xref: /linux/net/ipv4/tcp_cubic.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * TCP CUBIC: Binary Increase Congestion control for TCP v2.0
3  *
4  * This is from the implementation of CUBIC TCP in
5  * Injong Rhee, Lisong Xu.
6  *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant
7  *  in PFLDnet 2005
8  * Available from:
9  *  http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
10  *
11  * Unless CUBIC is enabled and congestion window is large
12  * this behaves the same as the original Reno.
13  */
14 
15 #include <linux/mm.h>
16 #include <linux/module.h>
17 #include <net/tcp.h>
18 #include <asm/div64.h>
19 
20 #define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation
21 					 * max_cwnd = snd_cwnd * beta
22 					 */
23 #define BICTCP_B		4	 /*
24 					  * In binary search,
25 					  * go to point (max+min)/N
26 					  */
27 #define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */
28 
29 static int fast_convergence = 1;
30 static int max_increment = 16;
31 static int beta = 819;		/* = 819/1024 (BICTCP_BETA_SCALE) */
32 static int initial_ssthresh = 100;
33 static int bic_scale = 41;
34 static int tcp_friendliness = 1;
35 
36 static u32 cube_rtt_scale;
37 static u32 beta_scale;
38 static u64 cube_factor;
39 
40 /* Note parameters that are used for precomputing scale factors are read-only */
41 module_param(fast_convergence, int, 0644);
42 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
43 module_param(max_increment, int, 0644);
44 MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search");
45 module_param(beta, int, 0444);
46 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
47 module_param(initial_ssthresh, int, 0644);
48 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
49 module_param(bic_scale, int, 0444);
50 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
51 module_param(tcp_friendliness, int, 0644);
52 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
53 
54 #include <asm/div64.h>
55 
56 /* BIC TCP Parameters */
57 struct bictcp {
58 	u32	cnt;		/* increase cwnd by 1 after ACKs */
59 	u32 	last_max_cwnd;	/* last maximum snd_cwnd */
60 	u32	loss_cwnd;	/* congestion window at last loss */
61 	u32	last_cwnd;	/* the last snd_cwnd */
62 	u32	last_time;	/* time when updated last_cwnd */
63 	u32	bic_origin_point;/* origin point of bic function */
64 	u32	bic_K;		/* time to origin point from the beginning of the current epoch */
65 	u32	delay_min;	/* min delay */
66 	u32	epoch_start;	/* beginning of an epoch */
67 	u32	ack_cnt;	/* number of acks */
68 	u32	tcp_cwnd;	/* estimated tcp cwnd */
69 #define ACK_RATIO_SHIFT	4
70 	u32	delayed_ack;	/* estimate the ratio of Packets/ACKs << 4 */
71 };
72 
73 static inline void bictcp_reset(struct bictcp *ca)
74 {
75 	ca->cnt = 0;
76 	ca->last_max_cwnd = 0;
77 	ca->loss_cwnd = 0;
78 	ca->last_cwnd = 0;
79 	ca->last_time = 0;
80 	ca->bic_origin_point = 0;
81 	ca->bic_K = 0;
82 	ca->delay_min = 0;
83 	ca->epoch_start = 0;
84 	ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
85 	ca->ack_cnt = 0;
86 	ca->tcp_cwnd = 0;
87 }
88 
89 static void bictcp_init(struct sock *sk)
90 {
91 	bictcp_reset(inet_csk_ca(sk));
92 	if (initial_ssthresh)
93 		tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
94 }
95 
96 /* 64bit divisor, dividend and result. dynamic precision */
97 static inline u_int64_t div64_64(u_int64_t dividend, u_int64_t divisor)
98 {
99 	u_int32_t d = divisor;
100 
101 	if (divisor > 0xffffffffULL) {
102 		unsigned int shift = fls(divisor >> 32);
103 
104 		d = divisor >> shift;
105 		dividend >>= shift;
106 	}
107 
108 	/* avoid 64 bit division if possible */
109 	if (dividend >> 32)
110 		do_div(dividend, d);
111 	else
112 		dividend = (uint32_t) dividend / d;
113 
114 	return dividend;
115 }
116 
117 /*
118  * calculate the cubic root of x using Newton-Raphson
119  */
120 static u32 cubic_root(u64 a)
121 {
122 	u32 x, x1;
123 
124 	/* Initial estimate is based on:
125 	 * cbrt(x) = exp(log(x) / 3)
126 	 */
127 	x = 1u << (fls64(a)/3);
128 
129 	/*
130 	 * Iteration based on:
131 	 *                         2
132 	 * x    = ( 2 * x  +  a / x  ) / 3
133 	 *  k+1          k         k
134 	 */
135 	do {
136 		x1 = x;
137 		x = (2 * x + (uint32_t) div64_64(a, x*x)) / 3;
138 	} while (abs(x1 - x) > 1);
139 
140 	return x;
141 }
142 
143 /*
144  * Compute congestion window to use.
145  */
146 static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
147 {
148 	u64 offs;
149 	u32 delta, t, bic_target, min_cnt, max_cnt;
150 
151 	ca->ack_cnt++;	/* count the number of ACKs */
152 
153 	if (ca->last_cwnd == cwnd &&
154 	    (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
155 		return;
156 
157 	ca->last_cwnd = cwnd;
158 	ca->last_time = tcp_time_stamp;
159 
160 	if (ca->epoch_start == 0) {
161 		ca->epoch_start = tcp_time_stamp;	/* record the beginning of an epoch */
162 		ca->ack_cnt = 1;			/* start counting */
163 		ca->tcp_cwnd = cwnd;			/* syn with cubic */
164 
165 		if (ca->last_max_cwnd <= cwnd) {
166 			ca->bic_K = 0;
167 			ca->bic_origin_point = cwnd;
168 		} else {
169 			/* Compute new K based on
170 			 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
171 			 */
172 			ca->bic_K = cubic_root(cube_factor
173 					       * (ca->last_max_cwnd - cwnd));
174 			ca->bic_origin_point = ca->last_max_cwnd;
175 		}
176 	}
177 
178         /* cubic function - calc*/
179         /* calculate c * time^3 / rtt,
180          *  while considering overflow in calculation of time^3
181 	 * (so time^3 is done by using 64 bit)
182 	 * and without the support of division of 64bit numbers
183 	 * (so all divisions are done by using 32 bit)
184          *  also NOTE the unit of those veriables
185          *	  time  = (t - K) / 2^bictcp_HZ
186          *	  c = bic_scale >> 10
187 	 * rtt  = (srtt >> 3) / HZ
188 	 * !!! The following code does not have overflow problems,
189 	 * if the cwnd < 1 million packets !!!
190          */
191 
192 	/* change the unit from HZ to bictcp_HZ */
193         t = ((tcp_time_stamp + ca->delay_min - ca->epoch_start)
194 	     << BICTCP_HZ) / HZ;
195 
196         if (t < ca->bic_K)		/* t - K */
197 		offs = ca->bic_K - t;
198         else
199                 offs = t - ca->bic_K;
200 
201 	/* c/rtt * (t-K)^3 */
202 	delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
203         if (t < ca->bic_K)                                	/* below origin*/
204                 bic_target = ca->bic_origin_point - delta;
205         else                                                	/* above origin*/
206                 bic_target = ca->bic_origin_point + delta;
207 
208         /* cubic function - calc bictcp_cnt*/
209         if (bic_target > cwnd) {
210 		ca->cnt = cwnd / (bic_target - cwnd);
211         } else {
212                 ca->cnt = 100 * cwnd;              /* very small increment*/
213         }
214 
215 	if (ca->delay_min > 0) {
216 		/* max increment = Smax * rtt / 0.1  */
217 		min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min);
218 		if (ca->cnt < min_cnt)
219 			ca->cnt = min_cnt;
220 	}
221 
222         /* slow start and low utilization  */
223 	if (ca->loss_cwnd == 0)		/* could be aggressive in slow start */
224 		ca->cnt = 50;
225 
226 	/* TCP Friendly */
227 	if (tcp_friendliness) {
228 		u32 scale = beta_scale;
229 		delta = (cwnd * scale) >> 3;
230 	        while (ca->ack_cnt > delta) {		/* update tcp cwnd */
231 	                ca->ack_cnt -= delta;
232         	        ca->tcp_cwnd++;
233 		}
234 
235 		if (ca->tcp_cwnd > cwnd){	/* if bic is slower than tcp */
236 			delta = ca->tcp_cwnd - cwnd;
237 			max_cnt = cwnd / delta;
238 			if (ca->cnt > max_cnt)
239 				ca->cnt = max_cnt;
240 		}
241         }
242 
243 	ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
244 	if (ca->cnt == 0)			/* cannot be zero */
245 		ca->cnt = 1;
246 }
247 
248 
249 /* Keep track of minimum rtt */
250 static inline void measure_delay(struct sock *sk)
251 {
252 	const struct tcp_sock *tp = tcp_sk(sk);
253 	struct bictcp *ca = inet_csk_ca(sk);
254 	u32 delay;
255 
256 	/* No time stamp */
257 	if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) ||
258 	     /* Discard delay samples right after fast recovery */
259 	    (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
260 		return;
261 
262 	delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
263 	if (delay == 0)
264 		delay = 1;
265 
266 	/* first time call or link delay decreases */
267 	if (ca->delay_min == 0 || ca->delay_min > delay)
268 		ca->delay_min = delay;
269 }
270 
271 static void bictcp_cong_avoid(struct sock *sk, u32 ack,
272 			      u32 seq_rtt, u32 in_flight, int data_acked)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 	struct bictcp *ca = inet_csk_ca(sk);
276 
277 	if (data_acked)
278 		measure_delay(sk);
279 
280 	if (!tcp_is_cwnd_limited(sk, in_flight))
281 		return;
282 
283 	if (tp->snd_cwnd <= tp->snd_ssthresh)
284 		tcp_slow_start(tp);
285 	else {
286 		bictcp_update(ca, tp->snd_cwnd);
287 
288 		/* In dangerous area, increase slowly.
289 		 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
290 		 */
291 		if (tp->snd_cwnd_cnt >= ca->cnt) {
292 			if (tp->snd_cwnd < tp->snd_cwnd_clamp)
293 				tp->snd_cwnd++;
294 			tp->snd_cwnd_cnt = 0;
295 		} else
296 			tp->snd_cwnd_cnt++;
297 	}
298 
299 }
300 
301 static u32 bictcp_recalc_ssthresh(struct sock *sk)
302 {
303 	const struct tcp_sock *tp = tcp_sk(sk);
304 	struct bictcp *ca = inet_csk_ca(sk);
305 
306 	ca->epoch_start = 0;	/* end of epoch */
307 
308 	/* Wmax and fast convergence */
309 	if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
310 		ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
311 			/ (2 * BICTCP_BETA_SCALE);
312 	else
313 		ca->last_max_cwnd = tp->snd_cwnd;
314 
315 	ca->loss_cwnd = tp->snd_cwnd;
316 
317 	return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
318 }
319 
320 static u32 bictcp_undo_cwnd(struct sock *sk)
321 {
322 	struct bictcp *ca = inet_csk_ca(sk);
323 
324 	return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
325 }
326 
327 static void bictcp_state(struct sock *sk, u8 new_state)
328 {
329 	if (new_state == TCP_CA_Loss)
330 		bictcp_reset(inet_csk_ca(sk));
331 }
332 
333 /* Track delayed acknowledgment ratio using sliding window
334  * ratio = (15*ratio + sample) / 16
335  */
336 static void bictcp_acked(struct sock *sk, u32 cnt)
337 {
338 	const struct inet_connection_sock *icsk = inet_csk(sk);
339 
340 	if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) {
341 		struct bictcp *ca = inet_csk_ca(sk);
342 		cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
343 		ca->delayed_ack += cnt;
344 	}
345 }
346 
347 
348 static struct tcp_congestion_ops cubictcp = {
349 	.init		= bictcp_init,
350 	.ssthresh	= bictcp_recalc_ssthresh,
351 	.cong_avoid	= bictcp_cong_avoid,
352 	.set_state	= bictcp_state,
353 	.undo_cwnd	= bictcp_undo_cwnd,
354 	.pkts_acked     = bictcp_acked,
355 	.owner		= THIS_MODULE,
356 	.name		= "cubic",
357 };
358 
359 static int __init cubictcp_register(void)
360 {
361 	BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
362 
363 	/* Precompute a bunch of the scaling factors that are used per-packet
364 	 * based on SRTT of 100ms
365 	 */
366 
367 	beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
368 
369 	cube_rtt_scale = (bic_scale << 3) / 10;	/* 1024*c/rtt */
370 
371 	/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
372 	 *  so K = cubic_root( (wmax-cwnd)*rtt/c )
373 	 * the unit of K is bictcp_HZ=2^10, not HZ
374 	 *
375 	 *  c = bic_scale >> 10
376 	 *  rtt = 100ms
377 	 *
378 	 * the following code has been designed and tested for
379 	 * cwnd < 1 million packets
380 	 * RTT < 100 seconds
381 	 * HZ < 1,000,00  (corresponding to 10 nano-second)
382 	 */
383 
384 	/* 1/c * 2^2*bictcp_HZ * srtt */
385 	cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
386 
387 	/* divide by bic_scale and by constant Srtt (100ms) */
388 	do_div(cube_factor, bic_scale * 10);
389 
390 	return tcp_register_congestion_control(&cubictcp);
391 }
392 
393 static void __exit cubictcp_unregister(void)
394 {
395 	tcp_unregister_congestion_control(&cubictcp);
396 }
397 
398 module_init(cubictcp_register);
399 module_exit(cubictcp_unregister);
400 
401 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
402 MODULE_LICENSE("GPL");
403 MODULE_DESCRIPTION("CUBIC TCP");
404 MODULE_VERSION("2.0");
405