1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 #include <trace/events/tcp.h> 287 288 struct percpu_counter tcp_orphan_count; 289 EXPORT_SYMBOL_GPL(tcp_orphan_count); 290 291 long sysctl_tcp_mem[3] __read_mostly; 292 EXPORT_SYMBOL(sysctl_tcp_mem); 293 294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 295 EXPORT_SYMBOL(tcp_memory_allocated); 296 297 #if IS_ENABLED(CONFIG_SMC) 298 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 299 EXPORT_SYMBOL(tcp_have_smc); 300 #endif 301 302 /* 303 * Current number of TCP sockets. 304 */ 305 struct percpu_counter tcp_sockets_allocated; 306 EXPORT_SYMBOL(tcp_sockets_allocated); 307 308 /* 309 * TCP splice context 310 */ 311 struct tcp_splice_state { 312 struct pipe_inode_info *pipe; 313 size_t len; 314 unsigned int flags; 315 }; 316 317 /* 318 * Pressure flag: try to collapse. 319 * Technical note: it is used by multiple contexts non atomically. 320 * All the __sk_mem_schedule() is of this nature: accounting 321 * is strict, actions are advisory and have some latency. 322 */ 323 unsigned long tcp_memory_pressure __read_mostly; 324 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 325 326 void tcp_enter_memory_pressure(struct sock *sk) 327 { 328 unsigned long val; 329 330 if (tcp_memory_pressure) 331 return; 332 val = jiffies; 333 334 if (!val) 335 val--; 336 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 338 } 339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 340 341 void tcp_leave_memory_pressure(struct sock *sk) 342 { 343 unsigned long val; 344 345 if (!tcp_memory_pressure) 346 return; 347 val = xchg(&tcp_memory_pressure, 0); 348 if (val) 349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 350 jiffies_to_msecs(jiffies - val)); 351 } 352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 353 354 /* Convert seconds to retransmits based on initial and max timeout */ 355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 356 { 357 u8 res = 0; 358 359 if (seconds > 0) { 360 int period = timeout; 361 362 res = 1; 363 while (seconds > period && res < 255) { 364 res++; 365 timeout <<= 1; 366 if (timeout > rto_max) 367 timeout = rto_max; 368 period += timeout; 369 } 370 } 371 return res; 372 } 373 374 /* Convert retransmits to seconds based on initial and max timeout */ 375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 376 { 377 int period = 0; 378 379 if (retrans > 0) { 380 period = timeout; 381 while (--retrans) { 382 timeout <<= 1; 383 if (timeout > rto_max) 384 timeout = rto_max; 385 period += timeout; 386 } 387 } 388 return period; 389 } 390 391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 392 { 393 u32 rate = READ_ONCE(tp->rate_delivered); 394 u32 intv = READ_ONCE(tp->rate_interval_us); 395 u64 rate64 = 0; 396 397 if (rate && intv) { 398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 399 do_div(rate64, intv); 400 } 401 return rate64; 402 } 403 404 /* Address-family independent initialization for a tcp_sock. 405 * 406 * NOTE: A lot of things set to zero explicitly by call to 407 * sk_alloc() so need not be done here. 408 */ 409 void tcp_init_sock(struct sock *sk) 410 { 411 struct inet_connection_sock *icsk = inet_csk(sk); 412 struct tcp_sock *tp = tcp_sk(sk); 413 414 tp->out_of_order_queue = RB_ROOT; 415 sk->tcp_rtx_queue = RB_ROOT; 416 tcp_init_xmit_timers(sk); 417 INIT_LIST_HEAD(&tp->tsq_node); 418 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 419 420 icsk->icsk_rto = TCP_TIMEOUT_INIT; 421 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 422 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 423 424 /* So many TCP implementations out there (incorrectly) count the 425 * initial SYN frame in their delayed-ACK and congestion control 426 * algorithms that we must have the following bandaid to talk 427 * efficiently to them. -DaveM 428 */ 429 tp->snd_cwnd = TCP_INIT_CWND; 430 431 /* There's a bubble in the pipe until at least the first ACK. */ 432 tp->app_limited = ~0U; 433 434 /* See draft-stevens-tcpca-spec-01 for discussion of the 435 * initialization of these values. 436 */ 437 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 438 tp->snd_cwnd_clamp = ~0; 439 tp->mss_cache = TCP_MSS_DEFAULT; 440 441 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 442 tcp_assign_congestion_control(sk); 443 444 tp->tsoffset = 0; 445 tp->rack.reo_wnd_steps = 1; 446 447 sk->sk_state = TCP_CLOSE; 448 449 sk->sk_write_space = sk_stream_write_space; 450 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 451 452 icsk->icsk_sync_mss = tcp_sync_mss; 453 454 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 455 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 456 457 sk_sockets_allocated_inc(sk); 458 } 459 EXPORT_SYMBOL(tcp_init_sock); 460 461 void tcp_init_transfer(struct sock *sk, int bpf_op) 462 { 463 struct inet_connection_sock *icsk = inet_csk(sk); 464 465 tcp_mtup_init(sk); 466 icsk->icsk_af_ops->rebuild_header(sk); 467 tcp_init_metrics(sk); 468 tcp_call_bpf(sk, bpf_op); 469 tcp_init_congestion_control(sk); 470 tcp_init_buffer_space(sk); 471 } 472 473 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 474 { 475 struct sk_buff *skb = tcp_write_queue_tail(sk); 476 477 if (tsflags && skb) { 478 struct skb_shared_info *shinfo = skb_shinfo(skb); 479 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 480 481 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 482 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 483 tcb->txstamp_ack = 1; 484 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 485 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 486 } 487 } 488 489 /* 490 * Wait for a TCP event. 491 * 492 * Note that we don't need to lock the socket, as the upper poll layers 493 * take care of normal races (between the test and the event) and we don't 494 * go look at any of the socket buffers directly. 495 */ 496 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 497 { 498 unsigned int mask; 499 struct sock *sk = sock->sk; 500 const struct tcp_sock *tp = tcp_sk(sk); 501 int state; 502 503 sock_rps_record_flow(sk); 504 505 sock_poll_wait(file, sk_sleep(sk), wait); 506 507 state = sk_state_load(sk); 508 if (state == TCP_LISTEN) 509 return inet_csk_listen_poll(sk); 510 511 /* Socket is not locked. We are protected from async events 512 * by poll logic and correct handling of state changes 513 * made by other threads is impossible in any case. 514 */ 515 516 mask = 0; 517 518 /* 519 * POLLHUP is certainly not done right. But poll() doesn't 520 * have a notion of HUP in just one direction, and for a 521 * socket the read side is more interesting. 522 * 523 * Some poll() documentation says that POLLHUP is incompatible 524 * with the POLLOUT/POLLWR flags, so somebody should check this 525 * all. But careful, it tends to be safer to return too many 526 * bits than too few, and you can easily break real applications 527 * if you don't tell them that something has hung up! 528 * 529 * Check-me. 530 * 531 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 532 * our fs/select.c). It means that after we received EOF, 533 * poll always returns immediately, making impossible poll() on write() 534 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 535 * if and only if shutdown has been made in both directions. 536 * Actually, it is interesting to look how Solaris and DUX 537 * solve this dilemma. I would prefer, if POLLHUP were maskable, 538 * then we could set it on SND_SHUTDOWN. BTW examples given 539 * in Stevens' books assume exactly this behaviour, it explains 540 * why POLLHUP is incompatible with POLLOUT. --ANK 541 * 542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 543 * blocking on fresh not-connected or disconnected socket. --ANK 544 */ 545 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 546 mask |= POLLHUP; 547 if (sk->sk_shutdown & RCV_SHUTDOWN) 548 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 549 550 /* Connected or passive Fast Open socket? */ 551 if (state != TCP_SYN_SENT && 552 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 553 int target = sock_rcvlowat(sk, 0, INT_MAX); 554 555 if (tp->urg_seq == tp->copied_seq && 556 !sock_flag(sk, SOCK_URGINLINE) && 557 tp->urg_data) 558 target++; 559 560 if (tp->rcv_nxt - tp->copied_seq >= target) 561 mask |= POLLIN | POLLRDNORM; 562 563 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 564 if (sk_stream_is_writeable(sk)) { 565 mask |= POLLOUT | POLLWRNORM; 566 } else { /* send SIGIO later */ 567 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 568 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 569 570 /* Race breaker. If space is freed after 571 * wspace test but before the flags are set, 572 * IO signal will be lost. Memory barrier 573 * pairs with the input side. 574 */ 575 smp_mb__after_atomic(); 576 if (sk_stream_is_writeable(sk)) 577 mask |= POLLOUT | POLLWRNORM; 578 } 579 } else 580 mask |= POLLOUT | POLLWRNORM; 581 582 if (tp->urg_data & TCP_URG_VALID) 583 mask |= POLLPRI; 584 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 585 /* Active TCP fastopen socket with defer_connect 586 * Return POLLOUT so application can call write() 587 * in order for kernel to generate SYN+data 588 */ 589 mask |= POLLOUT | POLLWRNORM; 590 } 591 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 592 smp_rmb(); 593 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 594 mask |= POLLERR; 595 596 return mask; 597 } 598 EXPORT_SYMBOL(tcp_poll); 599 600 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 601 { 602 struct tcp_sock *tp = tcp_sk(sk); 603 int answ; 604 bool slow; 605 606 switch (cmd) { 607 case SIOCINQ: 608 if (sk->sk_state == TCP_LISTEN) 609 return -EINVAL; 610 611 slow = lock_sock_fast(sk); 612 answ = tcp_inq(sk); 613 unlock_sock_fast(sk, slow); 614 break; 615 case SIOCATMARK: 616 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 617 break; 618 case SIOCOUTQ: 619 if (sk->sk_state == TCP_LISTEN) 620 return -EINVAL; 621 622 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 623 answ = 0; 624 else 625 answ = tp->write_seq - tp->snd_una; 626 break; 627 case SIOCOUTQNSD: 628 if (sk->sk_state == TCP_LISTEN) 629 return -EINVAL; 630 631 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 632 answ = 0; 633 else 634 answ = tp->write_seq - tp->snd_nxt; 635 break; 636 default: 637 return -ENOIOCTLCMD; 638 } 639 640 return put_user(answ, (int __user *)arg); 641 } 642 EXPORT_SYMBOL(tcp_ioctl); 643 644 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 645 { 646 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 647 tp->pushed_seq = tp->write_seq; 648 } 649 650 static inline bool forced_push(const struct tcp_sock *tp) 651 { 652 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 653 } 654 655 static void skb_entail(struct sock *sk, struct sk_buff *skb) 656 { 657 struct tcp_sock *tp = tcp_sk(sk); 658 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 659 660 skb->csum = 0; 661 tcb->seq = tcb->end_seq = tp->write_seq; 662 tcb->tcp_flags = TCPHDR_ACK; 663 tcb->sacked = 0; 664 __skb_header_release(skb); 665 tcp_add_write_queue_tail(sk, skb); 666 sk->sk_wmem_queued += skb->truesize; 667 sk_mem_charge(sk, skb->truesize); 668 if (tp->nonagle & TCP_NAGLE_PUSH) 669 tp->nonagle &= ~TCP_NAGLE_PUSH; 670 671 tcp_slow_start_after_idle_check(sk); 672 } 673 674 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 675 { 676 if (flags & MSG_OOB) 677 tp->snd_up = tp->write_seq; 678 } 679 680 /* If a not yet filled skb is pushed, do not send it if 681 * we have data packets in Qdisc or NIC queues : 682 * Because TX completion will happen shortly, it gives a chance 683 * to coalesce future sendmsg() payload into this skb, without 684 * need for a timer, and with no latency trade off. 685 * As packets containing data payload have a bigger truesize 686 * than pure acks (dataless) packets, the last checks prevent 687 * autocorking if we only have an ACK in Qdisc/NIC queues, 688 * or if TX completion was delayed after we processed ACK packet. 689 */ 690 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 691 int size_goal) 692 { 693 return skb->len < size_goal && 694 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 695 skb != tcp_write_queue_head(sk) && 696 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 697 } 698 699 static void tcp_push(struct sock *sk, int flags, int mss_now, 700 int nonagle, int size_goal) 701 { 702 struct tcp_sock *tp = tcp_sk(sk); 703 struct sk_buff *skb; 704 705 skb = tcp_write_queue_tail(sk); 706 if (!skb) 707 return; 708 if (!(flags & MSG_MORE) || forced_push(tp)) 709 tcp_mark_push(tp, skb); 710 711 tcp_mark_urg(tp, flags); 712 713 if (tcp_should_autocork(sk, skb, size_goal)) { 714 715 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 716 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 717 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 718 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 719 } 720 /* It is possible TX completion already happened 721 * before we set TSQ_THROTTLED. 722 */ 723 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 724 return; 725 } 726 727 if (flags & MSG_MORE) 728 nonagle = TCP_NAGLE_CORK; 729 730 __tcp_push_pending_frames(sk, mss_now, nonagle); 731 } 732 733 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 734 unsigned int offset, size_t len) 735 { 736 struct tcp_splice_state *tss = rd_desc->arg.data; 737 int ret; 738 739 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 740 min(rd_desc->count, len), tss->flags); 741 if (ret > 0) 742 rd_desc->count -= ret; 743 return ret; 744 } 745 746 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 747 { 748 /* Store TCP splice context information in read_descriptor_t. */ 749 read_descriptor_t rd_desc = { 750 .arg.data = tss, 751 .count = tss->len, 752 }; 753 754 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 755 } 756 757 /** 758 * tcp_splice_read - splice data from TCP socket to a pipe 759 * @sock: socket to splice from 760 * @ppos: position (not valid) 761 * @pipe: pipe to splice to 762 * @len: number of bytes to splice 763 * @flags: splice modifier flags 764 * 765 * Description: 766 * Will read pages from given socket and fill them into a pipe. 767 * 768 **/ 769 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 770 struct pipe_inode_info *pipe, size_t len, 771 unsigned int flags) 772 { 773 struct sock *sk = sock->sk; 774 struct tcp_splice_state tss = { 775 .pipe = pipe, 776 .len = len, 777 .flags = flags, 778 }; 779 long timeo; 780 ssize_t spliced; 781 int ret; 782 783 sock_rps_record_flow(sk); 784 /* 785 * We can't seek on a socket input 786 */ 787 if (unlikely(*ppos)) 788 return -ESPIPE; 789 790 ret = spliced = 0; 791 792 lock_sock(sk); 793 794 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 795 while (tss.len) { 796 ret = __tcp_splice_read(sk, &tss); 797 if (ret < 0) 798 break; 799 else if (!ret) { 800 if (spliced) 801 break; 802 if (sock_flag(sk, SOCK_DONE)) 803 break; 804 if (sk->sk_err) { 805 ret = sock_error(sk); 806 break; 807 } 808 if (sk->sk_shutdown & RCV_SHUTDOWN) 809 break; 810 if (sk->sk_state == TCP_CLOSE) { 811 /* 812 * This occurs when user tries to read 813 * from never connected socket. 814 */ 815 if (!sock_flag(sk, SOCK_DONE)) 816 ret = -ENOTCONN; 817 break; 818 } 819 if (!timeo) { 820 ret = -EAGAIN; 821 break; 822 } 823 /* if __tcp_splice_read() got nothing while we have 824 * an skb in receive queue, we do not want to loop. 825 * This might happen with URG data. 826 */ 827 if (!skb_queue_empty(&sk->sk_receive_queue)) 828 break; 829 sk_wait_data(sk, &timeo, NULL); 830 if (signal_pending(current)) { 831 ret = sock_intr_errno(timeo); 832 break; 833 } 834 continue; 835 } 836 tss.len -= ret; 837 spliced += ret; 838 839 if (!timeo) 840 break; 841 release_sock(sk); 842 lock_sock(sk); 843 844 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 845 (sk->sk_shutdown & RCV_SHUTDOWN) || 846 signal_pending(current)) 847 break; 848 } 849 850 release_sock(sk); 851 852 if (spliced) 853 return spliced; 854 855 return ret; 856 } 857 EXPORT_SYMBOL(tcp_splice_read); 858 859 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 860 bool force_schedule) 861 { 862 struct sk_buff *skb; 863 864 /* The TCP header must be at least 32-bit aligned. */ 865 size = ALIGN(size, 4); 866 867 if (unlikely(tcp_under_memory_pressure(sk))) 868 sk_mem_reclaim_partial(sk); 869 870 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 871 if (likely(skb)) { 872 bool mem_scheduled; 873 874 if (force_schedule) { 875 mem_scheduled = true; 876 sk_forced_mem_schedule(sk, skb->truesize); 877 } else { 878 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 879 } 880 if (likely(mem_scheduled)) { 881 skb_reserve(skb, sk->sk_prot->max_header); 882 /* 883 * Make sure that we have exactly size bytes 884 * available to the caller, no more, no less. 885 */ 886 skb->reserved_tailroom = skb->end - skb->tail - size; 887 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 888 return skb; 889 } 890 __kfree_skb(skb); 891 } else { 892 sk->sk_prot->enter_memory_pressure(sk); 893 sk_stream_moderate_sndbuf(sk); 894 } 895 return NULL; 896 } 897 898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 899 int large_allowed) 900 { 901 struct tcp_sock *tp = tcp_sk(sk); 902 u32 new_size_goal, size_goal; 903 904 if (!large_allowed || !sk_can_gso(sk)) 905 return mss_now; 906 907 /* Note : tcp_tso_autosize() will eventually split this later */ 908 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 909 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 910 911 /* We try hard to avoid divides here */ 912 size_goal = tp->gso_segs * mss_now; 913 if (unlikely(new_size_goal < size_goal || 914 new_size_goal >= size_goal + mss_now)) { 915 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 916 sk->sk_gso_max_segs); 917 size_goal = tp->gso_segs * mss_now; 918 } 919 920 return max(size_goal, mss_now); 921 } 922 923 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 924 { 925 int mss_now; 926 927 mss_now = tcp_current_mss(sk); 928 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 929 930 return mss_now; 931 } 932 933 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 934 size_t size, int flags) 935 { 936 struct tcp_sock *tp = tcp_sk(sk); 937 int mss_now, size_goal; 938 int err; 939 ssize_t copied; 940 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 941 942 /* Wait for a connection to finish. One exception is TCP Fast Open 943 * (passive side) where data is allowed to be sent before a connection 944 * is fully established. 945 */ 946 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 947 !tcp_passive_fastopen(sk)) { 948 err = sk_stream_wait_connect(sk, &timeo); 949 if (err != 0) 950 goto out_err; 951 } 952 953 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 954 955 mss_now = tcp_send_mss(sk, &size_goal, flags); 956 copied = 0; 957 958 err = -EPIPE; 959 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 960 goto out_err; 961 962 while (size > 0) { 963 struct sk_buff *skb = tcp_write_queue_tail(sk); 964 int copy, i; 965 bool can_coalesce; 966 967 if (!skb || (copy = size_goal - skb->len) <= 0 || 968 !tcp_skb_can_collapse_to(skb)) { 969 new_segment: 970 if (!sk_stream_memory_free(sk)) 971 goto wait_for_sndbuf; 972 973 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 974 tcp_rtx_and_write_queues_empty(sk)); 975 if (!skb) 976 goto wait_for_memory; 977 978 skb_entail(sk, skb); 979 copy = size_goal; 980 } 981 982 if (copy > size) 983 copy = size; 984 985 i = skb_shinfo(skb)->nr_frags; 986 can_coalesce = skb_can_coalesce(skb, i, page, offset); 987 if (!can_coalesce && i >= sysctl_max_skb_frags) { 988 tcp_mark_push(tp, skb); 989 goto new_segment; 990 } 991 if (!sk_wmem_schedule(sk, copy)) 992 goto wait_for_memory; 993 994 if (can_coalesce) { 995 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 996 } else { 997 get_page(page); 998 skb_fill_page_desc(skb, i, page, offset, copy); 999 } 1000 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1001 1002 skb->len += copy; 1003 skb->data_len += copy; 1004 skb->truesize += copy; 1005 sk->sk_wmem_queued += copy; 1006 sk_mem_charge(sk, copy); 1007 skb->ip_summed = CHECKSUM_PARTIAL; 1008 tp->write_seq += copy; 1009 TCP_SKB_CB(skb)->end_seq += copy; 1010 tcp_skb_pcount_set(skb, 0); 1011 1012 if (!copied) 1013 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1014 1015 copied += copy; 1016 offset += copy; 1017 size -= copy; 1018 if (!size) 1019 goto out; 1020 1021 if (skb->len < size_goal || (flags & MSG_OOB)) 1022 continue; 1023 1024 if (forced_push(tp)) { 1025 tcp_mark_push(tp, skb); 1026 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1027 } else if (skb == tcp_send_head(sk)) 1028 tcp_push_one(sk, mss_now); 1029 continue; 1030 1031 wait_for_sndbuf: 1032 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1033 wait_for_memory: 1034 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1035 TCP_NAGLE_PUSH, size_goal); 1036 1037 err = sk_stream_wait_memory(sk, &timeo); 1038 if (err != 0) 1039 goto do_error; 1040 1041 mss_now = tcp_send_mss(sk, &size_goal, flags); 1042 } 1043 1044 out: 1045 if (copied) { 1046 tcp_tx_timestamp(sk, sk->sk_tsflags); 1047 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1048 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1049 } 1050 return copied; 1051 1052 do_error: 1053 if (copied) 1054 goto out; 1055 out_err: 1056 /* make sure we wake any epoll edge trigger waiter */ 1057 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1058 err == -EAGAIN)) { 1059 sk->sk_write_space(sk); 1060 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1061 } 1062 return sk_stream_error(sk, flags, err); 1063 } 1064 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1065 1066 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1067 size_t size, int flags) 1068 { 1069 if (!(sk->sk_route_caps & NETIF_F_SG) || 1070 !sk_check_csum_caps(sk)) 1071 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1072 1073 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1074 1075 return do_tcp_sendpages(sk, page, offset, size, flags); 1076 } 1077 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1078 1079 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1080 size_t size, int flags) 1081 { 1082 int ret; 1083 1084 lock_sock(sk); 1085 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1086 release_sock(sk); 1087 1088 return ret; 1089 } 1090 EXPORT_SYMBOL(tcp_sendpage); 1091 1092 /* Do not bother using a page frag for very small frames. 1093 * But use this heuristic only for the first skb in write queue. 1094 * 1095 * Having no payload in skb->head allows better SACK shifting 1096 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1097 * write queue has less skbs. 1098 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1099 * This also speeds up tso_fragment(), since it wont fallback 1100 * to tcp_fragment(). 1101 */ 1102 static int linear_payload_sz(bool first_skb) 1103 { 1104 if (first_skb) 1105 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1106 return 0; 1107 } 1108 1109 static int select_size(const struct sock *sk, bool sg, bool first_skb) 1110 { 1111 const struct tcp_sock *tp = tcp_sk(sk); 1112 int tmp = tp->mss_cache; 1113 1114 if (sg) { 1115 if (sk_can_gso(sk)) { 1116 tmp = linear_payload_sz(first_skb); 1117 } else { 1118 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1119 1120 if (tmp >= pgbreak && 1121 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1122 tmp = pgbreak; 1123 } 1124 } 1125 1126 return tmp; 1127 } 1128 1129 void tcp_free_fastopen_req(struct tcp_sock *tp) 1130 { 1131 if (tp->fastopen_req) { 1132 kfree(tp->fastopen_req); 1133 tp->fastopen_req = NULL; 1134 } 1135 } 1136 1137 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1138 int *copied, size_t size) 1139 { 1140 struct tcp_sock *tp = tcp_sk(sk); 1141 struct inet_sock *inet = inet_sk(sk); 1142 struct sockaddr *uaddr = msg->msg_name; 1143 int err, flags; 1144 1145 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1146 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1147 uaddr->sa_family == AF_UNSPEC)) 1148 return -EOPNOTSUPP; 1149 if (tp->fastopen_req) 1150 return -EALREADY; /* Another Fast Open is in progress */ 1151 1152 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1153 sk->sk_allocation); 1154 if (unlikely(!tp->fastopen_req)) 1155 return -ENOBUFS; 1156 tp->fastopen_req->data = msg; 1157 tp->fastopen_req->size = size; 1158 1159 if (inet->defer_connect) { 1160 err = tcp_connect(sk); 1161 /* Same failure procedure as in tcp_v4/6_connect */ 1162 if (err) { 1163 tcp_set_state(sk, TCP_CLOSE); 1164 inet->inet_dport = 0; 1165 sk->sk_route_caps = 0; 1166 } 1167 } 1168 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1169 err = __inet_stream_connect(sk->sk_socket, uaddr, 1170 msg->msg_namelen, flags, 1); 1171 /* fastopen_req could already be freed in __inet_stream_connect 1172 * if the connection times out or gets rst 1173 */ 1174 if (tp->fastopen_req) { 1175 *copied = tp->fastopen_req->copied; 1176 tcp_free_fastopen_req(tp); 1177 inet->defer_connect = 0; 1178 } 1179 return err; 1180 } 1181 1182 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1183 { 1184 struct tcp_sock *tp = tcp_sk(sk); 1185 struct ubuf_info *uarg = NULL; 1186 struct sk_buff *skb; 1187 struct sockcm_cookie sockc; 1188 int flags, err, copied = 0; 1189 int mss_now = 0, size_goal, copied_syn = 0; 1190 bool process_backlog = false; 1191 bool sg; 1192 long timeo; 1193 1194 flags = msg->msg_flags; 1195 1196 if (flags & MSG_ZEROCOPY && size) { 1197 if (sk->sk_state != TCP_ESTABLISHED) { 1198 err = -EINVAL; 1199 goto out_err; 1200 } 1201 1202 skb = tcp_write_queue_tail(sk); 1203 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1204 if (!uarg) { 1205 err = -ENOBUFS; 1206 goto out_err; 1207 } 1208 1209 if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG)) 1210 uarg->zerocopy = 0; 1211 } 1212 1213 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) { 1214 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1215 if (err == -EINPROGRESS && copied_syn > 0) 1216 goto out; 1217 else if (err) 1218 goto out_err; 1219 } 1220 1221 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1222 1223 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1224 1225 /* Wait for a connection to finish. One exception is TCP Fast Open 1226 * (passive side) where data is allowed to be sent before a connection 1227 * is fully established. 1228 */ 1229 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1230 !tcp_passive_fastopen(sk)) { 1231 err = sk_stream_wait_connect(sk, &timeo); 1232 if (err != 0) 1233 goto do_error; 1234 } 1235 1236 if (unlikely(tp->repair)) { 1237 if (tp->repair_queue == TCP_RECV_QUEUE) { 1238 copied = tcp_send_rcvq(sk, msg, size); 1239 goto out_nopush; 1240 } 1241 1242 err = -EINVAL; 1243 if (tp->repair_queue == TCP_NO_QUEUE) 1244 goto out_err; 1245 1246 /* 'common' sending to sendq */ 1247 } 1248 1249 sockc.tsflags = sk->sk_tsflags; 1250 if (msg->msg_controllen) { 1251 err = sock_cmsg_send(sk, msg, &sockc); 1252 if (unlikely(err)) { 1253 err = -EINVAL; 1254 goto out_err; 1255 } 1256 } 1257 1258 /* This should be in poll */ 1259 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1260 1261 /* Ok commence sending. */ 1262 copied = 0; 1263 1264 restart: 1265 mss_now = tcp_send_mss(sk, &size_goal, flags); 1266 1267 err = -EPIPE; 1268 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1269 goto do_error; 1270 1271 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1272 1273 while (msg_data_left(msg)) { 1274 int copy = 0; 1275 int max = size_goal; 1276 1277 skb = tcp_write_queue_tail(sk); 1278 if (skb) { 1279 if (skb->ip_summed == CHECKSUM_NONE) 1280 max = mss_now; 1281 copy = max - skb->len; 1282 } 1283 1284 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1285 bool first_skb; 1286 1287 new_segment: 1288 /* Allocate new segment. If the interface is SG, 1289 * allocate skb fitting to single page. 1290 */ 1291 if (!sk_stream_memory_free(sk)) 1292 goto wait_for_sndbuf; 1293 1294 if (process_backlog && sk_flush_backlog(sk)) { 1295 process_backlog = false; 1296 goto restart; 1297 } 1298 first_skb = tcp_rtx_and_write_queues_empty(sk); 1299 skb = sk_stream_alloc_skb(sk, 1300 select_size(sk, sg, first_skb), 1301 sk->sk_allocation, 1302 first_skb); 1303 if (!skb) 1304 goto wait_for_memory; 1305 1306 process_backlog = true; 1307 /* 1308 * Check whether we can use HW checksum. 1309 */ 1310 if (sk_check_csum_caps(sk)) 1311 skb->ip_summed = CHECKSUM_PARTIAL; 1312 1313 skb_entail(sk, skb); 1314 copy = size_goal; 1315 max = size_goal; 1316 1317 /* All packets are restored as if they have 1318 * already been sent. skb_mstamp isn't set to 1319 * avoid wrong rtt estimation. 1320 */ 1321 if (tp->repair) 1322 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1323 } 1324 1325 /* Try to append data to the end of skb. */ 1326 if (copy > msg_data_left(msg)) 1327 copy = msg_data_left(msg); 1328 1329 /* Where to copy to? */ 1330 if (skb_availroom(skb) > 0) { 1331 /* We have some space in skb head. Superb! */ 1332 copy = min_t(int, copy, skb_availroom(skb)); 1333 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1334 if (err) 1335 goto do_fault; 1336 } else if (!uarg || !uarg->zerocopy) { 1337 bool merge = true; 1338 int i = skb_shinfo(skb)->nr_frags; 1339 struct page_frag *pfrag = sk_page_frag(sk); 1340 1341 if (!sk_page_frag_refill(sk, pfrag)) 1342 goto wait_for_memory; 1343 1344 if (!skb_can_coalesce(skb, i, pfrag->page, 1345 pfrag->offset)) { 1346 if (i >= sysctl_max_skb_frags || !sg) { 1347 tcp_mark_push(tp, skb); 1348 goto new_segment; 1349 } 1350 merge = false; 1351 } 1352 1353 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1354 1355 if (!sk_wmem_schedule(sk, copy)) 1356 goto wait_for_memory; 1357 1358 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1359 pfrag->page, 1360 pfrag->offset, 1361 copy); 1362 if (err) 1363 goto do_error; 1364 1365 /* Update the skb. */ 1366 if (merge) { 1367 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1368 } else { 1369 skb_fill_page_desc(skb, i, pfrag->page, 1370 pfrag->offset, copy); 1371 page_ref_inc(pfrag->page); 1372 } 1373 pfrag->offset += copy; 1374 } else { 1375 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1376 if (err == -EMSGSIZE || err == -EEXIST) 1377 goto new_segment; 1378 if (err < 0) 1379 goto do_error; 1380 copy = err; 1381 } 1382 1383 if (!copied) 1384 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1385 1386 tp->write_seq += copy; 1387 TCP_SKB_CB(skb)->end_seq += copy; 1388 tcp_skb_pcount_set(skb, 0); 1389 1390 copied += copy; 1391 if (!msg_data_left(msg)) { 1392 if (unlikely(flags & MSG_EOR)) 1393 TCP_SKB_CB(skb)->eor = 1; 1394 goto out; 1395 } 1396 1397 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1398 continue; 1399 1400 if (forced_push(tp)) { 1401 tcp_mark_push(tp, skb); 1402 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1403 } else if (skb == tcp_send_head(sk)) 1404 tcp_push_one(sk, mss_now); 1405 continue; 1406 1407 wait_for_sndbuf: 1408 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1409 wait_for_memory: 1410 if (copied) 1411 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1412 TCP_NAGLE_PUSH, size_goal); 1413 1414 err = sk_stream_wait_memory(sk, &timeo); 1415 if (err != 0) 1416 goto do_error; 1417 1418 mss_now = tcp_send_mss(sk, &size_goal, flags); 1419 } 1420 1421 out: 1422 if (copied) { 1423 tcp_tx_timestamp(sk, sockc.tsflags); 1424 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1425 } 1426 out_nopush: 1427 sock_zerocopy_put(uarg); 1428 return copied + copied_syn; 1429 1430 do_fault: 1431 if (!skb->len) { 1432 tcp_unlink_write_queue(skb, sk); 1433 /* It is the one place in all of TCP, except connection 1434 * reset, where we can be unlinking the send_head. 1435 */ 1436 tcp_check_send_head(sk, skb); 1437 sk_wmem_free_skb(sk, skb); 1438 } 1439 1440 do_error: 1441 if (copied + copied_syn) 1442 goto out; 1443 out_err: 1444 sock_zerocopy_put_abort(uarg); 1445 err = sk_stream_error(sk, flags, err); 1446 /* make sure we wake any epoll edge trigger waiter */ 1447 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1448 err == -EAGAIN)) { 1449 sk->sk_write_space(sk); 1450 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1451 } 1452 return err; 1453 } 1454 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1455 1456 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1457 { 1458 int ret; 1459 1460 lock_sock(sk); 1461 ret = tcp_sendmsg_locked(sk, msg, size); 1462 release_sock(sk); 1463 1464 return ret; 1465 } 1466 EXPORT_SYMBOL(tcp_sendmsg); 1467 1468 /* 1469 * Handle reading urgent data. BSD has very simple semantics for 1470 * this, no blocking and very strange errors 8) 1471 */ 1472 1473 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1474 { 1475 struct tcp_sock *tp = tcp_sk(sk); 1476 1477 /* No URG data to read. */ 1478 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1479 tp->urg_data == TCP_URG_READ) 1480 return -EINVAL; /* Yes this is right ! */ 1481 1482 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1483 return -ENOTCONN; 1484 1485 if (tp->urg_data & TCP_URG_VALID) { 1486 int err = 0; 1487 char c = tp->urg_data; 1488 1489 if (!(flags & MSG_PEEK)) 1490 tp->urg_data = TCP_URG_READ; 1491 1492 /* Read urgent data. */ 1493 msg->msg_flags |= MSG_OOB; 1494 1495 if (len > 0) { 1496 if (!(flags & MSG_TRUNC)) 1497 err = memcpy_to_msg(msg, &c, 1); 1498 len = 1; 1499 } else 1500 msg->msg_flags |= MSG_TRUNC; 1501 1502 return err ? -EFAULT : len; 1503 } 1504 1505 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1506 return 0; 1507 1508 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1509 * the available implementations agree in this case: 1510 * this call should never block, independent of the 1511 * blocking state of the socket. 1512 * Mike <pall@rz.uni-karlsruhe.de> 1513 */ 1514 return -EAGAIN; 1515 } 1516 1517 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1518 { 1519 struct sk_buff *skb; 1520 int copied = 0, err = 0; 1521 1522 /* XXX -- need to support SO_PEEK_OFF */ 1523 1524 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1525 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1526 if (err) 1527 return err; 1528 copied += skb->len; 1529 } 1530 1531 skb_queue_walk(&sk->sk_write_queue, skb) { 1532 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1533 if (err) 1534 break; 1535 1536 copied += skb->len; 1537 } 1538 1539 return err ?: copied; 1540 } 1541 1542 /* Clean up the receive buffer for full frames taken by the user, 1543 * then send an ACK if necessary. COPIED is the number of bytes 1544 * tcp_recvmsg has given to the user so far, it speeds up the 1545 * calculation of whether or not we must ACK for the sake of 1546 * a window update. 1547 */ 1548 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1549 { 1550 struct tcp_sock *tp = tcp_sk(sk); 1551 bool time_to_ack = false; 1552 1553 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1554 1555 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1556 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1557 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1558 1559 if (inet_csk_ack_scheduled(sk)) { 1560 const struct inet_connection_sock *icsk = inet_csk(sk); 1561 /* Delayed ACKs frequently hit locked sockets during bulk 1562 * receive. */ 1563 if (icsk->icsk_ack.blocked || 1564 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1565 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1566 /* 1567 * If this read emptied read buffer, we send ACK, if 1568 * connection is not bidirectional, user drained 1569 * receive buffer and there was a small segment 1570 * in queue. 1571 */ 1572 (copied > 0 && 1573 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1574 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1575 !icsk->icsk_ack.pingpong)) && 1576 !atomic_read(&sk->sk_rmem_alloc))) 1577 time_to_ack = true; 1578 } 1579 1580 /* We send an ACK if we can now advertise a non-zero window 1581 * which has been raised "significantly". 1582 * 1583 * Even if window raised up to infinity, do not send window open ACK 1584 * in states, where we will not receive more. It is useless. 1585 */ 1586 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1587 __u32 rcv_window_now = tcp_receive_window(tp); 1588 1589 /* Optimize, __tcp_select_window() is not cheap. */ 1590 if (2*rcv_window_now <= tp->window_clamp) { 1591 __u32 new_window = __tcp_select_window(sk); 1592 1593 /* Send ACK now, if this read freed lots of space 1594 * in our buffer. Certainly, new_window is new window. 1595 * We can advertise it now, if it is not less than current one. 1596 * "Lots" means "at least twice" here. 1597 */ 1598 if (new_window && new_window >= 2 * rcv_window_now) 1599 time_to_ack = true; 1600 } 1601 } 1602 if (time_to_ack) 1603 tcp_send_ack(sk); 1604 } 1605 1606 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1607 { 1608 struct sk_buff *skb; 1609 u32 offset; 1610 1611 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1612 offset = seq - TCP_SKB_CB(skb)->seq; 1613 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1614 pr_err_once("%s: found a SYN, please report !\n", __func__); 1615 offset--; 1616 } 1617 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1618 *off = offset; 1619 return skb; 1620 } 1621 /* This looks weird, but this can happen if TCP collapsing 1622 * splitted a fat GRO packet, while we released socket lock 1623 * in skb_splice_bits() 1624 */ 1625 sk_eat_skb(sk, skb); 1626 } 1627 return NULL; 1628 } 1629 1630 /* 1631 * This routine provides an alternative to tcp_recvmsg() for routines 1632 * that would like to handle copying from skbuffs directly in 'sendfile' 1633 * fashion. 1634 * Note: 1635 * - It is assumed that the socket was locked by the caller. 1636 * - The routine does not block. 1637 * - At present, there is no support for reading OOB data 1638 * or for 'peeking' the socket using this routine 1639 * (although both would be easy to implement). 1640 */ 1641 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1642 sk_read_actor_t recv_actor) 1643 { 1644 struct sk_buff *skb; 1645 struct tcp_sock *tp = tcp_sk(sk); 1646 u32 seq = tp->copied_seq; 1647 u32 offset; 1648 int copied = 0; 1649 1650 if (sk->sk_state == TCP_LISTEN) 1651 return -ENOTCONN; 1652 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1653 if (offset < skb->len) { 1654 int used; 1655 size_t len; 1656 1657 len = skb->len - offset; 1658 /* Stop reading if we hit a patch of urgent data */ 1659 if (tp->urg_data) { 1660 u32 urg_offset = tp->urg_seq - seq; 1661 if (urg_offset < len) 1662 len = urg_offset; 1663 if (!len) 1664 break; 1665 } 1666 used = recv_actor(desc, skb, offset, len); 1667 if (used <= 0) { 1668 if (!copied) 1669 copied = used; 1670 break; 1671 } else if (used <= len) { 1672 seq += used; 1673 copied += used; 1674 offset += used; 1675 } 1676 /* If recv_actor drops the lock (e.g. TCP splice 1677 * receive) the skb pointer might be invalid when 1678 * getting here: tcp_collapse might have deleted it 1679 * while aggregating skbs from the socket queue. 1680 */ 1681 skb = tcp_recv_skb(sk, seq - 1, &offset); 1682 if (!skb) 1683 break; 1684 /* TCP coalescing might have appended data to the skb. 1685 * Try to splice more frags 1686 */ 1687 if (offset + 1 != skb->len) 1688 continue; 1689 } 1690 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1691 sk_eat_skb(sk, skb); 1692 ++seq; 1693 break; 1694 } 1695 sk_eat_skb(sk, skb); 1696 if (!desc->count) 1697 break; 1698 tp->copied_seq = seq; 1699 } 1700 tp->copied_seq = seq; 1701 1702 tcp_rcv_space_adjust(sk); 1703 1704 /* Clean up data we have read: This will do ACK frames. */ 1705 if (copied > 0) { 1706 tcp_recv_skb(sk, seq, &offset); 1707 tcp_cleanup_rbuf(sk, copied); 1708 } 1709 return copied; 1710 } 1711 EXPORT_SYMBOL(tcp_read_sock); 1712 1713 int tcp_peek_len(struct socket *sock) 1714 { 1715 return tcp_inq(sock->sk); 1716 } 1717 EXPORT_SYMBOL(tcp_peek_len); 1718 1719 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1720 struct scm_timestamping *tss) 1721 { 1722 if (skb->tstamp) 1723 tss->ts[0] = ktime_to_timespec(skb->tstamp); 1724 else 1725 tss->ts[0] = (struct timespec) {0}; 1726 1727 if (skb_hwtstamps(skb)->hwtstamp) 1728 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp); 1729 else 1730 tss->ts[2] = (struct timespec) {0}; 1731 } 1732 1733 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1734 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1735 struct scm_timestamping *tss) 1736 { 1737 struct timeval tv; 1738 bool has_timestamping = false; 1739 1740 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1741 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1742 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1743 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 1744 sizeof(tss->ts[0]), &tss->ts[0]); 1745 } else { 1746 tv.tv_sec = tss->ts[0].tv_sec; 1747 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1748 1749 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 1750 sizeof(tv), &tv); 1751 } 1752 } 1753 1754 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1755 has_timestamping = true; 1756 else 1757 tss->ts[0] = (struct timespec) {0}; 1758 } 1759 1760 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1761 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1762 has_timestamping = true; 1763 else 1764 tss->ts[2] = (struct timespec) {0}; 1765 } 1766 1767 if (has_timestamping) { 1768 tss->ts[1] = (struct timespec) {0}; 1769 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, 1770 sizeof(*tss), tss); 1771 } 1772 } 1773 1774 /* 1775 * This routine copies from a sock struct into the user buffer. 1776 * 1777 * Technical note: in 2.3 we work on _locked_ socket, so that 1778 * tricks with *seq access order and skb->users are not required. 1779 * Probably, code can be easily improved even more. 1780 */ 1781 1782 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1783 int flags, int *addr_len) 1784 { 1785 struct tcp_sock *tp = tcp_sk(sk); 1786 int copied = 0; 1787 u32 peek_seq; 1788 u32 *seq; 1789 unsigned long used; 1790 int err; 1791 int target; /* Read at least this many bytes */ 1792 long timeo; 1793 struct sk_buff *skb, *last; 1794 u32 urg_hole = 0; 1795 struct scm_timestamping tss; 1796 bool has_tss = false; 1797 1798 if (unlikely(flags & MSG_ERRQUEUE)) 1799 return inet_recv_error(sk, msg, len, addr_len); 1800 1801 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1802 (sk->sk_state == TCP_ESTABLISHED)) 1803 sk_busy_loop(sk, nonblock); 1804 1805 lock_sock(sk); 1806 1807 err = -ENOTCONN; 1808 if (sk->sk_state == TCP_LISTEN) 1809 goto out; 1810 1811 timeo = sock_rcvtimeo(sk, nonblock); 1812 1813 /* Urgent data needs to be handled specially. */ 1814 if (flags & MSG_OOB) 1815 goto recv_urg; 1816 1817 if (unlikely(tp->repair)) { 1818 err = -EPERM; 1819 if (!(flags & MSG_PEEK)) 1820 goto out; 1821 1822 if (tp->repair_queue == TCP_SEND_QUEUE) 1823 goto recv_sndq; 1824 1825 err = -EINVAL; 1826 if (tp->repair_queue == TCP_NO_QUEUE) 1827 goto out; 1828 1829 /* 'common' recv queue MSG_PEEK-ing */ 1830 } 1831 1832 seq = &tp->copied_seq; 1833 if (flags & MSG_PEEK) { 1834 peek_seq = tp->copied_seq; 1835 seq = &peek_seq; 1836 } 1837 1838 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1839 1840 do { 1841 u32 offset; 1842 1843 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1844 if (tp->urg_data && tp->urg_seq == *seq) { 1845 if (copied) 1846 break; 1847 if (signal_pending(current)) { 1848 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1849 break; 1850 } 1851 } 1852 1853 /* Next get a buffer. */ 1854 1855 last = skb_peek_tail(&sk->sk_receive_queue); 1856 skb_queue_walk(&sk->sk_receive_queue, skb) { 1857 last = skb; 1858 /* Now that we have two receive queues this 1859 * shouldn't happen. 1860 */ 1861 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1862 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1863 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1864 flags)) 1865 break; 1866 1867 offset = *seq - TCP_SKB_CB(skb)->seq; 1868 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1869 pr_err_once("%s: found a SYN, please report !\n", __func__); 1870 offset--; 1871 } 1872 if (offset < skb->len) 1873 goto found_ok_skb; 1874 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1875 goto found_fin_ok; 1876 WARN(!(flags & MSG_PEEK), 1877 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1878 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1879 } 1880 1881 /* Well, if we have backlog, try to process it now yet. */ 1882 1883 if (copied >= target && !sk->sk_backlog.tail) 1884 break; 1885 1886 if (copied) { 1887 if (sk->sk_err || 1888 sk->sk_state == TCP_CLOSE || 1889 (sk->sk_shutdown & RCV_SHUTDOWN) || 1890 !timeo || 1891 signal_pending(current)) 1892 break; 1893 } else { 1894 if (sock_flag(sk, SOCK_DONE)) 1895 break; 1896 1897 if (sk->sk_err) { 1898 copied = sock_error(sk); 1899 break; 1900 } 1901 1902 if (sk->sk_shutdown & RCV_SHUTDOWN) 1903 break; 1904 1905 if (sk->sk_state == TCP_CLOSE) { 1906 if (!sock_flag(sk, SOCK_DONE)) { 1907 /* This occurs when user tries to read 1908 * from never connected socket. 1909 */ 1910 copied = -ENOTCONN; 1911 break; 1912 } 1913 break; 1914 } 1915 1916 if (!timeo) { 1917 copied = -EAGAIN; 1918 break; 1919 } 1920 1921 if (signal_pending(current)) { 1922 copied = sock_intr_errno(timeo); 1923 break; 1924 } 1925 } 1926 1927 tcp_cleanup_rbuf(sk, copied); 1928 1929 if (copied >= target) { 1930 /* Do not sleep, just process backlog. */ 1931 release_sock(sk); 1932 lock_sock(sk); 1933 } else { 1934 sk_wait_data(sk, &timeo, last); 1935 } 1936 1937 if ((flags & MSG_PEEK) && 1938 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1939 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1940 current->comm, 1941 task_pid_nr(current)); 1942 peek_seq = tp->copied_seq; 1943 } 1944 continue; 1945 1946 found_ok_skb: 1947 /* Ok so how much can we use? */ 1948 used = skb->len - offset; 1949 if (len < used) 1950 used = len; 1951 1952 /* Do we have urgent data here? */ 1953 if (tp->urg_data) { 1954 u32 urg_offset = tp->urg_seq - *seq; 1955 if (urg_offset < used) { 1956 if (!urg_offset) { 1957 if (!sock_flag(sk, SOCK_URGINLINE)) { 1958 ++*seq; 1959 urg_hole++; 1960 offset++; 1961 used--; 1962 if (!used) 1963 goto skip_copy; 1964 } 1965 } else 1966 used = urg_offset; 1967 } 1968 } 1969 1970 if (!(flags & MSG_TRUNC)) { 1971 err = skb_copy_datagram_msg(skb, offset, msg, used); 1972 if (err) { 1973 /* Exception. Bailout! */ 1974 if (!copied) 1975 copied = -EFAULT; 1976 break; 1977 } 1978 } 1979 1980 *seq += used; 1981 copied += used; 1982 len -= used; 1983 1984 tcp_rcv_space_adjust(sk); 1985 1986 skip_copy: 1987 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1988 tp->urg_data = 0; 1989 tcp_fast_path_check(sk); 1990 } 1991 if (used + offset < skb->len) 1992 continue; 1993 1994 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1995 tcp_update_recv_tstamps(skb, &tss); 1996 has_tss = true; 1997 } 1998 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1999 goto found_fin_ok; 2000 if (!(flags & MSG_PEEK)) 2001 sk_eat_skb(sk, skb); 2002 continue; 2003 2004 found_fin_ok: 2005 /* Process the FIN. */ 2006 ++*seq; 2007 if (!(flags & MSG_PEEK)) 2008 sk_eat_skb(sk, skb); 2009 break; 2010 } while (len > 0); 2011 2012 /* According to UNIX98, msg_name/msg_namelen are ignored 2013 * on connected socket. I was just happy when found this 8) --ANK 2014 */ 2015 2016 if (has_tss) 2017 tcp_recv_timestamp(msg, sk, &tss); 2018 2019 /* Clean up data we have read: This will do ACK frames. */ 2020 tcp_cleanup_rbuf(sk, copied); 2021 2022 release_sock(sk); 2023 return copied; 2024 2025 out: 2026 release_sock(sk); 2027 return err; 2028 2029 recv_urg: 2030 err = tcp_recv_urg(sk, msg, len, flags); 2031 goto out; 2032 2033 recv_sndq: 2034 err = tcp_peek_sndq(sk, msg, len); 2035 goto out; 2036 } 2037 EXPORT_SYMBOL(tcp_recvmsg); 2038 2039 void tcp_set_state(struct sock *sk, int state) 2040 { 2041 int oldstate = sk->sk_state; 2042 2043 trace_tcp_set_state(sk, oldstate, state); 2044 2045 switch (state) { 2046 case TCP_ESTABLISHED: 2047 if (oldstate != TCP_ESTABLISHED) 2048 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2049 break; 2050 2051 case TCP_CLOSE: 2052 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2053 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2054 2055 sk->sk_prot->unhash(sk); 2056 if (inet_csk(sk)->icsk_bind_hash && 2057 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2058 inet_put_port(sk); 2059 /* fall through */ 2060 default: 2061 if (oldstate == TCP_ESTABLISHED) 2062 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2063 } 2064 2065 /* Change state AFTER socket is unhashed to avoid closed 2066 * socket sitting in hash tables. 2067 */ 2068 sk_state_store(sk, state); 2069 2070 #ifdef STATE_TRACE 2071 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2072 #endif 2073 } 2074 EXPORT_SYMBOL_GPL(tcp_set_state); 2075 2076 /* 2077 * State processing on a close. This implements the state shift for 2078 * sending our FIN frame. Note that we only send a FIN for some 2079 * states. A shutdown() may have already sent the FIN, or we may be 2080 * closed. 2081 */ 2082 2083 static const unsigned char new_state[16] = { 2084 /* current state: new state: action: */ 2085 [0 /* (Invalid) */] = TCP_CLOSE, 2086 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2087 [TCP_SYN_SENT] = TCP_CLOSE, 2088 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2089 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2090 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2091 [TCP_TIME_WAIT] = TCP_CLOSE, 2092 [TCP_CLOSE] = TCP_CLOSE, 2093 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2094 [TCP_LAST_ACK] = TCP_LAST_ACK, 2095 [TCP_LISTEN] = TCP_CLOSE, 2096 [TCP_CLOSING] = TCP_CLOSING, 2097 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2098 }; 2099 2100 static int tcp_close_state(struct sock *sk) 2101 { 2102 int next = (int)new_state[sk->sk_state]; 2103 int ns = next & TCP_STATE_MASK; 2104 2105 tcp_set_state(sk, ns); 2106 2107 return next & TCP_ACTION_FIN; 2108 } 2109 2110 /* 2111 * Shutdown the sending side of a connection. Much like close except 2112 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2113 */ 2114 2115 void tcp_shutdown(struct sock *sk, int how) 2116 { 2117 /* We need to grab some memory, and put together a FIN, 2118 * and then put it into the queue to be sent. 2119 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2120 */ 2121 if (!(how & SEND_SHUTDOWN)) 2122 return; 2123 2124 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2125 if ((1 << sk->sk_state) & 2126 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2127 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2128 /* Clear out any half completed packets. FIN if needed. */ 2129 if (tcp_close_state(sk)) 2130 tcp_send_fin(sk); 2131 } 2132 } 2133 EXPORT_SYMBOL(tcp_shutdown); 2134 2135 bool tcp_check_oom(struct sock *sk, int shift) 2136 { 2137 bool too_many_orphans, out_of_socket_memory; 2138 2139 too_many_orphans = tcp_too_many_orphans(sk, shift); 2140 out_of_socket_memory = tcp_out_of_memory(sk); 2141 2142 if (too_many_orphans) 2143 net_info_ratelimited("too many orphaned sockets\n"); 2144 if (out_of_socket_memory) 2145 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2146 return too_many_orphans || out_of_socket_memory; 2147 } 2148 2149 void tcp_close(struct sock *sk, long timeout) 2150 { 2151 struct sk_buff *skb; 2152 int data_was_unread = 0; 2153 int state; 2154 2155 lock_sock(sk); 2156 sk->sk_shutdown = SHUTDOWN_MASK; 2157 2158 if (sk->sk_state == TCP_LISTEN) { 2159 tcp_set_state(sk, TCP_CLOSE); 2160 2161 /* Special case. */ 2162 inet_csk_listen_stop(sk); 2163 2164 goto adjudge_to_death; 2165 } 2166 2167 /* We need to flush the recv. buffs. We do this only on the 2168 * descriptor close, not protocol-sourced closes, because the 2169 * reader process may not have drained the data yet! 2170 */ 2171 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2172 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2173 2174 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2175 len--; 2176 data_was_unread += len; 2177 __kfree_skb(skb); 2178 } 2179 2180 sk_mem_reclaim(sk); 2181 2182 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2183 if (sk->sk_state == TCP_CLOSE) 2184 goto adjudge_to_death; 2185 2186 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2187 * data was lost. To witness the awful effects of the old behavior of 2188 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2189 * GET in an FTP client, suspend the process, wait for the client to 2190 * advertise a zero window, then kill -9 the FTP client, wheee... 2191 * Note: timeout is always zero in such a case. 2192 */ 2193 if (unlikely(tcp_sk(sk)->repair)) { 2194 sk->sk_prot->disconnect(sk, 0); 2195 } else if (data_was_unread) { 2196 /* Unread data was tossed, zap the connection. */ 2197 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2198 tcp_set_state(sk, TCP_CLOSE); 2199 tcp_send_active_reset(sk, sk->sk_allocation); 2200 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2201 /* Check zero linger _after_ checking for unread data. */ 2202 sk->sk_prot->disconnect(sk, 0); 2203 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2204 } else if (tcp_close_state(sk)) { 2205 /* We FIN if the application ate all the data before 2206 * zapping the connection. 2207 */ 2208 2209 /* RED-PEN. Formally speaking, we have broken TCP state 2210 * machine. State transitions: 2211 * 2212 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2213 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2214 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2215 * 2216 * are legal only when FIN has been sent (i.e. in window), 2217 * rather than queued out of window. Purists blame. 2218 * 2219 * F.e. "RFC state" is ESTABLISHED, 2220 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2221 * 2222 * The visible declinations are that sometimes 2223 * we enter time-wait state, when it is not required really 2224 * (harmless), do not send active resets, when they are 2225 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2226 * they look as CLOSING or LAST_ACK for Linux) 2227 * Probably, I missed some more holelets. 2228 * --ANK 2229 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2230 * in a single packet! (May consider it later but will 2231 * probably need API support or TCP_CORK SYN-ACK until 2232 * data is written and socket is closed.) 2233 */ 2234 tcp_send_fin(sk); 2235 } 2236 2237 sk_stream_wait_close(sk, timeout); 2238 2239 adjudge_to_death: 2240 state = sk->sk_state; 2241 sock_hold(sk); 2242 sock_orphan(sk); 2243 2244 /* It is the last release_sock in its life. It will remove backlog. */ 2245 release_sock(sk); 2246 2247 2248 /* Now socket is owned by kernel and we acquire BH lock 2249 * to finish close. No need to check for user refs. 2250 */ 2251 local_bh_disable(); 2252 bh_lock_sock(sk); 2253 WARN_ON(sock_owned_by_user(sk)); 2254 2255 percpu_counter_inc(sk->sk_prot->orphan_count); 2256 2257 /* Have we already been destroyed by a softirq or backlog? */ 2258 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2259 goto out; 2260 2261 /* This is a (useful) BSD violating of the RFC. There is a 2262 * problem with TCP as specified in that the other end could 2263 * keep a socket open forever with no application left this end. 2264 * We use a 1 minute timeout (about the same as BSD) then kill 2265 * our end. If they send after that then tough - BUT: long enough 2266 * that we won't make the old 4*rto = almost no time - whoops 2267 * reset mistake. 2268 * 2269 * Nope, it was not mistake. It is really desired behaviour 2270 * f.e. on http servers, when such sockets are useless, but 2271 * consume significant resources. Let's do it with special 2272 * linger2 option. --ANK 2273 */ 2274 2275 if (sk->sk_state == TCP_FIN_WAIT2) { 2276 struct tcp_sock *tp = tcp_sk(sk); 2277 if (tp->linger2 < 0) { 2278 tcp_set_state(sk, TCP_CLOSE); 2279 tcp_send_active_reset(sk, GFP_ATOMIC); 2280 __NET_INC_STATS(sock_net(sk), 2281 LINUX_MIB_TCPABORTONLINGER); 2282 } else { 2283 const int tmo = tcp_fin_time(sk); 2284 2285 if (tmo > TCP_TIMEWAIT_LEN) { 2286 inet_csk_reset_keepalive_timer(sk, 2287 tmo - TCP_TIMEWAIT_LEN); 2288 } else { 2289 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2290 goto out; 2291 } 2292 } 2293 } 2294 if (sk->sk_state != TCP_CLOSE) { 2295 sk_mem_reclaim(sk); 2296 if (tcp_check_oom(sk, 0)) { 2297 tcp_set_state(sk, TCP_CLOSE); 2298 tcp_send_active_reset(sk, GFP_ATOMIC); 2299 __NET_INC_STATS(sock_net(sk), 2300 LINUX_MIB_TCPABORTONMEMORY); 2301 } 2302 } 2303 2304 if (sk->sk_state == TCP_CLOSE) { 2305 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2306 /* We could get here with a non-NULL req if the socket is 2307 * aborted (e.g., closed with unread data) before 3WHS 2308 * finishes. 2309 */ 2310 if (req) 2311 reqsk_fastopen_remove(sk, req, false); 2312 inet_csk_destroy_sock(sk); 2313 } 2314 /* Otherwise, socket is reprieved until protocol close. */ 2315 2316 out: 2317 bh_unlock_sock(sk); 2318 local_bh_enable(); 2319 sock_put(sk); 2320 } 2321 EXPORT_SYMBOL(tcp_close); 2322 2323 /* These states need RST on ABORT according to RFC793 */ 2324 2325 static inline bool tcp_need_reset(int state) 2326 { 2327 return (1 << state) & 2328 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2329 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2330 } 2331 2332 static void tcp_rtx_queue_purge(struct sock *sk) 2333 { 2334 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2335 2336 while (p) { 2337 struct sk_buff *skb = rb_to_skb(p); 2338 2339 p = rb_next(p); 2340 /* Since we are deleting whole queue, no need to 2341 * list_del(&skb->tcp_tsorted_anchor) 2342 */ 2343 tcp_rtx_queue_unlink(skb, sk); 2344 sk_wmem_free_skb(sk, skb); 2345 } 2346 } 2347 2348 void tcp_write_queue_purge(struct sock *sk) 2349 { 2350 struct sk_buff *skb; 2351 2352 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2353 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2354 tcp_skb_tsorted_anchor_cleanup(skb); 2355 sk_wmem_free_skb(sk, skb); 2356 } 2357 tcp_rtx_queue_purge(sk); 2358 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2359 sk_mem_reclaim(sk); 2360 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2361 } 2362 2363 int tcp_disconnect(struct sock *sk, int flags) 2364 { 2365 struct inet_sock *inet = inet_sk(sk); 2366 struct inet_connection_sock *icsk = inet_csk(sk); 2367 struct tcp_sock *tp = tcp_sk(sk); 2368 int err = 0; 2369 int old_state = sk->sk_state; 2370 2371 if (old_state != TCP_CLOSE) 2372 tcp_set_state(sk, TCP_CLOSE); 2373 2374 /* ABORT function of RFC793 */ 2375 if (old_state == TCP_LISTEN) { 2376 inet_csk_listen_stop(sk); 2377 } else if (unlikely(tp->repair)) { 2378 sk->sk_err = ECONNABORTED; 2379 } else if (tcp_need_reset(old_state) || 2380 (tp->snd_nxt != tp->write_seq && 2381 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2382 /* The last check adjusts for discrepancy of Linux wrt. RFC 2383 * states 2384 */ 2385 tcp_send_active_reset(sk, gfp_any()); 2386 sk->sk_err = ECONNRESET; 2387 } else if (old_state == TCP_SYN_SENT) 2388 sk->sk_err = ECONNRESET; 2389 2390 tcp_clear_xmit_timers(sk); 2391 __skb_queue_purge(&sk->sk_receive_queue); 2392 tcp_write_queue_purge(sk); 2393 tcp_fastopen_active_disable_ofo_check(sk); 2394 skb_rbtree_purge(&tp->out_of_order_queue); 2395 2396 inet->inet_dport = 0; 2397 2398 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2399 inet_reset_saddr(sk); 2400 2401 sk->sk_shutdown = 0; 2402 sock_reset_flag(sk, SOCK_DONE); 2403 tp->srtt_us = 0; 2404 tp->write_seq += tp->max_window + 2; 2405 if (tp->write_seq == 0) 2406 tp->write_seq = 1; 2407 icsk->icsk_backoff = 0; 2408 tp->snd_cwnd = 2; 2409 icsk->icsk_probes_out = 0; 2410 tp->packets_out = 0; 2411 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2412 tp->snd_cwnd_cnt = 0; 2413 tp->window_clamp = 0; 2414 tcp_set_ca_state(sk, TCP_CA_Open); 2415 tp->is_sack_reneg = 0; 2416 tcp_clear_retrans(tp); 2417 inet_csk_delack_init(sk); 2418 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2419 * issue in __tcp_select_window() 2420 */ 2421 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2422 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2423 __sk_dst_reset(sk); 2424 dst_release(sk->sk_rx_dst); 2425 sk->sk_rx_dst = NULL; 2426 tcp_saved_syn_free(tp); 2427 2428 /* Clean up fastopen related fields */ 2429 tcp_free_fastopen_req(tp); 2430 inet->defer_connect = 0; 2431 2432 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2433 2434 sk->sk_error_report(sk); 2435 return err; 2436 } 2437 EXPORT_SYMBOL(tcp_disconnect); 2438 2439 static inline bool tcp_can_repair_sock(const struct sock *sk) 2440 { 2441 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2442 (sk->sk_state != TCP_LISTEN); 2443 } 2444 2445 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2446 { 2447 struct tcp_repair_window opt; 2448 2449 if (!tp->repair) 2450 return -EPERM; 2451 2452 if (len != sizeof(opt)) 2453 return -EINVAL; 2454 2455 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2456 return -EFAULT; 2457 2458 if (opt.max_window < opt.snd_wnd) 2459 return -EINVAL; 2460 2461 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2462 return -EINVAL; 2463 2464 if (after(opt.rcv_wup, tp->rcv_nxt)) 2465 return -EINVAL; 2466 2467 tp->snd_wl1 = opt.snd_wl1; 2468 tp->snd_wnd = opt.snd_wnd; 2469 tp->max_window = opt.max_window; 2470 2471 tp->rcv_wnd = opt.rcv_wnd; 2472 tp->rcv_wup = opt.rcv_wup; 2473 2474 return 0; 2475 } 2476 2477 static int tcp_repair_options_est(struct sock *sk, 2478 struct tcp_repair_opt __user *optbuf, unsigned int len) 2479 { 2480 struct tcp_sock *tp = tcp_sk(sk); 2481 struct tcp_repair_opt opt; 2482 2483 while (len >= sizeof(opt)) { 2484 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2485 return -EFAULT; 2486 2487 optbuf++; 2488 len -= sizeof(opt); 2489 2490 switch (opt.opt_code) { 2491 case TCPOPT_MSS: 2492 tp->rx_opt.mss_clamp = opt.opt_val; 2493 tcp_mtup_init(sk); 2494 break; 2495 case TCPOPT_WINDOW: 2496 { 2497 u16 snd_wscale = opt.opt_val & 0xFFFF; 2498 u16 rcv_wscale = opt.opt_val >> 16; 2499 2500 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2501 return -EFBIG; 2502 2503 tp->rx_opt.snd_wscale = snd_wscale; 2504 tp->rx_opt.rcv_wscale = rcv_wscale; 2505 tp->rx_opt.wscale_ok = 1; 2506 } 2507 break; 2508 case TCPOPT_SACK_PERM: 2509 if (opt.opt_val != 0) 2510 return -EINVAL; 2511 2512 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2513 break; 2514 case TCPOPT_TIMESTAMP: 2515 if (opt.opt_val != 0) 2516 return -EINVAL; 2517 2518 tp->rx_opt.tstamp_ok = 1; 2519 break; 2520 } 2521 } 2522 2523 return 0; 2524 } 2525 2526 /* 2527 * Socket option code for TCP. 2528 */ 2529 static int do_tcp_setsockopt(struct sock *sk, int level, 2530 int optname, char __user *optval, unsigned int optlen) 2531 { 2532 struct tcp_sock *tp = tcp_sk(sk); 2533 struct inet_connection_sock *icsk = inet_csk(sk); 2534 struct net *net = sock_net(sk); 2535 int val; 2536 int err = 0; 2537 2538 /* These are data/string values, all the others are ints */ 2539 switch (optname) { 2540 case TCP_CONGESTION: { 2541 char name[TCP_CA_NAME_MAX]; 2542 2543 if (optlen < 1) 2544 return -EINVAL; 2545 2546 val = strncpy_from_user(name, optval, 2547 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2548 if (val < 0) 2549 return -EFAULT; 2550 name[val] = 0; 2551 2552 lock_sock(sk); 2553 err = tcp_set_congestion_control(sk, name, true, true); 2554 release_sock(sk); 2555 return err; 2556 } 2557 case TCP_ULP: { 2558 char name[TCP_ULP_NAME_MAX]; 2559 2560 if (optlen < 1) 2561 return -EINVAL; 2562 2563 val = strncpy_from_user(name, optval, 2564 min_t(long, TCP_ULP_NAME_MAX - 1, 2565 optlen)); 2566 if (val < 0) 2567 return -EFAULT; 2568 name[val] = 0; 2569 2570 lock_sock(sk); 2571 err = tcp_set_ulp(sk, name); 2572 release_sock(sk); 2573 return err; 2574 } 2575 case TCP_FASTOPEN_KEY: { 2576 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2577 2578 if (optlen != sizeof(key)) 2579 return -EINVAL; 2580 2581 if (copy_from_user(key, optval, optlen)) 2582 return -EFAULT; 2583 2584 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2585 } 2586 default: 2587 /* fallthru */ 2588 break; 2589 } 2590 2591 if (optlen < sizeof(int)) 2592 return -EINVAL; 2593 2594 if (get_user(val, (int __user *)optval)) 2595 return -EFAULT; 2596 2597 lock_sock(sk); 2598 2599 switch (optname) { 2600 case TCP_MAXSEG: 2601 /* Values greater than interface MTU won't take effect. However 2602 * at the point when this call is done we typically don't yet 2603 * know which interface is going to be used 2604 */ 2605 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2606 err = -EINVAL; 2607 break; 2608 } 2609 tp->rx_opt.user_mss = val; 2610 break; 2611 2612 case TCP_NODELAY: 2613 if (val) { 2614 /* TCP_NODELAY is weaker than TCP_CORK, so that 2615 * this option on corked socket is remembered, but 2616 * it is not activated until cork is cleared. 2617 * 2618 * However, when TCP_NODELAY is set we make 2619 * an explicit push, which overrides even TCP_CORK 2620 * for currently queued segments. 2621 */ 2622 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2623 tcp_push_pending_frames(sk); 2624 } else { 2625 tp->nonagle &= ~TCP_NAGLE_OFF; 2626 } 2627 break; 2628 2629 case TCP_THIN_LINEAR_TIMEOUTS: 2630 if (val < 0 || val > 1) 2631 err = -EINVAL; 2632 else 2633 tp->thin_lto = val; 2634 break; 2635 2636 case TCP_THIN_DUPACK: 2637 if (val < 0 || val > 1) 2638 err = -EINVAL; 2639 break; 2640 2641 case TCP_REPAIR: 2642 if (!tcp_can_repair_sock(sk)) 2643 err = -EPERM; 2644 else if (val == 1) { 2645 tp->repair = 1; 2646 sk->sk_reuse = SK_FORCE_REUSE; 2647 tp->repair_queue = TCP_NO_QUEUE; 2648 } else if (val == 0) { 2649 tp->repair = 0; 2650 sk->sk_reuse = SK_NO_REUSE; 2651 tcp_send_window_probe(sk); 2652 } else 2653 err = -EINVAL; 2654 2655 break; 2656 2657 case TCP_REPAIR_QUEUE: 2658 if (!tp->repair) 2659 err = -EPERM; 2660 else if (val < TCP_QUEUES_NR) 2661 tp->repair_queue = val; 2662 else 2663 err = -EINVAL; 2664 break; 2665 2666 case TCP_QUEUE_SEQ: 2667 if (sk->sk_state != TCP_CLOSE) 2668 err = -EPERM; 2669 else if (tp->repair_queue == TCP_SEND_QUEUE) 2670 tp->write_seq = val; 2671 else if (tp->repair_queue == TCP_RECV_QUEUE) 2672 tp->rcv_nxt = val; 2673 else 2674 err = -EINVAL; 2675 break; 2676 2677 case TCP_REPAIR_OPTIONS: 2678 if (!tp->repair) 2679 err = -EINVAL; 2680 else if (sk->sk_state == TCP_ESTABLISHED) 2681 err = tcp_repair_options_est(sk, 2682 (struct tcp_repair_opt __user *)optval, 2683 optlen); 2684 else 2685 err = -EPERM; 2686 break; 2687 2688 case TCP_CORK: 2689 /* When set indicates to always queue non-full frames. 2690 * Later the user clears this option and we transmit 2691 * any pending partial frames in the queue. This is 2692 * meant to be used alongside sendfile() to get properly 2693 * filled frames when the user (for example) must write 2694 * out headers with a write() call first and then use 2695 * sendfile to send out the data parts. 2696 * 2697 * TCP_CORK can be set together with TCP_NODELAY and it is 2698 * stronger than TCP_NODELAY. 2699 */ 2700 if (val) { 2701 tp->nonagle |= TCP_NAGLE_CORK; 2702 } else { 2703 tp->nonagle &= ~TCP_NAGLE_CORK; 2704 if (tp->nonagle&TCP_NAGLE_OFF) 2705 tp->nonagle |= TCP_NAGLE_PUSH; 2706 tcp_push_pending_frames(sk); 2707 } 2708 break; 2709 2710 case TCP_KEEPIDLE: 2711 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2712 err = -EINVAL; 2713 else { 2714 tp->keepalive_time = val * HZ; 2715 if (sock_flag(sk, SOCK_KEEPOPEN) && 2716 !((1 << sk->sk_state) & 2717 (TCPF_CLOSE | TCPF_LISTEN))) { 2718 u32 elapsed = keepalive_time_elapsed(tp); 2719 if (tp->keepalive_time > elapsed) 2720 elapsed = tp->keepalive_time - elapsed; 2721 else 2722 elapsed = 0; 2723 inet_csk_reset_keepalive_timer(sk, elapsed); 2724 } 2725 } 2726 break; 2727 case TCP_KEEPINTVL: 2728 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2729 err = -EINVAL; 2730 else 2731 tp->keepalive_intvl = val * HZ; 2732 break; 2733 case TCP_KEEPCNT: 2734 if (val < 1 || val > MAX_TCP_KEEPCNT) 2735 err = -EINVAL; 2736 else 2737 tp->keepalive_probes = val; 2738 break; 2739 case TCP_SYNCNT: 2740 if (val < 1 || val > MAX_TCP_SYNCNT) 2741 err = -EINVAL; 2742 else 2743 icsk->icsk_syn_retries = val; 2744 break; 2745 2746 case TCP_SAVE_SYN: 2747 if (val < 0 || val > 1) 2748 err = -EINVAL; 2749 else 2750 tp->save_syn = val; 2751 break; 2752 2753 case TCP_LINGER2: 2754 if (val < 0) 2755 tp->linger2 = -1; 2756 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2757 tp->linger2 = 0; 2758 else 2759 tp->linger2 = val * HZ; 2760 break; 2761 2762 case TCP_DEFER_ACCEPT: 2763 /* Translate value in seconds to number of retransmits */ 2764 icsk->icsk_accept_queue.rskq_defer_accept = 2765 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2766 TCP_RTO_MAX / HZ); 2767 break; 2768 2769 case TCP_WINDOW_CLAMP: 2770 if (!val) { 2771 if (sk->sk_state != TCP_CLOSE) { 2772 err = -EINVAL; 2773 break; 2774 } 2775 tp->window_clamp = 0; 2776 } else 2777 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2778 SOCK_MIN_RCVBUF / 2 : val; 2779 break; 2780 2781 case TCP_QUICKACK: 2782 if (!val) { 2783 icsk->icsk_ack.pingpong = 1; 2784 } else { 2785 icsk->icsk_ack.pingpong = 0; 2786 if ((1 << sk->sk_state) & 2787 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2788 inet_csk_ack_scheduled(sk)) { 2789 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2790 tcp_cleanup_rbuf(sk, 1); 2791 if (!(val & 1)) 2792 icsk->icsk_ack.pingpong = 1; 2793 } 2794 } 2795 break; 2796 2797 #ifdef CONFIG_TCP_MD5SIG 2798 case TCP_MD5SIG: 2799 case TCP_MD5SIG_EXT: 2800 /* Read the IP->Key mappings from userspace */ 2801 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 2802 break; 2803 #endif 2804 case TCP_USER_TIMEOUT: 2805 /* Cap the max time in ms TCP will retry or probe the window 2806 * before giving up and aborting (ETIMEDOUT) a connection. 2807 */ 2808 if (val < 0) 2809 err = -EINVAL; 2810 else 2811 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2812 break; 2813 2814 case TCP_FASTOPEN: 2815 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2816 TCPF_LISTEN))) { 2817 tcp_fastopen_init_key_once(net); 2818 2819 fastopen_queue_tune(sk, val); 2820 } else { 2821 err = -EINVAL; 2822 } 2823 break; 2824 case TCP_FASTOPEN_CONNECT: 2825 if (val > 1 || val < 0) { 2826 err = -EINVAL; 2827 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 2828 if (sk->sk_state == TCP_CLOSE) 2829 tp->fastopen_connect = val; 2830 else 2831 err = -EINVAL; 2832 } else { 2833 err = -EOPNOTSUPP; 2834 } 2835 break; 2836 case TCP_FASTOPEN_NO_COOKIE: 2837 if (val > 1 || val < 0) 2838 err = -EINVAL; 2839 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2840 err = -EINVAL; 2841 else 2842 tp->fastopen_no_cookie = val; 2843 break; 2844 case TCP_TIMESTAMP: 2845 if (!tp->repair) 2846 err = -EPERM; 2847 else 2848 tp->tsoffset = val - tcp_time_stamp_raw(); 2849 break; 2850 case TCP_REPAIR_WINDOW: 2851 err = tcp_repair_set_window(tp, optval, optlen); 2852 break; 2853 case TCP_NOTSENT_LOWAT: 2854 tp->notsent_lowat = val; 2855 sk->sk_write_space(sk); 2856 break; 2857 default: 2858 err = -ENOPROTOOPT; 2859 break; 2860 } 2861 2862 release_sock(sk); 2863 return err; 2864 } 2865 2866 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2867 unsigned int optlen) 2868 { 2869 const struct inet_connection_sock *icsk = inet_csk(sk); 2870 2871 if (level != SOL_TCP) 2872 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2873 optval, optlen); 2874 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2875 } 2876 EXPORT_SYMBOL(tcp_setsockopt); 2877 2878 #ifdef CONFIG_COMPAT 2879 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2880 char __user *optval, unsigned int optlen) 2881 { 2882 if (level != SOL_TCP) 2883 return inet_csk_compat_setsockopt(sk, level, optname, 2884 optval, optlen); 2885 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2886 } 2887 EXPORT_SYMBOL(compat_tcp_setsockopt); 2888 #endif 2889 2890 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 2891 struct tcp_info *info) 2892 { 2893 u64 stats[__TCP_CHRONO_MAX], total = 0; 2894 enum tcp_chrono i; 2895 2896 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 2897 stats[i] = tp->chrono_stat[i - 1]; 2898 if (i == tp->chrono_type) 2899 stats[i] += tcp_jiffies32 - tp->chrono_start; 2900 stats[i] *= USEC_PER_SEC / HZ; 2901 total += stats[i]; 2902 } 2903 2904 info->tcpi_busy_time = total; 2905 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 2906 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 2907 } 2908 2909 /* Return information about state of tcp endpoint in API format. */ 2910 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2911 { 2912 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2913 const struct inet_connection_sock *icsk = inet_csk(sk); 2914 u32 now; 2915 u64 rate64; 2916 bool slow; 2917 u32 rate; 2918 2919 memset(info, 0, sizeof(*info)); 2920 if (sk->sk_type != SOCK_STREAM) 2921 return; 2922 2923 info->tcpi_state = sk_state_load(sk); 2924 2925 /* Report meaningful fields for all TCP states, including listeners */ 2926 rate = READ_ONCE(sk->sk_pacing_rate); 2927 rate64 = rate != ~0U ? rate : ~0ULL; 2928 info->tcpi_pacing_rate = rate64; 2929 2930 rate = READ_ONCE(sk->sk_max_pacing_rate); 2931 rate64 = rate != ~0U ? rate : ~0ULL; 2932 info->tcpi_max_pacing_rate = rate64; 2933 2934 info->tcpi_reordering = tp->reordering; 2935 info->tcpi_snd_cwnd = tp->snd_cwnd; 2936 2937 if (info->tcpi_state == TCP_LISTEN) { 2938 /* listeners aliased fields : 2939 * tcpi_unacked -> Number of children ready for accept() 2940 * tcpi_sacked -> max backlog 2941 */ 2942 info->tcpi_unacked = sk->sk_ack_backlog; 2943 info->tcpi_sacked = sk->sk_max_ack_backlog; 2944 return; 2945 } 2946 2947 slow = lock_sock_fast(sk); 2948 2949 info->tcpi_ca_state = icsk->icsk_ca_state; 2950 info->tcpi_retransmits = icsk->icsk_retransmits; 2951 info->tcpi_probes = icsk->icsk_probes_out; 2952 info->tcpi_backoff = icsk->icsk_backoff; 2953 2954 if (tp->rx_opt.tstamp_ok) 2955 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2956 if (tcp_is_sack(tp)) 2957 info->tcpi_options |= TCPI_OPT_SACK; 2958 if (tp->rx_opt.wscale_ok) { 2959 info->tcpi_options |= TCPI_OPT_WSCALE; 2960 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2961 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2962 } 2963 2964 if (tp->ecn_flags & TCP_ECN_OK) 2965 info->tcpi_options |= TCPI_OPT_ECN; 2966 if (tp->ecn_flags & TCP_ECN_SEEN) 2967 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2968 if (tp->syn_data_acked) 2969 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2970 2971 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2972 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2973 info->tcpi_snd_mss = tp->mss_cache; 2974 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2975 2976 info->tcpi_unacked = tp->packets_out; 2977 info->tcpi_sacked = tp->sacked_out; 2978 2979 info->tcpi_lost = tp->lost_out; 2980 info->tcpi_retrans = tp->retrans_out; 2981 2982 now = tcp_jiffies32; 2983 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2984 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2985 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2986 2987 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2988 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2989 info->tcpi_rtt = tp->srtt_us >> 3; 2990 info->tcpi_rttvar = tp->mdev_us >> 2; 2991 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2992 info->tcpi_advmss = tp->advmss; 2993 2994 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 2995 info->tcpi_rcv_space = tp->rcvq_space.space; 2996 2997 info->tcpi_total_retrans = tp->total_retrans; 2998 2999 info->tcpi_bytes_acked = tp->bytes_acked; 3000 info->tcpi_bytes_received = tp->bytes_received; 3001 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3002 tcp_get_info_chrono_stats(tp, info); 3003 3004 info->tcpi_segs_out = tp->segs_out; 3005 info->tcpi_segs_in = tp->segs_in; 3006 3007 info->tcpi_min_rtt = tcp_min_rtt(tp); 3008 info->tcpi_data_segs_in = tp->data_segs_in; 3009 info->tcpi_data_segs_out = tp->data_segs_out; 3010 3011 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3012 rate64 = tcp_compute_delivery_rate(tp); 3013 if (rate64) 3014 info->tcpi_delivery_rate = rate64; 3015 unlock_sock_fast(sk, slow); 3016 } 3017 EXPORT_SYMBOL_GPL(tcp_get_info); 3018 3019 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3020 { 3021 const struct tcp_sock *tp = tcp_sk(sk); 3022 struct sk_buff *stats; 3023 struct tcp_info info; 3024 u64 rate64; 3025 u32 rate; 3026 3027 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) + 3028 3 * nla_total_size(sizeof(u32)) + 3029 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC); 3030 if (!stats) 3031 return NULL; 3032 3033 tcp_get_info_chrono_stats(tp, &info); 3034 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3035 info.tcpi_busy_time, TCP_NLA_PAD); 3036 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3037 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3038 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3039 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3040 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3041 tp->data_segs_out, TCP_NLA_PAD); 3042 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3043 tp->total_retrans, TCP_NLA_PAD); 3044 3045 rate = READ_ONCE(sk->sk_pacing_rate); 3046 rate64 = rate != ~0U ? rate : ~0ULL; 3047 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3048 3049 rate64 = tcp_compute_delivery_rate(tp); 3050 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3051 3052 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3053 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3054 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3055 3056 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3057 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3058 return stats; 3059 } 3060 3061 static int do_tcp_getsockopt(struct sock *sk, int level, 3062 int optname, char __user *optval, int __user *optlen) 3063 { 3064 struct inet_connection_sock *icsk = inet_csk(sk); 3065 struct tcp_sock *tp = tcp_sk(sk); 3066 struct net *net = sock_net(sk); 3067 int val, len; 3068 3069 if (get_user(len, optlen)) 3070 return -EFAULT; 3071 3072 len = min_t(unsigned int, len, sizeof(int)); 3073 3074 if (len < 0) 3075 return -EINVAL; 3076 3077 switch (optname) { 3078 case TCP_MAXSEG: 3079 val = tp->mss_cache; 3080 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3081 val = tp->rx_opt.user_mss; 3082 if (tp->repair) 3083 val = tp->rx_opt.mss_clamp; 3084 break; 3085 case TCP_NODELAY: 3086 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3087 break; 3088 case TCP_CORK: 3089 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3090 break; 3091 case TCP_KEEPIDLE: 3092 val = keepalive_time_when(tp) / HZ; 3093 break; 3094 case TCP_KEEPINTVL: 3095 val = keepalive_intvl_when(tp) / HZ; 3096 break; 3097 case TCP_KEEPCNT: 3098 val = keepalive_probes(tp); 3099 break; 3100 case TCP_SYNCNT: 3101 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3102 break; 3103 case TCP_LINGER2: 3104 val = tp->linger2; 3105 if (val >= 0) 3106 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3107 break; 3108 case TCP_DEFER_ACCEPT: 3109 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3110 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3111 break; 3112 case TCP_WINDOW_CLAMP: 3113 val = tp->window_clamp; 3114 break; 3115 case TCP_INFO: { 3116 struct tcp_info info; 3117 3118 if (get_user(len, optlen)) 3119 return -EFAULT; 3120 3121 tcp_get_info(sk, &info); 3122 3123 len = min_t(unsigned int, len, sizeof(info)); 3124 if (put_user(len, optlen)) 3125 return -EFAULT; 3126 if (copy_to_user(optval, &info, len)) 3127 return -EFAULT; 3128 return 0; 3129 } 3130 case TCP_CC_INFO: { 3131 const struct tcp_congestion_ops *ca_ops; 3132 union tcp_cc_info info; 3133 size_t sz = 0; 3134 int attr; 3135 3136 if (get_user(len, optlen)) 3137 return -EFAULT; 3138 3139 ca_ops = icsk->icsk_ca_ops; 3140 if (ca_ops && ca_ops->get_info) 3141 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3142 3143 len = min_t(unsigned int, len, sz); 3144 if (put_user(len, optlen)) 3145 return -EFAULT; 3146 if (copy_to_user(optval, &info, len)) 3147 return -EFAULT; 3148 return 0; 3149 } 3150 case TCP_QUICKACK: 3151 val = !icsk->icsk_ack.pingpong; 3152 break; 3153 3154 case TCP_CONGESTION: 3155 if (get_user(len, optlen)) 3156 return -EFAULT; 3157 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3158 if (put_user(len, optlen)) 3159 return -EFAULT; 3160 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3161 return -EFAULT; 3162 return 0; 3163 3164 case TCP_ULP: 3165 if (get_user(len, optlen)) 3166 return -EFAULT; 3167 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3168 if (!icsk->icsk_ulp_ops) { 3169 if (put_user(0, optlen)) 3170 return -EFAULT; 3171 return 0; 3172 } 3173 if (put_user(len, optlen)) 3174 return -EFAULT; 3175 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3176 return -EFAULT; 3177 return 0; 3178 3179 case TCP_FASTOPEN_KEY: { 3180 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3181 struct tcp_fastopen_context *ctx; 3182 3183 if (get_user(len, optlen)) 3184 return -EFAULT; 3185 3186 rcu_read_lock(); 3187 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3188 if (ctx) 3189 memcpy(key, ctx->key, sizeof(key)); 3190 else 3191 len = 0; 3192 rcu_read_unlock(); 3193 3194 len = min_t(unsigned int, len, sizeof(key)); 3195 if (put_user(len, optlen)) 3196 return -EFAULT; 3197 if (copy_to_user(optval, key, len)) 3198 return -EFAULT; 3199 return 0; 3200 } 3201 case TCP_THIN_LINEAR_TIMEOUTS: 3202 val = tp->thin_lto; 3203 break; 3204 3205 case TCP_THIN_DUPACK: 3206 val = 0; 3207 break; 3208 3209 case TCP_REPAIR: 3210 val = tp->repair; 3211 break; 3212 3213 case TCP_REPAIR_QUEUE: 3214 if (tp->repair) 3215 val = tp->repair_queue; 3216 else 3217 return -EINVAL; 3218 break; 3219 3220 case TCP_REPAIR_WINDOW: { 3221 struct tcp_repair_window opt; 3222 3223 if (get_user(len, optlen)) 3224 return -EFAULT; 3225 3226 if (len != sizeof(opt)) 3227 return -EINVAL; 3228 3229 if (!tp->repair) 3230 return -EPERM; 3231 3232 opt.snd_wl1 = tp->snd_wl1; 3233 opt.snd_wnd = tp->snd_wnd; 3234 opt.max_window = tp->max_window; 3235 opt.rcv_wnd = tp->rcv_wnd; 3236 opt.rcv_wup = tp->rcv_wup; 3237 3238 if (copy_to_user(optval, &opt, len)) 3239 return -EFAULT; 3240 return 0; 3241 } 3242 case TCP_QUEUE_SEQ: 3243 if (tp->repair_queue == TCP_SEND_QUEUE) 3244 val = tp->write_seq; 3245 else if (tp->repair_queue == TCP_RECV_QUEUE) 3246 val = tp->rcv_nxt; 3247 else 3248 return -EINVAL; 3249 break; 3250 3251 case TCP_USER_TIMEOUT: 3252 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3253 break; 3254 3255 case TCP_FASTOPEN: 3256 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3257 break; 3258 3259 case TCP_FASTOPEN_CONNECT: 3260 val = tp->fastopen_connect; 3261 break; 3262 3263 case TCP_FASTOPEN_NO_COOKIE: 3264 val = tp->fastopen_no_cookie; 3265 break; 3266 3267 case TCP_TIMESTAMP: 3268 val = tcp_time_stamp_raw() + tp->tsoffset; 3269 break; 3270 case TCP_NOTSENT_LOWAT: 3271 val = tp->notsent_lowat; 3272 break; 3273 case TCP_SAVE_SYN: 3274 val = tp->save_syn; 3275 break; 3276 case TCP_SAVED_SYN: { 3277 if (get_user(len, optlen)) 3278 return -EFAULT; 3279 3280 lock_sock(sk); 3281 if (tp->saved_syn) { 3282 if (len < tp->saved_syn[0]) { 3283 if (put_user(tp->saved_syn[0], optlen)) { 3284 release_sock(sk); 3285 return -EFAULT; 3286 } 3287 release_sock(sk); 3288 return -EINVAL; 3289 } 3290 len = tp->saved_syn[0]; 3291 if (put_user(len, optlen)) { 3292 release_sock(sk); 3293 return -EFAULT; 3294 } 3295 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3296 release_sock(sk); 3297 return -EFAULT; 3298 } 3299 tcp_saved_syn_free(tp); 3300 release_sock(sk); 3301 } else { 3302 release_sock(sk); 3303 len = 0; 3304 if (put_user(len, optlen)) 3305 return -EFAULT; 3306 } 3307 return 0; 3308 } 3309 default: 3310 return -ENOPROTOOPT; 3311 } 3312 3313 if (put_user(len, optlen)) 3314 return -EFAULT; 3315 if (copy_to_user(optval, &val, len)) 3316 return -EFAULT; 3317 return 0; 3318 } 3319 3320 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3321 int __user *optlen) 3322 { 3323 struct inet_connection_sock *icsk = inet_csk(sk); 3324 3325 if (level != SOL_TCP) 3326 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3327 optval, optlen); 3328 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3329 } 3330 EXPORT_SYMBOL(tcp_getsockopt); 3331 3332 #ifdef CONFIG_COMPAT 3333 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3334 char __user *optval, int __user *optlen) 3335 { 3336 if (level != SOL_TCP) 3337 return inet_csk_compat_getsockopt(sk, level, optname, 3338 optval, optlen); 3339 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3340 } 3341 EXPORT_SYMBOL(compat_tcp_getsockopt); 3342 #endif 3343 3344 #ifdef CONFIG_TCP_MD5SIG 3345 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3346 static DEFINE_MUTEX(tcp_md5sig_mutex); 3347 static bool tcp_md5sig_pool_populated = false; 3348 3349 static void __tcp_alloc_md5sig_pool(void) 3350 { 3351 struct crypto_ahash *hash; 3352 int cpu; 3353 3354 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3355 if (IS_ERR(hash)) 3356 return; 3357 3358 for_each_possible_cpu(cpu) { 3359 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3360 struct ahash_request *req; 3361 3362 if (!scratch) { 3363 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3364 sizeof(struct tcphdr), 3365 GFP_KERNEL, 3366 cpu_to_node(cpu)); 3367 if (!scratch) 3368 return; 3369 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3370 } 3371 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3372 continue; 3373 3374 req = ahash_request_alloc(hash, GFP_KERNEL); 3375 if (!req) 3376 return; 3377 3378 ahash_request_set_callback(req, 0, NULL, NULL); 3379 3380 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3381 } 3382 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3383 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3384 */ 3385 smp_wmb(); 3386 tcp_md5sig_pool_populated = true; 3387 } 3388 3389 bool tcp_alloc_md5sig_pool(void) 3390 { 3391 if (unlikely(!tcp_md5sig_pool_populated)) { 3392 mutex_lock(&tcp_md5sig_mutex); 3393 3394 if (!tcp_md5sig_pool_populated) 3395 __tcp_alloc_md5sig_pool(); 3396 3397 mutex_unlock(&tcp_md5sig_mutex); 3398 } 3399 return tcp_md5sig_pool_populated; 3400 } 3401 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3402 3403 3404 /** 3405 * tcp_get_md5sig_pool - get md5sig_pool for this user 3406 * 3407 * We use percpu structure, so if we succeed, we exit with preemption 3408 * and BH disabled, to make sure another thread or softirq handling 3409 * wont try to get same context. 3410 */ 3411 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3412 { 3413 local_bh_disable(); 3414 3415 if (tcp_md5sig_pool_populated) { 3416 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3417 smp_rmb(); 3418 return this_cpu_ptr(&tcp_md5sig_pool); 3419 } 3420 local_bh_enable(); 3421 return NULL; 3422 } 3423 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3424 3425 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3426 const struct sk_buff *skb, unsigned int header_len) 3427 { 3428 struct scatterlist sg; 3429 const struct tcphdr *tp = tcp_hdr(skb); 3430 struct ahash_request *req = hp->md5_req; 3431 unsigned int i; 3432 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3433 skb_headlen(skb) - header_len : 0; 3434 const struct skb_shared_info *shi = skb_shinfo(skb); 3435 struct sk_buff *frag_iter; 3436 3437 sg_init_table(&sg, 1); 3438 3439 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3440 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3441 if (crypto_ahash_update(req)) 3442 return 1; 3443 3444 for (i = 0; i < shi->nr_frags; ++i) { 3445 const struct skb_frag_struct *f = &shi->frags[i]; 3446 unsigned int offset = f->page_offset; 3447 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3448 3449 sg_set_page(&sg, page, skb_frag_size(f), 3450 offset_in_page(offset)); 3451 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3452 if (crypto_ahash_update(req)) 3453 return 1; 3454 } 3455 3456 skb_walk_frags(skb, frag_iter) 3457 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3458 return 1; 3459 3460 return 0; 3461 } 3462 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3463 3464 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3465 { 3466 struct scatterlist sg; 3467 3468 sg_init_one(&sg, key->key, key->keylen); 3469 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3470 return crypto_ahash_update(hp->md5_req); 3471 } 3472 EXPORT_SYMBOL(tcp_md5_hash_key); 3473 3474 #endif 3475 3476 void tcp_done(struct sock *sk) 3477 { 3478 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3479 3480 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3481 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3482 3483 tcp_set_state(sk, TCP_CLOSE); 3484 tcp_clear_xmit_timers(sk); 3485 if (req) 3486 reqsk_fastopen_remove(sk, req, false); 3487 3488 sk->sk_shutdown = SHUTDOWN_MASK; 3489 3490 if (!sock_flag(sk, SOCK_DEAD)) 3491 sk->sk_state_change(sk); 3492 else 3493 inet_csk_destroy_sock(sk); 3494 } 3495 EXPORT_SYMBOL_GPL(tcp_done); 3496 3497 int tcp_abort(struct sock *sk, int err) 3498 { 3499 if (!sk_fullsock(sk)) { 3500 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3501 struct request_sock *req = inet_reqsk(sk); 3502 3503 local_bh_disable(); 3504 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3505 req); 3506 local_bh_enable(); 3507 return 0; 3508 } 3509 return -EOPNOTSUPP; 3510 } 3511 3512 /* Don't race with userspace socket closes such as tcp_close. */ 3513 lock_sock(sk); 3514 3515 if (sk->sk_state == TCP_LISTEN) { 3516 tcp_set_state(sk, TCP_CLOSE); 3517 inet_csk_listen_stop(sk); 3518 } 3519 3520 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3521 local_bh_disable(); 3522 bh_lock_sock(sk); 3523 3524 if (!sock_flag(sk, SOCK_DEAD)) { 3525 sk->sk_err = err; 3526 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3527 smp_wmb(); 3528 sk->sk_error_report(sk); 3529 if (tcp_need_reset(sk->sk_state)) 3530 tcp_send_active_reset(sk, GFP_ATOMIC); 3531 tcp_done(sk); 3532 } 3533 3534 bh_unlock_sock(sk); 3535 local_bh_enable(); 3536 release_sock(sk); 3537 return 0; 3538 } 3539 EXPORT_SYMBOL_GPL(tcp_abort); 3540 3541 extern struct tcp_congestion_ops tcp_reno; 3542 3543 static __initdata unsigned long thash_entries; 3544 static int __init set_thash_entries(char *str) 3545 { 3546 ssize_t ret; 3547 3548 if (!str) 3549 return 0; 3550 3551 ret = kstrtoul(str, 0, &thash_entries); 3552 if (ret) 3553 return 0; 3554 3555 return 1; 3556 } 3557 __setup("thash_entries=", set_thash_entries); 3558 3559 static void __init tcp_init_mem(void) 3560 { 3561 unsigned long limit = nr_free_buffer_pages() / 16; 3562 3563 limit = max(limit, 128UL); 3564 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3565 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3566 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3567 } 3568 3569 void __init tcp_init(void) 3570 { 3571 int max_rshare, max_wshare, cnt; 3572 unsigned long limit; 3573 unsigned int i; 3574 3575 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3576 FIELD_SIZEOF(struct sk_buff, cb)); 3577 3578 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3579 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3580 inet_hashinfo_init(&tcp_hashinfo); 3581 tcp_hashinfo.bind_bucket_cachep = 3582 kmem_cache_create("tcp_bind_bucket", 3583 sizeof(struct inet_bind_bucket), 0, 3584 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3585 3586 /* Size and allocate the main established and bind bucket 3587 * hash tables. 3588 * 3589 * The methodology is similar to that of the buffer cache. 3590 */ 3591 tcp_hashinfo.ehash = 3592 alloc_large_system_hash("TCP established", 3593 sizeof(struct inet_ehash_bucket), 3594 thash_entries, 3595 17, /* one slot per 128 KB of memory */ 3596 0, 3597 NULL, 3598 &tcp_hashinfo.ehash_mask, 3599 0, 3600 thash_entries ? 0 : 512 * 1024); 3601 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3602 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3603 3604 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3605 panic("TCP: failed to alloc ehash_locks"); 3606 tcp_hashinfo.bhash = 3607 alloc_large_system_hash("TCP bind", 3608 sizeof(struct inet_bind_hashbucket), 3609 tcp_hashinfo.ehash_mask + 1, 3610 17, /* one slot per 128 KB of memory */ 3611 0, 3612 &tcp_hashinfo.bhash_size, 3613 NULL, 3614 0, 3615 64 * 1024); 3616 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3617 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3618 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3619 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3620 } 3621 3622 3623 cnt = tcp_hashinfo.ehash_mask + 1; 3624 sysctl_tcp_max_orphans = cnt / 2; 3625 3626 tcp_init_mem(); 3627 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3628 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3629 max_wshare = min(4UL*1024*1024, limit); 3630 max_rshare = min(6UL*1024*1024, limit); 3631 3632 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3633 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3634 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3635 3636 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3637 init_net.ipv4.sysctl_tcp_rmem[1] = 87380; 3638 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare); 3639 3640 pr_info("Hash tables configured (established %u bind %u)\n", 3641 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3642 3643 tcp_v4_init(); 3644 tcp_metrics_init(); 3645 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3646 tcp_tasklet_init(); 3647 } 3648