xref: /linux/net/ipv4/tcp_bbr.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /* Bottleneck Bandwidth and RTT (BBR) congestion control
2  *
3  * BBR congestion control computes the sending rate based on the delivery
4  * rate (throughput) estimated from ACKs. In a nutshell:
5  *
6  *   On each ACK, update our model of the network path:
7  *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8  *      min_rtt = windowed_min(rtt, 10 seconds)
9  *   pacing_rate = pacing_gain * bottleneck_bandwidth
10  *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11  *
12  * The core algorithm does not react directly to packet losses or delays,
13  * although BBR may adjust the size of next send per ACK when loss is
14  * observed, or adjust the sending rate if it estimates there is a
15  * traffic policer, in order to keep the drop rate reasonable.
16  *
17  * Here is a state transition diagram for BBR:
18  *
19  *             |
20  *             V
21  *    +---> STARTUP  ----+
22  *    |        |         |
23  *    |        V         |
24  *    |      DRAIN   ----+
25  *    |        |         |
26  *    |        V         |
27  *    +---> PROBE_BW ----+
28  *    |      ^    |      |
29  *    |      |    |      |
30  *    |      +----+      |
31  *    |                  |
32  *    +---- PROBE_RTT <--+
33  *
34  * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
35  * When it estimates the pipe is full, it enters DRAIN to drain the queue.
36  * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
37  * A long-lived BBR flow spends the vast majority of its time remaining
38  * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
39  * in a fair manner, with a small, bounded queue. *If* a flow has been
40  * continuously sending for the entire min_rtt window, and hasn't seen an RTT
41  * sample that matches or decreases its min_rtt estimate for 10 seconds, then
42  * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
43  * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
44  * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
45  * otherwise we enter STARTUP to try to fill the pipe.
46  *
47  * BBR is described in detail in:
48  *   "BBR: Congestion-Based Congestion Control",
49  *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
50  *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
51  *
52  * There is a public e-mail list for discussing BBR development and testing:
53  *   https://groups.google.com/forum/#!forum/bbr-dev
54  *
55  * NOTE: BBR *must* be used with the fq qdisc ("man tc-fq") with pacing enabled,
56  * since pacing is integral to the BBR design and implementation.
57  * BBR without pacing would not function properly, and may incur unnecessary
58  * high packet loss rates.
59  */
60 #include <linux/module.h>
61 #include <net/tcp.h>
62 #include <linux/inet_diag.h>
63 #include <linux/inet.h>
64 #include <linux/random.h>
65 #include <linux/win_minmax.h>
66 
67 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
68  * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
69  * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
70  * Since the minimum window is >=4 packets, the lower bound isn't
71  * an issue. The upper bound isn't an issue with existing technologies.
72  */
73 #define BW_SCALE 24
74 #define BW_UNIT (1 << BW_SCALE)
75 
76 #define BBR_SCALE 8	/* scaling factor for fractions in BBR (e.g. gains) */
77 #define BBR_UNIT (1 << BBR_SCALE)
78 
79 /* BBR has the following modes for deciding how fast to send: */
80 enum bbr_mode {
81 	BBR_STARTUP,	/* ramp up sending rate rapidly to fill pipe */
82 	BBR_DRAIN,	/* drain any queue created during startup */
83 	BBR_PROBE_BW,	/* discover, share bw: pace around estimated bw */
84 	BBR_PROBE_RTT,	/* cut inflight to min to probe min_rtt */
85 };
86 
87 /* BBR congestion control block */
88 struct bbr {
89 	u32	min_rtt_us;	        /* min RTT in min_rtt_win_sec window */
90 	u32	min_rtt_stamp;	        /* timestamp of min_rtt_us */
91 	u32	probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
92 	struct minmax bw;	/* Max recent delivery rate in pkts/uS << 24 */
93 	u32	rtt_cnt;	    /* count of packet-timed rounds elapsed */
94 	u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
95 	struct skb_mstamp cycle_mstamp;  /* time of this cycle phase start */
96 	u32     mode:3,		     /* current bbr_mode in state machine */
97 		prev_ca_state:3,     /* CA state on previous ACK */
98 		packet_conservation:1,  /* use packet conservation? */
99 		restore_cwnd:1,	     /* decided to revert cwnd to old value */
100 		round_start:1,	     /* start of packet-timed tx->ack round? */
101 		tso_segs_goal:7,     /* segments we want in each skb we send */
102 		idle_restart:1,	     /* restarting after idle? */
103 		probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
104 		unused:5,
105 		lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
106 		lt_rtt_cnt:7,	     /* round trips in long-term interval */
107 		lt_use_bw:1;	     /* use lt_bw as our bw estimate? */
108 	u32	lt_bw;		     /* LT est delivery rate in pkts/uS << 24 */
109 	u32	lt_last_delivered;   /* LT intvl start: tp->delivered */
110 	u32	lt_last_stamp;	     /* LT intvl start: tp->delivered_mstamp */
111 	u32	lt_last_lost;	     /* LT intvl start: tp->lost */
112 	u32	pacing_gain:10,	/* current gain for setting pacing rate */
113 		cwnd_gain:10,	/* current gain for setting cwnd */
114 		full_bw_cnt:3,	/* number of rounds without large bw gains */
115 		cycle_idx:3,	/* current index in pacing_gain cycle array */
116 		unused_b:6;
117 	u32	prior_cwnd;	/* prior cwnd upon entering loss recovery */
118 	u32	full_bw;	/* recent bw, to estimate if pipe is full */
119 };
120 
121 #define CYCLE_LEN	8	/* number of phases in a pacing gain cycle */
122 
123 /* Window length of bw filter (in rounds): */
124 static const int bbr_bw_rtts = CYCLE_LEN + 2;
125 /* Window length of min_rtt filter (in sec): */
126 static const u32 bbr_min_rtt_win_sec = 10;
127 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
128 static const u32 bbr_probe_rtt_mode_ms = 200;
129 /* Skip TSO below the following bandwidth (bits/sec): */
130 static const int bbr_min_tso_rate = 1200000;
131 
132 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
133  * that will allow a smoothly increasing pacing rate that will double each RTT
134  * and send the same number of packets per RTT that an un-paced, slow-starting
135  * Reno or CUBIC flow would:
136  */
137 static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
138 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
139  * the queue created in BBR_STARTUP in a single round:
140  */
141 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
142 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
143 static const int bbr_cwnd_gain  = BBR_UNIT * 2;
144 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
145 static const int bbr_pacing_gain[] = {
146 	BBR_UNIT * 5 / 4,	/* probe for more available bw */
147 	BBR_UNIT * 3 / 4,	/* drain queue and/or yield bw to other flows */
148 	BBR_UNIT, BBR_UNIT, BBR_UNIT,	/* cruise at 1.0*bw to utilize pipe, */
149 	BBR_UNIT, BBR_UNIT, BBR_UNIT	/* without creating excess queue... */
150 };
151 /* Randomize the starting gain cycling phase over N phases: */
152 static const u32 bbr_cycle_rand = 7;
153 
154 /* Try to keep at least this many packets in flight, if things go smoothly. For
155  * smooth functioning, a sliding window protocol ACKing every other packet
156  * needs at least 4 packets in flight:
157  */
158 static const u32 bbr_cwnd_min_target = 4;
159 
160 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
161 /* If bw has increased significantly (1.25x), there may be more bw available: */
162 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
163 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
164 static const u32 bbr_full_bw_cnt = 3;
165 
166 /* "long-term" ("LT") bandwidth estimator parameters... */
167 /* The minimum number of rounds in an LT bw sampling interval: */
168 static const u32 bbr_lt_intvl_min_rtts = 4;
169 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
170 static const u32 bbr_lt_loss_thresh = 50;
171 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
172 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
173 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
174 static const u32 bbr_lt_bw_diff = 4000 / 8;
175 /* If we estimate we're policed, use lt_bw for this many round trips: */
176 static const u32 bbr_lt_bw_max_rtts = 48;
177 
178 /* Do we estimate that STARTUP filled the pipe? */
179 static bool bbr_full_bw_reached(const struct sock *sk)
180 {
181 	const struct bbr *bbr = inet_csk_ca(sk);
182 
183 	return bbr->full_bw_cnt >= bbr_full_bw_cnt;
184 }
185 
186 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
187 static u32 bbr_max_bw(const struct sock *sk)
188 {
189 	struct bbr *bbr = inet_csk_ca(sk);
190 
191 	return minmax_get(&bbr->bw);
192 }
193 
194 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
195 static u32 bbr_bw(const struct sock *sk)
196 {
197 	struct bbr *bbr = inet_csk_ca(sk);
198 
199 	return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
200 }
201 
202 /* Return rate in bytes per second, optionally with a gain.
203  * The order here is chosen carefully to avoid overflow of u64. This should
204  * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
205  */
206 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
207 {
208 	rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
209 	rate *= gain;
210 	rate >>= BBR_SCALE;
211 	rate *= USEC_PER_SEC;
212 	return rate >> BW_SCALE;
213 }
214 
215 /* Pace using current bw estimate and a gain factor. In order to help drive the
216  * network toward lower queues while maintaining high utilization and low
217  * latency, the average pacing rate aims to be slightly (~1%) lower than the
218  * estimated bandwidth. This is an important aspect of the design. In this
219  * implementation this slightly lower pacing rate is achieved implicitly by not
220  * including link-layer headers in the packet size used for the pacing rate.
221  */
222 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
223 {
224 	struct bbr *bbr = inet_csk_ca(sk);
225 	u64 rate = bw;
226 
227 	rate = bbr_rate_bytes_per_sec(sk, rate, gain);
228 	rate = min_t(u64, rate, sk->sk_max_pacing_rate);
229 	if (bbr->mode != BBR_STARTUP || rate > sk->sk_pacing_rate)
230 		sk->sk_pacing_rate = rate;
231 }
232 
233 /* Return count of segments we want in the skbs we send, or 0 for default. */
234 static u32 bbr_tso_segs_goal(struct sock *sk)
235 {
236 	struct bbr *bbr = inet_csk_ca(sk);
237 
238 	return bbr->tso_segs_goal;
239 }
240 
241 static void bbr_set_tso_segs_goal(struct sock *sk)
242 {
243 	struct tcp_sock *tp = tcp_sk(sk);
244 	struct bbr *bbr = inet_csk_ca(sk);
245 	u32 min_segs;
246 
247 	min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
248 	bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
249 				 0x7FU);
250 }
251 
252 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
253 static void bbr_save_cwnd(struct sock *sk)
254 {
255 	struct tcp_sock *tp = tcp_sk(sk);
256 	struct bbr *bbr = inet_csk_ca(sk);
257 
258 	if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
259 		bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */
260 	else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
261 		bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
262 }
263 
264 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
265 {
266 	struct tcp_sock *tp = tcp_sk(sk);
267 	struct bbr *bbr = inet_csk_ca(sk);
268 
269 	if (event == CA_EVENT_TX_START && tp->app_limited) {
270 		bbr->idle_restart = 1;
271 		/* Avoid pointless buffer overflows: pace at est. bw if we don't
272 		 * need more speed (we're restarting from idle and app-limited).
273 		 */
274 		if (bbr->mode == BBR_PROBE_BW)
275 			bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
276 	}
277 }
278 
279 /* Find target cwnd. Right-size the cwnd based on min RTT and the
280  * estimated bottleneck bandwidth:
281  *
282  * cwnd = bw * min_rtt * gain = BDP * gain
283  *
284  * The key factor, gain, controls the amount of queue. While a small gain
285  * builds a smaller queue, it becomes more vulnerable to noise in RTT
286  * measurements (e.g., delayed ACKs or other ACK compression effects). This
287  * noise may cause BBR to under-estimate the rate.
288  *
289  * To achieve full performance in high-speed paths, we budget enough cwnd to
290  * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
291  *   - one skb in sending host Qdisc,
292  *   - one skb in sending host TSO/GSO engine
293  *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
294  * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
295  * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
296  * which allows 2 outstanding 2-packet sequences, to try to keep pipe
297  * full even with ACK-every-other-packet delayed ACKs.
298  */
299 static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
300 {
301 	struct bbr *bbr = inet_csk_ca(sk);
302 	u32 cwnd;
303 	u64 w;
304 
305 	/* If we've never had a valid RTT sample, cap cwnd at the initial
306 	 * default. This should only happen when the connection is not using TCP
307 	 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
308 	 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
309 	 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
310 	 */
311 	if (unlikely(bbr->min_rtt_us == ~0U))	 /* no valid RTT samples yet? */
312 		return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
313 
314 	w = (u64)bw * bbr->min_rtt_us;
315 
316 	/* Apply a gain to the given value, then remove the BW_SCALE shift. */
317 	cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
318 
319 	/* Allow enough full-sized skbs in flight to utilize end systems. */
320 	cwnd += 3 * bbr->tso_segs_goal;
321 
322 	/* Reduce delayed ACKs by rounding up cwnd to the next even number. */
323 	cwnd = (cwnd + 1) & ~1U;
324 
325 	return cwnd;
326 }
327 
328 /* An optimization in BBR to reduce losses: On the first round of recovery, we
329  * follow the packet conservation principle: send P packets per P packets acked.
330  * After that, we slow-start and send at most 2*P packets per P packets acked.
331  * After recovery finishes, or upon undo, we restore the cwnd we had when
332  * recovery started (capped by the target cwnd based on estimated BDP).
333  *
334  * TODO(ycheng/ncardwell): implement a rate-based approach.
335  */
336 static bool bbr_set_cwnd_to_recover_or_restore(
337 	struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
338 {
339 	struct tcp_sock *tp = tcp_sk(sk);
340 	struct bbr *bbr = inet_csk_ca(sk);
341 	u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
342 	u32 cwnd = tp->snd_cwnd;
343 
344 	/* An ACK for P pkts should release at most 2*P packets. We do this
345 	 * in two steps. First, here we deduct the number of lost packets.
346 	 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
347 	 */
348 	if (rs->losses > 0)
349 		cwnd = max_t(s32, cwnd - rs->losses, 1);
350 
351 	if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
352 		/* Starting 1st round of Recovery, so do packet conservation. */
353 		bbr->packet_conservation = 1;
354 		bbr->next_rtt_delivered = tp->delivered;  /* start round now */
355 		/* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
356 		cwnd = tcp_packets_in_flight(tp) + acked;
357 	} else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
358 		/* Exiting loss recovery; restore cwnd saved before recovery. */
359 		bbr->restore_cwnd = 1;
360 		bbr->packet_conservation = 0;
361 	}
362 	bbr->prev_ca_state = state;
363 
364 	if (bbr->restore_cwnd) {
365 		/* Restore cwnd after exiting loss recovery or PROBE_RTT. */
366 		cwnd = max(cwnd, bbr->prior_cwnd);
367 		bbr->restore_cwnd = 0;
368 	}
369 
370 	if (bbr->packet_conservation) {
371 		*new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
372 		return true;	/* yes, using packet conservation */
373 	}
374 	*new_cwnd = cwnd;
375 	return false;
376 }
377 
378 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
379  * has drawn us down below target), or snap down to target if we're above it.
380  */
381 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
382 			 u32 acked, u32 bw, int gain)
383 {
384 	struct tcp_sock *tp = tcp_sk(sk);
385 	struct bbr *bbr = inet_csk_ca(sk);
386 	u32 cwnd = 0, target_cwnd = 0;
387 
388 	if (!acked)
389 		return;
390 
391 	if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
392 		goto done;
393 
394 	/* If we're below target cwnd, slow start cwnd toward target cwnd. */
395 	target_cwnd = bbr_target_cwnd(sk, bw, gain);
396 	if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
397 		cwnd = min(cwnd + acked, target_cwnd);
398 	else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
399 		cwnd = cwnd + acked;
400 	cwnd = max(cwnd, bbr_cwnd_min_target);
401 
402 done:
403 	tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);	/* apply global cap */
404 	if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
405 		tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
406 }
407 
408 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
409 static bool bbr_is_next_cycle_phase(struct sock *sk,
410 				    const struct rate_sample *rs)
411 {
412 	struct tcp_sock *tp = tcp_sk(sk);
413 	struct bbr *bbr = inet_csk_ca(sk);
414 	bool is_full_length =
415 		skb_mstamp_us_delta(&tp->delivered_mstamp, &bbr->cycle_mstamp) >
416 		bbr->min_rtt_us;
417 	u32 inflight, bw;
418 
419 	/* The pacing_gain of 1.0 paces at the estimated bw to try to fully
420 	 * use the pipe without increasing the queue.
421 	 */
422 	if (bbr->pacing_gain == BBR_UNIT)
423 		return is_full_length;		/* just use wall clock time */
424 
425 	inflight = rs->prior_in_flight;  /* what was in-flight before ACK? */
426 	bw = bbr_max_bw(sk);
427 
428 	/* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
429 	 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
430 	 * small (e.g. on a LAN). We do not persist if packets are lost, since
431 	 * a path with small buffers may not hold that much.
432 	 */
433 	if (bbr->pacing_gain > BBR_UNIT)
434 		return is_full_length &&
435 			(rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
436 			 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
437 
438 	/* A pacing_gain < 1.0 tries to drain extra queue we added if bw
439 	 * probing didn't find more bw. If inflight falls to match BDP then we
440 	 * estimate queue is drained; persisting would underutilize the pipe.
441 	 */
442 	return is_full_length ||
443 		inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
444 }
445 
446 static void bbr_advance_cycle_phase(struct sock *sk)
447 {
448 	struct tcp_sock *tp = tcp_sk(sk);
449 	struct bbr *bbr = inet_csk_ca(sk);
450 
451 	bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
452 	bbr->cycle_mstamp = tp->delivered_mstamp;
453 	bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
454 }
455 
456 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
457 static void bbr_update_cycle_phase(struct sock *sk,
458 				   const struct rate_sample *rs)
459 {
460 	struct bbr *bbr = inet_csk_ca(sk);
461 
462 	if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
463 	    bbr_is_next_cycle_phase(sk, rs))
464 		bbr_advance_cycle_phase(sk);
465 }
466 
467 static void bbr_reset_startup_mode(struct sock *sk)
468 {
469 	struct bbr *bbr = inet_csk_ca(sk);
470 
471 	bbr->mode = BBR_STARTUP;
472 	bbr->pacing_gain = bbr_high_gain;
473 	bbr->cwnd_gain	 = bbr_high_gain;
474 }
475 
476 static void bbr_reset_probe_bw_mode(struct sock *sk)
477 {
478 	struct bbr *bbr = inet_csk_ca(sk);
479 
480 	bbr->mode = BBR_PROBE_BW;
481 	bbr->pacing_gain = BBR_UNIT;
482 	bbr->cwnd_gain = bbr_cwnd_gain;
483 	bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
484 	bbr_advance_cycle_phase(sk);	/* flip to next phase of gain cycle */
485 }
486 
487 static void bbr_reset_mode(struct sock *sk)
488 {
489 	if (!bbr_full_bw_reached(sk))
490 		bbr_reset_startup_mode(sk);
491 	else
492 		bbr_reset_probe_bw_mode(sk);
493 }
494 
495 /* Start a new long-term sampling interval. */
496 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
497 {
498 	struct tcp_sock *tp = tcp_sk(sk);
499 	struct bbr *bbr = inet_csk_ca(sk);
500 
501 	bbr->lt_last_stamp = tp->delivered_mstamp.stamp_jiffies;
502 	bbr->lt_last_delivered = tp->delivered;
503 	bbr->lt_last_lost = tp->lost;
504 	bbr->lt_rtt_cnt = 0;
505 }
506 
507 /* Completely reset long-term bandwidth sampling. */
508 static void bbr_reset_lt_bw_sampling(struct sock *sk)
509 {
510 	struct bbr *bbr = inet_csk_ca(sk);
511 
512 	bbr->lt_bw = 0;
513 	bbr->lt_use_bw = 0;
514 	bbr->lt_is_sampling = false;
515 	bbr_reset_lt_bw_sampling_interval(sk);
516 }
517 
518 /* Long-term bw sampling interval is done. Estimate whether we're policed. */
519 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
520 {
521 	struct bbr *bbr = inet_csk_ca(sk);
522 	u32 diff;
523 
524 	if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
525 		/* Is new bw close to the lt_bw from the previous interval? */
526 		diff = abs(bw - bbr->lt_bw);
527 		if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
528 		    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
529 		     bbr_lt_bw_diff)) {
530 			/* All criteria are met; estimate we're policed. */
531 			bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
532 			bbr->lt_use_bw = 1;
533 			bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
534 			bbr->lt_rtt_cnt = 0;
535 			return;
536 		}
537 	}
538 	bbr->lt_bw = bw;
539 	bbr_reset_lt_bw_sampling_interval(sk);
540 }
541 
542 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
543  * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
544  * explicitly models their policed rate, to reduce unnecessary losses. We
545  * estimate that we're policed if we see 2 consecutive sampling intervals with
546  * consistent throughput and high packet loss. If we think we're being policed,
547  * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
548  */
549 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
550 {
551 	struct tcp_sock *tp = tcp_sk(sk);
552 	struct bbr *bbr = inet_csk_ca(sk);
553 	u32 lost, delivered;
554 	u64 bw;
555 	s32 t;
556 
557 	if (bbr->lt_use_bw) {	/* already using long-term rate, lt_bw? */
558 		if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
559 		    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
560 			bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
561 			bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
562 		}
563 		return;
564 	}
565 
566 	/* Wait for the first loss before sampling, to let the policer exhaust
567 	 * its tokens and estimate the steady-state rate allowed by the policer.
568 	 * Starting samples earlier includes bursts that over-estimate the bw.
569 	 */
570 	if (!bbr->lt_is_sampling) {
571 		if (!rs->losses)
572 			return;
573 		bbr_reset_lt_bw_sampling_interval(sk);
574 		bbr->lt_is_sampling = true;
575 	}
576 
577 	/* To avoid underestimates, reset sampling if we run out of data. */
578 	if (rs->is_app_limited) {
579 		bbr_reset_lt_bw_sampling(sk);
580 		return;
581 	}
582 
583 	if (bbr->round_start)
584 		bbr->lt_rtt_cnt++;	/* count round trips in this interval */
585 	if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
586 		return;		/* sampling interval needs to be longer */
587 	if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
588 		bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
589 		return;
590 	}
591 
592 	/* End sampling interval when a packet is lost, so we estimate the
593 	 * policer tokens were exhausted. Stopping the sampling before the
594 	 * tokens are exhausted under-estimates the policed rate.
595 	 */
596 	if (!rs->losses)
597 		return;
598 
599 	/* Calculate packets lost and delivered in sampling interval. */
600 	lost = tp->lost - bbr->lt_last_lost;
601 	delivered = tp->delivered - bbr->lt_last_delivered;
602 	/* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
603 	if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
604 		return;
605 
606 	/* Find average delivery rate in this sampling interval. */
607 	t = (s32)(tp->delivered_mstamp.stamp_jiffies - bbr->lt_last_stamp);
608 	if (t < 1)
609 		return;		/* interval is less than one jiffy, so wait */
610 	t = jiffies_to_usecs(t);
611 	/* Interval long enough for jiffies_to_usecs() to return a bogus 0? */
612 	if (t < 1) {
613 		bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
614 		return;
615 	}
616 	bw = (u64)delivered * BW_UNIT;
617 	do_div(bw, t);
618 	bbr_lt_bw_interval_done(sk, bw);
619 }
620 
621 /* Estimate the bandwidth based on how fast packets are delivered */
622 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
623 {
624 	struct tcp_sock *tp = tcp_sk(sk);
625 	struct bbr *bbr = inet_csk_ca(sk);
626 	u64 bw;
627 
628 	bbr->round_start = 0;
629 	if (rs->delivered < 0 || rs->interval_us <= 0)
630 		return; /* Not a valid observation */
631 
632 	/* See if we've reached the next RTT */
633 	if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
634 		bbr->next_rtt_delivered = tp->delivered;
635 		bbr->rtt_cnt++;
636 		bbr->round_start = 1;
637 		bbr->packet_conservation = 0;
638 	}
639 
640 	bbr_lt_bw_sampling(sk, rs);
641 
642 	/* Divide delivered by the interval to find a (lower bound) bottleneck
643 	 * bandwidth sample. Delivered is in packets and interval_us in uS and
644 	 * ratio will be <<1 for most connections. So delivered is first scaled.
645 	 */
646 	bw = (u64)rs->delivered * BW_UNIT;
647 	do_div(bw, rs->interval_us);
648 
649 	/* If this sample is application-limited, it is likely to have a very
650 	 * low delivered count that represents application behavior rather than
651 	 * the available network rate. Such a sample could drag down estimated
652 	 * bw, causing needless slow-down. Thus, to continue to send at the
653 	 * last measured network rate, we filter out app-limited samples unless
654 	 * they describe the path bw at least as well as our bw model.
655 	 *
656 	 * So the goal during app-limited phase is to proceed with the best
657 	 * network rate no matter how long. We automatically leave this
658 	 * phase when app writes faster than the network can deliver :)
659 	 */
660 	if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
661 		/* Incorporate new sample into our max bw filter. */
662 		minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
663 	}
664 }
665 
666 /* Estimate when the pipe is full, using the change in delivery rate: BBR
667  * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
668  * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
669  * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
670  * higher rwin, 3: we get higher delivery rate samples. Or transient
671  * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
672  * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
673  */
674 static void bbr_check_full_bw_reached(struct sock *sk,
675 				      const struct rate_sample *rs)
676 {
677 	struct bbr *bbr = inet_csk_ca(sk);
678 	u32 bw_thresh;
679 
680 	if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
681 		return;
682 
683 	bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
684 	if (bbr_max_bw(sk) >= bw_thresh) {
685 		bbr->full_bw = bbr_max_bw(sk);
686 		bbr->full_bw_cnt = 0;
687 		return;
688 	}
689 	++bbr->full_bw_cnt;
690 }
691 
692 /* If pipe is probably full, drain the queue and then enter steady-state. */
693 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
694 {
695 	struct bbr *bbr = inet_csk_ca(sk);
696 
697 	if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
698 		bbr->mode = BBR_DRAIN;	/* drain queue we created */
699 		bbr->pacing_gain = bbr_drain_gain;	/* pace slow to drain */
700 		bbr->cwnd_gain = bbr_high_gain;	/* maintain cwnd */
701 	}	/* fall through to check if in-flight is already small: */
702 	if (bbr->mode == BBR_DRAIN &&
703 	    tcp_packets_in_flight(tcp_sk(sk)) <=
704 	    bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
705 		bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
706 }
707 
708 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
709  * periodically drain the bottleneck queue, to converge to measure the true
710  * min_rtt (unloaded propagation delay). This allows the flows to keep queues
711  * small (reducing queuing delay and packet loss) and achieve fairness among
712  * BBR flows.
713  *
714  * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
715  * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
716  * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
717  * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
718  * re-enter the previous mode. BBR uses 200ms to approximately bound the
719  * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
720  *
721  * Note that flows need only pay 2% if they are busy sending over the last 10
722  * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
723  * natural silences or low-rate periods within 10 seconds where the rate is low
724  * enough for long enough to drain its queue in the bottleneck. We pick up
725  * these min RTT measurements opportunistically with our min_rtt filter. :-)
726  */
727 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
728 {
729 	struct tcp_sock *tp = tcp_sk(sk);
730 	struct bbr *bbr = inet_csk_ca(sk);
731 	bool filter_expired;
732 
733 	/* Track min RTT seen in the min_rtt_win_sec filter window: */
734 	filter_expired = after(tcp_time_stamp,
735 			       bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
736 	if (rs->rtt_us >= 0 &&
737 	    (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
738 		bbr->min_rtt_us = rs->rtt_us;
739 		bbr->min_rtt_stamp = tcp_time_stamp;
740 	}
741 
742 	if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
743 	    !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
744 		bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
745 		bbr->pacing_gain = BBR_UNIT;
746 		bbr->cwnd_gain = BBR_UNIT;
747 		bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
748 		bbr->probe_rtt_done_stamp = 0;
749 	}
750 
751 	if (bbr->mode == BBR_PROBE_RTT) {
752 		/* Ignore low rate samples during this mode. */
753 		tp->app_limited =
754 			(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
755 		/* Maintain min packets in flight for max(200 ms, 1 round). */
756 		if (!bbr->probe_rtt_done_stamp &&
757 		    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
758 			bbr->probe_rtt_done_stamp = tcp_time_stamp +
759 				msecs_to_jiffies(bbr_probe_rtt_mode_ms);
760 			bbr->probe_rtt_round_done = 0;
761 			bbr->next_rtt_delivered = tp->delivered;
762 		} else if (bbr->probe_rtt_done_stamp) {
763 			if (bbr->round_start)
764 				bbr->probe_rtt_round_done = 1;
765 			if (bbr->probe_rtt_round_done &&
766 			    after(tcp_time_stamp, bbr->probe_rtt_done_stamp)) {
767 				bbr->min_rtt_stamp = tcp_time_stamp;
768 				bbr->restore_cwnd = 1;  /* snap to prior_cwnd */
769 				bbr_reset_mode(sk);
770 			}
771 		}
772 	}
773 	bbr->idle_restart = 0;
774 }
775 
776 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
777 {
778 	bbr_update_bw(sk, rs);
779 	bbr_update_cycle_phase(sk, rs);
780 	bbr_check_full_bw_reached(sk, rs);
781 	bbr_check_drain(sk, rs);
782 	bbr_update_min_rtt(sk, rs);
783 }
784 
785 static void bbr_main(struct sock *sk, const struct rate_sample *rs)
786 {
787 	struct bbr *bbr = inet_csk_ca(sk);
788 	u32 bw;
789 
790 	bbr_update_model(sk, rs);
791 
792 	bw = bbr_bw(sk);
793 	bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
794 	bbr_set_tso_segs_goal(sk);
795 	bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
796 }
797 
798 static void bbr_init(struct sock *sk)
799 {
800 	struct tcp_sock *tp = tcp_sk(sk);
801 	struct bbr *bbr = inet_csk_ca(sk);
802 	u64 bw;
803 
804 	bbr->prior_cwnd = 0;
805 	bbr->tso_segs_goal = 0;	 /* default segs per skb until first ACK */
806 	bbr->rtt_cnt = 0;
807 	bbr->next_rtt_delivered = 0;
808 	bbr->prev_ca_state = TCP_CA_Open;
809 	bbr->packet_conservation = 0;
810 
811 	bbr->probe_rtt_done_stamp = 0;
812 	bbr->probe_rtt_round_done = 0;
813 	bbr->min_rtt_us = tcp_min_rtt(tp);
814 	bbr->min_rtt_stamp = tcp_time_stamp;
815 
816 	minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
817 
818 	/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
819 	bw = (u64)tp->snd_cwnd * BW_UNIT;
820 	do_div(bw, (tp->srtt_us >> 3) ? : USEC_PER_MSEC);
821 	sk->sk_pacing_rate = 0;		/* force an update of sk_pacing_rate */
822 	bbr_set_pacing_rate(sk, bw, bbr_high_gain);
823 
824 	bbr->restore_cwnd = 0;
825 	bbr->round_start = 0;
826 	bbr->idle_restart = 0;
827 	bbr->full_bw = 0;
828 	bbr->full_bw_cnt = 0;
829 	bbr->cycle_mstamp.v64 = 0;
830 	bbr->cycle_idx = 0;
831 	bbr_reset_lt_bw_sampling(sk);
832 	bbr_reset_startup_mode(sk);
833 }
834 
835 static u32 bbr_sndbuf_expand(struct sock *sk)
836 {
837 	/* Provision 3 * cwnd since BBR may slow-start even during recovery. */
838 	return 3;
839 }
840 
841 /* In theory BBR does not need to undo the cwnd since it does not
842  * always reduce cwnd on losses (see bbr_main()). Keep it for now.
843  */
844 static u32 bbr_undo_cwnd(struct sock *sk)
845 {
846 	return tcp_sk(sk)->snd_cwnd;
847 }
848 
849 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
850 static u32 bbr_ssthresh(struct sock *sk)
851 {
852 	bbr_save_cwnd(sk);
853 	return TCP_INFINITE_SSTHRESH;	 /* BBR does not use ssthresh */
854 }
855 
856 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
857 			   union tcp_cc_info *info)
858 {
859 	if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
860 	    ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
861 		struct tcp_sock *tp = tcp_sk(sk);
862 		struct bbr *bbr = inet_csk_ca(sk);
863 		u64 bw = bbr_bw(sk);
864 
865 		bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
866 		memset(&info->bbr, 0, sizeof(info->bbr));
867 		info->bbr.bbr_bw_lo		= (u32)bw;
868 		info->bbr.bbr_bw_hi		= (u32)(bw >> 32);
869 		info->bbr.bbr_min_rtt		= bbr->min_rtt_us;
870 		info->bbr.bbr_pacing_gain	= bbr->pacing_gain;
871 		info->bbr.bbr_cwnd_gain		= bbr->cwnd_gain;
872 		*attr = INET_DIAG_BBRINFO;
873 		return sizeof(info->bbr);
874 	}
875 	return 0;
876 }
877 
878 static void bbr_set_state(struct sock *sk, u8 new_state)
879 {
880 	struct bbr *bbr = inet_csk_ca(sk);
881 
882 	if (new_state == TCP_CA_Loss) {
883 		struct rate_sample rs = { .losses = 1 };
884 
885 		bbr->prev_ca_state = TCP_CA_Loss;
886 		bbr->full_bw = 0;
887 		bbr->round_start = 1;	/* treat RTO like end of a round */
888 		bbr_lt_bw_sampling(sk, &rs);
889 	}
890 }
891 
892 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
893 	.flags		= TCP_CONG_NON_RESTRICTED,
894 	.name		= "bbr",
895 	.owner		= THIS_MODULE,
896 	.init		= bbr_init,
897 	.cong_control	= bbr_main,
898 	.sndbuf_expand	= bbr_sndbuf_expand,
899 	.undo_cwnd	= bbr_undo_cwnd,
900 	.cwnd_event	= bbr_cwnd_event,
901 	.ssthresh	= bbr_ssthresh,
902 	.tso_segs_goal	= bbr_tso_segs_goal,
903 	.get_info	= bbr_get_info,
904 	.set_state	= bbr_set_state,
905 };
906 
907 static int __init bbr_register(void)
908 {
909 	BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
910 	return tcp_register_congestion_control(&tcp_bbr_cong_ops);
911 }
912 
913 static void __exit bbr_unregister(void)
914 {
915 	tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
916 }
917 
918 module_init(bbr_register);
919 module_exit(bbr_unregister);
920 
921 MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
922 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
923 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
924 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
925 MODULE_LICENSE("Dual BSD/GPL");
926 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
927