1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/crypto.h> 3 #include <linux/err.h> 4 #include <linux/init.h> 5 #include <linux/kernel.h> 6 #include <linux/list.h> 7 #include <linux/tcp.h> 8 #include <linux/rcupdate.h> 9 #include <linux/rculist.h> 10 #include <linux/siphash.h> 11 #include <net/inetpeer.h> 12 #include <net/tcp.h> 13 14 void tcp_fastopen_init_key_once(struct net *net) 15 { 16 u8 key[TCP_FASTOPEN_KEY_LENGTH]; 17 struct tcp_fastopen_context *ctxt; 18 19 rcu_read_lock(); 20 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 21 if (ctxt) { 22 rcu_read_unlock(); 23 return; 24 } 25 rcu_read_unlock(); 26 27 /* tcp_fastopen_reset_cipher publishes the new context 28 * atomically, so we allow this race happening here. 29 * 30 * All call sites of tcp_fastopen_cookie_gen also check 31 * for a valid cookie, so this is an acceptable risk. 32 */ 33 get_random_bytes(key, sizeof(key)); 34 tcp_fastopen_reset_cipher(net, NULL, key, NULL, sizeof(key)); 35 } 36 37 static void tcp_fastopen_ctx_free(struct rcu_head *head) 38 { 39 struct tcp_fastopen_context *ctx = 40 container_of(head, struct tcp_fastopen_context, rcu); 41 42 kzfree(ctx); 43 } 44 45 void tcp_fastopen_destroy_cipher(struct sock *sk) 46 { 47 struct tcp_fastopen_context *ctx; 48 49 ctx = rcu_dereference_protected( 50 inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1); 51 if (ctx) 52 call_rcu(&ctx->rcu, tcp_fastopen_ctx_free); 53 } 54 55 void tcp_fastopen_ctx_destroy(struct net *net) 56 { 57 struct tcp_fastopen_context *ctxt; 58 59 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); 60 61 ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, 62 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 63 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL); 64 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); 65 66 if (ctxt) 67 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free); 68 } 69 70 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 71 void *primary_key, void *backup_key, 72 unsigned int len) 73 { 74 struct tcp_fastopen_context *ctx, *octx; 75 struct fastopen_queue *q; 76 int err = 0; 77 78 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 79 if (!ctx) { 80 err = -ENOMEM; 81 goto out; 82 } 83 84 memcpy(ctx->key[0], primary_key, len); 85 if (backup_key) { 86 memcpy(ctx->key[1], backup_key, len); 87 ctx->num = 2; 88 } else { 89 ctx->num = 1; 90 } 91 92 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); 93 if (sk) { 94 q = &inet_csk(sk)->icsk_accept_queue.fastopenq; 95 octx = rcu_dereference_protected(q->ctx, 96 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 97 rcu_assign_pointer(q->ctx, ctx); 98 } else { 99 octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, 100 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 101 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx); 102 } 103 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); 104 105 if (octx) 106 call_rcu(&octx->rcu, tcp_fastopen_ctx_free); 107 out: 108 return err; 109 } 110 111 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req, 112 struct sk_buff *syn, 113 const u8 *key, 114 struct tcp_fastopen_cookie *foc) 115 { 116 BUILD_BUG_ON(TCP_FASTOPEN_KEY_LENGTH != sizeof(siphash_key_t)); 117 BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64)); 118 119 if (req->rsk_ops->family == AF_INET) { 120 const struct iphdr *iph = ip_hdr(syn); 121 122 foc->val[0] = siphash(&iph->saddr, 123 sizeof(iph->saddr) + 124 sizeof(iph->daddr), 125 (const siphash_key_t *)key); 126 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 127 return true; 128 } 129 #if IS_ENABLED(CONFIG_IPV6) 130 if (req->rsk_ops->family == AF_INET6) { 131 const struct ipv6hdr *ip6h = ipv6_hdr(syn); 132 133 foc->val[0] = siphash(&ip6h->saddr, 134 sizeof(ip6h->saddr) + 135 sizeof(ip6h->daddr), 136 (const siphash_key_t *)key); 137 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 138 return true; 139 } 140 #endif 141 return false; 142 } 143 144 /* Generate the fastopen cookie by applying SipHash to both the source and 145 * destination addresses. 146 */ 147 static void tcp_fastopen_cookie_gen(struct sock *sk, 148 struct request_sock *req, 149 struct sk_buff *syn, 150 struct tcp_fastopen_cookie *foc) 151 { 152 struct tcp_fastopen_context *ctx; 153 154 rcu_read_lock(); 155 ctx = tcp_fastopen_get_ctx(sk); 156 if (ctx) 157 __tcp_fastopen_cookie_gen_cipher(req, syn, ctx->key[0], foc); 158 rcu_read_unlock(); 159 } 160 161 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, 162 * queue this additional data / FIN. 163 */ 164 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) 165 { 166 struct tcp_sock *tp = tcp_sk(sk); 167 168 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) 169 return; 170 171 skb = skb_clone(skb, GFP_ATOMIC); 172 if (!skb) 173 return; 174 175 skb_dst_drop(skb); 176 /* segs_in has been initialized to 1 in tcp_create_openreq_child(). 177 * Hence, reset segs_in to 0 before calling tcp_segs_in() 178 * to avoid double counting. Also, tcp_segs_in() expects 179 * skb->len to include the tcp_hdrlen. Hence, it should 180 * be called before __skb_pull(). 181 */ 182 tp->segs_in = 0; 183 tcp_segs_in(tp, skb); 184 __skb_pull(skb, tcp_hdrlen(skb)); 185 sk_forced_mem_schedule(sk, skb->truesize); 186 skb_set_owner_r(skb, sk); 187 188 TCP_SKB_CB(skb)->seq++; 189 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 190 191 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 192 __skb_queue_tail(&sk->sk_receive_queue, skb); 193 tp->syn_data_acked = 1; 194 195 /* u64_stats_update_begin(&tp->syncp) not needed here, 196 * as we certainly are not changing upper 32bit value (0) 197 */ 198 tp->bytes_received = skb->len; 199 200 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 201 tcp_fin(sk); 202 } 203 204 /* returns 0 - no key match, 1 for primary, 2 for backup */ 205 static int tcp_fastopen_cookie_gen_check(struct sock *sk, 206 struct request_sock *req, 207 struct sk_buff *syn, 208 struct tcp_fastopen_cookie *orig, 209 struct tcp_fastopen_cookie *valid_foc) 210 { 211 struct tcp_fastopen_cookie search_foc = { .len = -1 }; 212 struct tcp_fastopen_cookie *foc = valid_foc; 213 struct tcp_fastopen_context *ctx; 214 int i, ret = 0; 215 216 rcu_read_lock(); 217 ctx = tcp_fastopen_get_ctx(sk); 218 if (!ctx) 219 goto out; 220 for (i = 0; i < tcp_fastopen_context_len(ctx); i++) { 221 __tcp_fastopen_cookie_gen_cipher(req, syn, ctx->key[i], foc); 222 if (tcp_fastopen_cookie_match(foc, orig)) { 223 ret = i + 1; 224 goto out; 225 } 226 foc = &search_foc; 227 } 228 out: 229 rcu_read_unlock(); 230 return ret; 231 } 232 233 static struct sock *tcp_fastopen_create_child(struct sock *sk, 234 struct sk_buff *skb, 235 struct request_sock *req) 236 { 237 struct tcp_sock *tp; 238 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 239 struct sock *child; 240 bool own_req; 241 242 req->num_retrans = 0; 243 req->num_timeout = 0; 244 req->sk = NULL; 245 246 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, 247 NULL, &own_req); 248 if (!child) 249 return NULL; 250 251 spin_lock(&queue->fastopenq.lock); 252 queue->fastopenq.qlen++; 253 spin_unlock(&queue->fastopenq.lock); 254 255 /* Initialize the child socket. Have to fix some values to take 256 * into account the child is a Fast Open socket and is created 257 * only out of the bits carried in the SYN packet. 258 */ 259 tp = tcp_sk(child); 260 261 tp->fastopen_rsk = req; 262 tcp_rsk(req)->tfo_listener = true; 263 264 /* RFC1323: The window in SYN & SYN/ACK segments is never 265 * scaled. So correct it appropriately. 266 */ 267 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 268 tp->max_window = tp->snd_wnd; 269 270 /* Activate the retrans timer so that SYNACK can be retransmitted. 271 * The request socket is not added to the ehash 272 * because it's been added to the accept queue directly. 273 */ 274 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, 275 TCP_TIMEOUT_INIT, TCP_RTO_MAX); 276 277 refcount_set(&req->rsk_refcnt, 2); 278 279 /* Now finish processing the fastopen child socket. */ 280 tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 281 282 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 283 284 tcp_fastopen_add_skb(child, skb); 285 286 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; 287 tp->rcv_wup = tp->rcv_nxt; 288 /* tcp_conn_request() is sending the SYNACK, 289 * and queues the child into listener accept queue. 290 */ 291 return child; 292 } 293 294 static bool tcp_fastopen_queue_check(struct sock *sk) 295 { 296 struct fastopen_queue *fastopenq; 297 298 /* Make sure the listener has enabled fastopen, and we don't 299 * exceed the max # of pending TFO requests allowed before trying 300 * to validating the cookie in order to avoid burning CPU cycles 301 * unnecessarily. 302 * 303 * XXX (TFO) - The implication of checking the max_qlen before 304 * processing a cookie request is that clients can't differentiate 305 * between qlen overflow causing Fast Open to be disabled 306 * temporarily vs a server not supporting Fast Open at all. 307 */ 308 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; 309 if (fastopenq->max_qlen == 0) 310 return false; 311 312 if (fastopenq->qlen >= fastopenq->max_qlen) { 313 struct request_sock *req1; 314 spin_lock(&fastopenq->lock); 315 req1 = fastopenq->rskq_rst_head; 316 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { 317 __NET_INC_STATS(sock_net(sk), 318 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 319 spin_unlock(&fastopenq->lock); 320 return false; 321 } 322 fastopenq->rskq_rst_head = req1->dl_next; 323 fastopenq->qlen--; 324 spin_unlock(&fastopenq->lock); 325 reqsk_put(req1); 326 } 327 return true; 328 } 329 330 static bool tcp_fastopen_no_cookie(const struct sock *sk, 331 const struct dst_entry *dst, 332 int flag) 333 { 334 return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) || 335 tcp_sk(sk)->fastopen_no_cookie || 336 (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE)); 337 } 338 339 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) 340 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open 341 * cookie request (foc->len == 0). 342 */ 343 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 344 struct request_sock *req, 345 struct tcp_fastopen_cookie *foc, 346 const struct dst_entry *dst) 347 { 348 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; 349 int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 350 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 351 struct sock *child; 352 int ret = 0; 353 354 if (foc->len == 0) /* Client requests a cookie */ 355 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); 356 357 if (!((tcp_fastopen & TFO_SERVER_ENABLE) && 358 (syn_data || foc->len >= 0) && 359 tcp_fastopen_queue_check(sk))) { 360 foc->len = -1; 361 return NULL; 362 } 363 364 if (syn_data && 365 tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD)) 366 goto fastopen; 367 368 if (foc->len == 0) { 369 /* Client requests a cookie. */ 370 tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc); 371 } else if (foc->len > 0) { 372 ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc, 373 &valid_foc); 374 if (!ret) { 375 NET_INC_STATS(sock_net(sk), 376 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 377 } else { 378 /* Cookie is valid. Create a (full) child socket to 379 * accept the data in SYN before returning a SYN-ACK to 380 * ack the data. If we fail to create the socket, fall 381 * back and ack the ISN only but includes the same 382 * cookie. 383 * 384 * Note: Data-less SYN with valid cookie is allowed to 385 * send data in SYN_RECV state. 386 */ 387 fastopen: 388 child = tcp_fastopen_create_child(sk, skb, req); 389 if (child) { 390 if (ret == 2) { 391 valid_foc.exp = foc->exp; 392 *foc = valid_foc; 393 NET_INC_STATS(sock_net(sk), 394 LINUX_MIB_TCPFASTOPENPASSIVEALTKEY); 395 } else { 396 foc->len = -1; 397 } 398 NET_INC_STATS(sock_net(sk), 399 LINUX_MIB_TCPFASTOPENPASSIVE); 400 return child; 401 } 402 NET_INC_STATS(sock_net(sk), 403 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 404 } 405 } 406 valid_foc.exp = foc->exp; 407 *foc = valid_foc; 408 return NULL; 409 } 410 411 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 412 struct tcp_fastopen_cookie *cookie) 413 { 414 const struct dst_entry *dst; 415 416 tcp_fastopen_cache_get(sk, mss, cookie); 417 418 /* Firewall blackhole issue check */ 419 if (tcp_fastopen_active_should_disable(sk)) { 420 cookie->len = -1; 421 return false; 422 } 423 424 dst = __sk_dst_get(sk); 425 426 if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) { 427 cookie->len = -1; 428 return true; 429 } 430 return cookie->len > 0; 431 } 432 433 /* This function checks if we want to defer sending SYN until the first 434 * write(). We defer under the following conditions: 435 * 1. fastopen_connect sockopt is set 436 * 2. we have a valid cookie 437 * Return value: return true if we want to defer until application writes data 438 * return false if we want to send out SYN immediately 439 */ 440 bool tcp_fastopen_defer_connect(struct sock *sk, int *err) 441 { 442 struct tcp_fastopen_cookie cookie = { .len = 0 }; 443 struct tcp_sock *tp = tcp_sk(sk); 444 u16 mss; 445 446 if (tp->fastopen_connect && !tp->fastopen_req) { 447 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) { 448 inet_sk(sk)->defer_connect = 1; 449 return true; 450 } 451 452 /* Alloc fastopen_req in order for FO option to be included 453 * in SYN 454 */ 455 tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req), 456 sk->sk_allocation); 457 if (tp->fastopen_req) 458 tp->fastopen_req->cookie = cookie; 459 else 460 *err = -ENOBUFS; 461 } 462 return false; 463 } 464 EXPORT_SYMBOL(tcp_fastopen_defer_connect); 465 466 /* 467 * The following code block is to deal with middle box issues with TFO: 468 * Middlebox firewall issues can potentially cause server's data being 469 * blackholed after a successful 3WHS using TFO. 470 * The proposed solution is to disable active TFO globally under the 471 * following circumstances: 472 * 1. client side TFO socket receives out of order FIN 473 * 2. client side TFO socket receives out of order RST 474 * 3. client side TFO socket has timed out three times consecutively during 475 * or after handshake 476 * We disable active side TFO globally for 1hr at first. Then if it 477 * happens again, we disable it for 2h, then 4h, 8h, ... 478 * And we reset the timeout back to 1hr when we see a successful active 479 * TFO connection with data exchanges. 480 */ 481 482 /* Disable active TFO and record current jiffies and 483 * tfo_active_disable_times 484 */ 485 void tcp_fastopen_active_disable(struct sock *sk) 486 { 487 struct net *net = sock_net(sk); 488 489 atomic_inc(&net->ipv4.tfo_active_disable_times); 490 net->ipv4.tfo_active_disable_stamp = jiffies; 491 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); 492 } 493 494 /* Calculate timeout for tfo active disable 495 * Return true if we are still in the active TFO disable period 496 * Return false if timeout already expired and we should use active TFO 497 */ 498 bool tcp_fastopen_active_should_disable(struct sock *sk) 499 { 500 unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout; 501 int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times); 502 unsigned long timeout; 503 int multiplier; 504 505 if (!tfo_da_times) 506 return false; 507 508 /* Limit timout to max: 2^6 * initial timeout */ 509 multiplier = 1 << min(tfo_da_times - 1, 6); 510 timeout = multiplier * tfo_bh_timeout * HZ; 511 if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout)) 512 return true; 513 514 /* Mark check bit so we can check for successful active TFO 515 * condition and reset tfo_active_disable_times 516 */ 517 tcp_sk(sk)->syn_fastopen_ch = 1; 518 return false; 519 } 520 521 /* Disable active TFO if FIN is the only packet in the ofo queue 522 * and no data is received. 523 * Also check if we can reset tfo_active_disable_times if data is 524 * received successfully on a marked active TFO sockets opened on 525 * a non-loopback interface 526 */ 527 void tcp_fastopen_active_disable_ofo_check(struct sock *sk) 528 { 529 struct tcp_sock *tp = tcp_sk(sk); 530 struct dst_entry *dst; 531 struct sk_buff *skb; 532 533 if (!tp->syn_fastopen) 534 return; 535 536 if (!tp->data_segs_in) { 537 skb = skb_rb_first(&tp->out_of_order_queue); 538 if (skb && !skb_rb_next(skb)) { 539 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 540 tcp_fastopen_active_disable(sk); 541 return; 542 } 543 } 544 } else if (tp->syn_fastopen_ch && 545 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) { 546 dst = sk_dst_get(sk); 547 if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK))) 548 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0); 549 dst_release(dst); 550 } 551 } 552 553 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired) 554 { 555 u32 timeouts = inet_csk(sk)->icsk_retransmits; 556 struct tcp_sock *tp = tcp_sk(sk); 557 558 /* Broken middle-boxes may black-hole Fast Open connection during or 559 * even after the handshake. Be extremely conservative and pause 560 * Fast Open globally after hitting the third consecutive timeout or 561 * exceeding the configured timeout limit. 562 */ 563 if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) && 564 (timeouts == 2 || (timeouts < 2 && expired))) { 565 tcp_fastopen_active_disable(sk); 566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 567 } 568 } 569