xref: /linux/net/ipv4/tcp_fastopen.c (revision a6cdeeb16bff89c8486324f53577db058cbe81ba)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/crypto.h>
3 #include <linux/err.h>
4 #include <linux/init.h>
5 #include <linux/kernel.h>
6 #include <linux/list.h>
7 #include <linux/tcp.h>
8 #include <linux/rcupdate.h>
9 #include <linux/rculist.h>
10 #include <net/inetpeer.h>
11 #include <net/tcp.h>
12 
13 void tcp_fastopen_init_key_once(struct net *net)
14 {
15 	u8 key[TCP_FASTOPEN_KEY_LENGTH];
16 	struct tcp_fastopen_context *ctxt;
17 
18 	rcu_read_lock();
19 	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
20 	if (ctxt) {
21 		rcu_read_unlock();
22 		return;
23 	}
24 	rcu_read_unlock();
25 
26 	/* tcp_fastopen_reset_cipher publishes the new context
27 	 * atomically, so we allow this race happening here.
28 	 *
29 	 * All call sites of tcp_fastopen_cookie_gen also check
30 	 * for a valid cookie, so this is an acceptable risk.
31 	 */
32 	get_random_bytes(key, sizeof(key));
33 	tcp_fastopen_reset_cipher(net, NULL, key, NULL, sizeof(key));
34 }
35 
36 static void tcp_fastopen_ctx_free(struct rcu_head *head)
37 {
38 	struct tcp_fastopen_context *ctx =
39 	    container_of(head, struct tcp_fastopen_context, rcu);
40 	int i;
41 
42 	/* We own ctx, thus no need to hold the Fastopen-lock */
43 	for (i = 0; i < TCP_FASTOPEN_KEY_MAX; i++) {
44 		if (ctx->tfm[i])
45 			crypto_free_cipher(ctx->tfm[i]);
46 	}
47 	kfree(ctx);
48 }
49 
50 void tcp_fastopen_destroy_cipher(struct sock *sk)
51 {
52 	struct tcp_fastopen_context *ctx;
53 
54 	ctx = rcu_dereference_protected(
55 			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
56 	if (ctx)
57 		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
58 }
59 
60 void tcp_fastopen_ctx_destroy(struct net *net)
61 {
62 	struct tcp_fastopen_context *ctxt;
63 
64 	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
65 
66 	ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
67 				lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
68 	rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
69 	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
70 
71 	if (ctxt)
72 		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
73 }
74 
75 struct tcp_fastopen_context *tcp_fastopen_alloc_ctx(void *primary_key,
76 						    void *backup_key,
77 						    unsigned int len)
78 {
79 	struct tcp_fastopen_context *new_ctx;
80 	void *key = primary_key;
81 	int err, i;
82 
83 	new_ctx = kmalloc(sizeof(*new_ctx), GFP_KERNEL);
84 	if (!new_ctx)
85 		return ERR_PTR(-ENOMEM);
86 	for (i = 0; i < TCP_FASTOPEN_KEY_MAX; i++)
87 		new_ctx->tfm[i] = NULL;
88 	for (i = 0; i < (backup_key ? 2 : 1); i++) {
89 		new_ctx->tfm[i] = crypto_alloc_cipher("aes", 0, 0);
90 		if (IS_ERR(new_ctx->tfm[i])) {
91 			err = PTR_ERR(new_ctx->tfm[i]);
92 			new_ctx->tfm[i] = NULL;
93 			pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
94 			goto out;
95 		}
96 		err = crypto_cipher_setkey(new_ctx->tfm[i], key, len);
97 		if (err) {
98 			pr_err("TCP: TFO cipher key error: %d\n", err);
99 			goto out;
100 		}
101 		memcpy(&new_ctx->key[i * TCP_FASTOPEN_KEY_LENGTH], key, len);
102 		key = backup_key;
103 	}
104 	return new_ctx;
105 out:
106 	tcp_fastopen_ctx_free(&new_ctx->rcu);
107 	return ERR_PTR(err);
108 }
109 
110 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
111 			      void *primary_key, void *backup_key,
112 			      unsigned int len)
113 {
114 	struct tcp_fastopen_context *ctx, *octx;
115 	struct fastopen_queue *q;
116 	int err = 0;
117 
118 	ctx = tcp_fastopen_alloc_ctx(primary_key, backup_key, len);
119 	if (IS_ERR(ctx)) {
120 		err = PTR_ERR(ctx);
121 		goto out;
122 	}
123 	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
124 	if (sk) {
125 		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
126 		octx = rcu_dereference_protected(q->ctx,
127 			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
128 		rcu_assign_pointer(q->ctx, ctx);
129 	} else {
130 		octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
131 			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
132 		rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
133 	}
134 	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
135 
136 	if (octx)
137 		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
138 out:
139 	return err;
140 }
141 
142 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
143 					     struct sk_buff *syn,
144 					     struct crypto_cipher *tfm,
145 					     struct tcp_fastopen_cookie *foc)
146 {
147 	if (req->rsk_ops->family == AF_INET) {
148 		const struct iphdr *iph = ip_hdr(syn);
149 		__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
150 
151 		crypto_cipher_encrypt_one(tfm, foc->val, (void *)path);
152 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
153 		return true;
154 	}
155 
156 #if IS_ENABLED(CONFIG_IPV6)
157 	if (req->rsk_ops->family == AF_INET6) {
158 		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
159 		struct tcp_fastopen_cookie tmp;
160 		struct in6_addr *buf;
161 		int i;
162 
163 		crypto_cipher_encrypt_one(tfm, tmp.val,
164 					  (void *)&ip6h->saddr);
165 		buf = &tmp.addr;
166 		for (i = 0; i < 4; i++)
167 			buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
168 		crypto_cipher_encrypt_one(tfm, foc->val, (void *)buf);
169 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
170 		return true;
171 	}
172 #endif
173 	return false;
174 }
175 
176 /* Generate the fastopen cookie by doing aes128 encryption on both
177  * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
178  * addresses. For the longer IPv6 addresses use CBC-MAC.
179  *
180  * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
181  */
182 static void tcp_fastopen_cookie_gen(struct sock *sk,
183 				    struct request_sock *req,
184 				    struct sk_buff *syn,
185 				    struct tcp_fastopen_cookie *foc)
186 {
187 	struct tcp_fastopen_context *ctx;
188 
189 	rcu_read_lock();
190 	ctx = tcp_fastopen_get_ctx(sk);
191 	if (ctx)
192 		__tcp_fastopen_cookie_gen_cipher(req, syn, ctx->tfm[0], foc);
193 	rcu_read_unlock();
194 }
195 
196 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
197  * queue this additional data / FIN.
198  */
199 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
200 {
201 	struct tcp_sock *tp = tcp_sk(sk);
202 
203 	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
204 		return;
205 
206 	skb = skb_clone(skb, GFP_ATOMIC);
207 	if (!skb)
208 		return;
209 
210 	skb_dst_drop(skb);
211 	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
212 	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
213 	 * to avoid double counting.  Also, tcp_segs_in() expects
214 	 * skb->len to include the tcp_hdrlen.  Hence, it should
215 	 * be called before __skb_pull().
216 	 */
217 	tp->segs_in = 0;
218 	tcp_segs_in(tp, skb);
219 	__skb_pull(skb, tcp_hdrlen(skb));
220 	sk_forced_mem_schedule(sk, skb->truesize);
221 	skb_set_owner_r(skb, sk);
222 
223 	TCP_SKB_CB(skb)->seq++;
224 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
225 
226 	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
227 	__skb_queue_tail(&sk->sk_receive_queue, skb);
228 	tp->syn_data_acked = 1;
229 
230 	/* u64_stats_update_begin(&tp->syncp) not needed here,
231 	 * as we certainly are not changing upper 32bit value (0)
232 	 */
233 	tp->bytes_received = skb->len;
234 
235 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
236 		tcp_fin(sk);
237 }
238 
239 /* returns 0 - no key match, 1 for primary, 2 for backup */
240 static int tcp_fastopen_cookie_gen_check(struct sock *sk,
241 					 struct request_sock *req,
242 					 struct sk_buff *syn,
243 					 struct tcp_fastopen_cookie *orig,
244 					 struct tcp_fastopen_cookie *valid_foc)
245 {
246 	struct tcp_fastopen_cookie search_foc = { .len = -1 };
247 	struct tcp_fastopen_cookie *foc = valid_foc;
248 	struct tcp_fastopen_context *ctx;
249 	int i, ret = 0;
250 
251 	rcu_read_lock();
252 	ctx = tcp_fastopen_get_ctx(sk);
253 	if (!ctx)
254 		goto out;
255 	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
256 		__tcp_fastopen_cookie_gen_cipher(req, syn, ctx->tfm[i], foc);
257 		if (tcp_fastopen_cookie_match(foc, orig)) {
258 			ret = i + 1;
259 			goto out;
260 		}
261 		foc = &search_foc;
262 	}
263 out:
264 	rcu_read_unlock();
265 	return ret;
266 }
267 
268 static struct sock *tcp_fastopen_create_child(struct sock *sk,
269 					      struct sk_buff *skb,
270 					      struct request_sock *req)
271 {
272 	struct tcp_sock *tp;
273 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
274 	struct sock *child;
275 	bool own_req;
276 
277 	req->num_retrans = 0;
278 	req->num_timeout = 0;
279 	req->sk = NULL;
280 
281 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
282 							 NULL, &own_req);
283 	if (!child)
284 		return NULL;
285 
286 	spin_lock(&queue->fastopenq.lock);
287 	queue->fastopenq.qlen++;
288 	spin_unlock(&queue->fastopenq.lock);
289 
290 	/* Initialize the child socket. Have to fix some values to take
291 	 * into account the child is a Fast Open socket and is created
292 	 * only out of the bits carried in the SYN packet.
293 	 */
294 	tp = tcp_sk(child);
295 
296 	tp->fastopen_rsk = req;
297 	tcp_rsk(req)->tfo_listener = true;
298 
299 	/* RFC1323: The window in SYN & SYN/ACK segments is never
300 	 * scaled. So correct it appropriately.
301 	 */
302 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
303 	tp->max_window = tp->snd_wnd;
304 
305 	/* Activate the retrans timer so that SYNACK can be retransmitted.
306 	 * The request socket is not added to the ehash
307 	 * because it's been added to the accept queue directly.
308 	 */
309 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
310 				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
311 
312 	refcount_set(&req->rsk_refcnt, 2);
313 
314 	/* Now finish processing the fastopen child socket. */
315 	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
316 
317 	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
318 
319 	tcp_fastopen_add_skb(child, skb);
320 
321 	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
322 	tp->rcv_wup = tp->rcv_nxt;
323 	/* tcp_conn_request() is sending the SYNACK,
324 	 * and queues the child into listener accept queue.
325 	 */
326 	return child;
327 }
328 
329 static bool tcp_fastopen_queue_check(struct sock *sk)
330 {
331 	struct fastopen_queue *fastopenq;
332 
333 	/* Make sure the listener has enabled fastopen, and we don't
334 	 * exceed the max # of pending TFO requests allowed before trying
335 	 * to validating the cookie in order to avoid burning CPU cycles
336 	 * unnecessarily.
337 	 *
338 	 * XXX (TFO) - The implication of checking the max_qlen before
339 	 * processing a cookie request is that clients can't differentiate
340 	 * between qlen overflow causing Fast Open to be disabled
341 	 * temporarily vs a server not supporting Fast Open at all.
342 	 */
343 	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
344 	if (fastopenq->max_qlen == 0)
345 		return false;
346 
347 	if (fastopenq->qlen >= fastopenq->max_qlen) {
348 		struct request_sock *req1;
349 		spin_lock(&fastopenq->lock);
350 		req1 = fastopenq->rskq_rst_head;
351 		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
352 			__NET_INC_STATS(sock_net(sk),
353 					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
354 			spin_unlock(&fastopenq->lock);
355 			return false;
356 		}
357 		fastopenq->rskq_rst_head = req1->dl_next;
358 		fastopenq->qlen--;
359 		spin_unlock(&fastopenq->lock);
360 		reqsk_put(req1);
361 	}
362 	return true;
363 }
364 
365 static bool tcp_fastopen_no_cookie(const struct sock *sk,
366 				   const struct dst_entry *dst,
367 				   int flag)
368 {
369 	return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
370 	       tcp_sk(sk)->fastopen_no_cookie ||
371 	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
372 }
373 
374 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
375  * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
376  * cookie request (foc->len == 0).
377  */
378 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
379 			      struct request_sock *req,
380 			      struct tcp_fastopen_cookie *foc,
381 			      const struct dst_entry *dst)
382 {
383 	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
384 	int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
385 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
386 	struct sock *child;
387 	int ret = 0;
388 
389 	if (foc->len == 0) /* Client requests a cookie */
390 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
391 
392 	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
393 	      (syn_data || foc->len >= 0) &&
394 	      tcp_fastopen_queue_check(sk))) {
395 		foc->len = -1;
396 		return NULL;
397 	}
398 
399 	if (syn_data &&
400 	    tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
401 		goto fastopen;
402 
403 	if (foc->len == 0) {
404 		/* Client requests a cookie. */
405 		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
406 	} else if (foc->len > 0) {
407 		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
408 						    &valid_foc);
409 		if (!ret) {
410 			NET_INC_STATS(sock_net(sk),
411 				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
412 		} else {
413 			/* Cookie is valid. Create a (full) child socket to
414 			 * accept the data in SYN before returning a SYN-ACK to
415 			 * ack the data. If we fail to create the socket, fall
416 			 * back and ack the ISN only but includes the same
417 			 * cookie.
418 			 *
419 			 * Note: Data-less SYN with valid cookie is allowed to
420 			 * send data in SYN_RECV state.
421 			 */
422 fastopen:
423 			child = tcp_fastopen_create_child(sk, skb, req);
424 			if (child) {
425 				if (ret == 2) {
426 					valid_foc.exp = foc->exp;
427 					*foc = valid_foc;
428 					NET_INC_STATS(sock_net(sk),
429 						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
430 				} else {
431 					foc->len = -1;
432 				}
433 				NET_INC_STATS(sock_net(sk),
434 					      LINUX_MIB_TCPFASTOPENPASSIVE);
435 				return child;
436 			}
437 			NET_INC_STATS(sock_net(sk),
438 				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
439 		}
440 	}
441 	valid_foc.exp = foc->exp;
442 	*foc = valid_foc;
443 	return NULL;
444 }
445 
446 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
447 			       struct tcp_fastopen_cookie *cookie)
448 {
449 	const struct dst_entry *dst;
450 
451 	tcp_fastopen_cache_get(sk, mss, cookie);
452 
453 	/* Firewall blackhole issue check */
454 	if (tcp_fastopen_active_should_disable(sk)) {
455 		cookie->len = -1;
456 		return false;
457 	}
458 
459 	dst = __sk_dst_get(sk);
460 
461 	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
462 		cookie->len = -1;
463 		return true;
464 	}
465 	return cookie->len > 0;
466 }
467 
468 /* This function checks if we want to defer sending SYN until the first
469  * write().  We defer under the following conditions:
470  * 1. fastopen_connect sockopt is set
471  * 2. we have a valid cookie
472  * Return value: return true if we want to defer until application writes data
473  *               return false if we want to send out SYN immediately
474  */
475 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
476 {
477 	struct tcp_fastopen_cookie cookie = { .len = 0 };
478 	struct tcp_sock *tp = tcp_sk(sk);
479 	u16 mss;
480 
481 	if (tp->fastopen_connect && !tp->fastopen_req) {
482 		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
483 			inet_sk(sk)->defer_connect = 1;
484 			return true;
485 		}
486 
487 		/* Alloc fastopen_req in order for FO option to be included
488 		 * in SYN
489 		 */
490 		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
491 					   sk->sk_allocation);
492 		if (tp->fastopen_req)
493 			tp->fastopen_req->cookie = cookie;
494 		else
495 			*err = -ENOBUFS;
496 	}
497 	return false;
498 }
499 EXPORT_SYMBOL(tcp_fastopen_defer_connect);
500 
501 /*
502  * The following code block is to deal with middle box issues with TFO:
503  * Middlebox firewall issues can potentially cause server's data being
504  * blackholed after a successful 3WHS using TFO.
505  * The proposed solution is to disable active TFO globally under the
506  * following circumstances:
507  *   1. client side TFO socket receives out of order FIN
508  *   2. client side TFO socket receives out of order RST
509  *   3. client side TFO socket has timed out three times consecutively during
510  *      or after handshake
511  * We disable active side TFO globally for 1hr at first. Then if it
512  * happens again, we disable it for 2h, then 4h, 8h, ...
513  * And we reset the timeout back to 1hr when we see a successful active
514  * TFO connection with data exchanges.
515  */
516 
517 /* Disable active TFO and record current jiffies and
518  * tfo_active_disable_times
519  */
520 void tcp_fastopen_active_disable(struct sock *sk)
521 {
522 	struct net *net = sock_net(sk);
523 
524 	atomic_inc(&net->ipv4.tfo_active_disable_times);
525 	net->ipv4.tfo_active_disable_stamp = jiffies;
526 	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
527 }
528 
529 /* Calculate timeout for tfo active disable
530  * Return true if we are still in the active TFO disable period
531  * Return false if timeout already expired and we should use active TFO
532  */
533 bool tcp_fastopen_active_should_disable(struct sock *sk)
534 {
535 	unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
536 	int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
537 	unsigned long timeout;
538 	int multiplier;
539 
540 	if (!tfo_da_times)
541 		return false;
542 
543 	/* Limit timout to max: 2^6 * initial timeout */
544 	multiplier = 1 << min(tfo_da_times - 1, 6);
545 	timeout = multiplier * tfo_bh_timeout * HZ;
546 	if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout))
547 		return true;
548 
549 	/* Mark check bit so we can check for successful active TFO
550 	 * condition and reset tfo_active_disable_times
551 	 */
552 	tcp_sk(sk)->syn_fastopen_ch = 1;
553 	return false;
554 }
555 
556 /* Disable active TFO if FIN is the only packet in the ofo queue
557  * and no data is received.
558  * Also check if we can reset tfo_active_disable_times if data is
559  * received successfully on a marked active TFO sockets opened on
560  * a non-loopback interface
561  */
562 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
563 {
564 	struct tcp_sock *tp = tcp_sk(sk);
565 	struct dst_entry *dst;
566 	struct sk_buff *skb;
567 
568 	if (!tp->syn_fastopen)
569 		return;
570 
571 	if (!tp->data_segs_in) {
572 		skb = skb_rb_first(&tp->out_of_order_queue);
573 		if (skb && !skb_rb_next(skb)) {
574 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
575 				tcp_fastopen_active_disable(sk);
576 				return;
577 			}
578 		}
579 	} else if (tp->syn_fastopen_ch &&
580 		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
581 		dst = sk_dst_get(sk);
582 		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
583 			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
584 		dst_release(dst);
585 	}
586 }
587 
588 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
589 {
590 	u32 timeouts = inet_csk(sk)->icsk_retransmits;
591 	struct tcp_sock *tp = tcp_sk(sk);
592 
593 	/* Broken middle-boxes may black-hole Fast Open connection during or
594 	 * even after the handshake. Be extremely conservative and pause
595 	 * Fast Open globally after hitting the third consecutive timeout or
596 	 * exceeding the configured timeout limit.
597 	 */
598 	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
599 	    (timeouts == 2 || (timeouts < 2 && expired))) {
600 		tcp_fastopen_active_disable(sk);
601 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
602 	}
603 }
604