xref: /linux/net/ipv4/tcp.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274 
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281 
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285 
286 #include <trace/events/tcp.h>
287 
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290 
291 long sysctl_tcp_mem[3] __read_mostly;
292 EXPORT_SYMBOL(sysctl_tcp_mem);
293 
294 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296 
297 #if IS_ENABLED(CONFIG_SMC)
298 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
299 EXPORT_SYMBOL(tcp_have_smc);
300 #endif
301 
302 /*
303  * Current number of TCP sockets.
304  */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307 
308 /*
309  * TCP splice context
310  */
311 struct tcp_splice_state {
312 	struct pipe_inode_info *pipe;
313 	size_t len;
314 	unsigned int flags;
315 };
316 
317 /*
318  * Pressure flag: try to collapse.
319  * Technical note: it is used by multiple contexts non atomically.
320  * All the __sk_mem_schedule() is of this nature: accounting
321  * is strict, actions are advisory and have some latency.
322  */
323 unsigned long tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
325 
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 	unsigned long val;
329 
330 	if (tcp_memory_pressure)
331 		return;
332 	val = jiffies;
333 
334 	if (!val)
335 		val--;
336 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340 
341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 	unsigned long val;
344 
345 	if (!tcp_memory_pressure)
346 		return;
347 	val = xchg(&tcp_memory_pressure, 0);
348 	if (val)
349 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 			      jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353 
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 	u8 res = 0;
358 
359 	if (seconds > 0) {
360 		int period = timeout;
361 
362 		res = 1;
363 		while (seconds > period && res < 255) {
364 			res++;
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return res;
372 }
373 
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 	int period = 0;
378 
379 	if (retrans > 0) {
380 		period = timeout;
381 		while (--retrans) {
382 			timeout <<= 1;
383 			if (timeout > rto_max)
384 				timeout = rto_max;
385 			period += timeout;
386 		}
387 	}
388 	return period;
389 }
390 
391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 	u32 rate = READ_ONCE(tp->rate_delivered);
394 	u32 intv = READ_ONCE(tp->rate_interval_us);
395 	u64 rate64 = 0;
396 
397 	if (rate && intv) {
398 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 		do_div(rate64, intv);
400 	}
401 	return rate64;
402 }
403 
404 /* Address-family independent initialization for a tcp_sock.
405  *
406  * NOTE: A lot of things set to zero explicitly by call to
407  *       sk_alloc() so need not be done here.
408  */
409 void tcp_init_sock(struct sock *sk)
410 {
411 	struct inet_connection_sock *icsk = inet_csk(sk);
412 	struct tcp_sock *tp = tcp_sk(sk);
413 
414 	tp->out_of_order_queue = RB_ROOT;
415 	sk->tcp_rtx_queue = RB_ROOT;
416 	tcp_init_xmit_timers(sk);
417 	INIT_LIST_HEAD(&tp->tsq_node);
418 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419 
420 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
422 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
423 
424 	/* So many TCP implementations out there (incorrectly) count the
425 	 * initial SYN frame in their delayed-ACK and congestion control
426 	 * algorithms that we must have the following bandaid to talk
427 	 * efficiently to them.  -DaveM
428 	 */
429 	tp->snd_cwnd = TCP_INIT_CWND;
430 
431 	/* There's a bubble in the pipe until at least the first ACK. */
432 	tp->app_limited = ~0U;
433 
434 	/* See draft-stevens-tcpca-spec-01 for discussion of the
435 	 * initialization of these values.
436 	 */
437 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438 	tp->snd_cwnd_clamp = ~0;
439 	tp->mss_cache = TCP_MSS_DEFAULT;
440 
441 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
442 	tcp_assign_congestion_control(sk);
443 
444 	tp->tsoffset = 0;
445 	tp->rack.reo_wnd_steps = 1;
446 
447 	sk->sk_state = TCP_CLOSE;
448 
449 	sk->sk_write_space = sk_stream_write_space;
450 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
451 
452 	icsk->icsk_sync_mss = tcp_sync_mss;
453 
454 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
455 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
456 
457 	sk_sockets_allocated_inc(sk);
458 }
459 EXPORT_SYMBOL(tcp_init_sock);
460 
461 void tcp_init_transfer(struct sock *sk, int bpf_op)
462 {
463 	struct inet_connection_sock *icsk = inet_csk(sk);
464 
465 	tcp_mtup_init(sk);
466 	icsk->icsk_af_ops->rebuild_header(sk);
467 	tcp_init_metrics(sk);
468 	tcp_call_bpf(sk, bpf_op);
469 	tcp_init_congestion_control(sk);
470 	tcp_init_buffer_space(sk);
471 }
472 
473 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
474 {
475 	struct sk_buff *skb = tcp_write_queue_tail(sk);
476 
477 	if (tsflags && skb) {
478 		struct skb_shared_info *shinfo = skb_shinfo(skb);
479 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
480 
481 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
482 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
483 			tcb->txstamp_ack = 1;
484 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
485 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
486 	}
487 }
488 
489 /*
490  *	Wait for a TCP event.
491  *
492  *	Note that we don't need to lock the socket, as the upper poll layers
493  *	take care of normal races (between the test and the event) and we don't
494  *	go look at any of the socket buffers directly.
495  */
496 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 	unsigned int mask;
499 	struct sock *sk = sock->sk;
500 	const struct tcp_sock *tp = tcp_sk(sk);
501 	int state;
502 
503 	sock_rps_record_flow(sk);
504 
505 	sock_poll_wait(file, sk_sleep(sk), wait);
506 
507 	state = sk_state_load(sk);
508 	if (state == TCP_LISTEN)
509 		return inet_csk_listen_poll(sk);
510 
511 	/* Socket is not locked. We are protected from async events
512 	 * by poll logic and correct handling of state changes
513 	 * made by other threads is impossible in any case.
514 	 */
515 
516 	mask = 0;
517 
518 	/*
519 	 * POLLHUP is certainly not done right. But poll() doesn't
520 	 * have a notion of HUP in just one direction, and for a
521 	 * socket the read side is more interesting.
522 	 *
523 	 * Some poll() documentation says that POLLHUP is incompatible
524 	 * with the POLLOUT/POLLWR flags, so somebody should check this
525 	 * all. But careful, it tends to be safer to return too many
526 	 * bits than too few, and you can easily break real applications
527 	 * if you don't tell them that something has hung up!
528 	 *
529 	 * Check-me.
530 	 *
531 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 	 * our fs/select.c). It means that after we received EOF,
533 	 * poll always returns immediately, making impossible poll() on write()
534 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
535 	 * if and only if shutdown has been made in both directions.
536 	 * Actually, it is interesting to look how Solaris and DUX
537 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
538 	 * then we could set it on SND_SHUTDOWN. BTW examples given
539 	 * in Stevens' books assume exactly this behaviour, it explains
540 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
541 	 *
542 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 	 * blocking on fresh not-connected or disconnected socket. --ANK
544 	 */
545 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
546 		mask |= POLLHUP;
547 	if (sk->sk_shutdown & RCV_SHUTDOWN)
548 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
549 
550 	/* Connected or passive Fast Open socket? */
551 	if (state != TCP_SYN_SENT &&
552 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
553 		int target = sock_rcvlowat(sk, 0, INT_MAX);
554 
555 		if (tp->urg_seq == tp->copied_seq &&
556 		    !sock_flag(sk, SOCK_URGINLINE) &&
557 		    tp->urg_data)
558 			target++;
559 
560 		if (tp->rcv_nxt - tp->copied_seq >= target)
561 			mask |= POLLIN | POLLRDNORM;
562 
563 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
564 			if (sk_stream_is_writeable(sk)) {
565 				mask |= POLLOUT | POLLWRNORM;
566 			} else {  /* send SIGIO later */
567 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
568 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
569 
570 				/* Race breaker. If space is freed after
571 				 * wspace test but before the flags are set,
572 				 * IO signal will be lost. Memory barrier
573 				 * pairs with the input side.
574 				 */
575 				smp_mb__after_atomic();
576 				if (sk_stream_is_writeable(sk))
577 					mask |= POLLOUT | POLLWRNORM;
578 			}
579 		} else
580 			mask |= POLLOUT | POLLWRNORM;
581 
582 		if (tp->urg_data & TCP_URG_VALID)
583 			mask |= POLLPRI;
584 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
585 		/* Active TCP fastopen socket with defer_connect
586 		 * Return POLLOUT so application can call write()
587 		 * in order for kernel to generate SYN+data
588 		 */
589 		mask |= POLLOUT | POLLWRNORM;
590 	}
591 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
592 	smp_rmb();
593 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
594 		mask |= POLLERR;
595 
596 	return mask;
597 }
598 EXPORT_SYMBOL(tcp_poll);
599 
600 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
601 {
602 	struct tcp_sock *tp = tcp_sk(sk);
603 	int answ;
604 	bool slow;
605 
606 	switch (cmd) {
607 	case SIOCINQ:
608 		if (sk->sk_state == TCP_LISTEN)
609 			return -EINVAL;
610 
611 		slow = lock_sock_fast(sk);
612 		answ = tcp_inq(sk);
613 		unlock_sock_fast(sk, slow);
614 		break;
615 	case SIOCATMARK:
616 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
617 		break;
618 	case SIOCOUTQ:
619 		if (sk->sk_state == TCP_LISTEN)
620 			return -EINVAL;
621 
622 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
623 			answ = 0;
624 		else
625 			answ = tp->write_seq - tp->snd_una;
626 		break;
627 	case SIOCOUTQNSD:
628 		if (sk->sk_state == TCP_LISTEN)
629 			return -EINVAL;
630 
631 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
632 			answ = 0;
633 		else
634 			answ = tp->write_seq - tp->snd_nxt;
635 		break;
636 	default:
637 		return -ENOIOCTLCMD;
638 	}
639 
640 	return put_user(answ, (int __user *)arg);
641 }
642 EXPORT_SYMBOL(tcp_ioctl);
643 
644 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
645 {
646 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
647 	tp->pushed_seq = tp->write_seq;
648 }
649 
650 static inline bool forced_push(const struct tcp_sock *tp)
651 {
652 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
653 }
654 
655 static void skb_entail(struct sock *sk, struct sk_buff *skb)
656 {
657 	struct tcp_sock *tp = tcp_sk(sk);
658 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
659 
660 	skb->csum    = 0;
661 	tcb->seq     = tcb->end_seq = tp->write_seq;
662 	tcb->tcp_flags = TCPHDR_ACK;
663 	tcb->sacked  = 0;
664 	__skb_header_release(skb);
665 	tcp_add_write_queue_tail(sk, skb);
666 	sk->sk_wmem_queued += skb->truesize;
667 	sk_mem_charge(sk, skb->truesize);
668 	if (tp->nonagle & TCP_NAGLE_PUSH)
669 		tp->nonagle &= ~TCP_NAGLE_PUSH;
670 
671 	tcp_slow_start_after_idle_check(sk);
672 }
673 
674 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
675 {
676 	if (flags & MSG_OOB)
677 		tp->snd_up = tp->write_seq;
678 }
679 
680 /* If a not yet filled skb is pushed, do not send it if
681  * we have data packets in Qdisc or NIC queues :
682  * Because TX completion will happen shortly, it gives a chance
683  * to coalesce future sendmsg() payload into this skb, without
684  * need for a timer, and with no latency trade off.
685  * As packets containing data payload have a bigger truesize
686  * than pure acks (dataless) packets, the last checks prevent
687  * autocorking if we only have an ACK in Qdisc/NIC queues,
688  * or if TX completion was delayed after we processed ACK packet.
689  */
690 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
691 				int size_goal)
692 {
693 	return skb->len < size_goal &&
694 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
695 	       skb != tcp_write_queue_head(sk) &&
696 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
697 }
698 
699 static void tcp_push(struct sock *sk, int flags, int mss_now,
700 		     int nonagle, int size_goal)
701 {
702 	struct tcp_sock *tp = tcp_sk(sk);
703 	struct sk_buff *skb;
704 
705 	skb = tcp_write_queue_tail(sk);
706 	if (!skb)
707 		return;
708 	if (!(flags & MSG_MORE) || forced_push(tp))
709 		tcp_mark_push(tp, skb);
710 
711 	tcp_mark_urg(tp, flags);
712 
713 	if (tcp_should_autocork(sk, skb, size_goal)) {
714 
715 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
716 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
717 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
718 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
719 		}
720 		/* It is possible TX completion already happened
721 		 * before we set TSQ_THROTTLED.
722 		 */
723 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
724 			return;
725 	}
726 
727 	if (flags & MSG_MORE)
728 		nonagle = TCP_NAGLE_CORK;
729 
730 	__tcp_push_pending_frames(sk, mss_now, nonagle);
731 }
732 
733 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
734 				unsigned int offset, size_t len)
735 {
736 	struct tcp_splice_state *tss = rd_desc->arg.data;
737 	int ret;
738 
739 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
740 			      min(rd_desc->count, len), tss->flags);
741 	if (ret > 0)
742 		rd_desc->count -= ret;
743 	return ret;
744 }
745 
746 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
747 {
748 	/* Store TCP splice context information in read_descriptor_t. */
749 	read_descriptor_t rd_desc = {
750 		.arg.data = tss,
751 		.count	  = tss->len,
752 	};
753 
754 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
755 }
756 
757 /**
758  *  tcp_splice_read - splice data from TCP socket to a pipe
759  * @sock:	socket to splice from
760  * @ppos:	position (not valid)
761  * @pipe:	pipe to splice to
762  * @len:	number of bytes to splice
763  * @flags:	splice modifier flags
764  *
765  * Description:
766  *    Will read pages from given socket and fill them into a pipe.
767  *
768  **/
769 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
770 			struct pipe_inode_info *pipe, size_t len,
771 			unsigned int flags)
772 {
773 	struct sock *sk = sock->sk;
774 	struct tcp_splice_state tss = {
775 		.pipe = pipe,
776 		.len = len,
777 		.flags = flags,
778 	};
779 	long timeo;
780 	ssize_t spliced;
781 	int ret;
782 
783 	sock_rps_record_flow(sk);
784 	/*
785 	 * We can't seek on a socket input
786 	 */
787 	if (unlikely(*ppos))
788 		return -ESPIPE;
789 
790 	ret = spliced = 0;
791 
792 	lock_sock(sk);
793 
794 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
795 	while (tss.len) {
796 		ret = __tcp_splice_read(sk, &tss);
797 		if (ret < 0)
798 			break;
799 		else if (!ret) {
800 			if (spliced)
801 				break;
802 			if (sock_flag(sk, SOCK_DONE))
803 				break;
804 			if (sk->sk_err) {
805 				ret = sock_error(sk);
806 				break;
807 			}
808 			if (sk->sk_shutdown & RCV_SHUTDOWN)
809 				break;
810 			if (sk->sk_state == TCP_CLOSE) {
811 				/*
812 				 * This occurs when user tries to read
813 				 * from never connected socket.
814 				 */
815 				if (!sock_flag(sk, SOCK_DONE))
816 					ret = -ENOTCONN;
817 				break;
818 			}
819 			if (!timeo) {
820 				ret = -EAGAIN;
821 				break;
822 			}
823 			/* if __tcp_splice_read() got nothing while we have
824 			 * an skb in receive queue, we do not want to loop.
825 			 * This might happen with URG data.
826 			 */
827 			if (!skb_queue_empty(&sk->sk_receive_queue))
828 				break;
829 			sk_wait_data(sk, &timeo, NULL);
830 			if (signal_pending(current)) {
831 				ret = sock_intr_errno(timeo);
832 				break;
833 			}
834 			continue;
835 		}
836 		tss.len -= ret;
837 		spliced += ret;
838 
839 		if (!timeo)
840 			break;
841 		release_sock(sk);
842 		lock_sock(sk);
843 
844 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
845 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
846 		    signal_pending(current))
847 			break;
848 	}
849 
850 	release_sock(sk);
851 
852 	if (spliced)
853 		return spliced;
854 
855 	return ret;
856 }
857 EXPORT_SYMBOL(tcp_splice_read);
858 
859 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
860 				    bool force_schedule)
861 {
862 	struct sk_buff *skb;
863 
864 	/* The TCP header must be at least 32-bit aligned.  */
865 	size = ALIGN(size, 4);
866 
867 	if (unlikely(tcp_under_memory_pressure(sk)))
868 		sk_mem_reclaim_partial(sk);
869 
870 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
871 	if (likely(skb)) {
872 		bool mem_scheduled;
873 
874 		if (force_schedule) {
875 			mem_scheduled = true;
876 			sk_forced_mem_schedule(sk, skb->truesize);
877 		} else {
878 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
879 		}
880 		if (likely(mem_scheduled)) {
881 			skb_reserve(skb, sk->sk_prot->max_header);
882 			/*
883 			 * Make sure that we have exactly size bytes
884 			 * available to the caller, no more, no less.
885 			 */
886 			skb->reserved_tailroom = skb->end - skb->tail - size;
887 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
888 			return skb;
889 		}
890 		__kfree_skb(skb);
891 	} else {
892 		sk->sk_prot->enter_memory_pressure(sk);
893 		sk_stream_moderate_sndbuf(sk);
894 	}
895 	return NULL;
896 }
897 
898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
899 				       int large_allowed)
900 {
901 	struct tcp_sock *tp = tcp_sk(sk);
902 	u32 new_size_goal, size_goal;
903 
904 	if (!large_allowed || !sk_can_gso(sk))
905 		return mss_now;
906 
907 	/* Note : tcp_tso_autosize() will eventually split this later */
908 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
909 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
910 
911 	/* We try hard to avoid divides here */
912 	size_goal = tp->gso_segs * mss_now;
913 	if (unlikely(new_size_goal < size_goal ||
914 		     new_size_goal >= size_goal + mss_now)) {
915 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
916 				     sk->sk_gso_max_segs);
917 		size_goal = tp->gso_segs * mss_now;
918 	}
919 
920 	return max(size_goal, mss_now);
921 }
922 
923 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
924 {
925 	int mss_now;
926 
927 	mss_now = tcp_current_mss(sk);
928 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
929 
930 	return mss_now;
931 }
932 
933 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
934 			 size_t size, int flags)
935 {
936 	struct tcp_sock *tp = tcp_sk(sk);
937 	int mss_now, size_goal;
938 	int err;
939 	ssize_t copied;
940 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
941 
942 	/* Wait for a connection to finish. One exception is TCP Fast Open
943 	 * (passive side) where data is allowed to be sent before a connection
944 	 * is fully established.
945 	 */
946 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
947 	    !tcp_passive_fastopen(sk)) {
948 		err = sk_stream_wait_connect(sk, &timeo);
949 		if (err != 0)
950 			goto out_err;
951 	}
952 
953 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
954 
955 	mss_now = tcp_send_mss(sk, &size_goal, flags);
956 	copied = 0;
957 
958 	err = -EPIPE;
959 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
960 		goto out_err;
961 
962 	while (size > 0) {
963 		struct sk_buff *skb = tcp_write_queue_tail(sk);
964 		int copy, i;
965 		bool can_coalesce;
966 
967 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
968 		    !tcp_skb_can_collapse_to(skb)) {
969 new_segment:
970 			if (!sk_stream_memory_free(sk))
971 				goto wait_for_sndbuf;
972 
973 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
974 					tcp_rtx_and_write_queues_empty(sk));
975 			if (!skb)
976 				goto wait_for_memory;
977 
978 			skb_entail(sk, skb);
979 			copy = size_goal;
980 		}
981 
982 		if (copy > size)
983 			copy = size;
984 
985 		i = skb_shinfo(skb)->nr_frags;
986 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
987 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
988 			tcp_mark_push(tp, skb);
989 			goto new_segment;
990 		}
991 		if (!sk_wmem_schedule(sk, copy))
992 			goto wait_for_memory;
993 
994 		if (can_coalesce) {
995 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
996 		} else {
997 			get_page(page);
998 			skb_fill_page_desc(skb, i, page, offset, copy);
999 		}
1000 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1001 
1002 		skb->len += copy;
1003 		skb->data_len += copy;
1004 		skb->truesize += copy;
1005 		sk->sk_wmem_queued += copy;
1006 		sk_mem_charge(sk, copy);
1007 		skb->ip_summed = CHECKSUM_PARTIAL;
1008 		tp->write_seq += copy;
1009 		TCP_SKB_CB(skb)->end_seq += copy;
1010 		tcp_skb_pcount_set(skb, 0);
1011 
1012 		if (!copied)
1013 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1014 
1015 		copied += copy;
1016 		offset += copy;
1017 		size -= copy;
1018 		if (!size)
1019 			goto out;
1020 
1021 		if (skb->len < size_goal || (flags & MSG_OOB))
1022 			continue;
1023 
1024 		if (forced_push(tp)) {
1025 			tcp_mark_push(tp, skb);
1026 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1027 		} else if (skb == tcp_send_head(sk))
1028 			tcp_push_one(sk, mss_now);
1029 		continue;
1030 
1031 wait_for_sndbuf:
1032 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1033 wait_for_memory:
1034 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1035 			 TCP_NAGLE_PUSH, size_goal);
1036 
1037 		err = sk_stream_wait_memory(sk, &timeo);
1038 		if (err != 0)
1039 			goto do_error;
1040 
1041 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1042 	}
1043 
1044 out:
1045 	if (copied) {
1046 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1047 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1048 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1049 	}
1050 	return copied;
1051 
1052 do_error:
1053 	if (copied)
1054 		goto out;
1055 out_err:
1056 	/* make sure we wake any epoll edge trigger waiter */
1057 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1058 		     err == -EAGAIN)) {
1059 		sk->sk_write_space(sk);
1060 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1061 	}
1062 	return sk_stream_error(sk, flags, err);
1063 }
1064 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1065 
1066 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1067 			size_t size, int flags)
1068 {
1069 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1070 	    !sk_check_csum_caps(sk))
1071 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1072 
1073 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1074 
1075 	return do_tcp_sendpages(sk, page, offset, size, flags);
1076 }
1077 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1078 
1079 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1080 		 size_t size, int flags)
1081 {
1082 	int ret;
1083 
1084 	lock_sock(sk);
1085 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1086 	release_sock(sk);
1087 
1088 	return ret;
1089 }
1090 EXPORT_SYMBOL(tcp_sendpage);
1091 
1092 /* Do not bother using a page frag for very small frames.
1093  * But use this heuristic only for the first skb in write queue.
1094  *
1095  * Having no payload in skb->head allows better SACK shifting
1096  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1097  * write queue has less skbs.
1098  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1099  * This also speeds up tso_fragment(), since it wont fallback
1100  * to tcp_fragment().
1101  */
1102 static int linear_payload_sz(bool first_skb)
1103 {
1104 	if (first_skb)
1105 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1106 	return 0;
1107 }
1108 
1109 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1110 {
1111 	const struct tcp_sock *tp = tcp_sk(sk);
1112 	int tmp = tp->mss_cache;
1113 
1114 	if (sg) {
1115 		if (sk_can_gso(sk)) {
1116 			tmp = linear_payload_sz(first_skb);
1117 		} else {
1118 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1119 
1120 			if (tmp >= pgbreak &&
1121 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1122 				tmp = pgbreak;
1123 		}
1124 	}
1125 
1126 	return tmp;
1127 }
1128 
1129 void tcp_free_fastopen_req(struct tcp_sock *tp)
1130 {
1131 	if (tp->fastopen_req) {
1132 		kfree(tp->fastopen_req);
1133 		tp->fastopen_req = NULL;
1134 	}
1135 }
1136 
1137 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1138 				int *copied, size_t size)
1139 {
1140 	struct tcp_sock *tp = tcp_sk(sk);
1141 	struct inet_sock *inet = inet_sk(sk);
1142 	struct sockaddr *uaddr = msg->msg_name;
1143 	int err, flags;
1144 
1145 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1146 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1147 	     uaddr->sa_family == AF_UNSPEC))
1148 		return -EOPNOTSUPP;
1149 	if (tp->fastopen_req)
1150 		return -EALREADY; /* Another Fast Open is in progress */
1151 
1152 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1153 				   sk->sk_allocation);
1154 	if (unlikely(!tp->fastopen_req))
1155 		return -ENOBUFS;
1156 	tp->fastopen_req->data = msg;
1157 	tp->fastopen_req->size = size;
1158 
1159 	if (inet->defer_connect) {
1160 		err = tcp_connect(sk);
1161 		/* Same failure procedure as in tcp_v4/6_connect */
1162 		if (err) {
1163 			tcp_set_state(sk, TCP_CLOSE);
1164 			inet->inet_dport = 0;
1165 			sk->sk_route_caps = 0;
1166 		}
1167 	}
1168 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1169 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1170 				    msg->msg_namelen, flags, 1);
1171 	/* fastopen_req could already be freed in __inet_stream_connect
1172 	 * if the connection times out or gets rst
1173 	 */
1174 	if (tp->fastopen_req) {
1175 		*copied = tp->fastopen_req->copied;
1176 		tcp_free_fastopen_req(tp);
1177 		inet->defer_connect = 0;
1178 	}
1179 	return err;
1180 }
1181 
1182 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1183 {
1184 	struct tcp_sock *tp = tcp_sk(sk);
1185 	struct ubuf_info *uarg = NULL;
1186 	struct sk_buff *skb;
1187 	struct sockcm_cookie sockc;
1188 	int flags, err, copied = 0;
1189 	int mss_now = 0, size_goal, copied_syn = 0;
1190 	bool process_backlog = false;
1191 	bool sg;
1192 	long timeo;
1193 
1194 	flags = msg->msg_flags;
1195 
1196 	if (flags & MSG_ZEROCOPY && size) {
1197 		if (sk->sk_state != TCP_ESTABLISHED) {
1198 			err = -EINVAL;
1199 			goto out_err;
1200 		}
1201 
1202 		skb = tcp_write_queue_tail(sk);
1203 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1204 		if (!uarg) {
1205 			err = -ENOBUFS;
1206 			goto out_err;
1207 		}
1208 
1209 		if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG))
1210 			uarg->zerocopy = 0;
1211 	}
1212 
1213 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1214 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1215 		if (err == -EINPROGRESS && copied_syn > 0)
1216 			goto out;
1217 		else if (err)
1218 			goto out_err;
1219 	}
1220 
1221 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1222 
1223 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1224 
1225 	/* Wait for a connection to finish. One exception is TCP Fast Open
1226 	 * (passive side) where data is allowed to be sent before a connection
1227 	 * is fully established.
1228 	 */
1229 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1230 	    !tcp_passive_fastopen(sk)) {
1231 		err = sk_stream_wait_connect(sk, &timeo);
1232 		if (err != 0)
1233 			goto do_error;
1234 	}
1235 
1236 	if (unlikely(tp->repair)) {
1237 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1238 			copied = tcp_send_rcvq(sk, msg, size);
1239 			goto out_nopush;
1240 		}
1241 
1242 		err = -EINVAL;
1243 		if (tp->repair_queue == TCP_NO_QUEUE)
1244 			goto out_err;
1245 
1246 		/* 'common' sending to sendq */
1247 	}
1248 
1249 	sockc.tsflags = sk->sk_tsflags;
1250 	if (msg->msg_controllen) {
1251 		err = sock_cmsg_send(sk, msg, &sockc);
1252 		if (unlikely(err)) {
1253 			err = -EINVAL;
1254 			goto out_err;
1255 		}
1256 	}
1257 
1258 	/* This should be in poll */
1259 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1260 
1261 	/* Ok commence sending. */
1262 	copied = 0;
1263 
1264 restart:
1265 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1266 
1267 	err = -EPIPE;
1268 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1269 		goto do_error;
1270 
1271 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1272 
1273 	while (msg_data_left(msg)) {
1274 		int copy = 0;
1275 		int max = size_goal;
1276 
1277 		skb = tcp_write_queue_tail(sk);
1278 		if (skb) {
1279 			if (skb->ip_summed == CHECKSUM_NONE)
1280 				max = mss_now;
1281 			copy = max - skb->len;
1282 		}
1283 
1284 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1285 			bool first_skb;
1286 
1287 new_segment:
1288 			/* Allocate new segment. If the interface is SG,
1289 			 * allocate skb fitting to single page.
1290 			 */
1291 			if (!sk_stream_memory_free(sk))
1292 				goto wait_for_sndbuf;
1293 
1294 			if (process_backlog && sk_flush_backlog(sk)) {
1295 				process_backlog = false;
1296 				goto restart;
1297 			}
1298 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1299 			skb = sk_stream_alloc_skb(sk,
1300 						  select_size(sk, sg, first_skb),
1301 						  sk->sk_allocation,
1302 						  first_skb);
1303 			if (!skb)
1304 				goto wait_for_memory;
1305 
1306 			process_backlog = true;
1307 			/*
1308 			 * Check whether we can use HW checksum.
1309 			 */
1310 			if (sk_check_csum_caps(sk))
1311 				skb->ip_summed = CHECKSUM_PARTIAL;
1312 
1313 			skb_entail(sk, skb);
1314 			copy = size_goal;
1315 			max = size_goal;
1316 
1317 			/* All packets are restored as if they have
1318 			 * already been sent. skb_mstamp isn't set to
1319 			 * avoid wrong rtt estimation.
1320 			 */
1321 			if (tp->repair)
1322 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1323 		}
1324 
1325 		/* Try to append data to the end of skb. */
1326 		if (copy > msg_data_left(msg))
1327 			copy = msg_data_left(msg);
1328 
1329 		/* Where to copy to? */
1330 		if (skb_availroom(skb) > 0) {
1331 			/* We have some space in skb head. Superb! */
1332 			copy = min_t(int, copy, skb_availroom(skb));
1333 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1334 			if (err)
1335 				goto do_fault;
1336 		} else if (!uarg || !uarg->zerocopy) {
1337 			bool merge = true;
1338 			int i = skb_shinfo(skb)->nr_frags;
1339 			struct page_frag *pfrag = sk_page_frag(sk);
1340 
1341 			if (!sk_page_frag_refill(sk, pfrag))
1342 				goto wait_for_memory;
1343 
1344 			if (!skb_can_coalesce(skb, i, pfrag->page,
1345 					      pfrag->offset)) {
1346 				if (i >= sysctl_max_skb_frags || !sg) {
1347 					tcp_mark_push(tp, skb);
1348 					goto new_segment;
1349 				}
1350 				merge = false;
1351 			}
1352 
1353 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1354 
1355 			if (!sk_wmem_schedule(sk, copy))
1356 				goto wait_for_memory;
1357 
1358 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1359 						       pfrag->page,
1360 						       pfrag->offset,
1361 						       copy);
1362 			if (err)
1363 				goto do_error;
1364 
1365 			/* Update the skb. */
1366 			if (merge) {
1367 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1368 			} else {
1369 				skb_fill_page_desc(skb, i, pfrag->page,
1370 						   pfrag->offset, copy);
1371 				page_ref_inc(pfrag->page);
1372 			}
1373 			pfrag->offset += copy;
1374 		} else {
1375 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1376 			if (err == -EMSGSIZE || err == -EEXIST)
1377 				goto new_segment;
1378 			if (err < 0)
1379 				goto do_error;
1380 			copy = err;
1381 		}
1382 
1383 		if (!copied)
1384 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1385 
1386 		tp->write_seq += copy;
1387 		TCP_SKB_CB(skb)->end_seq += copy;
1388 		tcp_skb_pcount_set(skb, 0);
1389 
1390 		copied += copy;
1391 		if (!msg_data_left(msg)) {
1392 			if (unlikely(flags & MSG_EOR))
1393 				TCP_SKB_CB(skb)->eor = 1;
1394 			goto out;
1395 		}
1396 
1397 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1398 			continue;
1399 
1400 		if (forced_push(tp)) {
1401 			tcp_mark_push(tp, skb);
1402 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1403 		} else if (skb == tcp_send_head(sk))
1404 			tcp_push_one(sk, mss_now);
1405 		continue;
1406 
1407 wait_for_sndbuf:
1408 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1409 wait_for_memory:
1410 		if (copied)
1411 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1412 				 TCP_NAGLE_PUSH, size_goal);
1413 
1414 		err = sk_stream_wait_memory(sk, &timeo);
1415 		if (err != 0)
1416 			goto do_error;
1417 
1418 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1419 	}
1420 
1421 out:
1422 	if (copied) {
1423 		tcp_tx_timestamp(sk, sockc.tsflags);
1424 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1425 	}
1426 out_nopush:
1427 	sock_zerocopy_put(uarg);
1428 	return copied + copied_syn;
1429 
1430 do_fault:
1431 	if (!skb->len) {
1432 		tcp_unlink_write_queue(skb, sk);
1433 		/* It is the one place in all of TCP, except connection
1434 		 * reset, where we can be unlinking the send_head.
1435 		 */
1436 		tcp_check_send_head(sk, skb);
1437 		sk_wmem_free_skb(sk, skb);
1438 	}
1439 
1440 do_error:
1441 	if (copied + copied_syn)
1442 		goto out;
1443 out_err:
1444 	sock_zerocopy_put_abort(uarg);
1445 	err = sk_stream_error(sk, flags, err);
1446 	/* make sure we wake any epoll edge trigger waiter */
1447 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1448 		     err == -EAGAIN)) {
1449 		sk->sk_write_space(sk);
1450 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1451 	}
1452 	return err;
1453 }
1454 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1455 
1456 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1457 {
1458 	int ret;
1459 
1460 	lock_sock(sk);
1461 	ret = tcp_sendmsg_locked(sk, msg, size);
1462 	release_sock(sk);
1463 
1464 	return ret;
1465 }
1466 EXPORT_SYMBOL(tcp_sendmsg);
1467 
1468 /*
1469  *	Handle reading urgent data. BSD has very simple semantics for
1470  *	this, no blocking and very strange errors 8)
1471  */
1472 
1473 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1474 {
1475 	struct tcp_sock *tp = tcp_sk(sk);
1476 
1477 	/* No URG data to read. */
1478 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1479 	    tp->urg_data == TCP_URG_READ)
1480 		return -EINVAL;	/* Yes this is right ! */
1481 
1482 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1483 		return -ENOTCONN;
1484 
1485 	if (tp->urg_data & TCP_URG_VALID) {
1486 		int err = 0;
1487 		char c = tp->urg_data;
1488 
1489 		if (!(flags & MSG_PEEK))
1490 			tp->urg_data = TCP_URG_READ;
1491 
1492 		/* Read urgent data. */
1493 		msg->msg_flags |= MSG_OOB;
1494 
1495 		if (len > 0) {
1496 			if (!(flags & MSG_TRUNC))
1497 				err = memcpy_to_msg(msg, &c, 1);
1498 			len = 1;
1499 		} else
1500 			msg->msg_flags |= MSG_TRUNC;
1501 
1502 		return err ? -EFAULT : len;
1503 	}
1504 
1505 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1506 		return 0;
1507 
1508 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1509 	 * the available implementations agree in this case:
1510 	 * this call should never block, independent of the
1511 	 * blocking state of the socket.
1512 	 * Mike <pall@rz.uni-karlsruhe.de>
1513 	 */
1514 	return -EAGAIN;
1515 }
1516 
1517 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1518 {
1519 	struct sk_buff *skb;
1520 	int copied = 0, err = 0;
1521 
1522 	/* XXX -- need to support SO_PEEK_OFF */
1523 
1524 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1525 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1526 		if (err)
1527 			return err;
1528 		copied += skb->len;
1529 	}
1530 
1531 	skb_queue_walk(&sk->sk_write_queue, skb) {
1532 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1533 		if (err)
1534 			break;
1535 
1536 		copied += skb->len;
1537 	}
1538 
1539 	return err ?: copied;
1540 }
1541 
1542 /* Clean up the receive buffer for full frames taken by the user,
1543  * then send an ACK if necessary.  COPIED is the number of bytes
1544  * tcp_recvmsg has given to the user so far, it speeds up the
1545  * calculation of whether or not we must ACK for the sake of
1546  * a window update.
1547  */
1548 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1549 {
1550 	struct tcp_sock *tp = tcp_sk(sk);
1551 	bool time_to_ack = false;
1552 
1553 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1554 
1555 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1556 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1557 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1558 
1559 	if (inet_csk_ack_scheduled(sk)) {
1560 		const struct inet_connection_sock *icsk = inet_csk(sk);
1561 		   /* Delayed ACKs frequently hit locked sockets during bulk
1562 		    * receive. */
1563 		if (icsk->icsk_ack.blocked ||
1564 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1565 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1566 		    /*
1567 		     * If this read emptied read buffer, we send ACK, if
1568 		     * connection is not bidirectional, user drained
1569 		     * receive buffer and there was a small segment
1570 		     * in queue.
1571 		     */
1572 		    (copied > 0 &&
1573 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1574 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1575 		       !icsk->icsk_ack.pingpong)) &&
1576 		      !atomic_read(&sk->sk_rmem_alloc)))
1577 			time_to_ack = true;
1578 	}
1579 
1580 	/* We send an ACK if we can now advertise a non-zero window
1581 	 * which has been raised "significantly".
1582 	 *
1583 	 * Even if window raised up to infinity, do not send window open ACK
1584 	 * in states, where we will not receive more. It is useless.
1585 	 */
1586 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1587 		__u32 rcv_window_now = tcp_receive_window(tp);
1588 
1589 		/* Optimize, __tcp_select_window() is not cheap. */
1590 		if (2*rcv_window_now <= tp->window_clamp) {
1591 			__u32 new_window = __tcp_select_window(sk);
1592 
1593 			/* Send ACK now, if this read freed lots of space
1594 			 * in our buffer. Certainly, new_window is new window.
1595 			 * We can advertise it now, if it is not less than current one.
1596 			 * "Lots" means "at least twice" here.
1597 			 */
1598 			if (new_window && new_window >= 2 * rcv_window_now)
1599 				time_to_ack = true;
1600 		}
1601 	}
1602 	if (time_to_ack)
1603 		tcp_send_ack(sk);
1604 }
1605 
1606 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1607 {
1608 	struct sk_buff *skb;
1609 	u32 offset;
1610 
1611 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1612 		offset = seq - TCP_SKB_CB(skb)->seq;
1613 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1614 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1615 			offset--;
1616 		}
1617 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1618 			*off = offset;
1619 			return skb;
1620 		}
1621 		/* This looks weird, but this can happen if TCP collapsing
1622 		 * splitted a fat GRO packet, while we released socket lock
1623 		 * in skb_splice_bits()
1624 		 */
1625 		sk_eat_skb(sk, skb);
1626 	}
1627 	return NULL;
1628 }
1629 
1630 /*
1631  * This routine provides an alternative to tcp_recvmsg() for routines
1632  * that would like to handle copying from skbuffs directly in 'sendfile'
1633  * fashion.
1634  * Note:
1635  *	- It is assumed that the socket was locked by the caller.
1636  *	- The routine does not block.
1637  *	- At present, there is no support for reading OOB data
1638  *	  or for 'peeking' the socket using this routine
1639  *	  (although both would be easy to implement).
1640  */
1641 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1642 		  sk_read_actor_t recv_actor)
1643 {
1644 	struct sk_buff *skb;
1645 	struct tcp_sock *tp = tcp_sk(sk);
1646 	u32 seq = tp->copied_seq;
1647 	u32 offset;
1648 	int copied = 0;
1649 
1650 	if (sk->sk_state == TCP_LISTEN)
1651 		return -ENOTCONN;
1652 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1653 		if (offset < skb->len) {
1654 			int used;
1655 			size_t len;
1656 
1657 			len = skb->len - offset;
1658 			/* Stop reading if we hit a patch of urgent data */
1659 			if (tp->urg_data) {
1660 				u32 urg_offset = tp->urg_seq - seq;
1661 				if (urg_offset < len)
1662 					len = urg_offset;
1663 				if (!len)
1664 					break;
1665 			}
1666 			used = recv_actor(desc, skb, offset, len);
1667 			if (used <= 0) {
1668 				if (!copied)
1669 					copied = used;
1670 				break;
1671 			} else if (used <= len) {
1672 				seq += used;
1673 				copied += used;
1674 				offset += used;
1675 			}
1676 			/* If recv_actor drops the lock (e.g. TCP splice
1677 			 * receive) the skb pointer might be invalid when
1678 			 * getting here: tcp_collapse might have deleted it
1679 			 * while aggregating skbs from the socket queue.
1680 			 */
1681 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1682 			if (!skb)
1683 				break;
1684 			/* TCP coalescing might have appended data to the skb.
1685 			 * Try to splice more frags
1686 			 */
1687 			if (offset + 1 != skb->len)
1688 				continue;
1689 		}
1690 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1691 			sk_eat_skb(sk, skb);
1692 			++seq;
1693 			break;
1694 		}
1695 		sk_eat_skb(sk, skb);
1696 		if (!desc->count)
1697 			break;
1698 		tp->copied_seq = seq;
1699 	}
1700 	tp->copied_seq = seq;
1701 
1702 	tcp_rcv_space_adjust(sk);
1703 
1704 	/* Clean up data we have read: This will do ACK frames. */
1705 	if (copied > 0) {
1706 		tcp_recv_skb(sk, seq, &offset);
1707 		tcp_cleanup_rbuf(sk, copied);
1708 	}
1709 	return copied;
1710 }
1711 EXPORT_SYMBOL(tcp_read_sock);
1712 
1713 int tcp_peek_len(struct socket *sock)
1714 {
1715 	return tcp_inq(sock->sk);
1716 }
1717 EXPORT_SYMBOL(tcp_peek_len);
1718 
1719 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1720 				    struct scm_timestamping *tss)
1721 {
1722 	if (skb->tstamp)
1723 		tss->ts[0] = ktime_to_timespec(skb->tstamp);
1724 	else
1725 		tss->ts[0] = (struct timespec) {0};
1726 
1727 	if (skb_hwtstamps(skb)->hwtstamp)
1728 		tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1729 	else
1730 		tss->ts[2] = (struct timespec) {0};
1731 }
1732 
1733 /* Similar to __sock_recv_timestamp, but does not require an skb */
1734 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1735 			struct scm_timestamping *tss)
1736 {
1737 	struct timeval tv;
1738 	bool has_timestamping = false;
1739 
1740 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1741 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1742 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1743 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1744 					 sizeof(tss->ts[0]), &tss->ts[0]);
1745 			} else {
1746 				tv.tv_sec = tss->ts[0].tv_sec;
1747 				tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1748 
1749 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1750 					 sizeof(tv), &tv);
1751 			}
1752 		}
1753 
1754 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1755 			has_timestamping = true;
1756 		else
1757 			tss->ts[0] = (struct timespec) {0};
1758 	}
1759 
1760 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1761 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1762 			has_timestamping = true;
1763 		else
1764 			tss->ts[2] = (struct timespec) {0};
1765 	}
1766 
1767 	if (has_timestamping) {
1768 		tss->ts[1] = (struct timespec) {0};
1769 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1770 			 sizeof(*tss), tss);
1771 	}
1772 }
1773 
1774 /*
1775  *	This routine copies from a sock struct into the user buffer.
1776  *
1777  *	Technical note: in 2.3 we work on _locked_ socket, so that
1778  *	tricks with *seq access order and skb->users are not required.
1779  *	Probably, code can be easily improved even more.
1780  */
1781 
1782 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1783 		int flags, int *addr_len)
1784 {
1785 	struct tcp_sock *tp = tcp_sk(sk);
1786 	int copied = 0;
1787 	u32 peek_seq;
1788 	u32 *seq;
1789 	unsigned long used;
1790 	int err;
1791 	int target;		/* Read at least this many bytes */
1792 	long timeo;
1793 	struct sk_buff *skb, *last;
1794 	u32 urg_hole = 0;
1795 	struct scm_timestamping tss;
1796 	bool has_tss = false;
1797 
1798 	if (unlikely(flags & MSG_ERRQUEUE))
1799 		return inet_recv_error(sk, msg, len, addr_len);
1800 
1801 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1802 	    (sk->sk_state == TCP_ESTABLISHED))
1803 		sk_busy_loop(sk, nonblock);
1804 
1805 	lock_sock(sk);
1806 
1807 	err = -ENOTCONN;
1808 	if (sk->sk_state == TCP_LISTEN)
1809 		goto out;
1810 
1811 	timeo = sock_rcvtimeo(sk, nonblock);
1812 
1813 	/* Urgent data needs to be handled specially. */
1814 	if (flags & MSG_OOB)
1815 		goto recv_urg;
1816 
1817 	if (unlikely(tp->repair)) {
1818 		err = -EPERM;
1819 		if (!(flags & MSG_PEEK))
1820 			goto out;
1821 
1822 		if (tp->repair_queue == TCP_SEND_QUEUE)
1823 			goto recv_sndq;
1824 
1825 		err = -EINVAL;
1826 		if (tp->repair_queue == TCP_NO_QUEUE)
1827 			goto out;
1828 
1829 		/* 'common' recv queue MSG_PEEK-ing */
1830 	}
1831 
1832 	seq = &tp->copied_seq;
1833 	if (flags & MSG_PEEK) {
1834 		peek_seq = tp->copied_seq;
1835 		seq = &peek_seq;
1836 	}
1837 
1838 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1839 
1840 	do {
1841 		u32 offset;
1842 
1843 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1844 		if (tp->urg_data && tp->urg_seq == *seq) {
1845 			if (copied)
1846 				break;
1847 			if (signal_pending(current)) {
1848 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1849 				break;
1850 			}
1851 		}
1852 
1853 		/* Next get a buffer. */
1854 
1855 		last = skb_peek_tail(&sk->sk_receive_queue);
1856 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1857 			last = skb;
1858 			/* Now that we have two receive queues this
1859 			 * shouldn't happen.
1860 			 */
1861 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1862 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1863 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1864 				 flags))
1865 				break;
1866 
1867 			offset = *seq - TCP_SKB_CB(skb)->seq;
1868 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1869 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1870 				offset--;
1871 			}
1872 			if (offset < skb->len)
1873 				goto found_ok_skb;
1874 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1875 				goto found_fin_ok;
1876 			WARN(!(flags & MSG_PEEK),
1877 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1878 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1879 		}
1880 
1881 		/* Well, if we have backlog, try to process it now yet. */
1882 
1883 		if (copied >= target && !sk->sk_backlog.tail)
1884 			break;
1885 
1886 		if (copied) {
1887 			if (sk->sk_err ||
1888 			    sk->sk_state == TCP_CLOSE ||
1889 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1890 			    !timeo ||
1891 			    signal_pending(current))
1892 				break;
1893 		} else {
1894 			if (sock_flag(sk, SOCK_DONE))
1895 				break;
1896 
1897 			if (sk->sk_err) {
1898 				copied = sock_error(sk);
1899 				break;
1900 			}
1901 
1902 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1903 				break;
1904 
1905 			if (sk->sk_state == TCP_CLOSE) {
1906 				if (!sock_flag(sk, SOCK_DONE)) {
1907 					/* This occurs when user tries to read
1908 					 * from never connected socket.
1909 					 */
1910 					copied = -ENOTCONN;
1911 					break;
1912 				}
1913 				break;
1914 			}
1915 
1916 			if (!timeo) {
1917 				copied = -EAGAIN;
1918 				break;
1919 			}
1920 
1921 			if (signal_pending(current)) {
1922 				copied = sock_intr_errno(timeo);
1923 				break;
1924 			}
1925 		}
1926 
1927 		tcp_cleanup_rbuf(sk, copied);
1928 
1929 		if (copied >= target) {
1930 			/* Do not sleep, just process backlog. */
1931 			release_sock(sk);
1932 			lock_sock(sk);
1933 		} else {
1934 			sk_wait_data(sk, &timeo, last);
1935 		}
1936 
1937 		if ((flags & MSG_PEEK) &&
1938 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1939 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1940 					    current->comm,
1941 					    task_pid_nr(current));
1942 			peek_seq = tp->copied_seq;
1943 		}
1944 		continue;
1945 
1946 	found_ok_skb:
1947 		/* Ok so how much can we use? */
1948 		used = skb->len - offset;
1949 		if (len < used)
1950 			used = len;
1951 
1952 		/* Do we have urgent data here? */
1953 		if (tp->urg_data) {
1954 			u32 urg_offset = tp->urg_seq - *seq;
1955 			if (urg_offset < used) {
1956 				if (!urg_offset) {
1957 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1958 						++*seq;
1959 						urg_hole++;
1960 						offset++;
1961 						used--;
1962 						if (!used)
1963 							goto skip_copy;
1964 					}
1965 				} else
1966 					used = urg_offset;
1967 			}
1968 		}
1969 
1970 		if (!(flags & MSG_TRUNC)) {
1971 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1972 			if (err) {
1973 				/* Exception. Bailout! */
1974 				if (!copied)
1975 					copied = -EFAULT;
1976 				break;
1977 			}
1978 		}
1979 
1980 		*seq += used;
1981 		copied += used;
1982 		len -= used;
1983 
1984 		tcp_rcv_space_adjust(sk);
1985 
1986 skip_copy:
1987 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1988 			tp->urg_data = 0;
1989 			tcp_fast_path_check(sk);
1990 		}
1991 		if (used + offset < skb->len)
1992 			continue;
1993 
1994 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1995 			tcp_update_recv_tstamps(skb, &tss);
1996 			has_tss = true;
1997 		}
1998 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1999 			goto found_fin_ok;
2000 		if (!(flags & MSG_PEEK))
2001 			sk_eat_skb(sk, skb);
2002 		continue;
2003 
2004 	found_fin_ok:
2005 		/* Process the FIN. */
2006 		++*seq;
2007 		if (!(flags & MSG_PEEK))
2008 			sk_eat_skb(sk, skb);
2009 		break;
2010 	} while (len > 0);
2011 
2012 	/* According to UNIX98, msg_name/msg_namelen are ignored
2013 	 * on connected socket. I was just happy when found this 8) --ANK
2014 	 */
2015 
2016 	if (has_tss)
2017 		tcp_recv_timestamp(msg, sk, &tss);
2018 
2019 	/* Clean up data we have read: This will do ACK frames. */
2020 	tcp_cleanup_rbuf(sk, copied);
2021 
2022 	release_sock(sk);
2023 	return copied;
2024 
2025 out:
2026 	release_sock(sk);
2027 	return err;
2028 
2029 recv_urg:
2030 	err = tcp_recv_urg(sk, msg, len, flags);
2031 	goto out;
2032 
2033 recv_sndq:
2034 	err = tcp_peek_sndq(sk, msg, len);
2035 	goto out;
2036 }
2037 EXPORT_SYMBOL(tcp_recvmsg);
2038 
2039 void tcp_set_state(struct sock *sk, int state)
2040 {
2041 	int oldstate = sk->sk_state;
2042 
2043 	trace_tcp_set_state(sk, oldstate, state);
2044 
2045 	switch (state) {
2046 	case TCP_ESTABLISHED:
2047 		if (oldstate != TCP_ESTABLISHED)
2048 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2049 		break;
2050 
2051 	case TCP_CLOSE:
2052 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2053 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2054 
2055 		sk->sk_prot->unhash(sk);
2056 		if (inet_csk(sk)->icsk_bind_hash &&
2057 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2058 			inet_put_port(sk);
2059 		/* fall through */
2060 	default:
2061 		if (oldstate == TCP_ESTABLISHED)
2062 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2063 	}
2064 
2065 	/* Change state AFTER socket is unhashed to avoid closed
2066 	 * socket sitting in hash tables.
2067 	 */
2068 	sk_state_store(sk, state);
2069 
2070 #ifdef STATE_TRACE
2071 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2072 #endif
2073 }
2074 EXPORT_SYMBOL_GPL(tcp_set_state);
2075 
2076 /*
2077  *	State processing on a close. This implements the state shift for
2078  *	sending our FIN frame. Note that we only send a FIN for some
2079  *	states. A shutdown() may have already sent the FIN, or we may be
2080  *	closed.
2081  */
2082 
2083 static const unsigned char new_state[16] = {
2084   /* current state:        new state:      action:	*/
2085   [0 /* (Invalid) */]	= TCP_CLOSE,
2086   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2087   [TCP_SYN_SENT]	= TCP_CLOSE,
2088   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2089   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2090   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2091   [TCP_TIME_WAIT]	= TCP_CLOSE,
2092   [TCP_CLOSE]		= TCP_CLOSE,
2093   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2094   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2095   [TCP_LISTEN]		= TCP_CLOSE,
2096   [TCP_CLOSING]		= TCP_CLOSING,
2097   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2098 };
2099 
2100 static int tcp_close_state(struct sock *sk)
2101 {
2102 	int next = (int)new_state[sk->sk_state];
2103 	int ns = next & TCP_STATE_MASK;
2104 
2105 	tcp_set_state(sk, ns);
2106 
2107 	return next & TCP_ACTION_FIN;
2108 }
2109 
2110 /*
2111  *	Shutdown the sending side of a connection. Much like close except
2112  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2113  */
2114 
2115 void tcp_shutdown(struct sock *sk, int how)
2116 {
2117 	/*	We need to grab some memory, and put together a FIN,
2118 	 *	and then put it into the queue to be sent.
2119 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2120 	 */
2121 	if (!(how & SEND_SHUTDOWN))
2122 		return;
2123 
2124 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2125 	if ((1 << sk->sk_state) &
2126 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2127 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2128 		/* Clear out any half completed packets.  FIN if needed. */
2129 		if (tcp_close_state(sk))
2130 			tcp_send_fin(sk);
2131 	}
2132 }
2133 EXPORT_SYMBOL(tcp_shutdown);
2134 
2135 bool tcp_check_oom(struct sock *sk, int shift)
2136 {
2137 	bool too_many_orphans, out_of_socket_memory;
2138 
2139 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2140 	out_of_socket_memory = tcp_out_of_memory(sk);
2141 
2142 	if (too_many_orphans)
2143 		net_info_ratelimited("too many orphaned sockets\n");
2144 	if (out_of_socket_memory)
2145 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2146 	return too_many_orphans || out_of_socket_memory;
2147 }
2148 
2149 void tcp_close(struct sock *sk, long timeout)
2150 {
2151 	struct sk_buff *skb;
2152 	int data_was_unread = 0;
2153 	int state;
2154 
2155 	lock_sock(sk);
2156 	sk->sk_shutdown = SHUTDOWN_MASK;
2157 
2158 	if (sk->sk_state == TCP_LISTEN) {
2159 		tcp_set_state(sk, TCP_CLOSE);
2160 
2161 		/* Special case. */
2162 		inet_csk_listen_stop(sk);
2163 
2164 		goto adjudge_to_death;
2165 	}
2166 
2167 	/*  We need to flush the recv. buffs.  We do this only on the
2168 	 *  descriptor close, not protocol-sourced closes, because the
2169 	 *  reader process may not have drained the data yet!
2170 	 */
2171 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2172 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2173 
2174 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2175 			len--;
2176 		data_was_unread += len;
2177 		__kfree_skb(skb);
2178 	}
2179 
2180 	sk_mem_reclaim(sk);
2181 
2182 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2183 	if (sk->sk_state == TCP_CLOSE)
2184 		goto adjudge_to_death;
2185 
2186 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2187 	 * data was lost. To witness the awful effects of the old behavior of
2188 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2189 	 * GET in an FTP client, suspend the process, wait for the client to
2190 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2191 	 * Note: timeout is always zero in such a case.
2192 	 */
2193 	if (unlikely(tcp_sk(sk)->repair)) {
2194 		sk->sk_prot->disconnect(sk, 0);
2195 	} else if (data_was_unread) {
2196 		/* Unread data was tossed, zap the connection. */
2197 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2198 		tcp_set_state(sk, TCP_CLOSE);
2199 		tcp_send_active_reset(sk, sk->sk_allocation);
2200 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2201 		/* Check zero linger _after_ checking for unread data. */
2202 		sk->sk_prot->disconnect(sk, 0);
2203 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2204 	} else if (tcp_close_state(sk)) {
2205 		/* We FIN if the application ate all the data before
2206 		 * zapping the connection.
2207 		 */
2208 
2209 		/* RED-PEN. Formally speaking, we have broken TCP state
2210 		 * machine. State transitions:
2211 		 *
2212 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2213 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2214 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2215 		 *
2216 		 * are legal only when FIN has been sent (i.e. in window),
2217 		 * rather than queued out of window. Purists blame.
2218 		 *
2219 		 * F.e. "RFC state" is ESTABLISHED,
2220 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2221 		 *
2222 		 * The visible declinations are that sometimes
2223 		 * we enter time-wait state, when it is not required really
2224 		 * (harmless), do not send active resets, when they are
2225 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2226 		 * they look as CLOSING or LAST_ACK for Linux)
2227 		 * Probably, I missed some more holelets.
2228 		 * 						--ANK
2229 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2230 		 * in a single packet! (May consider it later but will
2231 		 * probably need API support or TCP_CORK SYN-ACK until
2232 		 * data is written and socket is closed.)
2233 		 */
2234 		tcp_send_fin(sk);
2235 	}
2236 
2237 	sk_stream_wait_close(sk, timeout);
2238 
2239 adjudge_to_death:
2240 	state = sk->sk_state;
2241 	sock_hold(sk);
2242 	sock_orphan(sk);
2243 
2244 	/* It is the last release_sock in its life. It will remove backlog. */
2245 	release_sock(sk);
2246 
2247 
2248 	/* Now socket is owned by kernel and we acquire BH lock
2249 	 *  to finish close. No need to check for user refs.
2250 	 */
2251 	local_bh_disable();
2252 	bh_lock_sock(sk);
2253 	WARN_ON(sock_owned_by_user(sk));
2254 
2255 	percpu_counter_inc(sk->sk_prot->orphan_count);
2256 
2257 	/* Have we already been destroyed by a softirq or backlog? */
2258 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2259 		goto out;
2260 
2261 	/*	This is a (useful) BSD violating of the RFC. There is a
2262 	 *	problem with TCP as specified in that the other end could
2263 	 *	keep a socket open forever with no application left this end.
2264 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2265 	 *	our end. If they send after that then tough - BUT: long enough
2266 	 *	that we won't make the old 4*rto = almost no time - whoops
2267 	 *	reset mistake.
2268 	 *
2269 	 *	Nope, it was not mistake. It is really desired behaviour
2270 	 *	f.e. on http servers, when such sockets are useless, but
2271 	 *	consume significant resources. Let's do it with special
2272 	 *	linger2	option.					--ANK
2273 	 */
2274 
2275 	if (sk->sk_state == TCP_FIN_WAIT2) {
2276 		struct tcp_sock *tp = tcp_sk(sk);
2277 		if (tp->linger2 < 0) {
2278 			tcp_set_state(sk, TCP_CLOSE);
2279 			tcp_send_active_reset(sk, GFP_ATOMIC);
2280 			__NET_INC_STATS(sock_net(sk),
2281 					LINUX_MIB_TCPABORTONLINGER);
2282 		} else {
2283 			const int tmo = tcp_fin_time(sk);
2284 
2285 			if (tmo > TCP_TIMEWAIT_LEN) {
2286 				inet_csk_reset_keepalive_timer(sk,
2287 						tmo - TCP_TIMEWAIT_LEN);
2288 			} else {
2289 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2290 				goto out;
2291 			}
2292 		}
2293 	}
2294 	if (sk->sk_state != TCP_CLOSE) {
2295 		sk_mem_reclaim(sk);
2296 		if (tcp_check_oom(sk, 0)) {
2297 			tcp_set_state(sk, TCP_CLOSE);
2298 			tcp_send_active_reset(sk, GFP_ATOMIC);
2299 			__NET_INC_STATS(sock_net(sk),
2300 					LINUX_MIB_TCPABORTONMEMORY);
2301 		}
2302 	}
2303 
2304 	if (sk->sk_state == TCP_CLOSE) {
2305 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2306 		/* We could get here with a non-NULL req if the socket is
2307 		 * aborted (e.g., closed with unread data) before 3WHS
2308 		 * finishes.
2309 		 */
2310 		if (req)
2311 			reqsk_fastopen_remove(sk, req, false);
2312 		inet_csk_destroy_sock(sk);
2313 	}
2314 	/* Otherwise, socket is reprieved until protocol close. */
2315 
2316 out:
2317 	bh_unlock_sock(sk);
2318 	local_bh_enable();
2319 	sock_put(sk);
2320 }
2321 EXPORT_SYMBOL(tcp_close);
2322 
2323 /* These states need RST on ABORT according to RFC793 */
2324 
2325 static inline bool tcp_need_reset(int state)
2326 {
2327 	return (1 << state) &
2328 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2329 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2330 }
2331 
2332 static void tcp_rtx_queue_purge(struct sock *sk)
2333 {
2334 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2335 
2336 	while (p) {
2337 		struct sk_buff *skb = rb_to_skb(p);
2338 
2339 		p = rb_next(p);
2340 		/* Since we are deleting whole queue, no need to
2341 		 * list_del(&skb->tcp_tsorted_anchor)
2342 		 */
2343 		tcp_rtx_queue_unlink(skb, sk);
2344 		sk_wmem_free_skb(sk, skb);
2345 	}
2346 }
2347 
2348 void tcp_write_queue_purge(struct sock *sk)
2349 {
2350 	struct sk_buff *skb;
2351 
2352 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2353 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2354 		tcp_skb_tsorted_anchor_cleanup(skb);
2355 		sk_wmem_free_skb(sk, skb);
2356 	}
2357 	tcp_rtx_queue_purge(sk);
2358 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2359 	sk_mem_reclaim(sk);
2360 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2361 }
2362 
2363 int tcp_disconnect(struct sock *sk, int flags)
2364 {
2365 	struct inet_sock *inet = inet_sk(sk);
2366 	struct inet_connection_sock *icsk = inet_csk(sk);
2367 	struct tcp_sock *tp = tcp_sk(sk);
2368 	int err = 0;
2369 	int old_state = sk->sk_state;
2370 
2371 	if (old_state != TCP_CLOSE)
2372 		tcp_set_state(sk, TCP_CLOSE);
2373 
2374 	/* ABORT function of RFC793 */
2375 	if (old_state == TCP_LISTEN) {
2376 		inet_csk_listen_stop(sk);
2377 	} else if (unlikely(tp->repair)) {
2378 		sk->sk_err = ECONNABORTED;
2379 	} else if (tcp_need_reset(old_state) ||
2380 		   (tp->snd_nxt != tp->write_seq &&
2381 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2382 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2383 		 * states
2384 		 */
2385 		tcp_send_active_reset(sk, gfp_any());
2386 		sk->sk_err = ECONNRESET;
2387 	} else if (old_state == TCP_SYN_SENT)
2388 		sk->sk_err = ECONNRESET;
2389 
2390 	tcp_clear_xmit_timers(sk);
2391 	__skb_queue_purge(&sk->sk_receive_queue);
2392 	tcp_write_queue_purge(sk);
2393 	tcp_fastopen_active_disable_ofo_check(sk);
2394 	skb_rbtree_purge(&tp->out_of_order_queue);
2395 
2396 	inet->inet_dport = 0;
2397 
2398 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2399 		inet_reset_saddr(sk);
2400 
2401 	sk->sk_shutdown = 0;
2402 	sock_reset_flag(sk, SOCK_DONE);
2403 	tp->srtt_us = 0;
2404 	tp->write_seq += tp->max_window + 2;
2405 	if (tp->write_seq == 0)
2406 		tp->write_seq = 1;
2407 	icsk->icsk_backoff = 0;
2408 	tp->snd_cwnd = 2;
2409 	icsk->icsk_probes_out = 0;
2410 	tp->packets_out = 0;
2411 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2412 	tp->snd_cwnd_cnt = 0;
2413 	tp->window_clamp = 0;
2414 	tcp_set_ca_state(sk, TCP_CA_Open);
2415 	tp->is_sack_reneg = 0;
2416 	tcp_clear_retrans(tp);
2417 	inet_csk_delack_init(sk);
2418 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2419 	 * issue in __tcp_select_window()
2420 	 */
2421 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2422 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2423 	__sk_dst_reset(sk);
2424 	dst_release(sk->sk_rx_dst);
2425 	sk->sk_rx_dst = NULL;
2426 	tcp_saved_syn_free(tp);
2427 
2428 	/* Clean up fastopen related fields */
2429 	tcp_free_fastopen_req(tp);
2430 	inet->defer_connect = 0;
2431 
2432 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2433 
2434 	sk->sk_error_report(sk);
2435 	return err;
2436 }
2437 EXPORT_SYMBOL(tcp_disconnect);
2438 
2439 static inline bool tcp_can_repair_sock(const struct sock *sk)
2440 {
2441 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2442 		(sk->sk_state != TCP_LISTEN);
2443 }
2444 
2445 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2446 {
2447 	struct tcp_repair_window opt;
2448 
2449 	if (!tp->repair)
2450 		return -EPERM;
2451 
2452 	if (len != sizeof(opt))
2453 		return -EINVAL;
2454 
2455 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2456 		return -EFAULT;
2457 
2458 	if (opt.max_window < opt.snd_wnd)
2459 		return -EINVAL;
2460 
2461 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2462 		return -EINVAL;
2463 
2464 	if (after(opt.rcv_wup, tp->rcv_nxt))
2465 		return -EINVAL;
2466 
2467 	tp->snd_wl1	= opt.snd_wl1;
2468 	tp->snd_wnd	= opt.snd_wnd;
2469 	tp->max_window	= opt.max_window;
2470 
2471 	tp->rcv_wnd	= opt.rcv_wnd;
2472 	tp->rcv_wup	= opt.rcv_wup;
2473 
2474 	return 0;
2475 }
2476 
2477 static int tcp_repair_options_est(struct sock *sk,
2478 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2479 {
2480 	struct tcp_sock *tp = tcp_sk(sk);
2481 	struct tcp_repair_opt opt;
2482 
2483 	while (len >= sizeof(opt)) {
2484 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2485 			return -EFAULT;
2486 
2487 		optbuf++;
2488 		len -= sizeof(opt);
2489 
2490 		switch (opt.opt_code) {
2491 		case TCPOPT_MSS:
2492 			tp->rx_opt.mss_clamp = opt.opt_val;
2493 			tcp_mtup_init(sk);
2494 			break;
2495 		case TCPOPT_WINDOW:
2496 			{
2497 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2498 				u16 rcv_wscale = opt.opt_val >> 16;
2499 
2500 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2501 					return -EFBIG;
2502 
2503 				tp->rx_opt.snd_wscale = snd_wscale;
2504 				tp->rx_opt.rcv_wscale = rcv_wscale;
2505 				tp->rx_opt.wscale_ok = 1;
2506 			}
2507 			break;
2508 		case TCPOPT_SACK_PERM:
2509 			if (opt.opt_val != 0)
2510 				return -EINVAL;
2511 
2512 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2513 			break;
2514 		case TCPOPT_TIMESTAMP:
2515 			if (opt.opt_val != 0)
2516 				return -EINVAL;
2517 
2518 			tp->rx_opt.tstamp_ok = 1;
2519 			break;
2520 		}
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 /*
2527  *	Socket option code for TCP.
2528  */
2529 static int do_tcp_setsockopt(struct sock *sk, int level,
2530 		int optname, char __user *optval, unsigned int optlen)
2531 {
2532 	struct tcp_sock *tp = tcp_sk(sk);
2533 	struct inet_connection_sock *icsk = inet_csk(sk);
2534 	struct net *net = sock_net(sk);
2535 	int val;
2536 	int err = 0;
2537 
2538 	/* These are data/string values, all the others are ints */
2539 	switch (optname) {
2540 	case TCP_CONGESTION: {
2541 		char name[TCP_CA_NAME_MAX];
2542 
2543 		if (optlen < 1)
2544 			return -EINVAL;
2545 
2546 		val = strncpy_from_user(name, optval,
2547 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2548 		if (val < 0)
2549 			return -EFAULT;
2550 		name[val] = 0;
2551 
2552 		lock_sock(sk);
2553 		err = tcp_set_congestion_control(sk, name, true, true);
2554 		release_sock(sk);
2555 		return err;
2556 	}
2557 	case TCP_ULP: {
2558 		char name[TCP_ULP_NAME_MAX];
2559 
2560 		if (optlen < 1)
2561 			return -EINVAL;
2562 
2563 		val = strncpy_from_user(name, optval,
2564 					min_t(long, TCP_ULP_NAME_MAX - 1,
2565 					      optlen));
2566 		if (val < 0)
2567 			return -EFAULT;
2568 		name[val] = 0;
2569 
2570 		lock_sock(sk);
2571 		err = tcp_set_ulp(sk, name);
2572 		release_sock(sk);
2573 		return err;
2574 	}
2575 	case TCP_FASTOPEN_KEY: {
2576 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
2577 
2578 		if (optlen != sizeof(key))
2579 			return -EINVAL;
2580 
2581 		if (copy_from_user(key, optval, optlen))
2582 			return -EFAULT;
2583 
2584 		return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2585 	}
2586 	default:
2587 		/* fallthru */
2588 		break;
2589 	}
2590 
2591 	if (optlen < sizeof(int))
2592 		return -EINVAL;
2593 
2594 	if (get_user(val, (int __user *)optval))
2595 		return -EFAULT;
2596 
2597 	lock_sock(sk);
2598 
2599 	switch (optname) {
2600 	case TCP_MAXSEG:
2601 		/* Values greater than interface MTU won't take effect. However
2602 		 * at the point when this call is done we typically don't yet
2603 		 * know which interface is going to be used
2604 		 */
2605 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2606 			err = -EINVAL;
2607 			break;
2608 		}
2609 		tp->rx_opt.user_mss = val;
2610 		break;
2611 
2612 	case TCP_NODELAY:
2613 		if (val) {
2614 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2615 			 * this option on corked socket is remembered, but
2616 			 * it is not activated until cork is cleared.
2617 			 *
2618 			 * However, when TCP_NODELAY is set we make
2619 			 * an explicit push, which overrides even TCP_CORK
2620 			 * for currently queued segments.
2621 			 */
2622 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2623 			tcp_push_pending_frames(sk);
2624 		} else {
2625 			tp->nonagle &= ~TCP_NAGLE_OFF;
2626 		}
2627 		break;
2628 
2629 	case TCP_THIN_LINEAR_TIMEOUTS:
2630 		if (val < 0 || val > 1)
2631 			err = -EINVAL;
2632 		else
2633 			tp->thin_lto = val;
2634 		break;
2635 
2636 	case TCP_THIN_DUPACK:
2637 		if (val < 0 || val > 1)
2638 			err = -EINVAL;
2639 		break;
2640 
2641 	case TCP_REPAIR:
2642 		if (!tcp_can_repair_sock(sk))
2643 			err = -EPERM;
2644 		else if (val == 1) {
2645 			tp->repair = 1;
2646 			sk->sk_reuse = SK_FORCE_REUSE;
2647 			tp->repair_queue = TCP_NO_QUEUE;
2648 		} else if (val == 0) {
2649 			tp->repair = 0;
2650 			sk->sk_reuse = SK_NO_REUSE;
2651 			tcp_send_window_probe(sk);
2652 		} else
2653 			err = -EINVAL;
2654 
2655 		break;
2656 
2657 	case TCP_REPAIR_QUEUE:
2658 		if (!tp->repair)
2659 			err = -EPERM;
2660 		else if (val < TCP_QUEUES_NR)
2661 			tp->repair_queue = val;
2662 		else
2663 			err = -EINVAL;
2664 		break;
2665 
2666 	case TCP_QUEUE_SEQ:
2667 		if (sk->sk_state != TCP_CLOSE)
2668 			err = -EPERM;
2669 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2670 			tp->write_seq = val;
2671 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2672 			tp->rcv_nxt = val;
2673 		else
2674 			err = -EINVAL;
2675 		break;
2676 
2677 	case TCP_REPAIR_OPTIONS:
2678 		if (!tp->repair)
2679 			err = -EINVAL;
2680 		else if (sk->sk_state == TCP_ESTABLISHED)
2681 			err = tcp_repair_options_est(sk,
2682 					(struct tcp_repair_opt __user *)optval,
2683 					optlen);
2684 		else
2685 			err = -EPERM;
2686 		break;
2687 
2688 	case TCP_CORK:
2689 		/* When set indicates to always queue non-full frames.
2690 		 * Later the user clears this option and we transmit
2691 		 * any pending partial frames in the queue.  This is
2692 		 * meant to be used alongside sendfile() to get properly
2693 		 * filled frames when the user (for example) must write
2694 		 * out headers with a write() call first and then use
2695 		 * sendfile to send out the data parts.
2696 		 *
2697 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2698 		 * stronger than TCP_NODELAY.
2699 		 */
2700 		if (val) {
2701 			tp->nonagle |= TCP_NAGLE_CORK;
2702 		} else {
2703 			tp->nonagle &= ~TCP_NAGLE_CORK;
2704 			if (tp->nonagle&TCP_NAGLE_OFF)
2705 				tp->nonagle |= TCP_NAGLE_PUSH;
2706 			tcp_push_pending_frames(sk);
2707 		}
2708 		break;
2709 
2710 	case TCP_KEEPIDLE:
2711 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2712 			err = -EINVAL;
2713 		else {
2714 			tp->keepalive_time = val * HZ;
2715 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2716 			    !((1 << sk->sk_state) &
2717 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2718 				u32 elapsed = keepalive_time_elapsed(tp);
2719 				if (tp->keepalive_time > elapsed)
2720 					elapsed = tp->keepalive_time - elapsed;
2721 				else
2722 					elapsed = 0;
2723 				inet_csk_reset_keepalive_timer(sk, elapsed);
2724 			}
2725 		}
2726 		break;
2727 	case TCP_KEEPINTVL:
2728 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2729 			err = -EINVAL;
2730 		else
2731 			tp->keepalive_intvl = val * HZ;
2732 		break;
2733 	case TCP_KEEPCNT:
2734 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2735 			err = -EINVAL;
2736 		else
2737 			tp->keepalive_probes = val;
2738 		break;
2739 	case TCP_SYNCNT:
2740 		if (val < 1 || val > MAX_TCP_SYNCNT)
2741 			err = -EINVAL;
2742 		else
2743 			icsk->icsk_syn_retries = val;
2744 		break;
2745 
2746 	case TCP_SAVE_SYN:
2747 		if (val < 0 || val > 1)
2748 			err = -EINVAL;
2749 		else
2750 			tp->save_syn = val;
2751 		break;
2752 
2753 	case TCP_LINGER2:
2754 		if (val < 0)
2755 			tp->linger2 = -1;
2756 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2757 			tp->linger2 = 0;
2758 		else
2759 			tp->linger2 = val * HZ;
2760 		break;
2761 
2762 	case TCP_DEFER_ACCEPT:
2763 		/* Translate value in seconds to number of retransmits */
2764 		icsk->icsk_accept_queue.rskq_defer_accept =
2765 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2766 					TCP_RTO_MAX / HZ);
2767 		break;
2768 
2769 	case TCP_WINDOW_CLAMP:
2770 		if (!val) {
2771 			if (sk->sk_state != TCP_CLOSE) {
2772 				err = -EINVAL;
2773 				break;
2774 			}
2775 			tp->window_clamp = 0;
2776 		} else
2777 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2778 						SOCK_MIN_RCVBUF / 2 : val;
2779 		break;
2780 
2781 	case TCP_QUICKACK:
2782 		if (!val) {
2783 			icsk->icsk_ack.pingpong = 1;
2784 		} else {
2785 			icsk->icsk_ack.pingpong = 0;
2786 			if ((1 << sk->sk_state) &
2787 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2788 			    inet_csk_ack_scheduled(sk)) {
2789 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2790 				tcp_cleanup_rbuf(sk, 1);
2791 				if (!(val & 1))
2792 					icsk->icsk_ack.pingpong = 1;
2793 			}
2794 		}
2795 		break;
2796 
2797 #ifdef CONFIG_TCP_MD5SIG
2798 	case TCP_MD5SIG:
2799 	case TCP_MD5SIG_EXT:
2800 		/* Read the IP->Key mappings from userspace */
2801 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2802 		break;
2803 #endif
2804 	case TCP_USER_TIMEOUT:
2805 		/* Cap the max time in ms TCP will retry or probe the window
2806 		 * before giving up and aborting (ETIMEDOUT) a connection.
2807 		 */
2808 		if (val < 0)
2809 			err = -EINVAL;
2810 		else
2811 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2812 		break;
2813 
2814 	case TCP_FASTOPEN:
2815 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2816 		    TCPF_LISTEN))) {
2817 			tcp_fastopen_init_key_once(net);
2818 
2819 			fastopen_queue_tune(sk, val);
2820 		} else {
2821 			err = -EINVAL;
2822 		}
2823 		break;
2824 	case TCP_FASTOPEN_CONNECT:
2825 		if (val > 1 || val < 0) {
2826 			err = -EINVAL;
2827 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2828 			if (sk->sk_state == TCP_CLOSE)
2829 				tp->fastopen_connect = val;
2830 			else
2831 				err = -EINVAL;
2832 		} else {
2833 			err = -EOPNOTSUPP;
2834 		}
2835 		break;
2836 	case TCP_FASTOPEN_NO_COOKIE:
2837 		if (val > 1 || val < 0)
2838 			err = -EINVAL;
2839 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2840 			err = -EINVAL;
2841 		else
2842 			tp->fastopen_no_cookie = val;
2843 		break;
2844 	case TCP_TIMESTAMP:
2845 		if (!tp->repair)
2846 			err = -EPERM;
2847 		else
2848 			tp->tsoffset = val - tcp_time_stamp_raw();
2849 		break;
2850 	case TCP_REPAIR_WINDOW:
2851 		err = tcp_repair_set_window(tp, optval, optlen);
2852 		break;
2853 	case TCP_NOTSENT_LOWAT:
2854 		tp->notsent_lowat = val;
2855 		sk->sk_write_space(sk);
2856 		break;
2857 	default:
2858 		err = -ENOPROTOOPT;
2859 		break;
2860 	}
2861 
2862 	release_sock(sk);
2863 	return err;
2864 }
2865 
2866 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2867 		   unsigned int optlen)
2868 {
2869 	const struct inet_connection_sock *icsk = inet_csk(sk);
2870 
2871 	if (level != SOL_TCP)
2872 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2873 						     optval, optlen);
2874 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2875 }
2876 EXPORT_SYMBOL(tcp_setsockopt);
2877 
2878 #ifdef CONFIG_COMPAT
2879 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2880 			  char __user *optval, unsigned int optlen)
2881 {
2882 	if (level != SOL_TCP)
2883 		return inet_csk_compat_setsockopt(sk, level, optname,
2884 						  optval, optlen);
2885 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2886 }
2887 EXPORT_SYMBOL(compat_tcp_setsockopt);
2888 #endif
2889 
2890 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2891 				      struct tcp_info *info)
2892 {
2893 	u64 stats[__TCP_CHRONO_MAX], total = 0;
2894 	enum tcp_chrono i;
2895 
2896 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2897 		stats[i] = tp->chrono_stat[i - 1];
2898 		if (i == tp->chrono_type)
2899 			stats[i] += tcp_jiffies32 - tp->chrono_start;
2900 		stats[i] *= USEC_PER_SEC / HZ;
2901 		total += stats[i];
2902 	}
2903 
2904 	info->tcpi_busy_time = total;
2905 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2906 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2907 }
2908 
2909 /* Return information about state of tcp endpoint in API format. */
2910 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2911 {
2912 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2913 	const struct inet_connection_sock *icsk = inet_csk(sk);
2914 	u32 now;
2915 	u64 rate64;
2916 	bool slow;
2917 	u32 rate;
2918 
2919 	memset(info, 0, sizeof(*info));
2920 	if (sk->sk_type != SOCK_STREAM)
2921 		return;
2922 
2923 	info->tcpi_state = sk_state_load(sk);
2924 
2925 	/* Report meaningful fields for all TCP states, including listeners */
2926 	rate = READ_ONCE(sk->sk_pacing_rate);
2927 	rate64 = rate != ~0U ? rate : ~0ULL;
2928 	info->tcpi_pacing_rate = rate64;
2929 
2930 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2931 	rate64 = rate != ~0U ? rate : ~0ULL;
2932 	info->tcpi_max_pacing_rate = rate64;
2933 
2934 	info->tcpi_reordering = tp->reordering;
2935 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2936 
2937 	if (info->tcpi_state == TCP_LISTEN) {
2938 		/* listeners aliased fields :
2939 		 * tcpi_unacked -> Number of children ready for accept()
2940 		 * tcpi_sacked  -> max backlog
2941 		 */
2942 		info->tcpi_unacked = sk->sk_ack_backlog;
2943 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2944 		return;
2945 	}
2946 
2947 	slow = lock_sock_fast(sk);
2948 
2949 	info->tcpi_ca_state = icsk->icsk_ca_state;
2950 	info->tcpi_retransmits = icsk->icsk_retransmits;
2951 	info->tcpi_probes = icsk->icsk_probes_out;
2952 	info->tcpi_backoff = icsk->icsk_backoff;
2953 
2954 	if (tp->rx_opt.tstamp_ok)
2955 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2956 	if (tcp_is_sack(tp))
2957 		info->tcpi_options |= TCPI_OPT_SACK;
2958 	if (tp->rx_opt.wscale_ok) {
2959 		info->tcpi_options |= TCPI_OPT_WSCALE;
2960 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2961 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2962 	}
2963 
2964 	if (tp->ecn_flags & TCP_ECN_OK)
2965 		info->tcpi_options |= TCPI_OPT_ECN;
2966 	if (tp->ecn_flags & TCP_ECN_SEEN)
2967 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2968 	if (tp->syn_data_acked)
2969 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2970 
2971 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2972 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2973 	info->tcpi_snd_mss = tp->mss_cache;
2974 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2975 
2976 	info->tcpi_unacked = tp->packets_out;
2977 	info->tcpi_sacked = tp->sacked_out;
2978 
2979 	info->tcpi_lost = tp->lost_out;
2980 	info->tcpi_retrans = tp->retrans_out;
2981 
2982 	now = tcp_jiffies32;
2983 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2984 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2985 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2986 
2987 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2988 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2989 	info->tcpi_rtt = tp->srtt_us >> 3;
2990 	info->tcpi_rttvar = tp->mdev_us >> 2;
2991 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2992 	info->tcpi_advmss = tp->advmss;
2993 
2994 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
2995 	info->tcpi_rcv_space = tp->rcvq_space.space;
2996 
2997 	info->tcpi_total_retrans = tp->total_retrans;
2998 
2999 	info->tcpi_bytes_acked = tp->bytes_acked;
3000 	info->tcpi_bytes_received = tp->bytes_received;
3001 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3002 	tcp_get_info_chrono_stats(tp, info);
3003 
3004 	info->tcpi_segs_out = tp->segs_out;
3005 	info->tcpi_segs_in = tp->segs_in;
3006 
3007 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3008 	info->tcpi_data_segs_in = tp->data_segs_in;
3009 	info->tcpi_data_segs_out = tp->data_segs_out;
3010 
3011 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3012 	rate64 = tcp_compute_delivery_rate(tp);
3013 	if (rate64)
3014 		info->tcpi_delivery_rate = rate64;
3015 	unlock_sock_fast(sk, slow);
3016 }
3017 EXPORT_SYMBOL_GPL(tcp_get_info);
3018 
3019 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3020 {
3021 	const struct tcp_sock *tp = tcp_sk(sk);
3022 	struct sk_buff *stats;
3023 	struct tcp_info info;
3024 	u64 rate64;
3025 	u32 rate;
3026 
3027 	stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3028 			  3 * nla_total_size(sizeof(u32)) +
3029 			  2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3030 	if (!stats)
3031 		return NULL;
3032 
3033 	tcp_get_info_chrono_stats(tp, &info);
3034 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3035 			  info.tcpi_busy_time, TCP_NLA_PAD);
3036 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3037 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3038 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3039 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3040 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3041 			  tp->data_segs_out, TCP_NLA_PAD);
3042 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3043 			  tp->total_retrans, TCP_NLA_PAD);
3044 
3045 	rate = READ_ONCE(sk->sk_pacing_rate);
3046 	rate64 = rate != ~0U ? rate : ~0ULL;
3047 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3048 
3049 	rate64 = tcp_compute_delivery_rate(tp);
3050 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3051 
3052 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3053 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3054 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3055 
3056 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3057 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3058 	return stats;
3059 }
3060 
3061 static int do_tcp_getsockopt(struct sock *sk, int level,
3062 		int optname, char __user *optval, int __user *optlen)
3063 {
3064 	struct inet_connection_sock *icsk = inet_csk(sk);
3065 	struct tcp_sock *tp = tcp_sk(sk);
3066 	struct net *net = sock_net(sk);
3067 	int val, len;
3068 
3069 	if (get_user(len, optlen))
3070 		return -EFAULT;
3071 
3072 	len = min_t(unsigned int, len, sizeof(int));
3073 
3074 	if (len < 0)
3075 		return -EINVAL;
3076 
3077 	switch (optname) {
3078 	case TCP_MAXSEG:
3079 		val = tp->mss_cache;
3080 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3081 			val = tp->rx_opt.user_mss;
3082 		if (tp->repair)
3083 			val = tp->rx_opt.mss_clamp;
3084 		break;
3085 	case TCP_NODELAY:
3086 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3087 		break;
3088 	case TCP_CORK:
3089 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3090 		break;
3091 	case TCP_KEEPIDLE:
3092 		val = keepalive_time_when(tp) / HZ;
3093 		break;
3094 	case TCP_KEEPINTVL:
3095 		val = keepalive_intvl_when(tp) / HZ;
3096 		break;
3097 	case TCP_KEEPCNT:
3098 		val = keepalive_probes(tp);
3099 		break;
3100 	case TCP_SYNCNT:
3101 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3102 		break;
3103 	case TCP_LINGER2:
3104 		val = tp->linger2;
3105 		if (val >= 0)
3106 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3107 		break;
3108 	case TCP_DEFER_ACCEPT:
3109 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3110 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3111 		break;
3112 	case TCP_WINDOW_CLAMP:
3113 		val = tp->window_clamp;
3114 		break;
3115 	case TCP_INFO: {
3116 		struct tcp_info info;
3117 
3118 		if (get_user(len, optlen))
3119 			return -EFAULT;
3120 
3121 		tcp_get_info(sk, &info);
3122 
3123 		len = min_t(unsigned int, len, sizeof(info));
3124 		if (put_user(len, optlen))
3125 			return -EFAULT;
3126 		if (copy_to_user(optval, &info, len))
3127 			return -EFAULT;
3128 		return 0;
3129 	}
3130 	case TCP_CC_INFO: {
3131 		const struct tcp_congestion_ops *ca_ops;
3132 		union tcp_cc_info info;
3133 		size_t sz = 0;
3134 		int attr;
3135 
3136 		if (get_user(len, optlen))
3137 			return -EFAULT;
3138 
3139 		ca_ops = icsk->icsk_ca_ops;
3140 		if (ca_ops && ca_ops->get_info)
3141 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3142 
3143 		len = min_t(unsigned int, len, sz);
3144 		if (put_user(len, optlen))
3145 			return -EFAULT;
3146 		if (copy_to_user(optval, &info, len))
3147 			return -EFAULT;
3148 		return 0;
3149 	}
3150 	case TCP_QUICKACK:
3151 		val = !icsk->icsk_ack.pingpong;
3152 		break;
3153 
3154 	case TCP_CONGESTION:
3155 		if (get_user(len, optlen))
3156 			return -EFAULT;
3157 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3158 		if (put_user(len, optlen))
3159 			return -EFAULT;
3160 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3161 			return -EFAULT;
3162 		return 0;
3163 
3164 	case TCP_ULP:
3165 		if (get_user(len, optlen))
3166 			return -EFAULT;
3167 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3168 		if (!icsk->icsk_ulp_ops) {
3169 			if (put_user(0, optlen))
3170 				return -EFAULT;
3171 			return 0;
3172 		}
3173 		if (put_user(len, optlen))
3174 			return -EFAULT;
3175 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3176 			return -EFAULT;
3177 		return 0;
3178 
3179 	case TCP_FASTOPEN_KEY: {
3180 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
3181 		struct tcp_fastopen_context *ctx;
3182 
3183 		if (get_user(len, optlen))
3184 			return -EFAULT;
3185 
3186 		rcu_read_lock();
3187 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3188 		if (ctx)
3189 			memcpy(key, ctx->key, sizeof(key));
3190 		else
3191 			len = 0;
3192 		rcu_read_unlock();
3193 
3194 		len = min_t(unsigned int, len, sizeof(key));
3195 		if (put_user(len, optlen))
3196 			return -EFAULT;
3197 		if (copy_to_user(optval, key, len))
3198 			return -EFAULT;
3199 		return 0;
3200 	}
3201 	case TCP_THIN_LINEAR_TIMEOUTS:
3202 		val = tp->thin_lto;
3203 		break;
3204 
3205 	case TCP_THIN_DUPACK:
3206 		val = 0;
3207 		break;
3208 
3209 	case TCP_REPAIR:
3210 		val = tp->repair;
3211 		break;
3212 
3213 	case TCP_REPAIR_QUEUE:
3214 		if (tp->repair)
3215 			val = tp->repair_queue;
3216 		else
3217 			return -EINVAL;
3218 		break;
3219 
3220 	case TCP_REPAIR_WINDOW: {
3221 		struct tcp_repair_window opt;
3222 
3223 		if (get_user(len, optlen))
3224 			return -EFAULT;
3225 
3226 		if (len != sizeof(opt))
3227 			return -EINVAL;
3228 
3229 		if (!tp->repair)
3230 			return -EPERM;
3231 
3232 		opt.snd_wl1	= tp->snd_wl1;
3233 		opt.snd_wnd	= tp->snd_wnd;
3234 		opt.max_window	= tp->max_window;
3235 		opt.rcv_wnd	= tp->rcv_wnd;
3236 		opt.rcv_wup	= tp->rcv_wup;
3237 
3238 		if (copy_to_user(optval, &opt, len))
3239 			return -EFAULT;
3240 		return 0;
3241 	}
3242 	case TCP_QUEUE_SEQ:
3243 		if (tp->repair_queue == TCP_SEND_QUEUE)
3244 			val = tp->write_seq;
3245 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3246 			val = tp->rcv_nxt;
3247 		else
3248 			return -EINVAL;
3249 		break;
3250 
3251 	case TCP_USER_TIMEOUT:
3252 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3253 		break;
3254 
3255 	case TCP_FASTOPEN:
3256 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3257 		break;
3258 
3259 	case TCP_FASTOPEN_CONNECT:
3260 		val = tp->fastopen_connect;
3261 		break;
3262 
3263 	case TCP_FASTOPEN_NO_COOKIE:
3264 		val = tp->fastopen_no_cookie;
3265 		break;
3266 
3267 	case TCP_TIMESTAMP:
3268 		val = tcp_time_stamp_raw() + tp->tsoffset;
3269 		break;
3270 	case TCP_NOTSENT_LOWAT:
3271 		val = tp->notsent_lowat;
3272 		break;
3273 	case TCP_SAVE_SYN:
3274 		val = tp->save_syn;
3275 		break;
3276 	case TCP_SAVED_SYN: {
3277 		if (get_user(len, optlen))
3278 			return -EFAULT;
3279 
3280 		lock_sock(sk);
3281 		if (tp->saved_syn) {
3282 			if (len < tp->saved_syn[0]) {
3283 				if (put_user(tp->saved_syn[0], optlen)) {
3284 					release_sock(sk);
3285 					return -EFAULT;
3286 				}
3287 				release_sock(sk);
3288 				return -EINVAL;
3289 			}
3290 			len = tp->saved_syn[0];
3291 			if (put_user(len, optlen)) {
3292 				release_sock(sk);
3293 				return -EFAULT;
3294 			}
3295 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3296 				release_sock(sk);
3297 				return -EFAULT;
3298 			}
3299 			tcp_saved_syn_free(tp);
3300 			release_sock(sk);
3301 		} else {
3302 			release_sock(sk);
3303 			len = 0;
3304 			if (put_user(len, optlen))
3305 				return -EFAULT;
3306 		}
3307 		return 0;
3308 	}
3309 	default:
3310 		return -ENOPROTOOPT;
3311 	}
3312 
3313 	if (put_user(len, optlen))
3314 		return -EFAULT;
3315 	if (copy_to_user(optval, &val, len))
3316 		return -EFAULT;
3317 	return 0;
3318 }
3319 
3320 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3321 		   int __user *optlen)
3322 {
3323 	struct inet_connection_sock *icsk = inet_csk(sk);
3324 
3325 	if (level != SOL_TCP)
3326 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3327 						     optval, optlen);
3328 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3329 }
3330 EXPORT_SYMBOL(tcp_getsockopt);
3331 
3332 #ifdef CONFIG_COMPAT
3333 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3334 			  char __user *optval, int __user *optlen)
3335 {
3336 	if (level != SOL_TCP)
3337 		return inet_csk_compat_getsockopt(sk, level, optname,
3338 						  optval, optlen);
3339 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3340 }
3341 EXPORT_SYMBOL(compat_tcp_getsockopt);
3342 #endif
3343 
3344 #ifdef CONFIG_TCP_MD5SIG
3345 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3346 static DEFINE_MUTEX(tcp_md5sig_mutex);
3347 static bool tcp_md5sig_pool_populated = false;
3348 
3349 static void __tcp_alloc_md5sig_pool(void)
3350 {
3351 	struct crypto_ahash *hash;
3352 	int cpu;
3353 
3354 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3355 	if (IS_ERR(hash))
3356 		return;
3357 
3358 	for_each_possible_cpu(cpu) {
3359 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3360 		struct ahash_request *req;
3361 
3362 		if (!scratch) {
3363 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3364 					       sizeof(struct tcphdr),
3365 					       GFP_KERNEL,
3366 					       cpu_to_node(cpu));
3367 			if (!scratch)
3368 				return;
3369 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3370 		}
3371 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3372 			continue;
3373 
3374 		req = ahash_request_alloc(hash, GFP_KERNEL);
3375 		if (!req)
3376 			return;
3377 
3378 		ahash_request_set_callback(req, 0, NULL, NULL);
3379 
3380 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3381 	}
3382 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3383 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3384 	 */
3385 	smp_wmb();
3386 	tcp_md5sig_pool_populated = true;
3387 }
3388 
3389 bool tcp_alloc_md5sig_pool(void)
3390 {
3391 	if (unlikely(!tcp_md5sig_pool_populated)) {
3392 		mutex_lock(&tcp_md5sig_mutex);
3393 
3394 		if (!tcp_md5sig_pool_populated)
3395 			__tcp_alloc_md5sig_pool();
3396 
3397 		mutex_unlock(&tcp_md5sig_mutex);
3398 	}
3399 	return tcp_md5sig_pool_populated;
3400 }
3401 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3402 
3403 
3404 /**
3405  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3406  *
3407  *	We use percpu structure, so if we succeed, we exit with preemption
3408  *	and BH disabled, to make sure another thread or softirq handling
3409  *	wont try to get same context.
3410  */
3411 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3412 {
3413 	local_bh_disable();
3414 
3415 	if (tcp_md5sig_pool_populated) {
3416 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3417 		smp_rmb();
3418 		return this_cpu_ptr(&tcp_md5sig_pool);
3419 	}
3420 	local_bh_enable();
3421 	return NULL;
3422 }
3423 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3424 
3425 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3426 			  const struct sk_buff *skb, unsigned int header_len)
3427 {
3428 	struct scatterlist sg;
3429 	const struct tcphdr *tp = tcp_hdr(skb);
3430 	struct ahash_request *req = hp->md5_req;
3431 	unsigned int i;
3432 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3433 					   skb_headlen(skb) - header_len : 0;
3434 	const struct skb_shared_info *shi = skb_shinfo(skb);
3435 	struct sk_buff *frag_iter;
3436 
3437 	sg_init_table(&sg, 1);
3438 
3439 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3440 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3441 	if (crypto_ahash_update(req))
3442 		return 1;
3443 
3444 	for (i = 0; i < shi->nr_frags; ++i) {
3445 		const struct skb_frag_struct *f = &shi->frags[i];
3446 		unsigned int offset = f->page_offset;
3447 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3448 
3449 		sg_set_page(&sg, page, skb_frag_size(f),
3450 			    offset_in_page(offset));
3451 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3452 		if (crypto_ahash_update(req))
3453 			return 1;
3454 	}
3455 
3456 	skb_walk_frags(skb, frag_iter)
3457 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3458 			return 1;
3459 
3460 	return 0;
3461 }
3462 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3463 
3464 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3465 {
3466 	struct scatterlist sg;
3467 
3468 	sg_init_one(&sg, key->key, key->keylen);
3469 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3470 	return crypto_ahash_update(hp->md5_req);
3471 }
3472 EXPORT_SYMBOL(tcp_md5_hash_key);
3473 
3474 #endif
3475 
3476 void tcp_done(struct sock *sk)
3477 {
3478 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3479 
3480 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3481 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3482 
3483 	tcp_set_state(sk, TCP_CLOSE);
3484 	tcp_clear_xmit_timers(sk);
3485 	if (req)
3486 		reqsk_fastopen_remove(sk, req, false);
3487 
3488 	sk->sk_shutdown = SHUTDOWN_MASK;
3489 
3490 	if (!sock_flag(sk, SOCK_DEAD))
3491 		sk->sk_state_change(sk);
3492 	else
3493 		inet_csk_destroy_sock(sk);
3494 }
3495 EXPORT_SYMBOL_GPL(tcp_done);
3496 
3497 int tcp_abort(struct sock *sk, int err)
3498 {
3499 	if (!sk_fullsock(sk)) {
3500 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3501 			struct request_sock *req = inet_reqsk(sk);
3502 
3503 			local_bh_disable();
3504 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3505 							  req);
3506 			local_bh_enable();
3507 			return 0;
3508 		}
3509 		return -EOPNOTSUPP;
3510 	}
3511 
3512 	/* Don't race with userspace socket closes such as tcp_close. */
3513 	lock_sock(sk);
3514 
3515 	if (sk->sk_state == TCP_LISTEN) {
3516 		tcp_set_state(sk, TCP_CLOSE);
3517 		inet_csk_listen_stop(sk);
3518 	}
3519 
3520 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3521 	local_bh_disable();
3522 	bh_lock_sock(sk);
3523 
3524 	if (!sock_flag(sk, SOCK_DEAD)) {
3525 		sk->sk_err = err;
3526 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3527 		smp_wmb();
3528 		sk->sk_error_report(sk);
3529 		if (tcp_need_reset(sk->sk_state))
3530 			tcp_send_active_reset(sk, GFP_ATOMIC);
3531 		tcp_done(sk);
3532 	}
3533 
3534 	bh_unlock_sock(sk);
3535 	local_bh_enable();
3536 	release_sock(sk);
3537 	return 0;
3538 }
3539 EXPORT_SYMBOL_GPL(tcp_abort);
3540 
3541 extern struct tcp_congestion_ops tcp_reno;
3542 
3543 static __initdata unsigned long thash_entries;
3544 static int __init set_thash_entries(char *str)
3545 {
3546 	ssize_t ret;
3547 
3548 	if (!str)
3549 		return 0;
3550 
3551 	ret = kstrtoul(str, 0, &thash_entries);
3552 	if (ret)
3553 		return 0;
3554 
3555 	return 1;
3556 }
3557 __setup("thash_entries=", set_thash_entries);
3558 
3559 static void __init tcp_init_mem(void)
3560 {
3561 	unsigned long limit = nr_free_buffer_pages() / 16;
3562 
3563 	limit = max(limit, 128UL);
3564 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3565 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3566 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3567 }
3568 
3569 void __init tcp_init(void)
3570 {
3571 	int max_rshare, max_wshare, cnt;
3572 	unsigned long limit;
3573 	unsigned int i;
3574 
3575 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3576 		     FIELD_SIZEOF(struct sk_buff, cb));
3577 
3578 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3579 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3580 	inet_hashinfo_init(&tcp_hashinfo);
3581 	tcp_hashinfo.bind_bucket_cachep =
3582 		kmem_cache_create("tcp_bind_bucket",
3583 				  sizeof(struct inet_bind_bucket), 0,
3584 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3585 
3586 	/* Size and allocate the main established and bind bucket
3587 	 * hash tables.
3588 	 *
3589 	 * The methodology is similar to that of the buffer cache.
3590 	 */
3591 	tcp_hashinfo.ehash =
3592 		alloc_large_system_hash("TCP established",
3593 					sizeof(struct inet_ehash_bucket),
3594 					thash_entries,
3595 					17, /* one slot per 128 KB of memory */
3596 					0,
3597 					NULL,
3598 					&tcp_hashinfo.ehash_mask,
3599 					0,
3600 					thash_entries ? 0 : 512 * 1024);
3601 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3602 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3603 
3604 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3605 		panic("TCP: failed to alloc ehash_locks");
3606 	tcp_hashinfo.bhash =
3607 		alloc_large_system_hash("TCP bind",
3608 					sizeof(struct inet_bind_hashbucket),
3609 					tcp_hashinfo.ehash_mask + 1,
3610 					17, /* one slot per 128 KB of memory */
3611 					0,
3612 					&tcp_hashinfo.bhash_size,
3613 					NULL,
3614 					0,
3615 					64 * 1024);
3616 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3617 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3618 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3619 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3620 	}
3621 
3622 
3623 	cnt = tcp_hashinfo.ehash_mask + 1;
3624 	sysctl_tcp_max_orphans = cnt / 2;
3625 
3626 	tcp_init_mem();
3627 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3628 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3629 	max_wshare = min(4UL*1024*1024, limit);
3630 	max_rshare = min(6UL*1024*1024, limit);
3631 
3632 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3633 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3634 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3635 
3636 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3637 	init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3638 	init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3639 
3640 	pr_info("Hash tables configured (established %u bind %u)\n",
3641 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3642 
3643 	tcp_v4_init();
3644 	tcp_metrics_init();
3645 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3646 	tcp_tasklet_init();
3647 }
3648