1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/tcp.h> 4 #include <linux/rcupdate.h> 5 #include <net/tcp.h> 6 #include <net/busy_poll.h> 7 8 /* 9 * This function is called to set a Fast Open socket's "fastopen_rsk" field 10 * to NULL when a TFO socket no longer needs to access the request_sock. 11 * This happens only after 3WHS has been either completed or aborted (e.g., 12 * RST is received). 13 * 14 * Before TFO, a child socket is created only after 3WHS is completed, 15 * hence it never needs to access the request_sock. things get a lot more 16 * complex with TFO. A child socket, accepted or not, has to access its 17 * request_sock for 3WHS processing, e.g., to retransmit SYN-ACK pkts, 18 * until 3WHS is either completed or aborted. Afterwards the req will stay 19 * until either the child socket is accepted, or in the rare case when the 20 * listener is closed before the child is accepted. 21 * 22 * In short, a request socket is only freed after BOTH 3WHS has completed 23 * (or aborted) and the child socket has been accepted (or listener closed). 24 * When a child socket is accepted, its corresponding req->sk is set to 25 * NULL since it's no longer needed. More importantly, "req->sk == NULL" 26 * will be used by the code below to determine if a child socket has been 27 * accepted or not, and the check is protected by the fastopenq->lock 28 * described below. 29 * 30 * Note that fastopen_rsk is only accessed from the child socket's context 31 * with its socket lock held. But a request_sock (req) can be accessed by 32 * both its child socket through fastopen_rsk, and a listener socket through 33 * icsk_accept_queue.rskq_accept_head. To protect the access a simple spin 34 * lock per listener "icsk->icsk_accept_queue.fastopenq->lock" is created. 35 * only in the rare case when both the listener and the child locks are held, 36 * e.g., in inet_csk_listen_stop() do we not need to acquire the lock. 37 * The lock also protects other fields such as fastopenq->qlen, which is 38 * decremented by this function when fastopen_rsk is no longer needed. 39 * 40 * Note that another solution was to simply use the existing socket lock 41 * from the listener. But first socket lock is difficult to use. It is not 42 * a simple spin lock - one must consider sock_owned_by_user() and arrange 43 * to use sk_add_backlog() stuff. But what really makes it infeasible is the 44 * locking hierarchy violation. E.g., inet_csk_listen_stop() may try to 45 * acquire a child's lock while holding listener's socket lock. 46 * 47 * This function also sets "treq->tfo_listener" to false. 48 * treq->tfo_listener is used by the listener so it is protected by the 49 * fastopenq->lock in this function. 50 */ 51 void reqsk_fastopen_remove(struct sock *sk, struct request_sock *req, 52 bool reset) 53 { 54 struct sock *lsk = req->rsk_listener; 55 struct fastopen_queue *fastopenq; 56 57 fastopenq = &inet_csk(lsk)->icsk_accept_queue.fastopenq; 58 59 RCU_INIT_POINTER(tcp_sk(sk)->fastopen_rsk, NULL); 60 spin_lock_bh(&fastopenq->lock); 61 fastopenq->qlen--; 62 tcp_rsk(req)->tfo_listener = false; 63 if (req->sk) /* the child socket hasn't been accepted yet */ 64 goto out; 65 66 if (!reset || lsk->sk_state != TCP_LISTEN) { 67 /* If the listener has been closed don't bother with the 68 * special RST handling below. 69 */ 70 spin_unlock_bh(&fastopenq->lock); 71 reqsk_put(req); 72 return; 73 } 74 /* Wait for 60secs before removing a req that has triggered RST. 75 * This is a simple defense against TFO spoofing attack - by 76 * counting the req against fastopen.max_qlen, and disabling 77 * TFO when the qlen exceeds max_qlen. 78 * 79 * For more details see CoNext'11 "TCP Fast Open" paper. 80 */ 81 req->rsk_timer.expires = jiffies + 60*HZ; 82 if (fastopenq->rskq_rst_head == NULL) 83 fastopenq->rskq_rst_head = req; 84 else 85 fastopenq->rskq_rst_tail->dl_next = req; 86 87 req->dl_next = NULL; 88 fastopenq->rskq_rst_tail = req; 89 fastopenq->qlen++; 90 out: 91 spin_unlock_bh(&fastopenq->lock); 92 } 93 94 void tcp_fastopen_init_key_once(struct net *net) 95 { 96 u8 key[TCP_FASTOPEN_KEY_LENGTH]; 97 struct tcp_fastopen_context *ctxt; 98 99 rcu_read_lock(); 100 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 101 if (ctxt) { 102 rcu_read_unlock(); 103 return; 104 } 105 rcu_read_unlock(); 106 107 /* tcp_fastopen_reset_cipher publishes the new context 108 * atomically, so we allow this race happening here. 109 * 110 * All call sites of tcp_fastopen_cookie_gen also check 111 * for a valid cookie, so this is an acceptable risk. 112 */ 113 get_random_bytes(key, sizeof(key)); 114 tcp_fastopen_reset_cipher(net, NULL, key, NULL); 115 } 116 117 static void tcp_fastopen_ctx_free(struct rcu_head *head) 118 { 119 struct tcp_fastopen_context *ctx = 120 container_of(head, struct tcp_fastopen_context, rcu); 121 122 kfree_sensitive(ctx); 123 } 124 125 void tcp_fastopen_destroy_cipher(struct sock *sk) 126 { 127 struct tcp_fastopen_context *ctx; 128 129 ctx = rcu_dereference_protected( 130 inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1); 131 if (ctx) 132 call_rcu(&ctx->rcu, tcp_fastopen_ctx_free); 133 } 134 135 void tcp_fastopen_ctx_destroy(struct net *net) 136 { 137 struct tcp_fastopen_context *ctxt; 138 139 ctxt = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx, NULL)); 140 141 if (ctxt) 142 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free); 143 } 144 145 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 146 void *primary_key, void *backup_key) 147 { 148 struct tcp_fastopen_context *ctx, *octx; 149 struct fastopen_queue *q; 150 int err = 0; 151 152 ctx = kmalloc_obj(*ctx, GFP_KERNEL); 153 if (!ctx) { 154 err = -ENOMEM; 155 goto out; 156 } 157 158 ctx->key[0].key[0] = get_unaligned_le64(primary_key); 159 ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8); 160 if (backup_key) { 161 ctx->key[1].key[0] = get_unaligned_le64(backup_key); 162 ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8); 163 ctx->num = 2; 164 } else { 165 ctx->num = 1; 166 } 167 168 if (sk) { 169 q = &inet_csk(sk)->icsk_accept_queue.fastopenq; 170 octx = unrcu_pointer(xchg(&q->ctx, RCU_INITIALIZER(ctx))); 171 } else { 172 octx = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx, 173 RCU_INITIALIZER(ctx))); 174 } 175 176 if (octx) 177 call_rcu(&octx->rcu, tcp_fastopen_ctx_free); 178 out: 179 return err; 180 } 181 182 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 183 u64 *key) 184 { 185 struct tcp_fastopen_context *ctx; 186 int n_keys = 0, i; 187 188 rcu_read_lock(); 189 if (icsk) 190 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 191 else 192 ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 193 if (ctx) { 194 n_keys = tcp_fastopen_context_len(ctx); 195 for (i = 0; i < n_keys; i++) { 196 put_unaligned_le64(ctx->key[i].key[0], key + (i * 2)); 197 put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1); 198 } 199 } 200 rcu_read_unlock(); 201 202 return n_keys; 203 } 204 205 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req, 206 struct sk_buff *syn, 207 const siphash_key_t *key, 208 struct tcp_fastopen_cookie *foc) 209 { 210 BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64)); 211 212 if (req->rsk_ops->family == AF_INET) { 213 const struct iphdr *iph = ip_hdr(syn); 214 215 foc->val[0] = cpu_to_le64(siphash(&iph->saddr, 216 sizeof(iph->saddr) + 217 sizeof(iph->daddr), 218 key)); 219 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 220 return true; 221 } 222 #if IS_ENABLED(CONFIG_IPV6) 223 if (req->rsk_ops->family == AF_INET6) { 224 const struct ipv6hdr *ip6h = ipv6_hdr(syn); 225 226 foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr, 227 sizeof(ip6h->saddr) + 228 sizeof(ip6h->daddr), 229 key)); 230 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 231 return true; 232 } 233 #endif 234 return false; 235 } 236 237 /* Generate the fastopen cookie by applying SipHash to both the source and 238 * destination addresses. 239 */ 240 static void tcp_fastopen_cookie_gen(struct sock *sk, 241 struct request_sock *req, 242 struct sk_buff *syn, 243 struct tcp_fastopen_cookie *foc) 244 { 245 struct tcp_fastopen_context *ctx; 246 247 rcu_read_lock(); 248 ctx = tcp_fastopen_get_ctx(sk); 249 if (ctx) 250 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc); 251 rcu_read_unlock(); 252 } 253 254 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, 255 * queue this additional data / FIN. 256 */ 257 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) 258 { 259 struct tcp_sock *tp = tcp_sk(sk); 260 261 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) 262 return; 263 264 skb = skb_clone(skb, GFP_ATOMIC); 265 if (!skb) 266 return; 267 268 tcp_cleanup_skb(skb); 269 /* segs_in has been initialized to 1 in tcp_create_openreq_child(). 270 * Hence, reset segs_in to 0 before calling tcp_segs_in() 271 * to avoid double counting. Also, tcp_segs_in() expects 272 * skb->len to include the tcp_hdrlen. Hence, it should 273 * be called before __skb_pull(). 274 */ 275 tp->segs_in = 0; 276 tcp_segs_in(tp, skb); 277 __skb_pull(skb, tcp_hdrlen(skb)); 278 sk_forced_mem_schedule(sk, skb->truesize); 279 skb_set_owner_r(skb, sk); 280 281 TCP_SKB_CB(skb)->seq++; 282 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 283 284 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 285 tcp_add_receive_queue(sk, skb); 286 tp->syn_data_acked = 1; 287 288 /* u64_stats_update_begin(&tp->syncp) not needed here, 289 * as we certainly are not changing upper 32bit value (0) 290 */ 291 tp->bytes_received = skb->len; 292 293 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 294 tcp_fin(sk); 295 } 296 297 /* returns 0 - no key match, 1 for primary, 2 for backup */ 298 static int tcp_fastopen_cookie_gen_check(struct sock *sk, 299 struct request_sock *req, 300 struct sk_buff *syn, 301 struct tcp_fastopen_cookie *orig, 302 struct tcp_fastopen_cookie *valid_foc) 303 { 304 struct tcp_fastopen_cookie search_foc = { .len = -1 }; 305 struct tcp_fastopen_cookie *foc = valid_foc; 306 struct tcp_fastopen_context *ctx; 307 int i, ret = 0; 308 309 rcu_read_lock(); 310 ctx = tcp_fastopen_get_ctx(sk); 311 if (!ctx) 312 goto out; 313 for (i = 0; i < tcp_fastopen_context_len(ctx); i++) { 314 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc); 315 if (tcp_fastopen_cookie_match(foc, orig)) { 316 ret = i + 1; 317 goto out; 318 } 319 foc = &search_foc; 320 } 321 out: 322 rcu_read_unlock(); 323 return ret; 324 } 325 326 static struct sock *tcp_fastopen_create_child(struct sock *sk, 327 struct sk_buff *skb, 328 struct request_sock *req) 329 { 330 struct tcp_sock *tp; 331 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 332 struct sock *child; 333 bool own_req; 334 335 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, 336 NULL, &own_req); 337 if (!child) 338 return NULL; 339 340 spin_lock(&queue->fastopenq.lock); 341 queue->fastopenq.qlen++; 342 spin_unlock(&queue->fastopenq.lock); 343 344 /* Initialize the child socket. Have to fix some values to take 345 * into account the child is a Fast Open socket and is created 346 * only out of the bits carried in the SYN packet. 347 */ 348 tp = tcp_sk(child); 349 350 rcu_assign_pointer(tp->fastopen_rsk, req); 351 tcp_rsk(req)->tfo_listener = true; 352 353 /* RFC1323: The window in SYN & SYN/ACK segments is never 354 * scaled. So correct it appropriately. 355 */ 356 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 357 tp->max_window = tp->snd_wnd; 358 359 /* Activate the retrans timer so that SYNACK can be retransmitted. 360 * The request socket is not added to the ehash 361 * because it's been added to the accept queue directly. 362 */ 363 req->timeout = tcp_timeout_init(child); 364 tcp_reset_xmit_timer(child, ICSK_TIME_RETRANS, 365 req->timeout, false); 366 367 refcount_set(&req->rsk_refcnt, 2); 368 369 sk_mark_napi_id_set(child, skb); 370 371 /* Now finish processing the fastopen child socket. */ 372 tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb); 373 374 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 375 376 tcp_fastopen_add_skb(child, skb); 377 378 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; 379 tp->rcv_wup = tp->rcv_nxt; 380 /* tcp_conn_request() is sending the SYNACK, 381 * and queues the child into listener accept queue. 382 */ 383 return child; 384 } 385 386 static bool tcp_fastopen_queue_check(struct sock *sk) 387 { 388 struct fastopen_queue *fastopenq; 389 int max_qlen; 390 391 /* Make sure the listener has enabled fastopen, and we don't 392 * exceed the max # of pending TFO requests allowed before trying 393 * to validating the cookie in order to avoid burning CPU cycles 394 * unnecessarily. 395 * 396 * XXX (TFO) - The implication of checking the max_qlen before 397 * processing a cookie request is that clients can't differentiate 398 * between qlen overflow causing Fast Open to be disabled 399 * temporarily vs a server not supporting Fast Open at all. 400 */ 401 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; 402 max_qlen = READ_ONCE(fastopenq->max_qlen); 403 if (max_qlen == 0) 404 return false; 405 406 if (fastopenq->qlen >= max_qlen) { 407 struct request_sock *req1; 408 spin_lock(&fastopenq->lock); 409 req1 = fastopenq->rskq_rst_head; 410 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { 411 __NET_INC_STATS(sock_net(sk), 412 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 413 spin_unlock(&fastopenq->lock); 414 return false; 415 } 416 fastopenq->rskq_rst_head = req1->dl_next; 417 fastopenq->qlen--; 418 spin_unlock(&fastopenq->lock); 419 reqsk_put(req1); 420 } 421 return true; 422 } 423 424 static bool tcp_fastopen_no_cookie(const struct sock *sk, 425 const struct dst_entry *dst, 426 int flag) 427 { 428 return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) || 429 tcp_sk(sk)->fastopen_no_cookie || 430 (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE)); 431 } 432 433 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) 434 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open 435 * cookie request (foc->len == 0). 436 */ 437 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 438 struct request_sock *req, 439 struct tcp_fastopen_cookie *foc, 440 const struct dst_entry *dst) 441 { 442 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; 443 int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 444 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 445 struct sock *child; 446 int ret = 0; 447 448 if (foc->len == 0) /* Client requests a cookie */ 449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); 450 451 if (!((tcp_fastopen & TFO_SERVER_ENABLE) && 452 (syn_data || foc->len >= 0) && 453 tcp_fastopen_queue_check(sk))) { 454 foc->len = -1; 455 return NULL; 456 } 457 458 if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD)) 459 goto fastopen; 460 461 if (foc->len == 0) { 462 /* Client requests a cookie. */ 463 tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc); 464 } else if (foc->len > 0) { 465 ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc, 466 &valid_foc); 467 if (!ret) { 468 NET_INC_STATS(sock_net(sk), 469 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 470 } else { 471 /* Cookie is valid. Create a (full) child socket to 472 * accept the data in SYN before returning a SYN-ACK to 473 * ack the data. If we fail to create the socket, fall 474 * back and ack the ISN only but includes the same 475 * cookie. 476 * 477 * Note: Data-less SYN with valid cookie is allowed to 478 * send data in SYN_RECV state. 479 */ 480 fastopen: 481 child = tcp_fastopen_create_child(sk, skb, req); 482 if (child) { 483 if (ret == 2) { 484 valid_foc.exp = foc->exp; 485 *foc = valid_foc; 486 NET_INC_STATS(sock_net(sk), 487 LINUX_MIB_TCPFASTOPENPASSIVEALTKEY); 488 } else { 489 foc->len = -1; 490 } 491 NET_INC_STATS(sock_net(sk), 492 LINUX_MIB_TCPFASTOPENPASSIVE); 493 tcp_sk(child)->syn_fastopen_child = 1; 494 return child; 495 } 496 NET_INC_STATS(sock_net(sk), 497 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 498 } 499 } 500 valid_foc.exp = foc->exp; 501 *foc = valid_foc; 502 return NULL; 503 } 504 505 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 506 struct tcp_fastopen_cookie *cookie) 507 { 508 const struct dst_entry *dst; 509 510 tcp_fastopen_cache_get(sk, mss, cookie); 511 512 /* Firewall blackhole issue check */ 513 if (tcp_fastopen_active_should_disable(sk)) { 514 cookie->len = -1; 515 return false; 516 } 517 518 dst = __sk_dst_get(sk); 519 520 if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) { 521 cookie->len = -1; 522 return true; 523 } 524 if (cookie->len > 0) 525 return true; 526 tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE; 527 return false; 528 } 529 530 /* This function checks if we want to defer sending SYN until the first 531 * write(). We defer under the following conditions: 532 * 1. fastopen_connect sockopt is set 533 * 2. we have a valid cookie 534 * Return value: return true if we want to defer until application writes data 535 * return false if we want to send out SYN immediately 536 */ 537 bool tcp_fastopen_defer_connect(struct sock *sk, int *err) 538 { 539 struct tcp_fastopen_cookie cookie = { .len = 0 }; 540 struct tcp_sock *tp = tcp_sk(sk); 541 u16 mss; 542 543 if (tp->fastopen_connect && !tp->fastopen_req) { 544 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) { 545 inet_set_bit(DEFER_CONNECT, sk); 546 return true; 547 } 548 549 /* Alloc fastopen_req in order for FO option to be included 550 * in SYN 551 */ 552 tp->fastopen_req = kzalloc_obj(*tp->fastopen_req, 553 sk->sk_allocation); 554 if (tp->fastopen_req) 555 tp->fastopen_req->cookie = cookie; 556 else 557 *err = -ENOBUFS; 558 } 559 return false; 560 } 561 EXPORT_IPV6_MOD(tcp_fastopen_defer_connect); 562 563 /* 564 * The following code block is to deal with middle box issues with TFO: 565 * Middlebox firewall issues can potentially cause server's data being 566 * blackholed after a successful 3WHS using TFO. 567 * The proposed solution is to disable active TFO globally under the 568 * following circumstances: 569 * 1. client side TFO socket receives out of order FIN 570 * 2. client side TFO socket receives out of order RST 571 * 3. client side TFO socket has timed out three times consecutively during 572 * or after handshake 573 * We disable active side TFO globally for 1hr at first. Then if it 574 * happens again, we disable it for 2h, then 4h, 8h, ... 575 * And we reset the timeout back to 1hr when we see a successful active 576 * TFO connection with data exchanges. 577 */ 578 579 /* Disable active TFO and record current jiffies and 580 * tfo_active_disable_times 581 */ 582 void tcp_fastopen_active_disable(struct sock *sk) 583 { 584 struct net *net = sock_net(sk); 585 586 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout)) 587 return; 588 589 /* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */ 590 WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies); 591 592 /* Paired with smp_rmb() in tcp_fastopen_active_should_disable(). 593 * We want net->ipv4.tfo_active_disable_stamp to be updated first. 594 */ 595 smp_mb__before_atomic(); 596 atomic_inc(&net->ipv4.tfo_active_disable_times); 597 598 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); 599 } 600 601 /* Calculate timeout for tfo active disable 602 * Return true if we are still in the active TFO disable period 603 * Return false if timeout already expired and we should use active TFO 604 */ 605 bool tcp_fastopen_active_should_disable(struct sock *sk) 606 { 607 unsigned int tfo_bh_timeout = 608 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout); 609 unsigned long timeout; 610 int tfo_da_times; 611 int multiplier; 612 613 if (!tfo_bh_timeout) 614 return false; 615 616 tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times); 617 if (!tfo_da_times) 618 return false; 619 620 /* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */ 621 smp_rmb(); 622 623 /* Limit timeout to max: 2^6 * initial timeout */ 624 multiplier = 1 << min(tfo_da_times - 1, 6); 625 626 /* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */ 627 timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) + 628 multiplier * tfo_bh_timeout * HZ; 629 if (time_before(jiffies, timeout)) 630 return true; 631 632 /* Mark check bit so we can check for successful active TFO 633 * condition and reset tfo_active_disable_times 634 */ 635 tcp_sk(sk)->syn_fastopen_ch = 1; 636 return false; 637 } 638 639 /* Disable active TFO if FIN is the only packet in the ofo queue 640 * and no data is received. 641 * Also check if we can reset tfo_active_disable_times if data is 642 * received successfully on a marked active TFO sockets opened on 643 * a non-loopback interface 644 */ 645 void tcp_fastopen_active_disable_ofo_check(struct sock *sk) 646 { 647 struct tcp_sock *tp = tcp_sk(sk); 648 struct net_device *dev; 649 struct dst_entry *dst; 650 struct sk_buff *skb; 651 652 if (!tp->syn_fastopen) 653 return; 654 655 if (!tp->data_segs_in) { 656 skb = skb_rb_first(&tp->out_of_order_queue); 657 if (skb && !skb_rb_next(skb)) { 658 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 659 tcp_fastopen_active_disable(sk); 660 return; 661 } 662 } 663 } else if (tp->syn_fastopen_ch && 664 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) { 665 rcu_read_lock(); 666 dst = __sk_dst_get(sk); 667 dev = dst ? dst_dev_rcu(dst) : NULL; 668 if (!(dev && (dev->flags & IFF_LOOPBACK))) 669 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0); 670 rcu_read_unlock(); 671 } 672 } 673 674 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired) 675 { 676 u32 timeouts = inet_csk(sk)->icsk_retransmits; 677 struct tcp_sock *tp = tcp_sk(sk); 678 679 /* Broken middle-boxes may black-hole Fast Open connection during or 680 * even after the handshake. Be extremely conservative and pause 681 * Fast Open globally after hitting the third consecutive timeout or 682 * exceeding the configured timeout limit. 683 */ 684 if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) && 685 (timeouts == 2 || (timeouts < 2 && expired))) { 686 tcp_fastopen_active_disable(sk); 687 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 688 } 689 } 690