1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/tcp.h> 4 #include <linux/rcupdate.h> 5 #include <net/tcp.h> 6 7 void tcp_fastopen_init_key_once(struct net *net) 8 { 9 u8 key[TCP_FASTOPEN_KEY_LENGTH]; 10 struct tcp_fastopen_context *ctxt; 11 12 rcu_read_lock(); 13 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 14 if (ctxt) { 15 rcu_read_unlock(); 16 return; 17 } 18 rcu_read_unlock(); 19 20 /* tcp_fastopen_reset_cipher publishes the new context 21 * atomically, so we allow this race happening here. 22 * 23 * All call sites of tcp_fastopen_cookie_gen also check 24 * for a valid cookie, so this is an acceptable risk. 25 */ 26 get_random_bytes(key, sizeof(key)); 27 tcp_fastopen_reset_cipher(net, NULL, key, NULL); 28 } 29 30 static void tcp_fastopen_ctx_free(struct rcu_head *head) 31 { 32 struct tcp_fastopen_context *ctx = 33 container_of(head, struct tcp_fastopen_context, rcu); 34 35 kfree_sensitive(ctx); 36 } 37 38 void tcp_fastopen_destroy_cipher(struct sock *sk) 39 { 40 struct tcp_fastopen_context *ctx; 41 42 ctx = rcu_dereference_protected( 43 inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1); 44 if (ctx) 45 call_rcu(&ctx->rcu, tcp_fastopen_ctx_free); 46 } 47 48 void tcp_fastopen_ctx_destroy(struct net *net) 49 { 50 struct tcp_fastopen_context *ctxt; 51 52 ctxt = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx, NULL)); 53 54 if (ctxt) 55 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free); 56 } 57 58 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 59 void *primary_key, void *backup_key) 60 { 61 struct tcp_fastopen_context *ctx, *octx; 62 struct fastopen_queue *q; 63 int err = 0; 64 65 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 66 if (!ctx) { 67 err = -ENOMEM; 68 goto out; 69 } 70 71 ctx->key[0].key[0] = get_unaligned_le64(primary_key); 72 ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8); 73 if (backup_key) { 74 ctx->key[1].key[0] = get_unaligned_le64(backup_key); 75 ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8); 76 ctx->num = 2; 77 } else { 78 ctx->num = 1; 79 } 80 81 if (sk) { 82 q = &inet_csk(sk)->icsk_accept_queue.fastopenq; 83 octx = unrcu_pointer(xchg(&q->ctx, RCU_INITIALIZER(ctx))); 84 } else { 85 octx = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx, 86 RCU_INITIALIZER(ctx))); 87 } 88 89 if (octx) 90 call_rcu(&octx->rcu, tcp_fastopen_ctx_free); 91 out: 92 return err; 93 } 94 95 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 96 u64 *key) 97 { 98 struct tcp_fastopen_context *ctx; 99 int n_keys = 0, i; 100 101 rcu_read_lock(); 102 if (icsk) 103 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 104 else 105 ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 106 if (ctx) { 107 n_keys = tcp_fastopen_context_len(ctx); 108 for (i = 0; i < n_keys; i++) { 109 put_unaligned_le64(ctx->key[i].key[0], key + (i * 2)); 110 put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1); 111 } 112 } 113 rcu_read_unlock(); 114 115 return n_keys; 116 } 117 118 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req, 119 struct sk_buff *syn, 120 const siphash_key_t *key, 121 struct tcp_fastopen_cookie *foc) 122 { 123 BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64)); 124 125 if (req->rsk_ops->family == AF_INET) { 126 const struct iphdr *iph = ip_hdr(syn); 127 128 foc->val[0] = cpu_to_le64(siphash(&iph->saddr, 129 sizeof(iph->saddr) + 130 sizeof(iph->daddr), 131 key)); 132 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 133 return true; 134 } 135 #if IS_ENABLED(CONFIG_IPV6) 136 if (req->rsk_ops->family == AF_INET6) { 137 const struct ipv6hdr *ip6h = ipv6_hdr(syn); 138 139 foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr, 140 sizeof(ip6h->saddr) + 141 sizeof(ip6h->daddr), 142 key)); 143 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 144 return true; 145 } 146 #endif 147 return false; 148 } 149 150 /* Generate the fastopen cookie by applying SipHash to both the source and 151 * destination addresses. 152 */ 153 static void tcp_fastopen_cookie_gen(struct sock *sk, 154 struct request_sock *req, 155 struct sk_buff *syn, 156 struct tcp_fastopen_cookie *foc) 157 { 158 struct tcp_fastopen_context *ctx; 159 160 rcu_read_lock(); 161 ctx = tcp_fastopen_get_ctx(sk); 162 if (ctx) 163 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc); 164 rcu_read_unlock(); 165 } 166 167 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, 168 * queue this additional data / FIN. 169 */ 170 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) 171 { 172 struct tcp_sock *tp = tcp_sk(sk); 173 174 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) 175 return; 176 177 skb = skb_clone(skb, GFP_ATOMIC); 178 if (!skb) 179 return; 180 181 tcp_cleanup_skb(skb); 182 /* segs_in has been initialized to 1 in tcp_create_openreq_child(). 183 * Hence, reset segs_in to 0 before calling tcp_segs_in() 184 * to avoid double counting. Also, tcp_segs_in() expects 185 * skb->len to include the tcp_hdrlen. Hence, it should 186 * be called before __skb_pull(). 187 */ 188 tp->segs_in = 0; 189 tcp_segs_in(tp, skb); 190 __skb_pull(skb, tcp_hdrlen(skb)); 191 sk_forced_mem_schedule(sk, skb->truesize); 192 skb_set_owner_r(skb, sk); 193 194 TCP_SKB_CB(skb)->seq++; 195 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 196 197 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 198 tcp_add_receive_queue(sk, skb); 199 tp->syn_data_acked = 1; 200 201 /* u64_stats_update_begin(&tp->syncp) not needed here, 202 * as we certainly are not changing upper 32bit value (0) 203 */ 204 tp->bytes_received = skb->len; 205 206 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 207 tcp_fin(sk); 208 } 209 210 /* returns 0 - no key match, 1 for primary, 2 for backup */ 211 static int tcp_fastopen_cookie_gen_check(struct sock *sk, 212 struct request_sock *req, 213 struct sk_buff *syn, 214 struct tcp_fastopen_cookie *orig, 215 struct tcp_fastopen_cookie *valid_foc) 216 { 217 struct tcp_fastopen_cookie search_foc = { .len = -1 }; 218 struct tcp_fastopen_cookie *foc = valid_foc; 219 struct tcp_fastopen_context *ctx; 220 int i, ret = 0; 221 222 rcu_read_lock(); 223 ctx = tcp_fastopen_get_ctx(sk); 224 if (!ctx) 225 goto out; 226 for (i = 0; i < tcp_fastopen_context_len(ctx); i++) { 227 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc); 228 if (tcp_fastopen_cookie_match(foc, orig)) { 229 ret = i + 1; 230 goto out; 231 } 232 foc = &search_foc; 233 } 234 out: 235 rcu_read_unlock(); 236 return ret; 237 } 238 239 static struct sock *tcp_fastopen_create_child(struct sock *sk, 240 struct sk_buff *skb, 241 struct request_sock *req) 242 { 243 struct tcp_sock *tp; 244 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 245 struct sock *child; 246 bool own_req; 247 248 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, 249 NULL, &own_req); 250 if (!child) 251 return NULL; 252 253 spin_lock(&queue->fastopenq.lock); 254 queue->fastopenq.qlen++; 255 spin_unlock(&queue->fastopenq.lock); 256 257 /* Initialize the child socket. Have to fix some values to take 258 * into account the child is a Fast Open socket and is created 259 * only out of the bits carried in the SYN packet. 260 */ 261 tp = tcp_sk(child); 262 263 rcu_assign_pointer(tp->fastopen_rsk, req); 264 tcp_rsk(req)->tfo_listener = true; 265 266 /* RFC1323: The window in SYN & SYN/ACK segments is never 267 * scaled. So correct it appropriately. 268 */ 269 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 270 tp->max_window = tp->snd_wnd; 271 272 /* Activate the retrans timer so that SYNACK can be retransmitted. 273 * The request socket is not added to the ehash 274 * because it's been added to the accept queue directly. 275 */ 276 req->timeout = tcp_timeout_init(child); 277 tcp_reset_xmit_timer(child, ICSK_TIME_RETRANS, 278 req->timeout, false); 279 280 refcount_set(&req->rsk_refcnt, 2); 281 282 /* Now finish processing the fastopen child socket. */ 283 tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb); 284 285 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 286 287 tcp_fastopen_add_skb(child, skb); 288 289 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; 290 tp->rcv_wup = tp->rcv_nxt; 291 /* tcp_conn_request() is sending the SYNACK, 292 * and queues the child into listener accept queue. 293 */ 294 return child; 295 } 296 297 static bool tcp_fastopen_queue_check(struct sock *sk) 298 { 299 struct fastopen_queue *fastopenq; 300 int max_qlen; 301 302 /* Make sure the listener has enabled fastopen, and we don't 303 * exceed the max # of pending TFO requests allowed before trying 304 * to validating the cookie in order to avoid burning CPU cycles 305 * unnecessarily. 306 * 307 * XXX (TFO) - The implication of checking the max_qlen before 308 * processing a cookie request is that clients can't differentiate 309 * between qlen overflow causing Fast Open to be disabled 310 * temporarily vs a server not supporting Fast Open at all. 311 */ 312 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; 313 max_qlen = READ_ONCE(fastopenq->max_qlen); 314 if (max_qlen == 0) 315 return false; 316 317 if (fastopenq->qlen >= max_qlen) { 318 struct request_sock *req1; 319 spin_lock(&fastopenq->lock); 320 req1 = fastopenq->rskq_rst_head; 321 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { 322 __NET_INC_STATS(sock_net(sk), 323 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 324 spin_unlock(&fastopenq->lock); 325 return false; 326 } 327 fastopenq->rskq_rst_head = req1->dl_next; 328 fastopenq->qlen--; 329 spin_unlock(&fastopenq->lock); 330 reqsk_put(req1); 331 } 332 return true; 333 } 334 335 static bool tcp_fastopen_no_cookie(const struct sock *sk, 336 const struct dst_entry *dst, 337 int flag) 338 { 339 return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) || 340 tcp_sk(sk)->fastopen_no_cookie || 341 (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE)); 342 } 343 344 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) 345 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open 346 * cookie request (foc->len == 0). 347 */ 348 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 349 struct request_sock *req, 350 struct tcp_fastopen_cookie *foc, 351 const struct dst_entry *dst) 352 { 353 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; 354 int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 355 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 356 struct sock *child; 357 int ret = 0; 358 359 if (foc->len == 0) /* Client requests a cookie */ 360 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); 361 362 if (!((tcp_fastopen & TFO_SERVER_ENABLE) && 363 (syn_data || foc->len >= 0) && 364 tcp_fastopen_queue_check(sk))) { 365 foc->len = -1; 366 return NULL; 367 } 368 369 if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD)) 370 goto fastopen; 371 372 if (foc->len == 0) { 373 /* Client requests a cookie. */ 374 tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc); 375 } else if (foc->len > 0) { 376 ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc, 377 &valid_foc); 378 if (!ret) { 379 NET_INC_STATS(sock_net(sk), 380 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 381 } else { 382 /* Cookie is valid. Create a (full) child socket to 383 * accept the data in SYN before returning a SYN-ACK to 384 * ack the data. If we fail to create the socket, fall 385 * back and ack the ISN only but includes the same 386 * cookie. 387 * 388 * Note: Data-less SYN with valid cookie is allowed to 389 * send data in SYN_RECV state. 390 */ 391 fastopen: 392 child = tcp_fastopen_create_child(sk, skb, req); 393 if (child) { 394 if (ret == 2) { 395 valid_foc.exp = foc->exp; 396 *foc = valid_foc; 397 NET_INC_STATS(sock_net(sk), 398 LINUX_MIB_TCPFASTOPENPASSIVEALTKEY); 399 } else { 400 foc->len = -1; 401 } 402 NET_INC_STATS(sock_net(sk), 403 LINUX_MIB_TCPFASTOPENPASSIVE); 404 tcp_sk(child)->syn_fastopen_child = 1; 405 return child; 406 } 407 NET_INC_STATS(sock_net(sk), 408 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 409 } 410 } 411 valid_foc.exp = foc->exp; 412 *foc = valid_foc; 413 return NULL; 414 } 415 416 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 417 struct tcp_fastopen_cookie *cookie) 418 { 419 const struct dst_entry *dst; 420 421 tcp_fastopen_cache_get(sk, mss, cookie); 422 423 /* Firewall blackhole issue check */ 424 if (tcp_fastopen_active_should_disable(sk)) { 425 cookie->len = -1; 426 return false; 427 } 428 429 dst = __sk_dst_get(sk); 430 431 if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) { 432 cookie->len = -1; 433 return true; 434 } 435 if (cookie->len > 0) 436 return true; 437 tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE; 438 return false; 439 } 440 441 /* This function checks if we want to defer sending SYN until the first 442 * write(). We defer under the following conditions: 443 * 1. fastopen_connect sockopt is set 444 * 2. we have a valid cookie 445 * Return value: return true if we want to defer until application writes data 446 * return false if we want to send out SYN immediately 447 */ 448 bool tcp_fastopen_defer_connect(struct sock *sk, int *err) 449 { 450 struct tcp_fastopen_cookie cookie = { .len = 0 }; 451 struct tcp_sock *tp = tcp_sk(sk); 452 u16 mss; 453 454 if (tp->fastopen_connect && !tp->fastopen_req) { 455 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) { 456 inet_set_bit(DEFER_CONNECT, sk); 457 return true; 458 } 459 460 /* Alloc fastopen_req in order for FO option to be included 461 * in SYN 462 */ 463 tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req), 464 sk->sk_allocation); 465 if (tp->fastopen_req) 466 tp->fastopen_req->cookie = cookie; 467 else 468 *err = -ENOBUFS; 469 } 470 return false; 471 } 472 EXPORT_IPV6_MOD(tcp_fastopen_defer_connect); 473 474 /* 475 * The following code block is to deal with middle box issues with TFO: 476 * Middlebox firewall issues can potentially cause server's data being 477 * blackholed after a successful 3WHS using TFO. 478 * The proposed solution is to disable active TFO globally under the 479 * following circumstances: 480 * 1. client side TFO socket receives out of order FIN 481 * 2. client side TFO socket receives out of order RST 482 * 3. client side TFO socket has timed out three times consecutively during 483 * or after handshake 484 * We disable active side TFO globally for 1hr at first. Then if it 485 * happens again, we disable it for 2h, then 4h, 8h, ... 486 * And we reset the timeout back to 1hr when we see a successful active 487 * TFO connection with data exchanges. 488 */ 489 490 /* Disable active TFO and record current jiffies and 491 * tfo_active_disable_times 492 */ 493 void tcp_fastopen_active_disable(struct sock *sk) 494 { 495 struct net *net = sock_net(sk); 496 497 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout)) 498 return; 499 500 /* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */ 501 WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies); 502 503 /* Paired with smp_rmb() in tcp_fastopen_active_should_disable(). 504 * We want net->ipv4.tfo_active_disable_stamp to be updated first. 505 */ 506 smp_mb__before_atomic(); 507 atomic_inc(&net->ipv4.tfo_active_disable_times); 508 509 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); 510 } 511 512 /* Calculate timeout for tfo active disable 513 * Return true if we are still in the active TFO disable period 514 * Return false if timeout already expired and we should use active TFO 515 */ 516 bool tcp_fastopen_active_should_disable(struct sock *sk) 517 { 518 unsigned int tfo_bh_timeout = 519 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout); 520 unsigned long timeout; 521 int tfo_da_times; 522 int multiplier; 523 524 if (!tfo_bh_timeout) 525 return false; 526 527 tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times); 528 if (!tfo_da_times) 529 return false; 530 531 /* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */ 532 smp_rmb(); 533 534 /* Limit timeout to max: 2^6 * initial timeout */ 535 multiplier = 1 << min(tfo_da_times - 1, 6); 536 537 /* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */ 538 timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) + 539 multiplier * tfo_bh_timeout * HZ; 540 if (time_before(jiffies, timeout)) 541 return true; 542 543 /* Mark check bit so we can check for successful active TFO 544 * condition and reset tfo_active_disable_times 545 */ 546 tcp_sk(sk)->syn_fastopen_ch = 1; 547 return false; 548 } 549 550 /* Disable active TFO if FIN is the only packet in the ofo queue 551 * and no data is received. 552 * Also check if we can reset tfo_active_disable_times if data is 553 * received successfully on a marked active TFO sockets opened on 554 * a non-loopback interface 555 */ 556 void tcp_fastopen_active_disable_ofo_check(struct sock *sk) 557 { 558 struct tcp_sock *tp = tcp_sk(sk); 559 struct dst_entry *dst; 560 struct sk_buff *skb; 561 562 if (!tp->syn_fastopen) 563 return; 564 565 if (!tp->data_segs_in) { 566 skb = skb_rb_first(&tp->out_of_order_queue); 567 if (skb && !skb_rb_next(skb)) { 568 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 569 tcp_fastopen_active_disable(sk); 570 return; 571 } 572 } 573 } else if (tp->syn_fastopen_ch && 574 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) { 575 dst = sk_dst_get(sk); 576 if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK))) 577 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0); 578 dst_release(dst); 579 } 580 } 581 582 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired) 583 { 584 u32 timeouts = inet_csk(sk)->icsk_retransmits; 585 struct tcp_sock *tp = tcp_sk(sk); 586 587 /* Broken middle-boxes may black-hole Fast Open connection during or 588 * even after the handshake. Be extremely conservative and pause 589 * Fast Open globally after hitting the third consecutive timeout or 590 * exceeding the configured timeout limit. 591 */ 592 if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) && 593 (timeouts == 2 || (timeouts < 2 && expired))) { 594 tcp_fastopen_active_disable(sk); 595 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 596 } 597 } 598