xref: /linux/net/ipv4/tcp_fastopen.c (revision 83a37b3292f4aca799b355179ad6fbdd78a08e10)
1 #include <linux/crypto.h>
2 #include <linux/err.h>
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/list.h>
6 #include <linux/tcp.h>
7 #include <linux/rcupdate.h>
8 #include <linux/rculist.h>
9 #include <net/inetpeer.h>
10 #include <net/tcp.h>
11 
12 void tcp_fastopen_init_key_once(struct net *net)
13 {
14 	u8 key[TCP_FASTOPEN_KEY_LENGTH];
15 	struct tcp_fastopen_context *ctxt;
16 
17 	rcu_read_lock();
18 	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
19 	if (ctxt) {
20 		rcu_read_unlock();
21 		return;
22 	}
23 	rcu_read_unlock();
24 
25 	/* tcp_fastopen_reset_cipher publishes the new context
26 	 * atomically, so we allow this race happening here.
27 	 *
28 	 * All call sites of tcp_fastopen_cookie_gen also check
29 	 * for a valid cookie, so this is an acceptable risk.
30 	 */
31 	get_random_bytes(key, sizeof(key));
32 	tcp_fastopen_reset_cipher(net, key, sizeof(key));
33 }
34 
35 static void tcp_fastopen_ctx_free(struct rcu_head *head)
36 {
37 	struct tcp_fastopen_context *ctx =
38 	    container_of(head, struct tcp_fastopen_context, rcu);
39 	crypto_free_cipher(ctx->tfm);
40 	kfree(ctx);
41 }
42 
43 void tcp_fastopen_ctx_destroy(struct net *net)
44 {
45 	struct tcp_fastopen_context *ctxt;
46 
47 	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
48 
49 	ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
50 				lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
51 	rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
52 	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
53 
54 	if (ctxt)
55 		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
56 }
57 
58 int tcp_fastopen_reset_cipher(struct net *net, void *key, unsigned int len)
59 {
60 	int err;
61 	struct tcp_fastopen_context *ctx, *octx;
62 
63 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
64 	if (!ctx)
65 		return -ENOMEM;
66 	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
67 
68 	if (IS_ERR(ctx->tfm)) {
69 		err = PTR_ERR(ctx->tfm);
70 error:		kfree(ctx);
71 		pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
72 		return err;
73 	}
74 	err = crypto_cipher_setkey(ctx->tfm, key, len);
75 	if (err) {
76 		pr_err("TCP: TFO cipher key error: %d\n", err);
77 		crypto_free_cipher(ctx->tfm);
78 		goto error;
79 	}
80 	memcpy(ctx->key, key, len);
81 
82 	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
83 
84 	octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
85 				lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
86 	rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
87 	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
88 
89 	if (octx)
90 		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
91 	return err;
92 }
93 
94 static bool __tcp_fastopen_cookie_gen(struct net *net,
95 				      const void *path,
96 				      struct tcp_fastopen_cookie *foc)
97 {
98 	struct tcp_fastopen_context *ctx;
99 	bool ok = false;
100 
101 	rcu_read_lock();
102 	ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
103 	if (ctx) {
104 		crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
105 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
106 		ok = true;
107 	}
108 	rcu_read_unlock();
109 	return ok;
110 }
111 
112 /* Generate the fastopen cookie by doing aes128 encryption on both
113  * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
114  * addresses. For the longer IPv6 addresses use CBC-MAC.
115  *
116  * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
117  */
118 static bool tcp_fastopen_cookie_gen(struct net *net,
119 				    struct request_sock *req,
120 				    struct sk_buff *syn,
121 				    struct tcp_fastopen_cookie *foc)
122 {
123 	if (req->rsk_ops->family == AF_INET) {
124 		const struct iphdr *iph = ip_hdr(syn);
125 
126 		__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
127 		return __tcp_fastopen_cookie_gen(net, path, foc);
128 	}
129 
130 #if IS_ENABLED(CONFIG_IPV6)
131 	if (req->rsk_ops->family == AF_INET6) {
132 		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
133 		struct tcp_fastopen_cookie tmp;
134 
135 		if (__tcp_fastopen_cookie_gen(net, &ip6h->saddr, &tmp)) {
136 			struct in6_addr *buf = &tmp.addr;
137 			int i;
138 
139 			for (i = 0; i < 4; i++)
140 				buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
141 			return __tcp_fastopen_cookie_gen(net, buf, foc);
142 		}
143 	}
144 #endif
145 	return false;
146 }
147 
148 
149 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
150  * queue this additional data / FIN.
151  */
152 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
153 {
154 	struct tcp_sock *tp = tcp_sk(sk);
155 
156 	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
157 		return;
158 
159 	skb = skb_clone(skb, GFP_ATOMIC);
160 	if (!skb)
161 		return;
162 
163 	skb_dst_drop(skb);
164 	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
165 	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
166 	 * to avoid double counting.  Also, tcp_segs_in() expects
167 	 * skb->len to include the tcp_hdrlen.  Hence, it should
168 	 * be called before __skb_pull().
169 	 */
170 	tp->segs_in = 0;
171 	tcp_segs_in(tp, skb);
172 	__skb_pull(skb, tcp_hdrlen(skb));
173 	sk_forced_mem_schedule(sk, skb->truesize);
174 	skb_set_owner_r(skb, sk);
175 
176 	TCP_SKB_CB(skb)->seq++;
177 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
178 
179 	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
180 	__skb_queue_tail(&sk->sk_receive_queue, skb);
181 	tp->syn_data_acked = 1;
182 
183 	/* u64_stats_update_begin(&tp->syncp) not needed here,
184 	 * as we certainly are not changing upper 32bit value (0)
185 	 */
186 	tp->bytes_received = skb->len;
187 
188 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
189 		tcp_fin(sk);
190 }
191 
192 static struct sock *tcp_fastopen_create_child(struct sock *sk,
193 					      struct sk_buff *skb,
194 					      struct request_sock *req)
195 {
196 	struct tcp_sock *tp;
197 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
198 	struct sock *child;
199 	bool own_req;
200 
201 	req->num_retrans = 0;
202 	req->num_timeout = 0;
203 	req->sk = NULL;
204 
205 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
206 							 NULL, &own_req);
207 	if (!child)
208 		return NULL;
209 
210 	spin_lock(&queue->fastopenq.lock);
211 	queue->fastopenq.qlen++;
212 	spin_unlock(&queue->fastopenq.lock);
213 
214 	/* Initialize the child socket. Have to fix some values to take
215 	 * into account the child is a Fast Open socket and is created
216 	 * only out of the bits carried in the SYN packet.
217 	 */
218 	tp = tcp_sk(child);
219 
220 	tp->fastopen_rsk = req;
221 	tcp_rsk(req)->tfo_listener = true;
222 
223 	/* RFC1323: The window in SYN & SYN/ACK segments is never
224 	 * scaled. So correct it appropriately.
225 	 */
226 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
227 	tp->max_window = tp->snd_wnd;
228 
229 	/* Activate the retrans timer so that SYNACK can be retransmitted.
230 	 * The request socket is not added to the ehash
231 	 * because it's been added to the accept queue directly.
232 	 */
233 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
234 				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
235 
236 	refcount_set(&req->rsk_refcnt, 2);
237 
238 	/* Now finish processing the fastopen child socket. */
239 	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
240 
241 	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
242 
243 	tcp_fastopen_add_skb(child, skb);
244 
245 	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
246 	tp->rcv_wup = tp->rcv_nxt;
247 	/* tcp_conn_request() is sending the SYNACK,
248 	 * and queues the child into listener accept queue.
249 	 */
250 	return child;
251 }
252 
253 static bool tcp_fastopen_queue_check(struct sock *sk)
254 {
255 	struct fastopen_queue *fastopenq;
256 
257 	/* Make sure the listener has enabled fastopen, and we don't
258 	 * exceed the max # of pending TFO requests allowed before trying
259 	 * to validating the cookie in order to avoid burning CPU cycles
260 	 * unnecessarily.
261 	 *
262 	 * XXX (TFO) - The implication of checking the max_qlen before
263 	 * processing a cookie request is that clients can't differentiate
264 	 * between qlen overflow causing Fast Open to be disabled
265 	 * temporarily vs a server not supporting Fast Open at all.
266 	 */
267 	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
268 	if (fastopenq->max_qlen == 0)
269 		return false;
270 
271 	if (fastopenq->qlen >= fastopenq->max_qlen) {
272 		struct request_sock *req1;
273 		spin_lock(&fastopenq->lock);
274 		req1 = fastopenq->rskq_rst_head;
275 		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
276 			__NET_INC_STATS(sock_net(sk),
277 					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
278 			spin_unlock(&fastopenq->lock);
279 			return false;
280 		}
281 		fastopenq->rskq_rst_head = req1->dl_next;
282 		fastopenq->qlen--;
283 		spin_unlock(&fastopenq->lock);
284 		reqsk_put(req1);
285 	}
286 	return true;
287 }
288 
289 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
290  * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
291  * cookie request (foc->len == 0).
292  */
293 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
294 			      struct request_sock *req,
295 			      struct tcp_fastopen_cookie *foc)
296 {
297 	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
298 	int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
299 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
300 	struct sock *child;
301 
302 	if (foc->len == 0) /* Client requests a cookie */
303 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
304 
305 	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
306 	      (syn_data || foc->len >= 0) &&
307 	      tcp_fastopen_queue_check(sk))) {
308 		foc->len = -1;
309 		return NULL;
310 	}
311 
312 	if (syn_data && (tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
313 		goto fastopen;
314 
315 	if (foc->len >= 0 &&  /* Client presents or requests a cookie */
316 	    tcp_fastopen_cookie_gen(sock_net(sk), req, skb, &valid_foc) &&
317 	    foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
318 	    foc->len == valid_foc.len &&
319 	    !memcmp(foc->val, valid_foc.val, foc->len)) {
320 		/* Cookie is valid. Create a (full) child socket to accept
321 		 * the data in SYN before returning a SYN-ACK to ack the
322 		 * data. If we fail to create the socket, fall back and
323 		 * ack the ISN only but includes the same cookie.
324 		 *
325 		 * Note: Data-less SYN with valid cookie is allowed to send
326 		 * data in SYN_RECV state.
327 		 */
328 fastopen:
329 		child = tcp_fastopen_create_child(sk, skb, req);
330 		if (child) {
331 			foc->len = -1;
332 			NET_INC_STATS(sock_net(sk),
333 				      LINUX_MIB_TCPFASTOPENPASSIVE);
334 			return child;
335 		}
336 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
337 	} else if (foc->len > 0) /* Client presents an invalid cookie */
338 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
339 
340 	valid_foc.exp = foc->exp;
341 	*foc = valid_foc;
342 	return NULL;
343 }
344 
345 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
346 			       struct tcp_fastopen_cookie *cookie)
347 {
348 	unsigned long last_syn_loss = 0;
349 	int syn_loss = 0;
350 
351 	tcp_fastopen_cache_get(sk, mss, cookie, &syn_loss, &last_syn_loss);
352 
353 	/* Recurring FO SYN losses: no cookie or data in SYN */
354 	if (syn_loss > 1 &&
355 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
356 		cookie->len = -1;
357 		return false;
358 	}
359 
360 	/* Firewall blackhole issue check */
361 	if (tcp_fastopen_active_should_disable(sk)) {
362 		cookie->len = -1;
363 		return false;
364 	}
365 
366 	if (sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) {
367 		cookie->len = -1;
368 		return true;
369 	}
370 	return cookie->len > 0;
371 }
372 
373 /* This function checks if we want to defer sending SYN until the first
374  * write().  We defer under the following conditions:
375  * 1. fastopen_connect sockopt is set
376  * 2. we have a valid cookie
377  * Return value: return true if we want to defer until application writes data
378  *               return false if we want to send out SYN immediately
379  */
380 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
381 {
382 	struct tcp_fastopen_cookie cookie = { .len = 0 };
383 	struct tcp_sock *tp = tcp_sk(sk);
384 	u16 mss;
385 
386 	if (tp->fastopen_connect && !tp->fastopen_req) {
387 		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
388 			inet_sk(sk)->defer_connect = 1;
389 			return true;
390 		}
391 
392 		/* Alloc fastopen_req in order for FO option to be included
393 		 * in SYN
394 		 */
395 		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
396 					   sk->sk_allocation);
397 		if (tp->fastopen_req)
398 			tp->fastopen_req->cookie = cookie;
399 		else
400 			*err = -ENOBUFS;
401 	}
402 	return false;
403 }
404 EXPORT_SYMBOL(tcp_fastopen_defer_connect);
405 
406 /*
407  * The following code block is to deal with middle box issues with TFO:
408  * Middlebox firewall issues can potentially cause server's data being
409  * blackholed after a successful 3WHS using TFO.
410  * The proposed solution is to disable active TFO globally under the
411  * following circumstances:
412  *   1. client side TFO socket receives out of order FIN
413  *   2. client side TFO socket receives out of order RST
414  * We disable active side TFO globally for 1hr at first. Then if it
415  * happens again, we disable it for 2h, then 4h, 8h, ...
416  * And we reset the timeout back to 1hr when we see a successful active
417  * TFO connection with data exchanges.
418  */
419 
420 /* Disable active TFO and record current jiffies and
421  * tfo_active_disable_times
422  */
423 void tcp_fastopen_active_disable(struct sock *sk)
424 {
425 	struct net *net = sock_net(sk);
426 
427 	atomic_inc(&net->ipv4.tfo_active_disable_times);
428 	net->ipv4.tfo_active_disable_stamp = jiffies;
429 	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
430 }
431 
432 /* Calculate timeout for tfo active disable
433  * Return true if we are still in the active TFO disable period
434  * Return false if timeout already expired and we should use active TFO
435  */
436 bool tcp_fastopen_active_should_disable(struct sock *sk)
437 {
438 	unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
439 	int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
440 	unsigned long timeout;
441 	int multiplier;
442 
443 	if (!tfo_da_times)
444 		return false;
445 
446 	/* Limit timout to max: 2^6 * initial timeout */
447 	multiplier = 1 << min(tfo_da_times - 1, 6);
448 	timeout = multiplier * tfo_bh_timeout * HZ;
449 	if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout))
450 		return true;
451 
452 	/* Mark check bit so we can check for successful active TFO
453 	 * condition and reset tfo_active_disable_times
454 	 */
455 	tcp_sk(sk)->syn_fastopen_ch = 1;
456 	return false;
457 }
458 
459 /* Disable active TFO if FIN is the only packet in the ofo queue
460  * and no data is received.
461  * Also check if we can reset tfo_active_disable_times if data is
462  * received successfully on a marked active TFO sockets opened on
463  * a non-loopback interface
464  */
465 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
466 {
467 	struct tcp_sock *tp = tcp_sk(sk);
468 	struct dst_entry *dst;
469 	struct sk_buff *skb;
470 
471 	if (!tp->syn_fastopen)
472 		return;
473 
474 	if (!tp->data_segs_in) {
475 		skb = skb_rb_first(&tp->out_of_order_queue);
476 		if (skb && !skb_rb_next(skb)) {
477 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
478 				tcp_fastopen_active_disable(sk);
479 				return;
480 			}
481 		}
482 	} else if (tp->syn_fastopen_ch &&
483 		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
484 		dst = sk_dst_get(sk);
485 		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
486 			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
487 		dst_release(dst);
488 	}
489 }
490