xref: /linux/net/ipv4/tcp.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 
461 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
462 	sk_sockets_allocated_inc(sk);
463 }
464 EXPORT_SYMBOL(tcp_init_sock);
465 
466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
467 {
468 	struct sk_buff *skb = tcp_write_queue_tail(sk);
469 
470 	if (tsflags && skb) {
471 		struct skb_shared_info *shinfo = skb_shinfo(skb);
472 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
473 
474 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
475 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
476 			tcb->txstamp_ack = 1;
477 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
478 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
479 	}
480 }
481 
482 static bool tcp_stream_is_readable(struct sock *sk, int target)
483 {
484 	if (tcp_epollin_ready(sk, target))
485 		return true;
486 	return sk_is_readable(sk);
487 }
488 
489 /*
490  *	Wait for a TCP event.
491  *
492  *	Note that we don't need to lock the socket, as the upper poll layers
493  *	take care of normal races (between the test and the event) and we don't
494  *	go look at any of the socket buffers directly.
495  */
496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 	__poll_t mask;
499 	struct sock *sk = sock->sk;
500 	const struct tcp_sock *tp = tcp_sk(sk);
501 	u8 shutdown;
502 	int state;
503 
504 	sock_poll_wait(file, sock, wait);
505 
506 	state = inet_sk_state_load(sk);
507 	if (state == TCP_LISTEN)
508 		return inet_csk_listen_poll(sk);
509 
510 	/* Socket is not locked. We are protected from async events
511 	 * by poll logic and correct handling of state changes
512 	 * made by other threads is impossible in any case.
513 	 */
514 
515 	mask = 0;
516 
517 	/*
518 	 * EPOLLHUP is certainly not done right. But poll() doesn't
519 	 * have a notion of HUP in just one direction, and for a
520 	 * socket the read side is more interesting.
521 	 *
522 	 * Some poll() documentation says that EPOLLHUP is incompatible
523 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
524 	 * all. But careful, it tends to be safer to return too many
525 	 * bits than too few, and you can easily break real applications
526 	 * if you don't tell them that something has hung up!
527 	 *
528 	 * Check-me.
529 	 *
530 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
531 	 * our fs/select.c). It means that after we received EOF,
532 	 * poll always returns immediately, making impossible poll() on write()
533 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
534 	 * if and only if shutdown has been made in both directions.
535 	 * Actually, it is interesting to look how Solaris and DUX
536 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
537 	 * then we could set it on SND_SHUTDOWN. BTW examples given
538 	 * in Stevens' books assume exactly this behaviour, it explains
539 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
540 	 *
541 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
542 	 * blocking on fresh not-connected or disconnected socket. --ANK
543 	 */
544 	shutdown = READ_ONCE(sk->sk_shutdown);
545 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
546 		mask |= EPOLLHUP;
547 	if (shutdown & RCV_SHUTDOWN)
548 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
549 
550 	/* Connected or passive Fast Open socket? */
551 	if (state != TCP_SYN_SENT &&
552 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
553 		int target = sock_rcvlowat(sk, 0, INT_MAX);
554 		u16 urg_data = READ_ONCE(tp->urg_data);
555 
556 		if (unlikely(urg_data) &&
557 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
558 		    !sock_flag(sk, SOCK_URGINLINE))
559 			target++;
560 
561 		if (tcp_stream_is_readable(sk, target))
562 			mask |= EPOLLIN | EPOLLRDNORM;
563 
564 		if (!(shutdown & SEND_SHUTDOWN)) {
565 			if (__sk_stream_is_writeable(sk, 1)) {
566 				mask |= EPOLLOUT | EPOLLWRNORM;
567 			} else {  /* send SIGIO later */
568 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
569 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
570 
571 				/* Race breaker. If space is freed after
572 				 * wspace test but before the flags are set,
573 				 * IO signal will be lost. Memory barrier
574 				 * pairs with the input side.
575 				 */
576 				smp_mb__after_atomic();
577 				if (__sk_stream_is_writeable(sk, 1))
578 					mask |= EPOLLOUT | EPOLLWRNORM;
579 			}
580 		} else
581 			mask |= EPOLLOUT | EPOLLWRNORM;
582 
583 		if (urg_data & TCP_URG_VALID)
584 			mask |= EPOLLPRI;
585 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
586 		/* Active TCP fastopen socket with defer_connect
587 		 * Return EPOLLOUT so application can call write()
588 		 * in order for kernel to generate SYN+data
589 		 */
590 		mask |= EPOLLOUT | EPOLLWRNORM;
591 	}
592 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
593 	smp_rmb();
594 	if (READ_ONCE(sk->sk_err) ||
595 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
596 		mask |= EPOLLERR;
597 
598 	return mask;
599 }
600 EXPORT_SYMBOL(tcp_poll);
601 
602 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
603 {
604 	struct tcp_sock *tp = tcp_sk(sk);
605 	int answ;
606 	bool slow;
607 
608 	switch (cmd) {
609 	case SIOCINQ:
610 		if (sk->sk_state == TCP_LISTEN)
611 			return -EINVAL;
612 
613 		slow = lock_sock_fast(sk);
614 		answ = tcp_inq(sk);
615 		unlock_sock_fast(sk, slow);
616 		break;
617 	case SIOCATMARK:
618 		answ = READ_ONCE(tp->urg_data) &&
619 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
620 		break;
621 	case SIOCOUTQ:
622 		if (sk->sk_state == TCP_LISTEN)
623 			return -EINVAL;
624 
625 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
626 			answ = 0;
627 		else
628 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
629 		break;
630 	case SIOCOUTQNSD:
631 		if (sk->sk_state == TCP_LISTEN)
632 			return -EINVAL;
633 
634 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
635 			answ = 0;
636 		else
637 			answ = READ_ONCE(tp->write_seq) -
638 			       READ_ONCE(tp->snd_nxt);
639 		break;
640 	default:
641 		return -ENOIOCTLCMD;
642 	}
643 
644 	*karg = answ;
645 	return 0;
646 }
647 EXPORT_SYMBOL(tcp_ioctl);
648 
649 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650 {
651 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 	tp->pushed_seq = tp->write_seq;
653 }
654 
655 static inline bool forced_push(const struct tcp_sock *tp)
656 {
657 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658 }
659 
660 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
661 {
662 	struct tcp_sock *tp = tcp_sk(sk);
663 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664 
665 	tcb->seq     = tcb->end_seq = tp->write_seq;
666 	tcb->tcp_flags = TCPHDR_ACK;
667 	__skb_header_release(skb);
668 	tcp_add_write_queue_tail(sk, skb);
669 	sk_wmem_queued_add(sk, skb->truesize);
670 	sk_mem_charge(sk, skb->truesize);
671 	if (tp->nonagle & TCP_NAGLE_PUSH)
672 		tp->nonagle &= ~TCP_NAGLE_PUSH;
673 
674 	tcp_slow_start_after_idle_check(sk);
675 }
676 
677 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
678 {
679 	if (flags & MSG_OOB)
680 		tp->snd_up = tp->write_seq;
681 }
682 
683 /* If a not yet filled skb is pushed, do not send it if
684  * we have data packets in Qdisc or NIC queues :
685  * Because TX completion will happen shortly, it gives a chance
686  * to coalesce future sendmsg() payload into this skb, without
687  * need for a timer, and with no latency trade off.
688  * As packets containing data payload have a bigger truesize
689  * than pure acks (dataless) packets, the last checks prevent
690  * autocorking if we only have an ACK in Qdisc/NIC queues,
691  * or if TX completion was delayed after we processed ACK packet.
692  */
693 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
694 				int size_goal)
695 {
696 	return skb->len < size_goal &&
697 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
698 	       !tcp_rtx_queue_empty(sk) &&
699 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
700 	       tcp_skb_can_collapse_to(skb);
701 }
702 
703 void tcp_push(struct sock *sk, int flags, int mss_now,
704 	      int nonagle, int size_goal)
705 {
706 	struct tcp_sock *tp = tcp_sk(sk);
707 	struct sk_buff *skb;
708 
709 	skb = tcp_write_queue_tail(sk);
710 	if (!skb)
711 		return;
712 	if (!(flags & MSG_MORE) || forced_push(tp))
713 		tcp_mark_push(tp, skb);
714 
715 	tcp_mark_urg(tp, flags);
716 
717 	if (tcp_should_autocork(sk, skb, size_goal)) {
718 
719 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
720 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
721 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
722 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
723 		}
724 		/* It is possible TX completion already happened
725 		 * before we set TSQ_THROTTLED.
726 		 */
727 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
728 			return;
729 	}
730 
731 	if (flags & MSG_MORE)
732 		nonagle = TCP_NAGLE_CORK;
733 
734 	__tcp_push_pending_frames(sk, mss_now, nonagle);
735 }
736 
737 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
738 				unsigned int offset, size_t len)
739 {
740 	struct tcp_splice_state *tss = rd_desc->arg.data;
741 	int ret;
742 
743 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
744 			      min(rd_desc->count, len), tss->flags);
745 	if (ret > 0)
746 		rd_desc->count -= ret;
747 	return ret;
748 }
749 
750 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
751 {
752 	/* Store TCP splice context information in read_descriptor_t. */
753 	read_descriptor_t rd_desc = {
754 		.arg.data = tss,
755 		.count	  = tss->len,
756 	};
757 
758 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
759 }
760 
761 /**
762  *  tcp_splice_read - splice data from TCP socket to a pipe
763  * @sock:	socket to splice from
764  * @ppos:	position (not valid)
765  * @pipe:	pipe to splice to
766  * @len:	number of bytes to splice
767  * @flags:	splice modifier flags
768  *
769  * Description:
770  *    Will read pages from given socket and fill them into a pipe.
771  *
772  **/
773 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
774 			struct pipe_inode_info *pipe, size_t len,
775 			unsigned int flags)
776 {
777 	struct sock *sk = sock->sk;
778 	struct tcp_splice_state tss = {
779 		.pipe = pipe,
780 		.len = len,
781 		.flags = flags,
782 	};
783 	long timeo;
784 	ssize_t spliced;
785 	int ret;
786 
787 	sock_rps_record_flow(sk);
788 	/*
789 	 * We can't seek on a socket input
790 	 */
791 	if (unlikely(*ppos))
792 		return -ESPIPE;
793 
794 	ret = spliced = 0;
795 
796 	lock_sock(sk);
797 
798 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
799 	while (tss.len) {
800 		ret = __tcp_splice_read(sk, &tss);
801 		if (ret < 0)
802 			break;
803 		else if (!ret) {
804 			if (spliced)
805 				break;
806 			if (sock_flag(sk, SOCK_DONE))
807 				break;
808 			if (sk->sk_err) {
809 				ret = sock_error(sk);
810 				break;
811 			}
812 			if (sk->sk_shutdown & RCV_SHUTDOWN)
813 				break;
814 			if (sk->sk_state == TCP_CLOSE) {
815 				/*
816 				 * This occurs when user tries to read
817 				 * from never connected socket.
818 				 */
819 				ret = -ENOTCONN;
820 				break;
821 			}
822 			if (!timeo) {
823 				ret = -EAGAIN;
824 				break;
825 			}
826 			/* if __tcp_splice_read() got nothing while we have
827 			 * an skb in receive queue, we do not want to loop.
828 			 * This might happen with URG data.
829 			 */
830 			if (!skb_queue_empty(&sk->sk_receive_queue))
831 				break;
832 			sk_wait_data(sk, &timeo, NULL);
833 			if (signal_pending(current)) {
834 				ret = sock_intr_errno(timeo);
835 				break;
836 			}
837 			continue;
838 		}
839 		tss.len -= ret;
840 		spliced += ret;
841 
842 		if (!tss.len || !timeo)
843 			break;
844 		release_sock(sk);
845 		lock_sock(sk);
846 
847 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
848 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
849 		    signal_pending(current))
850 			break;
851 	}
852 
853 	release_sock(sk);
854 
855 	if (spliced)
856 		return spliced;
857 
858 	return ret;
859 }
860 EXPORT_SYMBOL(tcp_splice_read);
861 
862 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
863 				     bool force_schedule)
864 {
865 	struct sk_buff *skb;
866 
867 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
868 	if (likely(skb)) {
869 		bool mem_scheduled;
870 
871 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
872 		if (force_schedule) {
873 			mem_scheduled = true;
874 			sk_forced_mem_schedule(sk, skb->truesize);
875 		} else {
876 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
877 		}
878 		if (likely(mem_scheduled)) {
879 			skb_reserve(skb, MAX_TCP_HEADER);
880 			skb->ip_summed = CHECKSUM_PARTIAL;
881 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
882 			return skb;
883 		}
884 		__kfree_skb(skb);
885 	} else {
886 		sk->sk_prot->enter_memory_pressure(sk);
887 		sk_stream_moderate_sndbuf(sk);
888 	}
889 	return NULL;
890 }
891 
892 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
893 				       int large_allowed)
894 {
895 	struct tcp_sock *tp = tcp_sk(sk);
896 	u32 new_size_goal, size_goal;
897 
898 	if (!large_allowed)
899 		return mss_now;
900 
901 	/* Note : tcp_tso_autosize() will eventually split this later */
902 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
903 
904 	/* We try hard to avoid divides here */
905 	size_goal = tp->gso_segs * mss_now;
906 	if (unlikely(new_size_goal < size_goal ||
907 		     new_size_goal >= size_goal + mss_now)) {
908 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
909 				     sk->sk_gso_max_segs);
910 		size_goal = tp->gso_segs * mss_now;
911 	}
912 
913 	return max(size_goal, mss_now);
914 }
915 
916 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
917 {
918 	int mss_now;
919 
920 	mss_now = tcp_current_mss(sk);
921 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
922 
923 	return mss_now;
924 }
925 
926 /* In some cases, both sendmsg() could have added an skb to the write queue,
927  * but failed adding payload on it.  We need to remove it to consume less
928  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
929  * epoll() users.
930  */
931 void tcp_remove_empty_skb(struct sock *sk)
932 {
933 	struct sk_buff *skb = tcp_write_queue_tail(sk);
934 
935 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
936 		tcp_unlink_write_queue(skb, sk);
937 		if (tcp_write_queue_empty(sk))
938 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
939 		tcp_wmem_free_skb(sk, skb);
940 	}
941 }
942 
943 /* skb changing from pure zc to mixed, must charge zc */
944 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
945 {
946 	if (unlikely(skb_zcopy_pure(skb))) {
947 		u32 extra = skb->truesize -
948 			    SKB_TRUESIZE(skb_end_offset(skb));
949 
950 		if (!sk_wmem_schedule(sk, extra))
951 			return -ENOMEM;
952 
953 		sk_mem_charge(sk, extra);
954 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
955 	}
956 	return 0;
957 }
958 
959 
960 int tcp_wmem_schedule(struct sock *sk, int copy)
961 {
962 	int left;
963 
964 	if (likely(sk_wmem_schedule(sk, copy)))
965 		return copy;
966 
967 	/* We could be in trouble if we have nothing queued.
968 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
969 	 * to guarantee some progress.
970 	 */
971 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
972 	if (left > 0)
973 		sk_forced_mem_schedule(sk, min(left, copy));
974 	return min(copy, sk->sk_forward_alloc);
975 }
976 
977 void tcp_free_fastopen_req(struct tcp_sock *tp)
978 {
979 	if (tp->fastopen_req) {
980 		kfree(tp->fastopen_req);
981 		tp->fastopen_req = NULL;
982 	}
983 }
984 
985 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
986 			 size_t size, struct ubuf_info *uarg)
987 {
988 	struct tcp_sock *tp = tcp_sk(sk);
989 	struct inet_sock *inet = inet_sk(sk);
990 	struct sockaddr *uaddr = msg->msg_name;
991 	int err, flags;
992 
993 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
994 	      TFO_CLIENT_ENABLE) ||
995 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
996 	     uaddr->sa_family == AF_UNSPEC))
997 		return -EOPNOTSUPP;
998 	if (tp->fastopen_req)
999 		return -EALREADY; /* Another Fast Open is in progress */
1000 
1001 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1002 				   sk->sk_allocation);
1003 	if (unlikely(!tp->fastopen_req))
1004 		return -ENOBUFS;
1005 	tp->fastopen_req->data = msg;
1006 	tp->fastopen_req->size = size;
1007 	tp->fastopen_req->uarg = uarg;
1008 
1009 	if (inet->defer_connect) {
1010 		err = tcp_connect(sk);
1011 		/* Same failure procedure as in tcp_v4/6_connect */
1012 		if (err) {
1013 			tcp_set_state(sk, TCP_CLOSE);
1014 			inet->inet_dport = 0;
1015 			sk->sk_route_caps = 0;
1016 		}
1017 	}
1018 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1019 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1020 				    msg->msg_namelen, flags, 1);
1021 	/* fastopen_req could already be freed in __inet_stream_connect
1022 	 * if the connection times out or gets rst
1023 	 */
1024 	if (tp->fastopen_req) {
1025 		*copied = tp->fastopen_req->copied;
1026 		tcp_free_fastopen_req(tp);
1027 		inet->defer_connect = 0;
1028 	}
1029 	return err;
1030 }
1031 
1032 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1033 {
1034 	struct tcp_sock *tp = tcp_sk(sk);
1035 	struct ubuf_info *uarg = NULL;
1036 	struct sk_buff *skb;
1037 	struct sockcm_cookie sockc;
1038 	int flags, err, copied = 0;
1039 	int mss_now = 0, size_goal, copied_syn = 0;
1040 	int process_backlog = 0;
1041 	int zc = 0;
1042 	long timeo;
1043 
1044 	flags = msg->msg_flags;
1045 
1046 	if ((flags & MSG_ZEROCOPY) && size) {
1047 		if (msg->msg_ubuf) {
1048 			uarg = msg->msg_ubuf;
1049 			if (sk->sk_route_caps & NETIF_F_SG)
1050 				zc = MSG_ZEROCOPY;
1051 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1052 			skb = tcp_write_queue_tail(sk);
1053 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1054 			if (!uarg) {
1055 				err = -ENOBUFS;
1056 				goto out_err;
1057 			}
1058 			if (sk->sk_route_caps & NETIF_F_SG)
1059 				zc = MSG_ZEROCOPY;
1060 			else
1061 				uarg_to_msgzc(uarg)->zerocopy = 0;
1062 		}
1063 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1064 		if (sk->sk_route_caps & NETIF_F_SG)
1065 			zc = MSG_SPLICE_PAGES;
1066 	}
1067 
1068 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1069 	    !tp->repair) {
1070 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1071 		if (err == -EINPROGRESS && copied_syn > 0)
1072 			goto out;
1073 		else if (err)
1074 			goto out_err;
1075 	}
1076 
1077 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1078 
1079 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1080 
1081 	/* Wait for a connection to finish. One exception is TCP Fast Open
1082 	 * (passive side) where data is allowed to be sent before a connection
1083 	 * is fully established.
1084 	 */
1085 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1086 	    !tcp_passive_fastopen(sk)) {
1087 		err = sk_stream_wait_connect(sk, &timeo);
1088 		if (err != 0)
1089 			goto do_error;
1090 	}
1091 
1092 	if (unlikely(tp->repair)) {
1093 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1094 			copied = tcp_send_rcvq(sk, msg, size);
1095 			goto out_nopush;
1096 		}
1097 
1098 		err = -EINVAL;
1099 		if (tp->repair_queue == TCP_NO_QUEUE)
1100 			goto out_err;
1101 
1102 		/* 'common' sending to sendq */
1103 	}
1104 
1105 	sockcm_init(&sockc, sk);
1106 	if (msg->msg_controllen) {
1107 		err = sock_cmsg_send(sk, msg, &sockc);
1108 		if (unlikely(err)) {
1109 			err = -EINVAL;
1110 			goto out_err;
1111 		}
1112 	}
1113 
1114 	/* This should be in poll */
1115 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1116 
1117 	/* Ok commence sending. */
1118 	copied = 0;
1119 
1120 restart:
1121 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1122 
1123 	err = -EPIPE;
1124 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1125 		goto do_error;
1126 
1127 	while (msg_data_left(msg)) {
1128 		ssize_t copy = 0;
1129 
1130 		skb = tcp_write_queue_tail(sk);
1131 		if (skb)
1132 			copy = size_goal - skb->len;
1133 
1134 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1135 			bool first_skb;
1136 
1137 new_segment:
1138 			if (!sk_stream_memory_free(sk))
1139 				goto wait_for_space;
1140 
1141 			if (unlikely(process_backlog >= 16)) {
1142 				process_backlog = 0;
1143 				if (sk_flush_backlog(sk))
1144 					goto restart;
1145 			}
1146 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1147 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1148 						   first_skb);
1149 			if (!skb)
1150 				goto wait_for_space;
1151 
1152 			process_backlog++;
1153 
1154 			tcp_skb_entail(sk, skb);
1155 			copy = size_goal;
1156 
1157 			/* All packets are restored as if they have
1158 			 * already been sent. skb_mstamp_ns isn't set to
1159 			 * avoid wrong rtt estimation.
1160 			 */
1161 			if (tp->repair)
1162 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1163 		}
1164 
1165 		/* Try to append data to the end of skb. */
1166 		if (copy > msg_data_left(msg))
1167 			copy = msg_data_left(msg);
1168 
1169 		if (zc == 0) {
1170 			bool merge = true;
1171 			int i = skb_shinfo(skb)->nr_frags;
1172 			struct page_frag *pfrag = sk_page_frag(sk);
1173 
1174 			if (!sk_page_frag_refill(sk, pfrag))
1175 				goto wait_for_space;
1176 
1177 			if (!skb_can_coalesce(skb, i, pfrag->page,
1178 					      pfrag->offset)) {
1179 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1180 					tcp_mark_push(tp, skb);
1181 					goto new_segment;
1182 				}
1183 				merge = false;
1184 			}
1185 
1186 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1187 
1188 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1189 				if (tcp_downgrade_zcopy_pure(sk, skb))
1190 					goto wait_for_space;
1191 				skb_zcopy_downgrade_managed(skb);
1192 			}
1193 
1194 			copy = tcp_wmem_schedule(sk, copy);
1195 			if (!copy)
1196 				goto wait_for_space;
1197 
1198 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1199 						       pfrag->page,
1200 						       pfrag->offset,
1201 						       copy);
1202 			if (err)
1203 				goto do_error;
1204 
1205 			/* Update the skb. */
1206 			if (merge) {
1207 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1208 			} else {
1209 				skb_fill_page_desc(skb, i, pfrag->page,
1210 						   pfrag->offset, copy);
1211 				page_ref_inc(pfrag->page);
1212 			}
1213 			pfrag->offset += copy;
1214 		} else if (zc == MSG_ZEROCOPY)  {
1215 			/* First append to a fragless skb builds initial
1216 			 * pure zerocopy skb
1217 			 */
1218 			if (!skb->len)
1219 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1220 
1221 			if (!skb_zcopy_pure(skb)) {
1222 				copy = tcp_wmem_schedule(sk, copy);
1223 				if (!copy)
1224 					goto wait_for_space;
1225 			}
1226 
1227 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1228 			if (err == -EMSGSIZE || err == -EEXIST) {
1229 				tcp_mark_push(tp, skb);
1230 				goto new_segment;
1231 			}
1232 			if (err < 0)
1233 				goto do_error;
1234 			copy = err;
1235 		} else if (zc == MSG_SPLICE_PAGES) {
1236 			/* Splice in data if we can; copy if we can't. */
1237 			if (tcp_downgrade_zcopy_pure(sk, skb))
1238 				goto wait_for_space;
1239 			copy = tcp_wmem_schedule(sk, copy);
1240 			if (!copy)
1241 				goto wait_for_space;
1242 
1243 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1244 						   sk->sk_allocation);
1245 			if (err < 0) {
1246 				if (err == -EMSGSIZE) {
1247 					tcp_mark_push(tp, skb);
1248 					goto new_segment;
1249 				}
1250 				goto do_error;
1251 			}
1252 			copy = err;
1253 
1254 			if (!(flags & MSG_NO_SHARED_FRAGS))
1255 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1256 
1257 			sk_wmem_queued_add(sk, copy);
1258 			sk_mem_charge(sk, copy);
1259 		}
1260 
1261 		if (!copied)
1262 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1263 
1264 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1265 		TCP_SKB_CB(skb)->end_seq += copy;
1266 		tcp_skb_pcount_set(skb, 0);
1267 
1268 		copied += copy;
1269 		if (!msg_data_left(msg)) {
1270 			if (unlikely(flags & MSG_EOR))
1271 				TCP_SKB_CB(skb)->eor = 1;
1272 			goto out;
1273 		}
1274 
1275 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1276 			continue;
1277 
1278 		if (forced_push(tp)) {
1279 			tcp_mark_push(tp, skb);
1280 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1281 		} else if (skb == tcp_send_head(sk))
1282 			tcp_push_one(sk, mss_now);
1283 		continue;
1284 
1285 wait_for_space:
1286 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1287 		if (copied)
1288 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1289 				 TCP_NAGLE_PUSH, size_goal);
1290 
1291 		err = sk_stream_wait_memory(sk, &timeo);
1292 		if (err != 0)
1293 			goto do_error;
1294 
1295 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1296 	}
1297 
1298 out:
1299 	if (copied) {
1300 		tcp_tx_timestamp(sk, sockc.tsflags);
1301 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1302 	}
1303 out_nopush:
1304 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1305 	if (uarg && !msg->msg_ubuf)
1306 		net_zcopy_put(uarg);
1307 	return copied + copied_syn;
1308 
1309 do_error:
1310 	tcp_remove_empty_skb(sk);
1311 
1312 	if (copied + copied_syn)
1313 		goto out;
1314 out_err:
1315 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1316 	if (uarg && !msg->msg_ubuf)
1317 		net_zcopy_put_abort(uarg, true);
1318 	err = sk_stream_error(sk, flags, err);
1319 	/* make sure we wake any epoll edge trigger waiter */
1320 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1321 		sk->sk_write_space(sk);
1322 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1323 	}
1324 	return err;
1325 }
1326 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1327 
1328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1329 {
1330 	int ret;
1331 
1332 	lock_sock(sk);
1333 	ret = tcp_sendmsg_locked(sk, msg, size);
1334 	release_sock(sk);
1335 
1336 	return ret;
1337 }
1338 EXPORT_SYMBOL(tcp_sendmsg);
1339 
1340 void tcp_splice_eof(struct socket *sock)
1341 {
1342 	struct sock *sk = sock->sk;
1343 	struct tcp_sock *tp = tcp_sk(sk);
1344 	int mss_now, size_goal;
1345 
1346 	if (!tcp_write_queue_tail(sk))
1347 		return;
1348 
1349 	lock_sock(sk);
1350 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1351 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1352 	release_sock(sk);
1353 }
1354 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1355 
1356 /*
1357  *	Handle reading urgent data. BSD has very simple semantics for
1358  *	this, no blocking and very strange errors 8)
1359  */
1360 
1361 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1362 {
1363 	struct tcp_sock *tp = tcp_sk(sk);
1364 
1365 	/* No URG data to read. */
1366 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1367 	    tp->urg_data == TCP_URG_READ)
1368 		return -EINVAL;	/* Yes this is right ! */
1369 
1370 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1371 		return -ENOTCONN;
1372 
1373 	if (tp->urg_data & TCP_URG_VALID) {
1374 		int err = 0;
1375 		char c = tp->urg_data;
1376 
1377 		if (!(flags & MSG_PEEK))
1378 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1379 
1380 		/* Read urgent data. */
1381 		msg->msg_flags |= MSG_OOB;
1382 
1383 		if (len > 0) {
1384 			if (!(flags & MSG_TRUNC))
1385 				err = memcpy_to_msg(msg, &c, 1);
1386 			len = 1;
1387 		} else
1388 			msg->msg_flags |= MSG_TRUNC;
1389 
1390 		return err ? -EFAULT : len;
1391 	}
1392 
1393 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1394 		return 0;
1395 
1396 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1397 	 * the available implementations agree in this case:
1398 	 * this call should never block, independent of the
1399 	 * blocking state of the socket.
1400 	 * Mike <pall@rz.uni-karlsruhe.de>
1401 	 */
1402 	return -EAGAIN;
1403 }
1404 
1405 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1406 {
1407 	struct sk_buff *skb;
1408 	int copied = 0, err = 0;
1409 
1410 	/* XXX -- need to support SO_PEEK_OFF */
1411 
1412 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1413 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1414 		if (err)
1415 			return err;
1416 		copied += skb->len;
1417 	}
1418 
1419 	skb_queue_walk(&sk->sk_write_queue, skb) {
1420 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1421 		if (err)
1422 			break;
1423 
1424 		copied += skb->len;
1425 	}
1426 
1427 	return err ?: copied;
1428 }
1429 
1430 /* Clean up the receive buffer for full frames taken by the user,
1431  * then send an ACK if necessary.  COPIED is the number of bytes
1432  * tcp_recvmsg has given to the user so far, it speeds up the
1433  * calculation of whether or not we must ACK for the sake of
1434  * a window update.
1435  */
1436 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1437 {
1438 	struct tcp_sock *tp = tcp_sk(sk);
1439 	bool time_to_ack = false;
1440 
1441 	if (inet_csk_ack_scheduled(sk)) {
1442 		const struct inet_connection_sock *icsk = inet_csk(sk);
1443 
1444 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1445 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1446 		    /*
1447 		     * If this read emptied read buffer, we send ACK, if
1448 		     * connection is not bidirectional, user drained
1449 		     * receive buffer and there was a small segment
1450 		     * in queue.
1451 		     */
1452 		    (copied > 0 &&
1453 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1454 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1455 		       !inet_csk_in_pingpong_mode(sk))) &&
1456 		      !atomic_read(&sk->sk_rmem_alloc)))
1457 			time_to_ack = true;
1458 	}
1459 
1460 	/* We send an ACK if we can now advertise a non-zero window
1461 	 * which has been raised "significantly".
1462 	 *
1463 	 * Even if window raised up to infinity, do not send window open ACK
1464 	 * in states, where we will not receive more. It is useless.
1465 	 */
1466 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1467 		__u32 rcv_window_now = tcp_receive_window(tp);
1468 
1469 		/* Optimize, __tcp_select_window() is not cheap. */
1470 		if (2*rcv_window_now <= tp->window_clamp) {
1471 			__u32 new_window = __tcp_select_window(sk);
1472 
1473 			/* Send ACK now, if this read freed lots of space
1474 			 * in our buffer. Certainly, new_window is new window.
1475 			 * We can advertise it now, if it is not less than current one.
1476 			 * "Lots" means "at least twice" here.
1477 			 */
1478 			if (new_window && new_window >= 2 * rcv_window_now)
1479 				time_to_ack = true;
1480 		}
1481 	}
1482 	if (time_to_ack)
1483 		tcp_send_ack(sk);
1484 }
1485 
1486 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1487 {
1488 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1489 	struct tcp_sock *tp = tcp_sk(sk);
1490 
1491 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1492 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1493 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1494 	__tcp_cleanup_rbuf(sk, copied);
1495 }
1496 
1497 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1498 {
1499 	__skb_unlink(skb, &sk->sk_receive_queue);
1500 	if (likely(skb->destructor == sock_rfree)) {
1501 		sock_rfree(skb);
1502 		skb->destructor = NULL;
1503 		skb->sk = NULL;
1504 		return skb_attempt_defer_free(skb);
1505 	}
1506 	__kfree_skb(skb);
1507 }
1508 
1509 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1510 {
1511 	struct sk_buff *skb;
1512 	u32 offset;
1513 
1514 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1515 		offset = seq - TCP_SKB_CB(skb)->seq;
1516 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1517 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1518 			offset--;
1519 		}
1520 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1521 			*off = offset;
1522 			return skb;
1523 		}
1524 		/* This looks weird, but this can happen if TCP collapsing
1525 		 * splitted a fat GRO packet, while we released socket lock
1526 		 * in skb_splice_bits()
1527 		 */
1528 		tcp_eat_recv_skb(sk, skb);
1529 	}
1530 	return NULL;
1531 }
1532 EXPORT_SYMBOL(tcp_recv_skb);
1533 
1534 /*
1535  * This routine provides an alternative to tcp_recvmsg() for routines
1536  * that would like to handle copying from skbuffs directly in 'sendfile'
1537  * fashion.
1538  * Note:
1539  *	- It is assumed that the socket was locked by the caller.
1540  *	- The routine does not block.
1541  *	- At present, there is no support for reading OOB data
1542  *	  or for 'peeking' the socket using this routine
1543  *	  (although both would be easy to implement).
1544  */
1545 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1546 		  sk_read_actor_t recv_actor)
1547 {
1548 	struct sk_buff *skb;
1549 	struct tcp_sock *tp = tcp_sk(sk);
1550 	u32 seq = tp->copied_seq;
1551 	u32 offset;
1552 	int copied = 0;
1553 
1554 	if (sk->sk_state == TCP_LISTEN)
1555 		return -ENOTCONN;
1556 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1557 		if (offset < skb->len) {
1558 			int used;
1559 			size_t len;
1560 
1561 			len = skb->len - offset;
1562 			/* Stop reading if we hit a patch of urgent data */
1563 			if (unlikely(tp->urg_data)) {
1564 				u32 urg_offset = tp->urg_seq - seq;
1565 				if (urg_offset < len)
1566 					len = urg_offset;
1567 				if (!len)
1568 					break;
1569 			}
1570 			used = recv_actor(desc, skb, offset, len);
1571 			if (used <= 0) {
1572 				if (!copied)
1573 					copied = used;
1574 				break;
1575 			}
1576 			if (WARN_ON_ONCE(used > len))
1577 				used = len;
1578 			seq += used;
1579 			copied += used;
1580 			offset += used;
1581 
1582 			/* If recv_actor drops the lock (e.g. TCP splice
1583 			 * receive) the skb pointer might be invalid when
1584 			 * getting here: tcp_collapse might have deleted it
1585 			 * while aggregating skbs from the socket queue.
1586 			 */
1587 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1588 			if (!skb)
1589 				break;
1590 			/* TCP coalescing might have appended data to the skb.
1591 			 * Try to splice more frags
1592 			 */
1593 			if (offset + 1 != skb->len)
1594 				continue;
1595 		}
1596 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1597 			tcp_eat_recv_skb(sk, skb);
1598 			++seq;
1599 			break;
1600 		}
1601 		tcp_eat_recv_skb(sk, skb);
1602 		if (!desc->count)
1603 			break;
1604 		WRITE_ONCE(tp->copied_seq, seq);
1605 	}
1606 	WRITE_ONCE(tp->copied_seq, seq);
1607 
1608 	tcp_rcv_space_adjust(sk);
1609 
1610 	/* Clean up data we have read: This will do ACK frames. */
1611 	if (copied > 0) {
1612 		tcp_recv_skb(sk, seq, &offset);
1613 		tcp_cleanup_rbuf(sk, copied);
1614 	}
1615 	return copied;
1616 }
1617 EXPORT_SYMBOL(tcp_read_sock);
1618 
1619 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1620 {
1621 	struct tcp_sock *tp = tcp_sk(sk);
1622 	u32 seq = tp->copied_seq;
1623 	struct sk_buff *skb;
1624 	int copied = 0;
1625 	u32 offset;
1626 
1627 	if (sk->sk_state == TCP_LISTEN)
1628 		return -ENOTCONN;
1629 
1630 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1631 		u8 tcp_flags;
1632 		int used;
1633 
1634 		__skb_unlink(skb, &sk->sk_receive_queue);
1635 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1636 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1637 		used = recv_actor(sk, skb);
1638 		if (used < 0) {
1639 			if (!copied)
1640 				copied = used;
1641 			break;
1642 		}
1643 		seq += used;
1644 		copied += used;
1645 
1646 		if (tcp_flags & TCPHDR_FIN) {
1647 			++seq;
1648 			break;
1649 		}
1650 	}
1651 	return copied;
1652 }
1653 EXPORT_SYMBOL(tcp_read_skb);
1654 
1655 void tcp_read_done(struct sock *sk, size_t len)
1656 {
1657 	struct tcp_sock *tp = tcp_sk(sk);
1658 	u32 seq = tp->copied_seq;
1659 	struct sk_buff *skb;
1660 	size_t left;
1661 	u32 offset;
1662 
1663 	if (sk->sk_state == TCP_LISTEN)
1664 		return;
1665 
1666 	left = len;
1667 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1668 		int used;
1669 
1670 		used = min_t(size_t, skb->len - offset, left);
1671 		seq += used;
1672 		left -= used;
1673 
1674 		if (skb->len > offset + used)
1675 			break;
1676 
1677 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1678 			tcp_eat_recv_skb(sk, skb);
1679 			++seq;
1680 			break;
1681 		}
1682 		tcp_eat_recv_skb(sk, skb);
1683 	}
1684 	WRITE_ONCE(tp->copied_seq, seq);
1685 
1686 	tcp_rcv_space_adjust(sk);
1687 
1688 	/* Clean up data we have read: This will do ACK frames. */
1689 	if (left != len)
1690 		tcp_cleanup_rbuf(sk, len - left);
1691 }
1692 EXPORT_SYMBOL(tcp_read_done);
1693 
1694 int tcp_peek_len(struct socket *sock)
1695 {
1696 	return tcp_inq(sock->sk);
1697 }
1698 EXPORT_SYMBOL(tcp_peek_len);
1699 
1700 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1701 int tcp_set_rcvlowat(struct sock *sk, int val)
1702 {
1703 	int cap;
1704 
1705 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1706 		cap = sk->sk_rcvbuf >> 1;
1707 	else
1708 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1709 	val = min(val, cap);
1710 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1711 
1712 	/* Check if we need to signal EPOLLIN right now */
1713 	tcp_data_ready(sk);
1714 
1715 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1716 		return 0;
1717 
1718 	val <<= 1;
1719 	if (val > sk->sk_rcvbuf) {
1720 		WRITE_ONCE(sk->sk_rcvbuf, val);
1721 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1722 	}
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL(tcp_set_rcvlowat);
1726 
1727 void tcp_update_recv_tstamps(struct sk_buff *skb,
1728 			     struct scm_timestamping_internal *tss)
1729 {
1730 	if (skb->tstamp)
1731 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1732 	else
1733 		tss->ts[0] = (struct timespec64) {0};
1734 
1735 	if (skb_hwtstamps(skb)->hwtstamp)
1736 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1737 	else
1738 		tss->ts[2] = (struct timespec64) {0};
1739 }
1740 
1741 #ifdef CONFIG_MMU
1742 static const struct vm_operations_struct tcp_vm_ops = {
1743 };
1744 
1745 int tcp_mmap(struct file *file, struct socket *sock,
1746 	     struct vm_area_struct *vma)
1747 {
1748 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1749 		return -EPERM;
1750 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1751 
1752 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1753 	vm_flags_set(vma, VM_MIXEDMAP);
1754 
1755 	vma->vm_ops = &tcp_vm_ops;
1756 	return 0;
1757 }
1758 EXPORT_SYMBOL(tcp_mmap);
1759 
1760 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1761 				       u32 *offset_frag)
1762 {
1763 	skb_frag_t *frag;
1764 
1765 	if (unlikely(offset_skb >= skb->len))
1766 		return NULL;
1767 
1768 	offset_skb -= skb_headlen(skb);
1769 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1770 		return NULL;
1771 
1772 	frag = skb_shinfo(skb)->frags;
1773 	while (offset_skb) {
1774 		if (skb_frag_size(frag) > offset_skb) {
1775 			*offset_frag = offset_skb;
1776 			return frag;
1777 		}
1778 		offset_skb -= skb_frag_size(frag);
1779 		++frag;
1780 	}
1781 	*offset_frag = 0;
1782 	return frag;
1783 }
1784 
1785 static bool can_map_frag(const skb_frag_t *frag)
1786 {
1787 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1788 }
1789 
1790 static int find_next_mappable_frag(const skb_frag_t *frag,
1791 				   int remaining_in_skb)
1792 {
1793 	int offset = 0;
1794 
1795 	if (likely(can_map_frag(frag)))
1796 		return 0;
1797 
1798 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1799 		offset += skb_frag_size(frag);
1800 		++frag;
1801 	}
1802 	return offset;
1803 }
1804 
1805 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1806 					  struct tcp_zerocopy_receive *zc,
1807 					  struct sk_buff *skb, u32 offset)
1808 {
1809 	u32 frag_offset, partial_frag_remainder = 0;
1810 	int mappable_offset;
1811 	skb_frag_t *frag;
1812 
1813 	/* worst case: skip to next skb. try to improve on this case below */
1814 	zc->recv_skip_hint = skb->len - offset;
1815 
1816 	/* Find the frag containing this offset (and how far into that frag) */
1817 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1818 	if (!frag)
1819 		return;
1820 
1821 	if (frag_offset) {
1822 		struct skb_shared_info *info = skb_shinfo(skb);
1823 
1824 		/* We read part of the last frag, must recvmsg() rest of skb. */
1825 		if (frag == &info->frags[info->nr_frags - 1])
1826 			return;
1827 
1828 		/* Else, we must at least read the remainder in this frag. */
1829 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1830 		zc->recv_skip_hint -= partial_frag_remainder;
1831 		++frag;
1832 	}
1833 
1834 	/* partial_frag_remainder: If part way through a frag, must read rest.
1835 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1836 	 * in partial_frag_remainder.
1837 	 */
1838 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1839 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1840 }
1841 
1842 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1843 			      int flags, struct scm_timestamping_internal *tss,
1844 			      int *cmsg_flags);
1845 static int receive_fallback_to_copy(struct sock *sk,
1846 				    struct tcp_zerocopy_receive *zc, int inq,
1847 				    struct scm_timestamping_internal *tss)
1848 {
1849 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1850 	struct msghdr msg = {};
1851 	struct iovec iov;
1852 	int err;
1853 
1854 	zc->length = 0;
1855 	zc->recv_skip_hint = 0;
1856 
1857 	if (copy_address != zc->copybuf_address)
1858 		return -EINVAL;
1859 
1860 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1861 				  inq, &iov, &msg.msg_iter);
1862 	if (err)
1863 		return err;
1864 
1865 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1866 				 tss, &zc->msg_flags);
1867 	if (err < 0)
1868 		return err;
1869 
1870 	zc->copybuf_len = err;
1871 	if (likely(zc->copybuf_len)) {
1872 		struct sk_buff *skb;
1873 		u32 offset;
1874 
1875 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1876 		if (skb)
1877 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1878 	}
1879 	return 0;
1880 }
1881 
1882 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1883 				   struct sk_buff *skb, u32 copylen,
1884 				   u32 *offset, u32 *seq)
1885 {
1886 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1887 	struct msghdr msg = {};
1888 	struct iovec iov;
1889 	int err;
1890 
1891 	if (copy_address != zc->copybuf_address)
1892 		return -EINVAL;
1893 
1894 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1895 				  copylen, &iov, &msg.msg_iter);
1896 	if (err)
1897 		return err;
1898 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1899 	if (err)
1900 		return err;
1901 	zc->recv_skip_hint -= copylen;
1902 	*offset += copylen;
1903 	*seq += copylen;
1904 	return (__s32)copylen;
1905 }
1906 
1907 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1908 				  struct sock *sk,
1909 				  struct sk_buff *skb,
1910 				  u32 *seq,
1911 				  s32 copybuf_len,
1912 				  struct scm_timestamping_internal *tss)
1913 {
1914 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1915 
1916 	if (!copylen)
1917 		return 0;
1918 	/* skb is null if inq < PAGE_SIZE. */
1919 	if (skb) {
1920 		offset = *seq - TCP_SKB_CB(skb)->seq;
1921 	} else {
1922 		skb = tcp_recv_skb(sk, *seq, &offset);
1923 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1924 			tcp_update_recv_tstamps(skb, tss);
1925 			zc->msg_flags |= TCP_CMSG_TS;
1926 		}
1927 	}
1928 
1929 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1930 						  seq);
1931 	return zc->copybuf_len < 0 ? 0 : copylen;
1932 }
1933 
1934 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1935 					      struct page **pending_pages,
1936 					      unsigned long pages_remaining,
1937 					      unsigned long *address,
1938 					      u32 *length,
1939 					      u32 *seq,
1940 					      struct tcp_zerocopy_receive *zc,
1941 					      u32 total_bytes_to_map,
1942 					      int err)
1943 {
1944 	/* At least one page did not map. Try zapping if we skipped earlier. */
1945 	if (err == -EBUSY &&
1946 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1947 		u32 maybe_zap_len;
1948 
1949 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1950 				*length + /* Mapped or pending */
1951 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1952 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1953 		err = 0;
1954 	}
1955 
1956 	if (!err) {
1957 		unsigned long leftover_pages = pages_remaining;
1958 		int bytes_mapped;
1959 
1960 		/* We called zap_page_range_single, try to reinsert. */
1961 		err = vm_insert_pages(vma, *address,
1962 				      pending_pages,
1963 				      &pages_remaining);
1964 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1965 		*seq += bytes_mapped;
1966 		*address += bytes_mapped;
1967 	}
1968 	if (err) {
1969 		/* Either we were unable to zap, OR we zapped, retried an
1970 		 * insert, and still had an issue. Either ways, pages_remaining
1971 		 * is the number of pages we were unable to map, and we unroll
1972 		 * some state we speculatively touched before.
1973 		 */
1974 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1975 
1976 		*length -= bytes_not_mapped;
1977 		zc->recv_skip_hint += bytes_not_mapped;
1978 	}
1979 	return err;
1980 }
1981 
1982 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1983 					struct page **pages,
1984 					unsigned int pages_to_map,
1985 					unsigned long *address,
1986 					u32 *length,
1987 					u32 *seq,
1988 					struct tcp_zerocopy_receive *zc,
1989 					u32 total_bytes_to_map)
1990 {
1991 	unsigned long pages_remaining = pages_to_map;
1992 	unsigned int pages_mapped;
1993 	unsigned int bytes_mapped;
1994 	int err;
1995 
1996 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
1997 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
1998 	bytes_mapped = PAGE_SIZE * pages_mapped;
1999 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2000 	 * mapping (some but not all of the pages).
2001 	 */
2002 	*seq += bytes_mapped;
2003 	*address += bytes_mapped;
2004 
2005 	if (likely(!err))
2006 		return 0;
2007 
2008 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2009 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2010 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2011 		err);
2012 }
2013 
2014 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2015 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2016 				      struct tcp_zerocopy_receive *zc,
2017 				      struct scm_timestamping_internal *tss)
2018 {
2019 	unsigned long msg_control_addr;
2020 	struct msghdr cmsg_dummy;
2021 
2022 	msg_control_addr = (unsigned long)zc->msg_control;
2023 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2024 	cmsg_dummy.msg_controllen =
2025 		(__kernel_size_t)zc->msg_controllen;
2026 	cmsg_dummy.msg_flags = in_compat_syscall()
2027 		? MSG_CMSG_COMPAT : 0;
2028 	cmsg_dummy.msg_control_is_user = true;
2029 	zc->msg_flags = 0;
2030 	if (zc->msg_control == msg_control_addr &&
2031 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2032 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2033 		zc->msg_control = (__u64)
2034 			((uintptr_t)cmsg_dummy.msg_control_user);
2035 		zc->msg_controllen =
2036 			(__u64)cmsg_dummy.msg_controllen;
2037 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2038 	}
2039 }
2040 
2041 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2042 					   unsigned long address,
2043 					   bool *mmap_locked)
2044 {
2045 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2046 
2047 	if (vma) {
2048 		if (vma->vm_ops != &tcp_vm_ops) {
2049 			vma_end_read(vma);
2050 			return NULL;
2051 		}
2052 		*mmap_locked = false;
2053 		return vma;
2054 	}
2055 
2056 	mmap_read_lock(mm);
2057 	vma = vma_lookup(mm, address);
2058 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2059 		mmap_read_unlock(mm);
2060 		return NULL;
2061 	}
2062 	*mmap_locked = true;
2063 	return vma;
2064 }
2065 
2066 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2067 static int tcp_zerocopy_receive(struct sock *sk,
2068 				struct tcp_zerocopy_receive *zc,
2069 				struct scm_timestamping_internal *tss)
2070 {
2071 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2072 	unsigned long address = (unsigned long)zc->address;
2073 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2074 	s32 copybuf_len = zc->copybuf_len;
2075 	struct tcp_sock *tp = tcp_sk(sk);
2076 	const skb_frag_t *frags = NULL;
2077 	unsigned int pages_to_map = 0;
2078 	struct vm_area_struct *vma;
2079 	struct sk_buff *skb = NULL;
2080 	u32 seq = tp->copied_seq;
2081 	u32 total_bytes_to_map;
2082 	int inq = tcp_inq(sk);
2083 	bool mmap_locked;
2084 	int ret;
2085 
2086 	zc->copybuf_len = 0;
2087 	zc->msg_flags = 0;
2088 
2089 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2090 		return -EINVAL;
2091 
2092 	if (sk->sk_state == TCP_LISTEN)
2093 		return -ENOTCONN;
2094 
2095 	sock_rps_record_flow(sk);
2096 
2097 	if (inq && inq <= copybuf_len)
2098 		return receive_fallback_to_copy(sk, zc, inq, tss);
2099 
2100 	if (inq < PAGE_SIZE) {
2101 		zc->length = 0;
2102 		zc->recv_skip_hint = inq;
2103 		if (!inq && sock_flag(sk, SOCK_DONE))
2104 			return -EIO;
2105 		return 0;
2106 	}
2107 
2108 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2109 	if (!vma)
2110 		return -EINVAL;
2111 
2112 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2113 	avail_len = min_t(u32, vma_len, inq);
2114 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2115 	if (total_bytes_to_map) {
2116 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2117 			zap_page_range_single(vma, address, total_bytes_to_map,
2118 					      NULL);
2119 		zc->length = total_bytes_to_map;
2120 		zc->recv_skip_hint = 0;
2121 	} else {
2122 		zc->length = avail_len;
2123 		zc->recv_skip_hint = avail_len;
2124 	}
2125 	ret = 0;
2126 	while (length + PAGE_SIZE <= zc->length) {
2127 		int mappable_offset;
2128 		struct page *page;
2129 
2130 		if (zc->recv_skip_hint < PAGE_SIZE) {
2131 			u32 offset_frag;
2132 
2133 			if (skb) {
2134 				if (zc->recv_skip_hint > 0)
2135 					break;
2136 				skb = skb->next;
2137 				offset = seq - TCP_SKB_CB(skb)->seq;
2138 			} else {
2139 				skb = tcp_recv_skb(sk, seq, &offset);
2140 			}
2141 
2142 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2143 				tcp_update_recv_tstamps(skb, tss);
2144 				zc->msg_flags |= TCP_CMSG_TS;
2145 			}
2146 			zc->recv_skip_hint = skb->len - offset;
2147 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2148 			if (!frags || offset_frag)
2149 				break;
2150 		}
2151 
2152 		mappable_offset = find_next_mappable_frag(frags,
2153 							  zc->recv_skip_hint);
2154 		if (mappable_offset) {
2155 			zc->recv_skip_hint = mappable_offset;
2156 			break;
2157 		}
2158 		page = skb_frag_page(frags);
2159 		prefetchw(page);
2160 		pages[pages_to_map++] = page;
2161 		length += PAGE_SIZE;
2162 		zc->recv_skip_hint -= PAGE_SIZE;
2163 		frags++;
2164 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2165 		    zc->recv_skip_hint < PAGE_SIZE) {
2166 			/* Either full batch, or we're about to go to next skb
2167 			 * (and we cannot unroll failed ops across skbs).
2168 			 */
2169 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2170 							   pages_to_map,
2171 							   &address, &length,
2172 							   &seq, zc,
2173 							   total_bytes_to_map);
2174 			if (ret)
2175 				goto out;
2176 			pages_to_map = 0;
2177 		}
2178 	}
2179 	if (pages_to_map) {
2180 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2181 						   &address, &length, &seq,
2182 						   zc, total_bytes_to_map);
2183 	}
2184 out:
2185 	if (mmap_locked)
2186 		mmap_read_unlock(current->mm);
2187 	else
2188 		vma_end_read(vma);
2189 	/* Try to copy straggler data. */
2190 	if (!ret)
2191 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2192 
2193 	if (length + copylen) {
2194 		WRITE_ONCE(tp->copied_seq, seq);
2195 		tcp_rcv_space_adjust(sk);
2196 
2197 		/* Clean up data we have read: This will do ACK frames. */
2198 		tcp_recv_skb(sk, seq, &offset);
2199 		tcp_cleanup_rbuf(sk, length + copylen);
2200 		ret = 0;
2201 		if (length == zc->length)
2202 			zc->recv_skip_hint = 0;
2203 	} else {
2204 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2205 			ret = -EIO;
2206 	}
2207 	zc->length = length;
2208 	return ret;
2209 }
2210 #endif
2211 
2212 /* Similar to __sock_recv_timestamp, but does not require an skb */
2213 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2214 			struct scm_timestamping_internal *tss)
2215 {
2216 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2217 	bool has_timestamping = false;
2218 
2219 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2220 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2221 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2222 				if (new_tstamp) {
2223 					struct __kernel_timespec kts = {
2224 						.tv_sec = tss->ts[0].tv_sec,
2225 						.tv_nsec = tss->ts[0].tv_nsec,
2226 					};
2227 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2228 						 sizeof(kts), &kts);
2229 				} else {
2230 					struct __kernel_old_timespec ts_old = {
2231 						.tv_sec = tss->ts[0].tv_sec,
2232 						.tv_nsec = tss->ts[0].tv_nsec,
2233 					};
2234 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2235 						 sizeof(ts_old), &ts_old);
2236 				}
2237 			} else {
2238 				if (new_tstamp) {
2239 					struct __kernel_sock_timeval stv = {
2240 						.tv_sec = tss->ts[0].tv_sec,
2241 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2242 					};
2243 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2244 						 sizeof(stv), &stv);
2245 				} else {
2246 					struct __kernel_old_timeval tv = {
2247 						.tv_sec = tss->ts[0].tv_sec,
2248 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2249 					};
2250 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2251 						 sizeof(tv), &tv);
2252 				}
2253 			}
2254 		}
2255 
2256 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2257 			has_timestamping = true;
2258 		else
2259 			tss->ts[0] = (struct timespec64) {0};
2260 	}
2261 
2262 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2263 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2264 			has_timestamping = true;
2265 		else
2266 			tss->ts[2] = (struct timespec64) {0};
2267 	}
2268 
2269 	if (has_timestamping) {
2270 		tss->ts[1] = (struct timespec64) {0};
2271 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2272 			put_cmsg_scm_timestamping64(msg, tss);
2273 		else
2274 			put_cmsg_scm_timestamping(msg, tss);
2275 	}
2276 }
2277 
2278 static int tcp_inq_hint(struct sock *sk)
2279 {
2280 	const struct tcp_sock *tp = tcp_sk(sk);
2281 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2282 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2283 	int inq;
2284 
2285 	inq = rcv_nxt - copied_seq;
2286 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2287 		lock_sock(sk);
2288 		inq = tp->rcv_nxt - tp->copied_seq;
2289 		release_sock(sk);
2290 	}
2291 	/* After receiving a FIN, tell the user-space to continue reading
2292 	 * by returning a non-zero inq.
2293 	 */
2294 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2295 		inq = 1;
2296 	return inq;
2297 }
2298 
2299 /*
2300  *	This routine copies from a sock struct into the user buffer.
2301  *
2302  *	Technical note: in 2.3 we work on _locked_ socket, so that
2303  *	tricks with *seq access order and skb->users are not required.
2304  *	Probably, code can be easily improved even more.
2305  */
2306 
2307 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2308 			      int flags, struct scm_timestamping_internal *tss,
2309 			      int *cmsg_flags)
2310 {
2311 	struct tcp_sock *tp = tcp_sk(sk);
2312 	int copied = 0;
2313 	u32 peek_seq;
2314 	u32 *seq;
2315 	unsigned long used;
2316 	int err;
2317 	int target;		/* Read at least this many bytes */
2318 	long timeo;
2319 	struct sk_buff *skb, *last;
2320 	u32 urg_hole = 0;
2321 
2322 	err = -ENOTCONN;
2323 	if (sk->sk_state == TCP_LISTEN)
2324 		goto out;
2325 
2326 	if (tp->recvmsg_inq) {
2327 		*cmsg_flags = TCP_CMSG_INQ;
2328 		msg->msg_get_inq = 1;
2329 	}
2330 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2331 
2332 	/* Urgent data needs to be handled specially. */
2333 	if (flags & MSG_OOB)
2334 		goto recv_urg;
2335 
2336 	if (unlikely(tp->repair)) {
2337 		err = -EPERM;
2338 		if (!(flags & MSG_PEEK))
2339 			goto out;
2340 
2341 		if (tp->repair_queue == TCP_SEND_QUEUE)
2342 			goto recv_sndq;
2343 
2344 		err = -EINVAL;
2345 		if (tp->repair_queue == TCP_NO_QUEUE)
2346 			goto out;
2347 
2348 		/* 'common' recv queue MSG_PEEK-ing */
2349 	}
2350 
2351 	seq = &tp->copied_seq;
2352 	if (flags & MSG_PEEK) {
2353 		peek_seq = tp->copied_seq;
2354 		seq = &peek_seq;
2355 	}
2356 
2357 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2358 
2359 	do {
2360 		u32 offset;
2361 
2362 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2363 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2364 			if (copied)
2365 				break;
2366 			if (signal_pending(current)) {
2367 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2368 				break;
2369 			}
2370 		}
2371 
2372 		/* Next get a buffer. */
2373 
2374 		last = skb_peek_tail(&sk->sk_receive_queue);
2375 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2376 			last = skb;
2377 			/* Now that we have two receive queues this
2378 			 * shouldn't happen.
2379 			 */
2380 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2381 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2382 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2383 				 flags))
2384 				break;
2385 
2386 			offset = *seq - TCP_SKB_CB(skb)->seq;
2387 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2388 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2389 				offset--;
2390 			}
2391 			if (offset < skb->len)
2392 				goto found_ok_skb;
2393 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2394 				goto found_fin_ok;
2395 			WARN(!(flags & MSG_PEEK),
2396 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2397 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2398 		}
2399 
2400 		/* Well, if we have backlog, try to process it now yet. */
2401 
2402 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2403 			break;
2404 
2405 		if (copied) {
2406 			if (!timeo ||
2407 			    sk->sk_err ||
2408 			    sk->sk_state == TCP_CLOSE ||
2409 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2410 			    signal_pending(current))
2411 				break;
2412 		} else {
2413 			if (sock_flag(sk, SOCK_DONE))
2414 				break;
2415 
2416 			if (sk->sk_err) {
2417 				copied = sock_error(sk);
2418 				break;
2419 			}
2420 
2421 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2422 				break;
2423 
2424 			if (sk->sk_state == TCP_CLOSE) {
2425 				/* This occurs when user tries to read
2426 				 * from never connected socket.
2427 				 */
2428 				copied = -ENOTCONN;
2429 				break;
2430 			}
2431 
2432 			if (!timeo) {
2433 				copied = -EAGAIN;
2434 				break;
2435 			}
2436 
2437 			if (signal_pending(current)) {
2438 				copied = sock_intr_errno(timeo);
2439 				break;
2440 			}
2441 		}
2442 
2443 		if (copied >= target) {
2444 			/* Do not sleep, just process backlog. */
2445 			__sk_flush_backlog(sk);
2446 		} else {
2447 			tcp_cleanup_rbuf(sk, copied);
2448 			sk_wait_data(sk, &timeo, last);
2449 		}
2450 
2451 		if ((flags & MSG_PEEK) &&
2452 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2453 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2454 					    current->comm,
2455 					    task_pid_nr(current));
2456 			peek_seq = tp->copied_seq;
2457 		}
2458 		continue;
2459 
2460 found_ok_skb:
2461 		/* Ok so how much can we use? */
2462 		used = skb->len - offset;
2463 		if (len < used)
2464 			used = len;
2465 
2466 		/* Do we have urgent data here? */
2467 		if (unlikely(tp->urg_data)) {
2468 			u32 urg_offset = tp->urg_seq - *seq;
2469 			if (urg_offset < used) {
2470 				if (!urg_offset) {
2471 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2472 						WRITE_ONCE(*seq, *seq + 1);
2473 						urg_hole++;
2474 						offset++;
2475 						used--;
2476 						if (!used)
2477 							goto skip_copy;
2478 					}
2479 				} else
2480 					used = urg_offset;
2481 			}
2482 		}
2483 
2484 		if (!(flags & MSG_TRUNC)) {
2485 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2486 			if (err) {
2487 				/* Exception. Bailout! */
2488 				if (!copied)
2489 					copied = -EFAULT;
2490 				break;
2491 			}
2492 		}
2493 
2494 		WRITE_ONCE(*seq, *seq + used);
2495 		copied += used;
2496 		len -= used;
2497 
2498 		tcp_rcv_space_adjust(sk);
2499 
2500 skip_copy:
2501 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2502 			WRITE_ONCE(tp->urg_data, 0);
2503 			tcp_fast_path_check(sk);
2504 		}
2505 
2506 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2507 			tcp_update_recv_tstamps(skb, tss);
2508 			*cmsg_flags |= TCP_CMSG_TS;
2509 		}
2510 
2511 		if (used + offset < skb->len)
2512 			continue;
2513 
2514 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2515 			goto found_fin_ok;
2516 		if (!(flags & MSG_PEEK))
2517 			tcp_eat_recv_skb(sk, skb);
2518 		continue;
2519 
2520 found_fin_ok:
2521 		/* Process the FIN. */
2522 		WRITE_ONCE(*seq, *seq + 1);
2523 		if (!(flags & MSG_PEEK))
2524 			tcp_eat_recv_skb(sk, skb);
2525 		break;
2526 	} while (len > 0);
2527 
2528 	/* According to UNIX98, msg_name/msg_namelen are ignored
2529 	 * on connected socket. I was just happy when found this 8) --ANK
2530 	 */
2531 
2532 	/* Clean up data we have read: This will do ACK frames. */
2533 	tcp_cleanup_rbuf(sk, copied);
2534 	return copied;
2535 
2536 out:
2537 	return err;
2538 
2539 recv_urg:
2540 	err = tcp_recv_urg(sk, msg, len, flags);
2541 	goto out;
2542 
2543 recv_sndq:
2544 	err = tcp_peek_sndq(sk, msg, len);
2545 	goto out;
2546 }
2547 
2548 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2549 		int *addr_len)
2550 {
2551 	int cmsg_flags = 0, ret;
2552 	struct scm_timestamping_internal tss;
2553 
2554 	if (unlikely(flags & MSG_ERRQUEUE))
2555 		return inet_recv_error(sk, msg, len, addr_len);
2556 
2557 	if (sk_can_busy_loop(sk) &&
2558 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2559 	    sk->sk_state == TCP_ESTABLISHED)
2560 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2561 
2562 	lock_sock(sk);
2563 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2564 	release_sock(sk);
2565 
2566 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2567 		if (cmsg_flags & TCP_CMSG_TS)
2568 			tcp_recv_timestamp(msg, sk, &tss);
2569 		if (msg->msg_get_inq) {
2570 			msg->msg_inq = tcp_inq_hint(sk);
2571 			if (cmsg_flags & TCP_CMSG_INQ)
2572 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2573 					 sizeof(msg->msg_inq), &msg->msg_inq);
2574 		}
2575 	}
2576 	return ret;
2577 }
2578 EXPORT_SYMBOL(tcp_recvmsg);
2579 
2580 void tcp_set_state(struct sock *sk, int state)
2581 {
2582 	int oldstate = sk->sk_state;
2583 
2584 	/* We defined a new enum for TCP states that are exported in BPF
2585 	 * so as not force the internal TCP states to be frozen. The
2586 	 * following checks will detect if an internal state value ever
2587 	 * differs from the BPF value. If this ever happens, then we will
2588 	 * need to remap the internal value to the BPF value before calling
2589 	 * tcp_call_bpf_2arg.
2590 	 */
2591 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2592 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2593 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2594 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2595 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2596 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2597 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2598 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2599 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2600 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2601 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2602 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2603 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2604 
2605 	/* bpf uapi header bpf.h defines an anonymous enum with values
2606 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2607 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2608 	 * But clang built vmlinux does not have this enum in DWARF
2609 	 * since clang removes the above code before generating IR/debuginfo.
2610 	 * Let us explicitly emit the type debuginfo to ensure the
2611 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2612 	 * regardless of which compiler is used.
2613 	 */
2614 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2615 
2616 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2617 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2618 
2619 	switch (state) {
2620 	case TCP_ESTABLISHED:
2621 		if (oldstate != TCP_ESTABLISHED)
2622 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2623 		break;
2624 
2625 	case TCP_CLOSE:
2626 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2627 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2628 
2629 		sk->sk_prot->unhash(sk);
2630 		if (inet_csk(sk)->icsk_bind_hash &&
2631 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2632 			inet_put_port(sk);
2633 		fallthrough;
2634 	default:
2635 		if (oldstate == TCP_ESTABLISHED)
2636 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2637 	}
2638 
2639 	/* Change state AFTER socket is unhashed to avoid closed
2640 	 * socket sitting in hash tables.
2641 	 */
2642 	inet_sk_state_store(sk, state);
2643 }
2644 EXPORT_SYMBOL_GPL(tcp_set_state);
2645 
2646 /*
2647  *	State processing on a close. This implements the state shift for
2648  *	sending our FIN frame. Note that we only send a FIN for some
2649  *	states. A shutdown() may have already sent the FIN, or we may be
2650  *	closed.
2651  */
2652 
2653 static const unsigned char new_state[16] = {
2654   /* current state:        new state:      action:	*/
2655   [0 /* (Invalid) */]	= TCP_CLOSE,
2656   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2657   [TCP_SYN_SENT]	= TCP_CLOSE,
2658   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2659   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2660   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2661   [TCP_TIME_WAIT]	= TCP_CLOSE,
2662   [TCP_CLOSE]		= TCP_CLOSE,
2663   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2664   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2665   [TCP_LISTEN]		= TCP_CLOSE,
2666   [TCP_CLOSING]		= TCP_CLOSING,
2667   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2668 };
2669 
2670 static int tcp_close_state(struct sock *sk)
2671 {
2672 	int next = (int)new_state[sk->sk_state];
2673 	int ns = next & TCP_STATE_MASK;
2674 
2675 	tcp_set_state(sk, ns);
2676 
2677 	return next & TCP_ACTION_FIN;
2678 }
2679 
2680 /*
2681  *	Shutdown the sending side of a connection. Much like close except
2682  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2683  */
2684 
2685 void tcp_shutdown(struct sock *sk, int how)
2686 {
2687 	/*	We need to grab some memory, and put together a FIN,
2688 	 *	and then put it into the queue to be sent.
2689 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2690 	 */
2691 	if (!(how & SEND_SHUTDOWN))
2692 		return;
2693 
2694 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2695 	if ((1 << sk->sk_state) &
2696 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2697 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2698 		/* Clear out any half completed packets.  FIN if needed. */
2699 		if (tcp_close_state(sk))
2700 			tcp_send_fin(sk);
2701 	}
2702 }
2703 EXPORT_SYMBOL(tcp_shutdown);
2704 
2705 int tcp_orphan_count_sum(void)
2706 {
2707 	int i, total = 0;
2708 
2709 	for_each_possible_cpu(i)
2710 		total += per_cpu(tcp_orphan_count, i);
2711 
2712 	return max(total, 0);
2713 }
2714 
2715 static int tcp_orphan_cache;
2716 static struct timer_list tcp_orphan_timer;
2717 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2718 
2719 static void tcp_orphan_update(struct timer_list *unused)
2720 {
2721 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2722 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2723 }
2724 
2725 static bool tcp_too_many_orphans(int shift)
2726 {
2727 	return READ_ONCE(tcp_orphan_cache) << shift >
2728 		READ_ONCE(sysctl_tcp_max_orphans);
2729 }
2730 
2731 bool tcp_check_oom(struct sock *sk, int shift)
2732 {
2733 	bool too_many_orphans, out_of_socket_memory;
2734 
2735 	too_many_orphans = tcp_too_many_orphans(shift);
2736 	out_of_socket_memory = tcp_out_of_memory(sk);
2737 
2738 	if (too_many_orphans)
2739 		net_info_ratelimited("too many orphaned sockets\n");
2740 	if (out_of_socket_memory)
2741 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2742 	return too_many_orphans || out_of_socket_memory;
2743 }
2744 
2745 void __tcp_close(struct sock *sk, long timeout)
2746 {
2747 	struct sk_buff *skb;
2748 	int data_was_unread = 0;
2749 	int state;
2750 
2751 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2752 
2753 	if (sk->sk_state == TCP_LISTEN) {
2754 		tcp_set_state(sk, TCP_CLOSE);
2755 
2756 		/* Special case. */
2757 		inet_csk_listen_stop(sk);
2758 
2759 		goto adjudge_to_death;
2760 	}
2761 
2762 	/*  We need to flush the recv. buffs.  We do this only on the
2763 	 *  descriptor close, not protocol-sourced closes, because the
2764 	 *  reader process may not have drained the data yet!
2765 	 */
2766 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2767 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2768 
2769 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2770 			len--;
2771 		data_was_unread += len;
2772 		__kfree_skb(skb);
2773 	}
2774 
2775 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2776 	if (sk->sk_state == TCP_CLOSE)
2777 		goto adjudge_to_death;
2778 
2779 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2780 	 * data was lost. To witness the awful effects of the old behavior of
2781 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2782 	 * GET in an FTP client, suspend the process, wait for the client to
2783 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2784 	 * Note: timeout is always zero in such a case.
2785 	 */
2786 	if (unlikely(tcp_sk(sk)->repair)) {
2787 		sk->sk_prot->disconnect(sk, 0);
2788 	} else if (data_was_unread) {
2789 		/* Unread data was tossed, zap the connection. */
2790 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2791 		tcp_set_state(sk, TCP_CLOSE);
2792 		tcp_send_active_reset(sk, sk->sk_allocation);
2793 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2794 		/* Check zero linger _after_ checking for unread data. */
2795 		sk->sk_prot->disconnect(sk, 0);
2796 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2797 	} else if (tcp_close_state(sk)) {
2798 		/* We FIN if the application ate all the data before
2799 		 * zapping the connection.
2800 		 */
2801 
2802 		/* RED-PEN. Formally speaking, we have broken TCP state
2803 		 * machine. State transitions:
2804 		 *
2805 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2806 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2807 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2808 		 *
2809 		 * are legal only when FIN has been sent (i.e. in window),
2810 		 * rather than queued out of window. Purists blame.
2811 		 *
2812 		 * F.e. "RFC state" is ESTABLISHED,
2813 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2814 		 *
2815 		 * The visible declinations are that sometimes
2816 		 * we enter time-wait state, when it is not required really
2817 		 * (harmless), do not send active resets, when they are
2818 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2819 		 * they look as CLOSING or LAST_ACK for Linux)
2820 		 * Probably, I missed some more holelets.
2821 		 * 						--ANK
2822 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2823 		 * in a single packet! (May consider it later but will
2824 		 * probably need API support or TCP_CORK SYN-ACK until
2825 		 * data is written and socket is closed.)
2826 		 */
2827 		tcp_send_fin(sk);
2828 	}
2829 
2830 	sk_stream_wait_close(sk, timeout);
2831 
2832 adjudge_to_death:
2833 	state = sk->sk_state;
2834 	sock_hold(sk);
2835 	sock_orphan(sk);
2836 
2837 	local_bh_disable();
2838 	bh_lock_sock(sk);
2839 	/* remove backlog if any, without releasing ownership. */
2840 	__release_sock(sk);
2841 
2842 	this_cpu_inc(tcp_orphan_count);
2843 
2844 	/* Have we already been destroyed by a softirq or backlog? */
2845 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2846 		goto out;
2847 
2848 	/*	This is a (useful) BSD violating of the RFC. There is a
2849 	 *	problem with TCP as specified in that the other end could
2850 	 *	keep a socket open forever with no application left this end.
2851 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2852 	 *	our end. If they send after that then tough - BUT: long enough
2853 	 *	that we won't make the old 4*rto = almost no time - whoops
2854 	 *	reset mistake.
2855 	 *
2856 	 *	Nope, it was not mistake. It is really desired behaviour
2857 	 *	f.e. on http servers, when such sockets are useless, but
2858 	 *	consume significant resources. Let's do it with special
2859 	 *	linger2	option.					--ANK
2860 	 */
2861 
2862 	if (sk->sk_state == TCP_FIN_WAIT2) {
2863 		struct tcp_sock *tp = tcp_sk(sk);
2864 		if (tp->linger2 < 0) {
2865 			tcp_set_state(sk, TCP_CLOSE);
2866 			tcp_send_active_reset(sk, GFP_ATOMIC);
2867 			__NET_INC_STATS(sock_net(sk),
2868 					LINUX_MIB_TCPABORTONLINGER);
2869 		} else {
2870 			const int tmo = tcp_fin_time(sk);
2871 
2872 			if (tmo > TCP_TIMEWAIT_LEN) {
2873 				inet_csk_reset_keepalive_timer(sk,
2874 						tmo - TCP_TIMEWAIT_LEN);
2875 			} else {
2876 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2877 				goto out;
2878 			}
2879 		}
2880 	}
2881 	if (sk->sk_state != TCP_CLOSE) {
2882 		if (tcp_check_oom(sk, 0)) {
2883 			tcp_set_state(sk, TCP_CLOSE);
2884 			tcp_send_active_reset(sk, GFP_ATOMIC);
2885 			__NET_INC_STATS(sock_net(sk),
2886 					LINUX_MIB_TCPABORTONMEMORY);
2887 		} else if (!check_net(sock_net(sk))) {
2888 			/* Not possible to send reset; just close */
2889 			tcp_set_state(sk, TCP_CLOSE);
2890 		}
2891 	}
2892 
2893 	if (sk->sk_state == TCP_CLOSE) {
2894 		struct request_sock *req;
2895 
2896 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2897 						lockdep_sock_is_held(sk));
2898 		/* We could get here with a non-NULL req if the socket is
2899 		 * aborted (e.g., closed with unread data) before 3WHS
2900 		 * finishes.
2901 		 */
2902 		if (req)
2903 			reqsk_fastopen_remove(sk, req, false);
2904 		inet_csk_destroy_sock(sk);
2905 	}
2906 	/* Otherwise, socket is reprieved until protocol close. */
2907 
2908 out:
2909 	bh_unlock_sock(sk);
2910 	local_bh_enable();
2911 }
2912 
2913 void tcp_close(struct sock *sk, long timeout)
2914 {
2915 	lock_sock(sk);
2916 	__tcp_close(sk, timeout);
2917 	release_sock(sk);
2918 	sock_put(sk);
2919 }
2920 EXPORT_SYMBOL(tcp_close);
2921 
2922 /* These states need RST on ABORT according to RFC793 */
2923 
2924 static inline bool tcp_need_reset(int state)
2925 {
2926 	return (1 << state) &
2927 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2928 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2929 }
2930 
2931 static void tcp_rtx_queue_purge(struct sock *sk)
2932 {
2933 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2934 
2935 	tcp_sk(sk)->highest_sack = NULL;
2936 	while (p) {
2937 		struct sk_buff *skb = rb_to_skb(p);
2938 
2939 		p = rb_next(p);
2940 		/* Since we are deleting whole queue, no need to
2941 		 * list_del(&skb->tcp_tsorted_anchor)
2942 		 */
2943 		tcp_rtx_queue_unlink(skb, sk);
2944 		tcp_wmem_free_skb(sk, skb);
2945 	}
2946 }
2947 
2948 void tcp_write_queue_purge(struct sock *sk)
2949 {
2950 	struct sk_buff *skb;
2951 
2952 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2953 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2954 		tcp_skb_tsorted_anchor_cleanup(skb);
2955 		tcp_wmem_free_skb(sk, skb);
2956 	}
2957 	tcp_rtx_queue_purge(sk);
2958 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2959 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2960 	tcp_sk(sk)->packets_out = 0;
2961 	inet_csk(sk)->icsk_backoff = 0;
2962 }
2963 
2964 int tcp_disconnect(struct sock *sk, int flags)
2965 {
2966 	struct inet_sock *inet = inet_sk(sk);
2967 	struct inet_connection_sock *icsk = inet_csk(sk);
2968 	struct tcp_sock *tp = tcp_sk(sk);
2969 	int old_state = sk->sk_state;
2970 	u32 seq;
2971 
2972 	/* Deny disconnect if other threads are blocked in sk_wait_event()
2973 	 * or inet_wait_for_connect().
2974 	 */
2975 	if (sk->sk_wait_pending)
2976 		return -EBUSY;
2977 
2978 	if (old_state != TCP_CLOSE)
2979 		tcp_set_state(sk, TCP_CLOSE);
2980 
2981 	/* ABORT function of RFC793 */
2982 	if (old_state == TCP_LISTEN) {
2983 		inet_csk_listen_stop(sk);
2984 	} else if (unlikely(tp->repair)) {
2985 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2986 	} else if (tcp_need_reset(old_state) ||
2987 		   (tp->snd_nxt != tp->write_seq &&
2988 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2989 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2990 		 * states
2991 		 */
2992 		tcp_send_active_reset(sk, gfp_any());
2993 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2994 	} else if (old_state == TCP_SYN_SENT)
2995 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2996 
2997 	tcp_clear_xmit_timers(sk);
2998 	__skb_queue_purge(&sk->sk_receive_queue);
2999 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3000 	WRITE_ONCE(tp->urg_data, 0);
3001 	tcp_write_queue_purge(sk);
3002 	tcp_fastopen_active_disable_ofo_check(sk);
3003 	skb_rbtree_purge(&tp->out_of_order_queue);
3004 
3005 	inet->inet_dport = 0;
3006 
3007 	inet_bhash2_reset_saddr(sk);
3008 
3009 	WRITE_ONCE(sk->sk_shutdown, 0);
3010 	sock_reset_flag(sk, SOCK_DONE);
3011 	tp->srtt_us = 0;
3012 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3013 	tp->rcv_rtt_last_tsecr = 0;
3014 
3015 	seq = tp->write_seq + tp->max_window + 2;
3016 	if (!seq)
3017 		seq = 1;
3018 	WRITE_ONCE(tp->write_seq, seq);
3019 
3020 	icsk->icsk_backoff = 0;
3021 	icsk->icsk_probes_out = 0;
3022 	icsk->icsk_probes_tstamp = 0;
3023 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3024 	icsk->icsk_rto_min = TCP_RTO_MIN;
3025 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3026 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3027 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3028 	tp->snd_cwnd_cnt = 0;
3029 	tp->is_cwnd_limited = 0;
3030 	tp->max_packets_out = 0;
3031 	tp->window_clamp = 0;
3032 	tp->delivered = 0;
3033 	tp->delivered_ce = 0;
3034 	if (icsk->icsk_ca_ops->release)
3035 		icsk->icsk_ca_ops->release(sk);
3036 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3037 	icsk->icsk_ca_initialized = 0;
3038 	tcp_set_ca_state(sk, TCP_CA_Open);
3039 	tp->is_sack_reneg = 0;
3040 	tcp_clear_retrans(tp);
3041 	tp->total_retrans = 0;
3042 	inet_csk_delack_init(sk);
3043 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3044 	 * issue in __tcp_select_window()
3045 	 */
3046 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3047 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3048 	__sk_dst_reset(sk);
3049 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3050 	tcp_saved_syn_free(tp);
3051 	tp->compressed_ack = 0;
3052 	tp->segs_in = 0;
3053 	tp->segs_out = 0;
3054 	tp->bytes_sent = 0;
3055 	tp->bytes_acked = 0;
3056 	tp->bytes_received = 0;
3057 	tp->bytes_retrans = 0;
3058 	tp->data_segs_in = 0;
3059 	tp->data_segs_out = 0;
3060 	tp->duplicate_sack[0].start_seq = 0;
3061 	tp->duplicate_sack[0].end_seq = 0;
3062 	tp->dsack_dups = 0;
3063 	tp->reord_seen = 0;
3064 	tp->retrans_out = 0;
3065 	tp->sacked_out = 0;
3066 	tp->tlp_high_seq = 0;
3067 	tp->last_oow_ack_time = 0;
3068 	tp->plb_rehash = 0;
3069 	/* There's a bubble in the pipe until at least the first ACK. */
3070 	tp->app_limited = ~0U;
3071 	tp->rate_app_limited = 1;
3072 	tp->rack.mstamp = 0;
3073 	tp->rack.advanced = 0;
3074 	tp->rack.reo_wnd_steps = 1;
3075 	tp->rack.last_delivered = 0;
3076 	tp->rack.reo_wnd_persist = 0;
3077 	tp->rack.dsack_seen = 0;
3078 	tp->syn_data_acked = 0;
3079 	tp->rx_opt.saw_tstamp = 0;
3080 	tp->rx_opt.dsack = 0;
3081 	tp->rx_opt.num_sacks = 0;
3082 	tp->rcv_ooopack = 0;
3083 
3084 
3085 	/* Clean up fastopen related fields */
3086 	tcp_free_fastopen_req(tp);
3087 	inet->defer_connect = 0;
3088 	tp->fastopen_client_fail = 0;
3089 
3090 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3091 
3092 	if (sk->sk_frag.page) {
3093 		put_page(sk->sk_frag.page);
3094 		sk->sk_frag.page = NULL;
3095 		sk->sk_frag.offset = 0;
3096 	}
3097 	sk_error_report(sk);
3098 	return 0;
3099 }
3100 EXPORT_SYMBOL(tcp_disconnect);
3101 
3102 static inline bool tcp_can_repair_sock(const struct sock *sk)
3103 {
3104 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3105 		(sk->sk_state != TCP_LISTEN);
3106 }
3107 
3108 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3109 {
3110 	struct tcp_repair_window opt;
3111 
3112 	if (!tp->repair)
3113 		return -EPERM;
3114 
3115 	if (len != sizeof(opt))
3116 		return -EINVAL;
3117 
3118 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3119 		return -EFAULT;
3120 
3121 	if (opt.max_window < opt.snd_wnd)
3122 		return -EINVAL;
3123 
3124 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3125 		return -EINVAL;
3126 
3127 	if (after(opt.rcv_wup, tp->rcv_nxt))
3128 		return -EINVAL;
3129 
3130 	tp->snd_wl1	= opt.snd_wl1;
3131 	tp->snd_wnd	= opt.snd_wnd;
3132 	tp->max_window	= opt.max_window;
3133 
3134 	tp->rcv_wnd	= opt.rcv_wnd;
3135 	tp->rcv_wup	= opt.rcv_wup;
3136 
3137 	return 0;
3138 }
3139 
3140 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3141 		unsigned int len)
3142 {
3143 	struct tcp_sock *tp = tcp_sk(sk);
3144 	struct tcp_repair_opt opt;
3145 	size_t offset = 0;
3146 
3147 	while (len >= sizeof(opt)) {
3148 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3149 			return -EFAULT;
3150 
3151 		offset += sizeof(opt);
3152 		len -= sizeof(opt);
3153 
3154 		switch (opt.opt_code) {
3155 		case TCPOPT_MSS:
3156 			tp->rx_opt.mss_clamp = opt.opt_val;
3157 			tcp_mtup_init(sk);
3158 			break;
3159 		case TCPOPT_WINDOW:
3160 			{
3161 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3162 				u16 rcv_wscale = opt.opt_val >> 16;
3163 
3164 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3165 					return -EFBIG;
3166 
3167 				tp->rx_opt.snd_wscale = snd_wscale;
3168 				tp->rx_opt.rcv_wscale = rcv_wscale;
3169 				tp->rx_opt.wscale_ok = 1;
3170 			}
3171 			break;
3172 		case TCPOPT_SACK_PERM:
3173 			if (opt.opt_val != 0)
3174 				return -EINVAL;
3175 
3176 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3177 			break;
3178 		case TCPOPT_TIMESTAMP:
3179 			if (opt.opt_val != 0)
3180 				return -EINVAL;
3181 
3182 			tp->rx_opt.tstamp_ok = 1;
3183 			break;
3184 		}
3185 	}
3186 
3187 	return 0;
3188 }
3189 
3190 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3191 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3192 
3193 static void tcp_enable_tx_delay(void)
3194 {
3195 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3196 		static int __tcp_tx_delay_enabled = 0;
3197 
3198 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3199 			static_branch_enable(&tcp_tx_delay_enabled);
3200 			pr_info("TCP_TX_DELAY enabled\n");
3201 		}
3202 	}
3203 }
3204 
3205 /* When set indicates to always queue non-full frames.  Later the user clears
3206  * this option and we transmit any pending partial frames in the queue.  This is
3207  * meant to be used alongside sendfile() to get properly filled frames when the
3208  * user (for example) must write out headers with a write() call first and then
3209  * use sendfile to send out the data parts.
3210  *
3211  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3212  * TCP_NODELAY.
3213  */
3214 void __tcp_sock_set_cork(struct sock *sk, bool on)
3215 {
3216 	struct tcp_sock *tp = tcp_sk(sk);
3217 
3218 	if (on) {
3219 		tp->nonagle |= TCP_NAGLE_CORK;
3220 	} else {
3221 		tp->nonagle &= ~TCP_NAGLE_CORK;
3222 		if (tp->nonagle & TCP_NAGLE_OFF)
3223 			tp->nonagle |= TCP_NAGLE_PUSH;
3224 		tcp_push_pending_frames(sk);
3225 	}
3226 }
3227 
3228 void tcp_sock_set_cork(struct sock *sk, bool on)
3229 {
3230 	lock_sock(sk);
3231 	__tcp_sock_set_cork(sk, on);
3232 	release_sock(sk);
3233 }
3234 EXPORT_SYMBOL(tcp_sock_set_cork);
3235 
3236 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3237  * remembered, but it is not activated until cork is cleared.
3238  *
3239  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3240  * even TCP_CORK for currently queued segments.
3241  */
3242 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3243 {
3244 	if (on) {
3245 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3246 		tcp_push_pending_frames(sk);
3247 	} else {
3248 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3249 	}
3250 }
3251 
3252 void tcp_sock_set_nodelay(struct sock *sk)
3253 {
3254 	lock_sock(sk);
3255 	__tcp_sock_set_nodelay(sk, true);
3256 	release_sock(sk);
3257 }
3258 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3259 
3260 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3261 {
3262 	if (!val) {
3263 		inet_csk_enter_pingpong_mode(sk);
3264 		return;
3265 	}
3266 
3267 	inet_csk_exit_pingpong_mode(sk);
3268 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3269 	    inet_csk_ack_scheduled(sk)) {
3270 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3271 		tcp_cleanup_rbuf(sk, 1);
3272 		if (!(val & 1))
3273 			inet_csk_enter_pingpong_mode(sk);
3274 	}
3275 }
3276 
3277 void tcp_sock_set_quickack(struct sock *sk, int val)
3278 {
3279 	lock_sock(sk);
3280 	__tcp_sock_set_quickack(sk, val);
3281 	release_sock(sk);
3282 }
3283 EXPORT_SYMBOL(tcp_sock_set_quickack);
3284 
3285 int tcp_sock_set_syncnt(struct sock *sk, int val)
3286 {
3287 	if (val < 1 || val > MAX_TCP_SYNCNT)
3288 		return -EINVAL;
3289 
3290 	lock_sock(sk);
3291 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3292 	release_sock(sk);
3293 	return 0;
3294 }
3295 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3296 
3297 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3298 {
3299 	lock_sock(sk);
3300 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3301 	release_sock(sk);
3302 }
3303 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3304 
3305 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3306 {
3307 	struct tcp_sock *tp = tcp_sk(sk);
3308 
3309 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3310 		return -EINVAL;
3311 
3312 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3313 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3314 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3315 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3316 		u32 elapsed = keepalive_time_elapsed(tp);
3317 
3318 		if (tp->keepalive_time > elapsed)
3319 			elapsed = tp->keepalive_time - elapsed;
3320 		else
3321 			elapsed = 0;
3322 		inet_csk_reset_keepalive_timer(sk, elapsed);
3323 	}
3324 
3325 	return 0;
3326 }
3327 
3328 int tcp_sock_set_keepidle(struct sock *sk, int val)
3329 {
3330 	int err;
3331 
3332 	lock_sock(sk);
3333 	err = tcp_sock_set_keepidle_locked(sk, val);
3334 	release_sock(sk);
3335 	return err;
3336 }
3337 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3338 
3339 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3340 {
3341 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3342 		return -EINVAL;
3343 
3344 	lock_sock(sk);
3345 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3346 	release_sock(sk);
3347 	return 0;
3348 }
3349 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3350 
3351 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3352 {
3353 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3354 		return -EINVAL;
3355 
3356 	lock_sock(sk);
3357 	/* Paired with READ_ONCE() in keepalive_probes() */
3358 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3359 	release_sock(sk);
3360 	return 0;
3361 }
3362 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3363 
3364 int tcp_set_window_clamp(struct sock *sk, int val)
3365 {
3366 	struct tcp_sock *tp = tcp_sk(sk);
3367 
3368 	if (!val) {
3369 		if (sk->sk_state != TCP_CLOSE)
3370 			return -EINVAL;
3371 		tp->window_clamp = 0;
3372 	} else {
3373 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3374 			SOCK_MIN_RCVBUF / 2 : val;
3375 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3376 	}
3377 	return 0;
3378 }
3379 
3380 /*
3381  *	Socket option code for TCP.
3382  */
3383 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3384 		      sockptr_t optval, unsigned int optlen)
3385 {
3386 	struct tcp_sock *tp = tcp_sk(sk);
3387 	struct inet_connection_sock *icsk = inet_csk(sk);
3388 	struct net *net = sock_net(sk);
3389 	int val;
3390 	int err = 0;
3391 
3392 	/* These are data/string values, all the others are ints */
3393 	switch (optname) {
3394 	case TCP_CONGESTION: {
3395 		char name[TCP_CA_NAME_MAX];
3396 
3397 		if (optlen < 1)
3398 			return -EINVAL;
3399 
3400 		val = strncpy_from_sockptr(name, optval,
3401 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3402 		if (val < 0)
3403 			return -EFAULT;
3404 		name[val] = 0;
3405 
3406 		sockopt_lock_sock(sk);
3407 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3408 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3409 								    CAP_NET_ADMIN));
3410 		sockopt_release_sock(sk);
3411 		return err;
3412 	}
3413 	case TCP_ULP: {
3414 		char name[TCP_ULP_NAME_MAX];
3415 
3416 		if (optlen < 1)
3417 			return -EINVAL;
3418 
3419 		val = strncpy_from_sockptr(name, optval,
3420 					min_t(long, TCP_ULP_NAME_MAX - 1,
3421 					      optlen));
3422 		if (val < 0)
3423 			return -EFAULT;
3424 		name[val] = 0;
3425 
3426 		sockopt_lock_sock(sk);
3427 		err = tcp_set_ulp(sk, name);
3428 		sockopt_release_sock(sk);
3429 		return err;
3430 	}
3431 	case TCP_FASTOPEN_KEY: {
3432 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3433 		__u8 *backup_key = NULL;
3434 
3435 		/* Allow a backup key as well to facilitate key rotation
3436 		 * First key is the active one.
3437 		 */
3438 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3439 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3440 			return -EINVAL;
3441 
3442 		if (copy_from_sockptr(key, optval, optlen))
3443 			return -EFAULT;
3444 
3445 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3446 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3447 
3448 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3449 	}
3450 	default:
3451 		/* fallthru */
3452 		break;
3453 	}
3454 
3455 	if (optlen < sizeof(int))
3456 		return -EINVAL;
3457 
3458 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3459 		return -EFAULT;
3460 
3461 	sockopt_lock_sock(sk);
3462 
3463 	switch (optname) {
3464 	case TCP_MAXSEG:
3465 		/* Values greater than interface MTU won't take effect. However
3466 		 * at the point when this call is done we typically don't yet
3467 		 * know which interface is going to be used
3468 		 */
3469 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3470 			err = -EINVAL;
3471 			break;
3472 		}
3473 		tp->rx_opt.user_mss = val;
3474 		break;
3475 
3476 	case TCP_NODELAY:
3477 		__tcp_sock_set_nodelay(sk, val);
3478 		break;
3479 
3480 	case TCP_THIN_LINEAR_TIMEOUTS:
3481 		if (val < 0 || val > 1)
3482 			err = -EINVAL;
3483 		else
3484 			tp->thin_lto = val;
3485 		break;
3486 
3487 	case TCP_THIN_DUPACK:
3488 		if (val < 0 || val > 1)
3489 			err = -EINVAL;
3490 		break;
3491 
3492 	case TCP_REPAIR:
3493 		if (!tcp_can_repair_sock(sk))
3494 			err = -EPERM;
3495 		else if (val == TCP_REPAIR_ON) {
3496 			tp->repair = 1;
3497 			sk->sk_reuse = SK_FORCE_REUSE;
3498 			tp->repair_queue = TCP_NO_QUEUE;
3499 		} else if (val == TCP_REPAIR_OFF) {
3500 			tp->repair = 0;
3501 			sk->sk_reuse = SK_NO_REUSE;
3502 			tcp_send_window_probe(sk);
3503 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3504 			tp->repair = 0;
3505 			sk->sk_reuse = SK_NO_REUSE;
3506 		} else
3507 			err = -EINVAL;
3508 
3509 		break;
3510 
3511 	case TCP_REPAIR_QUEUE:
3512 		if (!tp->repair)
3513 			err = -EPERM;
3514 		else if ((unsigned int)val < TCP_QUEUES_NR)
3515 			tp->repair_queue = val;
3516 		else
3517 			err = -EINVAL;
3518 		break;
3519 
3520 	case TCP_QUEUE_SEQ:
3521 		if (sk->sk_state != TCP_CLOSE) {
3522 			err = -EPERM;
3523 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3524 			if (!tcp_rtx_queue_empty(sk))
3525 				err = -EPERM;
3526 			else
3527 				WRITE_ONCE(tp->write_seq, val);
3528 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3529 			if (tp->rcv_nxt != tp->copied_seq) {
3530 				err = -EPERM;
3531 			} else {
3532 				WRITE_ONCE(tp->rcv_nxt, val);
3533 				WRITE_ONCE(tp->copied_seq, val);
3534 			}
3535 		} else {
3536 			err = -EINVAL;
3537 		}
3538 		break;
3539 
3540 	case TCP_REPAIR_OPTIONS:
3541 		if (!tp->repair)
3542 			err = -EINVAL;
3543 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3544 			err = tcp_repair_options_est(sk, optval, optlen);
3545 		else
3546 			err = -EPERM;
3547 		break;
3548 
3549 	case TCP_CORK:
3550 		__tcp_sock_set_cork(sk, val);
3551 		break;
3552 
3553 	case TCP_KEEPIDLE:
3554 		err = tcp_sock_set_keepidle_locked(sk, val);
3555 		break;
3556 	case TCP_KEEPINTVL:
3557 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3558 			err = -EINVAL;
3559 		else
3560 			WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3561 		break;
3562 	case TCP_KEEPCNT:
3563 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3564 			err = -EINVAL;
3565 		else
3566 			WRITE_ONCE(tp->keepalive_probes, val);
3567 		break;
3568 	case TCP_SYNCNT:
3569 		if (val < 1 || val > MAX_TCP_SYNCNT)
3570 			err = -EINVAL;
3571 		else
3572 			WRITE_ONCE(icsk->icsk_syn_retries, val);
3573 		break;
3574 
3575 	case TCP_SAVE_SYN:
3576 		/* 0: disable, 1: enable, 2: start from ether_header */
3577 		if (val < 0 || val > 2)
3578 			err = -EINVAL;
3579 		else
3580 			tp->save_syn = val;
3581 		break;
3582 
3583 	case TCP_LINGER2:
3584 		if (val < 0)
3585 			WRITE_ONCE(tp->linger2, -1);
3586 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3587 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3588 		else
3589 			WRITE_ONCE(tp->linger2, val * HZ);
3590 		break;
3591 
3592 	case TCP_DEFER_ACCEPT:
3593 		/* Translate value in seconds to number of retransmits */
3594 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3595 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3596 					   TCP_RTO_MAX / HZ));
3597 		break;
3598 
3599 	case TCP_WINDOW_CLAMP:
3600 		err = tcp_set_window_clamp(sk, val);
3601 		break;
3602 
3603 	case TCP_QUICKACK:
3604 		__tcp_sock_set_quickack(sk, val);
3605 		break;
3606 
3607 #ifdef CONFIG_TCP_MD5SIG
3608 	case TCP_MD5SIG:
3609 	case TCP_MD5SIG_EXT:
3610 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3611 		break;
3612 #endif
3613 	case TCP_USER_TIMEOUT:
3614 		/* Cap the max time in ms TCP will retry or probe the window
3615 		 * before giving up and aborting (ETIMEDOUT) a connection.
3616 		 */
3617 		if (val < 0)
3618 			err = -EINVAL;
3619 		else
3620 			WRITE_ONCE(icsk->icsk_user_timeout, val);
3621 		break;
3622 
3623 	case TCP_FASTOPEN:
3624 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3625 		    TCPF_LISTEN))) {
3626 			tcp_fastopen_init_key_once(net);
3627 
3628 			fastopen_queue_tune(sk, val);
3629 		} else {
3630 			err = -EINVAL;
3631 		}
3632 		break;
3633 	case TCP_FASTOPEN_CONNECT:
3634 		if (val > 1 || val < 0) {
3635 			err = -EINVAL;
3636 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3637 			   TFO_CLIENT_ENABLE) {
3638 			if (sk->sk_state == TCP_CLOSE)
3639 				tp->fastopen_connect = val;
3640 			else
3641 				err = -EINVAL;
3642 		} else {
3643 			err = -EOPNOTSUPP;
3644 		}
3645 		break;
3646 	case TCP_FASTOPEN_NO_COOKIE:
3647 		if (val > 1 || val < 0)
3648 			err = -EINVAL;
3649 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3650 			err = -EINVAL;
3651 		else
3652 			tp->fastopen_no_cookie = val;
3653 		break;
3654 	case TCP_TIMESTAMP:
3655 		if (!tp->repair)
3656 			err = -EPERM;
3657 		else
3658 			WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3659 		break;
3660 	case TCP_REPAIR_WINDOW:
3661 		err = tcp_repair_set_window(tp, optval, optlen);
3662 		break;
3663 	case TCP_NOTSENT_LOWAT:
3664 		WRITE_ONCE(tp->notsent_lowat, val);
3665 		sk->sk_write_space(sk);
3666 		break;
3667 	case TCP_INQ:
3668 		if (val > 1 || val < 0)
3669 			err = -EINVAL;
3670 		else
3671 			tp->recvmsg_inq = val;
3672 		break;
3673 	case TCP_TX_DELAY:
3674 		if (val)
3675 			tcp_enable_tx_delay();
3676 		WRITE_ONCE(tp->tcp_tx_delay, val);
3677 		break;
3678 	default:
3679 		err = -ENOPROTOOPT;
3680 		break;
3681 	}
3682 
3683 	sockopt_release_sock(sk);
3684 	return err;
3685 }
3686 
3687 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3688 		   unsigned int optlen)
3689 {
3690 	const struct inet_connection_sock *icsk = inet_csk(sk);
3691 
3692 	if (level != SOL_TCP)
3693 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3694 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3695 								optval, optlen);
3696 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3697 }
3698 EXPORT_SYMBOL(tcp_setsockopt);
3699 
3700 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3701 				      struct tcp_info *info)
3702 {
3703 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3704 	enum tcp_chrono i;
3705 
3706 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3707 		stats[i] = tp->chrono_stat[i - 1];
3708 		if (i == tp->chrono_type)
3709 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3710 		stats[i] *= USEC_PER_SEC / HZ;
3711 		total += stats[i];
3712 	}
3713 
3714 	info->tcpi_busy_time = total;
3715 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3716 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3717 }
3718 
3719 /* Return information about state of tcp endpoint in API format. */
3720 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3721 {
3722 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3723 	const struct inet_connection_sock *icsk = inet_csk(sk);
3724 	unsigned long rate;
3725 	u32 now;
3726 	u64 rate64;
3727 	bool slow;
3728 
3729 	memset(info, 0, sizeof(*info));
3730 	if (sk->sk_type != SOCK_STREAM)
3731 		return;
3732 
3733 	info->tcpi_state = inet_sk_state_load(sk);
3734 
3735 	/* Report meaningful fields for all TCP states, including listeners */
3736 	rate = READ_ONCE(sk->sk_pacing_rate);
3737 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3738 	info->tcpi_pacing_rate = rate64;
3739 
3740 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3741 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3742 	info->tcpi_max_pacing_rate = rate64;
3743 
3744 	info->tcpi_reordering = tp->reordering;
3745 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3746 
3747 	if (info->tcpi_state == TCP_LISTEN) {
3748 		/* listeners aliased fields :
3749 		 * tcpi_unacked -> Number of children ready for accept()
3750 		 * tcpi_sacked  -> max backlog
3751 		 */
3752 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3753 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3754 		return;
3755 	}
3756 
3757 	slow = lock_sock_fast(sk);
3758 
3759 	info->tcpi_ca_state = icsk->icsk_ca_state;
3760 	info->tcpi_retransmits = icsk->icsk_retransmits;
3761 	info->tcpi_probes = icsk->icsk_probes_out;
3762 	info->tcpi_backoff = icsk->icsk_backoff;
3763 
3764 	if (tp->rx_opt.tstamp_ok)
3765 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3766 	if (tcp_is_sack(tp))
3767 		info->tcpi_options |= TCPI_OPT_SACK;
3768 	if (tp->rx_opt.wscale_ok) {
3769 		info->tcpi_options |= TCPI_OPT_WSCALE;
3770 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3771 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3772 	}
3773 
3774 	if (tp->ecn_flags & TCP_ECN_OK)
3775 		info->tcpi_options |= TCPI_OPT_ECN;
3776 	if (tp->ecn_flags & TCP_ECN_SEEN)
3777 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3778 	if (tp->syn_data_acked)
3779 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3780 
3781 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3782 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3783 	info->tcpi_snd_mss = tp->mss_cache;
3784 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3785 
3786 	info->tcpi_unacked = tp->packets_out;
3787 	info->tcpi_sacked = tp->sacked_out;
3788 
3789 	info->tcpi_lost = tp->lost_out;
3790 	info->tcpi_retrans = tp->retrans_out;
3791 
3792 	now = tcp_jiffies32;
3793 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3794 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3795 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3796 
3797 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3798 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3799 	info->tcpi_rtt = tp->srtt_us >> 3;
3800 	info->tcpi_rttvar = tp->mdev_us >> 2;
3801 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3802 	info->tcpi_advmss = tp->advmss;
3803 
3804 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3805 	info->tcpi_rcv_space = tp->rcvq_space.space;
3806 
3807 	info->tcpi_total_retrans = tp->total_retrans;
3808 
3809 	info->tcpi_bytes_acked = tp->bytes_acked;
3810 	info->tcpi_bytes_received = tp->bytes_received;
3811 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3812 	tcp_get_info_chrono_stats(tp, info);
3813 
3814 	info->tcpi_segs_out = tp->segs_out;
3815 
3816 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3817 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3818 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3819 
3820 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3821 	info->tcpi_data_segs_out = tp->data_segs_out;
3822 
3823 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3824 	rate64 = tcp_compute_delivery_rate(tp);
3825 	if (rate64)
3826 		info->tcpi_delivery_rate = rate64;
3827 	info->tcpi_delivered = tp->delivered;
3828 	info->tcpi_delivered_ce = tp->delivered_ce;
3829 	info->tcpi_bytes_sent = tp->bytes_sent;
3830 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3831 	info->tcpi_dsack_dups = tp->dsack_dups;
3832 	info->tcpi_reord_seen = tp->reord_seen;
3833 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3834 	info->tcpi_snd_wnd = tp->snd_wnd;
3835 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3836 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3837 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3838 	unlock_sock_fast(sk, slow);
3839 }
3840 EXPORT_SYMBOL_GPL(tcp_get_info);
3841 
3842 static size_t tcp_opt_stats_get_size(void)
3843 {
3844 	return
3845 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3846 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3847 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3848 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3849 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3850 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3851 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3852 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3853 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3854 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3855 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3856 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3857 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3858 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3859 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3860 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3861 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3862 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3863 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3864 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3865 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3866 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3867 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3868 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3869 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3870 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3871 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3872 		0;
3873 }
3874 
3875 /* Returns TTL or hop limit of an incoming packet from skb. */
3876 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3877 {
3878 	if (skb->protocol == htons(ETH_P_IP))
3879 		return ip_hdr(skb)->ttl;
3880 	else if (skb->protocol == htons(ETH_P_IPV6))
3881 		return ipv6_hdr(skb)->hop_limit;
3882 	else
3883 		return 0;
3884 }
3885 
3886 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3887 					       const struct sk_buff *orig_skb,
3888 					       const struct sk_buff *ack_skb)
3889 {
3890 	const struct tcp_sock *tp = tcp_sk(sk);
3891 	struct sk_buff *stats;
3892 	struct tcp_info info;
3893 	unsigned long rate;
3894 	u64 rate64;
3895 
3896 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3897 	if (!stats)
3898 		return NULL;
3899 
3900 	tcp_get_info_chrono_stats(tp, &info);
3901 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3902 			  info.tcpi_busy_time, TCP_NLA_PAD);
3903 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3904 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3905 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3906 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3907 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3908 			  tp->data_segs_out, TCP_NLA_PAD);
3909 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3910 			  tp->total_retrans, TCP_NLA_PAD);
3911 
3912 	rate = READ_ONCE(sk->sk_pacing_rate);
3913 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3914 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3915 
3916 	rate64 = tcp_compute_delivery_rate(tp);
3917 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3918 
3919 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3920 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3921 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3922 
3923 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3924 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3925 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3926 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3927 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3928 
3929 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3930 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3931 
3932 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3933 			  TCP_NLA_PAD);
3934 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3935 			  TCP_NLA_PAD);
3936 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3937 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3938 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3939 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3940 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3941 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3942 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3943 			  TCP_NLA_PAD);
3944 	if (ack_skb)
3945 		nla_put_u8(stats, TCP_NLA_TTL,
3946 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3947 
3948 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3949 	return stats;
3950 }
3951 
3952 int do_tcp_getsockopt(struct sock *sk, int level,
3953 		      int optname, sockptr_t optval, sockptr_t optlen)
3954 {
3955 	struct inet_connection_sock *icsk = inet_csk(sk);
3956 	struct tcp_sock *tp = tcp_sk(sk);
3957 	struct net *net = sock_net(sk);
3958 	int val, len;
3959 
3960 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3961 		return -EFAULT;
3962 
3963 	len = min_t(unsigned int, len, sizeof(int));
3964 
3965 	if (len < 0)
3966 		return -EINVAL;
3967 
3968 	switch (optname) {
3969 	case TCP_MAXSEG:
3970 		val = tp->mss_cache;
3971 		if (tp->rx_opt.user_mss &&
3972 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3973 			val = tp->rx_opt.user_mss;
3974 		if (tp->repair)
3975 			val = tp->rx_opt.mss_clamp;
3976 		break;
3977 	case TCP_NODELAY:
3978 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3979 		break;
3980 	case TCP_CORK:
3981 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3982 		break;
3983 	case TCP_KEEPIDLE:
3984 		val = keepalive_time_when(tp) / HZ;
3985 		break;
3986 	case TCP_KEEPINTVL:
3987 		val = keepalive_intvl_when(tp) / HZ;
3988 		break;
3989 	case TCP_KEEPCNT:
3990 		val = keepalive_probes(tp);
3991 		break;
3992 	case TCP_SYNCNT:
3993 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
3994 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3995 		break;
3996 	case TCP_LINGER2:
3997 		val = READ_ONCE(tp->linger2);
3998 		if (val >= 0)
3999 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4000 		break;
4001 	case TCP_DEFER_ACCEPT:
4002 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4003 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4004 				      TCP_RTO_MAX / HZ);
4005 		break;
4006 	case TCP_WINDOW_CLAMP:
4007 		val = tp->window_clamp;
4008 		break;
4009 	case TCP_INFO: {
4010 		struct tcp_info info;
4011 
4012 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4013 			return -EFAULT;
4014 
4015 		tcp_get_info(sk, &info);
4016 
4017 		len = min_t(unsigned int, len, sizeof(info));
4018 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4019 			return -EFAULT;
4020 		if (copy_to_sockptr(optval, &info, len))
4021 			return -EFAULT;
4022 		return 0;
4023 	}
4024 	case TCP_CC_INFO: {
4025 		const struct tcp_congestion_ops *ca_ops;
4026 		union tcp_cc_info info;
4027 		size_t sz = 0;
4028 		int attr;
4029 
4030 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4031 			return -EFAULT;
4032 
4033 		ca_ops = icsk->icsk_ca_ops;
4034 		if (ca_ops && ca_ops->get_info)
4035 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4036 
4037 		len = min_t(unsigned int, len, sz);
4038 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4039 			return -EFAULT;
4040 		if (copy_to_sockptr(optval, &info, len))
4041 			return -EFAULT;
4042 		return 0;
4043 	}
4044 	case TCP_QUICKACK:
4045 		val = !inet_csk_in_pingpong_mode(sk);
4046 		break;
4047 
4048 	case TCP_CONGESTION:
4049 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4050 			return -EFAULT;
4051 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4052 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4053 			return -EFAULT;
4054 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4055 			return -EFAULT;
4056 		return 0;
4057 
4058 	case TCP_ULP:
4059 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4060 			return -EFAULT;
4061 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4062 		if (!icsk->icsk_ulp_ops) {
4063 			len = 0;
4064 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4065 				return -EFAULT;
4066 			return 0;
4067 		}
4068 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4069 			return -EFAULT;
4070 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4071 			return -EFAULT;
4072 		return 0;
4073 
4074 	case TCP_FASTOPEN_KEY: {
4075 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4076 		unsigned int key_len;
4077 
4078 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4079 			return -EFAULT;
4080 
4081 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4082 				TCP_FASTOPEN_KEY_LENGTH;
4083 		len = min_t(unsigned int, len, key_len);
4084 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4085 			return -EFAULT;
4086 		if (copy_to_sockptr(optval, key, len))
4087 			return -EFAULT;
4088 		return 0;
4089 	}
4090 	case TCP_THIN_LINEAR_TIMEOUTS:
4091 		val = tp->thin_lto;
4092 		break;
4093 
4094 	case TCP_THIN_DUPACK:
4095 		val = 0;
4096 		break;
4097 
4098 	case TCP_REPAIR:
4099 		val = tp->repair;
4100 		break;
4101 
4102 	case TCP_REPAIR_QUEUE:
4103 		if (tp->repair)
4104 			val = tp->repair_queue;
4105 		else
4106 			return -EINVAL;
4107 		break;
4108 
4109 	case TCP_REPAIR_WINDOW: {
4110 		struct tcp_repair_window opt;
4111 
4112 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4113 			return -EFAULT;
4114 
4115 		if (len != sizeof(opt))
4116 			return -EINVAL;
4117 
4118 		if (!tp->repair)
4119 			return -EPERM;
4120 
4121 		opt.snd_wl1	= tp->snd_wl1;
4122 		opt.snd_wnd	= tp->snd_wnd;
4123 		opt.max_window	= tp->max_window;
4124 		opt.rcv_wnd	= tp->rcv_wnd;
4125 		opt.rcv_wup	= tp->rcv_wup;
4126 
4127 		if (copy_to_sockptr(optval, &opt, len))
4128 			return -EFAULT;
4129 		return 0;
4130 	}
4131 	case TCP_QUEUE_SEQ:
4132 		if (tp->repair_queue == TCP_SEND_QUEUE)
4133 			val = tp->write_seq;
4134 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4135 			val = tp->rcv_nxt;
4136 		else
4137 			return -EINVAL;
4138 		break;
4139 
4140 	case TCP_USER_TIMEOUT:
4141 		val = READ_ONCE(icsk->icsk_user_timeout);
4142 		break;
4143 
4144 	case TCP_FASTOPEN:
4145 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4146 		break;
4147 
4148 	case TCP_FASTOPEN_CONNECT:
4149 		val = tp->fastopen_connect;
4150 		break;
4151 
4152 	case TCP_FASTOPEN_NO_COOKIE:
4153 		val = tp->fastopen_no_cookie;
4154 		break;
4155 
4156 	case TCP_TX_DELAY:
4157 		val = READ_ONCE(tp->tcp_tx_delay);
4158 		break;
4159 
4160 	case TCP_TIMESTAMP:
4161 		val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4162 		break;
4163 	case TCP_NOTSENT_LOWAT:
4164 		val = READ_ONCE(tp->notsent_lowat);
4165 		break;
4166 	case TCP_INQ:
4167 		val = tp->recvmsg_inq;
4168 		break;
4169 	case TCP_SAVE_SYN:
4170 		val = tp->save_syn;
4171 		break;
4172 	case TCP_SAVED_SYN: {
4173 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4174 			return -EFAULT;
4175 
4176 		sockopt_lock_sock(sk);
4177 		if (tp->saved_syn) {
4178 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4179 				len = tcp_saved_syn_len(tp->saved_syn);
4180 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4181 					sockopt_release_sock(sk);
4182 					return -EFAULT;
4183 				}
4184 				sockopt_release_sock(sk);
4185 				return -EINVAL;
4186 			}
4187 			len = tcp_saved_syn_len(tp->saved_syn);
4188 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4189 				sockopt_release_sock(sk);
4190 				return -EFAULT;
4191 			}
4192 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4193 				sockopt_release_sock(sk);
4194 				return -EFAULT;
4195 			}
4196 			tcp_saved_syn_free(tp);
4197 			sockopt_release_sock(sk);
4198 		} else {
4199 			sockopt_release_sock(sk);
4200 			len = 0;
4201 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4202 				return -EFAULT;
4203 		}
4204 		return 0;
4205 	}
4206 #ifdef CONFIG_MMU
4207 	case TCP_ZEROCOPY_RECEIVE: {
4208 		struct scm_timestamping_internal tss;
4209 		struct tcp_zerocopy_receive zc = {};
4210 		int err;
4211 
4212 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4213 			return -EFAULT;
4214 		if (len < 0 ||
4215 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4216 			return -EINVAL;
4217 		if (unlikely(len > sizeof(zc))) {
4218 			err = check_zeroed_sockptr(optval, sizeof(zc),
4219 						   len - sizeof(zc));
4220 			if (err < 1)
4221 				return err == 0 ? -EINVAL : err;
4222 			len = sizeof(zc);
4223 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4224 				return -EFAULT;
4225 		}
4226 		if (copy_from_sockptr(&zc, optval, len))
4227 			return -EFAULT;
4228 		if (zc.reserved)
4229 			return -EINVAL;
4230 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4231 			return -EINVAL;
4232 		sockopt_lock_sock(sk);
4233 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4234 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4235 							  &zc, &len, err);
4236 		sockopt_release_sock(sk);
4237 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4238 			goto zerocopy_rcv_cmsg;
4239 		switch (len) {
4240 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4241 			goto zerocopy_rcv_cmsg;
4242 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4243 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4244 		case offsetofend(struct tcp_zerocopy_receive, flags):
4245 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4246 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4247 		case offsetofend(struct tcp_zerocopy_receive, err):
4248 			goto zerocopy_rcv_sk_err;
4249 		case offsetofend(struct tcp_zerocopy_receive, inq):
4250 			goto zerocopy_rcv_inq;
4251 		case offsetofend(struct tcp_zerocopy_receive, length):
4252 		default:
4253 			goto zerocopy_rcv_out;
4254 		}
4255 zerocopy_rcv_cmsg:
4256 		if (zc.msg_flags & TCP_CMSG_TS)
4257 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4258 		else
4259 			zc.msg_flags = 0;
4260 zerocopy_rcv_sk_err:
4261 		if (!err)
4262 			zc.err = sock_error(sk);
4263 zerocopy_rcv_inq:
4264 		zc.inq = tcp_inq_hint(sk);
4265 zerocopy_rcv_out:
4266 		if (!err && copy_to_sockptr(optval, &zc, len))
4267 			err = -EFAULT;
4268 		return err;
4269 	}
4270 #endif
4271 	default:
4272 		return -ENOPROTOOPT;
4273 	}
4274 
4275 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4276 		return -EFAULT;
4277 	if (copy_to_sockptr(optval, &val, len))
4278 		return -EFAULT;
4279 	return 0;
4280 }
4281 
4282 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4283 {
4284 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4285 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4286 	 */
4287 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4288 		return true;
4289 
4290 	return false;
4291 }
4292 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4293 
4294 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4295 		   int __user *optlen)
4296 {
4297 	struct inet_connection_sock *icsk = inet_csk(sk);
4298 
4299 	if (level != SOL_TCP)
4300 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4301 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4302 								optval, optlen);
4303 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4304 				 USER_SOCKPTR(optlen));
4305 }
4306 EXPORT_SYMBOL(tcp_getsockopt);
4307 
4308 #ifdef CONFIG_TCP_MD5SIG
4309 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4310 static DEFINE_MUTEX(tcp_md5sig_mutex);
4311 static bool tcp_md5sig_pool_populated = false;
4312 
4313 static void __tcp_alloc_md5sig_pool(void)
4314 {
4315 	struct crypto_ahash *hash;
4316 	int cpu;
4317 
4318 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4319 	if (IS_ERR(hash))
4320 		return;
4321 
4322 	for_each_possible_cpu(cpu) {
4323 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4324 		struct ahash_request *req;
4325 
4326 		if (!scratch) {
4327 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4328 					       sizeof(struct tcphdr),
4329 					       GFP_KERNEL,
4330 					       cpu_to_node(cpu));
4331 			if (!scratch)
4332 				return;
4333 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4334 		}
4335 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4336 			continue;
4337 
4338 		req = ahash_request_alloc(hash, GFP_KERNEL);
4339 		if (!req)
4340 			return;
4341 
4342 		ahash_request_set_callback(req, 0, NULL, NULL);
4343 
4344 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4345 	}
4346 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4347 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4348 	 */
4349 	smp_wmb();
4350 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4351 	 * and tcp_get_md5sig_pool().
4352 	*/
4353 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4354 }
4355 
4356 bool tcp_alloc_md5sig_pool(void)
4357 {
4358 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4359 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4360 		mutex_lock(&tcp_md5sig_mutex);
4361 
4362 		if (!tcp_md5sig_pool_populated)
4363 			__tcp_alloc_md5sig_pool();
4364 
4365 		mutex_unlock(&tcp_md5sig_mutex);
4366 	}
4367 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4368 	return READ_ONCE(tcp_md5sig_pool_populated);
4369 }
4370 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4371 
4372 
4373 /**
4374  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4375  *
4376  *	We use percpu structure, so if we succeed, we exit with preemption
4377  *	and BH disabled, to make sure another thread or softirq handling
4378  *	wont try to get same context.
4379  */
4380 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4381 {
4382 	local_bh_disable();
4383 
4384 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4385 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4386 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4387 		smp_rmb();
4388 		return this_cpu_ptr(&tcp_md5sig_pool);
4389 	}
4390 	local_bh_enable();
4391 	return NULL;
4392 }
4393 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4394 
4395 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4396 			  const struct sk_buff *skb, unsigned int header_len)
4397 {
4398 	struct scatterlist sg;
4399 	const struct tcphdr *tp = tcp_hdr(skb);
4400 	struct ahash_request *req = hp->md5_req;
4401 	unsigned int i;
4402 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4403 					   skb_headlen(skb) - header_len : 0;
4404 	const struct skb_shared_info *shi = skb_shinfo(skb);
4405 	struct sk_buff *frag_iter;
4406 
4407 	sg_init_table(&sg, 1);
4408 
4409 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4410 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4411 	if (crypto_ahash_update(req))
4412 		return 1;
4413 
4414 	for (i = 0; i < shi->nr_frags; ++i) {
4415 		const skb_frag_t *f = &shi->frags[i];
4416 		unsigned int offset = skb_frag_off(f);
4417 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4418 
4419 		sg_set_page(&sg, page, skb_frag_size(f),
4420 			    offset_in_page(offset));
4421 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4422 		if (crypto_ahash_update(req))
4423 			return 1;
4424 	}
4425 
4426 	skb_walk_frags(skb, frag_iter)
4427 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4428 			return 1;
4429 
4430 	return 0;
4431 }
4432 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4433 
4434 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4435 {
4436 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4437 	struct scatterlist sg;
4438 
4439 	sg_init_one(&sg, key->key, keylen);
4440 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4441 
4442 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4443 	return data_race(crypto_ahash_update(hp->md5_req));
4444 }
4445 EXPORT_SYMBOL(tcp_md5_hash_key);
4446 
4447 /* Called with rcu_read_lock() */
4448 enum skb_drop_reason
4449 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4450 		     const void *saddr, const void *daddr,
4451 		     int family, int dif, int sdif)
4452 {
4453 	/*
4454 	 * This gets called for each TCP segment that arrives
4455 	 * so we want to be efficient.
4456 	 * We have 3 drop cases:
4457 	 * o No MD5 hash and one expected.
4458 	 * o MD5 hash and we're not expecting one.
4459 	 * o MD5 hash and its wrong.
4460 	 */
4461 	const __u8 *hash_location = NULL;
4462 	struct tcp_md5sig_key *hash_expected;
4463 	const struct tcphdr *th = tcp_hdr(skb);
4464 	const struct tcp_sock *tp = tcp_sk(sk);
4465 	int genhash, l3index;
4466 	u8 newhash[16];
4467 
4468 	/* sdif set, means packet ingressed via a device
4469 	 * in an L3 domain and dif is set to the l3mdev
4470 	 */
4471 	l3index = sdif ? dif : 0;
4472 
4473 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4474 	hash_location = tcp_parse_md5sig_option(th);
4475 
4476 	/* We've parsed the options - do we have a hash? */
4477 	if (!hash_expected && !hash_location)
4478 		return SKB_NOT_DROPPED_YET;
4479 
4480 	if (hash_expected && !hash_location) {
4481 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4482 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4483 	}
4484 
4485 	if (!hash_expected && hash_location) {
4486 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4487 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4488 	}
4489 
4490 	/* Check the signature.
4491 	 * To support dual stack listeners, we need to handle
4492 	 * IPv4-mapped case.
4493 	 */
4494 	if (family == AF_INET)
4495 		genhash = tcp_v4_md5_hash_skb(newhash,
4496 					      hash_expected,
4497 					      NULL, skb);
4498 	else
4499 		genhash = tp->af_specific->calc_md5_hash(newhash,
4500 							 hash_expected,
4501 							 NULL, skb);
4502 
4503 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4504 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4505 		if (family == AF_INET) {
4506 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4507 					saddr, ntohs(th->source),
4508 					daddr, ntohs(th->dest),
4509 					genhash ? " tcp_v4_calc_md5_hash failed"
4510 					: "", l3index);
4511 		} else {
4512 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4513 					genhash ? "failed" : "mismatch",
4514 					saddr, ntohs(th->source),
4515 					daddr, ntohs(th->dest), l3index);
4516 		}
4517 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4518 	}
4519 	return SKB_NOT_DROPPED_YET;
4520 }
4521 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4522 
4523 #endif
4524 
4525 void tcp_done(struct sock *sk)
4526 {
4527 	struct request_sock *req;
4528 
4529 	/* We might be called with a new socket, after
4530 	 * inet_csk_prepare_forced_close() has been called
4531 	 * so we can not use lockdep_sock_is_held(sk)
4532 	 */
4533 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4534 
4535 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4536 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4537 
4538 	tcp_set_state(sk, TCP_CLOSE);
4539 	tcp_clear_xmit_timers(sk);
4540 	if (req)
4541 		reqsk_fastopen_remove(sk, req, false);
4542 
4543 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4544 
4545 	if (!sock_flag(sk, SOCK_DEAD))
4546 		sk->sk_state_change(sk);
4547 	else
4548 		inet_csk_destroy_sock(sk);
4549 }
4550 EXPORT_SYMBOL_GPL(tcp_done);
4551 
4552 int tcp_abort(struct sock *sk, int err)
4553 {
4554 	int state = inet_sk_state_load(sk);
4555 
4556 	if (state == TCP_NEW_SYN_RECV) {
4557 		struct request_sock *req = inet_reqsk(sk);
4558 
4559 		local_bh_disable();
4560 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4561 		local_bh_enable();
4562 		return 0;
4563 	}
4564 	if (state == TCP_TIME_WAIT) {
4565 		struct inet_timewait_sock *tw = inet_twsk(sk);
4566 
4567 		refcount_inc(&tw->tw_refcnt);
4568 		local_bh_disable();
4569 		inet_twsk_deschedule_put(tw);
4570 		local_bh_enable();
4571 		return 0;
4572 	}
4573 
4574 	/* BPF context ensures sock locking. */
4575 	if (!has_current_bpf_ctx())
4576 		/* Don't race with userspace socket closes such as tcp_close. */
4577 		lock_sock(sk);
4578 
4579 	if (sk->sk_state == TCP_LISTEN) {
4580 		tcp_set_state(sk, TCP_CLOSE);
4581 		inet_csk_listen_stop(sk);
4582 	}
4583 
4584 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4585 	local_bh_disable();
4586 	bh_lock_sock(sk);
4587 
4588 	if (!sock_flag(sk, SOCK_DEAD)) {
4589 		WRITE_ONCE(sk->sk_err, err);
4590 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4591 		smp_wmb();
4592 		sk_error_report(sk);
4593 		if (tcp_need_reset(sk->sk_state))
4594 			tcp_send_active_reset(sk, GFP_ATOMIC);
4595 		tcp_done(sk);
4596 	}
4597 
4598 	bh_unlock_sock(sk);
4599 	local_bh_enable();
4600 	tcp_write_queue_purge(sk);
4601 	if (!has_current_bpf_ctx())
4602 		release_sock(sk);
4603 	return 0;
4604 }
4605 EXPORT_SYMBOL_GPL(tcp_abort);
4606 
4607 extern struct tcp_congestion_ops tcp_reno;
4608 
4609 static __initdata unsigned long thash_entries;
4610 static int __init set_thash_entries(char *str)
4611 {
4612 	ssize_t ret;
4613 
4614 	if (!str)
4615 		return 0;
4616 
4617 	ret = kstrtoul(str, 0, &thash_entries);
4618 	if (ret)
4619 		return 0;
4620 
4621 	return 1;
4622 }
4623 __setup("thash_entries=", set_thash_entries);
4624 
4625 static void __init tcp_init_mem(void)
4626 {
4627 	unsigned long limit = nr_free_buffer_pages() / 16;
4628 
4629 	limit = max(limit, 128UL);
4630 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4631 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4632 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4633 }
4634 
4635 void __init tcp_init(void)
4636 {
4637 	int max_rshare, max_wshare, cnt;
4638 	unsigned long limit;
4639 	unsigned int i;
4640 
4641 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4642 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4643 		     sizeof_field(struct sk_buff, cb));
4644 
4645 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4646 
4647 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4648 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4649 
4650 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4651 			    thash_entries, 21,  /* one slot per 2 MB*/
4652 			    0, 64 * 1024);
4653 	tcp_hashinfo.bind_bucket_cachep =
4654 		kmem_cache_create("tcp_bind_bucket",
4655 				  sizeof(struct inet_bind_bucket), 0,
4656 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4657 				  SLAB_ACCOUNT,
4658 				  NULL);
4659 	tcp_hashinfo.bind2_bucket_cachep =
4660 		kmem_cache_create("tcp_bind2_bucket",
4661 				  sizeof(struct inet_bind2_bucket), 0,
4662 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4663 				  SLAB_ACCOUNT,
4664 				  NULL);
4665 
4666 	/* Size and allocate the main established and bind bucket
4667 	 * hash tables.
4668 	 *
4669 	 * The methodology is similar to that of the buffer cache.
4670 	 */
4671 	tcp_hashinfo.ehash =
4672 		alloc_large_system_hash("TCP established",
4673 					sizeof(struct inet_ehash_bucket),
4674 					thash_entries,
4675 					17, /* one slot per 128 KB of memory */
4676 					0,
4677 					NULL,
4678 					&tcp_hashinfo.ehash_mask,
4679 					0,
4680 					thash_entries ? 0 : 512 * 1024);
4681 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4682 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4683 
4684 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4685 		panic("TCP: failed to alloc ehash_locks");
4686 	tcp_hashinfo.bhash =
4687 		alloc_large_system_hash("TCP bind",
4688 					2 * sizeof(struct inet_bind_hashbucket),
4689 					tcp_hashinfo.ehash_mask + 1,
4690 					17, /* one slot per 128 KB of memory */
4691 					0,
4692 					&tcp_hashinfo.bhash_size,
4693 					NULL,
4694 					0,
4695 					64 * 1024);
4696 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4697 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4698 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4699 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4700 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4701 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4702 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4703 	}
4704 
4705 	tcp_hashinfo.pernet = false;
4706 
4707 	cnt = tcp_hashinfo.ehash_mask + 1;
4708 	sysctl_tcp_max_orphans = cnt / 2;
4709 
4710 	tcp_init_mem();
4711 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4712 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4713 	max_wshare = min(4UL*1024*1024, limit);
4714 	max_rshare = min(6UL*1024*1024, limit);
4715 
4716 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4717 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4718 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4719 
4720 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4721 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4722 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4723 
4724 	pr_info("Hash tables configured (established %u bind %u)\n",
4725 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4726 
4727 	tcp_v4_init();
4728 	tcp_metrics_init();
4729 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4730 	tcp_tasklet_init();
4731 	mptcp_init();
4732 }
4733