1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/crypto.h> 3 #include <linux/err.h> 4 #include <linux/init.h> 5 #include <linux/kernel.h> 6 #include <linux/list.h> 7 #include <linux/tcp.h> 8 #include <linux/rcupdate.h> 9 #include <linux/rculist.h> 10 #include <net/inetpeer.h> 11 #include <net/tcp.h> 12 13 void tcp_fastopen_init_key_once(struct net *net) 14 { 15 u8 key[TCP_FASTOPEN_KEY_LENGTH]; 16 struct tcp_fastopen_context *ctxt; 17 18 rcu_read_lock(); 19 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 20 if (ctxt) { 21 rcu_read_unlock(); 22 return; 23 } 24 rcu_read_unlock(); 25 26 /* tcp_fastopen_reset_cipher publishes the new context 27 * atomically, so we allow this race happening here. 28 * 29 * All call sites of tcp_fastopen_cookie_gen also check 30 * for a valid cookie, so this is an acceptable risk. 31 */ 32 get_random_bytes(key, sizeof(key)); 33 tcp_fastopen_reset_cipher(net, NULL, key, sizeof(key)); 34 } 35 36 static void tcp_fastopen_ctx_free(struct rcu_head *head) 37 { 38 struct tcp_fastopen_context *ctx = 39 container_of(head, struct tcp_fastopen_context, rcu); 40 crypto_free_cipher(ctx->tfm); 41 kfree(ctx); 42 } 43 44 void tcp_fastopen_destroy_cipher(struct sock *sk) 45 { 46 struct tcp_fastopen_context *ctx; 47 48 ctx = rcu_dereference_protected( 49 inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1); 50 if (ctx) 51 call_rcu(&ctx->rcu, tcp_fastopen_ctx_free); 52 } 53 54 void tcp_fastopen_ctx_destroy(struct net *net) 55 { 56 struct tcp_fastopen_context *ctxt; 57 58 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); 59 60 ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, 61 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 62 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL); 63 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); 64 65 if (ctxt) 66 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free); 67 } 68 69 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 70 void *key, unsigned int len) 71 { 72 struct tcp_fastopen_context *ctx, *octx; 73 struct fastopen_queue *q; 74 int err; 75 76 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 77 if (!ctx) 78 return -ENOMEM; 79 ctx->tfm = crypto_alloc_cipher("aes", 0, 0); 80 81 if (IS_ERR(ctx->tfm)) { 82 err = PTR_ERR(ctx->tfm); 83 error: kfree(ctx); 84 pr_err("TCP: TFO aes cipher alloc error: %d\n", err); 85 return err; 86 } 87 err = crypto_cipher_setkey(ctx->tfm, key, len); 88 if (err) { 89 pr_err("TCP: TFO cipher key error: %d\n", err); 90 crypto_free_cipher(ctx->tfm); 91 goto error; 92 } 93 memcpy(ctx->key, key, len); 94 95 96 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); 97 if (sk) { 98 q = &inet_csk(sk)->icsk_accept_queue.fastopenq; 99 octx = rcu_dereference_protected(q->ctx, 100 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 101 rcu_assign_pointer(q->ctx, ctx); 102 } else { 103 octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, 104 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 105 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx); 106 } 107 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); 108 109 if (octx) 110 call_rcu(&octx->rcu, tcp_fastopen_ctx_free); 111 return err; 112 } 113 114 static bool __tcp_fastopen_cookie_gen(struct sock *sk, const void *path, 115 struct tcp_fastopen_cookie *foc) 116 { 117 struct tcp_fastopen_context *ctx; 118 bool ok = false; 119 120 rcu_read_lock(); 121 122 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 123 if (!ctx) 124 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 125 126 if (ctx) { 127 crypto_cipher_encrypt_one(ctx->tfm, foc->val, path); 128 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 129 ok = true; 130 } 131 rcu_read_unlock(); 132 return ok; 133 } 134 135 /* Generate the fastopen cookie by doing aes128 encryption on both 136 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6 137 * addresses. For the longer IPv6 addresses use CBC-MAC. 138 * 139 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE. 140 */ 141 static bool tcp_fastopen_cookie_gen(struct sock *sk, 142 struct request_sock *req, 143 struct sk_buff *syn, 144 struct tcp_fastopen_cookie *foc) 145 { 146 if (req->rsk_ops->family == AF_INET) { 147 const struct iphdr *iph = ip_hdr(syn); 148 149 __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 }; 150 return __tcp_fastopen_cookie_gen(sk, path, foc); 151 } 152 153 #if IS_ENABLED(CONFIG_IPV6) 154 if (req->rsk_ops->family == AF_INET6) { 155 const struct ipv6hdr *ip6h = ipv6_hdr(syn); 156 struct tcp_fastopen_cookie tmp; 157 158 if (__tcp_fastopen_cookie_gen(sk, &ip6h->saddr, &tmp)) { 159 struct in6_addr *buf = &tmp.addr; 160 int i; 161 162 for (i = 0; i < 4; i++) 163 buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i]; 164 return __tcp_fastopen_cookie_gen(sk, buf, foc); 165 } 166 } 167 #endif 168 return false; 169 } 170 171 172 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, 173 * queue this additional data / FIN. 174 */ 175 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) 176 { 177 struct tcp_sock *tp = tcp_sk(sk); 178 179 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) 180 return; 181 182 skb = skb_clone(skb, GFP_ATOMIC); 183 if (!skb) 184 return; 185 186 skb_dst_drop(skb); 187 /* segs_in has been initialized to 1 in tcp_create_openreq_child(). 188 * Hence, reset segs_in to 0 before calling tcp_segs_in() 189 * to avoid double counting. Also, tcp_segs_in() expects 190 * skb->len to include the tcp_hdrlen. Hence, it should 191 * be called before __skb_pull(). 192 */ 193 tp->segs_in = 0; 194 tcp_segs_in(tp, skb); 195 __skb_pull(skb, tcp_hdrlen(skb)); 196 sk_forced_mem_schedule(sk, skb->truesize); 197 skb_set_owner_r(skb, sk); 198 199 TCP_SKB_CB(skb)->seq++; 200 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 201 202 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 203 __skb_queue_tail(&sk->sk_receive_queue, skb); 204 tp->syn_data_acked = 1; 205 206 /* u64_stats_update_begin(&tp->syncp) not needed here, 207 * as we certainly are not changing upper 32bit value (0) 208 */ 209 tp->bytes_received = skb->len; 210 211 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 212 tcp_fin(sk); 213 } 214 215 static struct sock *tcp_fastopen_create_child(struct sock *sk, 216 struct sk_buff *skb, 217 struct request_sock *req) 218 { 219 struct tcp_sock *tp; 220 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 221 struct sock *child; 222 bool own_req; 223 224 req->num_retrans = 0; 225 req->num_timeout = 0; 226 req->sk = NULL; 227 228 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, 229 NULL, &own_req); 230 if (!child) 231 return NULL; 232 233 spin_lock(&queue->fastopenq.lock); 234 queue->fastopenq.qlen++; 235 spin_unlock(&queue->fastopenq.lock); 236 237 /* Initialize the child socket. Have to fix some values to take 238 * into account the child is a Fast Open socket and is created 239 * only out of the bits carried in the SYN packet. 240 */ 241 tp = tcp_sk(child); 242 243 tp->fastopen_rsk = req; 244 tcp_rsk(req)->tfo_listener = true; 245 246 /* RFC1323: The window in SYN & SYN/ACK segments is never 247 * scaled. So correct it appropriately. 248 */ 249 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 250 tp->max_window = tp->snd_wnd; 251 252 /* Activate the retrans timer so that SYNACK can be retransmitted. 253 * The request socket is not added to the ehash 254 * because it's been added to the accept queue directly. 255 */ 256 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, 257 TCP_TIMEOUT_INIT, TCP_RTO_MAX); 258 259 refcount_set(&req->rsk_refcnt, 2); 260 261 /* Now finish processing the fastopen child socket. */ 262 tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 263 264 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 265 266 tcp_fastopen_add_skb(child, skb); 267 268 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; 269 tp->rcv_wup = tp->rcv_nxt; 270 /* tcp_conn_request() is sending the SYNACK, 271 * and queues the child into listener accept queue. 272 */ 273 return child; 274 } 275 276 static bool tcp_fastopen_queue_check(struct sock *sk) 277 { 278 struct fastopen_queue *fastopenq; 279 280 /* Make sure the listener has enabled fastopen, and we don't 281 * exceed the max # of pending TFO requests allowed before trying 282 * to validating the cookie in order to avoid burning CPU cycles 283 * unnecessarily. 284 * 285 * XXX (TFO) - The implication of checking the max_qlen before 286 * processing a cookie request is that clients can't differentiate 287 * between qlen overflow causing Fast Open to be disabled 288 * temporarily vs a server not supporting Fast Open at all. 289 */ 290 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; 291 if (fastopenq->max_qlen == 0) 292 return false; 293 294 if (fastopenq->qlen >= fastopenq->max_qlen) { 295 struct request_sock *req1; 296 spin_lock(&fastopenq->lock); 297 req1 = fastopenq->rskq_rst_head; 298 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { 299 __NET_INC_STATS(sock_net(sk), 300 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 301 spin_unlock(&fastopenq->lock); 302 return false; 303 } 304 fastopenq->rskq_rst_head = req1->dl_next; 305 fastopenq->qlen--; 306 spin_unlock(&fastopenq->lock); 307 reqsk_put(req1); 308 } 309 return true; 310 } 311 312 static bool tcp_fastopen_no_cookie(const struct sock *sk, 313 const struct dst_entry *dst, 314 int flag) 315 { 316 return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) || 317 tcp_sk(sk)->fastopen_no_cookie || 318 (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE)); 319 } 320 321 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) 322 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open 323 * cookie request (foc->len == 0). 324 */ 325 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 326 struct request_sock *req, 327 struct tcp_fastopen_cookie *foc, 328 const struct dst_entry *dst) 329 { 330 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; 331 int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 332 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 333 struct sock *child; 334 335 if (foc->len == 0) /* Client requests a cookie */ 336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); 337 338 if (!((tcp_fastopen & TFO_SERVER_ENABLE) && 339 (syn_data || foc->len >= 0) && 340 tcp_fastopen_queue_check(sk))) { 341 foc->len = -1; 342 return NULL; 343 } 344 345 if (syn_data && 346 tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD)) 347 goto fastopen; 348 349 if (foc->len >= 0 && /* Client presents or requests a cookie */ 350 tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc) && 351 foc->len == TCP_FASTOPEN_COOKIE_SIZE && 352 foc->len == valid_foc.len && 353 !memcmp(foc->val, valid_foc.val, foc->len)) { 354 /* Cookie is valid. Create a (full) child socket to accept 355 * the data in SYN before returning a SYN-ACK to ack the 356 * data. If we fail to create the socket, fall back and 357 * ack the ISN only but includes the same cookie. 358 * 359 * Note: Data-less SYN with valid cookie is allowed to send 360 * data in SYN_RECV state. 361 */ 362 fastopen: 363 child = tcp_fastopen_create_child(sk, skb, req); 364 if (child) { 365 foc->len = -1; 366 NET_INC_STATS(sock_net(sk), 367 LINUX_MIB_TCPFASTOPENPASSIVE); 368 return child; 369 } 370 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 371 } else if (foc->len > 0) /* Client presents an invalid cookie */ 372 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 373 374 valid_foc.exp = foc->exp; 375 *foc = valid_foc; 376 return NULL; 377 } 378 379 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 380 struct tcp_fastopen_cookie *cookie) 381 { 382 const struct dst_entry *dst; 383 384 tcp_fastopen_cache_get(sk, mss, cookie); 385 386 /* Firewall blackhole issue check */ 387 if (tcp_fastopen_active_should_disable(sk)) { 388 cookie->len = -1; 389 return false; 390 } 391 392 dst = __sk_dst_get(sk); 393 394 if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) { 395 cookie->len = -1; 396 return true; 397 } 398 return cookie->len > 0; 399 } 400 401 /* This function checks if we want to defer sending SYN until the first 402 * write(). We defer under the following conditions: 403 * 1. fastopen_connect sockopt is set 404 * 2. we have a valid cookie 405 * Return value: return true if we want to defer until application writes data 406 * return false if we want to send out SYN immediately 407 */ 408 bool tcp_fastopen_defer_connect(struct sock *sk, int *err) 409 { 410 struct tcp_fastopen_cookie cookie = { .len = 0 }; 411 struct tcp_sock *tp = tcp_sk(sk); 412 u16 mss; 413 414 if (tp->fastopen_connect && !tp->fastopen_req) { 415 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) { 416 inet_sk(sk)->defer_connect = 1; 417 return true; 418 } 419 420 /* Alloc fastopen_req in order for FO option to be included 421 * in SYN 422 */ 423 tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req), 424 sk->sk_allocation); 425 if (tp->fastopen_req) 426 tp->fastopen_req->cookie = cookie; 427 else 428 *err = -ENOBUFS; 429 } 430 return false; 431 } 432 EXPORT_SYMBOL(tcp_fastopen_defer_connect); 433 434 /* 435 * The following code block is to deal with middle box issues with TFO: 436 * Middlebox firewall issues can potentially cause server's data being 437 * blackholed after a successful 3WHS using TFO. 438 * The proposed solution is to disable active TFO globally under the 439 * following circumstances: 440 * 1. client side TFO socket receives out of order FIN 441 * 2. client side TFO socket receives out of order RST 442 * 3. client side TFO socket has timed out three times consecutively during 443 * or after handshake 444 * We disable active side TFO globally for 1hr at first. Then if it 445 * happens again, we disable it for 2h, then 4h, 8h, ... 446 * And we reset the timeout back to 1hr when we see a successful active 447 * TFO connection with data exchanges. 448 */ 449 450 /* Disable active TFO and record current jiffies and 451 * tfo_active_disable_times 452 */ 453 void tcp_fastopen_active_disable(struct sock *sk) 454 { 455 struct net *net = sock_net(sk); 456 457 atomic_inc(&net->ipv4.tfo_active_disable_times); 458 net->ipv4.tfo_active_disable_stamp = jiffies; 459 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); 460 } 461 462 /* Calculate timeout for tfo active disable 463 * Return true if we are still in the active TFO disable period 464 * Return false if timeout already expired and we should use active TFO 465 */ 466 bool tcp_fastopen_active_should_disable(struct sock *sk) 467 { 468 unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout; 469 int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times); 470 unsigned long timeout; 471 int multiplier; 472 473 if (!tfo_da_times) 474 return false; 475 476 /* Limit timout to max: 2^6 * initial timeout */ 477 multiplier = 1 << min(tfo_da_times - 1, 6); 478 timeout = multiplier * tfo_bh_timeout * HZ; 479 if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout)) 480 return true; 481 482 /* Mark check bit so we can check for successful active TFO 483 * condition and reset tfo_active_disable_times 484 */ 485 tcp_sk(sk)->syn_fastopen_ch = 1; 486 return false; 487 } 488 489 /* Disable active TFO if FIN is the only packet in the ofo queue 490 * and no data is received. 491 * Also check if we can reset tfo_active_disable_times if data is 492 * received successfully on a marked active TFO sockets opened on 493 * a non-loopback interface 494 */ 495 void tcp_fastopen_active_disable_ofo_check(struct sock *sk) 496 { 497 struct tcp_sock *tp = tcp_sk(sk); 498 struct dst_entry *dst; 499 struct sk_buff *skb; 500 501 if (!tp->syn_fastopen) 502 return; 503 504 if (!tp->data_segs_in) { 505 skb = skb_rb_first(&tp->out_of_order_queue); 506 if (skb && !skb_rb_next(skb)) { 507 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 508 tcp_fastopen_active_disable(sk); 509 return; 510 } 511 } 512 } else if (tp->syn_fastopen_ch && 513 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) { 514 dst = sk_dst_get(sk); 515 if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK))) 516 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0); 517 dst_release(dst); 518 } 519 } 520 521 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired) 522 { 523 u32 timeouts = inet_csk(sk)->icsk_retransmits; 524 struct tcp_sock *tp = tcp_sk(sk); 525 526 /* Broken middle-boxes may black-hole Fast Open connection during or 527 * even after the handshake. Be extremely conservative and pause 528 * Fast Open globally after hitting the third consecutive timeout or 529 * exceeding the configured timeout limit. 530 */ 531 if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) && 532 (timeouts == 2 || (timeouts < 2 && expired))) { 533 tcp_fastopen_active_disable(sk); 534 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 535 } 536 } 537