4242 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4243 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4244 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4245 		}
4246 
4247 		__skb_unlink(skb, &tp->out_of_order_queue);
4248 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4249 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4250 			__kfree_skb(skb);
4251 			continue;
4252 		}
4253 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4254 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4255 			   TCP_SKB_CB(skb)->end_seq);
4256 
4257 		tail = skb_peek_tail(&sk->sk_receive_queue);
4258 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4259 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4260 		if (!eaten)
4261 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4262 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4263 			tcp_fin(sk);
4264 		if (eaten)
4265 			kfree_skb_partial(skb, fragstolen);
4266 	}
4267 }
4268 
4269 static bool tcp_prune_ofo_queue(struct sock *sk);
4270 static int tcp_prune_queue(struct sock *sk);
4271 
4272 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4273 				 unsigned int size)
4274 {
4275 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4276 	    !sk_rmem_schedule(sk, skb, size)) {
4277 
4278 		if (tcp_prune_queue(sk) < 0)
4279 			return -1;
4280 
4281 		if (!sk_rmem_schedule(sk, skb, size)) {
4282 			if (!tcp_prune_ofo_queue(sk))
4283 				return -1;
4284 
4285 			if (!sk_rmem_schedule(sk, skb, size))
4286 				return -1;
4287 		}
4288 	}
4289 	return 0;
4290 }
4291 
4292 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4293 {
4294 	struct tcp_sock *tp = tcp_sk(sk);
4295 	struct sk_buff *skb1;
4296 	u32 seq, end_seq;
4297 
4298 	tcp_ecn_check_ce(tp, skb);
4299 
4300 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4301 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4302 		__kfree_skb(skb);
4303 		return;
4304 	}
4305 
4306 	/* Disable header prediction. */
4307 	tp->pred_flags = 0;
4308 	inet_csk_schedule_ack(sk);
4309 
4310 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4311 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4312 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4313 
4314 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4315 	if (!skb1) {
4316 		/* Initial out of order segment, build 1 SACK. */
4317 		if (tcp_is_sack(tp)) {
4318 			tp->rx_opt.num_sacks = 1;
4319 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4320 			tp->selective_acks[0].end_seq =
4321 						TCP_SKB_CB(skb)->end_seq;
4322 		}
4323 		__skb_queue_head(&tp->out_of_order_queue, skb);
4324 		goto end;
4325 	}
4326 
4327 	seq = TCP_SKB_CB(skb)->seq;
4328 	end_seq = TCP_SKB_CB(skb)->end_seq;
4329 
4330 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4331 		bool fragstolen;
4332 
4333 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4334 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4335 		} else {
4336 			tcp_grow_window(sk, skb);
4337 			kfree_skb_partial(skb, fragstolen);
4338 			skb = NULL;
4339 		}
4340 
4341 		if (!tp->rx_opt.num_sacks ||
4342 		    tp->selective_acks[0].end_seq != seq)
4343 			goto add_sack;
4344 
4345 		/* Common case: data arrive in order after hole. */
4346 		tp->selective_acks[0].end_seq = end_seq;
4347 		goto end;
4348 	}
4349 
4350 	/* Find place to insert this segment. */
4351 	while (1) {
4352 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4353 			break;
4354 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4355 			skb1 = NULL;
4356 			break;
4357 		}
4358 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4359 	}
4360 
4361 	/* Do skb overlap to previous one? */
4362 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4363 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4364 			/* All the bits are present. Drop. */
4365 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4366 			__kfree_skb(skb);
4367 			skb = NULL;
4368 			tcp_dsack_set(sk, seq, end_seq);
4369 			goto add_sack;
4370 		}
4371 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4372 			/* Partial overlap. */
4373 			tcp_dsack_set(sk, seq,
4374 				      TCP_SKB_CB(skb1)->end_seq);
4375 		} else {
4376 			if (skb_queue_is_first(&tp->out_of_order_queue,
4377 					       skb1))
4378 				skb1 = NULL;
4379 			else
4380 				skb1 = skb_queue_prev(
4381 					&tp->out_of_order_queue,
4382 					skb1);
4383 		}
4384 	}
4385 	if (!skb1)
4386 		__skb_queue_head(&tp->out_of_order_queue, skb);
4387 	else
4388 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4389 
4390 	/* And clean segments covered by new one as whole. */
4391 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4392 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4393 
4394 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4395 			break;
4396 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4397 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4398 					 end_seq);
4399 			break;
4400 		}
4401 		__skb_unlink(skb1, &tp->out_of_order_queue);
4402 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4403 				 TCP_SKB_CB(skb1)->end_seq);
4404 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4405 		__kfree_skb(skb1);
4406 	}
4407 
4408 add_sack:
4409 	if (tcp_is_sack(tp))
4410 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4411 end:
4412 	if (skb) {
4413 		tcp_grow_window(sk, skb);
4414 		skb_set_owner_r(skb, sk);
4415 	}
4416 }
4417 
4418 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4419 		  bool *fragstolen)
4420 {
4421 	int eaten;
4422 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4423 
4424 	__skb_pull(skb, hdrlen);
4425 	eaten = (tail &&
4426 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4427 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4428 	if (!eaten) {
4429 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4430 		skb_set_owner_r(skb, sk);
4431 	}
4432 	return eaten;
4433 }
4434 
4435 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4436 {
4437 	struct sk_buff *skb;
4438 	bool fragstolen;
4439 
4440 	if (size == 0)
4441 		return 0;
4442 
4443 	skb = alloc_skb(size, sk->sk_allocation);
4444 	if (!skb)
4445 		goto err;
4446 
4447 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4448 		goto err_free;
4449 
4450 	if (memcpy_from_msg(skb_put(skb, size), msg, size))
4451 		goto err_free;
4452 
4453 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4454 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4455 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4456 
4457 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4458 		WARN_ON_ONCE(fragstolen); /* should not happen */
4459 		__kfree_skb(skb);
4460 	}
4461 	return size;
4462 
4463 err_free:
4464 	kfree_skb(skb);
4465 err:
4466 	return -ENOMEM;
4467 }
4468 
4469 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4470 {
4471 	struct tcp_sock *tp = tcp_sk(sk);
4472 	int eaten = -1;
4473 	bool fragstolen = false;
4474 
4475 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4476 		goto drop;
4477 
4478 	skb_dst_drop(skb);
4479 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4480 
4481 	tcp_ecn_accept_cwr(tp, skb);
4482 
4483 	tp->rx_opt.dsack = 0;
4484 
4485 	/*  Queue data for delivery to the user.
4486 	 *  Packets in sequence go to the receive queue.
4487 	 *  Out of sequence packets to the out_of_order_queue.
4488 	 */
4489 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4490 		if (tcp_receive_window(tp) == 0)
4491 			goto out_of_window;
4492 
4493 		/* Ok. In sequence. In window. */
4494 		if (tp->ucopy.task == current &&
4495 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4496 		    sock_owned_by_user(sk) && !tp->urg_data) {
4497 			int chunk = min_t(unsigned int, skb->len,
4498 					  tp->ucopy.len);
4499 
4500 			__set_current_state(TASK_RUNNING);
4501 
4502 			local_bh_enable();
4503 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4504 				tp->ucopy.len -= chunk;
4505 				tp->copied_seq += chunk;
4506 				eaten = (chunk == skb->len);
4507 				tcp_rcv_space_adjust(sk);
4508 			}
4509 			local_bh_disable();
4510 		}
4511 
4512 		if (eaten <= 0) {
4513 queue_and_out:
4514 			if (eaten < 0) {
4515 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4516 					sk_forced_mem_schedule(sk, skb->truesize);
4517 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4518 					goto drop;
4519 			}
4520 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4521 		}
4522 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4523 		if (skb->len)
4524 			tcp_event_data_recv(sk, skb);
4525 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4526 			tcp_fin(sk);
4527 
4528 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4529 			tcp_ofo_queue(sk);
4530 
4531 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4532 			 * gap in queue is filled.
4533 			 */
4534 			if (skb_queue_empty(&tp->out_of_order_queue))
4535 				inet_csk(sk)->icsk_ack.pingpong = 0;
4536 		}
4537 
4538 		if (tp->rx_opt.num_sacks)
4539 			tcp_sack_remove(tp);
4540 
4541 		tcp_fast_path_check(sk);
4542 
4543 		if (eaten > 0)
4544 			kfree_skb_partial(skb, fragstolen);
4545 		if (!sock_flag(sk, SOCK_DEAD))
4546 			sk->sk_data_ready(sk);
4547 		return;
4548 	}
4549 
4550 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4551 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4552 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4553 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4554 
4555 out_of_window:
4556 		tcp_enter_quickack_mode(sk);
4557 		inet_csk_schedule_ack(sk);
4558 drop:
4559 		__kfree_skb(skb);
4560 		return;
4561 	}
4562 
4563 	/* Out of window. F.e. zero window probe. */
4564 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4565 		goto out_of_window;
4566 
4567 	tcp_enter_quickack_mode(sk);
4568 
4569 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4570 		/* Partial packet, seq < rcv_next < end_seq */
4571 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4572 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4573 			   TCP_SKB_CB(skb)->end_seq);
4574 
4575 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4576 
4577 		/* If window is closed, drop tail of packet. But after
4578 		 * remembering D-SACK for its head made in previous line.
4579 		 */
4580 		if (!tcp_receive_window(tp))
4581 			goto out_of_window;
4582 		goto queue_and_out;
4583 	}
4584 
4585 	tcp_data_queue_ofo(sk, skb);
4586 }
4587 
4588 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4589 					struct sk_buff_head *list)
4590 {
4591 	struct sk_buff *next = NULL;
4592 
4593 	if (!skb_queue_is_last(list, skb))
4594 		next = skb_queue_next(list, skb);
4595 
4596 	__skb_unlink(skb, list);
4597 	__kfree_skb(skb);
4598 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4599 
4600 	return next;
4601 }
4602 
4603 /* Collapse contiguous sequence of skbs head..tail with
4604  * sequence numbers start..end.
4605  *
4606  * If tail is NULL, this means until the end of the list.
4607  *
4608  * Segments with FIN/SYN are not collapsed (only because this
4609  * simplifies code)
4610  */
4611 static void
4612 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4613 	     struct sk_buff *head, struct sk_buff *tail,
4614 	     u32 start, u32 end)
4615 {
4616 	struct sk_buff *skb, *n;
4617 	bool end_of_skbs;
4618 
4619 	/* First, check that queue is collapsible and find
4620 	 * the point where collapsing can be useful. */
4621 	skb = head;
4622 restart:
4623 	end_of_skbs = true;
4624 	skb_queue_walk_from_safe(list, skb, n) {
4625 		if (skb == tail)
4626 			break;
4627 		/* No new bits? It is possible on ofo queue. */
4628 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4629 			skb = tcp_collapse_one(sk, skb, list);
4630 			if (!skb)
4631 				break;
4632 			goto restart;
4633 		}
4634 
4635 		/* The first skb to collapse is:
4636 		 * - not SYN/FIN and
4637 		 * - bloated or contains data before "start" or
4638 		 *   overlaps to the next one.
4639 		 */
4640 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4641 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4642 		     before(TCP_SKB_CB(skb)->seq, start))) {
4643 			end_of_skbs = false;
4644 			break;
4645 		}
4646 
4647 		if (!skb_queue_is_last(list, skb)) {
4648 			struct sk_buff *next = skb_queue_next(list, skb);
4649 			if (next != tail &&
4650 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4651 				end_of_skbs = false;
4652 				break;
4653 			}
4654 		}
4655 
4656 		/* Decided to skip this, advance start seq. */
4657 		start = TCP_SKB_CB(skb)->end_seq;
4658 	}
4659 	if (end_of_skbs ||
4660 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4661 		return;
4662 
4663 	while (before(start, end)) {
4664 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4665 		struct sk_buff *nskb;
4666 
4667 		nskb = alloc_skb(copy, GFP_ATOMIC);
4668 		if (!nskb)
4669 			return;
4670 
4671 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4672 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4673 		__skb_queue_before(list, skb, nskb);
4674 		skb_set_owner_r(nskb, sk);
4675 
4676 		/* Copy data, releasing collapsed skbs. */
4677 		while (copy > 0) {
4678 			int offset = start - TCP_SKB_CB(skb)->seq;
4679 			int size = TCP_SKB_CB(skb)->end_seq - start;
4680 
4681 			BUG_ON(offset < 0);
4682 			if (size > 0) {
4683 				size = min(copy, size);
4684 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4685 					BUG();
4686 				TCP_SKB_CB(nskb)->end_seq += size;
4687 				copy -= size;
4688 				start += size;
4689 			}
4690 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4691 				skb = tcp_collapse_one(sk, skb, list);
4692 				if (!skb ||
4693 				    skb == tail ||
4694 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4695 					return;
4696 			}
4697 		}
4698 	}
4699 }
4700 
4701 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4702  * and tcp_collapse() them until all the queue is collapsed.
4703  */
4704 static void tcp_collapse_ofo_queue(struct sock *sk)
4705 {
4706 	struct tcp_sock *tp = tcp_sk(sk);
4707 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4708 	struct sk_buff *head;
4709 	u32 start, end;
4710 
4711 	if (!skb)
4712 		return;
4713 
4714 	start = TCP_SKB_CB(skb)->seq;
4715 	end = TCP_SKB_CB(skb)->end_seq;
4716 	head = skb;
4717 
4718 	for (;;) {
4719 		struct sk_buff *next = NULL;
4720 
4721 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4722 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4723 		skb = next;
4724 
4725 		/* Segment is terminated when we see gap or when
4726 		 * we are at the end of all the queue. */
4727 		if (!skb ||
4728 		    after(TCP_SKB_CB(skb)->seq, end) ||
4729 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4730 			tcp_collapse(sk, &tp->out_of_order_queue,
4731 				     head, skb, start, end);
4732 			head = skb;
4733 			if (!skb)
4734 				break;
4735 			/* Start new segment */
4736 			start = TCP_SKB_CB(skb)->seq;
4737 			end = TCP_SKB_CB(skb)->end_seq;
4738 		} else {
4739 			if (before(TCP_SKB_CB(skb)->seq, start))
4740 				start = TCP_SKB_CB(skb)->seq;
4741 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4742 				end = TCP_SKB_CB(skb)->end_seq;
4743 		}
4744 	}
4745 }
4746 
4747 /*
4748  * Purge the out-of-order queue.
4749  * Return true if queue was pruned.
4750  */
4751 static bool tcp_prune_ofo_queue(struct sock *sk)
4752 {
4753 	struct tcp_sock *tp = tcp_sk(sk);
4754 	bool res = false;
4755 
4756 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4757 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4758 		__skb_queue_purge(&tp->out_of_order_queue);
4759 
4760 		/* Reset SACK state.  A conforming SACK implementation will
4761 		 * do the same at a timeout based retransmit.  When a connection
4762 		 * is in a sad state like this, we care only about integrity
4763 		 * of the connection not performance.
4764 		 */
4765 		if (tp->rx_opt.sack_ok)
4766 			tcp_sack_reset(&tp->rx_opt);
4767 		sk_mem_reclaim(sk);
4768 		res = true;
4769 	}
4770 	return res;
4771 }
4772 
4773 /* Reduce allocated memory if we can, trying to get
4774  * the socket within its memory limits again.
4775  *
4776  * Return less than zero if we should start dropping frames
4777  * until the socket owning process reads some of the data
4778  * to stabilize the situation.
4779  */
4780 static int tcp_prune_queue(struct sock *sk)
4781 {
4782 	struct tcp_sock *tp = tcp_sk(sk);
4783 
4784 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4785 
4786 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4787 
4788 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4789 		tcp_clamp_window(sk);
4790 	else if (tcp_under_memory_pressure(sk))
4791 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4792 
4793 	tcp_collapse_ofo_queue(sk);
4794 	if (!skb_queue_empty(&sk->sk_receive_queue))
4795 		tcp_collapse(sk, &sk->sk_receive_queue,
4796 			     skb_peek(&sk->sk_receive_queue),
4797 			     NULL,
4798 			     tp->copied_seq, tp->rcv_nxt);
4799 	sk_mem_reclaim(sk);
4800 
4801 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4802 		return 0;
4803 
4804 	/* Collapsing did not help, destructive actions follow.
4805 	 * This must not ever occur. */
4806 
4807 	tcp_prune_ofo_queue(sk);
4808 
4809 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4810 		return 0;
4811 
4812 	/* If we are really being abused, tell the caller to silently
4813 	 * drop receive data on the floor.  It will get retransmitted
4814 	 * and hopefully then we'll have sufficient space.
4815 	 */
4816 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4817 
4818 	/* Massive buffer overcommit. */
4819 	tp->pred_flags = 0;
4820 	return -1;
4821 }
4822 
4823 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4824 {
4825 	const struct tcp_sock *tp = tcp_sk(sk);
4826 
4827 	/* If the user specified a specific send buffer setting, do
4828 	 * not modify it.
4829 	 */
4830 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4831 		return false;
4832 
4833 	/* If we are under global TCP memory pressure, do not expand.  */
4834 	if (tcp_under_memory_pressure(sk))
4835 		return false;
4836 
4837 	/* If we are under soft global TCP memory pressure, do not expand.  */
4838 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4839 		return false;
4840 
4841 	/* If we filled the congestion window, do not expand.  */
4842 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4843 		return false;
4844 
4845 	return true;
4846 }
4847 
4848 /* When incoming ACK allowed to free some skb from write_queue,
4849  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4850  * on the exit from tcp input handler.
4851  *
4852  * PROBLEM: sndbuf expansion does not work well with largesend.
4853  */
4854 static void tcp_new_space(struct sock *sk)
4855 {
4856 	struct tcp_sock *tp = tcp_sk(sk);
4857 
4858 	if (tcp_should_expand_sndbuf(sk)) {
4859 		tcp_sndbuf_expand(sk);
4860 		tp->snd_cwnd_stamp = tcp_time_stamp;
4861 	}
4862 
4863 	sk->sk_write_space(sk);
4864 }
4865 
4866 static void tcp_check_space(struct sock *sk)
4867 {
4868 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4869 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4870 		/* pairs with tcp_poll() */
4871 		smp_mb__after_atomic();
4872 		if (sk->sk_socket &&
4873 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4874 			tcp_new_space(sk);
4875 	}
4876 }
4877 
4878 static inline void tcp_data_snd_check(struct sock *sk)
4879 {
4880 	tcp_push_pending_frames(sk);
4881 	tcp_check_space(sk);
4882 }
4883 
4884 /*
4885  * Check if sending an ack is needed.
4886  */
4887 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4888 {
4889 	struct tcp_sock *tp = tcp_sk(sk);
4890 
4891 	    /* More than one full frame received... */
4892 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4893 	     /* ... and right edge of window advances far enough.
4894 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4895 	      */
4896 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4897 	    /* We ACK each frame or... */
4898 	    tcp_in_quickack_mode(sk) ||
4899 	    /* We have out of order data. */
4900 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4901 		/* Then ack it now */
4902 		tcp_send_ack(sk);
4903 	} else {
4904 		/* Else, send delayed ack. */
4905 		tcp_send_delayed_ack(sk);
4906 	}
4907 }
4908 
4909 static inline void tcp_ack_snd_check(struct sock *sk)
4910 {
4911 	if (!inet_csk_ack_scheduled(sk)) {
4912 		/* We sent a data segment already. */
4913 		return;
4914 	}
4915 	__tcp_ack_snd_check(sk, 1);
4916 }
4917 
4918 /*
4919  *	This routine is only called when we have urgent data
4920  *	signaled. Its the 'slow' part of tcp_urg. It could be
4921  *	moved inline now as tcp_urg is only called from one
4922  *	place. We handle URGent data wrong. We have to - as
4923  *	BSD still doesn't use the correction from RFC961.
4924  *	For 1003.1g we should support a new option TCP_STDURG to permit
4925  *	either form (or just set the sysctl tcp_stdurg).
4926  */
4927 
4928 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4929 {
4930 	struct tcp_sock *tp = tcp_sk(sk);
4931 	u32 ptr = ntohs(th->urg_ptr);
4932 
4933 	if (ptr && !sysctl_tcp_stdurg)
4934 		ptr--;
4935 	ptr += ntohl(th->seq);
4936 
4937 	/* Ignore urgent data that we've already seen and read. */
4938 	if (after(tp->copied_seq, ptr))
4939 		return;
4940 
4941 	/* Do not replay urg ptr.
4942 	 *
4943 	 * NOTE: interesting situation not covered by specs.
4944 	 * Misbehaving sender may send urg ptr, pointing to segment,
4945 	 * which we already have in ofo queue. We are not able to fetch
4946 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4947 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4948 	 * situations. But it is worth to think about possibility of some
4949 	 * DoSes using some hypothetical application level deadlock.
4950 	 */
4951 	if (before(ptr, tp->rcv_nxt))
4952 		return;
4953 
4954 	/* Do we already have a newer (or duplicate) urgent pointer? */
4955 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4956 		return;
4957 
4958 	/* Tell the world about our new urgent pointer. */
4959 	sk_send_sigurg(sk);
4960 
4961 	/* We may be adding urgent data when the last byte read was
4962 	 * urgent. To do this requires some care. We cannot just ignore
4963 	 * tp->copied_seq since we would read the last urgent byte again
4964 	 * as data, nor can we alter copied_seq until this data arrives
4965 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4966 	 *
4967 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4968 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4969 	 * and expect that both A and B disappear from stream. This is _wrong_.
4970 	 * Though this happens in BSD with high probability, this is occasional.
4971 	 * Any application relying on this is buggy. Note also, that fix "works"
4972 	 * only in this artificial test. Insert some normal data between A and B and we will
4973 	 * decline of BSD again. Verdict: it is better to remove to trap
4974 	 * buggy users.
4975 	 */
4976 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4977 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4978 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4979 		tp->copied_seq++;
4980 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4981 			__skb_unlink(skb, &sk->sk_receive_queue);
4982 			__kfree_skb(skb);
4983 		}
4984 	}
4985 
4986 	tp->urg_data = TCP_URG_NOTYET;
4987 	tp->urg_seq = ptr;
4988 
4989 	/* Disable header prediction. */
4990 	tp->pred_flags = 0;
4991 }
4992 
4993 /* This is the 'fast' part of urgent handling. */
4994 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4995 {
4996 	struct tcp_sock *tp = tcp_sk(sk);
4997 
4998 	/* Check if we get a new urgent pointer - normally not. */
4999 	if (th->urg)
5000 		tcp_check_urg(sk, th);
5001 
5002 	/* Do we wait for any urgent data? - normally not... */
5003 	if (tp->urg_data == TCP_URG_NOTYET) {
5004 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5005 			  th->syn;
5006 
5007 		/* Is the urgent pointer pointing into this packet? */
5008 		if (ptr < skb->len) {
5009 			u8 tmp;
5010 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5011 				BUG();
5012 			tp->urg_data = TCP_URG_VALID | tmp;
5013 			if (!sock_flag(sk, SOCK_DEAD))
5014 				sk->sk_data_ready(sk);
5015 		}
5016 	}
5017 }
5018 
5019 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5020 {
5021 	struct tcp_sock *tp = tcp_sk(sk);
5022 	int chunk = skb->len - hlen;
5023 	int err;
5024 
5025 	local_bh_enable();
5026 	if (skb_csum_unnecessary(skb))
5027 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5028 	else
5029 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5030 
5031 	if (!err) {
5032 		tp->ucopy.len -= chunk;
5033 		tp->copied_seq += chunk;
5034 		tcp_rcv_space_adjust(sk);
5035 	}
5036 
5037 	local_bh_disable();
5038 	return err;
5039 }
5040 
5041 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5042 					    struct sk_buff *skb)
5043 {
5044 	__sum16 result;
5045 
5046 	if (sock_owned_by_user(sk)) {
5047 		local_bh_enable();
5048 		result = __tcp_checksum_complete(skb);
5049 		local_bh_disable();
5050 	} else {
5051 		result = __tcp_checksum_complete(skb);
5052 	}
5053 	return result;
5054 }
5055 
5056 static inline bool tcp_checksum_complete_user(struct sock *sk,
5057 					     struct sk_buff *skb)
5058 {
5059 	return !skb_csum_unnecessary(skb) &&
5060 	       __tcp_checksum_complete_user(sk, skb);
5061 }
5062 
5063 /* Does PAWS and seqno based validation of an incoming segment, flags will
5064  * play significant role here.
5065  */
5066 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5067 				  const struct tcphdr *th, int syn_inerr)
5068 {
5069 	struct tcp_sock *tp = tcp_sk(sk);
5070 
5071 	/* RFC1323: H1. Apply PAWS check first. */
5072 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5073 	    tcp_paws_discard(sk, skb)) {
5074 		if (!th->rst) {
5075 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5076 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5077 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5078 						  &tp->last_oow_ack_time))
5079 				tcp_send_dupack(sk, skb);
5080 			goto discard;
5081 		}
5082 		/* Reset is accepted even if it did not pass PAWS. */
5083 	}
5084 
5085 	/* Step 1: check sequence number */
5086 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5087 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5088 		 * (RST) segments are validated by checking their SEQ-fields."
5089 		 * And page 69: "If an incoming segment is not acceptable,
5090 		 * an acknowledgment should be sent in reply (unless the RST
5091 		 * bit is set, if so drop the segment and return)".
5092 		 */
5093 		if (!th->rst) {
5094 			if (th->syn)
5095 				goto syn_challenge;
5096 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5097 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5098 						  &tp->last_oow_ack_time))
5099 				tcp_send_dupack(sk, skb);
5100 		}
5101 		goto discard;
5102 	}
5103 
5104 	/* Step 2: check RST bit */
5105 	if (th->rst) {
5106 		/* RFC 5961 3.2 :
5107 		 * If sequence number exactly matches RCV.NXT, then
5108 		 *     RESET the connection
5109 		 * else
5110 		 *     Send a challenge ACK
5111 		 */
5112 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5113 			tcp_reset(sk);
5114 		else
5115 			tcp_send_challenge_ack(sk, skb);
5116 		goto discard;
5117 	}
5118 
5119 	/* step 3: check security and precedence [ignored] */
5120 
5121 	/* step 4: Check for a SYN
5122 	 * RFC 5961 4.2 : Send a challenge ack
5123 	 */
5124 	if (th->syn) {
5125 syn_challenge:
5126 		if (syn_inerr)
5127 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5128 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5129 		tcp_send_challenge_ack(sk, skb);
5130 		goto discard;
5131 	}
5132 
5133 	return true;
5134 
5135 discard:
5136 	__kfree_skb(skb);
5137 	return false;
5138 }
5139 
5140 /*
5141  *	TCP receive function for the ESTABLISHED state.
5142  *
5143  *	It is split into a fast path and a slow path. The fast path is
5144  * 	disabled when:
5145  *	- A zero window was announced from us - zero window probing
5146  *        is only handled properly in the slow path.
5147  *	- Out of order segments arrived.
5148  *	- Urgent data is expected.
5149  *	- There is no buffer space left
5150  *	- Unexpected TCP flags/window values/header lengths are received
5151  *	  (detected by checking the TCP header against pred_flags)
5152  *	- Data is sent in both directions. Fast path only supports pure senders
5153  *	  or pure receivers (this means either the sequence number or the ack
5154  *	  value must stay constant)
5155  *	- Unexpected TCP option.
5156  *
5157  *	When these conditions are not satisfied it drops into a standard
5158  *	receive procedure patterned after RFC793 to handle all cases.
5159  *	The first three cases are guaranteed by proper pred_flags setting,
5160  *	the rest is checked inline. Fast processing is turned on in
5161  *	tcp_data_queue when everything is OK.
5162  */
5163 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5164 			 const struct tcphdr *th, unsigned int len)
5165 {
5166 	struct tcp_sock *tp = tcp_sk(sk);
5167 
5168 	if (unlikely(!sk->sk_rx_dst))
5169 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5170 	/*
5171 	 *	Header prediction.
5172 	 *	The code loosely follows the one in the famous
5173 	 *	"30 instruction TCP receive" Van Jacobson mail.
5174 	 *
5175 	 *	Van's trick is to deposit buffers into socket queue
5176 	 *	on a device interrupt, to call tcp_recv function
5177 	 *	on the receive process context and checksum and copy
5178 	 *	the buffer to user space. smart...
5179 	 *
5180 	 *	Our current scheme is not silly either but we take the
5181 	 *	extra cost of the net_bh soft interrupt processing...
5182 	 *	We do checksum and copy also but from device to kernel.
5183 	 */
5184 
5185 	tp->rx_opt.saw_tstamp = 0;
5186 
5187 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5188 	 *	if header_prediction is to be made
5189 	 *	'S' will always be tp->tcp_header_len >> 2
5190 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5191 	 *  turn it off	(when there are holes in the receive
5192 	 *	 space for instance)
5193 	 *	PSH flag is ignored.
5194 	 */
5195 
5196 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5197 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5198 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5199 		int tcp_header_len = tp->tcp_header_len;
5200 
5201 		/* Timestamp header prediction: tcp_header_len
5202 		 * is automatically equal to th->doff*4 due to pred_flags
5203 		 * match.
5204 		 */
5205 
5206 		/* Check timestamp */
5207 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5208 			/* No? Slow path! */
5209 			if (!tcp_parse_aligned_timestamp(tp, th))
5210 				goto slow_path;
5211 
5212 			/* If PAWS failed, check it more carefully in slow path */
5213 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5214 				goto slow_path;
5215 
5216 			/* DO NOT update ts_recent here, if checksum fails
5217 			 * and timestamp was corrupted part, it will result
5218 			 * in a hung connection since we will drop all
5219 			 * future packets due to the PAWS test.
5220 			 */
5221 		}
5222 
5223 		if (len <= tcp_header_len) {
5224 			/* Bulk data transfer: sender */
5225 			if (len == tcp_header_len) {
5226 				/* Predicted packet is in window by definition.
5227 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5228 				 * Hence, check seq<=rcv_wup reduces to:
5229 				 */
5230 				if (tcp_header_len ==
5231 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5232 				    tp->rcv_nxt == tp->rcv_wup)
5233 					tcp_store_ts_recent(tp);
5234 
5235 				/* We know that such packets are checksummed
5236 				 * on entry.
5237 				 */
5238 				tcp_ack(sk, skb, 0);
5239 				__kfree_skb(skb);
5240 				tcp_data_snd_check(sk);
5241 				return;
5242 			} else { /* Header too small */
5243 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5244 				goto discard;
5245 			}
5246 		} else {
5247 			int eaten = 0;
5248 			bool fragstolen = false;
5249 
5250 			if (tp->ucopy.task == current &&
5251 			    tp->copied_seq == tp->rcv_nxt &&
5252 			    len - tcp_header_len <= tp->ucopy.len &&
5253 			    sock_owned_by_user(sk)) {
5254 				__set_current_state(TASK_RUNNING);
5255 
5256 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5257 					/* Predicted packet is in window by definition.
5258 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5259 					 * Hence, check seq<=rcv_wup reduces to:
5260 					 */
5261 					if (tcp_header_len ==
5262 					    (sizeof(struct tcphdr) +
5263 					     TCPOLEN_TSTAMP_ALIGNED) &&
5264 					    tp->rcv_nxt == tp->rcv_wup)
5265 						tcp_store_ts_recent(tp);
5266 
5267 					tcp_rcv_rtt_measure_ts(sk, skb);
5268 
5269 					__skb_pull(skb, tcp_header_len);
5270 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5271 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5272 					eaten = 1;
5273 				}
5274 			}
5275 			if (!eaten) {
5276 				if (tcp_checksum_complete_user(sk, skb))
5277 					goto csum_error;
5278 
5279 				if ((int)skb->truesize > sk->sk_forward_alloc)
5280 					goto step5;
5281 
5282 				/* Predicted packet is in window by definition.
5283 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5284 				 * Hence, check seq<=rcv_wup reduces to:
5285 				 */
5286 				if (tcp_header_len ==
5287 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5288 				    tp->rcv_nxt == tp->rcv_wup)
5289 					tcp_store_ts_recent(tp);
5290 
5291 				tcp_rcv_rtt_measure_ts(sk, skb);
5292 
5293 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5294 
5295 				/* Bulk data transfer: receiver */
5296 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5297 						      &fragstolen);
5298 			}
5299 
5300 			tcp_event_data_recv(sk, skb);
5301 
5302 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5303 				/* Well, only one small jumplet in fast path... */
5304 				tcp_ack(sk, skb, FLAG_DATA);
5305 				tcp_data_snd_check(sk);
5306 				if (!inet_csk_ack_scheduled(sk))
5307 					goto no_ack;
5308 			}
5309 
5310 			__tcp_ack_snd_check(sk, 0);
5311 no_ack:
5312 			if (eaten)
5313 				kfree_skb_partial(skb, fragstolen);
5314 			sk->sk_data_ready(sk);
5315 			return;
5316 		}
5317 	}
5318 
5319 slow_path:
5320 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5321 		goto csum_error;
5322 
5323 	if (!th->ack && !th->rst && !th->syn)
5324 		goto discard;
5325 
5326 	/*
5327 	 *	Standard slow path.
5328 	 */
5329 
5330 	if (!tcp_validate_incoming(sk, skb, th, 1))
5331 		return;
5332 
5333 step5:
5334 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5335 		goto discard;
5336 
5337 	tcp_rcv_rtt_measure_ts(sk, skb);
5338 
5339 	/* Process urgent data. */
5340 	tcp_urg(sk, skb, th);
5341 
5342 	/* step 7: process the segment text */
5343 	tcp_data_queue(sk, skb);
5344 
5345 	tcp_data_snd_check(sk);
5346 	tcp_ack_snd_check(sk);
5347 	return;
5348 
5349 csum_error:
5350 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5351 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5352 
5353 discard:
5354 	__kfree_skb(skb);
5355 }
5356 EXPORT_SYMBOL(tcp_rcv_established);
5357 
5358 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5359 {
5360 	struct tcp_sock *tp = tcp_sk(sk);
5361 	struct inet_connection_sock *icsk = inet_csk(sk);
5362 
5363 	tcp_set_state(sk, TCP_ESTABLISHED);
5364 
5365 	if (skb) {
5366 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5367 		security_inet_conn_established(sk, skb);
5368 	}
5369 
5370 	/* Make sure socket is routed, for correct metrics.  */
5371 	icsk->icsk_af_ops->rebuild_header(sk);
5372 
5373 	tcp_init_metrics(sk);
5374 
5375 	tcp_init_congestion_control(sk);
5376 
5377 	/* Prevent spurious tcp_cwnd_restart() on first data
5378 	 * packet.
5379 	 */
5380 	tp->lsndtime = tcp_time_stamp;
5381 
5382 	tcp_init_buffer_space(sk);
5383 
5384 	if (sock_flag(sk, SOCK_KEEPOPEN))
5385 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5386 
5387 	if (!tp->rx_opt.snd_wscale)
5388 		__tcp_fast_path_on(tp, tp->snd_wnd);
5389 	else
5390 		tp->pred_flags = 0;
5391 
5392 	if (!sock_flag(sk, SOCK_DEAD)) {
5393 		sk->sk_state_change(sk);
5394 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5395 	}
5396 }
5397 
5398 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5399 				    struct tcp_fastopen_cookie *cookie)
5400 {
5401 	struct tcp_sock *tp = tcp_sk(sk);
5402 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5403 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5404 	bool syn_drop = false;
5405 
5406 	if (mss == tp->rx_opt.user_mss) {
5407 		struct tcp_options_received opt;
5408 
5409 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5410 		tcp_clear_options(&opt);
5411 		opt.user_mss = opt.mss_clamp = 0;
5412 		tcp_parse_options(synack, &opt, 0, NULL);
5413 		mss = opt.mss_clamp;
5414 	}
5415 
5416 	if (!tp->syn_fastopen) {
5417 		/* Ignore an unsolicited cookie */
5418 		cookie->len = -1;
5419 	} else if (tp->total_retrans) {
5420 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5421 		 * acknowledges data. Presumably the remote received only
5422 		 * the retransmitted (regular) SYNs: either the original
5423 		 * SYN-data or the corresponding SYN-ACK was dropped.
5424 		 */
5425 		syn_drop = (cookie->len < 0 && data);
5426 	} else if (cookie->len < 0 && !tp->syn_data) {
5427 		/* We requested a cookie but didn't get it. If we did not use
5428 		 * the (old) exp opt format then try so next time (try_exp=1).
5429 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5430 		 */
5431 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5432 	}
5433 
5434 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5435 
5436 	if (data) { /* Retransmit unacked data in SYN */
5437 		tcp_for_write_queue_from(data, sk) {
5438 			if (data == tcp_send_head(sk) ||
5439 			    __tcp_retransmit_skb(sk, data))
5440 				break;
5441 		}
5442 		tcp_rearm_rto(sk);
5443 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5444 		return true;
5445 	}
5446 	tp->syn_data_acked = tp->syn_data;
5447 	if (tp->syn_data_acked)
5448 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5449 	return false;
5450 }
5451 
5452 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5453 					 const struct tcphdr *th, unsigned int len)
5454 {
5455 	struct inet_connection_sock *icsk = inet_csk(sk);
5456 	struct tcp_sock *tp = tcp_sk(sk);
5457 	struct tcp_fastopen_cookie foc = { .len = -1 };
5458 	int saved_clamp = tp->rx_opt.mss_clamp;
5459 
5460 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5461 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5462 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5463 
5464 	if (th->ack) {
5465 		/* rfc793:
5466 		 * "If the state is SYN-SENT then
5467 		 *    first check the ACK bit
5468 		 *      If the ACK bit is set
5469 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5470 		 *        a reset (unless the RST bit is set, if so drop
5471 		 *        the segment and return)"
5472 		 */
5473 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5474 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5475 			goto reset_and_undo;
5476 
5477 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5478 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5479 			     tcp_time_stamp)) {
5480 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5481 			goto reset_and_undo;
5482 		}
5483 
5484 		/* Now ACK is acceptable.
5485 		 *
5486 		 * "If the RST bit is set
5487 		 *    If the ACK was acceptable then signal the user "error:
5488 		 *    connection reset", drop the segment, enter CLOSED state,
5489 		 *    delete TCB, and return."
5490 		 */
5491 
5492 		if (th->rst) {
5493 			tcp_reset(sk);
5494 			goto discard;
5495 		}
5496 
5497 		/* rfc793:
5498 		 *   "fifth, if neither of the SYN or RST bits is set then
5499 		 *    drop the segment and return."
5500 		 *
5501 		 *    See note below!
5502 		 *                                        --ANK(990513)
5503 		 */
5504 		if (!th->syn)
5505 			goto discard_and_undo;
5506 
5507 		/* rfc793:
5508 		 *   "If the SYN bit is on ...
5509 		 *    are acceptable then ...
5510 		 *    (our SYN has been ACKed), change the connection
5511 		 *    state to ESTABLISHED..."
5512 		 */
5513 
5514 		tcp_ecn_rcv_synack(tp, th);
5515 
5516 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5517 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5518 
5519 		/* Ok.. it's good. Set up sequence numbers and
5520 		 * move to established.
5521 		 */
5522 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5523 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5524 
5525 		/* RFC1323: The window in SYN & SYN/ACK segments is
5526 		 * never scaled.
5527 		 */
5528 		tp->snd_wnd = ntohs(th->window);
5529 
5530 		if (!tp->rx_opt.wscale_ok) {
5531 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5532 			tp->window_clamp = min(tp->window_clamp, 65535U);
5533 		}
5534 
5535 		if (tp->rx_opt.saw_tstamp) {
5536 			tp->rx_opt.tstamp_ok	   = 1;
5537 			tp->tcp_header_len =
5538 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5539 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5540 			tcp_store_ts_recent(tp);
5541 		} else {
5542 			tp->tcp_header_len = sizeof(struct tcphdr);
5543 		}
5544 
5545 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5546 			tcp_enable_fack(tp);
5547 
5548 		tcp_mtup_init(sk);
5549 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5550 		tcp_initialize_rcv_mss(sk);
5551 
5552 		/* Remember, tcp_poll() does not lock socket!
5553 		 * Change state from SYN-SENT only after copied_seq
5554 		 * is initialized. */
5555 		tp->copied_seq = tp->rcv_nxt;
5556 
5557 		smp_mb();
5558 
5559 		tcp_finish_connect(sk, skb);
5560 
5561 		if ((tp->syn_fastopen || tp->syn_data) &&
5562 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5563 			return -1;
5564 
5565 		if (sk->sk_write_pending ||
5566 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5567 		    icsk->icsk_ack.pingpong) {
5568 			/* Save one ACK. Data will be ready after
5569 			 * several ticks, if write_pending is set.
5570 			 *
5571 			 * It may be deleted, but with this feature tcpdumps
5572 			 * look so _wonderfully_ clever, that I was not able
5573 			 * to stand against the temptation 8)     --ANK
5574 			 */
5575 			inet_csk_schedule_ack(sk);
5576 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5577 			tcp_enter_quickack_mode(sk);
5578 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5579 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5580 
5581 discard:
5582 			__kfree_skb(skb);
5583 			return 0;
5584 		} else {
5585 			tcp_send_ack(sk);
5586 		}
5587 		return -1;
5588 	}
5589 
5590 	/* No ACK in the segment */
5591 
5592 	if (th->rst) {
5593 		/* rfc793:
5594 		 * "If the RST bit is set
5595 		 *
5596 		 *      Otherwise (no ACK) drop the segment and return."
5597 		 */
5598 
5599 		goto discard_and_undo;
5600 	}
5601 
5602 	/* PAWS check. */
5603 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5604 	    tcp_paws_reject(&tp->rx_opt, 0))
5605 		goto discard_and_undo;
5606 
5607 	if (th->syn) {
5608 		/* We see SYN without ACK. It is attempt of
5609 		 * simultaneous connect with crossed SYNs.
5610 		 * Particularly, it can be connect to self.
5611 		 */
5612 		tcp_set_state(sk, TCP_SYN_RECV);
5613 
5614 		if (tp->rx_opt.saw_tstamp) {
5615 			tp->rx_opt.tstamp_ok = 1;
5616 			tcp_store_ts_recent(tp);
5617 			tp->tcp_header_len =
5618 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5619 		} else {
5620 			tp->tcp_header_len = sizeof(struct tcphdr);
5621 		}
5622 
5623 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5624 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5625 
5626 		/* RFC1323: The window in SYN & SYN/ACK segments is
5627 		 * never scaled.
5628 		 */
5629 		tp->snd_wnd    = ntohs(th->window);
5630 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5631 		tp->max_window = tp->snd_wnd;
5632 
5633 		tcp_ecn_rcv_syn(tp, th);
5634 
5635 		tcp_mtup_init(sk);
5636 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5637 		tcp_initialize_rcv_mss(sk);
5638 
5639 		tcp_send_synack(sk);
5640 #if 0
5641 		/* Note, we could accept data and URG from this segment.
5642 		 * There are no obstacles to make this (except that we must
5643 		 * either change tcp_recvmsg() to prevent it from returning data
5644 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5645 		 *
5646 		 * However, if we ignore data in ACKless segments sometimes,
5647 		 * we have no reasons to accept it sometimes.
5648 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5649 		 * is not flawless. So, discard packet for sanity.
5650 		 * Uncomment this return to process the data.
5651 		 */
5652 		return -1;
5653 #else
5654 		goto discard;
5655 #endif
5656 	}
5657 	/* "fifth, if neither of the SYN or RST bits is set then
5658 	 * drop the segment and return."
5659 	 */
5660 
5661 discard_and_undo:
5662 	tcp_clear_options(&tp->rx_opt);
5663 	tp->rx_opt.mss_clamp = saved_clamp;
5664 	goto discard;
5665 
5666 reset_and_undo:
5667 	tcp_clear_options(&tp->rx_opt);
5668 	tp->rx_opt.mss_clamp = saved_clamp;
5669 	return 1;
5670 }
5671 
5672 /*
5673  *	This function implements the receiving procedure of RFC 793 for
5674  *	all states except ESTABLISHED and TIME_WAIT.
5675  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5676  *	address independent.
5677  */
5678 
5679 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5680 			  const struct tcphdr *th, unsigned int len)
5681 {
5682 	struct tcp_sock *tp = tcp_sk(sk);
5683 	struct inet_connection_sock *icsk = inet_csk(sk);
5684 	struct request_sock *req;
5685 	int queued = 0;
5686 	bool acceptable;
5687 	u32 synack_stamp;
5688 
5689 	tp->rx_opt.saw_tstamp = 0;
5690 
5691 	switch (sk->sk_state) {
5692 	case TCP_CLOSE:
5693 		goto discard;
5694 
5695 	case TCP_LISTEN:
5696 		if (th->ack)
5697 			return 1;
5698 
5699 		if (th->rst)
5700 			goto discard;
5701 
5702 		if (th->syn) {
5703 			if (th->fin)
5704 				goto discard;
5705 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5706 				return 1;
5707 
5708 			/* Now we have several options: In theory there is
5709 			 * nothing else in the frame. KA9Q has an option to
5710 			 * send data with the syn, BSD accepts data with the
5711 			 * syn up to the [to be] advertised window and
5712 			 * Solaris 2.1 gives you a protocol error. For now
5713 			 * we just ignore it, that fits the spec precisely
5714 			 * and avoids incompatibilities. It would be nice in
5715 			 * future to drop through and process the data.
5716 			 *
5717 			 * Now that TTCP is starting to be used we ought to
5718 			 * queue this data.
5719 			 * But, this leaves one open to an easy denial of
5720 			 * service attack, and SYN cookies can't defend
5721 			 * against this problem. So, we drop the data
5722 			 * in the interest of security over speed unless
5723 			 * it's still in use.
5724 			 */
5725 			kfree_skb(skb);
5726 			return 0;
5727 		}
5728 		goto discard;
5729 
5730 	case TCP_SYN_SENT:
5731 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5732 		if (queued >= 0)
5733 			return queued;
5734 
5735 		/* Do step6 onward by hand. */
5736 		tcp_urg(sk, skb, th);
5737 		__kfree_skb(skb);
5738 		tcp_data_snd_check(sk);
5739 		return 0;
5740 	}
5741 
5742 	req = tp->fastopen_rsk;
5743 	if (req) {
5744 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5745 		    sk->sk_state != TCP_FIN_WAIT1);
5746 
5747 		if (!tcp_check_req(sk, skb, req, true))
5748 			goto discard;
5749 	}
5750 
5751 	if (!th->ack && !th->rst && !th->syn)
5752 		goto discard;
5753 
5754 	if (!tcp_validate_incoming(sk, skb, th, 0))
5755 		return 0;
5756 
5757 	/* step 5: check the ACK field */
5758 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5759 				      FLAG_UPDATE_TS_RECENT) > 0;
5760 
5761 	switch (sk->sk_state) {
5762 	case TCP_SYN_RECV:
5763 		if (!acceptable)
5764 			return 1;
5765 
5766 		/* Once we leave TCP_SYN_RECV, we no longer need req
5767 		 * so release it.
5768 		 */
5769 		if (req) {
5770 			synack_stamp = tcp_rsk(req)->snt_synack;
5771 			tp->total_retrans = req->num_retrans;
5772 			reqsk_fastopen_remove(sk, req, false);
5773 		} else {
5774 			synack_stamp = tp->lsndtime;
5775 			/* Make sure socket is routed, for correct metrics. */
5776 			icsk->icsk_af_ops->rebuild_header(sk);
5777 			tcp_init_congestion_control(sk);
5778 
5779 			tcp_mtup_init(sk);
5780 			tp->copied_seq = tp->rcv_nxt;
5781 			tcp_init_buffer_space(sk);
5782 		}
5783 		smp_mb();
5784 		tcp_set_state(sk, TCP_ESTABLISHED);
5785 		sk->sk_state_change(sk);
5786 
5787 		/* Note, that this wakeup is only for marginal crossed SYN case.
5788 		 * Passively open sockets are not waked up, because
5789 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5790 		 */
5791 		if (sk->sk_socket)
5792 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5793 
5794 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5795 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5796 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5797 		tcp_synack_rtt_meas(sk, synack_stamp);
5798 
5799 		if (tp->rx_opt.tstamp_ok)
5800 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5801 
5802 		if (req) {
5803 			/* Re-arm the timer because data may have been sent out.
5804 			 * This is similar to the regular data transmission case
5805 			 * when new data has just been ack'ed.
5806 			 *
5807 			 * (TFO) - we could try to be more aggressive and
5808 			 * retransmitting any data sooner based on when they
5809 			 * are sent out.
5810 			 */
5811 			tcp_rearm_rto(sk);
5812 		} else
5813 			tcp_init_metrics(sk);
5814 
5815 		tcp_update_pacing_rate(sk);
5816 
5817 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5818 		tp->lsndtime = tcp_time_stamp;
5819 
5820 		tcp_initialize_rcv_mss(sk);
5821 		tcp_fast_path_on(tp);
5822 		break;
5823 
5824 	case TCP_FIN_WAIT1: {
5825 		struct dst_entry *dst;
5826 		int tmo;
5827 
5828 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5829 		 * Fast Open socket and this is the first acceptable
5830 		 * ACK we have received, this would have acknowledged
5831 		 * our SYNACK so stop the SYNACK timer.
5832 		 */
5833 		if (req) {
5834 			/* Return RST if ack_seq is invalid.
5835 			 * Note that RFC793 only says to generate a
5836 			 * DUPACK for it but for TCP Fast Open it seems
5837 			 * better to treat this case like TCP_SYN_RECV
5838 			 * above.
5839 			 */
5840 			if (!acceptable)
5841 				return 1;
5842 			/* We no longer need the request sock. */
5843 			reqsk_fastopen_remove(sk, req, false);
5844 			tcp_rearm_rto(sk);
5845 		}
5846 		if (tp->snd_una != tp->write_seq)
5847 			break;
5848 
5849 		tcp_set_state(sk, TCP_FIN_WAIT2);
5850 		sk->sk_shutdown |= SEND_SHUTDOWN;
5851 
5852 		dst = __sk_dst_get(sk);
5853 		if (dst)
5854 			dst_confirm(dst);
5855 
5856 		if (!sock_flag(sk, SOCK_DEAD)) {
5857 			/* Wake up lingering close() */
5858 			sk->sk_state_change(sk);
5859 			break;
5860 		}
5861 
5862 		if (tp->linger2 < 0 ||
5863 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5864 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5865 			tcp_done(sk);
5866 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5867 			return 1;
5868 		}
5869 
5870 		tmo = tcp_fin_time(sk);
5871 		if (tmo > TCP_TIMEWAIT_LEN) {
5872 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5873 		} else if (th->fin || sock_owned_by_user(sk)) {
5874 			/* Bad case. We could lose such FIN otherwise.
5875 			 * It is not a big problem, but it looks confusing
5876 			 * and not so rare event. We still can lose it now,
5877 			 * if it spins in bh_lock_sock(), but it is really
5878 			 * marginal case.
5879 			 */
5880 			inet_csk_reset_keepalive_timer(sk, tmo);
5881 		} else {
5882 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5883 			goto discard;
5884 		}
5885 		break;
5886 	}
5887 
5888 	case TCP_CLOSING:
5889 		if (tp->snd_una == tp->write_seq) {
5890 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5891 			goto discard;
5892 		}
5893 		break;
5894 
5895 	case TCP_LAST_ACK:
5896 		if (tp->snd_una == tp->write_seq) {
5897 			tcp_update_metrics(sk);
5898 			tcp_done(sk);
5899 			goto discard;
5900 		}
5901 		break;
5902 	}
5903 
5904 	/* step 6: check the URG bit */
5905 	tcp_urg(sk, skb, th);
5906 
5907 	/* step 7: process the segment text */
5908 	switch (sk->sk_state) {
5909 	case TCP_CLOSE_WAIT:
5910 	case TCP_CLOSING:
5911 	case TCP_LAST_ACK:
5912 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5913 			break;
5914 	case TCP_FIN_WAIT1:
5915 	case TCP_FIN_WAIT2:
5916 		/* RFC 793 says to queue data in these states,
5917 		 * RFC 1122 says we MUST send a reset.
5918 		 * BSD 4.4 also does reset.
5919 		 */
5920 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5921 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5922 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5923 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5924 				tcp_reset(sk);
5925 				return 1;
5926 			}
5927 		}
5928 		/* Fall through */
5929 	case TCP_ESTABLISHED:
5930 		tcp_data_queue(sk, skb);
5931 		queued = 1;
5932 		break;
5933 	}
5934 
5935 	/* tcp_data could move socket to TIME-WAIT */
5936 	if (sk->sk_state != TCP_CLOSE) {
5937 		tcp_data_snd_check(sk);
5938 		tcp_ack_snd_check(sk);
5939 	}
5940 
5941 	if (!queued) {
5942 discard:
5943 		__kfree_skb(skb);
5944 	}
5945 	return 0;
5946 }
5947 EXPORT_SYMBOL(tcp_rcv_state_process);
5948 
5949 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5950 {
5951 	struct inet_request_sock *ireq = inet_rsk(req);
5952 
5953 	if (family == AF_INET)
5954 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
5955 				    &ireq->ir_rmt_addr, port);
5956 #if IS_ENABLED(CONFIG_IPV6)
5957 	else if (family == AF_INET6)
5958 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
5959 				    &ireq->ir_v6_rmt_addr, port);
5960 #endif
5961 }
5962 
5963 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5964  *
5965  * If we receive a SYN packet with these bits set, it means a
5966  * network is playing bad games with TOS bits. In order to
5967  * avoid possible false congestion notifications, we disable
5968  * TCP ECN negotiation.
5969  *
5970  * Exception: tcp_ca wants ECN. This is required for DCTCP
5971  * congestion control: Linux DCTCP asserts ECT on all packets,
5972  * including SYN, which is most optimal solution; however,
5973  * others, such as FreeBSD do not.
5974  */
5975 static void tcp_ecn_create_request(struct request_sock *req,
5976 				   const struct sk_buff *skb,
5977 				   const struct sock *listen_sk,
5978 				   const struct dst_entry *dst)
5979 {
5980 	const struct tcphdr *th = tcp_hdr(skb);
5981 	const struct net *net = sock_net(listen_sk);
5982 	bool th_ecn = th->ece && th->cwr;
5983 	bool ect, ecn_ok;
5984 
5985 	if (!th_ecn)
5986 		return;
5987 
5988 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5989 	ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
5990 
5991 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk))
5992 		inet_rsk(req)->ecn_ok = 1;
5993 }
5994 
5995 static void tcp_openreq_init(struct request_sock *req,
5996 			     const struct tcp_options_received *rx_opt,
5997 			     struct sk_buff *skb, const struct sock *sk)
5998 {
5999 	struct inet_request_sock *ireq = inet_rsk(req);
6000 
6001 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6002 	req->cookie_ts = 0;
6003 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6004 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6005 	tcp_rsk(req)->snt_synack = tcp_time_stamp;
6006 	tcp_rsk(req)->last_oow_ack_time = 0;
6007 	req->mss = rx_opt->mss_clamp;
6008 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6009 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6010 	ireq->sack_ok = rx_opt->sack_ok;
6011 	ireq->snd_wscale = rx_opt->snd_wscale;
6012 	ireq->wscale_ok = rx_opt->wscale_ok;
6013 	ireq->acked = 0;
6014 	ireq->ecn_ok = 0;
6015 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6016 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6017 	ireq->ir_mark = inet_request_mark(sk, skb);
6018 }
6019 
6020 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6021 				      struct sock *sk_listener)
6022 {
6023 	struct request_sock *req = reqsk_alloc(ops, sk_listener);
6024 
6025 	if (req) {
6026 		struct inet_request_sock *ireq = inet_rsk(req);
6027 
6028 		kmemcheck_annotate_bitfield(ireq, flags);
6029 		ireq->opt = NULL;
6030 		atomic64_set(&ireq->ir_cookie, 0);
6031 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6032 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6033 		ireq->ireq_family = sk_listener->sk_family;
6034 	}
6035 
6036 	return req;
6037 }
6038 EXPORT_SYMBOL(inet_reqsk_alloc);
6039 
6040 /*
6041  * Return true if a syncookie should be sent
6042  */
6043 static bool tcp_syn_flood_action(struct sock *sk,
6044 				 const struct sk_buff *skb,
6045 				 const char *proto)
6046 {
6047 	const char *msg = "Dropping request";
6048 	bool want_cookie = false;
6049 	struct listen_sock *lopt;
6050 
6051 #ifdef CONFIG_SYN_COOKIES
6052 	if (sysctl_tcp_syncookies) {
6053 		msg = "Sending cookies";
6054 		want_cookie = true;
6055 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6056 	} else
6057 #endif
6058 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6059 
6060 	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
6061 	if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
6062 		lopt->synflood_warned = 1;
6063 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6064 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6065 	}
6066 	return want_cookie;
6067 }
6068 
6069 static void tcp_reqsk_record_syn(const struct sock *sk,
6070 				 struct request_sock *req,
6071 				 const struct sk_buff *skb)
6072 {
6073 	if (tcp_sk(sk)->save_syn) {
6074 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6075 		u32 *copy;
6076 
6077 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6078 		if (copy) {
6079 			copy[0] = len;
6080 			memcpy(&copy[1], skb_network_header(skb), len);
6081 			req->saved_syn = copy;
6082 		}
6083 	}
6084 }
6085 
6086 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6087 		     const struct tcp_request_sock_ops *af_ops,
6088 		     struct sock *sk, struct sk_buff *skb)
6089 {
6090 	struct tcp_options_received tmp_opt;
6091 	struct request_sock *req;
6092 	struct tcp_sock *tp = tcp_sk(sk);
6093 	struct dst_entry *dst = NULL;
6094 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6095 	bool want_cookie = false, fastopen;
6096 	struct flowi fl;
6097 	struct tcp_fastopen_cookie foc = { .len = -1 };
6098 	int err;
6099 
6100 
6101 	/* TW buckets are converted to open requests without
6102 	 * limitations, they conserve resources and peer is
6103 	 * evidently real one.
6104 	 */
6105 	if ((sysctl_tcp_syncookies == 2 ||
6106 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6107 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6108 		if (!want_cookie)
6109 			goto drop;
6110 	}
6111 
6112 
6113 	/* Accept backlog is full. If we have already queued enough
6114 	 * of warm entries in syn queue, drop request. It is better than
6115 	 * clogging syn queue with openreqs with exponentially increasing
6116 	 * timeout.
6117 	 */
6118 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6119 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6120 		goto drop;
6121 	}
6122 
6123 	req = inet_reqsk_alloc(rsk_ops, sk);
6124 	if (!req)
6125 		goto drop;
6126 
6127 	tcp_rsk(req)->af_specific = af_ops;
6128 
6129 	tcp_clear_options(&tmp_opt);
6130 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6131 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6132 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6133 
6134 	if (want_cookie && !tmp_opt.saw_tstamp)
6135 		tcp_clear_options(&tmp_opt);
6136 
6137 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6138 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6139 
6140 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6141 	inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6142 
6143 	af_ops->init_req(req, sk, skb);
6144 
6145 	if (security_inet_conn_request(sk, skb, req))
6146 		goto drop_and_free;
6147 
6148 	if (!want_cookie && !isn) {
6149 		/* VJ's idea. We save last timestamp seen
6150 		 * from the destination in peer table, when entering
6151 		 * state TIME-WAIT, and check against it before
6152 		 * accepting new connection request.
6153 		 *
6154 		 * If "isn" is not zero, this request hit alive
6155 		 * timewait bucket, so that all the necessary checks
6156 		 * are made in the function processing timewait state.
6157 		 */
6158 		if (tcp_death_row.sysctl_tw_recycle) {
6159 			bool strict;
6160 
6161 			dst = af_ops->route_req(sk, &fl, req, &strict);
6162 
6163 			if (dst && strict &&
6164 			    !tcp_peer_is_proven(req, dst, true,
6165 						tmp_opt.saw_tstamp)) {
6166 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6167 				goto drop_and_release;
6168 			}
6169 		}
6170 		/* Kill the following clause, if you dislike this way. */
6171 		else if (!sysctl_tcp_syncookies &&
6172 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6173 			  (sysctl_max_syn_backlog >> 2)) &&
6174 			 !tcp_peer_is_proven(req, dst, false,
6175 					     tmp_opt.saw_tstamp)) {
6176 			/* Without syncookies last quarter of
6177 			 * backlog is filled with destinations,
6178 			 * proven to be alive.
6179 			 * It means that we continue to communicate
6180 			 * to destinations, already remembered
6181 			 * to the moment of synflood.
6182 			 */
6183 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6184 				    rsk_ops->family);
6185 			goto drop_and_release;
6186 		}
6187 
6188 		isn = af_ops->init_seq(skb);
6189 	}
6190 	if (!dst) {
6191 		dst = af_ops->route_req(sk, &fl, req, NULL);
6192 		if (!dst)
6193 			goto drop_and_free;
6194 	}
6195 
6196 	tcp_ecn_create_request(req, skb, sk, dst);
6197 
6198 	if (want_cookie) {
6199 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6200 		req->cookie_ts = tmp_opt.tstamp_ok;
6201 		if (!tmp_opt.tstamp_ok)
6202 			inet_rsk(req)->ecn_ok = 0;
6203 	}
6204 
6205 	tcp_rsk(req)->snt_isn = isn;
6206 	tcp_openreq_init_rwin(req, sk, dst);
6207 	fastopen = !want_cookie &&
6208 		   tcp_try_fastopen(sk, skb, req, &foc, dst);
6209 	err = af_ops->send_synack(sk, dst, &fl, req,
6210 				  skb_get_queue_mapping(skb), &foc);
6211 	if (!fastopen) {
6212 		if (err || want_cookie)
6213 			goto drop_and_free;
6214 
6215 		tcp_rsk(req)->tfo_listener = false;
6216 		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6217 	}
6218 	tcp_reqsk_record_syn(sk, req, skb);
6219 
6220 	return 0;
6221 
6222 drop_and_release:
6223 	dst_release(dst);
6224 drop_and_free:
6225 	reqsk_free(req);
6226 drop:
6227 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6228 	return 0;
6229 }
6230 EXPORT_SYMBOL(tcp_conn_request);
6231