1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP Authentication Option (TCP-AO). 4 * See RFC5925. 5 * 6 * Authors: Dmitry Safonov <dima@arista.com> 7 * Francesco Ruggeri <fruggeri@arista.com> 8 * Salam Noureddine <noureddine@arista.com> 9 */ 10 #define pr_fmt(fmt) "TCP: " fmt 11 12 #include <crypto/hash.h> 13 #include <linux/inetdevice.h> 14 #include <linux/tcp.h> 15 16 #include <net/tcp.h> 17 #include <net/ipv6.h> 18 #include <net/icmp.h> 19 20 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_ao_needed, HZ); 21 22 int tcp_ao_calc_traffic_key(struct tcp_ao_key *mkt, u8 *key, void *ctx, 23 unsigned int len, struct tcp_sigpool *hp) 24 { 25 struct scatterlist sg; 26 int ret; 27 28 if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp->req), 29 mkt->key, mkt->keylen)) 30 goto clear_hash; 31 32 ret = crypto_ahash_init(hp->req); 33 if (ret) 34 goto clear_hash; 35 36 sg_init_one(&sg, ctx, len); 37 ahash_request_set_crypt(hp->req, &sg, key, len); 38 crypto_ahash_update(hp->req); 39 40 ret = crypto_ahash_final(hp->req); 41 if (ret) 42 goto clear_hash; 43 44 return 0; 45 clear_hash: 46 memset(key, 0, tcp_ao_digest_size(mkt)); 47 return 1; 48 } 49 50 bool tcp_ao_ignore_icmp(const struct sock *sk, int family, int type, int code) 51 { 52 bool ignore_icmp = false; 53 struct tcp_ao_info *ao; 54 55 if (!static_branch_unlikely(&tcp_ao_needed.key)) 56 return false; 57 58 /* RFC5925, 7.8: 59 * >> A TCP-AO implementation MUST default to ignore incoming ICMPv4 60 * messages of Type 3 (destination unreachable), Codes 2-4 (protocol 61 * unreachable, port unreachable, and fragmentation needed -- ’hard 62 * errors’), and ICMPv6 Type 1 (destination unreachable), Code 1 63 * (administratively prohibited) and Code 4 (port unreachable) intended 64 * for connections in synchronized states (ESTABLISHED, FIN-WAIT-1, FIN- 65 * WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT) that match MKTs. 66 */ 67 if (family == AF_INET) { 68 if (type != ICMP_DEST_UNREACH) 69 return false; 70 if (code < ICMP_PROT_UNREACH || code > ICMP_FRAG_NEEDED) 71 return false; 72 } else { 73 if (type != ICMPV6_DEST_UNREACH) 74 return false; 75 if (code != ICMPV6_ADM_PROHIBITED && code != ICMPV6_PORT_UNREACH) 76 return false; 77 } 78 79 rcu_read_lock(); 80 switch (sk->sk_state) { 81 case TCP_TIME_WAIT: 82 ao = rcu_dereference(tcp_twsk(sk)->ao_info); 83 break; 84 case TCP_SYN_SENT: 85 case TCP_SYN_RECV: 86 case TCP_LISTEN: 87 case TCP_NEW_SYN_RECV: 88 /* RFC5925 specifies to ignore ICMPs *only* on connections 89 * in synchronized states. 90 */ 91 rcu_read_unlock(); 92 return false; 93 default: 94 ao = rcu_dereference(tcp_sk(sk)->ao_info); 95 } 96 97 if (ao && !ao->accept_icmps) { 98 ignore_icmp = true; 99 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAODROPPEDICMPS); 100 atomic64_inc(&ao->counters.dropped_icmp); 101 } 102 rcu_read_unlock(); 103 104 return ignore_icmp; 105 } 106 107 /* Optimized version of tcp_ao_do_lookup(): only for sockets for which 108 * it's known that the keys in ao_info are matching peer's 109 * family/address/VRF/etc. 110 */ 111 struct tcp_ao_key *tcp_ao_established_key(struct tcp_ao_info *ao, 112 int sndid, int rcvid) 113 { 114 struct tcp_ao_key *key; 115 116 hlist_for_each_entry_rcu(key, &ao->head, node) { 117 if ((sndid >= 0 && key->sndid != sndid) || 118 (rcvid >= 0 && key->rcvid != rcvid)) 119 continue; 120 return key; 121 } 122 123 return NULL; 124 } 125 126 static int ipv4_prefix_cmp(const struct in_addr *addr1, 127 const struct in_addr *addr2, 128 unsigned int prefixlen) 129 { 130 __be32 mask = inet_make_mask(prefixlen); 131 __be32 a1 = addr1->s_addr & mask; 132 __be32 a2 = addr2->s_addr & mask; 133 134 if (a1 == a2) 135 return 0; 136 return memcmp(&a1, &a2, sizeof(a1)); 137 } 138 139 static int __tcp_ao_key_cmp(const struct tcp_ao_key *key, int l3index, 140 const union tcp_ao_addr *addr, u8 prefixlen, 141 int family, int sndid, int rcvid) 142 { 143 if (sndid >= 0 && key->sndid != sndid) 144 return (key->sndid > sndid) ? 1 : -1; 145 if (rcvid >= 0 && key->rcvid != rcvid) 146 return (key->rcvid > rcvid) ? 1 : -1; 147 if (l3index >= 0 && (key->keyflags & TCP_AO_KEYF_IFINDEX)) { 148 if (key->l3index != l3index) 149 return (key->l3index > l3index) ? 1 : -1; 150 } 151 152 if (family == AF_UNSPEC) 153 return 0; 154 if (key->family != family) 155 return (key->family > family) ? 1 : -1; 156 157 if (family == AF_INET) { 158 if (ntohl(key->addr.a4.s_addr) == INADDR_ANY) 159 return 0; 160 if (ntohl(addr->a4.s_addr) == INADDR_ANY) 161 return 0; 162 return ipv4_prefix_cmp(&key->addr.a4, &addr->a4, prefixlen); 163 #if IS_ENABLED(CONFIG_IPV6) 164 } else { 165 if (ipv6_addr_any(&key->addr.a6) || ipv6_addr_any(&addr->a6)) 166 return 0; 167 if (ipv6_prefix_equal(&key->addr.a6, &addr->a6, prefixlen)) 168 return 0; 169 return memcmp(&key->addr.a6, &addr->a6, sizeof(addr->a6)); 170 #endif 171 } 172 return -1; 173 } 174 175 static int tcp_ao_key_cmp(const struct tcp_ao_key *key, int l3index, 176 const union tcp_ao_addr *addr, u8 prefixlen, 177 int family, int sndid, int rcvid) 178 { 179 #if IS_ENABLED(CONFIG_IPV6) 180 if (family == AF_INET6 && ipv6_addr_v4mapped(&addr->a6)) { 181 __be32 addr4 = addr->a6.s6_addr32[3]; 182 183 return __tcp_ao_key_cmp(key, l3index, 184 (union tcp_ao_addr *)&addr4, 185 prefixlen, AF_INET, sndid, rcvid); 186 } 187 #endif 188 return __tcp_ao_key_cmp(key, l3index, addr, 189 prefixlen, family, sndid, rcvid); 190 } 191 192 static struct tcp_ao_key *__tcp_ao_do_lookup(const struct sock *sk, int l3index, 193 const union tcp_ao_addr *addr, int family, u8 prefix, 194 int sndid, int rcvid) 195 { 196 struct tcp_ao_key *key; 197 struct tcp_ao_info *ao; 198 199 if (!static_branch_unlikely(&tcp_ao_needed.key)) 200 return NULL; 201 202 ao = rcu_dereference_check(tcp_sk(sk)->ao_info, 203 lockdep_sock_is_held(sk)); 204 if (!ao) 205 return NULL; 206 207 hlist_for_each_entry_rcu(key, &ao->head, node) { 208 u8 prefixlen = min(prefix, key->prefixlen); 209 210 if (!tcp_ao_key_cmp(key, l3index, addr, prefixlen, 211 family, sndid, rcvid)) 212 return key; 213 } 214 return NULL; 215 } 216 217 struct tcp_ao_key *tcp_ao_do_lookup(const struct sock *sk, int l3index, 218 const union tcp_ao_addr *addr, 219 int family, int sndid, int rcvid) 220 { 221 return __tcp_ao_do_lookup(sk, l3index, addr, family, U8_MAX, sndid, rcvid); 222 } 223 224 static struct tcp_ao_info *tcp_ao_alloc_info(gfp_t flags) 225 { 226 struct tcp_ao_info *ao; 227 228 ao = kzalloc(sizeof(*ao), flags); 229 if (!ao) 230 return NULL; 231 INIT_HLIST_HEAD(&ao->head); 232 refcount_set(&ao->refcnt, 1); 233 234 return ao; 235 } 236 237 static void tcp_ao_link_mkt(struct tcp_ao_info *ao, struct tcp_ao_key *mkt) 238 { 239 hlist_add_head_rcu(&mkt->node, &ao->head); 240 } 241 242 static struct tcp_ao_key *tcp_ao_copy_key(struct sock *sk, 243 struct tcp_ao_key *key) 244 { 245 struct tcp_ao_key *new_key; 246 247 new_key = sock_kmalloc(sk, tcp_ao_sizeof_key(key), 248 GFP_ATOMIC); 249 if (!new_key) 250 return NULL; 251 252 *new_key = *key; 253 INIT_HLIST_NODE(&new_key->node); 254 tcp_sigpool_get(new_key->tcp_sigpool_id); 255 atomic64_set(&new_key->pkt_good, 0); 256 atomic64_set(&new_key->pkt_bad, 0); 257 258 return new_key; 259 } 260 261 static void tcp_ao_key_free_rcu(struct rcu_head *head) 262 { 263 struct tcp_ao_key *key = container_of(head, struct tcp_ao_key, rcu); 264 265 tcp_sigpool_release(key->tcp_sigpool_id); 266 kfree_sensitive(key); 267 } 268 269 void tcp_ao_destroy_sock(struct sock *sk, bool twsk) 270 { 271 struct tcp_ao_info *ao; 272 struct tcp_ao_key *key; 273 struct hlist_node *n; 274 275 if (twsk) { 276 ao = rcu_dereference_protected(tcp_twsk(sk)->ao_info, 1); 277 tcp_twsk(sk)->ao_info = NULL; 278 } else { 279 ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, 1); 280 tcp_sk(sk)->ao_info = NULL; 281 } 282 283 if (!ao || !refcount_dec_and_test(&ao->refcnt)) 284 return; 285 286 hlist_for_each_entry_safe(key, n, &ao->head, node) { 287 hlist_del_rcu(&key->node); 288 if (!twsk) 289 atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); 290 call_rcu(&key->rcu, tcp_ao_key_free_rcu); 291 } 292 293 kfree_rcu(ao, rcu); 294 static_branch_slow_dec_deferred(&tcp_ao_needed); 295 } 296 297 void tcp_ao_time_wait(struct tcp_timewait_sock *tcptw, struct tcp_sock *tp) 298 { 299 struct tcp_ao_info *ao_info = rcu_dereference_protected(tp->ao_info, 1); 300 301 if (ao_info) { 302 struct tcp_ao_key *key; 303 struct hlist_node *n; 304 int omem = 0; 305 306 hlist_for_each_entry_safe(key, n, &ao_info->head, node) { 307 omem += tcp_ao_sizeof_key(key); 308 } 309 310 refcount_inc(&ao_info->refcnt); 311 atomic_sub(omem, &(((struct sock *)tp)->sk_omem_alloc)); 312 rcu_assign_pointer(tcptw->ao_info, ao_info); 313 } else { 314 tcptw->ao_info = NULL; 315 } 316 } 317 318 /* 4 tuple and ISNs are expected in NBO */ 319 static int tcp_v4_ao_calc_key(struct tcp_ao_key *mkt, u8 *key, 320 __be32 saddr, __be32 daddr, 321 __be16 sport, __be16 dport, 322 __be32 sisn, __be32 disn) 323 { 324 /* See RFC5926 3.1.1 */ 325 struct kdf_input_block { 326 u8 counter; 327 u8 label[6]; 328 struct tcp4_ao_context ctx; 329 __be16 outlen; 330 } __packed * tmp; 331 struct tcp_sigpool hp; 332 int err; 333 334 err = tcp_sigpool_start(mkt->tcp_sigpool_id, &hp); 335 if (err) 336 return err; 337 338 tmp = hp.scratch; 339 tmp->counter = 1; 340 memcpy(tmp->label, "TCP-AO", 6); 341 tmp->ctx.saddr = saddr; 342 tmp->ctx.daddr = daddr; 343 tmp->ctx.sport = sport; 344 tmp->ctx.dport = dport; 345 tmp->ctx.sisn = sisn; 346 tmp->ctx.disn = disn; 347 tmp->outlen = htons(tcp_ao_digest_size(mkt) * 8); /* in bits */ 348 349 err = tcp_ao_calc_traffic_key(mkt, key, tmp, sizeof(*tmp), &hp); 350 tcp_sigpool_end(&hp); 351 352 return err; 353 } 354 355 int tcp_v4_ao_calc_key_sk(struct tcp_ao_key *mkt, u8 *key, 356 const struct sock *sk, 357 __be32 sisn, __be32 disn, bool send) 358 { 359 if (send) 360 return tcp_v4_ao_calc_key(mkt, key, sk->sk_rcv_saddr, 361 sk->sk_daddr, htons(sk->sk_num), 362 sk->sk_dport, sisn, disn); 363 else 364 return tcp_v4_ao_calc_key(mkt, key, sk->sk_daddr, 365 sk->sk_rcv_saddr, sk->sk_dport, 366 htons(sk->sk_num), disn, sisn); 367 } 368 369 static int tcp_ao_calc_key_sk(struct tcp_ao_key *mkt, u8 *key, 370 const struct sock *sk, 371 __be32 sisn, __be32 disn, bool send) 372 { 373 if (mkt->family == AF_INET) 374 return tcp_v4_ao_calc_key_sk(mkt, key, sk, sisn, disn, send); 375 #if IS_ENABLED(CONFIG_IPV6) 376 else if (mkt->family == AF_INET6) 377 return tcp_v6_ao_calc_key_sk(mkt, key, sk, sisn, disn, send); 378 #endif 379 else 380 return -EOPNOTSUPP; 381 } 382 383 int tcp_v4_ao_calc_key_rsk(struct tcp_ao_key *mkt, u8 *key, 384 struct request_sock *req) 385 { 386 struct inet_request_sock *ireq = inet_rsk(req); 387 388 return tcp_v4_ao_calc_key(mkt, key, 389 ireq->ir_loc_addr, ireq->ir_rmt_addr, 390 htons(ireq->ir_num), ireq->ir_rmt_port, 391 htonl(tcp_rsk(req)->snt_isn), 392 htonl(tcp_rsk(req)->rcv_isn)); 393 } 394 395 static int tcp_v4_ao_calc_key_skb(struct tcp_ao_key *mkt, u8 *key, 396 const struct sk_buff *skb, 397 __be32 sisn, __be32 disn) 398 { 399 const struct iphdr *iph = ip_hdr(skb); 400 const struct tcphdr *th = tcp_hdr(skb); 401 402 return tcp_v4_ao_calc_key(mkt, key, iph->saddr, iph->daddr, 403 th->source, th->dest, sisn, disn); 404 } 405 406 static int tcp_ao_calc_key_skb(struct tcp_ao_key *mkt, u8 *key, 407 const struct sk_buff *skb, 408 __be32 sisn, __be32 disn, int family) 409 { 410 if (family == AF_INET) 411 return tcp_v4_ao_calc_key_skb(mkt, key, skb, sisn, disn); 412 #if IS_ENABLED(CONFIG_IPV6) 413 else if (family == AF_INET6) 414 return tcp_v6_ao_calc_key_skb(mkt, key, skb, sisn, disn); 415 #endif 416 return -EAFNOSUPPORT; 417 } 418 419 static int tcp_v4_ao_hash_pseudoheader(struct tcp_sigpool *hp, 420 __be32 daddr, __be32 saddr, 421 int nbytes) 422 { 423 struct tcp4_pseudohdr *bp; 424 struct scatterlist sg; 425 426 bp = hp->scratch; 427 bp->saddr = saddr; 428 bp->daddr = daddr; 429 bp->pad = 0; 430 bp->protocol = IPPROTO_TCP; 431 bp->len = cpu_to_be16(nbytes); 432 433 sg_init_one(&sg, bp, sizeof(*bp)); 434 ahash_request_set_crypt(hp->req, &sg, NULL, sizeof(*bp)); 435 return crypto_ahash_update(hp->req); 436 } 437 438 static int tcp_ao_hash_pseudoheader(unsigned short int family, 439 const struct sock *sk, 440 const struct sk_buff *skb, 441 struct tcp_sigpool *hp, int nbytes) 442 { 443 const struct tcphdr *th = tcp_hdr(skb); 444 445 /* TODO: Can we rely on checksum being zero to mean outbound pkt? */ 446 if (!th->check) { 447 if (family == AF_INET) 448 return tcp_v4_ao_hash_pseudoheader(hp, sk->sk_daddr, 449 sk->sk_rcv_saddr, skb->len); 450 #if IS_ENABLED(CONFIG_IPV6) 451 else if (family == AF_INET6) 452 return tcp_v6_ao_hash_pseudoheader(hp, &sk->sk_v6_daddr, 453 &sk->sk_v6_rcv_saddr, skb->len); 454 #endif 455 else 456 return -EAFNOSUPPORT; 457 } 458 459 if (family == AF_INET) { 460 const struct iphdr *iph = ip_hdr(skb); 461 462 return tcp_v4_ao_hash_pseudoheader(hp, iph->daddr, 463 iph->saddr, skb->len); 464 #if IS_ENABLED(CONFIG_IPV6) 465 } else if (family == AF_INET6) { 466 const struct ipv6hdr *iph = ipv6_hdr(skb); 467 468 return tcp_v6_ao_hash_pseudoheader(hp, &iph->daddr, 469 &iph->saddr, skb->len); 470 #endif 471 } 472 return -EAFNOSUPPORT; 473 } 474 475 u32 tcp_ao_compute_sne(u32 next_sne, u32 next_seq, u32 seq) 476 { 477 u32 sne = next_sne; 478 479 if (before(seq, next_seq)) { 480 if (seq > next_seq) 481 sne--; 482 } else { 483 if (seq < next_seq) 484 sne++; 485 } 486 487 return sne; 488 } 489 490 /* tcp_ao_hash_sne(struct tcp_sigpool *hp) 491 * @hp - used for hashing 492 * @sne - sne value 493 */ 494 static int tcp_ao_hash_sne(struct tcp_sigpool *hp, u32 sne) 495 { 496 struct scatterlist sg; 497 __be32 *bp; 498 499 bp = (__be32 *)hp->scratch; 500 *bp = htonl(sne); 501 502 sg_init_one(&sg, bp, sizeof(*bp)); 503 ahash_request_set_crypt(hp->req, &sg, NULL, sizeof(*bp)); 504 return crypto_ahash_update(hp->req); 505 } 506 507 static int tcp_ao_hash_header(struct tcp_sigpool *hp, 508 const struct tcphdr *th, 509 bool exclude_options, u8 *hash, 510 int hash_offset, int hash_len) 511 { 512 struct scatterlist sg; 513 u8 *hdr = hp->scratch; 514 int err, len; 515 516 /* We are not allowed to change tcphdr, make a local copy */ 517 if (exclude_options) { 518 len = sizeof(*th) + sizeof(struct tcp_ao_hdr) + hash_len; 519 memcpy(hdr, th, sizeof(*th)); 520 memcpy(hdr + sizeof(*th), 521 (u8 *)th + hash_offset - sizeof(struct tcp_ao_hdr), 522 sizeof(struct tcp_ao_hdr)); 523 memset(hdr + sizeof(*th) + sizeof(struct tcp_ao_hdr), 524 0, hash_len); 525 ((struct tcphdr *)hdr)->check = 0; 526 } else { 527 len = th->doff << 2; 528 memcpy(hdr, th, len); 529 /* zero out tcp-ao hash */ 530 ((struct tcphdr *)hdr)->check = 0; 531 memset(hdr + hash_offset, 0, hash_len); 532 } 533 534 sg_init_one(&sg, hdr, len); 535 ahash_request_set_crypt(hp->req, &sg, NULL, len); 536 err = crypto_ahash_update(hp->req); 537 WARN_ON_ONCE(err != 0); 538 return err; 539 } 540 541 int tcp_ao_hash_hdr(unsigned short int family, char *ao_hash, 542 struct tcp_ao_key *key, const u8 *tkey, 543 const union tcp_ao_addr *daddr, 544 const union tcp_ao_addr *saddr, 545 const struct tcphdr *th, u32 sne) 546 { 547 int tkey_len = tcp_ao_digest_size(key); 548 int hash_offset = ao_hash - (char *)th; 549 struct tcp_sigpool hp; 550 void *hash_buf = NULL; 551 552 hash_buf = kmalloc(tkey_len, GFP_ATOMIC); 553 if (!hash_buf) 554 goto clear_hash_noput; 555 556 if (tcp_sigpool_start(key->tcp_sigpool_id, &hp)) 557 goto clear_hash_noput; 558 559 if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp.req), tkey, tkey_len)) 560 goto clear_hash; 561 562 if (crypto_ahash_init(hp.req)) 563 goto clear_hash; 564 565 if (tcp_ao_hash_sne(&hp, sne)) 566 goto clear_hash; 567 if (family == AF_INET) { 568 if (tcp_v4_ao_hash_pseudoheader(&hp, daddr->a4.s_addr, 569 saddr->a4.s_addr, th->doff * 4)) 570 goto clear_hash; 571 #if IS_ENABLED(CONFIG_IPV6) 572 } else if (family == AF_INET6) { 573 if (tcp_v6_ao_hash_pseudoheader(&hp, &daddr->a6, 574 &saddr->a6, th->doff * 4)) 575 goto clear_hash; 576 #endif 577 } else { 578 WARN_ON_ONCE(1); 579 goto clear_hash; 580 } 581 if (tcp_ao_hash_header(&hp, th, 582 !!(key->keyflags & TCP_AO_KEYF_EXCLUDE_OPT), 583 ao_hash, hash_offset, tcp_ao_maclen(key))) 584 goto clear_hash; 585 ahash_request_set_crypt(hp.req, NULL, hash_buf, 0); 586 if (crypto_ahash_final(hp.req)) 587 goto clear_hash; 588 589 memcpy(ao_hash, hash_buf, tcp_ao_maclen(key)); 590 tcp_sigpool_end(&hp); 591 kfree(hash_buf); 592 return 0; 593 594 clear_hash: 595 tcp_sigpool_end(&hp); 596 clear_hash_noput: 597 memset(ao_hash, 0, tcp_ao_maclen(key)); 598 kfree(hash_buf); 599 return 1; 600 } 601 602 int tcp_ao_hash_skb(unsigned short int family, 603 char *ao_hash, struct tcp_ao_key *key, 604 const struct sock *sk, const struct sk_buff *skb, 605 const u8 *tkey, int hash_offset, u32 sne) 606 { 607 const struct tcphdr *th = tcp_hdr(skb); 608 int tkey_len = tcp_ao_digest_size(key); 609 struct tcp_sigpool hp; 610 void *hash_buf = NULL; 611 612 hash_buf = kmalloc(tkey_len, GFP_ATOMIC); 613 if (!hash_buf) 614 goto clear_hash_noput; 615 616 if (tcp_sigpool_start(key->tcp_sigpool_id, &hp)) 617 goto clear_hash_noput; 618 619 if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp.req), tkey, tkey_len)) 620 goto clear_hash; 621 622 /* For now use sha1 by default. Depends on alg in tcp_ao_key */ 623 if (crypto_ahash_init(hp.req)) 624 goto clear_hash; 625 626 if (tcp_ao_hash_sne(&hp, sne)) 627 goto clear_hash; 628 if (tcp_ao_hash_pseudoheader(family, sk, skb, &hp, skb->len)) 629 goto clear_hash; 630 if (tcp_ao_hash_header(&hp, th, 631 !!(key->keyflags & TCP_AO_KEYF_EXCLUDE_OPT), 632 ao_hash, hash_offset, tcp_ao_maclen(key))) 633 goto clear_hash; 634 if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2)) 635 goto clear_hash; 636 ahash_request_set_crypt(hp.req, NULL, hash_buf, 0); 637 if (crypto_ahash_final(hp.req)) 638 goto clear_hash; 639 640 memcpy(ao_hash, hash_buf, tcp_ao_maclen(key)); 641 tcp_sigpool_end(&hp); 642 kfree(hash_buf); 643 return 0; 644 645 clear_hash: 646 tcp_sigpool_end(&hp); 647 clear_hash_noput: 648 memset(ao_hash, 0, tcp_ao_maclen(key)); 649 kfree(hash_buf); 650 return 1; 651 } 652 653 int tcp_v4_ao_hash_skb(char *ao_hash, struct tcp_ao_key *key, 654 const struct sock *sk, const struct sk_buff *skb, 655 const u8 *tkey, int hash_offset, u32 sne) 656 { 657 return tcp_ao_hash_skb(AF_INET, ao_hash, key, sk, skb, 658 tkey, hash_offset, sne); 659 } 660 661 int tcp_v4_ao_synack_hash(char *ao_hash, struct tcp_ao_key *ao_key, 662 struct request_sock *req, const struct sk_buff *skb, 663 int hash_offset, u32 sne) 664 { 665 void *hash_buf = NULL; 666 int err; 667 668 hash_buf = kmalloc(tcp_ao_digest_size(ao_key), GFP_ATOMIC); 669 if (!hash_buf) 670 return -ENOMEM; 671 672 err = tcp_v4_ao_calc_key_rsk(ao_key, hash_buf, req); 673 if (err) 674 goto out; 675 676 err = tcp_ao_hash_skb(AF_INET, ao_hash, ao_key, req_to_sk(req), skb, 677 hash_buf, hash_offset, sne); 678 out: 679 kfree(hash_buf); 680 return err; 681 } 682 683 struct tcp_ao_key *tcp_v4_ao_lookup_rsk(const struct sock *sk, 684 struct request_sock *req, 685 int sndid, int rcvid) 686 { 687 struct inet_request_sock *ireq = inet_rsk(req); 688 union tcp_ao_addr *addr = (union tcp_ao_addr *)&ireq->ir_rmt_addr; 689 int l3index; 690 691 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); 692 return tcp_ao_do_lookup(sk, l3index, addr, AF_INET, sndid, rcvid); 693 } 694 695 struct tcp_ao_key *tcp_v4_ao_lookup(const struct sock *sk, struct sock *addr_sk, 696 int sndid, int rcvid) 697 { 698 int l3index = l3mdev_master_ifindex_by_index(sock_net(sk), 699 addr_sk->sk_bound_dev_if); 700 union tcp_ao_addr *addr = (union tcp_ao_addr *)&addr_sk->sk_daddr; 701 702 return tcp_ao_do_lookup(sk, l3index, addr, AF_INET, sndid, rcvid); 703 } 704 705 int tcp_ao_prepare_reset(const struct sock *sk, struct sk_buff *skb, 706 const struct tcp_ao_hdr *aoh, int l3index, u32 seq, 707 struct tcp_ao_key **key, char **traffic_key, 708 bool *allocated_traffic_key, u8 *keyid, u32 *sne) 709 { 710 const struct tcphdr *th = tcp_hdr(skb); 711 struct tcp_ao_info *ao_info; 712 713 *allocated_traffic_key = false; 714 /* If there's no socket - than initial sisn/disn are unknown. 715 * Drop the segment. RFC5925 (7.7) advises to require graceful 716 * restart [RFC4724]. Alternatively, the RFC5925 advises to 717 * save/restore traffic keys before/after reboot. 718 * Linux TCP-AO support provides TCP_AO_ADD_KEY and TCP_AO_REPAIR 719 * options to restore a socket post-reboot. 720 */ 721 if (!sk) 722 return -ENOTCONN; 723 724 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV)) { 725 unsigned int family = READ_ONCE(sk->sk_family); 726 union tcp_ao_addr *addr; 727 __be32 disn, sisn; 728 729 if (sk->sk_state == TCP_NEW_SYN_RECV) { 730 struct request_sock *req = inet_reqsk(sk); 731 732 sisn = htonl(tcp_rsk(req)->rcv_isn); 733 disn = htonl(tcp_rsk(req)->snt_isn); 734 *sne = tcp_ao_compute_sne(0, tcp_rsk(req)->snt_isn, seq); 735 } else { 736 sisn = th->seq; 737 disn = 0; 738 } 739 if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 740 addr = (union tcp_md5_addr *)&ipv6_hdr(skb)->saddr; 741 else 742 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 743 #if IS_ENABLED(CONFIG_IPV6) 744 if (family == AF_INET6 && ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 745 family = AF_INET; 746 #endif 747 748 sk = sk_const_to_full_sk(sk); 749 ao_info = rcu_dereference(tcp_sk(sk)->ao_info); 750 if (!ao_info) 751 return -ENOENT; 752 *key = tcp_ao_do_lookup(sk, l3index, addr, family, 753 -1, aoh->rnext_keyid); 754 if (!*key) 755 return -ENOENT; 756 *traffic_key = kmalloc(tcp_ao_digest_size(*key), GFP_ATOMIC); 757 if (!*traffic_key) 758 return -ENOMEM; 759 *allocated_traffic_key = true; 760 if (tcp_ao_calc_key_skb(*key, *traffic_key, skb, 761 sisn, disn, family)) 762 return -1; 763 *keyid = (*key)->rcvid; 764 } else { 765 struct tcp_ao_key *rnext_key; 766 u32 snd_basis; 767 768 if (sk->sk_state == TCP_TIME_WAIT) { 769 ao_info = rcu_dereference(tcp_twsk(sk)->ao_info); 770 snd_basis = tcp_twsk(sk)->tw_snd_nxt; 771 } else { 772 ao_info = rcu_dereference(tcp_sk(sk)->ao_info); 773 snd_basis = tcp_sk(sk)->snd_una; 774 } 775 if (!ao_info) 776 return -ENOENT; 777 778 *key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1); 779 if (!*key) 780 return -ENOENT; 781 *traffic_key = snd_other_key(*key); 782 rnext_key = READ_ONCE(ao_info->rnext_key); 783 *keyid = rnext_key->rcvid; 784 *sne = tcp_ao_compute_sne(READ_ONCE(ao_info->snd_sne), 785 snd_basis, seq); 786 } 787 return 0; 788 } 789 790 int tcp_ao_transmit_skb(struct sock *sk, struct sk_buff *skb, 791 struct tcp_ao_key *key, struct tcphdr *th, 792 __u8 *hash_location) 793 { 794 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 795 struct tcp_sock *tp = tcp_sk(sk); 796 struct tcp_ao_info *ao; 797 void *tkey_buf = NULL; 798 u8 *traffic_key; 799 u32 sne; 800 801 ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, 802 lockdep_sock_is_held(sk)); 803 traffic_key = snd_other_key(key); 804 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 805 __be32 disn; 806 807 if (!(tcb->tcp_flags & TCPHDR_ACK)) { 808 disn = 0; 809 tkey_buf = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC); 810 if (!tkey_buf) 811 return -ENOMEM; 812 traffic_key = tkey_buf; 813 } else { 814 disn = ao->risn; 815 } 816 tp->af_specific->ao_calc_key_sk(key, traffic_key, 817 sk, ao->lisn, disn, true); 818 } 819 sne = tcp_ao_compute_sne(READ_ONCE(ao->snd_sne), READ_ONCE(tp->snd_una), 820 ntohl(th->seq)); 821 tp->af_specific->calc_ao_hash(hash_location, key, sk, skb, traffic_key, 822 hash_location - (u8 *)th, sne); 823 kfree(tkey_buf); 824 return 0; 825 } 826 827 static struct tcp_ao_key *tcp_ao_inbound_lookup(unsigned short int family, 828 const struct sock *sk, const struct sk_buff *skb, 829 int sndid, int rcvid, int l3index) 830 { 831 if (family == AF_INET) { 832 const struct iphdr *iph = ip_hdr(skb); 833 834 return tcp_ao_do_lookup(sk, l3index, 835 (union tcp_ao_addr *)&iph->saddr, 836 AF_INET, sndid, rcvid); 837 } else { 838 const struct ipv6hdr *iph = ipv6_hdr(skb); 839 840 return tcp_ao_do_lookup(sk, l3index, 841 (union tcp_ao_addr *)&iph->saddr, 842 AF_INET6, sndid, rcvid); 843 } 844 } 845 846 void tcp_ao_syncookie(struct sock *sk, const struct sk_buff *skb, 847 struct request_sock *req, unsigned short int family) 848 { 849 struct tcp_request_sock *treq = tcp_rsk(req); 850 const struct tcphdr *th = tcp_hdr(skb); 851 const struct tcp_ao_hdr *aoh; 852 struct tcp_ao_key *key; 853 int l3index; 854 855 /* treq->af_specific is used to perform TCP_AO lookup 856 * in tcp_create_openreq_child(). 857 */ 858 #if IS_ENABLED(CONFIG_IPV6) 859 if (family == AF_INET6) 860 treq->af_specific = &tcp_request_sock_ipv6_ops; 861 else 862 #endif 863 treq->af_specific = &tcp_request_sock_ipv4_ops; 864 865 treq->used_tcp_ao = false; 866 867 if (tcp_parse_auth_options(th, NULL, &aoh) || !aoh) 868 return; 869 870 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), inet_rsk(req)->ir_iif); 871 key = tcp_ao_inbound_lookup(family, sk, skb, -1, aoh->keyid, l3index); 872 if (!key) 873 /* Key not found, continue without TCP-AO */ 874 return; 875 876 treq->ao_rcv_next = aoh->keyid; 877 treq->ao_keyid = aoh->rnext_keyid; 878 treq->used_tcp_ao = true; 879 } 880 881 static enum skb_drop_reason 882 tcp_ao_verify_hash(const struct sock *sk, const struct sk_buff *skb, 883 unsigned short int family, struct tcp_ao_info *info, 884 const struct tcp_ao_hdr *aoh, struct tcp_ao_key *key, 885 u8 *traffic_key, u8 *phash, u32 sne, int l3index) 886 { 887 u8 maclen = aoh->length - sizeof(struct tcp_ao_hdr); 888 const struct tcphdr *th = tcp_hdr(skb); 889 void *hash_buf = NULL; 890 891 if (maclen != tcp_ao_maclen(key)) { 892 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 893 atomic64_inc(&info->counters.pkt_bad); 894 atomic64_inc(&key->pkt_bad); 895 tcp_hash_fail("AO hash wrong length", family, skb, 896 "%u != %d L3index: %d", maclen, 897 tcp_ao_maclen(key), l3index); 898 return SKB_DROP_REASON_TCP_AOFAILURE; 899 } 900 901 hash_buf = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC); 902 if (!hash_buf) 903 return SKB_DROP_REASON_NOT_SPECIFIED; 904 905 /* XXX: make it per-AF callback? */ 906 tcp_ao_hash_skb(family, hash_buf, key, sk, skb, traffic_key, 907 (phash - (u8 *)th), sne); 908 if (memcmp(phash, hash_buf, maclen)) { 909 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 910 atomic64_inc(&info->counters.pkt_bad); 911 atomic64_inc(&key->pkt_bad); 912 tcp_hash_fail("AO hash mismatch", family, skb, 913 "L3index: %d", l3index); 914 kfree(hash_buf); 915 return SKB_DROP_REASON_TCP_AOFAILURE; 916 } 917 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOGOOD); 918 atomic64_inc(&info->counters.pkt_good); 919 atomic64_inc(&key->pkt_good); 920 kfree(hash_buf); 921 return SKB_NOT_DROPPED_YET; 922 } 923 924 enum skb_drop_reason 925 tcp_inbound_ao_hash(struct sock *sk, const struct sk_buff *skb, 926 unsigned short int family, const struct request_sock *req, 927 int l3index, const struct tcp_ao_hdr *aoh) 928 { 929 const struct tcphdr *th = tcp_hdr(skb); 930 u8 *phash = (u8 *)(aoh + 1); /* hash goes just after the header */ 931 struct tcp_ao_info *info; 932 enum skb_drop_reason ret; 933 struct tcp_ao_key *key; 934 __be32 sisn, disn; 935 u8 *traffic_key; 936 int state; 937 u32 sne = 0; 938 939 info = rcu_dereference(tcp_sk(sk)->ao_info); 940 if (!info) { 941 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOKEYNOTFOUND); 942 tcp_hash_fail("AO key not found", family, skb, 943 "keyid: %u L3index: %d", aoh->keyid, l3index); 944 return SKB_DROP_REASON_TCP_AOUNEXPECTED; 945 } 946 947 if (unlikely(th->syn)) { 948 sisn = th->seq; 949 disn = 0; 950 } 951 952 state = READ_ONCE(sk->sk_state); 953 /* Fast-path */ 954 if (likely((1 << state) & TCP_AO_ESTABLISHED)) { 955 enum skb_drop_reason err; 956 struct tcp_ao_key *current_key; 957 958 /* Check if this socket's rnext_key matches the keyid in the 959 * packet. If not we lookup the key based on the keyid 960 * matching the rcvid in the mkt. 961 */ 962 key = READ_ONCE(info->rnext_key); 963 if (key->rcvid != aoh->keyid) { 964 key = tcp_ao_established_key(info, -1, aoh->keyid); 965 if (!key) 966 goto key_not_found; 967 } 968 969 /* Delayed retransmitted SYN */ 970 if (unlikely(th->syn && !th->ack)) 971 goto verify_hash; 972 973 sne = tcp_ao_compute_sne(info->rcv_sne, tcp_sk(sk)->rcv_nxt, 974 ntohl(th->seq)); 975 /* Established socket, traffic key are cached */ 976 traffic_key = rcv_other_key(key); 977 err = tcp_ao_verify_hash(sk, skb, family, info, aoh, key, 978 traffic_key, phash, sne, l3index); 979 if (err) 980 return err; 981 current_key = READ_ONCE(info->current_key); 982 /* Key rotation: the peer asks us to use new key (RNext) */ 983 if (unlikely(aoh->rnext_keyid != current_key->sndid)) { 984 /* If the key is not found we do nothing. */ 985 key = tcp_ao_established_key(info, aoh->rnext_keyid, -1); 986 if (key) 987 /* pairs with tcp_ao_del_cmd */ 988 WRITE_ONCE(info->current_key, key); 989 } 990 return SKB_NOT_DROPPED_YET; 991 } 992 993 if (unlikely(state == TCP_CLOSE)) 994 return SKB_DROP_REASON_TCP_CLOSE; 995 996 /* Lookup key based on peer address and keyid. 997 * current_key and rnext_key must not be used on tcp listen 998 * sockets as otherwise: 999 * - request sockets would race on those key pointers 1000 * - tcp_ao_del_cmd() allows async key removal 1001 */ 1002 key = tcp_ao_inbound_lookup(family, sk, skb, -1, aoh->keyid, l3index); 1003 if (!key) 1004 goto key_not_found; 1005 1006 if (th->syn && !th->ack) 1007 goto verify_hash; 1008 1009 if ((1 << state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV)) { 1010 /* Make the initial syn the likely case here */ 1011 if (unlikely(req)) { 1012 sne = tcp_ao_compute_sne(0, tcp_rsk(req)->rcv_isn, 1013 ntohl(th->seq)); 1014 sisn = htonl(tcp_rsk(req)->rcv_isn); 1015 disn = htonl(tcp_rsk(req)->snt_isn); 1016 } else if (unlikely(th->ack && !th->syn)) { 1017 /* Possible syncookie packet */ 1018 sisn = htonl(ntohl(th->seq) - 1); 1019 disn = htonl(ntohl(th->ack_seq) - 1); 1020 sne = tcp_ao_compute_sne(0, ntohl(sisn), 1021 ntohl(th->seq)); 1022 } else if (unlikely(!th->syn)) { 1023 /* no way to figure out initial sisn/disn - drop */ 1024 return SKB_DROP_REASON_TCP_FLAGS; 1025 } 1026 } else if ((1 << state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 1027 disn = info->lisn; 1028 if (th->syn || th->rst) 1029 sisn = th->seq; 1030 else 1031 sisn = info->risn; 1032 } else { 1033 WARN_ONCE(1, "TCP-AO: Unexpected sk_state %d", state); 1034 return SKB_DROP_REASON_TCP_AOFAILURE; 1035 } 1036 verify_hash: 1037 traffic_key = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC); 1038 if (!traffic_key) 1039 return SKB_DROP_REASON_NOT_SPECIFIED; 1040 tcp_ao_calc_key_skb(key, traffic_key, skb, sisn, disn, family); 1041 ret = tcp_ao_verify_hash(sk, skb, family, info, aoh, key, 1042 traffic_key, phash, sne, l3index); 1043 kfree(traffic_key); 1044 return ret; 1045 1046 key_not_found: 1047 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOKEYNOTFOUND); 1048 atomic64_inc(&info->counters.key_not_found); 1049 tcp_hash_fail("Requested by the peer AO key id not found", 1050 family, skb, "L3index: %d", l3index); 1051 return SKB_DROP_REASON_TCP_AOKEYNOTFOUND; 1052 } 1053 1054 static int tcp_ao_cache_traffic_keys(const struct sock *sk, 1055 struct tcp_ao_info *ao, 1056 struct tcp_ao_key *ao_key) 1057 { 1058 u8 *traffic_key = snd_other_key(ao_key); 1059 int ret; 1060 1061 ret = tcp_ao_calc_key_sk(ao_key, traffic_key, sk, 1062 ao->lisn, ao->risn, true); 1063 if (ret) 1064 return ret; 1065 1066 traffic_key = rcv_other_key(ao_key); 1067 ret = tcp_ao_calc_key_sk(ao_key, traffic_key, sk, 1068 ao->lisn, ao->risn, false); 1069 return ret; 1070 } 1071 1072 void tcp_ao_connect_init(struct sock *sk) 1073 { 1074 struct tcp_sock *tp = tcp_sk(sk); 1075 struct tcp_ao_info *ao_info; 1076 struct hlist_node *next; 1077 union tcp_ao_addr *addr; 1078 struct tcp_ao_key *key; 1079 int family, l3index; 1080 1081 ao_info = rcu_dereference_protected(tp->ao_info, 1082 lockdep_sock_is_held(sk)); 1083 if (!ao_info) 1084 return; 1085 1086 /* Remove all keys that don't match the peer */ 1087 family = sk->sk_family; 1088 if (family == AF_INET) 1089 addr = (union tcp_ao_addr *)&sk->sk_daddr; 1090 #if IS_ENABLED(CONFIG_IPV6) 1091 else if (family == AF_INET6) 1092 addr = (union tcp_ao_addr *)&sk->sk_v6_daddr; 1093 #endif 1094 else 1095 return; 1096 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), 1097 sk->sk_bound_dev_if); 1098 1099 hlist_for_each_entry_safe(key, next, &ao_info->head, node) { 1100 if (!tcp_ao_key_cmp(key, l3index, addr, key->prefixlen, family, -1, -1)) 1101 continue; 1102 1103 if (key == ao_info->current_key) 1104 ao_info->current_key = NULL; 1105 if (key == ao_info->rnext_key) 1106 ao_info->rnext_key = NULL; 1107 hlist_del_rcu(&key->node); 1108 atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); 1109 call_rcu(&key->rcu, tcp_ao_key_free_rcu); 1110 } 1111 1112 key = tp->af_specific->ao_lookup(sk, sk, -1, -1); 1113 if (key) { 1114 /* if current_key or rnext_key were not provided, 1115 * use the first key matching the peer 1116 */ 1117 if (!ao_info->current_key) 1118 ao_info->current_key = key; 1119 if (!ao_info->rnext_key) 1120 ao_info->rnext_key = key; 1121 tp->tcp_header_len += tcp_ao_len_aligned(key); 1122 1123 ao_info->lisn = htonl(tp->write_seq); 1124 ao_info->snd_sne = 0; 1125 } else { 1126 /* Can't happen: tcp_connect() verifies that there's 1127 * at least one tcp-ao key that matches the remote peer. 1128 */ 1129 WARN_ON_ONCE(1); 1130 rcu_assign_pointer(tp->ao_info, NULL); 1131 kfree(ao_info); 1132 } 1133 } 1134 1135 void tcp_ao_established(struct sock *sk) 1136 { 1137 struct tcp_ao_info *ao; 1138 struct tcp_ao_key *key; 1139 1140 ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, 1141 lockdep_sock_is_held(sk)); 1142 if (!ao) 1143 return; 1144 1145 hlist_for_each_entry_rcu(key, &ao->head, node) 1146 tcp_ao_cache_traffic_keys(sk, ao, key); 1147 } 1148 1149 void tcp_ao_finish_connect(struct sock *sk, struct sk_buff *skb) 1150 { 1151 struct tcp_ao_info *ao; 1152 struct tcp_ao_key *key; 1153 1154 ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, 1155 lockdep_sock_is_held(sk)); 1156 if (!ao) 1157 return; 1158 1159 WRITE_ONCE(ao->risn, tcp_hdr(skb)->seq); 1160 ao->rcv_sne = 0; 1161 1162 hlist_for_each_entry_rcu(key, &ao->head, node) 1163 tcp_ao_cache_traffic_keys(sk, ao, key); 1164 } 1165 1166 int tcp_ao_copy_all_matching(const struct sock *sk, struct sock *newsk, 1167 struct request_sock *req, struct sk_buff *skb, 1168 int family) 1169 { 1170 struct tcp_ao_key *key, *new_key, *first_key; 1171 struct tcp_ao_info *new_ao, *ao; 1172 struct hlist_node *key_head; 1173 int l3index, ret = -ENOMEM; 1174 union tcp_ao_addr *addr; 1175 bool match = false; 1176 1177 ao = rcu_dereference(tcp_sk(sk)->ao_info); 1178 if (!ao) 1179 return 0; 1180 1181 /* New socket without TCP-AO on it */ 1182 if (!tcp_rsk_used_ao(req)) 1183 return 0; 1184 1185 new_ao = tcp_ao_alloc_info(GFP_ATOMIC); 1186 if (!new_ao) 1187 return -ENOMEM; 1188 new_ao->lisn = htonl(tcp_rsk(req)->snt_isn); 1189 new_ao->risn = htonl(tcp_rsk(req)->rcv_isn); 1190 new_ao->ao_required = ao->ao_required; 1191 new_ao->accept_icmps = ao->accept_icmps; 1192 1193 if (family == AF_INET) { 1194 addr = (union tcp_ao_addr *)&newsk->sk_daddr; 1195 #if IS_ENABLED(CONFIG_IPV6) 1196 } else if (family == AF_INET6) { 1197 addr = (union tcp_ao_addr *)&newsk->sk_v6_daddr; 1198 #endif 1199 } else { 1200 ret = -EAFNOSUPPORT; 1201 goto free_ao; 1202 } 1203 l3index = l3mdev_master_ifindex_by_index(sock_net(newsk), 1204 newsk->sk_bound_dev_if); 1205 1206 hlist_for_each_entry_rcu(key, &ao->head, node) { 1207 if (tcp_ao_key_cmp(key, l3index, addr, key->prefixlen, family, -1, -1)) 1208 continue; 1209 1210 new_key = tcp_ao_copy_key(newsk, key); 1211 if (!new_key) 1212 goto free_and_exit; 1213 1214 tcp_ao_cache_traffic_keys(newsk, new_ao, new_key); 1215 tcp_ao_link_mkt(new_ao, new_key); 1216 match = true; 1217 } 1218 1219 if (!match) { 1220 /* RFC5925 (7.4.1) specifies that the TCP-AO status 1221 * of a connection is determined on the initial SYN. 1222 * At this point the connection was TCP-AO enabled, so 1223 * it can't switch to being unsigned if peer's key 1224 * disappears on the listening socket. 1225 */ 1226 ret = -EKEYREJECTED; 1227 goto free_and_exit; 1228 } 1229 1230 if (!static_key_fast_inc_not_disabled(&tcp_ao_needed.key.key)) { 1231 ret = -EUSERS; 1232 goto free_and_exit; 1233 } 1234 1235 key_head = rcu_dereference(hlist_first_rcu(&new_ao->head)); 1236 first_key = hlist_entry_safe(key_head, struct tcp_ao_key, node); 1237 1238 key = tcp_ao_established_key(new_ao, tcp_rsk(req)->ao_keyid, -1); 1239 if (key) 1240 new_ao->current_key = key; 1241 else 1242 new_ao->current_key = first_key; 1243 1244 /* set rnext_key */ 1245 key = tcp_ao_established_key(new_ao, -1, tcp_rsk(req)->ao_rcv_next); 1246 if (key) 1247 new_ao->rnext_key = key; 1248 else 1249 new_ao->rnext_key = first_key; 1250 1251 sk_gso_disable(newsk); 1252 rcu_assign_pointer(tcp_sk(newsk)->ao_info, new_ao); 1253 1254 return 0; 1255 1256 free_and_exit: 1257 hlist_for_each_entry_safe(key, key_head, &new_ao->head, node) { 1258 hlist_del(&key->node); 1259 tcp_sigpool_release(key->tcp_sigpool_id); 1260 atomic_sub(tcp_ao_sizeof_key(key), &newsk->sk_omem_alloc); 1261 kfree_sensitive(key); 1262 } 1263 free_ao: 1264 kfree(new_ao); 1265 return ret; 1266 } 1267 1268 static bool tcp_ao_can_set_current_rnext(struct sock *sk) 1269 { 1270 /* There aren't current/rnext keys on TCP_LISTEN sockets */ 1271 if (sk->sk_state == TCP_LISTEN) 1272 return false; 1273 return true; 1274 } 1275 1276 static int tcp_ao_verify_ipv4(struct sock *sk, struct tcp_ao_add *cmd, 1277 union tcp_ao_addr **addr) 1278 { 1279 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd->addr; 1280 struct inet_sock *inet = inet_sk(sk); 1281 1282 if (sin->sin_family != AF_INET) 1283 return -EINVAL; 1284 1285 /* Currently matching is not performed on port (or port ranges) */ 1286 if (sin->sin_port != 0) 1287 return -EINVAL; 1288 1289 /* Check prefix and trailing 0's in addr */ 1290 if (cmd->prefix != 0) { 1291 __be32 mask; 1292 1293 if (ntohl(sin->sin_addr.s_addr) == INADDR_ANY) 1294 return -EINVAL; 1295 if (cmd->prefix > 32) 1296 return -EINVAL; 1297 1298 mask = inet_make_mask(cmd->prefix); 1299 if (sin->sin_addr.s_addr & ~mask) 1300 return -EINVAL; 1301 1302 /* Check that MKT address is consistent with socket */ 1303 if (ntohl(inet->inet_daddr) != INADDR_ANY && 1304 (inet->inet_daddr & mask) != sin->sin_addr.s_addr) 1305 return -EINVAL; 1306 } else { 1307 if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY) 1308 return -EINVAL; 1309 } 1310 1311 *addr = (union tcp_ao_addr *)&sin->sin_addr; 1312 return 0; 1313 } 1314 1315 static int tcp_ao_parse_crypto(struct tcp_ao_add *cmd, struct tcp_ao_key *key) 1316 { 1317 unsigned int syn_tcp_option_space; 1318 bool is_kdf_aes_128_cmac = false; 1319 struct crypto_ahash *tfm; 1320 struct tcp_sigpool hp; 1321 void *tmp_key = NULL; 1322 int err; 1323 1324 /* RFC5926, 3.1.1.2. KDF_AES_128_CMAC */ 1325 if (!strcmp("cmac(aes128)", cmd->alg_name)) { 1326 strscpy(cmd->alg_name, "cmac(aes)", sizeof(cmd->alg_name)); 1327 is_kdf_aes_128_cmac = (cmd->keylen != 16); 1328 tmp_key = kmalloc(cmd->keylen, GFP_KERNEL); 1329 if (!tmp_key) 1330 return -ENOMEM; 1331 } 1332 1333 key->maclen = cmd->maclen ?: 12; /* 12 is the default in RFC5925 */ 1334 1335 /* Check: maclen + tcp-ao header <= (MAX_TCP_OPTION_SPACE - mss 1336 * - tstamp (including sackperm) 1337 * - wscale), 1338 * see tcp_syn_options(), tcp_synack_options(), commit 33ad798c924b. 1339 * 1340 * In order to allow D-SACK with TCP-AO, the header size should be: 1341 * (MAX_TCP_OPTION_SPACE - TCPOLEN_TSTAMP_ALIGNED 1342 * - TCPOLEN_SACK_BASE_ALIGNED 1343 * - 2 * TCPOLEN_SACK_PERBLOCK) = 8 (maclen = 4), 1344 * see tcp_established_options(). 1345 * 1346 * RFC5925, 2.2: 1347 * Typical MACs are 96-128 bits (12-16 bytes), but any length 1348 * that fits in the header of the segment being authenticated 1349 * is allowed. 1350 * 1351 * RFC5925, 7.6: 1352 * TCP-AO continues to consume 16 bytes in non-SYN segments, 1353 * leaving a total of 24 bytes for other options, of which 1354 * the timestamp consumes 10. This leaves 14 bytes, of which 10 1355 * are used for a single SACK block. When two SACK blocks are used, 1356 * such as to handle D-SACK, a smaller TCP-AO MAC would be required 1357 * to make room for the additional SACK block (i.e., to leave 18 1358 * bytes for the D-SACK variant of the SACK option) [RFC2883]. 1359 * Note that D-SACK is not supportable in TCP MD5 in the presence 1360 * of timestamps, because TCP MD5’s MAC length is fixed and too 1361 * large to leave sufficient option space. 1362 */ 1363 syn_tcp_option_space = MAX_TCP_OPTION_SPACE; 1364 syn_tcp_option_space -= TCPOLEN_MSS_ALIGNED; 1365 syn_tcp_option_space -= TCPOLEN_TSTAMP_ALIGNED; 1366 syn_tcp_option_space -= TCPOLEN_WSCALE_ALIGNED; 1367 if (tcp_ao_len_aligned(key) > syn_tcp_option_space) { 1368 err = -EMSGSIZE; 1369 goto err_kfree; 1370 } 1371 1372 key->keylen = cmd->keylen; 1373 memcpy(key->key, cmd->key, cmd->keylen); 1374 1375 err = tcp_sigpool_start(key->tcp_sigpool_id, &hp); 1376 if (err) 1377 goto err_kfree; 1378 1379 tfm = crypto_ahash_reqtfm(hp.req); 1380 if (is_kdf_aes_128_cmac) { 1381 void *scratch = hp.scratch; 1382 struct scatterlist sg; 1383 1384 memcpy(tmp_key, cmd->key, cmd->keylen); 1385 sg_init_one(&sg, tmp_key, cmd->keylen); 1386 1387 /* Using zero-key of 16 bytes as described in RFC5926 */ 1388 memset(scratch, 0, 16); 1389 err = crypto_ahash_setkey(tfm, scratch, 16); 1390 if (err) 1391 goto err_pool_end; 1392 1393 err = crypto_ahash_init(hp.req); 1394 if (err) 1395 goto err_pool_end; 1396 1397 ahash_request_set_crypt(hp.req, &sg, key->key, cmd->keylen); 1398 err = crypto_ahash_update(hp.req); 1399 if (err) 1400 goto err_pool_end; 1401 1402 err |= crypto_ahash_final(hp.req); 1403 if (err) 1404 goto err_pool_end; 1405 key->keylen = 16; 1406 } 1407 1408 err = crypto_ahash_setkey(tfm, key->key, key->keylen); 1409 if (err) 1410 goto err_pool_end; 1411 1412 tcp_sigpool_end(&hp); 1413 kfree_sensitive(tmp_key); 1414 1415 if (tcp_ao_maclen(key) > key->digest_size) 1416 return -EINVAL; 1417 1418 return 0; 1419 1420 err_pool_end: 1421 tcp_sigpool_end(&hp); 1422 err_kfree: 1423 kfree_sensitive(tmp_key); 1424 return err; 1425 } 1426 1427 #if IS_ENABLED(CONFIG_IPV6) 1428 static int tcp_ao_verify_ipv6(struct sock *sk, struct tcp_ao_add *cmd, 1429 union tcp_ao_addr **paddr, 1430 unsigned short int *family) 1431 { 1432 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&cmd->addr; 1433 struct in6_addr *addr = &sin6->sin6_addr; 1434 u8 prefix = cmd->prefix; 1435 1436 if (sin6->sin6_family != AF_INET6) 1437 return -EINVAL; 1438 1439 /* Currently matching is not performed on port (or port ranges) */ 1440 if (sin6->sin6_port != 0) 1441 return -EINVAL; 1442 1443 /* Check prefix and trailing 0's in addr */ 1444 if (cmd->prefix != 0 && ipv6_addr_v4mapped(addr)) { 1445 __be32 addr4 = addr->s6_addr32[3]; 1446 __be32 mask; 1447 1448 if (prefix > 32 || ntohl(addr4) == INADDR_ANY) 1449 return -EINVAL; 1450 1451 mask = inet_make_mask(prefix); 1452 if (addr4 & ~mask) 1453 return -EINVAL; 1454 1455 /* Check that MKT address is consistent with socket */ 1456 if (!ipv6_addr_any(&sk->sk_v6_daddr)) { 1457 __be32 daddr4 = sk->sk_v6_daddr.s6_addr32[3]; 1458 1459 if (!ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 1460 return -EINVAL; 1461 if ((daddr4 & mask) != addr4) 1462 return -EINVAL; 1463 } 1464 1465 *paddr = (union tcp_ao_addr *)&addr->s6_addr32[3]; 1466 *family = AF_INET; 1467 return 0; 1468 } else if (cmd->prefix != 0) { 1469 struct in6_addr pfx; 1470 1471 if (ipv6_addr_any(addr) || prefix > 128) 1472 return -EINVAL; 1473 1474 ipv6_addr_prefix(&pfx, addr, prefix); 1475 if (ipv6_addr_cmp(&pfx, addr)) 1476 return -EINVAL; 1477 1478 /* Check that MKT address is consistent with socket */ 1479 if (!ipv6_addr_any(&sk->sk_v6_daddr) && 1480 !ipv6_prefix_equal(&sk->sk_v6_daddr, addr, prefix)) 1481 1482 return -EINVAL; 1483 } else { 1484 if (!ipv6_addr_any(addr)) 1485 return -EINVAL; 1486 } 1487 1488 *paddr = (union tcp_ao_addr *)addr; 1489 return 0; 1490 } 1491 #else 1492 static int tcp_ao_verify_ipv6(struct sock *sk, struct tcp_ao_add *cmd, 1493 union tcp_ao_addr **paddr, 1494 unsigned short int *family) 1495 { 1496 return -EOPNOTSUPP; 1497 } 1498 #endif 1499 1500 static struct tcp_ao_info *setsockopt_ao_info(struct sock *sk) 1501 { 1502 if (sk_fullsock(sk)) { 1503 return rcu_dereference_protected(tcp_sk(sk)->ao_info, 1504 lockdep_sock_is_held(sk)); 1505 } else if (sk->sk_state == TCP_TIME_WAIT) { 1506 return rcu_dereference_protected(tcp_twsk(sk)->ao_info, 1507 lockdep_sock_is_held(sk)); 1508 } 1509 return ERR_PTR(-ESOCKTNOSUPPORT); 1510 } 1511 1512 static struct tcp_ao_info *getsockopt_ao_info(struct sock *sk) 1513 { 1514 if (sk_fullsock(sk)) 1515 return rcu_dereference(tcp_sk(sk)->ao_info); 1516 else if (sk->sk_state == TCP_TIME_WAIT) 1517 return rcu_dereference(tcp_twsk(sk)->ao_info); 1518 1519 return ERR_PTR(-ESOCKTNOSUPPORT); 1520 } 1521 1522 #define TCP_AO_KEYF_ALL (TCP_AO_KEYF_IFINDEX | TCP_AO_KEYF_EXCLUDE_OPT) 1523 #define TCP_AO_GET_KEYF_VALID (TCP_AO_KEYF_IFINDEX) 1524 1525 static struct tcp_ao_key *tcp_ao_key_alloc(struct sock *sk, 1526 struct tcp_ao_add *cmd) 1527 { 1528 const char *algo = cmd->alg_name; 1529 unsigned int digest_size; 1530 struct crypto_ahash *tfm; 1531 struct tcp_ao_key *key; 1532 struct tcp_sigpool hp; 1533 int err, pool_id; 1534 size_t size; 1535 1536 /* Force null-termination of alg_name */ 1537 cmd->alg_name[ARRAY_SIZE(cmd->alg_name) - 1] = '\0'; 1538 1539 /* RFC5926, 3.1.1.2. KDF_AES_128_CMAC */ 1540 if (!strcmp("cmac(aes128)", algo)) 1541 algo = "cmac(aes)"; 1542 1543 /* Full TCP header (th->doff << 2) should fit into scratch area, 1544 * see tcp_ao_hash_header(). 1545 */ 1546 pool_id = tcp_sigpool_alloc_ahash(algo, 60); 1547 if (pool_id < 0) 1548 return ERR_PTR(pool_id); 1549 1550 err = tcp_sigpool_start(pool_id, &hp); 1551 if (err) 1552 goto err_free_pool; 1553 1554 tfm = crypto_ahash_reqtfm(hp.req); 1555 digest_size = crypto_ahash_digestsize(tfm); 1556 tcp_sigpool_end(&hp); 1557 1558 size = sizeof(struct tcp_ao_key) + (digest_size << 1); 1559 key = sock_kmalloc(sk, size, GFP_KERNEL); 1560 if (!key) { 1561 err = -ENOMEM; 1562 goto err_free_pool; 1563 } 1564 1565 key->tcp_sigpool_id = pool_id; 1566 key->digest_size = digest_size; 1567 return key; 1568 1569 err_free_pool: 1570 tcp_sigpool_release(pool_id); 1571 return ERR_PTR(err); 1572 } 1573 1574 static int tcp_ao_add_cmd(struct sock *sk, unsigned short int family, 1575 sockptr_t optval, int optlen) 1576 { 1577 struct tcp_ao_info *ao_info; 1578 union tcp_ao_addr *addr; 1579 struct tcp_ao_key *key; 1580 struct tcp_ao_add cmd; 1581 int ret, l3index = 0; 1582 bool first = false; 1583 1584 if (optlen < sizeof(cmd)) 1585 return -EINVAL; 1586 1587 ret = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); 1588 if (ret) 1589 return ret; 1590 1591 if (cmd.keylen > TCP_AO_MAXKEYLEN) 1592 return -EINVAL; 1593 1594 if (cmd.reserved != 0 || cmd.reserved2 != 0) 1595 return -EINVAL; 1596 1597 if (family == AF_INET) 1598 ret = tcp_ao_verify_ipv4(sk, &cmd, &addr); 1599 else 1600 ret = tcp_ao_verify_ipv6(sk, &cmd, &addr, &family); 1601 if (ret) 1602 return ret; 1603 1604 if (cmd.keyflags & ~TCP_AO_KEYF_ALL) 1605 return -EINVAL; 1606 1607 if (cmd.set_current || cmd.set_rnext) { 1608 if (!tcp_ao_can_set_current_rnext(sk)) 1609 return -EINVAL; 1610 } 1611 1612 if (cmd.ifindex && !(cmd.keyflags & TCP_AO_KEYF_IFINDEX)) 1613 return -EINVAL; 1614 1615 /* For cmd.tcp_ifindex = 0 the key will apply to the default VRF */ 1616 if (cmd.keyflags & TCP_AO_KEYF_IFINDEX && cmd.ifindex) { 1617 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 1618 struct net_device *dev; 1619 1620 rcu_read_lock(); 1621 dev = dev_get_by_index_rcu(sock_net(sk), cmd.ifindex); 1622 if (dev && netif_is_l3_master(dev)) 1623 l3index = dev->ifindex; 1624 rcu_read_unlock(); 1625 1626 if (!dev || !l3index) 1627 return -EINVAL; 1628 1629 if (!bound_dev_if || bound_dev_if != cmd.ifindex) { 1630 /* tcp_ao_established_key() doesn't expect having 1631 * non peer-matching key on an established TCP-AO 1632 * connection. 1633 */ 1634 if (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))) 1635 return -EINVAL; 1636 } 1637 1638 /* It's still possible to bind after adding keys or even 1639 * re-bind to a different dev (with CAP_NET_RAW). 1640 * So, no reason to return error here, rather try to be 1641 * nice and warn the user. 1642 */ 1643 if (bound_dev_if && bound_dev_if != cmd.ifindex) 1644 net_warn_ratelimited("AO key ifindex %d != sk bound ifindex %d\n", 1645 cmd.ifindex, bound_dev_if); 1646 } 1647 1648 /* Don't allow keys for peers that have a matching TCP-MD5 key */ 1649 if (cmd.keyflags & TCP_AO_KEYF_IFINDEX) { 1650 /* Non-_exact version of tcp_md5_do_lookup() will 1651 * as well match keys that aren't bound to a specific VRF 1652 * (that will make them match AO key with 1653 * sysctl_tcp_l3dev_accept = 1 1654 */ 1655 if (tcp_md5_do_lookup(sk, l3index, addr, family)) 1656 return -EKEYREJECTED; 1657 } else { 1658 if (tcp_md5_do_lookup_any_l3index(sk, addr, family)) 1659 return -EKEYREJECTED; 1660 } 1661 1662 ao_info = setsockopt_ao_info(sk); 1663 if (IS_ERR(ao_info)) 1664 return PTR_ERR(ao_info); 1665 1666 if (!ao_info) { 1667 ao_info = tcp_ao_alloc_info(GFP_KERNEL); 1668 if (!ao_info) 1669 return -ENOMEM; 1670 first = true; 1671 } else { 1672 /* Check that neither RecvID nor SendID match any 1673 * existing key for the peer, RFC5925 3.1: 1674 * > The IDs of MKTs MUST NOT overlap where their 1675 * > TCP connection identifiers overlap. 1676 */ 1677 if (__tcp_ao_do_lookup(sk, l3index, addr, family, cmd.prefix, -1, cmd.rcvid)) 1678 return -EEXIST; 1679 if (__tcp_ao_do_lookup(sk, l3index, addr, family, 1680 cmd.prefix, cmd.sndid, -1)) 1681 return -EEXIST; 1682 } 1683 1684 key = tcp_ao_key_alloc(sk, &cmd); 1685 if (IS_ERR(key)) { 1686 ret = PTR_ERR(key); 1687 goto err_free_ao; 1688 } 1689 1690 INIT_HLIST_NODE(&key->node); 1691 memcpy(&key->addr, addr, (family == AF_INET) ? sizeof(struct in_addr) : 1692 sizeof(struct in6_addr)); 1693 key->prefixlen = cmd.prefix; 1694 key->family = family; 1695 key->keyflags = cmd.keyflags; 1696 key->sndid = cmd.sndid; 1697 key->rcvid = cmd.rcvid; 1698 key->l3index = l3index; 1699 atomic64_set(&key->pkt_good, 0); 1700 atomic64_set(&key->pkt_bad, 0); 1701 1702 ret = tcp_ao_parse_crypto(&cmd, key); 1703 if (ret < 0) 1704 goto err_free_sock; 1705 1706 if (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))) { 1707 tcp_ao_cache_traffic_keys(sk, ao_info, key); 1708 if (first) { 1709 ao_info->current_key = key; 1710 ao_info->rnext_key = key; 1711 } 1712 } 1713 1714 tcp_ao_link_mkt(ao_info, key); 1715 if (first) { 1716 if (!static_branch_inc(&tcp_ao_needed.key)) { 1717 ret = -EUSERS; 1718 goto err_free_sock; 1719 } 1720 sk_gso_disable(sk); 1721 rcu_assign_pointer(tcp_sk(sk)->ao_info, ao_info); 1722 } 1723 1724 if (cmd.set_current) 1725 WRITE_ONCE(ao_info->current_key, key); 1726 if (cmd.set_rnext) 1727 WRITE_ONCE(ao_info->rnext_key, key); 1728 return 0; 1729 1730 err_free_sock: 1731 atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); 1732 tcp_sigpool_release(key->tcp_sigpool_id); 1733 kfree_sensitive(key); 1734 err_free_ao: 1735 if (first) 1736 kfree(ao_info); 1737 return ret; 1738 } 1739 1740 static int tcp_ao_delete_key(struct sock *sk, struct tcp_ao_info *ao_info, 1741 bool del_async, struct tcp_ao_key *key, 1742 struct tcp_ao_key *new_current, 1743 struct tcp_ao_key *new_rnext) 1744 { 1745 int err; 1746 1747 hlist_del_rcu(&key->node); 1748 1749 /* Support for async delete on listening sockets: as they don't 1750 * need current_key/rnext_key maintaining, we don't need to check 1751 * them and we can just free all resources in RCU fashion. 1752 */ 1753 if (del_async) { 1754 atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); 1755 call_rcu(&key->rcu, tcp_ao_key_free_rcu); 1756 return 0; 1757 } 1758 1759 /* At this moment another CPU could have looked this key up 1760 * while it was unlinked from the list. Wait for RCU grace period, 1761 * after which the key is off-list and can't be looked up again; 1762 * the rx path [just before RCU came] might have used it and set it 1763 * as current_key (very unlikely). 1764 * Free the key with next RCU grace period (in case it was 1765 * current_key before tcp_ao_current_rnext() might have 1766 * changed it in forced-delete). 1767 */ 1768 synchronize_rcu(); 1769 if (new_current) 1770 WRITE_ONCE(ao_info->current_key, new_current); 1771 if (new_rnext) 1772 WRITE_ONCE(ao_info->rnext_key, new_rnext); 1773 1774 if (unlikely(READ_ONCE(ao_info->current_key) == key || 1775 READ_ONCE(ao_info->rnext_key) == key)) { 1776 err = -EBUSY; 1777 goto add_key; 1778 } 1779 1780 atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); 1781 call_rcu(&key->rcu, tcp_ao_key_free_rcu); 1782 1783 return 0; 1784 add_key: 1785 hlist_add_head_rcu(&key->node, &ao_info->head); 1786 return err; 1787 } 1788 1789 #define TCP_AO_DEL_KEYF_ALL (TCP_AO_KEYF_IFINDEX) 1790 static int tcp_ao_del_cmd(struct sock *sk, unsigned short int family, 1791 sockptr_t optval, int optlen) 1792 { 1793 struct tcp_ao_key *key, *new_current = NULL, *new_rnext = NULL; 1794 int err, addr_len, l3index = 0; 1795 struct tcp_ao_info *ao_info; 1796 union tcp_ao_addr *addr; 1797 struct tcp_ao_del cmd; 1798 __u8 prefix; 1799 u16 port; 1800 1801 if (optlen < sizeof(cmd)) 1802 return -EINVAL; 1803 1804 err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); 1805 if (err) 1806 return err; 1807 1808 if (cmd.reserved != 0 || cmd.reserved2 != 0) 1809 return -EINVAL; 1810 1811 if (cmd.set_current || cmd.set_rnext) { 1812 if (!tcp_ao_can_set_current_rnext(sk)) 1813 return -EINVAL; 1814 } 1815 1816 if (cmd.keyflags & ~TCP_AO_DEL_KEYF_ALL) 1817 return -EINVAL; 1818 1819 /* No sanity check for TCP_AO_KEYF_IFINDEX as if a VRF 1820 * was destroyed, there still should be a way to delete keys, 1821 * that were bound to that l3intf. So, fail late at lookup stage 1822 * if there is no key for that ifindex. 1823 */ 1824 if (cmd.ifindex && !(cmd.keyflags & TCP_AO_KEYF_IFINDEX)) 1825 return -EINVAL; 1826 1827 ao_info = setsockopt_ao_info(sk); 1828 if (IS_ERR(ao_info)) 1829 return PTR_ERR(ao_info); 1830 if (!ao_info) 1831 return -ENOENT; 1832 1833 /* For sockets in TCP_CLOSED it's possible set keys that aren't 1834 * matching the future peer (address/VRF/etc), 1835 * tcp_ao_connect_init() will choose a correct matching MKT 1836 * if there's any. 1837 */ 1838 if (cmd.set_current) { 1839 new_current = tcp_ao_established_key(ao_info, cmd.current_key, -1); 1840 if (!new_current) 1841 return -ENOENT; 1842 } 1843 if (cmd.set_rnext) { 1844 new_rnext = tcp_ao_established_key(ao_info, -1, cmd.rnext); 1845 if (!new_rnext) 1846 return -ENOENT; 1847 } 1848 if (cmd.del_async && sk->sk_state != TCP_LISTEN) 1849 return -EINVAL; 1850 1851 if (family == AF_INET) { 1852 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.addr; 1853 1854 addr = (union tcp_ao_addr *)&sin->sin_addr; 1855 addr_len = sizeof(struct in_addr); 1856 port = ntohs(sin->sin_port); 1857 } else { 1858 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&cmd.addr; 1859 struct in6_addr *addr6 = &sin6->sin6_addr; 1860 1861 if (ipv6_addr_v4mapped(addr6)) { 1862 addr = (union tcp_ao_addr *)&addr6->s6_addr32[3]; 1863 addr_len = sizeof(struct in_addr); 1864 family = AF_INET; 1865 } else { 1866 addr = (union tcp_ao_addr *)addr6; 1867 addr_len = sizeof(struct in6_addr); 1868 } 1869 port = ntohs(sin6->sin6_port); 1870 } 1871 prefix = cmd.prefix; 1872 1873 /* Currently matching is not performed on port (or port ranges) */ 1874 if (port != 0) 1875 return -EINVAL; 1876 1877 /* We could choose random present key here for current/rnext 1878 * but that's less predictable. Let's be strict and don't 1879 * allow removing a key that's in use. RFC5925 doesn't 1880 * specify how-to coordinate key removal, but says: 1881 * "It is presumed that an MKT affecting a particular 1882 * connection cannot be destroyed during an active connection" 1883 */ 1884 hlist_for_each_entry_rcu(key, &ao_info->head, node) { 1885 if (cmd.sndid != key->sndid || 1886 cmd.rcvid != key->rcvid) 1887 continue; 1888 1889 if (family != key->family || 1890 prefix != key->prefixlen || 1891 memcmp(addr, &key->addr, addr_len)) 1892 continue; 1893 1894 if ((cmd.keyflags & TCP_AO_KEYF_IFINDEX) != 1895 (key->keyflags & TCP_AO_KEYF_IFINDEX)) 1896 continue; 1897 1898 if (key->l3index != l3index) 1899 continue; 1900 1901 if (key == new_current || key == new_rnext) 1902 continue; 1903 1904 return tcp_ao_delete_key(sk, ao_info, cmd.del_async, key, 1905 new_current, new_rnext); 1906 } 1907 return -ENOENT; 1908 } 1909 1910 /* cmd.ao_required makes a socket TCP-AO only. 1911 * Don't allow any md5 keys for any l3intf on the socket together with it. 1912 * Restricting it early in setsockopt() removes a check for 1913 * ao_info->ao_required on inbound tcp segment fast-path. 1914 */ 1915 static int tcp_ao_required_verify(struct sock *sk) 1916 { 1917 #ifdef CONFIG_TCP_MD5SIG 1918 const struct tcp_md5sig_info *md5sig; 1919 1920 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1921 return 0; 1922 1923 md5sig = rcu_dereference_check(tcp_sk(sk)->md5sig_info, 1924 lockdep_sock_is_held(sk)); 1925 if (!md5sig) 1926 return 0; 1927 1928 if (rcu_dereference_check(hlist_first_rcu(&md5sig->head), 1929 lockdep_sock_is_held(sk))) 1930 return 1; 1931 #endif 1932 return 0; 1933 } 1934 1935 static int tcp_ao_info_cmd(struct sock *sk, unsigned short int family, 1936 sockptr_t optval, int optlen) 1937 { 1938 struct tcp_ao_key *new_current = NULL, *new_rnext = NULL; 1939 struct tcp_ao_info *ao_info; 1940 struct tcp_ao_info_opt cmd; 1941 bool first = false; 1942 int err; 1943 1944 if (optlen < sizeof(cmd)) 1945 return -EINVAL; 1946 1947 err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); 1948 if (err) 1949 return err; 1950 1951 if (cmd.set_current || cmd.set_rnext) { 1952 if (!tcp_ao_can_set_current_rnext(sk)) 1953 return -EINVAL; 1954 } 1955 1956 if (cmd.reserved != 0 || cmd.reserved2 != 0) 1957 return -EINVAL; 1958 1959 ao_info = setsockopt_ao_info(sk); 1960 if (IS_ERR(ao_info)) 1961 return PTR_ERR(ao_info); 1962 if (!ao_info) { 1963 if (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))) 1964 return -EINVAL; 1965 ao_info = tcp_ao_alloc_info(GFP_KERNEL); 1966 if (!ao_info) 1967 return -ENOMEM; 1968 first = true; 1969 } 1970 1971 if (cmd.ao_required && tcp_ao_required_verify(sk)) { 1972 err = -EKEYREJECTED; 1973 goto out; 1974 } 1975 1976 /* For sockets in TCP_CLOSED it's possible set keys that aren't 1977 * matching the future peer (address/port/VRF/etc), 1978 * tcp_ao_connect_init() will choose a correct matching MKT 1979 * if there's any. 1980 */ 1981 if (cmd.set_current) { 1982 new_current = tcp_ao_established_key(ao_info, cmd.current_key, -1); 1983 if (!new_current) { 1984 err = -ENOENT; 1985 goto out; 1986 } 1987 } 1988 if (cmd.set_rnext) { 1989 new_rnext = tcp_ao_established_key(ao_info, -1, cmd.rnext); 1990 if (!new_rnext) { 1991 err = -ENOENT; 1992 goto out; 1993 } 1994 } 1995 if (cmd.set_counters) { 1996 atomic64_set(&ao_info->counters.pkt_good, cmd.pkt_good); 1997 atomic64_set(&ao_info->counters.pkt_bad, cmd.pkt_bad); 1998 atomic64_set(&ao_info->counters.key_not_found, cmd.pkt_key_not_found); 1999 atomic64_set(&ao_info->counters.ao_required, cmd.pkt_ao_required); 2000 atomic64_set(&ao_info->counters.dropped_icmp, cmd.pkt_dropped_icmp); 2001 } 2002 2003 ao_info->ao_required = cmd.ao_required; 2004 ao_info->accept_icmps = cmd.accept_icmps; 2005 if (new_current) 2006 WRITE_ONCE(ao_info->current_key, new_current); 2007 if (new_rnext) 2008 WRITE_ONCE(ao_info->rnext_key, new_rnext); 2009 if (first) { 2010 if (!static_branch_inc(&tcp_ao_needed.key)) { 2011 err = -EUSERS; 2012 goto out; 2013 } 2014 sk_gso_disable(sk); 2015 rcu_assign_pointer(tcp_sk(sk)->ao_info, ao_info); 2016 } 2017 return 0; 2018 out: 2019 if (first) 2020 kfree(ao_info); 2021 return err; 2022 } 2023 2024 int tcp_parse_ao(struct sock *sk, int cmd, unsigned short int family, 2025 sockptr_t optval, int optlen) 2026 { 2027 if (WARN_ON_ONCE(family != AF_INET && family != AF_INET6)) 2028 return -EAFNOSUPPORT; 2029 2030 switch (cmd) { 2031 case TCP_AO_ADD_KEY: 2032 return tcp_ao_add_cmd(sk, family, optval, optlen); 2033 case TCP_AO_DEL_KEY: 2034 return tcp_ao_del_cmd(sk, family, optval, optlen); 2035 case TCP_AO_INFO: 2036 return tcp_ao_info_cmd(sk, family, optval, optlen); 2037 default: 2038 WARN_ON_ONCE(1); 2039 return -EINVAL; 2040 } 2041 } 2042 2043 int tcp_v4_parse_ao(struct sock *sk, int cmd, sockptr_t optval, int optlen) 2044 { 2045 return tcp_parse_ao(sk, cmd, AF_INET, optval, optlen); 2046 } 2047 2048 /* tcp_ao_copy_mkts_to_user(ao_info, optval, optlen) 2049 * 2050 * @ao_info: struct tcp_ao_info on the socket that 2051 * socket getsockopt(TCP_AO_GET_KEYS) is executed on 2052 * @optval: pointer to array of tcp_ao_getsockopt structures in user space. 2053 * Must be != NULL. 2054 * @optlen: pointer to size of tcp_ao_getsockopt structure. 2055 * Must be != NULL. 2056 * 2057 * Return value: 0 on success, a negative error number otherwise. 2058 * 2059 * optval points to an array of tcp_ao_getsockopt structures in user space. 2060 * optval[0] is used as both input and output to getsockopt. It determines 2061 * which keys are returned by the kernel. 2062 * optval[0].nkeys is the size of the array in user space. On return it contains 2063 * the number of keys matching the search criteria. 2064 * If tcp_ao_getsockopt::get_all is set, then all keys in the socket are 2065 * returned, otherwise only keys matching <addr, prefix, sndid, rcvid> 2066 * in optval[0] are returned. 2067 * optlen is also used as both input and output. The user provides the size 2068 * of struct tcp_ao_getsockopt in user space, and the kernel returns the size 2069 * of the structure in kernel space. 2070 * The size of struct tcp_ao_getsockopt may differ between user and kernel. 2071 * There are three cases to consider: 2072 * * If usize == ksize, then keys are copied verbatim. 2073 * * If usize < ksize, then the userspace has passed an old struct to a 2074 * newer kernel. The rest of the trailing bytes in optval[0] 2075 * (ksize - usize) are interpreted as 0 by the kernel. 2076 * * If usize > ksize, then the userspace has passed a new struct to an 2077 * older kernel. The trailing bytes unknown to the kernel (usize - ksize) 2078 * are checked to ensure they are zeroed, otherwise -E2BIG is returned. 2079 * On return the kernel fills in min(usize, ksize) in each entry of the array. 2080 * The layout of the fields in the user and kernel structures is expected to 2081 * be the same (including in the 32bit vs 64bit case). 2082 */ 2083 static int tcp_ao_copy_mkts_to_user(struct tcp_ao_info *ao_info, 2084 sockptr_t optval, sockptr_t optlen) 2085 { 2086 struct tcp_ao_getsockopt opt_in, opt_out; 2087 struct tcp_ao_key *key, *current_key; 2088 bool do_address_matching = true; 2089 union tcp_ao_addr *addr = NULL; 2090 int err, l3index, user_len; 2091 unsigned int max_keys; /* maximum number of keys to copy to user */ 2092 size_t out_offset = 0; 2093 size_t bytes_to_write; /* number of bytes to write to user level */ 2094 u32 matched_keys; /* keys from ao_info matched so far */ 2095 int optlen_out; 2096 __be16 port = 0; 2097 2098 if (copy_from_sockptr(&user_len, optlen, sizeof(int))) 2099 return -EFAULT; 2100 2101 if (user_len <= 0) 2102 return -EINVAL; 2103 2104 memset(&opt_in, 0, sizeof(struct tcp_ao_getsockopt)); 2105 err = copy_struct_from_sockptr(&opt_in, sizeof(opt_in), 2106 optval, user_len); 2107 if (err < 0) 2108 return err; 2109 2110 if (opt_in.pkt_good || opt_in.pkt_bad) 2111 return -EINVAL; 2112 if (opt_in.keyflags & ~TCP_AO_GET_KEYF_VALID) 2113 return -EINVAL; 2114 if (opt_in.ifindex && !(opt_in.keyflags & TCP_AO_KEYF_IFINDEX)) 2115 return -EINVAL; 2116 2117 if (opt_in.reserved != 0) 2118 return -EINVAL; 2119 2120 max_keys = opt_in.nkeys; 2121 l3index = (opt_in.keyflags & TCP_AO_KEYF_IFINDEX) ? opt_in.ifindex : -1; 2122 2123 if (opt_in.get_all || opt_in.is_current || opt_in.is_rnext) { 2124 if (opt_in.get_all && (opt_in.is_current || opt_in.is_rnext)) 2125 return -EINVAL; 2126 do_address_matching = false; 2127 } 2128 2129 switch (opt_in.addr.ss_family) { 2130 case AF_INET: { 2131 struct sockaddr_in *sin; 2132 __be32 mask; 2133 2134 sin = (struct sockaddr_in *)&opt_in.addr; 2135 port = sin->sin_port; 2136 addr = (union tcp_ao_addr *)&sin->sin_addr; 2137 2138 if (opt_in.prefix > 32) 2139 return -EINVAL; 2140 2141 if (ntohl(sin->sin_addr.s_addr) == INADDR_ANY && 2142 opt_in.prefix != 0) 2143 return -EINVAL; 2144 2145 mask = inet_make_mask(opt_in.prefix); 2146 if (sin->sin_addr.s_addr & ~mask) 2147 return -EINVAL; 2148 2149 break; 2150 } 2151 case AF_INET6: { 2152 struct sockaddr_in6 *sin6; 2153 struct in6_addr *addr6; 2154 2155 sin6 = (struct sockaddr_in6 *)&opt_in.addr; 2156 addr = (union tcp_ao_addr *)&sin6->sin6_addr; 2157 addr6 = &sin6->sin6_addr; 2158 port = sin6->sin6_port; 2159 2160 /* We don't have to change family and @addr here if 2161 * ipv6_addr_v4mapped() like in key adding: 2162 * tcp_ao_key_cmp() does it. Do the sanity checks though. 2163 */ 2164 if (opt_in.prefix != 0) { 2165 if (ipv6_addr_v4mapped(addr6)) { 2166 __be32 mask, addr4 = addr6->s6_addr32[3]; 2167 2168 if (opt_in.prefix > 32 || 2169 ntohl(addr4) == INADDR_ANY) 2170 return -EINVAL; 2171 mask = inet_make_mask(opt_in.prefix); 2172 if (addr4 & ~mask) 2173 return -EINVAL; 2174 } else { 2175 struct in6_addr pfx; 2176 2177 if (ipv6_addr_any(addr6) || 2178 opt_in.prefix > 128) 2179 return -EINVAL; 2180 2181 ipv6_addr_prefix(&pfx, addr6, opt_in.prefix); 2182 if (ipv6_addr_cmp(&pfx, addr6)) 2183 return -EINVAL; 2184 } 2185 } else if (!ipv6_addr_any(addr6)) { 2186 return -EINVAL; 2187 } 2188 break; 2189 } 2190 case 0: 2191 if (!do_address_matching) 2192 break; 2193 fallthrough; 2194 default: 2195 return -EAFNOSUPPORT; 2196 } 2197 2198 if (!do_address_matching) { 2199 /* We could just ignore those, but let's do stricter checks */ 2200 if (addr || port) 2201 return -EINVAL; 2202 if (opt_in.prefix || opt_in.sndid || opt_in.rcvid) 2203 return -EINVAL; 2204 } 2205 2206 bytes_to_write = min_t(int, user_len, sizeof(struct tcp_ao_getsockopt)); 2207 matched_keys = 0; 2208 /* May change in RX, while we're dumping, pre-fetch it */ 2209 current_key = READ_ONCE(ao_info->current_key); 2210 2211 hlist_for_each_entry_rcu(key, &ao_info->head, node) { 2212 if (opt_in.get_all) 2213 goto match; 2214 2215 if (opt_in.is_current || opt_in.is_rnext) { 2216 if (opt_in.is_current && key == current_key) 2217 goto match; 2218 if (opt_in.is_rnext && key == ao_info->rnext_key) 2219 goto match; 2220 continue; 2221 } 2222 2223 if (tcp_ao_key_cmp(key, l3index, addr, opt_in.prefix, 2224 opt_in.addr.ss_family, 2225 opt_in.sndid, opt_in.rcvid) != 0) 2226 continue; 2227 match: 2228 matched_keys++; 2229 if (matched_keys > max_keys) 2230 continue; 2231 2232 memset(&opt_out, 0, sizeof(struct tcp_ao_getsockopt)); 2233 2234 if (key->family == AF_INET) { 2235 struct sockaddr_in *sin_out = (struct sockaddr_in *)&opt_out.addr; 2236 2237 sin_out->sin_family = key->family; 2238 sin_out->sin_port = 0; 2239 memcpy(&sin_out->sin_addr, &key->addr, sizeof(struct in_addr)); 2240 } else { 2241 struct sockaddr_in6 *sin6_out = (struct sockaddr_in6 *)&opt_out.addr; 2242 2243 sin6_out->sin6_family = key->family; 2244 sin6_out->sin6_port = 0; 2245 memcpy(&sin6_out->sin6_addr, &key->addr, sizeof(struct in6_addr)); 2246 } 2247 opt_out.sndid = key->sndid; 2248 opt_out.rcvid = key->rcvid; 2249 opt_out.prefix = key->prefixlen; 2250 opt_out.keyflags = key->keyflags; 2251 opt_out.is_current = (key == current_key); 2252 opt_out.is_rnext = (key == ao_info->rnext_key); 2253 opt_out.nkeys = 0; 2254 opt_out.maclen = key->maclen; 2255 opt_out.keylen = key->keylen; 2256 opt_out.ifindex = key->l3index; 2257 opt_out.pkt_good = atomic64_read(&key->pkt_good); 2258 opt_out.pkt_bad = atomic64_read(&key->pkt_bad); 2259 memcpy(&opt_out.key, key->key, key->keylen); 2260 tcp_sigpool_algo(key->tcp_sigpool_id, opt_out.alg_name, 64); 2261 2262 /* Copy key to user */ 2263 if (copy_to_sockptr_offset(optval, out_offset, 2264 &opt_out, bytes_to_write)) 2265 return -EFAULT; 2266 out_offset += user_len; 2267 } 2268 2269 optlen_out = (int)sizeof(struct tcp_ao_getsockopt); 2270 if (copy_to_sockptr(optlen, &optlen_out, sizeof(int))) 2271 return -EFAULT; 2272 2273 out_offset = offsetof(struct tcp_ao_getsockopt, nkeys); 2274 if (copy_to_sockptr_offset(optval, out_offset, 2275 &matched_keys, sizeof(u32))) 2276 return -EFAULT; 2277 2278 return 0; 2279 } 2280 2281 int tcp_ao_get_mkts(struct sock *sk, sockptr_t optval, sockptr_t optlen) 2282 { 2283 struct tcp_ao_info *ao_info; 2284 2285 ao_info = setsockopt_ao_info(sk); 2286 if (IS_ERR(ao_info)) 2287 return PTR_ERR(ao_info); 2288 if (!ao_info) 2289 return -ENOENT; 2290 2291 return tcp_ao_copy_mkts_to_user(ao_info, optval, optlen); 2292 } 2293 2294 int tcp_ao_get_sock_info(struct sock *sk, sockptr_t optval, sockptr_t optlen) 2295 { 2296 struct tcp_ao_info_opt out, in = {}; 2297 struct tcp_ao_key *current_key; 2298 struct tcp_ao_info *ao; 2299 int err, len; 2300 2301 if (copy_from_sockptr(&len, optlen, sizeof(int))) 2302 return -EFAULT; 2303 2304 if (len <= 0) 2305 return -EINVAL; 2306 2307 /* Copying this "in" only to check ::reserved, ::reserved2, 2308 * that may be needed to extend (struct tcp_ao_info_opt) and 2309 * what getsockopt() provides in future. 2310 */ 2311 err = copy_struct_from_sockptr(&in, sizeof(in), optval, len); 2312 if (err) 2313 return err; 2314 2315 if (in.reserved != 0 || in.reserved2 != 0) 2316 return -EINVAL; 2317 2318 ao = setsockopt_ao_info(sk); 2319 if (IS_ERR(ao)) 2320 return PTR_ERR(ao); 2321 if (!ao) 2322 return -ENOENT; 2323 2324 memset(&out, 0, sizeof(out)); 2325 out.ao_required = ao->ao_required; 2326 out.accept_icmps = ao->accept_icmps; 2327 out.pkt_good = atomic64_read(&ao->counters.pkt_good); 2328 out.pkt_bad = atomic64_read(&ao->counters.pkt_bad); 2329 out.pkt_key_not_found = atomic64_read(&ao->counters.key_not_found); 2330 out.pkt_ao_required = atomic64_read(&ao->counters.ao_required); 2331 out.pkt_dropped_icmp = atomic64_read(&ao->counters.dropped_icmp); 2332 2333 current_key = READ_ONCE(ao->current_key); 2334 if (current_key) { 2335 out.set_current = 1; 2336 out.current_key = current_key->sndid; 2337 } 2338 if (ao->rnext_key) { 2339 out.set_rnext = 1; 2340 out.rnext = ao->rnext_key->rcvid; 2341 } 2342 2343 if (copy_to_sockptr(optval, &out, min_t(int, len, sizeof(out)))) 2344 return -EFAULT; 2345 2346 return 0; 2347 } 2348 2349 int tcp_ao_set_repair(struct sock *sk, sockptr_t optval, unsigned int optlen) 2350 { 2351 struct tcp_sock *tp = tcp_sk(sk); 2352 struct tcp_ao_repair cmd; 2353 struct tcp_ao_key *key; 2354 struct tcp_ao_info *ao; 2355 int err; 2356 2357 if (optlen < sizeof(cmd)) 2358 return -EINVAL; 2359 2360 err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); 2361 if (err) 2362 return err; 2363 2364 if (!tp->repair) 2365 return -EPERM; 2366 2367 ao = setsockopt_ao_info(sk); 2368 if (IS_ERR(ao)) 2369 return PTR_ERR(ao); 2370 if (!ao) 2371 return -ENOENT; 2372 2373 WRITE_ONCE(ao->lisn, cmd.snt_isn); 2374 WRITE_ONCE(ao->risn, cmd.rcv_isn); 2375 WRITE_ONCE(ao->snd_sne, cmd.snd_sne); 2376 WRITE_ONCE(ao->rcv_sne, cmd.rcv_sne); 2377 2378 hlist_for_each_entry_rcu(key, &ao->head, node) 2379 tcp_ao_cache_traffic_keys(sk, ao, key); 2380 2381 return 0; 2382 } 2383 2384 int tcp_ao_get_repair(struct sock *sk, sockptr_t optval, sockptr_t optlen) 2385 { 2386 struct tcp_sock *tp = tcp_sk(sk); 2387 struct tcp_ao_repair opt; 2388 struct tcp_ao_info *ao; 2389 int len; 2390 2391 if (copy_from_sockptr(&len, optlen, sizeof(int))) 2392 return -EFAULT; 2393 2394 if (len <= 0) 2395 return -EINVAL; 2396 2397 if (!tp->repair) 2398 return -EPERM; 2399 2400 rcu_read_lock(); 2401 ao = getsockopt_ao_info(sk); 2402 if (IS_ERR_OR_NULL(ao)) { 2403 rcu_read_unlock(); 2404 return ao ? PTR_ERR(ao) : -ENOENT; 2405 } 2406 2407 opt.snt_isn = ao->lisn; 2408 opt.rcv_isn = ao->risn; 2409 opt.snd_sne = READ_ONCE(ao->snd_sne); 2410 opt.rcv_sne = READ_ONCE(ao->rcv_sne); 2411 rcu_read_unlock(); 2412 2413 if (copy_to_sockptr(optval, &opt, min_t(int, len, sizeof(opt)))) 2414 return -EFAULT; 2415 return 0; 2416 } 2417