xref: /linux/net/ipv4/tcp_bbr.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /* Bottleneck Bandwidth and RTT (BBR) congestion control
2  *
3  * BBR congestion control computes the sending rate based on the delivery
4  * rate (throughput) estimated from ACKs. In a nutshell:
5  *
6  *   On each ACK, update our model of the network path:
7  *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8  *      min_rtt = windowed_min(rtt, 10 seconds)
9  *   pacing_rate = pacing_gain * bottleneck_bandwidth
10  *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11  *
12  * The core algorithm does not react directly to packet losses or delays,
13  * although BBR may adjust the size of next send per ACK when loss is
14  * observed, or adjust the sending rate if it estimates there is a
15  * traffic policer, in order to keep the drop rate reasonable.
16  *
17  * BBR is described in detail in:
18  *   "BBR: Congestion-Based Congestion Control",
19  *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
20  *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
21  *
22  * There is a public e-mail list for discussing BBR development and testing:
23  *   https://groups.google.com/forum/#!forum/bbr-dev
24  *
25  * NOTE: BBR *must* be used with the fq qdisc ("man tc-fq") with pacing enabled,
26  * since pacing is integral to the BBR design and implementation.
27  * BBR without pacing would not function properly, and may incur unnecessary
28  * high packet loss rates.
29  */
30 #include <linux/module.h>
31 #include <net/tcp.h>
32 #include <linux/inet_diag.h>
33 #include <linux/inet.h>
34 #include <linux/random.h>
35 #include <linux/win_minmax.h>
36 
37 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
38  * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
39  * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
40  * Since the minimum window is >=4 packets, the lower bound isn't
41  * an issue. The upper bound isn't an issue with existing technologies.
42  */
43 #define BW_SCALE 24
44 #define BW_UNIT (1 << BW_SCALE)
45 
46 #define BBR_SCALE 8	/* scaling factor for fractions in BBR (e.g. gains) */
47 #define BBR_UNIT (1 << BBR_SCALE)
48 
49 /* BBR has the following modes for deciding how fast to send: */
50 enum bbr_mode {
51 	BBR_STARTUP,	/* ramp up sending rate rapidly to fill pipe */
52 	BBR_DRAIN,	/* drain any queue created during startup */
53 	BBR_PROBE_BW,	/* discover, share bw: pace around estimated bw */
54 	BBR_PROBE_RTT,	/* cut cwnd to min to probe min_rtt */
55 };
56 
57 /* BBR congestion control block */
58 struct bbr {
59 	u32	min_rtt_us;	        /* min RTT in min_rtt_win_sec window */
60 	u32	min_rtt_stamp;	        /* timestamp of min_rtt_us */
61 	u32	probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
62 	struct minmax bw;	/* Max recent delivery rate in pkts/uS << 24 */
63 	u32	rtt_cnt;	    /* count of packet-timed rounds elapsed */
64 	u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
65 	struct skb_mstamp cycle_mstamp;  /* time of this cycle phase start */
66 	u32     mode:3,		     /* current bbr_mode in state machine */
67 		prev_ca_state:3,     /* CA state on previous ACK */
68 		packet_conservation:1,  /* use packet conservation? */
69 		restore_cwnd:1,	     /* decided to revert cwnd to old value */
70 		round_start:1,	     /* start of packet-timed tx->ack round? */
71 		tso_segs_goal:7,     /* segments we want in each skb we send */
72 		idle_restart:1,	     /* restarting after idle? */
73 		probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
74 		unused:5,
75 		lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
76 		lt_rtt_cnt:7,	     /* round trips in long-term interval */
77 		lt_use_bw:1;	     /* use lt_bw as our bw estimate? */
78 	u32	lt_bw;		     /* LT est delivery rate in pkts/uS << 24 */
79 	u32	lt_last_delivered;   /* LT intvl start: tp->delivered */
80 	u32	lt_last_stamp;	     /* LT intvl start: tp->delivered_mstamp */
81 	u32	lt_last_lost;	     /* LT intvl start: tp->lost */
82 	u32	pacing_gain:10,	/* current gain for setting pacing rate */
83 		cwnd_gain:10,	/* current gain for setting cwnd */
84 		full_bw_cnt:3,	/* number of rounds without large bw gains */
85 		cycle_idx:3,	/* current index in pacing_gain cycle array */
86 		unused_b:6;
87 	u32	prior_cwnd;	/* prior cwnd upon entering loss recovery */
88 	u32	full_bw;	/* recent bw, to estimate if pipe is full */
89 };
90 
91 #define CYCLE_LEN	8	/* number of phases in a pacing gain cycle */
92 
93 /* Window length of bw filter (in rounds): */
94 static const int bbr_bw_rtts = CYCLE_LEN + 2;
95 /* Window length of min_rtt filter (in sec): */
96 static const u32 bbr_min_rtt_win_sec = 10;
97 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
98 static const u32 bbr_probe_rtt_mode_ms = 200;
99 /* Skip TSO below the following bandwidth (bits/sec): */
100 static const int bbr_min_tso_rate = 1200000;
101 
102 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
103  * that will allow a smoothly increasing pacing rate that will double each RTT
104  * and send the same number of packets per RTT that an un-paced, slow-starting
105  * Reno or CUBIC flow would:
106  */
107 static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
108 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
109  * the queue created in BBR_STARTUP in a single round:
110  */
111 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
112 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
113 static const int bbr_cwnd_gain  = BBR_UNIT * 2;
114 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
115 static const int bbr_pacing_gain[] = {
116 	BBR_UNIT * 5 / 4,	/* probe for more available bw */
117 	BBR_UNIT * 3 / 4,	/* drain queue and/or yield bw to other flows */
118 	BBR_UNIT, BBR_UNIT, BBR_UNIT,	/* cruise at 1.0*bw to utilize pipe, */
119 	BBR_UNIT, BBR_UNIT, BBR_UNIT	/* without creating excess queue... */
120 };
121 /* Randomize the starting gain cycling phase over N phases: */
122 static const u32 bbr_cycle_rand = 7;
123 
124 /* Try to keep at least this many packets in flight, if things go smoothly. For
125  * smooth functioning, a sliding window protocol ACKing every other packet
126  * needs at least 4 packets in flight:
127  */
128 static const u32 bbr_cwnd_min_target = 4;
129 
130 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
131 /* If bw has increased significantly (1.25x), there may be more bw available: */
132 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
133 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
134 static const u32 bbr_full_bw_cnt = 3;
135 
136 /* "long-term" ("LT") bandwidth estimator parameters... */
137 /* The minimum number of rounds in an LT bw sampling interval: */
138 static const u32 bbr_lt_intvl_min_rtts = 4;
139 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
140 static const u32 bbr_lt_loss_thresh = 50;
141 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
142 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
143 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
144 static const u32 bbr_lt_bw_diff = 4000 / 8;
145 /* If we estimate we're policed, use lt_bw for this many round trips: */
146 static const u32 bbr_lt_bw_max_rtts = 48;
147 
148 /* Do we estimate that STARTUP filled the pipe? */
149 static bool bbr_full_bw_reached(const struct sock *sk)
150 {
151 	const struct bbr *bbr = inet_csk_ca(sk);
152 
153 	return bbr->full_bw_cnt >= bbr_full_bw_cnt;
154 }
155 
156 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
157 static u32 bbr_max_bw(const struct sock *sk)
158 {
159 	struct bbr *bbr = inet_csk_ca(sk);
160 
161 	return minmax_get(&bbr->bw);
162 }
163 
164 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
165 static u32 bbr_bw(const struct sock *sk)
166 {
167 	struct bbr *bbr = inet_csk_ca(sk);
168 
169 	return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
170 }
171 
172 /* Return rate in bytes per second, optionally with a gain.
173  * The order here is chosen carefully to avoid overflow of u64. This should
174  * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
175  */
176 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
177 {
178 	rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
179 	rate *= gain;
180 	rate >>= BBR_SCALE;
181 	rate *= USEC_PER_SEC;
182 	return rate >> BW_SCALE;
183 }
184 
185 /* Pace using current bw estimate and a gain factor. In order to help drive the
186  * network toward lower queues while maintaining high utilization and low
187  * latency, the average pacing rate aims to be slightly (~1%) lower than the
188  * estimated bandwidth. This is an important aspect of the design. In this
189  * implementation this slightly lower pacing rate is achieved implicitly by not
190  * including link-layer headers in the packet size used for the pacing rate.
191  */
192 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
193 {
194 	struct bbr *bbr = inet_csk_ca(sk);
195 	u64 rate = bw;
196 
197 	rate = bbr_rate_bytes_per_sec(sk, rate, gain);
198 	rate = min_t(u64, rate, sk->sk_max_pacing_rate);
199 	if (bbr->mode != BBR_STARTUP || rate > sk->sk_pacing_rate)
200 		sk->sk_pacing_rate = rate;
201 }
202 
203 /* Return count of segments we want in the skbs we send, or 0 for default. */
204 static u32 bbr_tso_segs_goal(struct sock *sk)
205 {
206 	struct bbr *bbr = inet_csk_ca(sk);
207 
208 	return bbr->tso_segs_goal;
209 }
210 
211 static void bbr_set_tso_segs_goal(struct sock *sk)
212 {
213 	struct tcp_sock *tp = tcp_sk(sk);
214 	struct bbr *bbr = inet_csk_ca(sk);
215 	u32 min_segs;
216 
217 	min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
218 	bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
219 				 0x7FU);
220 }
221 
222 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
223 static void bbr_save_cwnd(struct sock *sk)
224 {
225 	struct tcp_sock *tp = tcp_sk(sk);
226 	struct bbr *bbr = inet_csk_ca(sk);
227 
228 	if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
229 		bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */
230 	else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
231 		bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
232 }
233 
234 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
235 {
236 	struct tcp_sock *tp = tcp_sk(sk);
237 	struct bbr *bbr = inet_csk_ca(sk);
238 
239 	if (event == CA_EVENT_TX_START && tp->app_limited) {
240 		bbr->idle_restart = 1;
241 		/* Avoid pointless buffer overflows: pace at est. bw if we don't
242 		 * need more speed (we're restarting from idle and app-limited).
243 		 */
244 		if (bbr->mode == BBR_PROBE_BW)
245 			bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
246 	}
247 }
248 
249 /* Find target cwnd. Right-size the cwnd based on min RTT and the
250  * estimated bottleneck bandwidth:
251  *
252  * cwnd = bw * min_rtt * gain = BDP * gain
253  *
254  * The key factor, gain, controls the amount of queue. While a small gain
255  * builds a smaller queue, it becomes more vulnerable to noise in RTT
256  * measurements (e.g., delayed ACKs or other ACK compression effects). This
257  * noise may cause BBR to under-estimate the rate.
258  *
259  * To achieve full performance in high-speed paths, we budget enough cwnd to
260  * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
261  *   - one skb in sending host Qdisc,
262  *   - one skb in sending host TSO/GSO engine
263  *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
264  * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
265  * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
266  * which allows 2 outstanding 2-packet sequences, to try to keep pipe
267  * full even with ACK-every-other-packet delayed ACKs.
268  */
269 static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
270 {
271 	struct bbr *bbr = inet_csk_ca(sk);
272 	u32 cwnd;
273 	u64 w;
274 
275 	/* If we've never had a valid RTT sample, cap cwnd at the initial
276 	 * default. This should only happen when the connection is not using TCP
277 	 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
278 	 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
279 	 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
280 	 */
281 	if (unlikely(bbr->min_rtt_us == ~0U))	 /* no valid RTT samples yet? */
282 		return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
283 
284 	w = (u64)bw * bbr->min_rtt_us;
285 
286 	/* Apply a gain to the given value, then remove the BW_SCALE shift. */
287 	cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
288 
289 	/* Allow enough full-sized skbs in flight to utilize end systems. */
290 	cwnd += 3 * bbr->tso_segs_goal;
291 
292 	/* Reduce delayed ACKs by rounding up cwnd to the next even number. */
293 	cwnd = (cwnd + 1) & ~1U;
294 
295 	return cwnd;
296 }
297 
298 /* An optimization in BBR to reduce losses: On the first round of recovery, we
299  * follow the packet conservation principle: send P packets per P packets acked.
300  * After that, we slow-start and send at most 2*P packets per P packets acked.
301  * After recovery finishes, or upon undo, we restore the cwnd we had when
302  * recovery started (capped by the target cwnd based on estimated BDP).
303  *
304  * TODO(ycheng/ncardwell): implement a rate-based approach.
305  */
306 static bool bbr_set_cwnd_to_recover_or_restore(
307 	struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
308 {
309 	struct tcp_sock *tp = tcp_sk(sk);
310 	struct bbr *bbr = inet_csk_ca(sk);
311 	u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
312 	u32 cwnd = tp->snd_cwnd;
313 
314 	/* An ACK for P pkts should release at most 2*P packets. We do this
315 	 * in two steps. First, here we deduct the number of lost packets.
316 	 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
317 	 */
318 	if (rs->losses > 0)
319 		cwnd = max_t(s32, cwnd - rs->losses, 1);
320 
321 	if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
322 		/* Starting 1st round of Recovery, so do packet conservation. */
323 		bbr->packet_conservation = 1;
324 		bbr->next_rtt_delivered = tp->delivered;  /* start round now */
325 		/* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
326 		cwnd = tcp_packets_in_flight(tp) + acked;
327 	} else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
328 		/* Exiting loss recovery; restore cwnd saved before recovery. */
329 		bbr->restore_cwnd = 1;
330 		bbr->packet_conservation = 0;
331 	}
332 	bbr->prev_ca_state = state;
333 
334 	if (bbr->restore_cwnd) {
335 		/* Restore cwnd after exiting loss recovery or PROBE_RTT. */
336 		cwnd = max(cwnd, bbr->prior_cwnd);
337 		bbr->restore_cwnd = 0;
338 	}
339 
340 	if (bbr->packet_conservation) {
341 		*new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
342 		return true;	/* yes, using packet conservation */
343 	}
344 	*new_cwnd = cwnd;
345 	return false;
346 }
347 
348 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
349  * has drawn us down below target), or snap down to target if we're above it.
350  */
351 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
352 			 u32 acked, u32 bw, int gain)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 	struct bbr *bbr = inet_csk_ca(sk);
356 	u32 cwnd = 0, target_cwnd = 0;
357 
358 	if (!acked)
359 		return;
360 
361 	if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
362 		goto done;
363 
364 	/* If we're below target cwnd, slow start cwnd toward target cwnd. */
365 	target_cwnd = bbr_target_cwnd(sk, bw, gain);
366 	if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
367 		cwnd = min(cwnd + acked, target_cwnd);
368 	else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
369 		cwnd = cwnd + acked;
370 	cwnd = max(cwnd, bbr_cwnd_min_target);
371 
372 done:
373 	tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);	/* apply global cap */
374 	if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
375 		tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
376 }
377 
378 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
379 static bool bbr_is_next_cycle_phase(struct sock *sk,
380 				    const struct rate_sample *rs)
381 {
382 	struct tcp_sock *tp = tcp_sk(sk);
383 	struct bbr *bbr = inet_csk_ca(sk);
384 	bool is_full_length =
385 		skb_mstamp_us_delta(&tp->delivered_mstamp, &bbr->cycle_mstamp) >
386 		bbr->min_rtt_us;
387 	u32 inflight, bw;
388 
389 	/* The pacing_gain of 1.0 paces at the estimated bw to try to fully
390 	 * use the pipe without increasing the queue.
391 	 */
392 	if (bbr->pacing_gain == BBR_UNIT)
393 		return is_full_length;		/* just use wall clock time */
394 
395 	inflight = rs->prior_in_flight;  /* what was in-flight before ACK? */
396 	bw = bbr_max_bw(sk);
397 
398 	/* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
399 	 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
400 	 * small (e.g. on a LAN). We do not persist if packets are lost, since
401 	 * a path with small buffers may not hold that much.
402 	 */
403 	if (bbr->pacing_gain > BBR_UNIT)
404 		return is_full_length &&
405 			(rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
406 			 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
407 
408 	/* A pacing_gain < 1.0 tries to drain extra queue we added if bw
409 	 * probing didn't find more bw. If inflight falls to match BDP then we
410 	 * estimate queue is drained; persisting would underutilize the pipe.
411 	 */
412 	return is_full_length ||
413 		inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
414 }
415 
416 static void bbr_advance_cycle_phase(struct sock *sk)
417 {
418 	struct tcp_sock *tp = tcp_sk(sk);
419 	struct bbr *bbr = inet_csk_ca(sk);
420 
421 	bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
422 	bbr->cycle_mstamp = tp->delivered_mstamp;
423 	bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
424 }
425 
426 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
427 static void bbr_update_cycle_phase(struct sock *sk,
428 				   const struct rate_sample *rs)
429 {
430 	struct bbr *bbr = inet_csk_ca(sk);
431 
432 	if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
433 	    bbr_is_next_cycle_phase(sk, rs))
434 		bbr_advance_cycle_phase(sk);
435 }
436 
437 static void bbr_reset_startup_mode(struct sock *sk)
438 {
439 	struct bbr *bbr = inet_csk_ca(sk);
440 
441 	bbr->mode = BBR_STARTUP;
442 	bbr->pacing_gain = bbr_high_gain;
443 	bbr->cwnd_gain	 = bbr_high_gain;
444 }
445 
446 static void bbr_reset_probe_bw_mode(struct sock *sk)
447 {
448 	struct bbr *bbr = inet_csk_ca(sk);
449 
450 	bbr->mode = BBR_PROBE_BW;
451 	bbr->pacing_gain = BBR_UNIT;
452 	bbr->cwnd_gain = bbr_cwnd_gain;
453 	bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
454 	bbr_advance_cycle_phase(sk);	/* flip to next phase of gain cycle */
455 }
456 
457 static void bbr_reset_mode(struct sock *sk)
458 {
459 	if (!bbr_full_bw_reached(sk))
460 		bbr_reset_startup_mode(sk);
461 	else
462 		bbr_reset_probe_bw_mode(sk);
463 }
464 
465 /* Start a new long-term sampling interval. */
466 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
467 {
468 	struct tcp_sock *tp = tcp_sk(sk);
469 	struct bbr *bbr = inet_csk_ca(sk);
470 
471 	bbr->lt_last_stamp = tp->delivered_mstamp.stamp_jiffies;
472 	bbr->lt_last_delivered = tp->delivered;
473 	bbr->lt_last_lost = tp->lost;
474 	bbr->lt_rtt_cnt = 0;
475 }
476 
477 /* Completely reset long-term bandwidth sampling. */
478 static void bbr_reset_lt_bw_sampling(struct sock *sk)
479 {
480 	struct bbr *bbr = inet_csk_ca(sk);
481 
482 	bbr->lt_bw = 0;
483 	bbr->lt_use_bw = 0;
484 	bbr->lt_is_sampling = false;
485 	bbr_reset_lt_bw_sampling_interval(sk);
486 }
487 
488 /* Long-term bw sampling interval is done. Estimate whether we're policed. */
489 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
490 {
491 	struct bbr *bbr = inet_csk_ca(sk);
492 	u32 diff;
493 
494 	if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
495 		/* Is new bw close to the lt_bw from the previous interval? */
496 		diff = abs(bw - bbr->lt_bw);
497 		if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
498 		    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
499 		     bbr_lt_bw_diff)) {
500 			/* All criteria are met; estimate we're policed. */
501 			bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
502 			bbr->lt_use_bw = 1;
503 			bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
504 			bbr->lt_rtt_cnt = 0;
505 			return;
506 		}
507 	}
508 	bbr->lt_bw = bw;
509 	bbr_reset_lt_bw_sampling_interval(sk);
510 }
511 
512 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
513  * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
514  * explicitly models their policed rate, to reduce unnecessary losses. We
515  * estimate that we're policed if we see 2 consecutive sampling intervals with
516  * consistent throughput and high packet loss. If we think we're being policed,
517  * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
518  */
519 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
520 {
521 	struct tcp_sock *tp = tcp_sk(sk);
522 	struct bbr *bbr = inet_csk_ca(sk);
523 	u32 lost, delivered;
524 	u64 bw;
525 	s32 t;
526 
527 	if (bbr->lt_use_bw) {	/* already using long-term rate, lt_bw? */
528 		if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
529 		    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
530 			bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
531 			bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
532 		}
533 		return;
534 	}
535 
536 	/* Wait for the first loss before sampling, to let the policer exhaust
537 	 * its tokens and estimate the steady-state rate allowed by the policer.
538 	 * Starting samples earlier includes bursts that over-estimate the bw.
539 	 */
540 	if (!bbr->lt_is_sampling) {
541 		if (!rs->losses)
542 			return;
543 		bbr_reset_lt_bw_sampling_interval(sk);
544 		bbr->lt_is_sampling = true;
545 	}
546 
547 	/* To avoid underestimates, reset sampling if we run out of data. */
548 	if (rs->is_app_limited) {
549 		bbr_reset_lt_bw_sampling(sk);
550 		return;
551 	}
552 
553 	if (bbr->round_start)
554 		bbr->lt_rtt_cnt++;	/* count round trips in this interval */
555 	if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
556 		return;		/* sampling interval needs to be longer */
557 	if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
558 		bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
559 		return;
560 	}
561 
562 	/* End sampling interval when a packet is lost, so we estimate the
563 	 * policer tokens were exhausted. Stopping the sampling before the
564 	 * tokens are exhausted under-estimates the policed rate.
565 	 */
566 	if (!rs->losses)
567 		return;
568 
569 	/* Calculate packets lost and delivered in sampling interval. */
570 	lost = tp->lost - bbr->lt_last_lost;
571 	delivered = tp->delivered - bbr->lt_last_delivered;
572 	/* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
573 	if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
574 		return;
575 
576 	/* Find average delivery rate in this sampling interval. */
577 	t = (s32)(tp->delivered_mstamp.stamp_jiffies - bbr->lt_last_stamp);
578 	if (t < 1)
579 		return;		/* interval is less than one jiffy, so wait */
580 	t = jiffies_to_usecs(t);
581 	/* Interval long enough for jiffies_to_usecs() to return a bogus 0? */
582 	if (t < 1) {
583 		bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
584 		return;
585 	}
586 	bw = (u64)delivered * BW_UNIT;
587 	do_div(bw, t);
588 	bbr_lt_bw_interval_done(sk, bw);
589 }
590 
591 /* Estimate the bandwidth based on how fast packets are delivered */
592 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
593 {
594 	struct tcp_sock *tp = tcp_sk(sk);
595 	struct bbr *bbr = inet_csk_ca(sk);
596 	u64 bw;
597 
598 	bbr->round_start = 0;
599 	if (rs->delivered < 0 || rs->interval_us <= 0)
600 		return; /* Not a valid observation */
601 
602 	/* See if we've reached the next RTT */
603 	if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
604 		bbr->next_rtt_delivered = tp->delivered;
605 		bbr->rtt_cnt++;
606 		bbr->round_start = 1;
607 		bbr->packet_conservation = 0;
608 	}
609 
610 	bbr_lt_bw_sampling(sk, rs);
611 
612 	/* Divide delivered by the interval to find a (lower bound) bottleneck
613 	 * bandwidth sample. Delivered is in packets and interval_us in uS and
614 	 * ratio will be <<1 for most connections. So delivered is first scaled.
615 	 */
616 	bw = (u64)rs->delivered * BW_UNIT;
617 	do_div(bw, rs->interval_us);
618 
619 	/* If this sample is application-limited, it is likely to have a very
620 	 * low delivered count that represents application behavior rather than
621 	 * the available network rate. Such a sample could drag down estimated
622 	 * bw, causing needless slow-down. Thus, to continue to send at the
623 	 * last measured network rate, we filter out app-limited samples unless
624 	 * they describe the path bw at least as well as our bw model.
625 	 *
626 	 * So the goal during app-limited phase is to proceed with the best
627 	 * network rate no matter how long. We automatically leave this
628 	 * phase when app writes faster than the network can deliver :)
629 	 */
630 	if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
631 		/* Incorporate new sample into our max bw filter. */
632 		minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
633 	}
634 }
635 
636 /* Estimate when the pipe is full, using the change in delivery rate: BBR
637  * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
638  * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
639  * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
640  * higher rwin, 3: we get higher delivery rate samples. Or transient
641  * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
642  * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
643  */
644 static void bbr_check_full_bw_reached(struct sock *sk,
645 				      const struct rate_sample *rs)
646 {
647 	struct bbr *bbr = inet_csk_ca(sk);
648 	u32 bw_thresh;
649 
650 	if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
651 		return;
652 
653 	bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
654 	if (bbr_max_bw(sk) >= bw_thresh) {
655 		bbr->full_bw = bbr_max_bw(sk);
656 		bbr->full_bw_cnt = 0;
657 		return;
658 	}
659 	++bbr->full_bw_cnt;
660 }
661 
662 /* If pipe is probably full, drain the queue and then enter steady-state. */
663 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
664 {
665 	struct bbr *bbr = inet_csk_ca(sk);
666 
667 	if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
668 		bbr->mode = BBR_DRAIN;	/* drain queue we created */
669 		bbr->pacing_gain = bbr_drain_gain;	/* pace slow to drain */
670 		bbr->cwnd_gain = bbr_high_gain;	/* maintain cwnd */
671 	}	/* fall through to check if in-flight is already small: */
672 	if (bbr->mode == BBR_DRAIN &&
673 	    tcp_packets_in_flight(tcp_sk(sk)) <=
674 	    bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
675 		bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
676 }
677 
678 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
679  * periodically drain the bottleneck queue, to converge to measure the true
680  * min_rtt (unloaded propagation delay). This allows the flows to keep queues
681  * small (reducing queuing delay and packet loss) and achieve fairness among
682  * BBR flows.
683  *
684  * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
685  * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
686  * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
687  * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
688  * re-enter the previous mode. BBR uses 200ms to approximately bound the
689  * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
690  *
691  * Note that flows need only pay 2% if they are busy sending over the last 10
692  * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
693  * natural silences or low-rate periods within 10 seconds where the rate is low
694  * enough for long enough to drain its queue in the bottleneck. We pick up
695  * these min RTT measurements opportunistically with our min_rtt filter. :-)
696  */
697 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
698 {
699 	struct tcp_sock *tp = tcp_sk(sk);
700 	struct bbr *bbr = inet_csk_ca(sk);
701 	bool filter_expired;
702 
703 	/* Track min RTT seen in the min_rtt_win_sec filter window: */
704 	filter_expired = after(tcp_time_stamp,
705 			       bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
706 	if (rs->rtt_us >= 0 &&
707 	    (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
708 		bbr->min_rtt_us = rs->rtt_us;
709 		bbr->min_rtt_stamp = tcp_time_stamp;
710 	}
711 
712 	if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
713 	    !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
714 		bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
715 		bbr->pacing_gain = BBR_UNIT;
716 		bbr->cwnd_gain = BBR_UNIT;
717 		bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
718 		bbr->probe_rtt_done_stamp = 0;
719 	}
720 
721 	if (bbr->mode == BBR_PROBE_RTT) {
722 		/* Ignore low rate samples during this mode. */
723 		tp->app_limited =
724 			(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
725 		/* Maintain min packets in flight for max(200 ms, 1 round). */
726 		if (!bbr->probe_rtt_done_stamp &&
727 		    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
728 			bbr->probe_rtt_done_stamp = tcp_time_stamp +
729 				msecs_to_jiffies(bbr_probe_rtt_mode_ms);
730 			bbr->probe_rtt_round_done = 0;
731 			bbr->next_rtt_delivered = tp->delivered;
732 		} else if (bbr->probe_rtt_done_stamp) {
733 			if (bbr->round_start)
734 				bbr->probe_rtt_round_done = 1;
735 			if (bbr->probe_rtt_round_done &&
736 			    after(tcp_time_stamp, bbr->probe_rtt_done_stamp)) {
737 				bbr->min_rtt_stamp = tcp_time_stamp;
738 				bbr->restore_cwnd = 1;  /* snap to prior_cwnd */
739 				bbr_reset_mode(sk);
740 			}
741 		}
742 	}
743 	bbr->idle_restart = 0;
744 }
745 
746 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
747 {
748 	bbr_update_bw(sk, rs);
749 	bbr_update_cycle_phase(sk, rs);
750 	bbr_check_full_bw_reached(sk, rs);
751 	bbr_check_drain(sk, rs);
752 	bbr_update_min_rtt(sk, rs);
753 }
754 
755 static void bbr_main(struct sock *sk, const struct rate_sample *rs)
756 {
757 	struct bbr *bbr = inet_csk_ca(sk);
758 	u32 bw;
759 
760 	bbr_update_model(sk, rs);
761 
762 	bw = bbr_bw(sk);
763 	bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
764 	bbr_set_tso_segs_goal(sk);
765 	bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
766 }
767 
768 static void bbr_init(struct sock *sk)
769 {
770 	struct tcp_sock *tp = tcp_sk(sk);
771 	struct bbr *bbr = inet_csk_ca(sk);
772 	u64 bw;
773 
774 	bbr->prior_cwnd = 0;
775 	bbr->tso_segs_goal = 0;	 /* default segs per skb until first ACK */
776 	bbr->rtt_cnt = 0;
777 	bbr->next_rtt_delivered = 0;
778 	bbr->prev_ca_state = TCP_CA_Open;
779 	bbr->packet_conservation = 0;
780 
781 	bbr->probe_rtt_done_stamp = 0;
782 	bbr->probe_rtt_round_done = 0;
783 	bbr->min_rtt_us = tcp_min_rtt(tp);
784 	bbr->min_rtt_stamp = tcp_time_stamp;
785 
786 	minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
787 
788 	/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
789 	bw = (u64)tp->snd_cwnd * BW_UNIT;
790 	do_div(bw, (tp->srtt_us >> 3) ? : USEC_PER_MSEC);
791 	sk->sk_pacing_rate = 0;		/* force an update of sk_pacing_rate */
792 	bbr_set_pacing_rate(sk, bw, bbr_high_gain);
793 
794 	bbr->restore_cwnd = 0;
795 	bbr->round_start = 0;
796 	bbr->idle_restart = 0;
797 	bbr->full_bw = 0;
798 	bbr->full_bw_cnt = 0;
799 	bbr->cycle_mstamp.v64 = 0;
800 	bbr->cycle_idx = 0;
801 	bbr_reset_lt_bw_sampling(sk);
802 	bbr_reset_startup_mode(sk);
803 }
804 
805 static u32 bbr_sndbuf_expand(struct sock *sk)
806 {
807 	/* Provision 3 * cwnd since BBR may slow-start even during recovery. */
808 	return 3;
809 }
810 
811 /* In theory BBR does not need to undo the cwnd since it does not
812  * always reduce cwnd on losses (see bbr_main()). Keep it for now.
813  */
814 static u32 bbr_undo_cwnd(struct sock *sk)
815 {
816 	return tcp_sk(sk)->snd_cwnd;
817 }
818 
819 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
820 static u32 bbr_ssthresh(struct sock *sk)
821 {
822 	bbr_save_cwnd(sk);
823 	return TCP_INFINITE_SSTHRESH;	 /* BBR does not use ssthresh */
824 }
825 
826 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
827 			   union tcp_cc_info *info)
828 {
829 	if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
830 	    ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
831 		struct tcp_sock *tp = tcp_sk(sk);
832 		struct bbr *bbr = inet_csk_ca(sk);
833 		u64 bw = bbr_bw(sk);
834 
835 		bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
836 		memset(&info->bbr, 0, sizeof(info->bbr));
837 		info->bbr.bbr_bw_lo		= (u32)bw;
838 		info->bbr.bbr_bw_hi		= (u32)(bw >> 32);
839 		info->bbr.bbr_min_rtt		= bbr->min_rtt_us;
840 		info->bbr.bbr_pacing_gain	= bbr->pacing_gain;
841 		info->bbr.bbr_cwnd_gain		= bbr->cwnd_gain;
842 		*attr = INET_DIAG_BBRINFO;
843 		return sizeof(info->bbr);
844 	}
845 	return 0;
846 }
847 
848 static void bbr_set_state(struct sock *sk, u8 new_state)
849 {
850 	struct bbr *bbr = inet_csk_ca(sk);
851 
852 	if (new_state == TCP_CA_Loss) {
853 		struct rate_sample rs = { .losses = 1 };
854 
855 		bbr->prev_ca_state = TCP_CA_Loss;
856 		bbr->full_bw = 0;
857 		bbr->round_start = 1;	/* treat RTO like end of a round */
858 		bbr_lt_bw_sampling(sk, &rs);
859 	}
860 }
861 
862 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
863 	.flags		= TCP_CONG_NON_RESTRICTED,
864 	.name		= "bbr",
865 	.owner		= THIS_MODULE,
866 	.init		= bbr_init,
867 	.cong_control	= bbr_main,
868 	.sndbuf_expand	= bbr_sndbuf_expand,
869 	.undo_cwnd	= bbr_undo_cwnd,
870 	.cwnd_event	= bbr_cwnd_event,
871 	.ssthresh	= bbr_ssthresh,
872 	.tso_segs_goal	= bbr_tso_segs_goal,
873 	.get_info	= bbr_get_info,
874 	.set_state	= bbr_set_state,
875 };
876 
877 static int __init bbr_register(void)
878 {
879 	BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
880 	return tcp_register_congestion_control(&tcp_bbr_cong_ops);
881 }
882 
883 static void __exit bbr_unregister(void)
884 {
885 	tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
886 }
887 
888 module_init(bbr_register);
889 module_exit(bbr_unregister);
890 
891 MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
892 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
893 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
894 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
895 MODULE_LICENSE("Dual BSD/GPL");
896 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
897