xref: /linux/net/ipv4/tcp_fastopen.c (revision 995231c820e3bd3633cb38bf4ea6f2541e1da331)
1 #include <linux/crypto.h>
2 #include <linux/err.h>
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/list.h>
6 #include <linux/tcp.h>
7 #include <linux/rcupdate.h>
8 #include <linux/rculist.h>
9 #include <net/inetpeer.h>
10 #include <net/tcp.h>
11 
12 void tcp_fastopen_init_key_once(struct net *net)
13 {
14 	u8 key[TCP_FASTOPEN_KEY_LENGTH];
15 	struct tcp_fastopen_context *ctxt;
16 
17 	rcu_read_lock();
18 	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
19 	if (ctxt) {
20 		rcu_read_unlock();
21 		return;
22 	}
23 	rcu_read_unlock();
24 
25 	/* tcp_fastopen_reset_cipher publishes the new context
26 	 * atomically, so we allow this race happening here.
27 	 *
28 	 * All call sites of tcp_fastopen_cookie_gen also check
29 	 * for a valid cookie, so this is an acceptable risk.
30 	 */
31 	get_random_bytes(key, sizeof(key));
32 	tcp_fastopen_reset_cipher(net, NULL, key, sizeof(key));
33 }
34 
35 static void tcp_fastopen_ctx_free(struct rcu_head *head)
36 {
37 	struct tcp_fastopen_context *ctx =
38 	    container_of(head, struct tcp_fastopen_context, rcu);
39 	crypto_free_cipher(ctx->tfm);
40 	kfree(ctx);
41 }
42 
43 void tcp_fastopen_destroy_cipher(struct sock *sk)
44 {
45 	struct tcp_fastopen_context *ctx;
46 
47 	ctx = rcu_dereference_protected(
48 			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
49 	if (ctx)
50 		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
51 }
52 
53 void tcp_fastopen_ctx_destroy(struct net *net)
54 {
55 	struct tcp_fastopen_context *ctxt;
56 
57 	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
58 
59 	ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
60 				lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
61 	rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
62 	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
63 
64 	if (ctxt)
65 		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
66 }
67 
68 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
69 			      void *key, unsigned int len)
70 {
71 	struct tcp_fastopen_context *ctx, *octx;
72 	struct fastopen_queue *q;
73 	int err;
74 
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (!ctx)
77 		return -ENOMEM;
78 	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
79 
80 	if (IS_ERR(ctx->tfm)) {
81 		err = PTR_ERR(ctx->tfm);
82 error:		kfree(ctx);
83 		pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
84 		return err;
85 	}
86 	err = crypto_cipher_setkey(ctx->tfm, key, len);
87 	if (err) {
88 		pr_err("TCP: TFO cipher key error: %d\n", err);
89 		crypto_free_cipher(ctx->tfm);
90 		goto error;
91 	}
92 	memcpy(ctx->key, key, len);
93 
94 
95 	if (sk) {
96 		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
97 		spin_lock_bh(&q->lock);
98 		octx = rcu_dereference_protected(q->ctx,
99 						 lockdep_is_held(&q->lock));
100 		rcu_assign_pointer(q->ctx, ctx);
101 		spin_unlock_bh(&q->lock);
102 	} else {
103 		spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
104 		octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
105 			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
106 		rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
107 		spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
108 	}
109 
110 	if (octx)
111 		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
112 	return err;
113 }
114 
115 static bool __tcp_fastopen_cookie_gen(struct sock *sk, const void *path,
116 				      struct tcp_fastopen_cookie *foc)
117 {
118 	struct tcp_fastopen_context *ctx;
119 	bool ok = false;
120 
121 	rcu_read_lock();
122 
123 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
124 	if (!ctx)
125 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
126 
127 	if (ctx) {
128 		crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
129 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
130 		ok = true;
131 	}
132 	rcu_read_unlock();
133 	return ok;
134 }
135 
136 /* Generate the fastopen cookie by doing aes128 encryption on both
137  * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
138  * addresses. For the longer IPv6 addresses use CBC-MAC.
139  *
140  * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
141  */
142 static bool tcp_fastopen_cookie_gen(struct sock *sk,
143 				    struct request_sock *req,
144 				    struct sk_buff *syn,
145 				    struct tcp_fastopen_cookie *foc)
146 {
147 	if (req->rsk_ops->family == AF_INET) {
148 		const struct iphdr *iph = ip_hdr(syn);
149 
150 		__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
151 		return __tcp_fastopen_cookie_gen(sk, path, foc);
152 	}
153 
154 #if IS_ENABLED(CONFIG_IPV6)
155 	if (req->rsk_ops->family == AF_INET6) {
156 		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
157 		struct tcp_fastopen_cookie tmp;
158 
159 		if (__tcp_fastopen_cookie_gen(sk, &ip6h->saddr, &tmp)) {
160 			struct in6_addr *buf = &tmp.addr;
161 			int i;
162 
163 			for (i = 0; i < 4; i++)
164 				buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
165 			return __tcp_fastopen_cookie_gen(sk, buf, foc);
166 		}
167 	}
168 #endif
169 	return false;
170 }
171 
172 
173 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
174  * queue this additional data / FIN.
175  */
176 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
177 {
178 	struct tcp_sock *tp = tcp_sk(sk);
179 
180 	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
181 		return;
182 
183 	skb = skb_clone(skb, GFP_ATOMIC);
184 	if (!skb)
185 		return;
186 
187 	skb_dst_drop(skb);
188 	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
189 	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
190 	 * to avoid double counting.  Also, tcp_segs_in() expects
191 	 * skb->len to include the tcp_hdrlen.  Hence, it should
192 	 * be called before __skb_pull().
193 	 */
194 	tp->segs_in = 0;
195 	tcp_segs_in(tp, skb);
196 	__skb_pull(skb, tcp_hdrlen(skb));
197 	sk_forced_mem_schedule(sk, skb->truesize);
198 	skb_set_owner_r(skb, sk);
199 
200 	TCP_SKB_CB(skb)->seq++;
201 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
202 
203 	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
204 	__skb_queue_tail(&sk->sk_receive_queue, skb);
205 	tp->syn_data_acked = 1;
206 
207 	/* u64_stats_update_begin(&tp->syncp) not needed here,
208 	 * as we certainly are not changing upper 32bit value (0)
209 	 */
210 	tp->bytes_received = skb->len;
211 
212 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
213 		tcp_fin(sk);
214 }
215 
216 static struct sock *tcp_fastopen_create_child(struct sock *sk,
217 					      struct sk_buff *skb,
218 					      struct request_sock *req)
219 {
220 	struct tcp_sock *tp;
221 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
222 	struct sock *child;
223 	bool own_req;
224 
225 	req->num_retrans = 0;
226 	req->num_timeout = 0;
227 	req->sk = NULL;
228 
229 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
230 							 NULL, &own_req);
231 	if (!child)
232 		return NULL;
233 
234 	spin_lock(&queue->fastopenq.lock);
235 	queue->fastopenq.qlen++;
236 	spin_unlock(&queue->fastopenq.lock);
237 
238 	/* Initialize the child socket. Have to fix some values to take
239 	 * into account the child is a Fast Open socket and is created
240 	 * only out of the bits carried in the SYN packet.
241 	 */
242 	tp = tcp_sk(child);
243 
244 	tp->fastopen_rsk = req;
245 	tcp_rsk(req)->tfo_listener = true;
246 
247 	/* RFC1323: The window in SYN & SYN/ACK segments is never
248 	 * scaled. So correct it appropriately.
249 	 */
250 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
251 	tp->max_window = tp->snd_wnd;
252 
253 	/* Activate the retrans timer so that SYNACK can be retransmitted.
254 	 * The request socket is not added to the ehash
255 	 * because it's been added to the accept queue directly.
256 	 */
257 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
258 				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
259 
260 	refcount_set(&req->rsk_refcnt, 2);
261 
262 	/* Now finish processing the fastopen child socket. */
263 	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
264 
265 	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
266 
267 	tcp_fastopen_add_skb(child, skb);
268 
269 	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
270 	tp->rcv_wup = tp->rcv_nxt;
271 	/* tcp_conn_request() is sending the SYNACK,
272 	 * and queues the child into listener accept queue.
273 	 */
274 	return child;
275 }
276 
277 static bool tcp_fastopen_queue_check(struct sock *sk)
278 {
279 	struct fastopen_queue *fastopenq;
280 
281 	/* Make sure the listener has enabled fastopen, and we don't
282 	 * exceed the max # of pending TFO requests allowed before trying
283 	 * to validating the cookie in order to avoid burning CPU cycles
284 	 * unnecessarily.
285 	 *
286 	 * XXX (TFO) - The implication of checking the max_qlen before
287 	 * processing a cookie request is that clients can't differentiate
288 	 * between qlen overflow causing Fast Open to be disabled
289 	 * temporarily vs a server not supporting Fast Open at all.
290 	 */
291 	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
292 	if (fastopenq->max_qlen == 0)
293 		return false;
294 
295 	if (fastopenq->qlen >= fastopenq->max_qlen) {
296 		struct request_sock *req1;
297 		spin_lock(&fastopenq->lock);
298 		req1 = fastopenq->rskq_rst_head;
299 		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
300 			__NET_INC_STATS(sock_net(sk),
301 					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
302 			spin_unlock(&fastopenq->lock);
303 			return false;
304 		}
305 		fastopenq->rskq_rst_head = req1->dl_next;
306 		fastopenq->qlen--;
307 		spin_unlock(&fastopenq->lock);
308 		reqsk_put(req1);
309 	}
310 	return true;
311 }
312 
313 static bool tcp_fastopen_no_cookie(const struct sock *sk,
314 				   const struct dst_entry *dst,
315 				   int flag)
316 {
317 	return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
318 	       tcp_sk(sk)->fastopen_no_cookie ||
319 	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
320 }
321 
322 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
323  * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
324  * cookie request (foc->len == 0).
325  */
326 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
327 			      struct request_sock *req,
328 			      struct tcp_fastopen_cookie *foc,
329 			      const struct dst_entry *dst)
330 {
331 	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
332 	int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
333 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
334 	struct sock *child;
335 
336 	if (foc->len == 0) /* Client requests a cookie */
337 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
338 
339 	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
340 	      (syn_data || foc->len >= 0) &&
341 	      tcp_fastopen_queue_check(sk))) {
342 		foc->len = -1;
343 		return NULL;
344 	}
345 
346 	if (syn_data &&
347 	    tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
348 		goto fastopen;
349 
350 	if (foc->len >= 0 &&  /* Client presents or requests a cookie */
351 	    tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc) &&
352 	    foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
353 	    foc->len == valid_foc.len &&
354 	    !memcmp(foc->val, valid_foc.val, foc->len)) {
355 		/* Cookie is valid. Create a (full) child socket to accept
356 		 * the data in SYN before returning a SYN-ACK to ack the
357 		 * data. If we fail to create the socket, fall back and
358 		 * ack the ISN only but includes the same cookie.
359 		 *
360 		 * Note: Data-less SYN with valid cookie is allowed to send
361 		 * data in SYN_RECV state.
362 		 */
363 fastopen:
364 		child = tcp_fastopen_create_child(sk, skb, req);
365 		if (child) {
366 			foc->len = -1;
367 			NET_INC_STATS(sock_net(sk),
368 				      LINUX_MIB_TCPFASTOPENPASSIVE);
369 			return child;
370 		}
371 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
372 	} else if (foc->len > 0) /* Client presents an invalid cookie */
373 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
374 
375 	valid_foc.exp = foc->exp;
376 	*foc = valid_foc;
377 	return NULL;
378 }
379 
380 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
381 			       struct tcp_fastopen_cookie *cookie)
382 {
383 	unsigned long last_syn_loss = 0;
384 	const struct dst_entry *dst;
385 	int syn_loss = 0;
386 
387 	tcp_fastopen_cache_get(sk, mss, cookie, &syn_loss, &last_syn_loss);
388 
389 	/* Recurring FO SYN losses: no cookie or data in SYN */
390 	if (syn_loss > 1 &&
391 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
392 		cookie->len = -1;
393 		return false;
394 	}
395 
396 	/* Firewall blackhole issue check */
397 	if (tcp_fastopen_active_should_disable(sk)) {
398 		cookie->len = -1;
399 		return false;
400 	}
401 
402 	dst = __sk_dst_get(sk);
403 
404 	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
405 		cookie->len = -1;
406 		return true;
407 	}
408 	return cookie->len > 0;
409 }
410 
411 /* This function checks if we want to defer sending SYN until the first
412  * write().  We defer under the following conditions:
413  * 1. fastopen_connect sockopt is set
414  * 2. we have a valid cookie
415  * Return value: return true if we want to defer until application writes data
416  *               return false if we want to send out SYN immediately
417  */
418 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
419 {
420 	struct tcp_fastopen_cookie cookie = { .len = 0 };
421 	struct tcp_sock *tp = tcp_sk(sk);
422 	u16 mss;
423 
424 	if (tp->fastopen_connect && !tp->fastopen_req) {
425 		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
426 			inet_sk(sk)->defer_connect = 1;
427 			return true;
428 		}
429 
430 		/* Alloc fastopen_req in order for FO option to be included
431 		 * in SYN
432 		 */
433 		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
434 					   sk->sk_allocation);
435 		if (tp->fastopen_req)
436 			tp->fastopen_req->cookie = cookie;
437 		else
438 			*err = -ENOBUFS;
439 	}
440 	return false;
441 }
442 EXPORT_SYMBOL(tcp_fastopen_defer_connect);
443 
444 /*
445  * The following code block is to deal with middle box issues with TFO:
446  * Middlebox firewall issues can potentially cause server's data being
447  * blackholed after a successful 3WHS using TFO.
448  * The proposed solution is to disable active TFO globally under the
449  * following circumstances:
450  *   1. client side TFO socket receives out of order FIN
451  *   2. client side TFO socket receives out of order RST
452  * We disable active side TFO globally for 1hr at first. Then if it
453  * happens again, we disable it for 2h, then 4h, 8h, ...
454  * And we reset the timeout back to 1hr when we see a successful active
455  * TFO connection with data exchanges.
456  */
457 
458 /* Disable active TFO and record current jiffies and
459  * tfo_active_disable_times
460  */
461 void tcp_fastopen_active_disable(struct sock *sk)
462 {
463 	struct net *net = sock_net(sk);
464 
465 	atomic_inc(&net->ipv4.tfo_active_disable_times);
466 	net->ipv4.tfo_active_disable_stamp = jiffies;
467 	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
468 }
469 
470 /* Calculate timeout for tfo active disable
471  * Return true if we are still in the active TFO disable period
472  * Return false if timeout already expired and we should use active TFO
473  */
474 bool tcp_fastopen_active_should_disable(struct sock *sk)
475 {
476 	unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
477 	int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
478 	unsigned long timeout;
479 	int multiplier;
480 
481 	if (!tfo_da_times)
482 		return false;
483 
484 	/* Limit timout to max: 2^6 * initial timeout */
485 	multiplier = 1 << min(tfo_da_times - 1, 6);
486 	timeout = multiplier * tfo_bh_timeout * HZ;
487 	if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout))
488 		return true;
489 
490 	/* Mark check bit so we can check for successful active TFO
491 	 * condition and reset tfo_active_disable_times
492 	 */
493 	tcp_sk(sk)->syn_fastopen_ch = 1;
494 	return false;
495 }
496 
497 /* Disable active TFO if FIN is the only packet in the ofo queue
498  * and no data is received.
499  * Also check if we can reset tfo_active_disable_times if data is
500  * received successfully on a marked active TFO sockets opened on
501  * a non-loopback interface
502  */
503 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
504 {
505 	struct tcp_sock *tp = tcp_sk(sk);
506 	struct dst_entry *dst;
507 	struct sk_buff *skb;
508 
509 	if (!tp->syn_fastopen)
510 		return;
511 
512 	if (!tp->data_segs_in) {
513 		skb = skb_rb_first(&tp->out_of_order_queue);
514 		if (skb && !skb_rb_next(skb)) {
515 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
516 				tcp_fastopen_active_disable(sk);
517 				return;
518 			}
519 		}
520 	} else if (tp->syn_fastopen_ch &&
521 		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
522 		dst = sk_dst_get(sk);
523 		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
524 			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
525 		dst_release(dst);
526 	}
527 }
528