1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP Authentication Option (TCP-AO). 4 * See RFC5925. 5 * 6 * Authors: Dmitry Safonov <dima@arista.com> 7 * Francesco Ruggeri <fruggeri@arista.com> 8 * Salam Noureddine <noureddine@arista.com> 9 */ 10 #define pr_fmt(fmt) "TCP: " fmt 11 12 #include <crypto/hash.h> 13 #include <linux/inetdevice.h> 14 #include <linux/tcp.h> 15 16 #include <net/tcp.h> 17 #include <net/ipv6.h> 18 #include <net/icmp.h> 19 #include <trace/events/tcp.h> 20 21 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_ao_needed, HZ); 22 23 int tcp_ao_calc_traffic_key(struct tcp_ao_key *mkt, u8 *key, void *ctx, 24 unsigned int len, struct tcp_sigpool *hp) 25 { 26 struct scatterlist sg; 27 int ret; 28 29 if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp->req), 30 mkt->key, mkt->keylen)) 31 goto clear_hash; 32 33 ret = crypto_ahash_init(hp->req); 34 if (ret) 35 goto clear_hash; 36 37 sg_init_one(&sg, ctx, len); 38 ahash_request_set_crypt(hp->req, &sg, key, len); 39 crypto_ahash_update(hp->req); 40 41 ret = crypto_ahash_final(hp->req); 42 if (ret) 43 goto clear_hash; 44 45 return 0; 46 clear_hash: 47 memset(key, 0, tcp_ao_digest_size(mkt)); 48 return 1; 49 } 50 51 bool tcp_ao_ignore_icmp(const struct sock *sk, int family, int type, int code) 52 { 53 bool ignore_icmp = false; 54 struct tcp_ao_info *ao; 55 56 if (!static_branch_unlikely(&tcp_ao_needed.key)) 57 return false; 58 59 /* RFC5925, 7.8: 60 * >> A TCP-AO implementation MUST default to ignore incoming ICMPv4 61 * messages of Type 3 (destination unreachable), Codes 2-4 (protocol 62 * unreachable, port unreachable, and fragmentation needed -- ’hard 63 * errors’), and ICMPv6 Type 1 (destination unreachable), Code 1 64 * (administratively prohibited) and Code 4 (port unreachable) intended 65 * for connections in synchronized states (ESTABLISHED, FIN-WAIT-1, FIN- 66 * WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT) that match MKTs. 67 */ 68 if (family == AF_INET) { 69 if (type != ICMP_DEST_UNREACH) 70 return false; 71 if (code < ICMP_PROT_UNREACH || code > ICMP_FRAG_NEEDED) 72 return false; 73 } else { 74 if (type != ICMPV6_DEST_UNREACH) 75 return false; 76 if (code != ICMPV6_ADM_PROHIBITED && code != ICMPV6_PORT_UNREACH) 77 return false; 78 } 79 80 rcu_read_lock(); 81 switch (sk->sk_state) { 82 case TCP_TIME_WAIT: 83 ao = rcu_dereference(tcp_twsk(sk)->ao_info); 84 break; 85 case TCP_SYN_SENT: 86 case TCP_SYN_RECV: 87 case TCP_LISTEN: 88 case TCP_NEW_SYN_RECV: 89 /* RFC5925 specifies to ignore ICMPs *only* on connections 90 * in synchronized states. 91 */ 92 rcu_read_unlock(); 93 return false; 94 default: 95 ao = rcu_dereference(tcp_sk(sk)->ao_info); 96 } 97 98 if (ao && !ao->accept_icmps) { 99 ignore_icmp = true; 100 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAODROPPEDICMPS); 101 atomic64_inc(&ao->counters.dropped_icmp); 102 } 103 rcu_read_unlock(); 104 105 return ignore_icmp; 106 } 107 108 /* Optimized version of tcp_ao_do_lookup(): only for sockets for which 109 * it's known that the keys in ao_info are matching peer's 110 * family/address/VRF/etc. 111 */ 112 struct tcp_ao_key *tcp_ao_established_key(struct tcp_ao_info *ao, 113 int sndid, int rcvid) 114 { 115 struct tcp_ao_key *key; 116 117 hlist_for_each_entry_rcu(key, &ao->head, node) { 118 if ((sndid >= 0 && key->sndid != sndid) || 119 (rcvid >= 0 && key->rcvid != rcvid)) 120 continue; 121 return key; 122 } 123 124 return NULL; 125 } 126 127 static int ipv4_prefix_cmp(const struct in_addr *addr1, 128 const struct in_addr *addr2, 129 unsigned int prefixlen) 130 { 131 __be32 mask = inet_make_mask(prefixlen); 132 __be32 a1 = addr1->s_addr & mask; 133 __be32 a2 = addr2->s_addr & mask; 134 135 if (a1 == a2) 136 return 0; 137 return memcmp(&a1, &a2, sizeof(a1)); 138 } 139 140 static int __tcp_ao_key_cmp(const struct tcp_ao_key *key, int l3index, 141 const union tcp_ao_addr *addr, u8 prefixlen, 142 int family, int sndid, int rcvid) 143 { 144 if (sndid >= 0 && key->sndid != sndid) 145 return (key->sndid > sndid) ? 1 : -1; 146 if (rcvid >= 0 && key->rcvid != rcvid) 147 return (key->rcvid > rcvid) ? 1 : -1; 148 if (l3index >= 0 && (key->keyflags & TCP_AO_KEYF_IFINDEX)) { 149 if (key->l3index != l3index) 150 return (key->l3index > l3index) ? 1 : -1; 151 } 152 153 if (family == AF_UNSPEC) 154 return 0; 155 if (key->family != family) 156 return (key->family > family) ? 1 : -1; 157 158 if (family == AF_INET) { 159 if (ntohl(key->addr.a4.s_addr) == INADDR_ANY) 160 return 0; 161 if (ntohl(addr->a4.s_addr) == INADDR_ANY) 162 return 0; 163 return ipv4_prefix_cmp(&key->addr.a4, &addr->a4, prefixlen); 164 #if IS_ENABLED(CONFIG_IPV6) 165 } else { 166 if (ipv6_addr_any(&key->addr.a6) || ipv6_addr_any(&addr->a6)) 167 return 0; 168 if (ipv6_prefix_equal(&key->addr.a6, &addr->a6, prefixlen)) 169 return 0; 170 return memcmp(&key->addr.a6, &addr->a6, sizeof(addr->a6)); 171 #endif 172 } 173 return -1; 174 } 175 176 static int tcp_ao_key_cmp(const struct tcp_ao_key *key, int l3index, 177 const union tcp_ao_addr *addr, u8 prefixlen, 178 int family, int sndid, int rcvid) 179 { 180 #if IS_ENABLED(CONFIG_IPV6) 181 if (family == AF_INET6 && ipv6_addr_v4mapped(&addr->a6)) { 182 __be32 addr4 = addr->a6.s6_addr32[3]; 183 184 return __tcp_ao_key_cmp(key, l3index, 185 (union tcp_ao_addr *)&addr4, 186 prefixlen, AF_INET, sndid, rcvid); 187 } 188 #endif 189 return __tcp_ao_key_cmp(key, l3index, addr, 190 prefixlen, family, sndid, rcvid); 191 } 192 193 static struct tcp_ao_key *__tcp_ao_do_lookup(const struct sock *sk, int l3index, 194 const union tcp_ao_addr *addr, int family, u8 prefix, 195 int sndid, int rcvid) 196 { 197 struct tcp_ao_key *key; 198 struct tcp_ao_info *ao; 199 200 if (!static_branch_unlikely(&tcp_ao_needed.key)) 201 return NULL; 202 203 ao = rcu_dereference_check(tcp_sk(sk)->ao_info, 204 lockdep_sock_is_held(sk)); 205 if (!ao) 206 return NULL; 207 208 hlist_for_each_entry_rcu(key, &ao->head, node) { 209 u8 prefixlen = min(prefix, key->prefixlen); 210 211 if (!tcp_ao_key_cmp(key, l3index, addr, prefixlen, 212 family, sndid, rcvid)) 213 return key; 214 } 215 return NULL; 216 } 217 218 struct tcp_ao_key *tcp_ao_do_lookup(const struct sock *sk, int l3index, 219 const union tcp_ao_addr *addr, 220 int family, int sndid, int rcvid) 221 { 222 return __tcp_ao_do_lookup(sk, l3index, addr, family, U8_MAX, sndid, rcvid); 223 } 224 225 static struct tcp_ao_info *tcp_ao_alloc_info(gfp_t flags) 226 { 227 struct tcp_ao_info *ao; 228 229 ao = kzalloc(sizeof(*ao), flags); 230 if (!ao) 231 return NULL; 232 INIT_HLIST_HEAD(&ao->head); 233 refcount_set(&ao->refcnt, 1); 234 235 return ao; 236 } 237 238 static void tcp_ao_link_mkt(struct tcp_ao_info *ao, struct tcp_ao_key *mkt) 239 { 240 hlist_add_head_rcu(&mkt->node, &ao->head); 241 } 242 243 static struct tcp_ao_key *tcp_ao_copy_key(struct sock *sk, 244 struct tcp_ao_key *key) 245 { 246 struct tcp_ao_key *new_key; 247 248 new_key = sock_kmalloc(sk, tcp_ao_sizeof_key(key), 249 GFP_ATOMIC); 250 if (!new_key) 251 return NULL; 252 253 *new_key = *key; 254 INIT_HLIST_NODE(&new_key->node); 255 tcp_sigpool_get(new_key->tcp_sigpool_id); 256 atomic64_set(&new_key->pkt_good, 0); 257 atomic64_set(&new_key->pkt_bad, 0); 258 259 return new_key; 260 } 261 262 static void tcp_ao_key_free_rcu(struct rcu_head *head) 263 { 264 struct tcp_ao_key *key = container_of(head, struct tcp_ao_key, rcu); 265 266 tcp_sigpool_release(key->tcp_sigpool_id); 267 kfree_sensitive(key); 268 } 269 270 void tcp_ao_destroy_sock(struct sock *sk, bool twsk) 271 { 272 struct tcp_ao_info *ao; 273 struct tcp_ao_key *key; 274 struct hlist_node *n; 275 276 if (twsk) { 277 ao = rcu_dereference_protected(tcp_twsk(sk)->ao_info, 1); 278 tcp_twsk(sk)->ao_info = NULL; 279 } else { 280 ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, 1); 281 tcp_sk(sk)->ao_info = NULL; 282 } 283 284 if (!ao || !refcount_dec_and_test(&ao->refcnt)) 285 return; 286 287 hlist_for_each_entry_safe(key, n, &ao->head, node) { 288 hlist_del_rcu(&key->node); 289 if (!twsk) 290 atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); 291 call_rcu(&key->rcu, tcp_ao_key_free_rcu); 292 } 293 294 kfree_rcu(ao, rcu); 295 static_branch_slow_dec_deferred(&tcp_ao_needed); 296 } 297 298 void tcp_ao_time_wait(struct tcp_timewait_sock *tcptw, struct tcp_sock *tp) 299 { 300 struct tcp_ao_info *ao_info = rcu_dereference_protected(tp->ao_info, 1); 301 302 if (ao_info) { 303 struct tcp_ao_key *key; 304 struct hlist_node *n; 305 int omem = 0; 306 307 hlist_for_each_entry_safe(key, n, &ao_info->head, node) { 308 omem += tcp_ao_sizeof_key(key); 309 } 310 311 refcount_inc(&ao_info->refcnt); 312 atomic_sub(omem, &(((struct sock *)tp)->sk_omem_alloc)); 313 rcu_assign_pointer(tcptw->ao_info, ao_info); 314 } else { 315 tcptw->ao_info = NULL; 316 } 317 } 318 319 /* 4 tuple and ISNs are expected in NBO */ 320 static int tcp_v4_ao_calc_key(struct tcp_ao_key *mkt, u8 *key, 321 __be32 saddr, __be32 daddr, 322 __be16 sport, __be16 dport, 323 __be32 sisn, __be32 disn) 324 { 325 /* See RFC5926 3.1.1 */ 326 struct kdf_input_block { 327 u8 counter; 328 u8 label[6]; 329 struct tcp4_ao_context ctx; 330 __be16 outlen; 331 } __packed * tmp; 332 struct tcp_sigpool hp; 333 int err; 334 335 err = tcp_sigpool_start(mkt->tcp_sigpool_id, &hp); 336 if (err) 337 return err; 338 339 tmp = hp.scratch; 340 tmp->counter = 1; 341 memcpy(tmp->label, "TCP-AO", 6); 342 tmp->ctx.saddr = saddr; 343 tmp->ctx.daddr = daddr; 344 tmp->ctx.sport = sport; 345 tmp->ctx.dport = dport; 346 tmp->ctx.sisn = sisn; 347 tmp->ctx.disn = disn; 348 tmp->outlen = htons(tcp_ao_digest_size(mkt) * 8); /* in bits */ 349 350 err = tcp_ao_calc_traffic_key(mkt, key, tmp, sizeof(*tmp), &hp); 351 tcp_sigpool_end(&hp); 352 353 return err; 354 } 355 356 int tcp_v4_ao_calc_key_sk(struct tcp_ao_key *mkt, u8 *key, 357 const struct sock *sk, 358 __be32 sisn, __be32 disn, bool send) 359 { 360 if (send) 361 return tcp_v4_ao_calc_key(mkt, key, sk->sk_rcv_saddr, 362 sk->sk_daddr, htons(sk->sk_num), 363 sk->sk_dport, sisn, disn); 364 else 365 return tcp_v4_ao_calc_key(mkt, key, sk->sk_daddr, 366 sk->sk_rcv_saddr, sk->sk_dport, 367 htons(sk->sk_num), disn, sisn); 368 } 369 370 static int tcp_ao_calc_key_sk(struct tcp_ao_key *mkt, u8 *key, 371 const struct sock *sk, 372 __be32 sisn, __be32 disn, bool send) 373 { 374 if (mkt->family == AF_INET) 375 return tcp_v4_ao_calc_key_sk(mkt, key, sk, sisn, disn, send); 376 #if IS_ENABLED(CONFIG_IPV6) 377 else if (mkt->family == AF_INET6) 378 return tcp_v6_ao_calc_key_sk(mkt, key, sk, sisn, disn, send); 379 #endif 380 else 381 return -EOPNOTSUPP; 382 } 383 384 int tcp_v4_ao_calc_key_rsk(struct tcp_ao_key *mkt, u8 *key, 385 struct request_sock *req) 386 { 387 struct inet_request_sock *ireq = inet_rsk(req); 388 389 return tcp_v4_ao_calc_key(mkt, key, 390 ireq->ir_loc_addr, ireq->ir_rmt_addr, 391 htons(ireq->ir_num), ireq->ir_rmt_port, 392 htonl(tcp_rsk(req)->snt_isn), 393 htonl(tcp_rsk(req)->rcv_isn)); 394 } 395 396 static int tcp_v4_ao_calc_key_skb(struct tcp_ao_key *mkt, u8 *key, 397 const struct sk_buff *skb, 398 __be32 sisn, __be32 disn) 399 { 400 const struct iphdr *iph = ip_hdr(skb); 401 const struct tcphdr *th = tcp_hdr(skb); 402 403 return tcp_v4_ao_calc_key(mkt, key, iph->saddr, iph->daddr, 404 th->source, th->dest, sisn, disn); 405 } 406 407 static int tcp_ao_calc_key_skb(struct tcp_ao_key *mkt, u8 *key, 408 const struct sk_buff *skb, 409 __be32 sisn, __be32 disn, int family) 410 { 411 if (family == AF_INET) 412 return tcp_v4_ao_calc_key_skb(mkt, key, skb, sisn, disn); 413 #if IS_ENABLED(CONFIG_IPV6) 414 else if (family == AF_INET6) 415 return tcp_v6_ao_calc_key_skb(mkt, key, skb, sisn, disn); 416 #endif 417 return -EAFNOSUPPORT; 418 } 419 420 static int tcp_v4_ao_hash_pseudoheader(struct tcp_sigpool *hp, 421 __be32 daddr, __be32 saddr, 422 int nbytes) 423 { 424 struct tcp4_pseudohdr *bp; 425 struct scatterlist sg; 426 427 bp = hp->scratch; 428 bp->saddr = saddr; 429 bp->daddr = daddr; 430 bp->pad = 0; 431 bp->protocol = IPPROTO_TCP; 432 bp->len = cpu_to_be16(nbytes); 433 434 sg_init_one(&sg, bp, sizeof(*bp)); 435 ahash_request_set_crypt(hp->req, &sg, NULL, sizeof(*bp)); 436 return crypto_ahash_update(hp->req); 437 } 438 439 static int tcp_ao_hash_pseudoheader(unsigned short int family, 440 const struct sock *sk, 441 const struct sk_buff *skb, 442 struct tcp_sigpool *hp, int nbytes) 443 { 444 const struct tcphdr *th = tcp_hdr(skb); 445 446 /* TODO: Can we rely on checksum being zero to mean outbound pkt? */ 447 if (!th->check) { 448 if (family == AF_INET) 449 return tcp_v4_ao_hash_pseudoheader(hp, sk->sk_daddr, 450 sk->sk_rcv_saddr, skb->len); 451 #if IS_ENABLED(CONFIG_IPV6) 452 else if (family == AF_INET6) 453 return tcp_v6_ao_hash_pseudoheader(hp, &sk->sk_v6_daddr, 454 &sk->sk_v6_rcv_saddr, skb->len); 455 #endif 456 else 457 return -EAFNOSUPPORT; 458 } 459 460 if (family == AF_INET) { 461 const struct iphdr *iph = ip_hdr(skb); 462 463 return tcp_v4_ao_hash_pseudoheader(hp, iph->daddr, 464 iph->saddr, skb->len); 465 #if IS_ENABLED(CONFIG_IPV6) 466 } else if (family == AF_INET6) { 467 const struct ipv6hdr *iph = ipv6_hdr(skb); 468 469 return tcp_v6_ao_hash_pseudoheader(hp, &iph->daddr, 470 &iph->saddr, skb->len); 471 #endif 472 } 473 return -EAFNOSUPPORT; 474 } 475 476 u32 tcp_ao_compute_sne(u32 next_sne, u32 next_seq, u32 seq) 477 { 478 u32 sne = next_sne; 479 480 if (before(seq, next_seq)) { 481 if (seq > next_seq) 482 sne--; 483 } else { 484 if (seq < next_seq) 485 sne++; 486 } 487 488 return sne; 489 } 490 491 /* tcp_ao_hash_sne(struct tcp_sigpool *hp) 492 * @hp - used for hashing 493 * @sne - sne value 494 */ 495 static int tcp_ao_hash_sne(struct tcp_sigpool *hp, u32 sne) 496 { 497 struct scatterlist sg; 498 __be32 *bp; 499 500 bp = (__be32 *)hp->scratch; 501 *bp = htonl(sne); 502 503 sg_init_one(&sg, bp, sizeof(*bp)); 504 ahash_request_set_crypt(hp->req, &sg, NULL, sizeof(*bp)); 505 return crypto_ahash_update(hp->req); 506 } 507 508 static int tcp_ao_hash_header(struct tcp_sigpool *hp, 509 const struct tcphdr *th, 510 bool exclude_options, u8 *hash, 511 int hash_offset, int hash_len) 512 { 513 struct scatterlist sg; 514 u8 *hdr = hp->scratch; 515 int err, len; 516 517 /* We are not allowed to change tcphdr, make a local copy */ 518 if (exclude_options) { 519 len = sizeof(*th) + sizeof(struct tcp_ao_hdr) + hash_len; 520 memcpy(hdr, th, sizeof(*th)); 521 memcpy(hdr + sizeof(*th), 522 (u8 *)th + hash_offset - sizeof(struct tcp_ao_hdr), 523 sizeof(struct tcp_ao_hdr)); 524 memset(hdr + sizeof(*th) + sizeof(struct tcp_ao_hdr), 525 0, hash_len); 526 ((struct tcphdr *)hdr)->check = 0; 527 } else { 528 len = th->doff << 2; 529 memcpy(hdr, th, len); 530 /* zero out tcp-ao hash */ 531 ((struct tcphdr *)hdr)->check = 0; 532 memset(hdr + hash_offset, 0, hash_len); 533 } 534 535 sg_init_one(&sg, hdr, len); 536 ahash_request_set_crypt(hp->req, &sg, NULL, len); 537 err = crypto_ahash_update(hp->req); 538 WARN_ON_ONCE(err != 0); 539 return err; 540 } 541 542 int tcp_ao_hash_hdr(unsigned short int family, char *ao_hash, 543 struct tcp_ao_key *key, const u8 *tkey, 544 const union tcp_ao_addr *daddr, 545 const union tcp_ao_addr *saddr, 546 const struct tcphdr *th, u32 sne) 547 { 548 int tkey_len = tcp_ao_digest_size(key); 549 int hash_offset = ao_hash - (char *)th; 550 struct tcp_sigpool hp; 551 void *hash_buf = NULL; 552 553 hash_buf = kmalloc(tkey_len, GFP_ATOMIC); 554 if (!hash_buf) 555 goto clear_hash_noput; 556 557 if (tcp_sigpool_start(key->tcp_sigpool_id, &hp)) 558 goto clear_hash_noput; 559 560 if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp.req), tkey, tkey_len)) 561 goto clear_hash; 562 563 if (crypto_ahash_init(hp.req)) 564 goto clear_hash; 565 566 if (tcp_ao_hash_sne(&hp, sne)) 567 goto clear_hash; 568 if (family == AF_INET) { 569 if (tcp_v4_ao_hash_pseudoheader(&hp, daddr->a4.s_addr, 570 saddr->a4.s_addr, th->doff * 4)) 571 goto clear_hash; 572 #if IS_ENABLED(CONFIG_IPV6) 573 } else if (family == AF_INET6) { 574 if (tcp_v6_ao_hash_pseudoheader(&hp, &daddr->a6, 575 &saddr->a6, th->doff * 4)) 576 goto clear_hash; 577 #endif 578 } else { 579 WARN_ON_ONCE(1); 580 goto clear_hash; 581 } 582 if (tcp_ao_hash_header(&hp, th, 583 !!(key->keyflags & TCP_AO_KEYF_EXCLUDE_OPT), 584 ao_hash, hash_offset, tcp_ao_maclen(key))) 585 goto clear_hash; 586 ahash_request_set_crypt(hp.req, NULL, hash_buf, 0); 587 if (crypto_ahash_final(hp.req)) 588 goto clear_hash; 589 590 memcpy(ao_hash, hash_buf, tcp_ao_maclen(key)); 591 tcp_sigpool_end(&hp); 592 kfree(hash_buf); 593 return 0; 594 595 clear_hash: 596 tcp_sigpool_end(&hp); 597 clear_hash_noput: 598 memset(ao_hash, 0, tcp_ao_maclen(key)); 599 kfree(hash_buf); 600 return 1; 601 } 602 603 int tcp_ao_hash_skb(unsigned short int family, 604 char *ao_hash, struct tcp_ao_key *key, 605 const struct sock *sk, const struct sk_buff *skb, 606 const u8 *tkey, int hash_offset, u32 sne) 607 { 608 const struct tcphdr *th = tcp_hdr(skb); 609 int tkey_len = tcp_ao_digest_size(key); 610 struct tcp_sigpool hp; 611 void *hash_buf = NULL; 612 613 hash_buf = kmalloc(tkey_len, GFP_ATOMIC); 614 if (!hash_buf) 615 goto clear_hash_noput; 616 617 if (tcp_sigpool_start(key->tcp_sigpool_id, &hp)) 618 goto clear_hash_noput; 619 620 if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp.req), tkey, tkey_len)) 621 goto clear_hash; 622 623 /* For now use sha1 by default. Depends on alg in tcp_ao_key */ 624 if (crypto_ahash_init(hp.req)) 625 goto clear_hash; 626 627 if (tcp_ao_hash_sne(&hp, sne)) 628 goto clear_hash; 629 if (tcp_ao_hash_pseudoheader(family, sk, skb, &hp, skb->len)) 630 goto clear_hash; 631 if (tcp_ao_hash_header(&hp, th, 632 !!(key->keyflags & TCP_AO_KEYF_EXCLUDE_OPT), 633 ao_hash, hash_offset, tcp_ao_maclen(key))) 634 goto clear_hash; 635 if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2)) 636 goto clear_hash; 637 ahash_request_set_crypt(hp.req, NULL, hash_buf, 0); 638 if (crypto_ahash_final(hp.req)) 639 goto clear_hash; 640 641 memcpy(ao_hash, hash_buf, tcp_ao_maclen(key)); 642 tcp_sigpool_end(&hp); 643 kfree(hash_buf); 644 return 0; 645 646 clear_hash: 647 tcp_sigpool_end(&hp); 648 clear_hash_noput: 649 memset(ao_hash, 0, tcp_ao_maclen(key)); 650 kfree(hash_buf); 651 return 1; 652 } 653 654 int tcp_v4_ao_hash_skb(char *ao_hash, struct tcp_ao_key *key, 655 const struct sock *sk, const struct sk_buff *skb, 656 const u8 *tkey, int hash_offset, u32 sne) 657 { 658 return tcp_ao_hash_skb(AF_INET, ao_hash, key, sk, skb, 659 tkey, hash_offset, sne); 660 } 661 662 int tcp_v4_ao_synack_hash(char *ao_hash, struct tcp_ao_key *ao_key, 663 struct request_sock *req, const struct sk_buff *skb, 664 int hash_offset, u32 sne) 665 { 666 void *hash_buf = NULL; 667 int err; 668 669 hash_buf = kmalloc(tcp_ao_digest_size(ao_key), GFP_ATOMIC); 670 if (!hash_buf) 671 return -ENOMEM; 672 673 err = tcp_v4_ao_calc_key_rsk(ao_key, hash_buf, req); 674 if (err) 675 goto out; 676 677 err = tcp_ao_hash_skb(AF_INET, ao_hash, ao_key, req_to_sk(req), skb, 678 hash_buf, hash_offset, sne); 679 out: 680 kfree(hash_buf); 681 return err; 682 } 683 684 struct tcp_ao_key *tcp_v4_ao_lookup_rsk(const struct sock *sk, 685 struct request_sock *req, 686 int sndid, int rcvid) 687 { 688 struct inet_request_sock *ireq = inet_rsk(req); 689 union tcp_ao_addr *addr = (union tcp_ao_addr *)&ireq->ir_rmt_addr; 690 int l3index; 691 692 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); 693 return tcp_ao_do_lookup(sk, l3index, addr, AF_INET, sndid, rcvid); 694 } 695 696 struct tcp_ao_key *tcp_v4_ao_lookup(const struct sock *sk, struct sock *addr_sk, 697 int sndid, int rcvid) 698 { 699 int l3index = l3mdev_master_ifindex_by_index(sock_net(sk), 700 addr_sk->sk_bound_dev_if); 701 union tcp_ao_addr *addr = (union tcp_ao_addr *)&addr_sk->sk_daddr; 702 703 return tcp_ao_do_lookup(sk, l3index, addr, AF_INET, sndid, rcvid); 704 } 705 706 int tcp_ao_prepare_reset(const struct sock *sk, struct sk_buff *skb, 707 const struct tcp_ao_hdr *aoh, int l3index, u32 seq, 708 struct tcp_ao_key **key, char **traffic_key, 709 bool *allocated_traffic_key, u8 *keyid, u32 *sne) 710 { 711 const struct tcphdr *th = tcp_hdr(skb); 712 struct tcp_ao_info *ao_info; 713 714 *allocated_traffic_key = false; 715 /* If there's no socket - than initial sisn/disn are unknown. 716 * Drop the segment. RFC5925 (7.7) advises to require graceful 717 * restart [RFC4724]. Alternatively, the RFC5925 advises to 718 * save/restore traffic keys before/after reboot. 719 * Linux TCP-AO support provides TCP_AO_ADD_KEY and TCP_AO_REPAIR 720 * options to restore a socket post-reboot. 721 */ 722 if (!sk) 723 return -ENOTCONN; 724 725 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV)) { 726 unsigned int family = READ_ONCE(sk->sk_family); 727 union tcp_ao_addr *addr; 728 __be32 disn, sisn; 729 730 if (sk->sk_state == TCP_NEW_SYN_RECV) { 731 struct request_sock *req = inet_reqsk(sk); 732 733 sisn = htonl(tcp_rsk(req)->rcv_isn); 734 disn = htonl(tcp_rsk(req)->snt_isn); 735 *sne = tcp_ao_compute_sne(0, tcp_rsk(req)->snt_isn, seq); 736 } else { 737 sisn = th->seq; 738 disn = 0; 739 } 740 if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 741 addr = (union tcp_md5_addr *)&ipv6_hdr(skb)->saddr; 742 else 743 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 744 #if IS_ENABLED(CONFIG_IPV6) 745 if (family == AF_INET6 && ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 746 family = AF_INET; 747 #endif 748 749 sk = sk_const_to_full_sk(sk); 750 ao_info = rcu_dereference(tcp_sk(sk)->ao_info); 751 if (!ao_info) 752 return -ENOENT; 753 *key = tcp_ao_do_lookup(sk, l3index, addr, family, 754 -1, aoh->rnext_keyid); 755 if (!*key) 756 return -ENOENT; 757 *traffic_key = kmalloc(tcp_ao_digest_size(*key), GFP_ATOMIC); 758 if (!*traffic_key) 759 return -ENOMEM; 760 *allocated_traffic_key = true; 761 if (tcp_ao_calc_key_skb(*key, *traffic_key, skb, 762 sisn, disn, family)) 763 return -1; 764 *keyid = (*key)->rcvid; 765 } else { 766 struct tcp_ao_key *rnext_key; 767 u32 snd_basis; 768 769 if (sk->sk_state == TCP_TIME_WAIT) { 770 ao_info = rcu_dereference(tcp_twsk(sk)->ao_info); 771 snd_basis = tcp_twsk(sk)->tw_snd_nxt; 772 } else { 773 ao_info = rcu_dereference(tcp_sk(sk)->ao_info); 774 snd_basis = tcp_sk(sk)->snd_una; 775 } 776 if (!ao_info) 777 return -ENOENT; 778 779 *key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1); 780 if (!*key) 781 return -ENOENT; 782 *traffic_key = snd_other_key(*key); 783 rnext_key = READ_ONCE(ao_info->rnext_key); 784 *keyid = rnext_key->rcvid; 785 *sne = tcp_ao_compute_sne(READ_ONCE(ao_info->snd_sne), 786 snd_basis, seq); 787 } 788 return 0; 789 } 790 791 int tcp_ao_transmit_skb(struct sock *sk, struct sk_buff *skb, 792 struct tcp_ao_key *key, struct tcphdr *th, 793 __u8 *hash_location) 794 { 795 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 796 struct tcp_sock *tp = tcp_sk(sk); 797 struct tcp_ao_info *ao; 798 void *tkey_buf = NULL; 799 u8 *traffic_key; 800 u32 sne; 801 802 ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, 803 lockdep_sock_is_held(sk)); 804 traffic_key = snd_other_key(key); 805 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 806 __be32 disn; 807 808 if (!(tcb->tcp_flags & TCPHDR_ACK)) { 809 disn = 0; 810 tkey_buf = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC); 811 if (!tkey_buf) 812 return -ENOMEM; 813 traffic_key = tkey_buf; 814 } else { 815 disn = ao->risn; 816 } 817 tp->af_specific->ao_calc_key_sk(key, traffic_key, 818 sk, ao->lisn, disn, true); 819 } 820 sne = tcp_ao_compute_sne(READ_ONCE(ao->snd_sne), READ_ONCE(tp->snd_una), 821 ntohl(th->seq)); 822 tp->af_specific->calc_ao_hash(hash_location, key, sk, skb, traffic_key, 823 hash_location - (u8 *)th, sne); 824 kfree(tkey_buf); 825 return 0; 826 } 827 828 static struct tcp_ao_key *tcp_ao_inbound_lookup(unsigned short int family, 829 const struct sock *sk, const struct sk_buff *skb, 830 int sndid, int rcvid, int l3index) 831 { 832 if (family == AF_INET) { 833 const struct iphdr *iph = ip_hdr(skb); 834 835 return tcp_ao_do_lookup(sk, l3index, 836 (union tcp_ao_addr *)&iph->saddr, 837 AF_INET, sndid, rcvid); 838 } else { 839 const struct ipv6hdr *iph = ipv6_hdr(skb); 840 841 return tcp_ao_do_lookup(sk, l3index, 842 (union tcp_ao_addr *)&iph->saddr, 843 AF_INET6, sndid, rcvid); 844 } 845 } 846 847 void tcp_ao_syncookie(struct sock *sk, const struct sk_buff *skb, 848 struct request_sock *req, unsigned short int family) 849 { 850 struct tcp_request_sock *treq = tcp_rsk(req); 851 const struct tcphdr *th = tcp_hdr(skb); 852 const struct tcp_ao_hdr *aoh; 853 struct tcp_ao_key *key; 854 int l3index; 855 856 /* treq->af_specific is used to perform TCP_AO lookup 857 * in tcp_create_openreq_child(). 858 */ 859 #if IS_ENABLED(CONFIG_IPV6) 860 if (family == AF_INET6) 861 treq->af_specific = &tcp_request_sock_ipv6_ops; 862 else 863 #endif 864 treq->af_specific = &tcp_request_sock_ipv4_ops; 865 866 treq->used_tcp_ao = false; 867 868 if (tcp_parse_auth_options(th, NULL, &aoh) || !aoh) 869 return; 870 871 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), inet_rsk(req)->ir_iif); 872 key = tcp_ao_inbound_lookup(family, sk, skb, -1, aoh->keyid, l3index); 873 if (!key) 874 /* Key not found, continue without TCP-AO */ 875 return; 876 877 treq->ao_rcv_next = aoh->keyid; 878 treq->ao_keyid = aoh->rnext_keyid; 879 treq->used_tcp_ao = true; 880 } 881 882 static enum skb_drop_reason 883 tcp_ao_verify_hash(const struct sock *sk, const struct sk_buff *skb, 884 unsigned short int family, struct tcp_ao_info *info, 885 const struct tcp_ao_hdr *aoh, struct tcp_ao_key *key, 886 u8 *traffic_key, u8 *phash, u32 sne, int l3index) 887 { 888 const struct tcphdr *th = tcp_hdr(skb); 889 u8 maclen = tcp_ao_hdr_maclen(aoh); 890 void *hash_buf = NULL; 891 892 if (maclen != tcp_ao_maclen(key)) { 893 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 894 atomic64_inc(&info->counters.pkt_bad); 895 atomic64_inc(&key->pkt_bad); 896 trace_tcp_ao_wrong_maclen(sk, skb, aoh->keyid, 897 aoh->rnext_keyid, maclen); 898 return SKB_DROP_REASON_TCP_AOFAILURE; 899 } 900 901 hash_buf = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC); 902 if (!hash_buf) 903 return SKB_DROP_REASON_NOT_SPECIFIED; 904 905 /* XXX: make it per-AF callback? */ 906 tcp_ao_hash_skb(family, hash_buf, key, sk, skb, traffic_key, 907 (phash - (u8 *)th), sne); 908 if (memcmp(phash, hash_buf, maclen)) { 909 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 910 atomic64_inc(&info->counters.pkt_bad); 911 atomic64_inc(&key->pkt_bad); 912 trace_tcp_ao_mismatch(sk, skb, aoh->keyid, 913 aoh->rnext_keyid, maclen); 914 kfree(hash_buf); 915 return SKB_DROP_REASON_TCP_AOFAILURE; 916 } 917 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOGOOD); 918 atomic64_inc(&info->counters.pkt_good); 919 atomic64_inc(&key->pkt_good); 920 kfree(hash_buf); 921 return SKB_NOT_DROPPED_YET; 922 } 923 924 enum skb_drop_reason 925 tcp_inbound_ao_hash(struct sock *sk, const struct sk_buff *skb, 926 unsigned short int family, const struct request_sock *req, 927 int l3index, const struct tcp_ao_hdr *aoh) 928 { 929 const struct tcphdr *th = tcp_hdr(skb); 930 u8 maclen = tcp_ao_hdr_maclen(aoh); 931 u8 *phash = (u8 *)(aoh + 1); /* hash goes just after the header */ 932 struct tcp_ao_info *info; 933 enum skb_drop_reason ret; 934 struct tcp_ao_key *key; 935 __be32 sisn, disn; 936 u8 *traffic_key; 937 int state; 938 u32 sne = 0; 939 940 info = rcu_dereference(tcp_sk(sk)->ao_info); 941 if (!info) { 942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOKEYNOTFOUND); 943 trace_tcp_ao_key_not_found(sk, skb, aoh->keyid, 944 aoh->rnext_keyid, maclen); 945 return SKB_DROP_REASON_TCP_AOUNEXPECTED; 946 } 947 948 if (unlikely(th->syn)) { 949 sisn = th->seq; 950 disn = 0; 951 } 952 953 state = READ_ONCE(sk->sk_state); 954 /* Fast-path */ 955 if (likely((1 << state) & TCP_AO_ESTABLISHED)) { 956 enum skb_drop_reason err; 957 struct tcp_ao_key *current_key; 958 959 /* Check if this socket's rnext_key matches the keyid in the 960 * packet. If not we lookup the key based on the keyid 961 * matching the rcvid in the mkt. 962 */ 963 key = READ_ONCE(info->rnext_key); 964 if (key->rcvid != aoh->keyid) { 965 key = tcp_ao_established_key(info, -1, aoh->keyid); 966 if (!key) 967 goto key_not_found; 968 } 969 970 /* Delayed retransmitted SYN */ 971 if (unlikely(th->syn && !th->ack)) 972 goto verify_hash; 973 974 sne = tcp_ao_compute_sne(info->rcv_sne, tcp_sk(sk)->rcv_nxt, 975 ntohl(th->seq)); 976 /* Established socket, traffic key are cached */ 977 traffic_key = rcv_other_key(key); 978 err = tcp_ao_verify_hash(sk, skb, family, info, aoh, key, 979 traffic_key, phash, sne, l3index); 980 if (err) 981 return err; 982 current_key = READ_ONCE(info->current_key); 983 /* Key rotation: the peer asks us to use new key (RNext) */ 984 if (unlikely(aoh->rnext_keyid != current_key->sndid)) { 985 trace_tcp_ao_rnext_request(sk, skb, current_key->sndid, 986 aoh->rnext_keyid, 987 tcp_ao_hdr_maclen(aoh)); 988 /* If the key is not found we do nothing. */ 989 key = tcp_ao_established_key(info, aoh->rnext_keyid, -1); 990 if (key) 991 /* pairs with tcp_ao_del_cmd */ 992 WRITE_ONCE(info->current_key, key); 993 } 994 return SKB_NOT_DROPPED_YET; 995 } 996 997 if (unlikely(state == TCP_CLOSE)) 998 return SKB_DROP_REASON_TCP_CLOSE; 999 1000 /* Lookup key based on peer address and keyid. 1001 * current_key and rnext_key must not be used on tcp listen 1002 * sockets as otherwise: 1003 * - request sockets would race on those key pointers 1004 * - tcp_ao_del_cmd() allows async key removal 1005 */ 1006 key = tcp_ao_inbound_lookup(family, sk, skb, -1, aoh->keyid, l3index); 1007 if (!key) 1008 goto key_not_found; 1009 1010 if (th->syn && !th->ack) 1011 goto verify_hash; 1012 1013 if ((1 << state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV)) { 1014 /* Make the initial syn the likely case here */ 1015 if (unlikely(req)) { 1016 sne = tcp_ao_compute_sne(0, tcp_rsk(req)->rcv_isn, 1017 ntohl(th->seq)); 1018 sisn = htonl(tcp_rsk(req)->rcv_isn); 1019 disn = htonl(tcp_rsk(req)->snt_isn); 1020 } else if (unlikely(th->ack && !th->syn)) { 1021 /* Possible syncookie packet */ 1022 sisn = htonl(ntohl(th->seq) - 1); 1023 disn = htonl(ntohl(th->ack_seq) - 1); 1024 sne = tcp_ao_compute_sne(0, ntohl(sisn), 1025 ntohl(th->seq)); 1026 } else if (unlikely(!th->syn)) { 1027 /* no way to figure out initial sisn/disn - drop */ 1028 return SKB_DROP_REASON_TCP_FLAGS; 1029 } 1030 } else if ((1 << state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 1031 disn = info->lisn; 1032 if (th->syn || th->rst) 1033 sisn = th->seq; 1034 else 1035 sisn = info->risn; 1036 } else { 1037 WARN_ONCE(1, "TCP-AO: Unexpected sk_state %d", state); 1038 return SKB_DROP_REASON_TCP_AOFAILURE; 1039 } 1040 verify_hash: 1041 traffic_key = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC); 1042 if (!traffic_key) 1043 return SKB_DROP_REASON_NOT_SPECIFIED; 1044 tcp_ao_calc_key_skb(key, traffic_key, skb, sisn, disn, family); 1045 ret = tcp_ao_verify_hash(sk, skb, family, info, aoh, key, 1046 traffic_key, phash, sne, l3index); 1047 kfree(traffic_key); 1048 return ret; 1049 1050 key_not_found: 1051 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOKEYNOTFOUND); 1052 atomic64_inc(&info->counters.key_not_found); 1053 trace_tcp_ao_key_not_found(sk, skb, aoh->keyid, 1054 aoh->rnext_keyid, maclen); 1055 return SKB_DROP_REASON_TCP_AOKEYNOTFOUND; 1056 } 1057 1058 static int tcp_ao_cache_traffic_keys(const struct sock *sk, 1059 struct tcp_ao_info *ao, 1060 struct tcp_ao_key *ao_key) 1061 { 1062 u8 *traffic_key = snd_other_key(ao_key); 1063 int ret; 1064 1065 ret = tcp_ao_calc_key_sk(ao_key, traffic_key, sk, 1066 ao->lisn, ao->risn, true); 1067 if (ret) 1068 return ret; 1069 1070 traffic_key = rcv_other_key(ao_key); 1071 ret = tcp_ao_calc_key_sk(ao_key, traffic_key, sk, 1072 ao->lisn, ao->risn, false); 1073 return ret; 1074 } 1075 1076 void tcp_ao_connect_init(struct sock *sk) 1077 { 1078 struct tcp_sock *tp = tcp_sk(sk); 1079 struct tcp_ao_info *ao_info; 1080 struct hlist_node *next; 1081 union tcp_ao_addr *addr; 1082 struct tcp_ao_key *key; 1083 int family, l3index; 1084 1085 ao_info = rcu_dereference_protected(tp->ao_info, 1086 lockdep_sock_is_held(sk)); 1087 if (!ao_info) 1088 return; 1089 1090 /* Remove all keys that don't match the peer */ 1091 family = sk->sk_family; 1092 if (family == AF_INET) 1093 addr = (union tcp_ao_addr *)&sk->sk_daddr; 1094 #if IS_ENABLED(CONFIG_IPV6) 1095 else if (family == AF_INET6) 1096 addr = (union tcp_ao_addr *)&sk->sk_v6_daddr; 1097 #endif 1098 else 1099 return; 1100 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), 1101 sk->sk_bound_dev_if); 1102 1103 hlist_for_each_entry_safe(key, next, &ao_info->head, node) { 1104 if (!tcp_ao_key_cmp(key, l3index, addr, key->prefixlen, family, -1, -1)) 1105 continue; 1106 1107 if (key == ao_info->current_key) 1108 ao_info->current_key = NULL; 1109 if (key == ao_info->rnext_key) 1110 ao_info->rnext_key = NULL; 1111 hlist_del_rcu(&key->node); 1112 atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); 1113 call_rcu(&key->rcu, tcp_ao_key_free_rcu); 1114 } 1115 1116 key = tp->af_specific->ao_lookup(sk, sk, -1, -1); 1117 if (key) { 1118 /* if current_key or rnext_key were not provided, 1119 * use the first key matching the peer 1120 */ 1121 if (!ao_info->current_key) 1122 ao_info->current_key = key; 1123 if (!ao_info->rnext_key) 1124 ao_info->rnext_key = key; 1125 tp->tcp_header_len += tcp_ao_len_aligned(key); 1126 1127 ao_info->lisn = htonl(tp->write_seq); 1128 ao_info->snd_sne = 0; 1129 } else { 1130 /* Can't happen: tcp_connect() verifies that there's 1131 * at least one tcp-ao key that matches the remote peer. 1132 */ 1133 WARN_ON_ONCE(1); 1134 rcu_assign_pointer(tp->ao_info, NULL); 1135 kfree(ao_info); 1136 } 1137 } 1138 1139 void tcp_ao_established(struct sock *sk) 1140 { 1141 struct tcp_ao_info *ao; 1142 struct tcp_ao_key *key; 1143 1144 ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, 1145 lockdep_sock_is_held(sk)); 1146 if (!ao) 1147 return; 1148 1149 hlist_for_each_entry_rcu(key, &ao->head, node) 1150 tcp_ao_cache_traffic_keys(sk, ao, key); 1151 } 1152 1153 void tcp_ao_finish_connect(struct sock *sk, struct sk_buff *skb) 1154 { 1155 struct tcp_ao_info *ao; 1156 struct tcp_ao_key *key; 1157 1158 ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, 1159 lockdep_sock_is_held(sk)); 1160 if (!ao) 1161 return; 1162 1163 WRITE_ONCE(ao->risn, tcp_hdr(skb)->seq); 1164 ao->rcv_sne = 0; 1165 1166 hlist_for_each_entry_rcu(key, &ao->head, node) 1167 tcp_ao_cache_traffic_keys(sk, ao, key); 1168 } 1169 1170 int tcp_ao_copy_all_matching(const struct sock *sk, struct sock *newsk, 1171 struct request_sock *req, struct sk_buff *skb, 1172 int family) 1173 { 1174 struct tcp_ao_key *key, *new_key, *first_key; 1175 struct tcp_ao_info *new_ao, *ao; 1176 struct hlist_node *key_head; 1177 int l3index, ret = -ENOMEM; 1178 union tcp_ao_addr *addr; 1179 bool match = false; 1180 1181 ao = rcu_dereference(tcp_sk(sk)->ao_info); 1182 if (!ao) 1183 return 0; 1184 1185 /* New socket without TCP-AO on it */ 1186 if (!tcp_rsk_used_ao(req)) 1187 return 0; 1188 1189 new_ao = tcp_ao_alloc_info(GFP_ATOMIC); 1190 if (!new_ao) 1191 return -ENOMEM; 1192 new_ao->lisn = htonl(tcp_rsk(req)->snt_isn); 1193 new_ao->risn = htonl(tcp_rsk(req)->rcv_isn); 1194 new_ao->ao_required = ao->ao_required; 1195 new_ao->accept_icmps = ao->accept_icmps; 1196 1197 if (family == AF_INET) { 1198 addr = (union tcp_ao_addr *)&newsk->sk_daddr; 1199 #if IS_ENABLED(CONFIG_IPV6) 1200 } else if (family == AF_INET6) { 1201 addr = (union tcp_ao_addr *)&newsk->sk_v6_daddr; 1202 #endif 1203 } else { 1204 ret = -EAFNOSUPPORT; 1205 goto free_ao; 1206 } 1207 l3index = l3mdev_master_ifindex_by_index(sock_net(newsk), 1208 newsk->sk_bound_dev_if); 1209 1210 hlist_for_each_entry_rcu(key, &ao->head, node) { 1211 if (tcp_ao_key_cmp(key, l3index, addr, key->prefixlen, family, -1, -1)) 1212 continue; 1213 1214 new_key = tcp_ao_copy_key(newsk, key); 1215 if (!new_key) 1216 goto free_and_exit; 1217 1218 tcp_ao_cache_traffic_keys(newsk, new_ao, new_key); 1219 tcp_ao_link_mkt(new_ao, new_key); 1220 match = true; 1221 } 1222 1223 if (!match) { 1224 /* RFC5925 (7.4.1) specifies that the TCP-AO status 1225 * of a connection is determined on the initial SYN. 1226 * At this point the connection was TCP-AO enabled, so 1227 * it can't switch to being unsigned if peer's key 1228 * disappears on the listening socket. 1229 */ 1230 ret = -EKEYREJECTED; 1231 goto free_and_exit; 1232 } 1233 1234 if (!static_key_fast_inc_not_disabled(&tcp_ao_needed.key.key)) { 1235 ret = -EUSERS; 1236 goto free_and_exit; 1237 } 1238 1239 key_head = rcu_dereference(hlist_first_rcu(&new_ao->head)); 1240 first_key = hlist_entry_safe(key_head, struct tcp_ao_key, node); 1241 1242 key = tcp_ao_established_key(new_ao, tcp_rsk(req)->ao_keyid, -1); 1243 if (key) 1244 new_ao->current_key = key; 1245 else 1246 new_ao->current_key = first_key; 1247 1248 /* set rnext_key */ 1249 key = tcp_ao_established_key(new_ao, -1, tcp_rsk(req)->ao_rcv_next); 1250 if (key) 1251 new_ao->rnext_key = key; 1252 else 1253 new_ao->rnext_key = first_key; 1254 1255 sk_gso_disable(newsk); 1256 rcu_assign_pointer(tcp_sk(newsk)->ao_info, new_ao); 1257 1258 return 0; 1259 1260 free_and_exit: 1261 hlist_for_each_entry_safe(key, key_head, &new_ao->head, node) { 1262 hlist_del(&key->node); 1263 tcp_sigpool_release(key->tcp_sigpool_id); 1264 atomic_sub(tcp_ao_sizeof_key(key), &newsk->sk_omem_alloc); 1265 kfree_sensitive(key); 1266 } 1267 free_ao: 1268 kfree(new_ao); 1269 return ret; 1270 } 1271 1272 static bool tcp_ao_can_set_current_rnext(struct sock *sk) 1273 { 1274 /* There aren't current/rnext keys on TCP_LISTEN sockets */ 1275 if (sk->sk_state == TCP_LISTEN) 1276 return false; 1277 return true; 1278 } 1279 1280 static int tcp_ao_verify_ipv4(struct sock *sk, struct tcp_ao_add *cmd, 1281 union tcp_ao_addr **addr) 1282 { 1283 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd->addr; 1284 struct inet_sock *inet = inet_sk(sk); 1285 1286 if (sin->sin_family != AF_INET) 1287 return -EINVAL; 1288 1289 /* Currently matching is not performed on port (or port ranges) */ 1290 if (sin->sin_port != 0) 1291 return -EINVAL; 1292 1293 /* Check prefix and trailing 0's in addr */ 1294 if (cmd->prefix != 0) { 1295 __be32 mask; 1296 1297 if (ntohl(sin->sin_addr.s_addr) == INADDR_ANY) 1298 return -EINVAL; 1299 if (cmd->prefix > 32) 1300 return -EINVAL; 1301 1302 mask = inet_make_mask(cmd->prefix); 1303 if (sin->sin_addr.s_addr & ~mask) 1304 return -EINVAL; 1305 1306 /* Check that MKT address is consistent with socket */ 1307 if (ntohl(inet->inet_daddr) != INADDR_ANY && 1308 (inet->inet_daddr & mask) != sin->sin_addr.s_addr) 1309 return -EINVAL; 1310 } else { 1311 if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY) 1312 return -EINVAL; 1313 } 1314 1315 *addr = (union tcp_ao_addr *)&sin->sin_addr; 1316 return 0; 1317 } 1318 1319 static int tcp_ao_parse_crypto(struct tcp_ao_add *cmd, struct tcp_ao_key *key) 1320 { 1321 unsigned int syn_tcp_option_space; 1322 bool is_kdf_aes_128_cmac = false; 1323 struct crypto_ahash *tfm; 1324 struct tcp_sigpool hp; 1325 void *tmp_key = NULL; 1326 int err; 1327 1328 /* RFC5926, 3.1.1.2. KDF_AES_128_CMAC */ 1329 if (!strcmp("cmac(aes128)", cmd->alg_name)) { 1330 strscpy(cmd->alg_name, "cmac(aes)", sizeof(cmd->alg_name)); 1331 is_kdf_aes_128_cmac = (cmd->keylen != 16); 1332 tmp_key = kmalloc(cmd->keylen, GFP_KERNEL); 1333 if (!tmp_key) 1334 return -ENOMEM; 1335 } 1336 1337 key->maclen = cmd->maclen ?: 12; /* 12 is the default in RFC5925 */ 1338 1339 /* Check: maclen + tcp-ao header <= (MAX_TCP_OPTION_SPACE - mss 1340 * - tstamp (including sackperm) 1341 * - wscale), 1342 * see tcp_syn_options(), tcp_synack_options(), commit 33ad798c924b. 1343 * 1344 * In order to allow D-SACK with TCP-AO, the header size should be: 1345 * (MAX_TCP_OPTION_SPACE - TCPOLEN_TSTAMP_ALIGNED 1346 * - TCPOLEN_SACK_BASE_ALIGNED 1347 * - 2 * TCPOLEN_SACK_PERBLOCK) = 8 (maclen = 4), 1348 * see tcp_established_options(). 1349 * 1350 * RFC5925, 2.2: 1351 * Typical MACs are 96-128 bits (12-16 bytes), but any length 1352 * that fits in the header of the segment being authenticated 1353 * is allowed. 1354 * 1355 * RFC5925, 7.6: 1356 * TCP-AO continues to consume 16 bytes in non-SYN segments, 1357 * leaving a total of 24 bytes for other options, of which 1358 * the timestamp consumes 10. This leaves 14 bytes, of which 10 1359 * are used for a single SACK block. When two SACK blocks are used, 1360 * such as to handle D-SACK, a smaller TCP-AO MAC would be required 1361 * to make room for the additional SACK block (i.e., to leave 18 1362 * bytes for the D-SACK variant of the SACK option) [RFC2883]. 1363 * Note that D-SACK is not supportable in TCP MD5 in the presence 1364 * of timestamps, because TCP MD5’s MAC length is fixed and too 1365 * large to leave sufficient option space. 1366 */ 1367 syn_tcp_option_space = MAX_TCP_OPTION_SPACE; 1368 syn_tcp_option_space -= TCPOLEN_MSS_ALIGNED; 1369 syn_tcp_option_space -= TCPOLEN_TSTAMP_ALIGNED; 1370 syn_tcp_option_space -= TCPOLEN_WSCALE_ALIGNED; 1371 if (tcp_ao_len_aligned(key) > syn_tcp_option_space) { 1372 err = -EMSGSIZE; 1373 goto err_kfree; 1374 } 1375 1376 key->keylen = cmd->keylen; 1377 memcpy(key->key, cmd->key, cmd->keylen); 1378 1379 err = tcp_sigpool_start(key->tcp_sigpool_id, &hp); 1380 if (err) 1381 goto err_kfree; 1382 1383 tfm = crypto_ahash_reqtfm(hp.req); 1384 if (is_kdf_aes_128_cmac) { 1385 void *scratch = hp.scratch; 1386 struct scatterlist sg; 1387 1388 memcpy(tmp_key, cmd->key, cmd->keylen); 1389 sg_init_one(&sg, tmp_key, cmd->keylen); 1390 1391 /* Using zero-key of 16 bytes as described in RFC5926 */ 1392 memset(scratch, 0, 16); 1393 err = crypto_ahash_setkey(tfm, scratch, 16); 1394 if (err) 1395 goto err_pool_end; 1396 1397 err = crypto_ahash_init(hp.req); 1398 if (err) 1399 goto err_pool_end; 1400 1401 ahash_request_set_crypt(hp.req, &sg, key->key, cmd->keylen); 1402 err = crypto_ahash_update(hp.req); 1403 if (err) 1404 goto err_pool_end; 1405 1406 err |= crypto_ahash_final(hp.req); 1407 if (err) 1408 goto err_pool_end; 1409 key->keylen = 16; 1410 } 1411 1412 err = crypto_ahash_setkey(tfm, key->key, key->keylen); 1413 if (err) 1414 goto err_pool_end; 1415 1416 tcp_sigpool_end(&hp); 1417 kfree_sensitive(tmp_key); 1418 1419 if (tcp_ao_maclen(key) > key->digest_size) 1420 return -EINVAL; 1421 1422 return 0; 1423 1424 err_pool_end: 1425 tcp_sigpool_end(&hp); 1426 err_kfree: 1427 kfree_sensitive(tmp_key); 1428 return err; 1429 } 1430 1431 #if IS_ENABLED(CONFIG_IPV6) 1432 static int tcp_ao_verify_ipv6(struct sock *sk, struct tcp_ao_add *cmd, 1433 union tcp_ao_addr **paddr, 1434 unsigned short int *family) 1435 { 1436 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&cmd->addr; 1437 struct in6_addr *addr = &sin6->sin6_addr; 1438 u8 prefix = cmd->prefix; 1439 1440 if (sin6->sin6_family != AF_INET6) 1441 return -EINVAL; 1442 1443 /* Currently matching is not performed on port (or port ranges) */ 1444 if (sin6->sin6_port != 0) 1445 return -EINVAL; 1446 1447 /* Check prefix and trailing 0's in addr */ 1448 if (cmd->prefix != 0 && ipv6_addr_v4mapped(addr)) { 1449 __be32 addr4 = addr->s6_addr32[3]; 1450 __be32 mask; 1451 1452 if (prefix > 32 || ntohl(addr4) == INADDR_ANY) 1453 return -EINVAL; 1454 1455 mask = inet_make_mask(prefix); 1456 if (addr4 & ~mask) 1457 return -EINVAL; 1458 1459 /* Check that MKT address is consistent with socket */ 1460 if (!ipv6_addr_any(&sk->sk_v6_daddr)) { 1461 __be32 daddr4 = sk->sk_v6_daddr.s6_addr32[3]; 1462 1463 if (!ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 1464 return -EINVAL; 1465 if ((daddr4 & mask) != addr4) 1466 return -EINVAL; 1467 } 1468 1469 *paddr = (union tcp_ao_addr *)&addr->s6_addr32[3]; 1470 *family = AF_INET; 1471 return 0; 1472 } else if (cmd->prefix != 0) { 1473 struct in6_addr pfx; 1474 1475 if (ipv6_addr_any(addr) || prefix > 128) 1476 return -EINVAL; 1477 1478 ipv6_addr_prefix(&pfx, addr, prefix); 1479 if (ipv6_addr_cmp(&pfx, addr)) 1480 return -EINVAL; 1481 1482 /* Check that MKT address is consistent with socket */ 1483 if (!ipv6_addr_any(&sk->sk_v6_daddr) && 1484 !ipv6_prefix_equal(&sk->sk_v6_daddr, addr, prefix)) 1485 1486 return -EINVAL; 1487 } else { 1488 if (!ipv6_addr_any(addr)) 1489 return -EINVAL; 1490 } 1491 1492 *paddr = (union tcp_ao_addr *)addr; 1493 return 0; 1494 } 1495 #else 1496 static int tcp_ao_verify_ipv6(struct sock *sk, struct tcp_ao_add *cmd, 1497 union tcp_ao_addr **paddr, 1498 unsigned short int *family) 1499 { 1500 return -EOPNOTSUPP; 1501 } 1502 #endif 1503 1504 static struct tcp_ao_info *setsockopt_ao_info(struct sock *sk) 1505 { 1506 if (sk_fullsock(sk)) { 1507 return rcu_dereference_protected(tcp_sk(sk)->ao_info, 1508 lockdep_sock_is_held(sk)); 1509 } else if (sk->sk_state == TCP_TIME_WAIT) { 1510 return rcu_dereference_protected(tcp_twsk(sk)->ao_info, 1511 lockdep_sock_is_held(sk)); 1512 } 1513 return ERR_PTR(-ESOCKTNOSUPPORT); 1514 } 1515 1516 static struct tcp_ao_info *getsockopt_ao_info(struct sock *sk) 1517 { 1518 if (sk_fullsock(sk)) 1519 return rcu_dereference(tcp_sk(sk)->ao_info); 1520 else if (sk->sk_state == TCP_TIME_WAIT) 1521 return rcu_dereference(tcp_twsk(sk)->ao_info); 1522 1523 return ERR_PTR(-ESOCKTNOSUPPORT); 1524 } 1525 1526 #define TCP_AO_KEYF_ALL (TCP_AO_KEYF_IFINDEX | TCP_AO_KEYF_EXCLUDE_OPT) 1527 #define TCP_AO_GET_KEYF_VALID (TCP_AO_KEYF_IFINDEX) 1528 1529 static struct tcp_ao_key *tcp_ao_key_alloc(struct sock *sk, 1530 struct tcp_ao_add *cmd) 1531 { 1532 const char *algo = cmd->alg_name; 1533 unsigned int digest_size; 1534 struct crypto_ahash *tfm; 1535 struct tcp_ao_key *key; 1536 struct tcp_sigpool hp; 1537 int err, pool_id; 1538 size_t size; 1539 1540 /* Force null-termination of alg_name */ 1541 cmd->alg_name[ARRAY_SIZE(cmd->alg_name) - 1] = '\0'; 1542 1543 /* RFC5926, 3.1.1.2. KDF_AES_128_CMAC */ 1544 if (!strcmp("cmac(aes128)", algo)) 1545 algo = "cmac(aes)"; 1546 1547 /* Full TCP header (th->doff << 2) should fit into scratch area, 1548 * see tcp_ao_hash_header(). 1549 */ 1550 pool_id = tcp_sigpool_alloc_ahash(algo, 60); 1551 if (pool_id < 0) 1552 return ERR_PTR(pool_id); 1553 1554 err = tcp_sigpool_start(pool_id, &hp); 1555 if (err) 1556 goto err_free_pool; 1557 1558 tfm = crypto_ahash_reqtfm(hp.req); 1559 digest_size = crypto_ahash_digestsize(tfm); 1560 tcp_sigpool_end(&hp); 1561 1562 size = sizeof(struct tcp_ao_key) + (digest_size << 1); 1563 key = sock_kmalloc(sk, size, GFP_KERNEL); 1564 if (!key) { 1565 err = -ENOMEM; 1566 goto err_free_pool; 1567 } 1568 1569 key->tcp_sigpool_id = pool_id; 1570 key->digest_size = digest_size; 1571 return key; 1572 1573 err_free_pool: 1574 tcp_sigpool_release(pool_id); 1575 return ERR_PTR(err); 1576 } 1577 1578 static int tcp_ao_add_cmd(struct sock *sk, unsigned short int family, 1579 sockptr_t optval, int optlen) 1580 { 1581 struct tcp_ao_info *ao_info; 1582 union tcp_ao_addr *addr; 1583 struct tcp_ao_key *key; 1584 struct tcp_ao_add cmd; 1585 int ret, l3index = 0; 1586 bool first = false; 1587 1588 if (optlen < sizeof(cmd)) 1589 return -EINVAL; 1590 1591 ret = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); 1592 if (ret) 1593 return ret; 1594 1595 if (cmd.keylen > TCP_AO_MAXKEYLEN) 1596 return -EINVAL; 1597 1598 if (cmd.reserved != 0 || cmd.reserved2 != 0) 1599 return -EINVAL; 1600 1601 if (family == AF_INET) 1602 ret = tcp_ao_verify_ipv4(sk, &cmd, &addr); 1603 else 1604 ret = tcp_ao_verify_ipv6(sk, &cmd, &addr, &family); 1605 if (ret) 1606 return ret; 1607 1608 if (cmd.keyflags & ~TCP_AO_KEYF_ALL) 1609 return -EINVAL; 1610 1611 if (cmd.set_current || cmd.set_rnext) { 1612 if (!tcp_ao_can_set_current_rnext(sk)) 1613 return -EINVAL; 1614 } 1615 1616 if (cmd.ifindex && !(cmd.keyflags & TCP_AO_KEYF_IFINDEX)) 1617 return -EINVAL; 1618 1619 /* For cmd.tcp_ifindex = 0 the key will apply to the default VRF */ 1620 if (cmd.keyflags & TCP_AO_KEYF_IFINDEX && cmd.ifindex) { 1621 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 1622 struct net_device *dev; 1623 1624 rcu_read_lock(); 1625 dev = dev_get_by_index_rcu(sock_net(sk), cmd.ifindex); 1626 if (dev && netif_is_l3_master(dev)) 1627 l3index = dev->ifindex; 1628 rcu_read_unlock(); 1629 1630 if (!dev || !l3index) 1631 return -EINVAL; 1632 1633 if (!bound_dev_if || bound_dev_if != cmd.ifindex) { 1634 /* tcp_ao_established_key() doesn't expect having 1635 * non peer-matching key on an established TCP-AO 1636 * connection. 1637 */ 1638 if (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))) 1639 return -EINVAL; 1640 } 1641 1642 /* It's still possible to bind after adding keys or even 1643 * re-bind to a different dev (with CAP_NET_RAW). 1644 * So, no reason to return error here, rather try to be 1645 * nice and warn the user. 1646 */ 1647 if (bound_dev_if && bound_dev_if != cmd.ifindex) 1648 net_warn_ratelimited("AO key ifindex %d != sk bound ifindex %d\n", 1649 cmd.ifindex, bound_dev_if); 1650 } 1651 1652 /* Don't allow keys for peers that have a matching TCP-MD5 key */ 1653 if (cmd.keyflags & TCP_AO_KEYF_IFINDEX) { 1654 /* Non-_exact version of tcp_md5_do_lookup() will 1655 * as well match keys that aren't bound to a specific VRF 1656 * (that will make them match AO key with 1657 * sysctl_tcp_l3dev_accept = 1 1658 */ 1659 if (tcp_md5_do_lookup(sk, l3index, addr, family)) 1660 return -EKEYREJECTED; 1661 } else { 1662 if (tcp_md5_do_lookup_any_l3index(sk, addr, family)) 1663 return -EKEYREJECTED; 1664 } 1665 1666 ao_info = setsockopt_ao_info(sk); 1667 if (IS_ERR(ao_info)) 1668 return PTR_ERR(ao_info); 1669 1670 if (!ao_info) { 1671 ao_info = tcp_ao_alloc_info(GFP_KERNEL); 1672 if (!ao_info) 1673 return -ENOMEM; 1674 first = true; 1675 } else { 1676 /* Check that neither RecvID nor SendID match any 1677 * existing key for the peer, RFC5925 3.1: 1678 * > The IDs of MKTs MUST NOT overlap where their 1679 * > TCP connection identifiers overlap. 1680 */ 1681 if (__tcp_ao_do_lookup(sk, l3index, addr, family, cmd.prefix, -1, cmd.rcvid)) 1682 return -EEXIST; 1683 if (__tcp_ao_do_lookup(sk, l3index, addr, family, 1684 cmd.prefix, cmd.sndid, -1)) 1685 return -EEXIST; 1686 } 1687 1688 key = tcp_ao_key_alloc(sk, &cmd); 1689 if (IS_ERR(key)) { 1690 ret = PTR_ERR(key); 1691 goto err_free_ao; 1692 } 1693 1694 INIT_HLIST_NODE(&key->node); 1695 memcpy(&key->addr, addr, (family == AF_INET) ? sizeof(struct in_addr) : 1696 sizeof(struct in6_addr)); 1697 key->prefixlen = cmd.prefix; 1698 key->family = family; 1699 key->keyflags = cmd.keyflags; 1700 key->sndid = cmd.sndid; 1701 key->rcvid = cmd.rcvid; 1702 key->l3index = l3index; 1703 atomic64_set(&key->pkt_good, 0); 1704 atomic64_set(&key->pkt_bad, 0); 1705 1706 ret = tcp_ao_parse_crypto(&cmd, key); 1707 if (ret < 0) 1708 goto err_free_sock; 1709 1710 if (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))) { 1711 tcp_ao_cache_traffic_keys(sk, ao_info, key); 1712 if (first) { 1713 ao_info->current_key = key; 1714 ao_info->rnext_key = key; 1715 } 1716 } 1717 1718 tcp_ao_link_mkt(ao_info, key); 1719 if (first) { 1720 if (!static_branch_inc(&tcp_ao_needed.key)) { 1721 ret = -EUSERS; 1722 goto err_free_sock; 1723 } 1724 sk_gso_disable(sk); 1725 rcu_assign_pointer(tcp_sk(sk)->ao_info, ao_info); 1726 } 1727 1728 if (cmd.set_current) 1729 WRITE_ONCE(ao_info->current_key, key); 1730 if (cmd.set_rnext) 1731 WRITE_ONCE(ao_info->rnext_key, key); 1732 return 0; 1733 1734 err_free_sock: 1735 atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); 1736 tcp_sigpool_release(key->tcp_sigpool_id); 1737 kfree_sensitive(key); 1738 err_free_ao: 1739 if (first) 1740 kfree(ao_info); 1741 return ret; 1742 } 1743 1744 static int tcp_ao_delete_key(struct sock *sk, struct tcp_ao_info *ao_info, 1745 bool del_async, struct tcp_ao_key *key, 1746 struct tcp_ao_key *new_current, 1747 struct tcp_ao_key *new_rnext) 1748 { 1749 int err; 1750 1751 hlist_del_rcu(&key->node); 1752 1753 /* Support for async delete on listening sockets: as they don't 1754 * need current_key/rnext_key maintaining, we don't need to check 1755 * them and we can just free all resources in RCU fashion. 1756 */ 1757 if (del_async) { 1758 atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); 1759 call_rcu(&key->rcu, tcp_ao_key_free_rcu); 1760 return 0; 1761 } 1762 1763 /* At this moment another CPU could have looked this key up 1764 * while it was unlinked from the list. Wait for RCU grace period, 1765 * after which the key is off-list and can't be looked up again; 1766 * the rx path [just before RCU came] might have used it and set it 1767 * as current_key (very unlikely). 1768 * Free the key with next RCU grace period (in case it was 1769 * current_key before tcp_ao_current_rnext() might have 1770 * changed it in forced-delete). 1771 */ 1772 synchronize_rcu(); 1773 if (new_current) 1774 WRITE_ONCE(ao_info->current_key, new_current); 1775 if (new_rnext) 1776 WRITE_ONCE(ao_info->rnext_key, new_rnext); 1777 1778 if (unlikely(READ_ONCE(ao_info->current_key) == key || 1779 READ_ONCE(ao_info->rnext_key) == key)) { 1780 err = -EBUSY; 1781 goto add_key; 1782 } 1783 1784 atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); 1785 call_rcu(&key->rcu, tcp_ao_key_free_rcu); 1786 1787 return 0; 1788 add_key: 1789 hlist_add_head_rcu(&key->node, &ao_info->head); 1790 return err; 1791 } 1792 1793 #define TCP_AO_DEL_KEYF_ALL (TCP_AO_KEYF_IFINDEX) 1794 static int tcp_ao_del_cmd(struct sock *sk, unsigned short int family, 1795 sockptr_t optval, int optlen) 1796 { 1797 struct tcp_ao_key *key, *new_current = NULL, *new_rnext = NULL; 1798 int err, addr_len, l3index = 0; 1799 struct tcp_ao_info *ao_info; 1800 union tcp_ao_addr *addr; 1801 struct tcp_ao_del cmd; 1802 __u8 prefix; 1803 u16 port; 1804 1805 if (optlen < sizeof(cmd)) 1806 return -EINVAL; 1807 1808 err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); 1809 if (err) 1810 return err; 1811 1812 if (cmd.reserved != 0 || cmd.reserved2 != 0) 1813 return -EINVAL; 1814 1815 if (cmd.set_current || cmd.set_rnext) { 1816 if (!tcp_ao_can_set_current_rnext(sk)) 1817 return -EINVAL; 1818 } 1819 1820 if (cmd.keyflags & ~TCP_AO_DEL_KEYF_ALL) 1821 return -EINVAL; 1822 1823 /* No sanity check for TCP_AO_KEYF_IFINDEX as if a VRF 1824 * was destroyed, there still should be a way to delete keys, 1825 * that were bound to that l3intf. So, fail late at lookup stage 1826 * if there is no key for that ifindex. 1827 */ 1828 if (cmd.ifindex && !(cmd.keyflags & TCP_AO_KEYF_IFINDEX)) 1829 return -EINVAL; 1830 1831 ao_info = setsockopt_ao_info(sk); 1832 if (IS_ERR(ao_info)) 1833 return PTR_ERR(ao_info); 1834 if (!ao_info) 1835 return -ENOENT; 1836 1837 /* For sockets in TCP_CLOSED it's possible set keys that aren't 1838 * matching the future peer (address/VRF/etc), 1839 * tcp_ao_connect_init() will choose a correct matching MKT 1840 * if there's any. 1841 */ 1842 if (cmd.set_current) { 1843 new_current = tcp_ao_established_key(ao_info, cmd.current_key, -1); 1844 if (!new_current) 1845 return -ENOENT; 1846 } 1847 if (cmd.set_rnext) { 1848 new_rnext = tcp_ao_established_key(ao_info, -1, cmd.rnext); 1849 if (!new_rnext) 1850 return -ENOENT; 1851 } 1852 if (cmd.del_async && sk->sk_state != TCP_LISTEN) 1853 return -EINVAL; 1854 1855 if (family == AF_INET) { 1856 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.addr; 1857 1858 addr = (union tcp_ao_addr *)&sin->sin_addr; 1859 addr_len = sizeof(struct in_addr); 1860 port = ntohs(sin->sin_port); 1861 } else { 1862 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&cmd.addr; 1863 struct in6_addr *addr6 = &sin6->sin6_addr; 1864 1865 if (ipv6_addr_v4mapped(addr6)) { 1866 addr = (union tcp_ao_addr *)&addr6->s6_addr32[3]; 1867 addr_len = sizeof(struct in_addr); 1868 family = AF_INET; 1869 } else { 1870 addr = (union tcp_ao_addr *)addr6; 1871 addr_len = sizeof(struct in6_addr); 1872 } 1873 port = ntohs(sin6->sin6_port); 1874 } 1875 prefix = cmd.prefix; 1876 1877 /* Currently matching is not performed on port (or port ranges) */ 1878 if (port != 0) 1879 return -EINVAL; 1880 1881 /* We could choose random present key here for current/rnext 1882 * but that's less predictable. Let's be strict and don't 1883 * allow removing a key that's in use. RFC5925 doesn't 1884 * specify how-to coordinate key removal, but says: 1885 * "It is presumed that an MKT affecting a particular 1886 * connection cannot be destroyed during an active connection" 1887 */ 1888 hlist_for_each_entry_rcu(key, &ao_info->head, node) { 1889 if (cmd.sndid != key->sndid || 1890 cmd.rcvid != key->rcvid) 1891 continue; 1892 1893 if (family != key->family || 1894 prefix != key->prefixlen || 1895 memcmp(addr, &key->addr, addr_len)) 1896 continue; 1897 1898 if ((cmd.keyflags & TCP_AO_KEYF_IFINDEX) != 1899 (key->keyflags & TCP_AO_KEYF_IFINDEX)) 1900 continue; 1901 1902 if (key->l3index != l3index) 1903 continue; 1904 1905 if (key == new_current || key == new_rnext) 1906 continue; 1907 1908 return tcp_ao_delete_key(sk, ao_info, cmd.del_async, key, 1909 new_current, new_rnext); 1910 } 1911 return -ENOENT; 1912 } 1913 1914 /* cmd.ao_required makes a socket TCP-AO only. 1915 * Don't allow any md5 keys for any l3intf on the socket together with it. 1916 * Restricting it early in setsockopt() removes a check for 1917 * ao_info->ao_required on inbound tcp segment fast-path. 1918 */ 1919 static int tcp_ao_required_verify(struct sock *sk) 1920 { 1921 #ifdef CONFIG_TCP_MD5SIG 1922 const struct tcp_md5sig_info *md5sig; 1923 1924 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1925 return 0; 1926 1927 md5sig = rcu_dereference_check(tcp_sk(sk)->md5sig_info, 1928 lockdep_sock_is_held(sk)); 1929 if (!md5sig) 1930 return 0; 1931 1932 if (rcu_dereference_check(hlist_first_rcu(&md5sig->head), 1933 lockdep_sock_is_held(sk))) 1934 return 1; 1935 #endif 1936 return 0; 1937 } 1938 1939 static int tcp_ao_info_cmd(struct sock *sk, unsigned short int family, 1940 sockptr_t optval, int optlen) 1941 { 1942 struct tcp_ao_key *new_current = NULL, *new_rnext = NULL; 1943 struct tcp_ao_info *ao_info; 1944 struct tcp_ao_info_opt cmd; 1945 bool first = false; 1946 int err; 1947 1948 if (optlen < sizeof(cmd)) 1949 return -EINVAL; 1950 1951 err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); 1952 if (err) 1953 return err; 1954 1955 if (cmd.set_current || cmd.set_rnext) { 1956 if (!tcp_ao_can_set_current_rnext(sk)) 1957 return -EINVAL; 1958 } 1959 1960 if (cmd.reserved != 0 || cmd.reserved2 != 0) 1961 return -EINVAL; 1962 1963 ao_info = setsockopt_ao_info(sk); 1964 if (IS_ERR(ao_info)) 1965 return PTR_ERR(ao_info); 1966 if (!ao_info) { 1967 if (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))) 1968 return -EINVAL; 1969 ao_info = tcp_ao_alloc_info(GFP_KERNEL); 1970 if (!ao_info) 1971 return -ENOMEM; 1972 first = true; 1973 } 1974 1975 if (cmd.ao_required && tcp_ao_required_verify(sk)) { 1976 err = -EKEYREJECTED; 1977 goto out; 1978 } 1979 1980 /* For sockets in TCP_CLOSED it's possible set keys that aren't 1981 * matching the future peer (address/port/VRF/etc), 1982 * tcp_ao_connect_init() will choose a correct matching MKT 1983 * if there's any. 1984 */ 1985 if (cmd.set_current) { 1986 new_current = tcp_ao_established_key(ao_info, cmd.current_key, -1); 1987 if (!new_current) { 1988 err = -ENOENT; 1989 goto out; 1990 } 1991 } 1992 if (cmd.set_rnext) { 1993 new_rnext = tcp_ao_established_key(ao_info, -1, cmd.rnext); 1994 if (!new_rnext) { 1995 err = -ENOENT; 1996 goto out; 1997 } 1998 } 1999 if (cmd.set_counters) { 2000 atomic64_set(&ao_info->counters.pkt_good, cmd.pkt_good); 2001 atomic64_set(&ao_info->counters.pkt_bad, cmd.pkt_bad); 2002 atomic64_set(&ao_info->counters.key_not_found, cmd.pkt_key_not_found); 2003 atomic64_set(&ao_info->counters.ao_required, cmd.pkt_ao_required); 2004 atomic64_set(&ao_info->counters.dropped_icmp, cmd.pkt_dropped_icmp); 2005 } 2006 2007 ao_info->ao_required = cmd.ao_required; 2008 ao_info->accept_icmps = cmd.accept_icmps; 2009 if (new_current) 2010 WRITE_ONCE(ao_info->current_key, new_current); 2011 if (new_rnext) 2012 WRITE_ONCE(ao_info->rnext_key, new_rnext); 2013 if (first) { 2014 if (!static_branch_inc(&tcp_ao_needed.key)) { 2015 err = -EUSERS; 2016 goto out; 2017 } 2018 sk_gso_disable(sk); 2019 rcu_assign_pointer(tcp_sk(sk)->ao_info, ao_info); 2020 } 2021 return 0; 2022 out: 2023 if (first) 2024 kfree(ao_info); 2025 return err; 2026 } 2027 2028 int tcp_parse_ao(struct sock *sk, int cmd, unsigned short int family, 2029 sockptr_t optval, int optlen) 2030 { 2031 if (WARN_ON_ONCE(family != AF_INET && family != AF_INET6)) 2032 return -EAFNOSUPPORT; 2033 2034 switch (cmd) { 2035 case TCP_AO_ADD_KEY: 2036 return tcp_ao_add_cmd(sk, family, optval, optlen); 2037 case TCP_AO_DEL_KEY: 2038 return tcp_ao_del_cmd(sk, family, optval, optlen); 2039 case TCP_AO_INFO: 2040 return tcp_ao_info_cmd(sk, family, optval, optlen); 2041 default: 2042 WARN_ON_ONCE(1); 2043 return -EINVAL; 2044 } 2045 } 2046 2047 int tcp_v4_parse_ao(struct sock *sk, int cmd, sockptr_t optval, int optlen) 2048 { 2049 return tcp_parse_ao(sk, cmd, AF_INET, optval, optlen); 2050 } 2051 2052 /* tcp_ao_copy_mkts_to_user(ao_info, optval, optlen) 2053 * 2054 * @ao_info: struct tcp_ao_info on the socket that 2055 * socket getsockopt(TCP_AO_GET_KEYS) is executed on 2056 * @optval: pointer to array of tcp_ao_getsockopt structures in user space. 2057 * Must be != NULL. 2058 * @optlen: pointer to size of tcp_ao_getsockopt structure. 2059 * Must be != NULL. 2060 * 2061 * Return value: 0 on success, a negative error number otherwise. 2062 * 2063 * optval points to an array of tcp_ao_getsockopt structures in user space. 2064 * optval[0] is used as both input and output to getsockopt. It determines 2065 * which keys are returned by the kernel. 2066 * optval[0].nkeys is the size of the array in user space. On return it contains 2067 * the number of keys matching the search criteria. 2068 * If tcp_ao_getsockopt::get_all is set, then all keys in the socket are 2069 * returned, otherwise only keys matching <addr, prefix, sndid, rcvid> 2070 * in optval[0] are returned. 2071 * optlen is also used as both input and output. The user provides the size 2072 * of struct tcp_ao_getsockopt in user space, and the kernel returns the size 2073 * of the structure in kernel space. 2074 * The size of struct tcp_ao_getsockopt may differ between user and kernel. 2075 * There are three cases to consider: 2076 * * If usize == ksize, then keys are copied verbatim. 2077 * * If usize < ksize, then the userspace has passed an old struct to a 2078 * newer kernel. The rest of the trailing bytes in optval[0] 2079 * (ksize - usize) are interpreted as 0 by the kernel. 2080 * * If usize > ksize, then the userspace has passed a new struct to an 2081 * older kernel. The trailing bytes unknown to the kernel (usize - ksize) 2082 * are checked to ensure they are zeroed, otherwise -E2BIG is returned. 2083 * On return the kernel fills in min(usize, ksize) in each entry of the array. 2084 * The layout of the fields in the user and kernel structures is expected to 2085 * be the same (including in the 32bit vs 64bit case). 2086 */ 2087 static int tcp_ao_copy_mkts_to_user(struct tcp_ao_info *ao_info, 2088 sockptr_t optval, sockptr_t optlen) 2089 { 2090 struct tcp_ao_getsockopt opt_in, opt_out; 2091 struct tcp_ao_key *key, *current_key; 2092 bool do_address_matching = true; 2093 union tcp_ao_addr *addr = NULL; 2094 int err, l3index, user_len; 2095 unsigned int max_keys; /* maximum number of keys to copy to user */ 2096 size_t out_offset = 0; 2097 size_t bytes_to_write; /* number of bytes to write to user level */ 2098 u32 matched_keys; /* keys from ao_info matched so far */ 2099 int optlen_out; 2100 __be16 port = 0; 2101 2102 if (copy_from_sockptr(&user_len, optlen, sizeof(int))) 2103 return -EFAULT; 2104 2105 if (user_len <= 0) 2106 return -EINVAL; 2107 2108 memset(&opt_in, 0, sizeof(struct tcp_ao_getsockopt)); 2109 err = copy_struct_from_sockptr(&opt_in, sizeof(opt_in), 2110 optval, user_len); 2111 if (err < 0) 2112 return err; 2113 2114 if (opt_in.pkt_good || opt_in.pkt_bad) 2115 return -EINVAL; 2116 if (opt_in.keyflags & ~TCP_AO_GET_KEYF_VALID) 2117 return -EINVAL; 2118 if (opt_in.ifindex && !(opt_in.keyflags & TCP_AO_KEYF_IFINDEX)) 2119 return -EINVAL; 2120 2121 if (opt_in.reserved != 0) 2122 return -EINVAL; 2123 2124 max_keys = opt_in.nkeys; 2125 l3index = (opt_in.keyflags & TCP_AO_KEYF_IFINDEX) ? opt_in.ifindex : -1; 2126 2127 if (opt_in.get_all || opt_in.is_current || opt_in.is_rnext) { 2128 if (opt_in.get_all && (opt_in.is_current || opt_in.is_rnext)) 2129 return -EINVAL; 2130 do_address_matching = false; 2131 } 2132 2133 switch (opt_in.addr.ss_family) { 2134 case AF_INET: { 2135 struct sockaddr_in *sin; 2136 __be32 mask; 2137 2138 sin = (struct sockaddr_in *)&opt_in.addr; 2139 port = sin->sin_port; 2140 addr = (union tcp_ao_addr *)&sin->sin_addr; 2141 2142 if (opt_in.prefix > 32) 2143 return -EINVAL; 2144 2145 if (ntohl(sin->sin_addr.s_addr) == INADDR_ANY && 2146 opt_in.prefix != 0) 2147 return -EINVAL; 2148 2149 mask = inet_make_mask(opt_in.prefix); 2150 if (sin->sin_addr.s_addr & ~mask) 2151 return -EINVAL; 2152 2153 break; 2154 } 2155 case AF_INET6: { 2156 struct sockaddr_in6 *sin6; 2157 struct in6_addr *addr6; 2158 2159 sin6 = (struct sockaddr_in6 *)&opt_in.addr; 2160 addr = (union tcp_ao_addr *)&sin6->sin6_addr; 2161 addr6 = &sin6->sin6_addr; 2162 port = sin6->sin6_port; 2163 2164 /* We don't have to change family and @addr here if 2165 * ipv6_addr_v4mapped() like in key adding: 2166 * tcp_ao_key_cmp() does it. Do the sanity checks though. 2167 */ 2168 if (opt_in.prefix != 0) { 2169 if (ipv6_addr_v4mapped(addr6)) { 2170 __be32 mask, addr4 = addr6->s6_addr32[3]; 2171 2172 if (opt_in.prefix > 32 || 2173 ntohl(addr4) == INADDR_ANY) 2174 return -EINVAL; 2175 mask = inet_make_mask(opt_in.prefix); 2176 if (addr4 & ~mask) 2177 return -EINVAL; 2178 } else { 2179 struct in6_addr pfx; 2180 2181 if (ipv6_addr_any(addr6) || 2182 opt_in.prefix > 128) 2183 return -EINVAL; 2184 2185 ipv6_addr_prefix(&pfx, addr6, opt_in.prefix); 2186 if (ipv6_addr_cmp(&pfx, addr6)) 2187 return -EINVAL; 2188 } 2189 } else if (!ipv6_addr_any(addr6)) { 2190 return -EINVAL; 2191 } 2192 break; 2193 } 2194 case 0: 2195 if (!do_address_matching) 2196 break; 2197 fallthrough; 2198 default: 2199 return -EAFNOSUPPORT; 2200 } 2201 2202 if (!do_address_matching) { 2203 /* We could just ignore those, but let's do stricter checks */ 2204 if (addr || port) 2205 return -EINVAL; 2206 if (opt_in.prefix || opt_in.sndid || opt_in.rcvid) 2207 return -EINVAL; 2208 } 2209 2210 bytes_to_write = min_t(int, user_len, sizeof(struct tcp_ao_getsockopt)); 2211 matched_keys = 0; 2212 /* May change in RX, while we're dumping, pre-fetch it */ 2213 current_key = READ_ONCE(ao_info->current_key); 2214 2215 hlist_for_each_entry_rcu(key, &ao_info->head, node) { 2216 if (opt_in.get_all) 2217 goto match; 2218 2219 if (opt_in.is_current || opt_in.is_rnext) { 2220 if (opt_in.is_current && key == current_key) 2221 goto match; 2222 if (opt_in.is_rnext && key == ao_info->rnext_key) 2223 goto match; 2224 continue; 2225 } 2226 2227 if (tcp_ao_key_cmp(key, l3index, addr, opt_in.prefix, 2228 opt_in.addr.ss_family, 2229 opt_in.sndid, opt_in.rcvid) != 0) 2230 continue; 2231 match: 2232 matched_keys++; 2233 if (matched_keys > max_keys) 2234 continue; 2235 2236 memset(&opt_out, 0, sizeof(struct tcp_ao_getsockopt)); 2237 2238 if (key->family == AF_INET) { 2239 struct sockaddr_in *sin_out = (struct sockaddr_in *)&opt_out.addr; 2240 2241 sin_out->sin_family = key->family; 2242 sin_out->sin_port = 0; 2243 memcpy(&sin_out->sin_addr, &key->addr, sizeof(struct in_addr)); 2244 } else { 2245 struct sockaddr_in6 *sin6_out = (struct sockaddr_in6 *)&opt_out.addr; 2246 2247 sin6_out->sin6_family = key->family; 2248 sin6_out->sin6_port = 0; 2249 memcpy(&sin6_out->sin6_addr, &key->addr, sizeof(struct in6_addr)); 2250 } 2251 opt_out.sndid = key->sndid; 2252 opt_out.rcvid = key->rcvid; 2253 opt_out.prefix = key->prefixlen; 2254 opt_out.keyflags = key->keyflags; 2255 opt_out.is_current = (key == current_key); 2256 opt_out.is_rnext = (key == ao_info->rnext_key); 2257 opt_out.nkeys = 0; 2258 opt_out.maclen = key->maclen; 2259 opt_out.keylen = key->keylen; 2260 opt_out.ifindex = key->l3index; 2261 opt_out.pkt_good = atomic64_read(&key->pkt_good); 2262 opt_out.pkt_bad = atomic64_read(&key->pkt_bad); 2263 memcpy(&opt_out.key, key->key, key->keylen); 2264 tcp_sigpool_algo(key->tcp_sigpool_id, opt_out.alg_name, 64); 2265 2266 /* Copy key to user */ 2267 if (copy_to_sockptr_offset(optval, out_offset, 2268 &opt_out, bytes_to_write)) 2269 return -EFAULT; 2270 out_offset += user_len; 2271 } 2272 2273 optlen_out = (int)sizeof(struct tcp_ao_getsockopt); 2274 if (copy_to_sockptr(optlen, &optlen_out, sizeof(int))) 2275 return -EFAULT; 2276 2277 out_offset = offsetof(struct tcp_ao_getsockopt, nkeys); 2278 if (copy_to_sockptr_offset(optval, out_offset, 2279 &matched_keys, sizeof(u32))) 2280 return -EFAULT; 2281 2282 return 0; 2283 } 2284 2285 int tcp_ao_get_mkts(struct sock *sk, sockptr_t optval, sockptr_t optlen) 2286 { 2287 struct tcp_ao_info *ao_info; 2288 2289 ao_info = setsockopt_ao_info(sk); 2290 if (IS_ERR(ao_info)) 2291 return PTR_ERR(ao_info); 2292 if (!ao_info) 2293 return -ENOENT; 2294 2295 return tcp_ao_copy_mkts_to_user(ao_info, optval, optlen); 2296 } 2297 2298 int tcp_ao_get_sock_info(struct sock *sk, sockptr_t optval, sockptr_t optlen) 2299 { 2300 struct tcp_ao_info_opt out, in = {}; 2301 struct tcp_ao_key *current_key; 2302 struct tcp_ao_info *ao; 2303 int err, len; 2304 2305 if (copy_from_sockptr(&len, optlen, sizeof(int))) 2306 return -EFAULT; 2307 2308 if (len <= 0) 2309 return -EINVAL; 2310 2311 /* Copying this "in" only to check ::reserved, ::reserved2, 2312 * that may be needed to extend (struct tcp_ao_info_opt) and 2313 * what getsockopt() provides in future. 2314 */ 2315 err = copy_struct_from_sockptr(&in, sizeof(in), optval, len); 2316 if (err) 2317 return err; 2318 2319 if (in.reserved != 0 || in.reserved2 != 0) 2320 return -EINVAL; 2321 2322 ao = setsockopt_ao_info(sk); 2323 if (IS_ERR(ao)) 2324 return PTR_ERR(ao); 2325 if (!ao) 2326 return -ENOENT; 2327 2328 memset(&out, 0, sizeof(out)); 2329 out.ao_required = ao->ao_required; 2330 out.accept_icmps = ao->accept_icmps; 2331 out.pkt_good = atomic64_read(&ao->counters.pkt_good); 2332 out.pkt_bad = atomic64_read(&ao->counters.pkt_bad); 2333 out.pkt_key_not_found = atomic64_read(&ao->counters.key_not_found); 2334 out.pkt_ao_required = atomic64_read(&ao->counters.ao_required); 2335 out.pkt_dropped_icmp = atomic64_read(&ao->counters.dropped_icmp); 2336 2337 current_key = READ_ONCE(ao->current_key); 2338 if (current_key) { 2339 out.set_current = 1; 2340 out.current_key = current_key->sndid; 2341 } 2342 if (ao->rnext_key) { 2343 out.set_rnext = 1; 2344 out.rnext = ao->rnext_key->rcvid; 2345 } 2346 2347 if (copy_to_sockptr(optval, &out, min_t(int, len, sizeof(out)))) 2348 return -EFAULT; 2349 2350 return 0; 2351 } 2352 2353 int tcp_ao_set_repair(struct sock *sk, sockptr_t optval, unsigned int optlen) 2354 { 2355 struct tcp_sock *tp = tcp_sk(sk); 2356 struct tcp_ao_repair cmd; 2357 struct tcp_ao_key *key; 2358 struct tcp_ao_info *ao; 2359 int err; 2360 2361 if (optlen < sizeof(cmd)) 2362 return -EINVAL; 2363 2364 err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); 2365 if (err) 2366 return err; 2367 2368 if (!tp->repair) 2369 return -EPERM; 2370 2371 ao = setsockopt_ao_info(sk); 2372 if (IS_ERR(ao)) 2373 return PTR_ERR(ao); 2374 if (!ao) 2375 return -ENOENT; 2376 2377 WRITE_ONCE(ao->lisn, cmd.snt_isn); 2378 WRITE_ONCE(ao->risn, cmd.rcv_isn); 2379 WRITE_ONCE(ao->snd_sne, cmd.snd_sne); 2380 WRITE_ONCE(ao->rcv_sne, cmd.rcv_sne); 2381 2382 hlist_for_each_entry_rcu(key, &ao->head, node) 2383 tcp_ao_cache_traffic_keys(sk, ao, key); 2384 2385 return 0; 2386 } 2387 2388 int tcp_ao_get_repair(struct sock *sk, sockptr_t optval, sockptr_t optlen) 2389 { 2390 struct tcp_sock *tp = tcp_sk(sk); 2391 struct tcp_ao_repair opt; 2392 struct tcp_ao_info *ao; 2393 int len; 2394 2395 if (copy_from_sockptr(&len, optlen, sizeof(int))) 2396 return -EFAULT; 2397 2398 if (len <= 0) 2399 return -EINVAL; 2400 2401 if (!tp->repair) 2402 return -EPERM; 2403 2404 rcu_read_lock(); 2405 ao = getsockopt_ao_info(sk); 2406 if (IS_ERR_OR_NULL(ao)) { 2407 rcu_read_unlock(); 2408 return ao ? PTR_ERR(ao) : -ENOENT; 2409 } 2410 2411 opt.snt_isn = ao->lisn; 2412 opt.rcv_isn = ao->risn; 2413 opt.snd_sne = READ_ONCE(ao->snd_sne); 2414 opt.rcv_sne = READ_ONCE(ao->rcv_sne); 2415 rcu_read_unlock(); 2416 2417 if (copy_to_sockptr(optval, &opt, min_t(int, len, sizeof(opt)))) 2418 return -EFAULT; 2419 return 0; 2420 } 2421