1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/tcp.h> 4 #include <linux/rcupdate.h> 5 #include <net/tcp.h> 6 7 void tcp_fastopen_init_key_once(struct net *net) 8 { 9 u8 key[TCP_FASTOPEN_KEY_LENGTH]; 10 struct tcp_fastopen_context *ctxt; 11 12 rcu_read_lock(); 13 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 14 if (ctxt) { 15 rcu_read_unlock(); 16 return; 17 } 18 rcu_read_unlock(); 19 20 /* tcp_fastopen_reset_cipher publishes the new context 21 * atomically, so we allow this race happening here. 22 * 23 * All call sites of tcp_fastopen_cookie_gen also check 24 * for a valid cookie, so this is an acceptable risk. 25 */ 26 get_random_bytes(key, sizeof(key)); 27 tcp_fastopen_reset_cipher(net, NULL, key, NULL); 28 } 29 30 static void tcp_fastopen_ctx_free(struct rcu_head *head) 31 { 32 struct tcp_fastopen_context *ctx = 33 container_of(head, struct tcp_fastopen_context, rcu); 34 35 kfree_sensitive(ctx); 36 } 37 38 void tcp_fastopen_destroy_cipher(struct sock *sk) 39 { 40 struct tcp_fastopen_context *ctx; 41 42 ctx = rcu_dereference_protected( 43 inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1); 44 if (ctx) 45 call_rcu(&ctx->rcu, tcp_fastopen_ctx_free); 46 } 47 48 void tcp_fastopen_ctx_destroy(struct net *net) 49 { 50 struct tcp_fastopen_context *ctxt; 51 52 ctxt = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, NULL); 53 54 if (ctxt) 55 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free); 56 } 57 58 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 59 void *primary_key, void *backup_key) 60 { 61 struct tcp_fastopen_context *ctx, *octx; 62 struct fastopen_queue *q; 63 int err = 0; 64 65 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 66 if (!ctx) { 67 err = -ENOMEM; 68 goto out; 69 } 70 71 ctx->key[0].key[0] = get_unaligned_le64(primary_key); 72 ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8); 73 if (backup_key) { 74 ctx->key[1].key[0] = get_unaligned_le64(backup_key); 75 ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8); 76 ctx->num = 2; 77 } else { 78 ctx->num = 1; 79 } 80 81 if (sk) { 82 q = &inet_csk(sk)->icsk_accept_queue.fastopenq; 83 octx = xchg((__force struct tcp_fastopen_context **)&q->ctx, ctx); 84 } else { 85 octx = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, ctx); 86 } 87 88 if (octx) 89 call_rcu(&octx->rcu, tcp_fastopen_ctx_free); 90 out: 91 return err; 92 } 93 94 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 95 u64 *key) 96 { 97 struct tcp_fastopen_context *ctx; 98 int n_keys = 0, i; 99 100 rcu_read_lock(); 101 if (icsk) 102 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 103 else 104 ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 105 if (ctx) { 106 n_keys = tcp_fastopen_context_len(ctx); 107 for (i = 0; i < n_keys; i++) { 108 put_unaligned_le64(ctx->key[i].key[0], key + (i * 2)); 109 put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1); 110 } 111 } 112 rcu_read_unlock(); 113 114 return n_keys; 115 } 116 117 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req, 118 struct sk_buff *syn, 119 const siphash_key_t *key, 120 struct tcp_fastopen_cookie *foc) 121 { 122 BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64)); 123 124 if (req->rsk_ops->family == AF_INET) { 125 const struct iphdr *iph = ip_hdr(syn); 126 127 foc->val[0] = cpu_to_le64(siphash(&iph->saddr, 128 sizeof(iph->saddr) + 129 sizeof(iph->daddr), 130 key)); 131 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 132 return true; 133 } 134 #if IS_ENABLED(CONFIG_IPV6) 135 if (req->rsk_ops->family == AF_INET6) { 136 const struct ipv6hdr *ip6h = ipv6_hdr(syn); 137 138 foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr, 139 sizeof(ip6h->saddr) + 140 sizeof(ip6h->daddr), 141 key)); 142 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 143 return true; 144 } 145 #endif 146 return false; 147 } 148 149 /* Generate the fastopen cookie by applying SipHash to both the source and 150 * destination addresses. 151 */ 152 static void tcp_fastopen_cookie_gen(struct sock *sk, 153 struct request_sock *req, 154 struct sk_buff *syn, 155 struct tcp_fastopen_cookie *foc) 156 { 157 struct tcp_fastopen_context *ctx; 158 159 rcu_read_lock(); 160 ctx = tcp_fastopen_get_ctx(sk); 161 if (ctx) 162 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc); 163 rcu_read_unlock(); 164 } 165 166 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, 167 * queue this additional data / FIN. 168 */ 169 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) 170 { 171 struct tcp_sock *tp = tcp_sk(sk); 172 173 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) 174 return; 175 176 skb = skb_clone(skb, GFP_ATOMIC); 177 if (!skb) 178 return; 179 180 skb_dst_drop(skb); 181 /* segs_in has been initialized to 1 in tcp_create_openreq_child(). 182 * Hence, reset segs_in to 0 before calling tcp_segs_in() 183 * to avoid double counting. Also, tcp_segs_in() expects 184 * skb->len to include the tcp_hdrlen. Hence, it should 185 * be called before __skb_pull(). 186 */ 187 tp->segs_in = 0; 188 tcp_segs_in(tp, skb); 189 __skb_pull(skb, tcp_hdrlen(skb)); 190 sk_forced_mem_schedule(sk, skb->truesize); 191 skb_set_owner_r(skb, sk); 192 193 TCP_SKB_CB(skb)->seq++; 194 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 195 196 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 197 __skb_queue_tail(&sk->sk_receive_queue, skb); 198 tp->syn_data_acked = 1; 199 200 /* u64_stats_update_begin(&tp->syncp) not needed here, 201 * as we certainly are not changing upper 32bit value (0) 202 */ 203 tp->bytes_received = skb->len; 204 205 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 206 tcp_fin(sk); 207 } 208 209 /* returns 0 - no key match, 1 for primary, 2 for backup */ 210 static int tcp_fastopen_cookie_gen_check(struct sock *sk, 211 struct request_sock *req, 212 struct sk_buff *syn, 213 struct tcp_fastopen_cookie *orig, 214 struct tcp_fastopen_cookie *valid_foc) 215 { 216 struct tcp_fastopen_cookie search_foc = { .len = -1 }; 217 struct tcp_fastopen_cookie *foc = valid_foc; 218 struct tcp_fastopen_context *ctx; 219 int i, ret = 0; 220 221 rcu_read_lock(); 222 ctx = tcp_fastopen_get_ctx(sk); 223 if (!ctx) 224 goto out; 225 for (i = 0; i < tcp_fastopen_context_len(ctx); i++) { 226 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc); 227 if (tcp_fastopen_cookie_match(foc, orig)) { 228 ret = i + 1; 229 goto out; 230 } 231 foc = &search_foc; 232 } 233 out: 234 rcu_read_unlock(); 235 return ret; 236 } 237 238 static struct sock *tcp_fastopen_create_child(struct sock *sk, 239 struct sk_buff *skb, 240 struct request_sock *req) 241 { 242 struct tcp_sock *tp; 243 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 244 struct sock *child; 245 bool own_req; 246 247 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, 248 NULL, &own_req); 249 if (!child) 250 return NULL; 251 252 spin_lock(&queue->fastopenq.lock); 253 queue->fastopenq.qlen++; 254 spin_unlock(&queue->fastopenq.lock); 255 256 /* Initialize the child socket. Have to fix some values to take 257 * into account the child is a Fast Open socket and is created 258 * only out of the bits carried in the SYN packet. 259 */ 260 tp = tcp_sk(child); 261 262 rcu_assign_pointer(tp->fastopen_rsk, req); 263 tcp_rsk(req)->tfo_listener = true; 264 265 /* RFC1323: The window in SYN & SYN/ACK segments is never 266 * scaled. So correct it appropriately. 267 */ 268 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 269 tp->max_window = tp->snd_wnd; 270 271 /* Activate the retrans timer so that SYNACK can be retransmitted. 272 * The request socket is not added to the ehash 273 * because it's been added to the accept queue directly. 274 */ 275 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, 276 TCP_TIMEOUT_INIT, TCP_RTO_MAX); 277 278 refcount_set(&req->rsk_refcnt, 2); 279 280 /* Now finish processing the fastopen child socket. */ 281 tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb); 282 283 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 284 285 tcp_fastopen_add_skb(child, skb); 286 287 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; 288 tp->rcv_wup = tp->rcv_nxt; 289 /* tcp_conn_request() is sending the SYNACK, 290 * and queues the child into listener accept queue. 291 */ 292 return child; 293 } 294 295 static bool tcp_fastopen_queue_check(struct sock *sk) 296 { 297 struct fastopen_queue *fastopenq; 298 299 /* Make sure the listener has enabled fastopen, and we don't 300 * exceed the max # of pending TFO requests allowed before trying 301 * to validating the cookie in order to avoid burning CPU cycles 302 * unnecessarily. 303 * 304 * XXX (TFO) - The implication of checking the max_qlen before 305 * processing a cookie request is that clients can't differentiate 306 * between qlen overflow causing Fast Open to be disabled 307 * temporarily vs a server not supporting Fast Open at all. 308 */ 309 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; 310 if (fastopenq->max_qlen == 0) 311 return false; 312 313 if (fastopenq->qlen >= fastopenq->max_qlen) { 314 struct request_sock *req1; 315 spin_lock(&fastopenq->lock); 316 req1 = fastopenq->rskq_rst_head; 317 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { 318 __NET_INC_STATS(sock_net(sk), 319 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 320 spin_unlock(&fastopenq->lock); 321 return false; 322 } 323 fastopenq->rskq_rst_head = req1->dl_next; 324 fastopenq->qlen--; 325 spin_unlock(&fastopenq->lock); 326 reqsk_put(req1); 327 } 328 return true; 329 } 330 331 static bool tcp_fastopen_no_cookie(const struct sock *sk, 332 const struct dst_entry *dst, 333 int flag) 334 { 335 return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) || 336 tcp_sk(sk)->fastopen_no_cookie || 337 (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE)); 338 } 339 340 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) 341 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open 342 * cookie request (foc->len == 0). 343 */ 344 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 345 struct request_sock *req, 346 struct tcp_fastopen_cookie *foc, 347 const struct dst_entry *dst) 348 { 349 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; 350 int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 351 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 352 struct sock *child; 353 int ret = 0; 354 355 if (foc->len == 0) /* Client requests a cookie */ 356 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); 357 358 if (!((tcp_fastopen & TFO_SERVER_ENABLE) && 359 (syn_data || foc->len >= 0) && 360 tcp_fastopen_queue_check(sk))) { 361 foc->len = -1; 362 return NULL; 363 } 364 365 if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD)) 366 goto fastopen; 367 368 if (foc->len == 0) { 369 /* Client requests a cookie. */ 370 tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc); 371 } else if (foc->len > 0) { 372 ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc, 373 &valid_foc); 374 if (!ret) { 375 NET_INC_STATS(sock_net(sk), 376 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 377 } else { 378 /* Cookie is valid. Create a (full) child socket to 379 * accept the data in SYN before returning a SYN-ACK to 380 * ack the data. If we fail to create the socket, fall 381 * back and ack the ISN only but includes the same 382 * cookie. 383 * 384 * Note: Data-less SYN with valid cookie is allowed to 385 * send data in SYN_RECV state. 386 */ 387 fastopen: 388 child = tcp_fastopen_create_child(sk, skb, req); 389 if (child) { 390 if (ret == 2) { 391 valid_foc.exp = foc->exp; 392 *foc = valid_foc; 393 NET_INC_STATS(sock_net(sk), 394 LINUX_MIB_TCPFASTOPENPASSIVEALTKEY); 395 } else { 396 foc->len = -1; 397 } 398 NET_INC_STATS(sock_net(sk), 399 LINUX_MIB_TCPFASTOPENPASSIVE); 400 return child; 401 } 402 NET_INC_STATS(sock_net(sk), 403 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 404 } 405 } 406 valid_foc.exp = foc->exp; 407 *foc = valid_foc; 408 return NULL; 409 } 410 411 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 412 struct tcp_fastopen_cookie *cookie) 413 { 414 const struct dst_entry *dst; 415 416 tcp_fastopen_cache_get(sk, mss, cookie); 417 418 /* Firewall blackhole issue check */ 419 if (tcp_fastopen_active_should_disable(sk)) { 420 cookie->len = -1; 421 return false; 422 } 423 424 dst = __sk_dst_get(sk); 425 426 if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) { 427 cookie->len = -1; 428 return true; 429 } 430 if (cookie->len > 0) 431 return true; 432 tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE; 433 return false; 434 } 435 436 /* This function checks if we want to defer sending SYN until the first 437 * write(). We defer under the following conditions: 438 * 1. fastopen_connect sockopt is set 439 * 2. we have a valid cookie 440 * Return value: return true if we want to defer until application writes data 441 * return false if we want to send out SYN immediately 442 */ 443 bool tcp_fastopen_defer_connect(struct sock *sk, int *err) 444 { 445 struct tcp_fastopen_cookie cookie = { .len = 0 }; 446 struct tcp_sock *tp = tcp_sk(sk); 447 u16 mss; 448 449 if (tp->fastopen_connect && !tp->fastopen_req) { 450 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) { 451 inet_sk(sk)->defer_connect = 1; 452 return true; 453 } 454 455 /* Alloc fastopen_req in order for FO option to be included 456 * in SYN 457 */ 458 tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req), 459 sk->sk_allocation); 460 if (tp->fastopen_req) 461 tp->fastopen_req->cookie = cookie; 462 else 463 *err = -ENOBUFS; 464 } 465 return false; 466 } 467 EXPORT_SYMBOL(tcp_fastopen_defer_connect); 468 469 /* 470 * The following code block is to deal with middle box issues with TFO: 471 * Middlebox firewall issues can potentially cause server's data being 472 * blackholed after a successful 3WHS using TFO. 473 * The proposed solution is to disable active TFO globally under the 474 * following circumstances: 475 * 1. client side TFO socket receives out of order FIN 476 * 2. client side TFO socket receives out of order RST 477 * 3. client side TFO socket has timed out three times consecutively during 478 * or after handshake 479 * We disable active side TFO globally for 1hr at first. Then if it 480 * happens again, we disable it for 2h, then 4h, 8h, ... 481 * And we reset the timeout back to 1hr when we see a successful active 482 * TFO connection with data exchanges. 483 */ 484 485 /* Disable active TFO and record current jiffies and 486 * tfo_active_disable_times 487 */ 488 void tcp_fastopen_active_disable(struct sock *sk) 489 { 490 struct net *net = sock_net(sk); 491 492 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout)) 493 return; 494 495 /* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */ 496 WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies); 497 498 /* Paired with smp_rmb() in tcp_fastopen_active_should_disable(). 499 * We want net->ipv4.tfo_active_disable_stamp to be updated first. 500 */ 501 smp_mb__before_atomic(); 502 atomic_inc(&net->ipv4.tfo_active_disable_times); 503 504 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); 505 } 506 507 /* Calculate timeout for tfo active disable 508 * Return true if we are still in the active TFO disable period 509 * Return false if timeout already expired and we should use active TFO 510 */ 511 bool tcp_fastopen_active_should_disable(struct sock *sk) 512 { 513 unsigned int tfo_bh_timeout = 514 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout); 515 unsigned long timeout; 516 int tfo_da_times; 517 int multiplier; 518 519 if (!tfo_bh_timeout) 520 return false; 521 522 tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times); 523 if (!tfo_da_times) 524 return false; 525 526 /* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */ 527 smp_rmb(); 528 529 /* Limit timeout to max: 2^6 * initial timeout */ 530 multiplier = 1 << min(tfo_da_times - 1, 6); 531 532 /* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */ 533 timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) + 534 multiplier * tfo_bh_timeout * HZ; 535 if (time_before(jiffies, timeout)) 536 return true; 537 538 /* Mark check bit so we can check for successful active TFO 539 * condition and reset tfo_active_disable_times 540 */ 541 tcp_sk(sk)->syn_fastopen_ch = 1; 542 return false; 543 } 544 545 /* Disable active TFO if FIN is the only packet in the ofo queue 546 * and no data is received. 547 * Also check if we can reset tfo_active_disable_times if data is 548 * received successfully on a marked active TFO sockets opened on 549 * a non-loopback interface 550 */ 551 void tcp_fastopen_active_disable_ofo_check(struct sock *sk) 552 { 553 struct tcp_sock *tp = tcp_sk(sk); 554 struct dst_entry *dst; 555 struct sk_buff *skb; 556 557 if (!tp->syn_fastopen) 558 return; 559 560 if (!tp->data_segs_in) { 561 skb = skb_rb_first(&tp->out_of_order_queue); 562 if (skb && !skb_rb_next(skb)) { 563 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 564 tcp_fastopen_active_disable(sk); 565 return; 566 } 567 } 568 } else if (tp->syn_fastopen_ch && 569 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) { 570 dst = sk_dst_get(sk); 571 if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK))) 572 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0); 573 dst_release(dst); 574 } 575 } 576 577 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired) 578 { 579 u32 timeouts = inet_csk(sk)->icsk_retransmits; 580 struct tcp_sock *tp = tcp_sk(sk); 581 582 /* Broken middle-boxes may black-hole Fast Open connection during or 583 * even after the handshake. Be extremely conservative and pause 584 * Fast Open globally after hitting the third consecutive timeout or 585 * exceeding the configured timeout limit. 586 */ 587 if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) && 588 (timeouts == 2 || (timeouts < 2 && expired))) { 589 tcp_fastopen_active_disable(sk); 590 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 591 } 592 } 593