1 #include <linux/crypto.h> 2 #include <linux/err.h> 3 #include <linux/init.h> 4 #include <linux/kernel.h> 5 #include <linux/list.h> 6 #include <linux/tcp.h> 7 #include <linux/rcupdate.h> 8 #include <linux/rculist.h> 9 #include <net/inetpeer.h> 10 #include <net/tcp.h> 11 12 void tcp_fastopen_init_key_once(struct net *net) 13 { 14 u8 key[TCP_FASTOPEN_KEY_LENGTH]; 15 struct tcp_fastopen_context *ctxt; 16 17 rcu_read_lock(); 18 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 19 if (ctxt) { 20 rcu_read_unlock(); 21 return; 22 } 23 rcu_read_unlock(); 24 25 /* tcp_fastopen_reset_cipher publishes the new context 26 * atomically, so we allow this race happening here. 27 * 28 * All call sites of tcp_fastopen_cookie_gen also check 29 * for a valid cookie, so this is an acceptable risk. 30 */ 31 get_random_bytes(key, sizeof(key)); 32 tcp_fastopen_reset_cipher(net, NULL, key, sizeof(key)); 33 } 34 35 static void tcp_fastopen_ctx_free(struct rcu_head *head) 36 { 37 struct tcp_fastopen_context *ctx = 38 container_of(head, struct tcp_fastopen_context, rcu); 39 crypto_free_cipher(ctx->tfm); 40 kfree(ctx); 41 } 42 43 void tcp_fastopen_destroy_cipher(struct sock *sk) 44 { 45 struct tcp_fastopen_context *ctx; 46 47 ctx = rcu_dereference_protected( 48 inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1); 49 if (ctx) 50 call_rcu(&ctx->rcu, tcp_fastopen_ctx_free); 51 } 52 53 void tcp_fastopen_ctx_destroy(struct net *net) 54 { 55 struct tcp_fastopen_context *ctxt; 56 57 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); 58 59 ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, 60 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 61 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL); 62 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); 63 64 if (ctxt) 65 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free); 66 } 67 68 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 69 void *key, unsigned int len) 70 { 71 struct tcp_fastopen_context *ctx, *octx; 72 struct fastopen_queue *q; 73 int err; 74 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (!ctx) 77 return -ENOMEM; 78 ctx->tfm = crypto_alloc_cipher("aes", 0, 0); 79 80 if (IS_ERR(ctx->tfm)) { 81 err = PTR_ERR(ctx->tfm); 82 error: kfree(ctx); 83 pr_err("TCP: TFO aes cipher alloc error: %d\n", err); 84 return err; 85 } 86 err = crypto_cipher_setkey(ctx->tfm, key, len); 87 if (err) { 88 pr_err("TCP: TFO cipher key error: %d\n", err); 89 crypto_free_cipher(ctx->tfm); 90 goto error; 91 } 92 memcpy(ctx->key, key, len); 93 94 95 if (sk) { 96 q = &inet_csk(sk)->icsk_accept_queue.fastopenq; 97 spin_lock_bh(&q->lock); 98 octx = rcu_dereference_protected(q->ctx, 99 lockdep_is_held(&q->lock)); 100 rcu_assign_pointer(q->ctx, ctx); 101 spin_unlock_bh(&q->lock); 102 } else { 103 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); 104 octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, 105 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 106 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx); 107 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); 108 } 109 110 if (octx) 111 call_rcu(&octx->rcu, tcp_fastopen_ctx_free); 112 return err; 113 } 114 115 static bool __tcp_fastopen_cookie_gen(struct sock *sk, const void *path, 116 struct tcp_fastopen_cookie *foc) 117 { 118 struct tcp_fastopen_context *ctx; 119 bool ok = false; 120 121 rcu_read_lock(); 122 123 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 124 if (!ctx) 125 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 126 127 if (ctx) { 128 crypto_cipher_encrypt_one(ctx->tfm, foc->val, path); 129 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 130 ok = true; 131 } 132 rcu_read_unlock(); 133 return ok; 134 } 135 136 /* Generate the fastopen cookie by doing aes128 encryption on both 137 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6 138 * addresses. For the longer IPv6 addresses use CBC-MAC. 139 * 140 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE. 141 */ 142 static bool tcp_fastopen_cookie_gen(struct sock *sk, 143 struct request_sock *req, 144 struct sk_buff *syn, 145 struct tcp_fastopen_cookie *foc) 146 { 147 if (req->rsk_ops->family == AF_INET) { 148 const struct iphdr *iph = ip_hdr(syn); 149 150 __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 }; 151 return __tcp_fastopen_cookie_gen(sk, path, foc); 152 } 153 154 #if IS_ENABLED(CONFIG_IPV6) 155 if (req->rsk_ops->family == AF_INET6) { 156 const struct ipv6hdr *ip6h = ipv6_hdr(syn); 157 struct tcp_fastopen_cookie tmp; 158 159 if (__tcp_fastopen_cookie_gen(sk, &ip6h->saddr, &tmp)) { 160 struct in6_addr *buf = &tmp.addr; 161 int i; 162 163 for (i = 0; i < 4; i++) 164 buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i]; 165 return __tcp_fastopen_cookie_gen(sk, buf, foc); 166 } 167 } 168 #endif 169 return false; 170 } 171 172 173 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, 174 * queue this additional data / FIN. 175 */ 176 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) 177 { 178 struct tcp_sock *tp = tcp_sk(sk); 179 180 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) 181 return; 182 183 skb = skb_clone(skb, GFP_ATOMIC); 184 if (!skb) 185 return; 186 187 skb_dst_drop(skb); 188 /* segs_in has been initialized to 1 in tcp_create_openreq_child(). 189 * Hence, reset segs_in to 0 before calling tcp_segs_in() 190 * to avoid double counting. Also, tcp_segs_in() expects 191 * skb->len to include the tcp_hdrlen. Hence, it should 192 * be called before __skb_pull(). 193 */ 194 tp->segs_in = 0; 195 tcp_segs_in(tp, skb); 196 __skb_pull(skb, tcp_hdrlen(skb)); 197 sk_forced_mem_schedule(sk, skb->truesize); 198 skb_set_owner_r(skb, sk); 199 200 TCP_SKB_CB(skb)->seq++; 201 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 202 203 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 204 __skb_queue_tail(&sk->sk_receive_queue, skb); 205 tp->syn_data_acked = 1; 206 207 /* u64_stats_update_begin(&tp->syncp) not needed here, 208 * as we certainly are not changing upper 32bit value (0) 209 */ 210 tp->bytes_received = skb->len; 211 212 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 213 tcp_fin(sk); 214 } 215 216 static struct sock *tcp_fastopen_create_child(struct sock *sk, 217 struct sk_buff *skb, 218 struct request_sock *req) 219 { 220 struct tcp_sock *tp; 221 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 222 struct sock *child; 223 bool own_req; 224 225 req->num_retrans = 0; 226 req->num_timeout = 0; 227 req->sk = NULL; 228 229 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, 230 NULL, &own_req); 231 if (!child) 232 return NULL; 233 234 spin_lock(&queue->fastopenq.lock); 235 queue->fastopenq.qlen++; 236 spin_unlock(&queue->fastopenq.lock); 237 238 /* Initialize the child socket. Have to fix some values to take 239 * into account the child is a Fast Open socket and is created 240 * only out of the bits carried in the SYN packet. 241 */ 242 tp = tcp_sk(child); 243 244 tp->fastopen_rsk = req; 245 tcp_rsk(req)->tfo_listener = true; 246 247 /* RFC1323: The window in SYN & SYN/ACK segments is never 248 * scaled. So correct it appropriately. 249 */ 250 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 251 tp->max_window = tp->snd_wnd; 252 253 /* Activate the retrans timer so that SYNACK can be retransmitted. 254 * The request socket is not added to the ehash 255 * because it's been added to the accept queue directly. 256 */ 257 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, 258 TCP_TIMEOUT_INIT, TCP_RTO_MAX); 259 260 refcount_set(&req->rsk_refcnt, 2); 261 262 /* Now finish processing the fastopen child socket. */ 263 tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 264 265 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 266 267 tcp_fastopen_add_skb(child, skb); 268 269 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; 270 tp->rcv_wup = tp->rcv_nxt; 271 /* tcp_conn_request() is sending the SYNACK, 272 * and queues the child into listener accept queue. 273 */ 274 return child; 275 } 276 277 static bool tcp_fastopen_queue_check(struct sock *sk) 278 { 279 struct fastopen_queue *fastopenq; 280 281 /* Make sure the listener has enabled fastopen, and we don't 282 * exceed the max # of pending TFO requests allowed before trying 283 * to validating the cookie in order to avoid burning CPU cycles 284 * unnecessarily. 285 * 286 * XXX (TFO) - The implication of checking the max_qlen before 287 * processing a cookie request is that clients can't differentiate 288 * between qlen overflow causing Fast Open to be disabled 289 * temporarily vs a server not supporting Fast Open at all. 290 */ 291 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; 292 if (fastopenq->max_qlen == 0) 293 return false; 294 295 if (fastopenq->qlen >= fastopenq->max_qlen) { 296 struct request_sock *req1; 297 spin_lock(&fastopenq->lock); 298 req1 = fastopenq->rskq_rst_head; 299 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { 300 __NET_INC_STATS(sock_net(sk), 301 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 302 spin_unlock(&fastopenq->lock); 303 return false; 304 } 305 fastopenq->rskq_rst_head = req1->dl_next; 306 fastopenq->qlen--; 307 spin_unlock(&fastopenq->lock); 308 reqsk_put(req1); 309 } 310 return true; 311 } 312 313 static bool tcp_fastopen_no_cookie(const struct sock *sk, 314 const struct dst_entry *dst, 315 int flag) 316 { 317 return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) || 318 tcp_sk(sk)->fastopen_no_cookie || 319 (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE)); 320 } 321 322 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) 323 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open 324 * cookie request (foc->len == 0). 325 */ 326 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 327 struct request_sock *req, 328 struct tcp_fastopen_cookie *foc, 329 const struct dst_entry *dst) 330 { 331 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; 332 int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 333 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 334 struct sock *child; 335 336 if (foc->len == 0) /* Client requests a cookie */ 337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); 338 339 if (!((tcp_fastopen & TFO_SERVER_ENABLE) && 340 (syn_data || foc->len >= 0) && 341 tcp_fastopen_queue_check(sk))) { 342 foc->len = -1; 343 return NULL; 344 } 345 346 if (syn_data && 347 tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD)) 348 goto fastopen; 349 350 if (foc->len >= 0 && /* Client presents or requests a cookie */ 351 tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc) && 352 foc->len == TCP_FASTOPEN_COOKIE_SIZE && 353 foc->len == valid_foc.len && 354 !memcmp(foc->val, valid_foc.val, foc->len)) { 355 /* Cookie is valid. Create a (full) child socket to accept 356 * the data in SYN before returning a SYN-ACK to ack the 357 * data. If we fail to create the socket, fall back and 358 * ack the ISN only but includes the same cookie. 359 * 360 * Note: Data-less SYN with valid cookie is allowed to send 361 * data in SYN_RECV state. 362 */ 363 fastopen: 364 child = tcp_fastopen_create_child(sk, skb, req); 365 if (child) { 366 foc->len = -1; 367 NET_INC_STATS(sock_net(sk), 368 LINUX_MIB_TCPFASTOPENPASSIVE); 369 return child; 370 } 371 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 372 } else if (foc->len > 0) /* Client presents an invalid cookie */ 373 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 374 375 valid_foc.exp = foc->exp; 376 *foc = valid_foc; 377 return NULL; 378 } 379 380 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 381 struct tcp_fastopen_cookie *cookie) 382 { 383 unsigned long last_syn_loss = 0; 384 const struct dst_entry *dst; 385 int syn_loss = 0; 386 387 tcp_fastopen_cache_get(sk, mss, cookie, &syn_loss, &last_syn_loss); 388 389 /* Recurring FO SYN losses: no cookie or data in SYN */ 390 if (syn_loss > 1 && 391 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 392 cookie->len = -1; 393 return false; 394 } 395 396 /* Firewall blackhole issue check */ 397 if (tcp_fastopen_active_should_disable(sk)) { 398 cookie->len = -1; 399 return false; 400 } 401 402 dst = __sk_dst_get(sk); 403 404 if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) { 405 cookie->len = -1; 406 return true; 407 } 408 return cookie->len > 0; 409 } 410 411 /* This function checks if we want to defer sending SYN until the first 412 * write(). We defer under the following conditions: 413 * 1. fastopen_connect sockopt is set 414 * 2. we have a valid cookie 415 * Return value: return true if we want to defer until application writes data 416 * return false if we want to send out SYN immediately 417 */ 418 bool tcp_fastopen_defer_connect(struct sock *sk, int *err) 419 { 420 struct tcp_fastopen_cookie cookie = { .len = 0 }; 421 struct tcp_sock *tp = tcp_sk(sk); 422 u16 mss; 423 424 if (tp->fastopen_connect && !tp->fastopen_req) { 425 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) { 426 inet_sk(sk)->defer_connect = 1; 427 return true; 428 } 429 430 /* Alloc fastopen_req in order for FO option to be included 431 * in SYN 432 */ 433 tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req), 434 sk->sk_allocation); 435 if (tp->fastopen_req) 436 tp->fastopen_req->cookie = cookie; 437 else 438 *err = -ENOBUFS; 439 } 440 return false; 441 } 442 EXPORT_SYMBOL(tcp_fastopen_defer_connect); 443 444 /* 445 * The following code block is to deal with middle box issues with TFO: 446 * Middlebox firewall issues can potentially cause server's data being 447 * blackholed after a successful 3WHS using TFO. 448 * The proposed solution is to disable active TFO globally under the 449 * following circumstances: 450 * 1. client side TFO socket receives out of order FIN 451 * 2. client side TFO socket receives out of order RST 452 * We disable active side TFO globally for 1hr at first. Then if it 453 * happens again, we disable it for 2h, then 4h, 8h, ... 454 * And we reset the timeout back to 1hr when we see a successful active 455 * TFO connection with data exchanges. 456 */ 457 458 /* Disable active TFO and record current jiffies and 459 * tfo_active_disable_times 460 */ 461 void tcp_fastopen_active_disable(struct sock *sk) 462 { 463 struct net *net = sock_net(sk); 464 465 atomic_inc(&net->ipv4.tfo_active_disable_times); 466 net->ipv4.tfo_active_disable_stamp = jiffies; 467 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); 468 } 469 470 /* Calculate timeout for tfo active disable 471 * Return true if we are still in the active TFO disable period 472 * Return false if timeout already expired and we should use active TFO 473 */ 474 bool tcp_fastopen_active_should_disable(struct sock *sk) 475 { 476 unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout; 477 int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times); 478 unsigned long timeout; 479 int multiplier; 480 481 if (!tfo_da_times) 482 return false; 483 484 /* Limit timout to max: 2^6 * initial timeout */ 485 multiplier = 1 << min(tfo_da_times - 1, 6); 486 timeout = multiplier * tfo_bh_timeout * HZ; 487 if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout)) 488 return true; 489 490 /* Mark check bit so we can check for successful active TFO 491 * condition and reset tfo_active_disable_times 492 */ 493 tcp_sk(sk)->syn_fastopen_ch = 1; 494 return false; 495 } 496 497 /* Disable active TFO if FIN is the only packet in the ofo queue 498 * and no data is received. 499 * Also check if we can reset tfo_active_disable_times if data is 500 * received successfully on a marked active TFO sockets opened on 501 * a non-loopback interface 502 */ 503 void tcp_fastopen_active_disable_ofo_check(struct sock *sk) 504 { 505 struct tcp_sock *tp = tcp_sk(sk); 506 struct dst_entry *dst; 507 struct sk_buff *skb; 508 509 if (!tp->syn_fastopen) 510 return; 511 512 if (!tp->data_segs_in) { 513 skb = skb_rb_first(&tp->out_of_order_queue); 514 if (skb && !skb_rb_next(skb)) { 515 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 516 tcp_fastopen_active_disable(sk); 517 return; 518 } 519 } 520 } else if (tp->syn_fastopen_ch && 521 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) { 522 dst = sk_dst_get(sk); 523 if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK))) 524 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0); 525 dst_release(dst); 526 } 527 } 528