xref: /linux/net/ipv4/tcp_fastopen.c (revision 8a405552fd3b1eefe186e724343e88790f6be832)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/tcp.h>
4 #include <linux/rcupdate.h>
5 #include <net/tcp.h>
6 
7 void tcp_fastopen_init_key_once(struct net *net)
8 {
9 	u8 key[TCP_FASTOPEN_KEY_LENGTH];
10 	struct tcp_fastopen_context *ctxt;
11 
12 	rcu_read_lock();
13 	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
14 	if (ctxt) {
15 		rcu_read_unlock();
16 		return;
17 	}
18 	rcu_read_unlock();
19 
20 	/* tcp_fastopen_reset_cipher publishes the new context
21 	 * atomically, so we allow this race happening here.
22 	 *
23 	 * All call sites of tcp_fastopen_cookie_gen also check
24 	 * for a valid cookie, so this is an acceptable risk.
25 	 */
26 	get_random_bytes(key, sizeof(key));
27 	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
28 }
29 
30 static void tcp_fastopen_ctx_free(struct rcu_head *head)
31 {
32 	struct tcp_fastopen_context *ctx =
33 	    container_of(head, struct tcp_fastopen_context, rcu);
34 
35 	kfree_sensitive(ctx);
36 }
37 
38 void tcp_fastopen_destroy_cipher(struct sock *sk)
39 {
40 	struct tcp_fastopen_context *ctx;
41 
42 	ctx = rcu_dereference_protected(
43 			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
44 	if (ctx)
45 		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
46 }
47 
48 void tcp_fastopen_ctx_destroy(struct net *net)
49 {
50 	struct tcp_fastopen_context *ctxt;
51 
52 	ctxt = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx, NULL));
53 
54 	if (ctxt)
55 		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
56 }
57 
58 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
59 			      void *primary_key, void *backup_key)
60 {
61 	struct tcp_fastopen_context *ctx, *octx;
62 	struct fastopen_queue *q;
63 	int err = 0;
64 
65 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
66 	if (!ctx) {
67 		err = -ENOMEM;
68 		goto out;
69 	}
70 
71 	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
72 	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
73 	if (backup_key) {
74 		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
75 		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
76 		ctx->num = 2;
77 	} else {
78 		ctx->num = 1;
79 	}
80 
81 	if (sk) {
82 		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
83 		octx = unrcu_pointer(xchg(&q->ctx, RCU_INITIALIZER(ctx)));
84 	} else {
85 		octx = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx,
86 					  RCU_INITIALIZER(ctx)));
87 	}
88 
89 	if (octx)
90 		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
91 out:
92 	return err;
93 }
94 
95 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
96 			    u64 *key)
97 {
98 	struct tcp_fastopen_context *ctx;
99 	int n_keys = 0, i;
100 
101 	rcu_read_lock();
102 	if (icsk)
103 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
104 	else
105 		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
106 	if (ctx) {
107 		n_keys = tcp_fastopen_context_len(ctx);
108 		for (i = 0; i < n_keys; i++) {
109 			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
110 			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
111 		}
112 	}
113 	rcu_read_unlock();
114 
115 	return n_keys;
116 }
117 
118 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
119 					     struct sk_buff *syn,
120 					     const siphash_key_t *key,
121 					     struct tcp_fastopen_cookie *foc)
122 {
123 	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
124 
125 	if (req->rsk_ops->family == AF_INET) {
126 		const struct iphdr *iph = ip_hdr(syn);
127 
128 		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
129 					  sizeof(iph->saddr) +
130 					  sizeof(iph->daddr),
131 					  key));
132 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
133 		return true;
134 	}
135 #if IS_ENABLED(CONFIG_IPV6)
136 	if (req->rsk_ops->family == AF_INET6) {
137 		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
138 
139 		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
140 					  sizeof(ip6h->saddr) +
141 					  sizeof(ip6h->daddr),
142 					  key));
143 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
144 		return true;
145 	}
146 #endif
147 	return false;
148 }
149 
150 /* Generate the fastopen cookie by applying SipHash to both the source and
151  * destination addresses.
152  */
153 static void tcp_fastopen_cookie_gen(struct sock *sk,
154 				    struct request_sock *req,
155 				    struct sk_buff *syn,
156 				    struct tcp_fastopen_cookie *foc)
157 {
158 	struct tcp_fastopen_context *ctx;
159 
160 	rcu_read_lock();
161 	ctx = tcp_fastopen_get_ctx(sk);
162 	if (ctx)
163 		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
164 	rcu_read_unlock();
165 }
166 
167 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
168  * queue this additional data / FIN.
169  */
170 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
171 {
172 	struct tcp_sock *tp = tcp_sk(sk);
173 
174 	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
175 		return;
176 
177 	skb = skb_clone(skb, GFP_ATOMIC);
178 	if (!skb)
179 		return;
180 
181 	skb_dst_drop(skb);
182 	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
183 	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
184 	 * to avoid double counting.  Also, tcp_segs_in() expects
185 	 * skb->len to include the tcp_hdrlen.  Hence, it should
186 	 * be called before __skb_pull().
187 	 */
188 	tp->segs_in = 0;
189 	tcp_segs_in(tp, skb);
190 	__skb_pull(skb, tcp_hdrlen(skb));
191 	sk_forced_mem_schedule(sk, skb->truesize);
192 	skb_set_owner_r(skb, sk);
193 
194 	TCP_SKB_CB(skb)->seq++;
195 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
196 
197 	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
198 	__skb_queue_tail(&sk->sk_receive_queue, skb);
199 	tp->syn_data_acked = 1;
200 
201 	/* u64_stats_update_begin(&tp->syncp) not needed here,
202 	 * as we certainly are not changing upper 32bit value (0)
203 	 */
204 	tp->bytes_received = skb->len;
205 
206 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
207 		tcp_fin(sk);
208 }
209 
210 /* returns 0 - no key match, 1 for primary, 2 for backup */
211 static int tcp_fastopen_cookie_gen_check(struct sock *sk,
212 					 struct request_sock *req,
213 					 struct sk_buff *syn,
214 					 struct tcp_fastopen_cookie *orig,
215 					 struct tcp_fastopen_cookie *valid_foc)
216 {
217 	struct tcp_fastopen_cookie search_foc = { .len = -1 };
218 	struct tcp_fastopen_cookie *foc = valid_foc;
219 	struct tcp_fastopen_context *ctx;
220 	int i, ret = 0;
221 
222 	rcu_read_lock();
223 	ctx = tcp_fastopen_get_ctx(sk);
224 	if (!ctx)
225 		goto out;
226 	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
227 		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
228 		if (tcp_fastopen_cookie_match(foc, orig)) {
229 			ret = i + 1;
230 			goto out;
231 		}
232 		foc = &search_foc;
233 	}
234 out:
235 	rcu_read_unlock();
236 	return ret;
237 }
238 
239 static struct sock *tcp_fastopen_create_child(struct sock *sk,
240 					      struct sk_buff *skb,
241 					      struct request_sock *req)
242 {
243 	struct tcp_sock *tp;
244 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
245 	struct sock *child;
246 	bool own_req;
247 
248 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
249 							 NULL, &own_req);
250 	if (!child)
251 		return NULL;
252 
253 	spin_lock(&queue->fastopenq.lock);
254 	queue->fastopenq.qlen++;
255 	spin_unlock(&queue->fastopenq.lock);
256 
257 	/* Initialize the child socket. Have to fix some values to take
258 	 * into account the child is a Fast Open socket and is created
259 	 * only out of the bits carried in the SYN packet.
260 	 */
261 	tp = tcp_sk(child);
262 
263 	rcu_assign_pointer(tp->fastopen_rsk, req);
264 	tcp_rsk(req)->tfo_listener = true;
265 
266 	/* RFC1323: The window in SYN & SYN/ACK segments is never
267 	 * scaled. So correct it appropriately.
268 	 */
269 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
270 	tp->max_window = tp->snd_wnd;
271 
272 	/* Activate the retrans timer so that SYNACK can be retransmitted.
273 	 * The request socket is not added to the ehash
274 	 * because it's been added to the accept queue directly.
275 	 */
276 	req->timeout = tcp_timeout_init(child);
277 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
278 				  req->timeout, TCP_RTO_MAX);
279 
280 	refcount_set(&req->rsk_refcnt, 2);
281 
282 	/* Now finish processing the fastopen child socket. */
283 	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
284 
285 	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
286 
287 	tcp_fastopen_add_skb(child, skb);
288 
289 	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
290 	tp->rcv_wup = tp->rcv_nxt;
291 	/* tcp_conn_request() is sending the SYNACK,
292 	 * and queues the child into listener accept queue.
293 	 */
294 	return child;
295 }
296 
297 static bool tcp_fastopen_queue_check(struct sock *sk)
298 {
299 	struct fastopen_queue *fastopenq;
300 	int max_qlen;
301 
302 	/* Make sure the listener has enabled fastopen, and we don't
303 	 * exceed the max # of pending TFO requests allowed before trying
304 	 * to validating the cookie in order to avoid burning CPU cycles
305 	 * unnecessarily.
306 	 *
307 	 * XXX (TFO) - The implication of checking the max_qlen before
308 	 * processing a cookie request is that clients can't differentiate
309 	 * between qlen overflow causing Fast Open to be disabled
310 	 * temporarily vs a server not supporting Fast Open at all.
311 	 */
312 	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
313 	max_qlen = READ_ONCE(fastopenq->max_qlen);
314 	if (max_qlen == 0)
315 		return false;
316 
317 	if (fastopenq->qlen >= max_qlen) {
318 		struct request_sock *req1;
319 		spin_lock(&fastopenq->lock);
320 		req1 = fastopenq->rskq_rst_head;
321 		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
322 			__NET_INC_STATS(sock_net(sk),
323 					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
324 			spin_unlock(&fastopenq->lock);
325 			return false;
326 		}
327 		fastopenq->rskq_rst_head = req1->dl_next;
328 		fastopenq->qlen--;
329 		spin_unlock(&fastopenq->lock);
330 		reqsk_put(req1);
331 	}
332 	return true;
333 }
334 
335 static bool tcp_fastopen_no_cookie(const struct sock *sk,
336 				   const struct dst_entry *dst,
337 				   int flag)
338 {
339 	return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) ||
340 	       tcp_sk(sk)->fastopen_no_cookie ||
341 	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
342 }
343 
344 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
345  * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
346  * cookie request (foc->len == 0).
347  */
348 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
349 			      struct request_sock *req,
350 			      struct tcp_fastopen_cookie *foc,
351 			      const struct dst_entry *dst)
352 {
353 	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
354 	int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
355 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
356 	struct sock *child;
357 	int ret = 0;
358 
359 	if (foc->len == 0) /* Client requests a cookie */
360 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
361 
362 	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
363 	      (syn_data || foc->len >= 0) &&
364 	      tcp_fastopen_queue_check(sk))) {
365 		foc->len = -1;
366 		return NULL;
367 	}
368 
369 	if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
370 		goto fastopen;
371 
372 	if (foc->len == 0) {
373 		/* Client requests a cookie. */
374 		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
375 	} else if (foc->len > 0) {
376 		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
377 						    &valid_foc);
378 		if (!ret) {
379 			NET_INC_STATS(sock_net(sk),
380 				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
381 		} else {
382 			/* Cookie is valid. Create a (full) child socket to
383 			 * accept the data in SYN before returning a SYN-ACK to
384 			 * ack the data. If we fail to create the socket, fall
385 			 * back and ack the ISN only but includes the same
386 			 * cookie.
387 			 *
388 			 * Note: Data-less SYN with valid cookie is allowed to
389 			 * send data in SYN_RECV state.
390 			 */
391 fastopen:
392 			child = tcp_fastopen_create_child(sk, skb, req);
393 			if (child) {
394 				if (ret == 2) {
395 					valid_foc.exp = foc->exp;
396 					*foc = valid_foc;
397 					NET_INC_STATS(sock_net(sk),
398 						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
399 				} else {
400 					foc->len = -1;
401 				}
402 				NET_INC_STATS(sock_net(sk),
403 					      LINUX_MIB_TCPFASTOPENPASSIVE);
404 				return child;
405 			}
406 			NET_INC_STATS(sock_net(sk),
407 				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
408 		}
409 	}
410 	valid_foc.exp = foc->exp;
411 	*foc = valid_foc;
412 	return NULL;
413 }
414 
415 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
416 			       struct tcp_fastopen_cookie *cookie)
417 {
418 	const struct dst_entry *dst;
419 
420 	tcp_fastopen_cache_get(sk, mss, cookie);
421 
422 	/* Firewall blackhole issue check */
423 	if (tcp_fastopen_active_should_disable(sk)) {
424 		cookie->len = -1;
425 		return false;
426 	}
427 
428 	dst = __sk_dst_get(sk);
429 
430 	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
431 		cookie->len = -1;
432 		return true;
433 	}
434 	if (cookie->len > 0)
435 		return true;
436 	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
437 	return false;
438 }
439 
440 /* This function checks if we want to defer sending SYN until the first
441  * write().  We defer under the following conditions:
442  * 1. fastopen_connect sockopt is set
443  * 2. we have a valid cookie
444  * Return value: return true if we want to defer until application writes data
445  *               return false if we want to send out SYN immediately
446  */
447 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
448 {
449 	struct tcp_fastopen_cookie cookie = { .len = 0 };
450 	struct tcp_sock *tp = tcp_sk(sk);
451 	u16 mss;
452 
453 	if (tp->fastopen_connect && !tp->fastopen_req) {
454 		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
455 			inet_set_bit(DEFER_CONNECT, sk);
456 			return true;
457 		}
458 
459 		/* Alloc fastopen_req in order for FO option to be included
460 		 * in SYN
461 		 */
462 		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
463 					   sk->sk_allocation);
464 		if (tp->fastopen_req)
465 			tp->fastopen_req->cookie = cookie;
466 		else
467 			*err = -ENOBUFS;
468 	}
469 	return false;
470 }
471 EXPORT_SYMBOL(tcp_fastopen_defer_connect);
472 
473 /*
474  * The following code block is to deal with middle box issues with TFO:
475  * Middlebox firewall issues can potentially cause server's data being
476  * blackholed after a successful 3WHS using TFO.
477  * The proposed solution is to disable active TFO globally under the
478  * following circumstances:
479  *   1. client side TFO socket receives out of order FIN
480  *   2. client side TFO socket receives out of order RST
481  *   3. client side TFO socket has timed out three times consecutively during
482  *      or after handshake
483  * We disable active side TFO globally for 1hr at first. Then if it
484  * happens again, we disable it for 2h, then 4h, 8h, ...
485  * And we reset the timeout back to 1hr when we see a successful active
486  * TFO connection with data exchanges.
487  */
488 
489 /* Disable active TFO and record current jiffies and
490  * tfo_active_disable_times
491  */
492 void tcp_fastopen_active_disable(struct sock *sk)
493 {
494 	struct net *net = sock_net(sk);
495 
496 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout))
497 		return;
498 
499 	/* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
500 	WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
501 
502 	/* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
503 	 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
504 	 */
505 	smp_mb__before_atomic();
506 	atomic_inc(&net->ipv4.tfo_active_disable_times);
507 
508 	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
509 }
510 
511 /* Calculate timeout for tfo active disable
512  * Return true if we are still in the active TFO disable period
513  * Return false if timeout already expired and we should use active TFO
514  */
515 bool tcp_fastopen_active_should_disable(struct sock *sk)
516 {
517 	unsigned int tfo_bh_timeout =
518 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout);
519 	unsigned long timeout;
520 	int tfo_da_times;
521 	int multiplier;
522 
523 	if (!tfo_bh_timeout)
524 		return false;
525 
526 	tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
527 	if (!tfo_da_times)
528 		return false;
529 
530 	/* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
531 	smp_rmb();
532 
533 	/* Limit timeout to max: 2^6 * initial timeout */
534 	multiplier = 1 << min(tfo_da_times - 1, 6);
535 
536 	/* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
537 	timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
538 		  multiplier * tfo_bh_timeout * HZ;
539 	if (time_before(jiffies, timeout))
540 		return true;
541 
542 	/* Mark check bit so we can check for successful active TFO
543 	 * condition and reset tfo_active_disable_times
544 	 */
545 	tcp_sk(sk)->syn_fastopen_ch = 1;
546 	return false;
547 }
548 
549 /* Disable active TFO if FIN is the only packet in the ofo queue
550  * and no data is received.
551  * Also check if we can reset tfo_active_disable_times if data is
552  * received successfully on a marked active TFO sockets opened on
553  * a non-loopback interface
554  */
555 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
556 {
557 	struct tcp_sock *tp = tcp_sk(sk);
558 	struct dst_entry *dst;
559 	struct sk_buff *skb;
560 
561 	if (!tp->syn_fastopen)
562 		return;
563 
564 	if (!tp->data_segs_in) {
565 		skb = skb_rb_first(&tp->out_of_order_queue);
566 		if (skb && !skb_rb_next(skb)) {
567 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
568 				tcp_fastopen_active_disable(sk);
569 				return;
570 			}
571 		}
572 	} else if (tp->syn_fastopen_ch &&
573 		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
574 		dst = sk_dst_get(sk);
575 		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
576 			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
577 		dst_release(dst);
578 	}
579 }
580 
581 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
582 {
583 	u32 timeouts = inet_csk(sk)->icsk_retransmits;
584 	struct tcp_sock *tp = tcp_sk(sk);
585 
586 	/* Broken middle-boxes may black-hole Fast Open connection during or
587 	 * even after the handshake. Be extremely conservative and pause
588 	 * Fast Open globally after hitting the third consecutive timeout or
589 	 * exceeding the configured timeout limit.
590 	 */
591 	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
592 	    (timeouts == 2 || (timeouts < 2 && expired))) {
593 		tcp_fastopen_active_disable(sk);
594 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
595 	}
596 }
597