1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 long sysctl_tcp_mem[3] __read_mostly; 290 EXPORT_SYMBOL(sysctl_tcp_mem); 291 292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 #if IS_ENABLED(CONFIG_SMC) 296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 297 EXPORT_SYMBOL(tcp_have_smc); 298 #endif 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 unsigned long tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 unsigned long val; 327 328 if (tcp_memory_pressure) 329 return; 330 val = jiffies; 331 332 if (!val) 333 val--; 334 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 336 } 337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 338 339 void tcp_leave_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (!tcp_memory_pressure) 344 return; 345 val = xchg(&tcp_memory_pressure, 0); 346 if (val) 347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 348 jiffies_to_msecs(jiffies - val)); 349 } 350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 351 352 /* Convert seconds to retransmits based on initial and max timeout */ 353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 354 { 355 u8 res = 0; 356 357 if (seconds > 0) { 358 int period = timeout; 359 360 res = 1; 361 while (seconds > period && res < 255) { 362 res++; 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return res; 370 } 371 372 /* Convert retransmits to seconds based on initial and max timeout */ 373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 374 { 375 int period = 0; 376 377 if (retrans > 0) { 378 period = timeout; 379 while (--retrans) { 380 timeout <<= 1; 381 if (timeout > rto_max) 382 timeout = rto_max; 383 period += timeout; 384 } 385 } 386 return period; 387 } 388 389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 390 { 391 u32 rate = READ_ONCE(tp->rate_delivered); 392 u32 intv = READ_ONCE(tp->rate_interval_us); 393 u64 rate64 = 0; 394 395 if (rate && intv) { 396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 397 do_div(rate64, intv); 398 } 399 return rate64; 400 } 401 402 /* Address-family independent initialization for a tcp_sock. 403 * 404 * NOTE: A lot of things set to zero explicitly by call to 405 * sk_alloc() so need not be done here. 406 */ 407 void tcp_init_sock(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 struct tcp_sock *tp = tcp_sk(sk); 411 412 tp->out_of_order_queue = RB_ROOT; 413 sk->tcp_rtx_queue = RB_ROOT; 414 tcp_init_xmit_timers(sk); 415 INIT_LIST_HEAD(&tp->tsq_node); 416 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 417 418 icsk->icsk_rto = TCP_TIMEOUT_INIT; 419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 421 422 /* So many TCP implementations out there (incorrectly) count the 423 * initial SYN frame in their delayed-ACK and congestion control 424 * algorithms that we must have the following bandaid to talk 425 * efficiently to them. -DaveM 426 */ 427 tp->snd_cwnd = TCP_INIT_CWND; 428 429 /* There's a bubble in the pipe until at least the first ACK. */ 430 tp->app_limited = ~0U; 431 432 /* See draft-stevens-tcpca-spec-01 for discussion of the 433 * initialization of these values. 434 */ 435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 436 tp->snd_cwnd_clamp = ~0; 437 tp->mss_cache = TCP_MSS_DEFAULT; 438 439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 440 tcp_assign_congestion_control(sk); 441 442 tp->tsoffset = 0; 443 tp->rack.reo_wnd_steps = 1; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 sk->sk_route_forced_caps = NETIF_F_GSO; 457 } 458 EXPORT_SYMBOL(tcp_init_sock); 459 460 void tcp_init_transfer(struct sock *sk, int bpf_op) 461 { 462 struct inet_connection_sock *icsk = inet_csk(sk); 463 464 tcp_mtup_init(sk); 465 icsk->icsk_af_ops->rebuild_header(sk); 466 tcp_init_metrics(sk); 467 tcp_call_bpf(sk, bpf_op, 0, NULL); 468 tcp_init_congestion_control(sk); 469 tcp_init_buffer_space(sk); 470 } 471 472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 473 { 474 struct sk_buff *skb = tcp_write_queue_tail(sk); 475 476 if (tsflags && skb) { 477 struct skb_shared_info *shinfo = skb_shinfo(skb); 478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 479 480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 481 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 482 tcb->txstamp_ack = 1; 483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 485 } 486 } 487 488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 489 int target, struct sock *sk) 490 { 491 return (tp->rcv_nxt - tp->copied_seq >= target) || 492 (sk->sk_prot->stream_memory_read ? 493 sk->sk_prot->stream_memory_read(sk) : false); 494 } 495 496 /* 497 * Wait for a TCP event. 498 * 499 * Note that we don't need to lock the socket, as the upper poll layers 500 * take care of normal races (between the test and the event) and we don't 501 * go look at any of the socket buffers directly. 502 */ 503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 504 { 505 __poll_t mask; 506 struct sock *sk = sock->sk; 507 const struct tcp_sock *tp = tcp_sk(sk); 508 int state; 509 510 sock_poll_wait(file, sk_sleep(sk), wait); 511 512 state = inet_sk_state_load(sk); 513 if (state == TCP_LISTEN) 514 return inet_csk_listen_poll(sk); 515 516 /* Socket is not locked. We are protected from async events 517 * by poll logic and correct handling of state changes 518 * made by other threads is impossible in any case. 519 */ 520 521 mask = 0; 522 523 /* 524 * EPOLLHUP is certainly not done right. But poll() doesn't 525 * have a notion of HUP in just one direction, and for a 526 * socket the read side is more interesting. 527 * 528 * Some poll() documentation says that EPOLLHUP is incompatible 529 * with the EPOLLOUT/POLLWR flags, so somebody should check this 530 * all. But careful, it tends to be safer to return too many 531 * bits than too few, and you can easily break real applications 532 * if you don't tell them that something has hung up! 533 * 534 * Check-me. 535 * 536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 537 * our fs/select.c). It means that after we received EOF, 538 * poll always returns immediately, making impossible poll() on write() 539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 540 * if and only if shutdown has been made in both directions. 541 * Actually, it is interesting to look how Solaris and DUX 542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 543 * then we could set it on SND_SHUTDOWN. BTW examples given 544 * in Stevens' books assume exactly this behaviour, it explains 545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 546 * 547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 548 * blocking on fresh not-connected or disconnected socket. --ANK 549 */ 550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 551 mask |= EPOLLHUP; 552 if (sk->sk_shutdown & RCV_SHUTDOWN) 553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 554 555 /* Connected or passive Fast Open socket? */ 556 if (state != TCP_SYN_SENT && 557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 558 int target = sock_rcvlowat(sk, 0, INT_MAX); 559 560 if (tp->urg_seq == tp->copied_seq && 561 !sock_flag(sk, SOCK_URGINLINE) && 562 tp->urg_data) 563 target++; 564 565 if (tcp_stream_is_readable(tp, target, sk)) 566 mask |= EPOLLIN | EPOLLRDNORM; 567 568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 569 if (sk_stream_is_writeable(sk)) { 570 mask |= EPOLLOUT | EPOLLWRNORM; 571 } else { /* send SIGIO later */ 572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 574 575 /* Race breaker. If space is freed after 576 * wspace test but before the flags are set, 577 * IO signal will be lost. Memory barrier 578 * pairs with the input side. 579 */ 580 smp_mb__after_atomic(); 581 if (sk_stream_is_writeable(sk)) 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 } 584 } else 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 587 if (tp->urg_data & TCP_URG_VALID) 588 mask |= EPOLLPRI; 589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 590 /* Active TCP fastopen socket with defer_connect 591 * Return EPOLLOUT so application can call write() 592 * in order for kernel to generate SYN+data 593 */ 594 mask |= EPOLLOUT | EPOLLWRNORM; 595 } 596 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 597 smp_rmb(); 598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 599 mask |= EPOLLERR; 600 601 return mask; 602 } 603 EXPORT_SYMBOL(tcp_poll); 604 605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 int answ; 609 bool slow; 610 611 switch (cmd) { 612 case SIOCINQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 slow = lock_sock_fast(sk); 617 answ = tcp_inq(sk); 618 unlock_sock_fast(sk, slow); 619 break; 620 case SIOCATMARK: 621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = tp->write_seq - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = tp->write_seq - tp->snd_nxt; 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 return put_user(answ, (int __user *)arg); 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 static void skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 skb->csum = 0; 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 tcb->sacked = 0; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk->sk_wmem_queued += skb->truesize; 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 700 skb != tcp_write_queue_head(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 702 } 703 704 static void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 if (!sock_flag(sk, SOCK_DONE)) 821 ret = -ENOTCONN; 822 break; 823 } 824 if (!timeo) { 825 ret = -EAGAIN; 826 break; 827 } 828 /* if __tcp_splice_read() got nothing while we have 829 * an skb in receive queue, we do not want to loop. 830 * This might happen with URG data. 831 */ 832 if (!skb_queue_empty(&sk->sk_receive_queue)) 833 break; 834 sk_wait_data(sk, &timeo, NULL); 835 if (signal_pending(current)) { 836 ret = sock_intr_errno(timeo); 837 break; 838 } 839 continue; 840 } 841 tss.len -= ret; 842 spliced += ret; 843 844 if (!timeo) 845 break; 846 release_sock(sk); 847 lock_sock(sk); 848 849 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 850 (sk->sk_shutdown & RCV_SHUTDOWN) || 851 signal_pending(current)) 852 break; 853 } 854 855 release_sock(sk); 856 857 if (spliced) 858 return spliced; 859 860 return ret; 861 } 862 EXPORT_SYMBOL(tcp_splice_read); 863 864 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 865 bool force_schedule) 866 { 867 struct sk_buff *skb; 868 869 /* The TCP header must be at least 32-bit aligned. */ 870 size = ALIGN(size, 4); 871 872 if (unlikely(tcp_under_memory_pressure(sk))) 873 sk_mem_reclaim_partial(sk); 874 875 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 876 if (likely(skb)) { 877 bool mem_scheduled; 878 879 if (force_schedule) { 880 mem_scheduled = true; 881 sk_forced_mem_schedule(sk, skb->truesize); 882 } else { 883 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 884 } 885 if (likely(mem_scheduled)) { 886 skb_reserve(skb, sk->sk_prot->max_header); 887 /* 888 * Make sure that we have exactly size bytes 889 * available to the caller, no more, no less. 890 */ 891 skb->reserved_tailroom = skb->end - skb->tail - size; 892 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 893 return skb; 894 } 895 __kfree_skb(skb); 896 } else { 897 sk->sk_prot->enter_memory_pressure(sk); 898 sk_stream_moderate_sndbuf(sk); 899 } 900 return NULL; 901 } 902 903 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 904 int large_allowed) 905 { 906 struct tcp_sock *tp = tcp_sk(sk); 907 u32 new_size_goal, size_goal; 908 909 if (!large_allowed) 910 return mss_now; 911 912 /* Note : tcp_tso_autosize() will eventually split this later */ 913 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 914 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 915 916 /* We try hard to avoid divides here */ 917 size_goal = tp->gso_segs * mss_now; 918 if (unlikely(new_size_goal < size_goal || 919 new_size_goal >= size_goal + mss_now)) { 920 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 921 sk->sk_gso_max_segs); 922 size_goal = tp->gso_segs * mss_now; 923 } 924 925 return max(size_goal, mss_now); 926 } 927 928 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 929 { 930 int mss_now; 931 932 mss_now = tcp_current_mss(sk); 933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 934 935 return mss_now; 936 } 937 938 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 939 size_t size, int flags) 940 { 941 struct tcp_sock *tp = tcp_sk(sk); 942 int mss_now, size_goal; 943 int err; 944 ssize_t copied; 945 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 946 947 /* Wait for a connection to finish. One exception is TCP Fast Open 948 * (passive side) where data is allowed to be sent before a connection 949 * is fully established. 950 */ 951 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 952 !tcp_passive_fastopen(sk)) { 953 err = sk_stream_wait_connect(sk, &timeo); 954 if (err != 0) 955 goto out_err; 956 } 957 958 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 959 960 mss_now = tcp_send_mss(sk, &size_goal, flags); 961 copied = 0; 962 963 err = -EPIPE; 964 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 965 goto out_err; 966 967 while (size > 0) { 968 struct sk_buff *skb = tcp_write_queue_tail(sk); 969 int copy, i; 970 bool can_coalesce; 971 972 if (!skb || (copy = size_goal - skb->len) <= 0 || 973 !tcp_skb_can_collapse_to(skb)) { 974 new_segment: 975 if (!sk_stream_memory_free(sk)) 976 goto wait_for_sndbuf; 977 978 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 979 tcp_rtx_and_write_queues_empty(sk)); 980 if (!skb) 981 goto wait_for_memory; 982 983 skb_entail(sk, skb); 984 copy = size_goal; 985 } 986 987 if (copy > size) 988 copy = size; 989 990 i = skb_shinfo(skb)->nr_frags; 991 can_coalesce = skb_can_coalesce(skb, i, page, offset); 992 if (!can_coalesce && i >= sysctl_max_skb_frags) { 993 tcp_mark_push(tp, skb); 994 goto new_segment; 995 } 996 if (!sk_wmem_schedule(sk, copy)) 997 goto wait_for_memory; 998 999 if (can_coalesce) { 1000 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1001 } else { 1002 get_page(page); 1003 skb_fill_page_desc(skb, i, page, offset, copy); 1004 } 1005 1006 if (!(flags & MSG_NO_SHARED_FRAGS)) 1007 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1008 1009 skb->len += copy; 1010 skb->data_len += copy; 1011 skb->truesize += copy; 1012 sk->sk_wmem_queued += copy; 1013 sk_mem_charge(sk, copy); 1014 skb->ip_summed = CHECKSUM_PARTIAL; 1015 tp->write_seq += copy; 1016 TCP_SKB_CB(skb)->end_seq += copy; 1017 tcp_skb_pcount_set(skb, 0); 1018 1019 if (!copied) 1020 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1021 1022 copied += copy; 1023 offset += copy; 1024 size -= copy; 1025 if (!size) 1026 goto out; 1027 1028 if (skb->len < size_goal || (flags & MSG_OOB)) 1029 continue; 1030 1031 if (forced_push(tp)) { 1032 tcp_mark_push(tp, skb); 1033 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1034 } else if (skb == tcp_send_head(sk)) 1035 tcp_push_one(sk, mss_now); 1036 continue; 1037 1038 wait_for_sndbuf: 1039 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1040 wait_for_memory: 1041 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1042 TCP_NAGLE_PUSH, size_goal); 1043 1044 err = sk_stream_wait_memory(sk, &timeo); 1045 if (err != 0) 1046 goto do_error; 1047 1048 mss_now = tcp_send_mss(sk, &size_goal, flags); 1049 } 1050 1051 out: 1052 if (copied) { 1053 tcp_tx_timestamp(sk, sk->sk_tsflags); 1054 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1055 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1056 } 1057 return copied; 1058 1059 do_error: 1060 if (copied) 1061 goto out; 1062 out_err: 1063 /* make sure we wake any epoll edge trigger waiter */ 1064 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1065 err == -EAGAIN)) { 1066 sk->sk_write_space(sk); 1067 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1068 } 1069 return sk_stream_error(sk, flags, err); 1070 } 1071 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1072 1073 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1074 size_t size, int flags) 1075 { 1076 if (!(sk->sk_route_caps & NETIF_F_SG)) 1077 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1078 1079 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1080 1081 return do_tcp_sendpages(sk, page, offset, size, flags); 1082 } 1083 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1084 1085 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1086 size_t size, int flags) 1087 { 1088 int ret; 1089 1090 lock_sock(sk); 1091 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1092 release_sock(sk); 1093 1094 return ret; 1095 } 1096 EXPORT_SYMBOL(tcp_sendpage); 1097 1098 /* Do not bother using a page frag for very small frames. 1099 * But use this heuristic only for the first skb in write queue. 1100 * 1101 * Having no payload in skb->head allows better SACK shifting 1102 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1103 * write queue has less skbs. 1104 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1105 * This also speeds up tso_fragment(), since it wont fallback 1106 * to tcp_fragment(). 1107 */ 1108 static int linear_payload_sz(bool first_skb) 1109 { 1110 if (first_skb) 1111 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1112 return 0; 1113 } 1114 1115 static int select_size(bool first_skb, bool zc) 1116 { 1117 if (zc) 1118 return 0; 1119 return linear_payload_sz(first_skb); 1120 } 1121 1122 void tcp_free_fastopen_req(struct tcp_sock *tp) 1123 { 1124 if (tp->fastopen_req) { 1125 kfree(tp->fastopen_req); 1126 tp->fastopen_req = NULL; 1127 } 1128 } 1129 1130 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1131 int *copied, size_t size) 1132 { 1133 struct tcp_sock *tp = tcp_sk(sk); 1134 struct inet_sock *inet = inet_sk(sk); 1135 struct sockaddr *uaddr = msg->msg_name; 1136 int err, flags; 1137 1138 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1139 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1140 uaddr->sa_family == AF_UNSPEC)) 1141 return -EOPNOTSUPP; 1142 if (tp->fastopen_req) 1143 return -EALREADY; /* Another Fast Open is in progress */ 1144 1145 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1146 sk->sk_allocation); 1147 if (unlikely(!tp->fastopen_req)) 1148 return -ENOBUFS; 1149 tp->fastopen_req->data = msg; 1150 tp->fastopen_req->size = size; 1151 1152 if (inet->defer_connect) { 1153 err = tcp_connect(sk); 1154 /* Same failure procedure as in tcp_v4/6_connect */ 1155 if (err) { 1156 tcp_set_state(sk, TCP_CLOSE); 1157 inet->inet_dport = 0; 1158 sk->sk_route_caps = 0; 1159 } 1160 } 1161 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1162 err = __inet_stream_connect(sk->sk_socket, uaddr, 1163 msg->msg_namelen, flags, 1); 1164 /* fastopen_req could already be freed in __inet_stream_connect 1165 * if the connection times out or gets rst 1166 */ 1167 if (tp->fastopen_req) { 1168 *copied = tp->fastopen_req->copied; 1169 tcp_free_fastopen_req(tp); 1170 inet->defer_connect = 0; 1171 } 1172 return err; 1173 } 1174 1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1176 { 1177 struct tcp_sock *tp = tcp_sk(sk); 1178 struct ubuf_info *uarg = NULL; 1179 struct sk_buff *skb; 1180 struct sockcm_cookie sockc; 1181 int flags, err, copied = 0; 1182 int mss_now = 0, size_goal, copied_syn = 0; 1183 bool process_backlog = false; 1184 bool zc = false; 1185 long timeo; 1186 1187 flags = msg->msg_flags; 1188 1189 if (flags & MSG_ZEROCOPY && size) { 1190 if (sk->sk_state != TCP_ESTABLISHED) { 1191 err = -EINVAL; 1192 goto out_err; 1193 } 1194 1195 skb = tcp_write_queue_tail(sk); 1196 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1197 if (!uarg) { 1198 err = -ENOBUFS; 1199 goto out_err; 1200 } 1201 1202 zc = sk->sk_route_caps & NETIF_F_SG; 1203 if (!zc) 1204 uarg->zerocopy = 0; 1205 } 1206 1207 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) { 1208 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1209 if (err == -EINPROGRESS && copied_syn > 0) 1210 goto out; 1211 else if (err) 1212 goto out_err; 1213 } 1214 1215 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1216 1217 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1218 1219 /* Wait for a connection to finish. One exception is TCP Fast Open 1220 * (passive side) where data is allowed to be sent before a connection 1221 * is fully established. 1222 */ 1223 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1224 !tcp_passive_fastopen(sk)) { 1225 err = sk_stream_wait_connect(sk, &timeo); 1226 if (err != 0) 1227 goto do_error; 1228 } 1229 1230 if (unlikely(tp->repair)) { 1231 if (tp->repair_queue == TCP_RECV_QUEUE) { 1232 copied = tcp_send_rcvq(sk, msg, size); 1233 goto out_nopush; 1234 } 1235 1236 err = -EINVAL; 1237 if (tp->repair_queue == TCP_NO_QUEUE) 1238 goto out_err; 1239 1240 /* 'common' sending to sendq */ 1241 } 1242 1243 sockc.tsflags = sk->sk_tsflags; 1244 if (msg->msg_controllen) { 1245 err = sock_cmsg_send(sk, msg, &sockc); 1246 if (unlikely(err)) { 1247 err = -EINVAL; 1248 goto out_err; 1249 } 1250 } 1251 1252 /* This should be in poll */ 1253 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1254 1255 /* Ok commence sending. */ 1256 copied = 0; 1257 1258 restart: 1259 mss_now = tcp_send_mss(sk, &size_goal, flags); 1260 1261 err = -EPIPE; 1262 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1263 goto do_error; 1264 1265 while (msg_data_left(msg)) { 1266 int copy = 0; 1267 1268 skb = tcp_write_queue_tail(sk); 1269 if (skb) 1270 copy = size_goal - skb->len; 1271 1272 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1273 bool first_skb; 1274 int linear; 1275 1276 new_segment: 1277 /* Allocate new segment. If the interface is SG, 1278 * allocate skb fitting to single page. 1279 */ 1280 if (!sk_stream_memory_free(sk)) 1281 goto wait_for_sndbuf; 1282 1283 if (process_backlog && sk_flush_backlog(sk)) { 1284 process_backlog = false; 1285 goto restart; 1286 } 1287 first_skb = tcp_rtx_and_write_queues_empty(sk); 1288 linear = select_size(first_skb, zc); 1289 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation, 1290 first_skb); 1291 if (!skb) 1292 goto wait_for_memory; 1293 1294 process_backlog = true; 1295 skb->ip_summed = CHECKSUM_PARTIAL; 1296 1297 skb_entail(sk, skb); 1298 copy = size_goal; 1299 1300 /* All packets are restored as if they have 1301 * already been sent. skb_mstamp isn't set to 1302 * avoid wrong rtt estimation. 1303 */ 1304 if (tp->repair) 1305 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1306 } 1307 1308 /* Try to append data to the end of skb. */ 1309 if (copy > msg_data_left(msg)) 1310 copy = msg_data_left(msg); 1311 1312 /* Where to copy to? */ 1313 if (skb_availroom(skb) > 0 && !zc) { 1314 /* We have some space in skb head. Superb! */ 1315 copy = min_t(int, copy, skb_availroom(skb)); 1316 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1317 if (err) 1318 goto do_fault; 1319 } else if (!zc) { 1320 bool merge = true; 1321 int i = skb_shinfo(skb)->nr_frags; 1322 struct page_frag *pfrag = sk_page_frag(sk); 1323 1324 if (!sk_page_frag_refill(sk, pfrag)) 1325 goto wait_for_memory; 1326 1327 if (!skb_can_coalesce(skb, i, pfrag->page, 1328 pfrag->offset)) { 1329 if (i >= sysctl_max_skb_frags) { 1330 tcp_mark_push(tp, skb); 1331 goto new_segment; 1332 } 1333 merge = false; 1334 } 1335 1336 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1337 1338 if (!sk_wmem_schedule(sk, copy)) 1339 goto wait_for_memory; 1340 1341 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1342 pfrag->page, 1343 pfrag->offset, 1344 copy); 1345 if (err) 1346 goto do_error; 1347 1348 /* Update the skb. */ 1349 if (merge) { 1350 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1351 } else { 1352 skb_fill_page_desc(skb, i, pfrag->page, 1353 pfrag->offset, copy); 1354 page_ref_inc(pfrag->page); 1355 } 1356 pfrag->offset += copy; 1357 } else { 1358 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1359 if (err == -EMSGSIZE || err == -EEXIST) { 1360 tcp_mark_push(tp, skb); 1361 goto new_segment; 1362 } 1363 if (err < 0) 1364 goto do_error; 1365 copy = err; 1366 } 1367 1368 if (!copied) 1369 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1370 1371 tp->write_seq += copy; 1372 TCP_SKB_CB(skb)->end_seq += copy; 1373 tcp_skb_pcount_set(skb, 0); 1374 1375 copied += copy; 1376 if (!msg_data_left(msg)) { 1377 if (unlikely(flags & MSG_EOR)) 1378 TCP_SKB_CB(skb)->eor = 1; 1379 goto out; 1380 } 1381 1382 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1383 continue; 1384 1385 if (forced_push(tp)) { 1386 tcp_mark_push(tp, skb); 1387 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1388 } else if (skb == tcp_send_head(sk)) 1389 tcp_push_one(sk, mss_now); 1390 continue; 1391 1392 wait_for_sndbuf: 1393 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1394 wait_for_memory: 1395 if (copied) 1396 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1397 TCP_NAGLE_PUSH, size_goal); 1398 1399 err = sk_stream_wait_memory(sk, &timeo); 1400 if (err != 0) 1401 goto do_error; 1402 1403 mss_now = tcp_send_mss(sk, &size_goal, flags); 1404 } 1405 1406 out: 1407 if (copied) { 1408 tcp_tx_timestamp(sk, sockc.tsflags); 1409 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1410 } 1411 out_nopush: 1412 sock_zerocopy_put(uarg); 1413 return copied + copied_syn; 1414 1415 do_fault: 1416 if (!skb->len) { 1417 tcp_unlink_write_queue(skb, sk); 1418 /* It is the one place in all of TCP, except connection 1419 * reset, where we can be unlinking the send_head. 1420 */ 1421 tcp_check_send_head(sk, skb); 1422 sk_wmem_free_skb(sk, skb); 1423 } 1424 1425 do_error: 1426 if (copied + copied_syn) 1427 goto out; 1428 out_err: 1429 sock_zerocopy_put_abort(uarg); 1430 err = sk_stream_error(sk, flags, err); 1431 /* make sure we wake any epoll edge trigger waiter */ 1432 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1433 err == -EAGAIN)) { 1434 sk->sk_write_space(sk); 1435 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1436 } 1437 return err; 1438 } 1439 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1440 1441 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1442 { 1443 int ret; 1444 1445 lock_sock(sk); 1446 ret = tcp_sendmsg_locked(sk, msg, size); 1447 release_sock(sk); 1448 1449 return ret; 1450 } 1451 EXPORT_SYMBOL(tcp_sendmsg); 1452 1453 /* 1454 * Handle reading urgent data. BSD has very simple semantics for 1455 * this, no blocking and very strange errors 8) 1456 */ 1457 1458 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1459 { 1460 struct tcp_sock *tp = tcp_sk(sk); 1461 1462 /* No URG data to read. */ 1463 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1464 tp->urg_data == TCP_URG_READ) 1465 return -EINVAL; /* Yes this is right ! */ 1466 1467 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1468 return -ENOTCONN; 1469 1470 if (tp->urg_data & TCP_URG_VALID) { 1471 int err = 0; 1472 char c = tp->urg_data; 1473 1474 if (!(flags & MSG_PEEK)) 1475 tp->urg_data = TCP_URG_READ; 1476 1477 /* Read urgent data. */ 1478 msg->msg_flags |= MSG_OOB; 1479 1480 if (len > 0) { 1481 if (!(flags & MSG_TRUNC)) 1482 err = memcpy_to_msg(msg, &c, 1); 1483 len = 1; 1484 } else 1485 msg->msg_flags |= MSG_TRUNC; 1486 1487 return err ? -EFAULT : len; 1488 } 1489 1490 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1491 return 0; 1492 1493 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1494 * the available implementations agree in this case: 1495 * this call should never block, independent of the 1496 * blocking state of the socket. 1497 * Mike <pall@rz.uni-karlsruhe.de> 1498 */ 1499 return -EAGAIN; 1500 } 1501 1502 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1503 { 1504 struct sk_buff *skb; 1505 int copied = 0, err = 0; 1506 1507 /* XXX -- need to support SO_PEEK_OFF */ 1508 1509 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1510 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1511 if (err) 1512 return err; 1513 copied += skb->len; 1514 } 1515 1516 skb_queue_walk(&sk->sk_write_queue, skb) { 1517 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1518 if (err) 1519 break; 1520 1521 copied += skb->len; 1522 } 1523 1524 return err ?: copied; 1525 } 1526 1527 /* Clean up the receive buffer for full frames taken by the user, 1528 * then send an ACK if necessary. COPIED is the number of bytes 1529 * tcp_recvmsg has given to the user so far, it speeds up the 1530 * calculation of whether or not we must ACK for the sake of 1531 * a window update. 1532 */ 1533 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1534 { 1535 struct tcp_sock *tp = tcp_sk(sk); 1536 bool time_to_ack = false; 1537 1538 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1539 1540 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1541 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1542 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1543 1544 if (inet_csk_ack_scheduled(sk)) { 1545 const struct inet_connection_sock *icsk = inet_csk(sk); 1546 /* Delayed ACKs frequently hit locked sockets during bulk 1547 * receive. */ 1548 if (icsk->icsk_ack.blocked || 1549 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1550 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1551 /* 1552 * If this read emptied read buffer, we send ACK, if 1553 * connection is not bidirectional, user drained 1554 * receive buffer and there was a small segment 1555 * in queue. 1556 */ 1557 (copied > 0 && 1558 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1559 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1560 !icsk->icsk_ack.pingpong)) && 1561 !atomic_read(&sk->sk_rmem_alloc))) 1562 time_to_ack = true; 1563 } 1564 1565 /* We send an ACK if we can now advertise a non-zero window 1566 * which has been raised "significantly". 1567 * 1568 * Even if window raised up to infinity, do not send window open ACK 1569 * in states, where we will not receive more. It is useless. 1570 */ 1571 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1572 __u32 rcv_window_now = tcp_receive_window(tp); 1573 1574 /* Optimize, __tcp_select_window() is not cheap. */ 1575 if (2*rcv_window_now <= tp->window_clamp) { 1576 __u32 new_window = __tcp_select_window(sk); 1577 1578 /* Send ACK now, if this read freed lots of space 1579 * in our buffer. Certainly, new_window is new window. 1580 * We can advertise it now, if it is not less than current one. 1581 * "Lots" means "at least twice" here. 1582 */ 1583 if (new_window && new_window >= 2 * rcv_window_now) 1584 time_to_ack = true; 1585 } 1586 } 1587 if (time_to_ack) 1588 tcp_send_ack(sk); 1589 } 1590 1591 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1592 { 1593 struct sk_buff *skb; 1594 u32 offset; 1595 1596 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1597 offset = seq - TCP_SKB_CB(skb)->seq; 1598 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1599 pr_err_once("%s: found a SYN, please report !\n", __func__); 1600 offset--; 1601 } 1602 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1603 *off = offset; 1604 return skb; 1605 } 1606 /* This looks weird, but this can happen if TCP collapsing 1607 * splitted a fat GRO packet, while we released socket lock 1608 * in skb_splice_bits() 1609 */ 1610 sk_eat_skb(sk, skb); 1611 } 1612 return NULL; 1613 } 1614 1615 /* 1616 * This routine provides an alternative to tcp_recvmsg() for routines 1617 * that would like to handle copying from skbuffs directly in 'sendfile' 1618 * fashion. 1619 * Note: 1620 * - It is assumed that the socket was locked by the caller. 1621 * - The routine does not block. 1622 * - At present, there is no support for reading OOB data 1623 * or for 'peeking' the socket using this routine 1624 * (although both would be easy to implement). 1625 */ 1626 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1627 sk_read_actor_t recv_actor) 1628 { 1629 struct sk_buff *skb; 1630 struct tcp_sock *tp = tcp_sk(sk); 1631 u32 seq = tp->copied_seq; 1632 u32 offset; 1633 int copied = 0; 1634 1635 if (sk->sk_state == TCP_LISTEN) 1636 return -ENOTCONN; 1637 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1638 if (offset < skb->len) { 1639 int used; 1640 size_t len; 1641 1642 len = skb->len - offset; 1643 /* Stop reading if we hit a patch of urgent data */ 1644 if (tp->urg_data) { 1645 u32 urg_offset = tp->urg_seq - seq; 1646 if (urg_offset < len) 1647 len = urg_offset; 1648 if (!len) 1649 break; 1650 } 1651 used = recv_actor(desc, skb, offset, len); 1652 if (used <= 0) { 1653 if (!copied) 1654 copied = used; 1655 break; 1656 } else if (used <= len) { 1657 seq += used; 1658 copied += used; 1659 offset += used; 1660 } 1661 /* If recv_actor drops the lock (e.g. TCP splice 1662 * receive) the skb pointer might be invalid when 1663 * getting here: tcp_collapse might have deleted it 1664 * while aggregating skbs from the socket queue. 1665 */ 1666 skb = tcp_recv_skb(sk, seq - 1, &offset); 1667 if (!skb) 1668 break; 1669 /* TCP coalescing might have appended data to the skb. 1670 * Try to splice more frags 1671 */ 1672 if (offset + 1 != skb->len) 1673 continue; 1674 } 1675 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1676 sk_eat_skb(sk, skb); 1677 ++seq; 1678 break; 1679 } 1680 sk_eat_skb(sk, skb); 1681 if (!desc->count) 1682 break; 1683 tp->copied_seq = seq; 1684 } 1685 tp->copied_seq = seq; 1686 1687 tcp_rcv_space_adjust(sk); 1688 1689 /* Clean up data we have read: This will do ACK frames. */ 1690 if (copied > 0) { 1691 tcp_recv_skb(sk, seq, &offset); 1692 tcp_cleanup_rbuf(sk, copied); 1693 } 1694 return copied; 1695 } 1696 EXPORT_SYMBOL(tcp_read_sock); 1697 1698 int tcp_peek_len(struct socket *sock) 1699 { 1700 return tcp_inq(sock->sk); 1701 } 1702 EXPORT_SYMBOL(tcp_peek_len); 1703 1704 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1705 int tcp_set_rcvlowat(struct sock *sk, int val) 1706 { 1707 sk->sk_rcvlowat = val ? : 1; 1708 1709 /* Check if we need to signal EPOLLIN right now */ 1710 tcp_data_ready(sk); 1711 1712 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1713 return 0; 1714 1715 /* val comes from user space and might be close to INT_MAX */ 1716 val <<= 1; 1717 if (val < 0) 1718 val = INT_MAX; 1719 1720 val = min(val, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1721 if (val > sk->sk_rcvbuf) { 1722 sk->sk_rcvbuf = val; 1723 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1724 } 1725 return 0; 1726 } 1727 EXPORT_SYMBOL(tcp_set_rcvlowat); 1728 1729 /* When user wants to mmap X pages, we first need to perform the mapping 1730 * before freeing any skbs in receive queue, otherwise user would be unable 1731 * to fallback to standard recvmsg(). This happens if some data in the 1732 * requested block is not exactly fitting in a page. 1733 * 1734 * We only support order-0 pages for the moment. 1735 * mmap() on TCP is very strict, there is no point 1736 * trying to accommodate with pathological layouts. 1737 */ 1738 int tcp_mmap(struct file *file, struct socket *sock, 1739 struct vm_area_struct *vma) 1740 { 1741 unsigned long size = vma->vm_end - vma->vm_start; 1742 unsigned int nr_pages = size >> PAGE_SHIFT; 1743 struct page **pages_array = NULL; 1744 u32 seq, len, offset, nr = 0; 1745 struct sock *sk = sock->sk; 1746 const skb_frag_t *frags; 1747 struct tcp_sock *tp; 1748 struct sk_buff *skb; 1749 int ret; 1750 1751 if (vma->vm_pgoff || !nr_pages) 1752 return -EINVAL; 1753 1754 if (vma->vm_flags & VM_WRITE) 1755 return -EPERM; 1756 /* TODO: Maybe the following is not needed if pages are COW */ 1757 vma->vm_flags &= ~VM_MAYWRITE; 1758 1759 lock_sock(sk); 1760 1761 ret = -ENOTCONN; 1762 if (sk->sk_state == TCP_LISTEN) 1763 goto out; 1764 1765 sock_rps_record_flow(sk); 1766 1767 if (tcp_inq(sk) < size) { 1768 ret = sock_flag(sk, SOCK_DONE) ? -EIO : -EAGAIN; 1769 goto out; 1770 } 1771 tp = tcp_sk(sk); 1772 seq = tp->copied_seq; 1773 /* Abort if urgent data is in the area */ 1774 if (unlikely(tp->urg_data)) { 1775 u32 urg_offset = tp->urg_seq - seq; 1776 1777 ret = -EINVAL; 1778 if (urg_offset < size) 1779 goto out; 1780 } 1781 ret = -ENOMEM; 1782 pages_array = kvmalloc_array(nr_pages, sizeof(struct page *), 1783 GFP_KERNEL); 1784 if (!pages_array) 1785 goto out; 1786 skb = tcp_recv_skb(sk, seq, &offset); 1787 ret = -EINVAL; 1788 skb_start: 1789 /* We do not support anything not in page frags */ 1790 offset -= skb_headlen(skb); 1791 if ((int)offset < 0) 1792 goto out; 1793 if (skb_has_frag_list(skb)) 1794 goto out; 1795 len = skb->data_len - offset; 1796 frags = skb_shinfo(skb)->frags; 1797 while (offset) { 1798 if (frags->size > offset) 1799 goto out; 1800 offset -= frags->size; 1801 frags++; 1802 } 1803 while (nr < nr_pages) { 1804 if (len) { 1805 if (len < PAGE_SIZE) 1806 goto out; 1807 if (frags->size != PAGE_SIZE || frags->page_offset) 1808 goto out; 1809 pages_array[nr++] = skb_frag_page(frags); 1810 frags++; 1811 len -= PAGE_SIZE; 1812 seq += PAGE_SIZE; 1813 continue; 1814 } 1815 skb = skb->next; 1816 offset = seq - TCP_SKB_CB(skb)->seq; 1817 goto skb_start; 1818 } 1819 /* OK, we have a full set of pages ready to be inserted into vma */ 1820 for (nr = 0; nr < nr_pages; nr++) { 1821 ret = vm_insert_page(vma, vma->vm_start + (nr << PAGE_SHIFT), 1822 pages_array[nr]); 1823 if (ret) 1824 goto out; 1825 } 1826 /* operation is complete, we can 'consume' all skbs */ 1827 tp->copied_seq = seq; 1828 tcp_rcv_space_adjust(sk); 1829 1830 /* Clean up data we have read: This will do ACK frames. */ 1831 tcp_recv_skb(sk, seq, &offset); 1832 tcp_cleanup_rbuf(sk, size); 1833 1834 ret = 0; 1835 out: 1836 release_sock(sk); 1837 kvfree(pages_array); 1838 return ret; 1839 } 1840 EXPORT_SYMBOL(tcp_mmap); 1841 1842 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1843 struct scm_timestamping *tss) 1844 { 1845 if (skb->tstamp) 1846 tss->ts[0] = ktime_to_timespec(skb->tstamp); 1847 else 1848 tss->ts[0] = (struct timespec) {0}; 1849 1850 if (skb_hwtstamps(skb)->hwtstamp) 1851 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp); 1852 else 1853 tss->ts[2] = (struct timespec) {0}; 1854 } 1855 1856 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1857 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1858 struct scm_timestamping *tss) 1859 { 1860 struct timeval tv; 1861 bool has_timestamping = false; 1862 1863 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1864 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1865 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1866 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 1867 sizeof(tss->ts[0]), &tss->ts[0]); 1868 } else { 1869 tv.tv_sec = tss->ts[0].tv_sec; 1870 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1871 1872 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 1873 sizeof(tv), &tv); 1874 } 1875 } 1876 1877 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1878 has_timestamping = true; 1879 else 1880 tss->ts[0] = (struct timespec) {0}; 1881 } 1882 1883 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1884 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1885 has_timestamping = true; 1886 else 1887 tss->ts[2] = (struct timespec) {0}; 1888 } 1889 1890 if (has_timestamping) { 1891 tss->ts[1] = (struct timespec) {0}; 1892 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, 1893 sizeof(*tss), tss); 1894 } 1895 } 1896 1897 /* 1898 * This routine copies from a sock struct into the user buffer. 1899 * 1900 * Technical note: in 2.3 we work on _locked_ socket, so that 1901 * tricks with *seq access order and skb->users are not required. 1902 * Probably, code can be easily improved even more. 1903 */ 1904 1905 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1906 int flags, int *addr_len) 1907 { 1908 struct tcp_sock *tp = tcp_sk(sk); 1909 int copied = 0; 1910 u32 peek_seq; 1911 u32 *seq; 1912 unsigned long used; 1913 int err; 1914 int target; /* Read at least this many bytes */ 1915 long timeo; 1916 struct sk_buff *skb, *last; 1917 u32 urg_hole = 0; 1918 struct scm_timestamping tss; 1919 bool has_tss = false; 1920 1921 if (unlikely(flags & MSG_ERRQUEUE)) 1922 return inet_recv_error(sk, msg, len, addr_len); 1923 1924 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1925 (sk->sk_state == TCP_ESTABLISHED)) 1926 sk_busy_loop(sk, nonblock); 1927 1928 lock_sock(sk); 1929 1930 err = -ENOTCONN; 1931 if (sk->sk_state == TCP_LISTEN) 1932 goto out; 1933 1934 timeo = sock_rcvtimeo(sk, nonblock); 1935 1936 /* Urgent data needs to be handled specially. */ 1937 if (flags & MSG_OOB) 1938 goto recv_urg; 1939 1940 if (unlikely(tp->repair)) { 1941 err = -EPERM; 1942 if (!(flags & MSG_PEEK)) 1943 goto out; 1944 1945 if (tp->repair_queue == TCP_SEND_QUEUE) 1946 goto recv_sndq; 1947 1948 err = -EINVAL; 1949 if (tp->repair_queue == TCP_NO_QUEUE) 1950 goto out; 1951 1952 /* 'common' recv queue MSG_PEEK-ing */ 1953 } 1954 1955 seq = &tp->copied_seq; 1956 if (flags & MSG_PEEK) { 1957 peek_seq = tp->copied_seq; 1958 seq = &peek_seq; 1959 } 1960 1961 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1962 1963 do { 1964 u32 offset; 1965 1966 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1967 if (tp->urg_data && tp->urg_seq == *seq) { 1968 if (copied) 1969 break; 1970 if (signal_pending(current)) { 1971 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1972 break; 1973 } 1974 } 1975 1976 /* Next get a buffer. */ 1977 1978 last = skb_peek_tail(&sk->sk_receive_queue); 1979 skb_queue_walk(&sk->sk_receive_queue, skb) { 1980 last = skb; 1981 /* Now that we have two receive queues this 1982 * shouldn't happen. 1983 */ 1984 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1985 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1986 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1987 flags)) 1988 break; 1989 1990 offset = *seq - TCP_SKB_CB(skb)->seq; 1991 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1992 pr_err_once("%s: found a SYN, please report !\n", __func__); 1993 offset--; 1994 } 1995 if (offset < skb->len) 1996 goto found_ok_skb; 1997 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1998 goto found_fin_ok; 1999 WARN(!(flags & MSG_PEEK), 2000 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 2001 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2002 } 2003 2004 /* Well, if we have backlog, try to process it now yet. */ 2005 2006 if (copied >= target && !sk->sk_backlog.tail) 2007 break; 2008 2009 if (copied) { 2010 if (sk->sk_err || 2011 sk->sk_state == TCP_CLOSE || 2012 (sk->sk_shutdown & RCV_SHUTDOWN) || 2013 !timeo || 2014 signal_pending(current)) 2015 break; 2016 } else { 2017 if (sock_flag(sk, SOCK_DONE)) 2018 break; 2019 2020 if (sk->sk_err) { 2021 copied = sock_error(sk); 2022 break; 2023 } 2024 2025 if (sk->sk_shutdown & RCV_SHUTDOWN) 2026 break; 2027 2028 if (sk->sk_state == TCP_CLOSE) { 2029 if (!sock_flag(sk, SOCK_DONE)) { 2030 /* This occurs when user tries to read 2031 * from never connected socket. 2032 */ 2033 copied = -ENOTCONN; 2034 break; 2035 } 2036 break; 2037 } 2038 2039 if (!timeo) { 2040 copied = -EAGAIN; 2041 break; 2042 } 2043 2044 if (signal_pending(current)) { 2045 copied = sock_intr_errno(timeo); 2046 break; 2047 } 2048 } 2049 2050 tcp_cleanup_rbuf(sk, copied); 2051 2052 if (copied >= target) { 2053 /* Do not sleep, just process backlog. */ 2054 release_sock(sk); 2055 lock_sock(sk); 2056 } else { 2057 sk_wait_data(sk, &timeo, last); 2058 } 2059 2060 if ((flags & MSG_PEEK) && 2061 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2062 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2063 current->comm, 2064 task_pid_nr(current)); 2065 peek_seq = tp->copied_seq; 2066 } 2067 continue; 2068 2069 found_ok_skb: 2070 /* Ok so how much can we use? */ 2071 used = skb->len - offset; 2072 if (len < used) 2073 used = len; 2074 2075 /* Do we have urgent data here? */ 2076 if (tp->urg_data) { 2077 u32 urg_offset = tp->urg_seq - *seq; 2078 if (urg_offset < used) { 2079 if (!urg_offset) { 2080 if (!sock_flag(sk, SOCK_URGINLINE)) { 2081 ++*seq; 2082 urg_hole++; 2083 offset++; 2084 used--; 2085 if (!used) 2086 goto skip_copy; 2087 } 2088 } else 2089 used = urg_offset; 2090 } 2091 } 2092 2093 if (!(flags & MSG_TRUNC)) { 2094 err = skb_copy_datagram_msg(skb, offset, msg, used); 2095 if (err) { 2096 /* Exception. Bailout! */ 2097 if (!copied) 2098 copied = -EFAULT; 2099 break; 2100 } 2101 } 2102 2103 *seq += used; 2104 copied += used; 2105 len -= used; 2106 2107 tcp_rcv_space_adjust(sk); 2108 2109 skip_copy: 2110 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2111 tp->urg_data = 0; 2112 tcp_fast_path_check(sk); 2113 } 2114 if (used + offset < skb->len) 2115 continue; 2116 2117 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2118 tcp_update_recv_tstamps(skb, &tss); 2119 has_tss = true; 2120 } 2121 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2122 goto found_fin_ok; 2123 if (!(flags & MSG_PEEK)) 2124 sk_eat_skb(sk, skb); 2125 continue; 2126 2127 found_fin_ok: 2128 /* Process the FIN. */ 2129 ++*seq; 2130 if (!(flags & MSG_PEEK)) 2131 sk_eat_skb(sk, skb); 2132 break; 2133 } while (len > 0); 2134 2135 /* According to UNIX98, msg_name/msg_namelen are ignored 2136 * on connected socket. I was just happy when found this 8) --ANK 2137 */ 2138 2139 if (has_tss) 2140 tcp_recv_timestamp(msg, sk, &tss); 2141 2142 /* Clean up data we have read: This will do ACK frames. */ 2143 tcp_cleanup_rbuf(sk, copied); 2144 2145 release_sock(sk); 2146 return copied; 2147 2148 out: 2149 release_sock(sk); 2150 return err; 2151 2152 recv_urg: 2153 err = tcp_recv_urg(sk, msg, len, flags); 2154 goto out; 2155 2156 recv_sndq: 2157 err = tcp_peek_sndq(sk, msg, len); 2158 goto out; 2159 } 2160 EXPORT_SYMBOL(tcp_recvmsg); 2161 2162 void tcp_set_state(struct sock *sk, int state) 2163 { 2164 int oldstate = sk->sk_state; 2165 2166 /* We defined a new enum for TCP states that are exported in BPF 2167 * so as not force the internal TCP states to be frozen. The 2168 * following checks will detect if an internal state value ever 2169 * differs from the BPF value. If this ever happens, then we will 2170 * need to remap the internal value to the BPF value before calling 2171 * tcp_call_bpf_2arg. 2172 */ 2173 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2174 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2175 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2176 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2177 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2178 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2179 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2180 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2181 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2182 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2183 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2184 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2185 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2186 2187 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2188 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2189 2190 switch (state) { 2191 case TCP_ESTABLISHED: 2192 if (oldstate != TCP_ESTABLISHED) 2193 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2194 break; 2195 2196 case TCP_CLOSE: 2197 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2198 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2199 2200 sk->sk_prot->unhash(sk); 2201 if (inet_csk(sk)->icsk_bind_hash && 2202 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2203 inet_put_port(sk); 2204 /* fall through */ 2205 default: 2206 if (oldstate == TCP_ESTABLISHED) 2207 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2208 } 2209 2210 /* Change state AFTER socket is unhashed to avoid closed 2211 * socket sitting in hash tables. 2212 */ 2213 inet_sk_state_store(sk, state); 2214 2215 #ifdef STATE_TRACE 2216 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2217 #endif 2218 } 2219 EXPORT_SYMBOL_GPL(tcp_set_state); 2220 2221 /* 2222 * State processing on a close. This implements the state shift for 2223 * sending our FIN frame. Note that we only send a FIN for some 2224 * states. A shutdown() may have already sent the FIN, or we may be 2225 * closed. 2226 */ 2227 2228 static const unsigned char new_state[16] = { 2229 /* current state: new state: action: */ 2230 [0 /* (Invalid) */] = TCP_CLOSE, 2231 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2232 [TCP_SYN_SENT] = TCP_CLOSE, 2233 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2234 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2235 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2236 [TCP_TIME_WAIT] = TCP_CLOSE, 2237 [TCP_CLOSE] = TCP_CLOSE, 2238 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2239 [TCP_LAST_ACK] = TCP_LAST_ACK, 2240 [TCP_LISTEN] = TCP_CLOSE, 2241 [TCP_CLOSING] = TCP_CLOSING, 2242 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2243 }; 2244 2245 static int tcp_close_state(struct sock *sk) 2246 { 2247 int next = (int)new_state[sk->sk_state]; 2248 int ns = next & TCP_STATE_MASK; 2249 2250 tcp_set_state(sk, ns); 2251 2252 return next & TCP_ACTION_FIN; 2253 } 2254 2255 /* 2256 * Shutdown the sending side of a connection. Much like close except 2257 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2258 */ 2259 2260 void tcp_shutdown(struct sock *sk, int how) 2261 { 2262 /* We need to grab some memory, and put together a FIN, 2263 * and then put it into the queue to be sent. 2264 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2265 */ 2266 if (!(how & SEND_SHUTDOWN)) 2267 return; 2268 2269 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2270 if ((1 << sk->sk_state) & 2271 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2272 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2273 /* Clear out any half completed packets. FIN if needed. */ 2274 if (tcp_close_state(sk)) 2275 tcp_send_fin(sk); 2276 } 2277 } 2278 EXPORT_SYMBOL(tcp_shutdown); 2279 2280 bool tcp_check_oom(struct sock *sk, int shift) 2281 { 2282 bool too_many_orphans, out_of_socket_memory; 2283 2284 too_many_orphans = tcp_too_many_orphans(sk, shift); 2285 out_of_socket_memory = tcp_out_of_memory(sk); 2286 2287 if (too_many_orphans) 2288 net_info_ratelimited("too many orphaned sockets\n"); 2289 if (out_of_socket_memory) 2290 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2291 return too_many_orphans || out_of_socket_memory; 2292 } 2293 2294 void tcp_close(struct sock *sk, long timeout) 2295 { 2296 struct sk_buff *skb; 2297 int data_was_unread = 0; 2298 int state; 2299 2300 lock_sock(sk); 2301 sk->sk_shutdown = SHUTDOWN_MASK; 2302 2303 if (sk->sk_state == TCP_LISTEN) { 2304 tcp_set_state(sk, TCP_CLOSE); 2305 2306 /* Special case. */ 2307 inet_csk_listen_stop(sk); 2308 2309 goto adjudge_to_death; 2310 } 2311 2312 /* We need to flush the recv. buffs. We do this only on the 2313 * descriptor close, not protocol-sourced closes, because the 2314 * reader process may not have drained the data yet! 2315 */ 2316 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2317 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2318 2319 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2320 len--; 2321 data_was_unread += len; 2322 __kfree_skb(skb); 2323 } 2324 2325 sk_mem_reclaim(sk); 2326 2327 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2328 if (sk->sk_state == TCP_CLOSE) 2329 goto adjudge_to_death; 2330 2331 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2332 * data was lost. To witness the awful effects of the old behavior of 2333 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2334 * GET in an FTP client, suspend the process, wait for the client to 2335 * advertise a zero window, then kill -9 the FTP client, wheee... 2336 * Note: timeout is always zero in such a case. 2337 */ 2338 if (unlikely(tcp_sk(sk)->repair)) { 2339 sk->sk_prot->disconnect(sk, 0); 2340 } else if (data_was_unread) { 2341 /* Unread data was tossed, zap the connection. */ 2342 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2343 tcp_set_state(sk, TCP_CLOSE); 2344 tcp_send_active_reset(sk, sk->sk_allocation); 2345 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2346 /* Check zero linger _after_ checking for unread data. */ 2347 sk->sk_prot->disconnect(sk, 0); 2348 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2349 } else if (tcp_close_state(sk)) { 2350 /* We FIN if the application ate all the data before 2351 * zapping the connection. 2352 */ 2353 2354 /* RED-PEN. Formally speaking, we have broken TCP state 2355 * machine. State transitions: 2356 * 2357 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2358 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2359 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2360 * 2361 * are legal only when FIN has been sent (i.e. in window), 2362 * rather than queued out of window. Purists blame. 2363 * 2364 * F.e. "RFC state" is ESTABLISHED, 2365 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2366 * 2367 * The visible declinations are that sometimes 2368 * we enter time-wait state, when it is not required really 2369 * (harmless), do not send active resets, when they are 2370 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2371 * they look as CLOSING or LAST_ACK for Linux) 2372 * Probably, I missed some more holelets. 2373 * --ANK 2374 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2375 * in a single packet! (May consider it later but will 2376 * probably need API support or TCP_CORK SYN-ACK until 2377 * data is written and socket is closed.) 2378 */ 2379 tcp_send_fin(sk); 2380 } 2381 2382 sk_stream_wait_close(sk, timeout); 2383 2384 adjudge_to_death: 2385 state = sk->sk_state; 2386 sock_hold(sk); 2387 sock_orphan(sk); 2388 2389 /* It is the last release_sock in its life. It will remove backlog. */ 2390 release_sock(sk); 2391 2392 2393 /* Now socket is owned by kernel and we acquire BH lock 2394 * to finish close. No need to check for user refs. 2395 */ 2396 local_bh_disable(); 2397 bh_lock_sock(sk); 2398 WARN_ON(sock_owned_by_user(sk)); 2399 2400 percpu_counter_inc(sk->sk_prot->orphan_count); 2401 2402 /* Have we already been destroyed by a softirq or backlog? */ 2403 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2404 goto out; 2405 2406 /* This is a (useful) BSD violating of the RFC. There is a 2407 * problem with TCP as specified in that the other end could 2408 * keep a socket open forever with no application left this end. 2409 * We use a 1 minute timeout (about the same as BSD) then kill 2410 * our end. If they send after that then tough - BUT: long enough 2411 * that we won't make the old 4*rto = almost no time - whoops 2412 * reset mistake. 2413 * 2414 * Nope, it was not mistake. It is really desired behaviour 2415 * f.e. on http servers, when such sockets are useless, but 2416 * consume significant resources. Let's do it with special 2417 * linger2 option. --ANK 2418 */ 2419 2420 if (sk->sk_state == TCP_FIN_WAIT2) { 2421 struct tcp_sock *tp = tcp_sk(sk); 2422 if (tp->linger2 < 0) { 2423 tcp_set_state(sk, TCP_CLOSE); 2424 tcp_send_active_reset(sk, GFP_ATOMIC); 2425 __NET_INC_STATS(sock_net(sk), 2426 LINUX_MIB_TCPABORTONLINGER); 2427 } else { 2428 const int tmo = tcp_fin_time(sk); 2429 2430 if (tmo > TCP_TIMEWAIT_LEN) { 2431 inet_csk_reset_keepalive_timer(sk, 2432 tmo - TCP_TIMEWAIT_LEN); 2433 } else { 2434 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2435 goto out; 2436 } 2437 } 2438 } 2439 if (sk->sk_state != TCP_CLOSE) { 2440 sk_mem_reclaim(sk); 2441 if (tcp_check_oom(sk, 0)) { 2442 tcp_set_state(sk, TCP_CLOSE); 2443 tcp_send_active_reset(sk, GFP_ATOMIC); 2444 __NET_INC_STATS(sock_net(sk), 2445 LINUX_MIB_TCPABORTONMEMORY); 2446 } else if (!check_net(sock_net(sk))) { 2447 /* Not possible to send reset; just close */ 2448 tcp_set_state(sk, TCP_CLOSE); 2449 } 2450 } 2451 2452 if (sk->sk_state == TCP_CLOSE) { 2453 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2454 /* We could get here with a non-NULL req if the socket is 2455 * aborted (e.g., closed with unread data) before 3WHS 2456 * finishes. 2457 */ 2458 if (req) 2459 reqsk_fastopen_remove(sk, req, false); 2460 inet_csk_destroy_sock(sk); 2461 } 2462 /* Otherwise, socket is reprieved until protocol close. */ 2463 2464 out: 2465 bh_unlock_sock(sk); 2466 local_bh_enable(); 2467 sock_put(sk); 2468 } 2469 EXPORT_SYMBOL(tcp_close); 2470 2471 /* These states need RST on ABORT according to RFC793 */ 2472 2473 static inline bool tcp_need_reset(int state) 2474 { 2475 return (1 << state) & 2476 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2477 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2478 } 2479 2480 static void tcp_rtx_queue_purge(struct sock *sk) 2481 { 2482 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2483 2484 while (p) { 2485 struct sk_buff *skb = rb_to_skb(p); 2486 2487 p = rb_next(p); 2488 /* Since we are deleting whole queue, no need to 2489 * list_del(&skb->tcp_tsorted_anchor) 2490 */ 2491 tcp_rtx_queue_unlink(skb, sk); 2492 sk_wmem_free_skb(sk, skb); 2493 } 2494 } 2495 2496 void tcp_write_queue_purge(struct sock *sk) 2497 { 2498 struct sk_buff *skb; 2499 2500 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2501 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2502 tcp_skb_tsorted_anchor_cleanup(skb); 2503 sk_wmem_free_skb(sk, skb); 2504 } 2505 tcp_rtx_queue_purge(sk); 2506 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2507 sk_mem_reclaim(sk); 2508 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2509 tcp_sk(sk)->packets_out = 0; 2510 } 2511 2512 int tcp_disconnect(struct sock *sk, int flags) 2513 { 2514 struct inet_sock *inet = inet_sk(sk); 2515 struct inet_connection_sock *icsk = inet_csk(sk); 2516 struct tcp_sock *tp = tcp_sk(sk); 2517 int err = 0; 2518 int old_state = sk->sk_state; 2519 2520 if (old_state != TCP_CLOSE) 2521 tcp_set_state(sk, TCP_CLOSE); 2522 2523 /* ABORT function of RFC793 */ 2524 if (old_state == TCP_LISTEN) { 2525 inet_csk_listen_stop(sk); 2526 } else if (unlikely(tp->repair)) { 2527 sk->sk_err = ECONNABORTED; 2528 } else if (tcp_need_reset(old_state) || 2529 (tp->snd_nxt != tp->write_seq && 2530 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2531 /* The last check adjusts for discrepancy of Linux wrt. RFC 2532 * states 2533 */ 2534 tcp_send_active_reset(sk, gfp_any()); 2535 sk->sk_err = ECONNRESET; 2536 } else if (old_state == TCP_SYN_SENT) 2537 sk->sk_err = ECONNRESET; 2538 2539 tcp_clear_xmit_timers(sk); 2540 __skb_queue_purge(&sk->sk_receive_queue); 2541 tcp_write_queue_purge(sk); 2542 tcp_fastopen_active_disable_ofo_check(sk); 2543 skb_rbtree_purge(&tp->out_of_order_queue); 2544 2545 inet->inet_dport = 0; 2546 2547 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2548 inet_reset_saddr(sk); 2549 2550 sk->sk_shutdown = 0; 2551 sock_reset_flag(sk, SOCK_DONE); 2552 tp->srtt_us = 0; 2553 tp->write_seq += tp->max_window + 2; 2554 if (tp->write_seq == 0) 2555 tp->write_seq = 1; 2556 icsk->icsk_backoff = 0; 2557 tp->snd_cwnd = 2; 2558 icsk->icsk_probes_out = 0; 2559 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2560 tp->snd_cwnd_cnt = 0; 2561 tp->window_clamp = 0; 2562 tp->delivered_ce = 0; 2563 tcp_set_ca_state(sk, TCP_CA_Open); 2564 tp->is_sack_reneg = 0; 2565 tcp_clear_retrans(tp); 2566 inet_csk_delack_init(sk); 2567 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2568 * issue in __tcp_select_window() 2569 */ 2570 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2571 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2572 __sk_dst_reset(sk); 2573 dst_release(sk->sk_rx_dst); 2574 sk->sk_rx_dst = NULL; 2575 tcp_saved_syn_free(tp); 2576 2577 /* Clean up fastopen related fields */ 2578 tcp_free_fastopen_req(tp); 2579 inet->defer_connect = 0; 2580 2581 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2582 2583 if (sk->sk_frag.page) { 2584 put_page(sk->sk_frag.page); 2585 sk->sk_frag.page = NULL; 2586 sk->sk_frag.offset = 0; 2587 } 2588 2589 sk->sk_error_report(sk); 2590 return err; 2591 } 2592 EXPORT_SYMBOL(tcp_disconnect); 2593 2594 static inline bool tcp_can_repair_sock(const struct sock *sk) 2595 { 2596 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2597 (sk->sk_state != TCP_LISTEN); 2598 } 2599 2600 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2601 { 2602 struct tcp_repair_window opt; 2603 2604 if (!tp->repair) 2605 return -EPERM; 2606 2607 if (len != sizeof(opt)) 2608 return -EINVAL; 2609 2610 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2611 return -EFAULT; 2612 2613 if (opt.max_window < opt.snd_wnd) 2614 return -EINVAL; 2615 2616 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2617 return -EINVAL; 2618 2619 if (after(opt.rcv_wup, tp->rcv_nxt)) 2620 return -EINVAL; 2621 2622 tp->snd_wl1 = opt.snd_wl1; 2623 tp->snd_wnd = opt.snd_wnd; 2624 tp->max_window = opt.max_window; 2625 2626 tp->rcv_wnd = opt.rcv_wnd; 2627 tp->rcv_wup = opt.rcv_wup; 2628 2629 return 0; 2630 } 2631 2632 static int tcp_repair_options_est(struct sock *sk, 2633 struct tcp_repair_opt __user *optbuf, unsigned int len) 2634 { 2635 struct tcp_sock *tp = tcp_sk(sk); 2636 struct tcp_repair_opt opt; 2637 2638 while (len >= sizeof(opt)) { 2639 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2640 return -EFAULT; 2641 2642 optbuf++; 2643 len -= sizeof(opt); 2644 2645 switch (opt.opt_code) { 2646 case TCPOPT_MSS: 2647 tp->rx_opt.mss_clamp = opt.opt_val; 2648 tcp_mtup_init(sk); 2649 break; 2650 case TCPOPT_WINDOW: 2651 { 2652 u16 snd_wscale = opt.opt_val & 0xFFFF; 2653 u16 rcv_wscale = opt.opt_val >> 16; 2654 2655 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2656 return -EFBIG; 2657 2658 tp->rx_opt.snd_wscale = snd_wscale; 2659 tp->rx_opt.rcv_wscale = rcv_wscale; 2660 tp->rx_opt.wscale_ok = 1; 2661 } 2662 break; 2663 case TCPOPT_SACK_PERM: 2664 if (opt.opt_val != 0) 2665 return -EINVAL; 2666 2667 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2668 break; 2669 case TCPOPT_TIMESTAMP: 2670 if (opt.opt_val != 0) 2671 return -EINVAL; 2672 2673 tp->rx_opt.tstamp_ok = 1; 2674 break; 2675 } 2676 } 2677 2678 return 0; 2679 } 2680 2681 /* 2682 * Socket option code for TCP. 2683 */ 2684 static int do_tcp_setsockopt(struct sock *sk, int level, 2685 int optname, char __user *optval, unsigned int optlen) 2686 { 2687 struct tcp_sock *tp = tcp_sk(sk); 2688 struct inet_connection_sock *icsk = inet_csk(sk); 2689 struct net *net = sock_net(sk); 2690 int val; 2691 int err = 0; 2692 2693 /* These are data/string values, all the others are ints */ 2694 switch (optname) { 2695 case TCP_CONGESTION: { 2696 char name[TCP_CA_NAME_MAX]; 2697 2698 if (optlen < 1) 2699 return -EINVAL; 2700 2701 val = strncpy_from_user(name, optval, 2702 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2703 if (val < 0) 2704 return -EFAULT; 2705 name[val] = 0; 2706 2707 lock_sock(sk); 2708 err = tcp_set_congestion_control(sk, name, true, true); 2709 release_sock(sk); 2710 return err; 2711 } 2712 case TCP_ULP: { 2713 char name[TCP_ULP_NAME_MAX]; 2714 2715 if (optlen < 1) 2716 return -EINVAL; 2717 2718 val = strncpy_from_user(name, optval, 2719 min_t(long, TCP_ULP_NAME_MAX - 1, 2720 optlen)); 2721 if (val < 0) 2722 return -EFAULT; 2723 name[val] = 0; 2724 2725 lock_sock(sk); 2726 err = tcp_set_ulp(sk, name); 2727 release_sock(sk); 2728 return err; 2729 } 2730 case TCP_FASTOPEN_KEY: { 2731 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2732 2733 if (optlen != sizeof(key)) 2734 return -EINVAL; 2735 2736 if (copy_from_user(key, optval, optlen)) 2737 return -EFAULT; 2738 2739 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2740 } 2741 default: 2742 /* fallthru */ 2743 break; 2744 } 2745 2746 if (optlen < sizeof(int)) 2747 return -EINVAL; 2748 2749 if (get_user(val, (int __user *)optval)) 2750 return -EFAULT; 2751 2752 lock_sock(sk); 2753 2754 switch (optname) { 2755 case TCP_MAXSEG: 2756 /* Values greater than interface MTU won't take effect. However 2757 * at the point when this call is done we typically don't yet 2758 * know which interface is going to be used 2759 */ 2760 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2761 err = -EINVAL; 2762 break; 2763 } 2764 tp->rx_opt.user_mss = val; 2765 break; 2766 2767 case TCP_NODELAY: 2768 if (val) { 2769 /* TCP_NODELAY is weaker than TCP_CORK, so that 2770 * this option on corked socket is remembered, but 2771 * it is not activated until cork is cleared. 2772 * 2773 * However, when TCP_NODELAY is set we make 2774 * an explicit push, which overrides even TCP_CORK 2775 * for currently queued segments. 2776 */ 2777 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2778 tcp_push_pending_frames(sk); 2779 } else { 2780 tp->nonagle &= ~TCP_NAGLE_OFF; 2781 } 2782 break; 2783 2784 case TCP_THIN_LINEAR_TIMEOUTS: 2785 if (val < 0 || val > 1) 2786 err = -EINVAL; 2787 else 2788 tp->thin_lto = val; 2789 break; 2790 2791 case TCP_THIN_DUPACK: 2792 if (val < 0 || val > 1) 2793 err = -EINVAL; 2794 break; 2795 2796 case TCP_REPAIR: 2797 if (!tcp_can_repair_sock(sk)) 2798 err = -EPERM; 2799 else if (val == 1) { 2800 tp->repair = 1; 2801 sk->sk_reuse = SK_FORCE_REUSE; 2802 tp->repair_queue = TCP_NO_QUEUE; 2803 } else if (val == 0) { 2804 tp->repair = 0; 2805 sk->sk_reuse = SK_NO_REUSE; 2806 tcp_send_window_probe(sk); 2807 } else 2808 err = -EINVAL; 2809 2810 break; 2811 2812 case TCP_REPAIR_QUEUE: 2813 if (!tp->repair) 2814 err = -EPERM; 2815 else if (val < TCP_QUEUES_NR) 2816 tp->repair_queue = val; 2817 else 2818 err = -EINVAL; 2819 break; 2820 2821 case TCP_QUEUE_SEQ: 2822 if (sk->sk_state != TCP_CLOSE) 2823 err = -EPERM; 2824 else if (tp->repair_queue == TCP_SEND_QUEUE) 2825 tp->write_seq = val; 2826 else if (tp->repair_queue == TCP_RECV_QUEUE) 2827 tp->rcv_nxt = val; 2828 else 2829 err = -EINVAL; 2830 break; 2831 2832 case TCP_REPAIR_OPTIONS: 2833 if (!tp->repair) 2834 err = -EINVAL; 2835 else if (sk->sk_state == TCP_ESTABLISHED) 2836 err = tcp_repair_options_est(sk, 2837 (struct tcp_repair_opt __user *)optval, 2838 optlen); 2839 else 2840 err = -EPERM; 2841 break; 2842 2843 case TCP_CORK: 2844 /* When set indicates to always queue non-full frames. 2845 * Later the user clears this option and we transmit 2846 * any pending partial frames in the queue. This is 2847 * meant to be used alongside sendfile() to get properly 2848 * filled frames when the user (for example) must write 2849 * out headers with a write() call first and then use 2850 * sendfile to send out the data parts. 2851 * 2852 * TCP_CORK can be set together with TCP_NODELAY and it is 2853 * stronger than TCP_NODELAY. 2854 */ 2855 if (val) { 2856 tp->nonagle |= TCP_NAGLE_CORK; 2857 } else { 2858 tp->nonagle &= ~TCP_NAGLE_CORK; 2859 if (tp->nonagle&TCP_NAGLE_OFF) 2860 tp->nonagle |= TCP_NAGLE_PUSH; 2861 tcp_push_pending_frames(sk); 2862 } 2863 break; 2864 2865 case TCP_KEEPIDLE: 2866 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2867 err = -EINVAL; 2868 else { 2869 tp->keepalive_time = val * HZ; 2870 if (sock_flag(sk, SOCK_KEEPOPEN) && 2871 !((1 << sk->sk_state) & 2872 (TCPF_CLOSE | TCPF_LISTEN))) { 2873 u32 elapsed = keepalive_time_elapsed(tp); 2874 if (tp->keepalive_time > elapsed) 2875 elapsed = tp->keepalive_time - elapsed; 2876 else 2877 elapsed = 0; 2878 inet_csk_reset_keepalive_timer(sk, elapsed); 2879 } 2880 } 2881 break; 2882 case TCP_KEEPINTVL: 2883 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2884 err = -EINVAL; 2885 else 2886 tp->keepalive_intvl = val * HZ; 2887 break; 2888 case TCP_KEEPCNT: 2889 if (val < 1 || val > MAX_TCP_KEEPCNT) 2890 err = -EINVAL; 2891 else 2892 tp->keepalive_probes = val; 2893 break; 2894 case TCP_SYNCNT: 2895 if (val < 1 || val > MAX_TCP_SYNCNT) 2896 err = -EINVAL; 2897 else 2898 icsk->icsk_syn_retries = val; 2899 break; 2900 2901 case TCP_SAVE_SYN: 2902 if (val < 0 || val > 1) 2903 err = -EINVAL; 2904 else 2905 tp->save_syn = val; 2906 break; 2907 2908 case TCP_LINGER2: 2909 if (val < 0) 2910 tp->linger2 = -1; 2911 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2912 tp->linger2 = 0; 2913 else 2914 tp->linger2 = val * HZ; 2915 break; 2916 2917 case TCP_DEFER_ACCEPT: 2918 /* Translate value in seconds to number of retransmits */ 2919 icsk->icsk_accept_queue.rskq_defer_accept = 2920 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2921 TCP_RTO_MAX / HZ); 2922 break; 2923 2924 case TCP_WINDOW_CLAMP: 2925 if (!val) { 2926 if (sk->sk_state != TCP_CLOSE) { 2927 err = -EINVAL; 2928 break; 2929 } 2930 tp->window_clamp = 0; 2931 } else 2932 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2933 SOCK_MIN_RCVBUF / 2 : val; 2934 break; 2935 2936 case TCP_QUICKACK: 2937 if (!val) { 2938 icsk->icsk_ack.pingpong = 1; 2939 } else { 2940 icsk->icsk_ack.pingpong = 0; 2941 if ((1 << sk->sk_state) & 2942 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2943 inet_csk_ack_scheduled(sk)) { 2944 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2945 tcp_cleanup_rbuf(sk, 1); 2946 if (!(val & 1)) 2947 icsk->icsk_ack.pingpong = 1; 2948 } 2949 } 2950 break; 2951 2952 #ifdef CONFIG_TCP_MD5SIG 2953 case TCP_MD5SIG: 2954 case TCP_MD5SIG_EXT: 2955 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 2956 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 2957 else 2958 err = -EINVAL; 2959 break; 2960 #endif 2961 case TCP_USER_TIMEOUT: 2962 /* Cap the max time in ms TCP will retry or probe the window 2963 * before giving up and aborting (ETIMEDOUT) a connection. 2964 */ 2965 if (val < 0) 2966 err = -EINVAL; 2967 else 2968 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2969 break; 2970 2971 case TCP_FASTOPEN: 2972 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2973 TCPF_LISTEN))) { 2974 tcp_fastopen_init_key_once(net); 2975 2976 fastopen_queue_tune(sk, val); 2977 } else { 2978 err = -EINVAL; 2979 } 2980 break; 2981 case TCP_FASTOPEN_CONNECT: 2982 if (val > 1 || val < 0) { 2983 err = -EINVAL; 2984 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 2985 if (sk->sk_state == TCP_CLOSE) 2986 tp->fastopen_connect = val; 2987 else 2988 err = -EINVAL; 2989 } else { 2990 err = -EOPNOTSUPP; 2991 } 2992 break; 2993 case TCP_FASTOPEN_NO_COOKIE: 2994 if (val > 1 || val < 0) 2995 err = -EINVAL; 2996 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2997 err = -EINVAL; 2998 else 2999 tp->fastopen_no_cookie = val; 3000 break; 3001 case TCP_TIMESTAMP: 3002 if (!tp->repair) 3003 err = -EPERM; 3004 else 3005 tp->tsoffset = val - tcp_time_stamp_raw(); 3006 break; 3007 case TCP_REPAIR_WINDOW: 3008 err = tcp_repair_set_window(tp, optval, optlen); 3009 break; 3010 case TCP_NOTSENT_LOWAT: 3011 tp->notsent_lowat = val; 3012 sk->sk_write_space(sk); 3013 break; 3014 default: 3015 err = -ENOPROTOOPT; 3016 break; 3017 } 3018 3019 release_sock(sk); 3020 return err; 3021 } 3022 3023 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3024 unsigned int optlen) 3025 { 3026 const struct inet_connection_sock *icsk = inet_csk(sk); 3027 3028 if (level != SOL_TCP) 3029 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3030 optval, optlen); 3031 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3032 } 3033 EXPORT_SYMBOL(tcp_setsockopt); 3034 3035 #ifdef CONFIG_COMPAT 3036 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3037 char __user *optval, unsigned int optlen) 3038 { 3039 if (level != SOL_TCP) 3040 return inet_csk_compat_setsockopt(sk, level, optname, 3041 optval, optlen); 3042 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3043 } 3044 EXPORT_SYMBOL(compat_tcp_setsockopt); 3045 #endif 3046 3047 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3048 struct tcp_info *info) 3049 { 3050 u64 stats[__TCP_CHRONO_MAX], total = 0; 3051 enum tcp_chrono i; 3052 3053 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3054 stats[i] = tp->chrono_stat[i - 1]; 3055 if (i == tp->chrono_type) 3056 stats[i] += tcp_jiffies32 - tp->chrono_start; 3057 stats[i] *= USEC_PER_SEC / HZ; 3058 total += stats[i]; 3059 } 3060 3061 info->tcpi_busy_time = total; 3062 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3063 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3064 } 3065 3066 /* Return information about state of tcp endpoint in API format. */ 3067 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3068 { 3069 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3070 const struct inet_connection_sock *icsk = inet_csk(sk); 3071 u32 now; 3072 u64 rate64; 3073 bool slow; 3074 u32 rate; 3075 3076 memset(info, 0, sizeof(*info)); 3077 if (sk->sk_type != SOCK_STREAM) 3078 return; 3079 3080 info->tcpi_state = inet_sk_state_load(sk); 3081 3082 /* Report meaningful fields for all TCP states, including listeners */ 3083 rate = READ_ONCE(sk->sk_pacing_rate); 3084 rate64 = rate != ~0U ? rate : ~0ULL; 3085 info->tcpi_pacing_rate = rate64; 3086 3087 rate = READ_ONCE(sk->sk_max_pacing_rate); 3088 rate64 = rate != ~0U ? rate : ~0ULL; 3089 info->tcpi_max_pacing_rate = rate64; 3090 3091 info->tcpi_reordering = tp->reordering; 3092 info->tcpi_snd_cwnd = tp->snd_cwnd; 3093 3094 if (info->tcpi_state == TCP_LISTEN) { 3095 /* listeners aliased fields : 3096 * tcpi_unacked -> Number of children ready for accept() 3097 * tcpi_sacked -> max backlog 3098 */ 3099 info->tcpi_unacked = sk->sk_ack_backlog; 3100 info->tcpi_sacked = sk->sk_max_ack_backlog; 3101 return; 3102 } 3103 3104 slow = lock_sock_fast(sk); 3105 3106 info->tcpi_ca_state = icsk->icsk_ca_state; 3107 info->tcpi_retransmits = icsk->icsk_retransmits; 3108 info->tcpi_probes = icsk->icsk_probes_out; 3109 info->tcpi_backoff = icsk->icsk_backoff; 3110 3111 if (tp->rx_opt.tstamp_ok) 3112 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3113 if (tcp_is_sack(tp)) 3114 info->tcpi_options |= TCPI_OPT_SACK; 3115 if (tp->rx_opt.wscale_ok) { 3116 info->tcpi_options |= TCPI_OPT_WSCALE; 3117 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3118 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3119 } 3120 3121 if (tp->ecn_flags & TCP_ECN_OK) 3122 info->tcpi_options |= TCPI_OPT_ECN; 3123 if (tp->ecn_flags & TCP_ECN_SEEN) 3124 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3125 if (tp->syn_data_acked) 3126 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3127 3128 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3129 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3130 info->tcpi_snd_mss = tp->mss_cache; 3131 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3132 3133 info->tcpi_unacked = tp->packets_out; 3134 info->tcpi_sacked = tp->sacked_out; 3135 3136 info->tcpi_lost = tp->lost_out; 3137 info->tcpi_retrans = tp->retrans_out; 3138 3139 now = tcp_jiffies32; 3140 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3141 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3142 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3143 3144 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3145 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3146 info->tcpi_rtt = tp->srtt_us >> 3; 3147 info->tcpi_rttvar = tp->mdev_us >> 2; 3148 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3149 info->tcpi_advmss = tp->advmss; 3150 3151 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3152 info->tcpi_rcv_space = tp->rcvq_space.space; 3153 3154 info->tcpi_total_retrans = tp->total_retrans; 3155 3156 info->tcpi_bytes_acked = tp->bytes_acked; 3157 info->tcpi_bytes_received = tp->bytes_received; 3158 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3159 tcp_get_info_chrono_stats(tp, info); 3160 3161 info->tcpi_segs_out = tp->segs_out; 3162 info->tcpi_segs_in = tp->segs_in; 3163 3164 info->tcpi_min_rtt = tcp_min_rtt(tp); 3165 info->tcpi_data_segs_in = tp->data_segs_in; 3166 info->tcpi_data_segs_out = tp->data_segs_out; 3167 3168 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3169 rate64 = tcp_compute_delivery_rate(tp); 3170 if (rate64) 3171 info->tcpi_delivery_rate = rate64; 3172 info->tcpi_delivered = tp->delivered; 3173 info->tcpi_delivered_ce = tp->delivered_ce; 3174 unlock_sock_fast(sk, slow); 3175 } 3176 EXPORT_SYMBOL_GPL(tcp_get_info); 3177 3178 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3179 { 3180 const struct tcp_sock *tp = tcp_sk(sk); 3181 struct sk_buff *stats; 3182 struct tcp_info info; 3183 u64 rate64; 3184 u32 rate; 3185 3186 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) + 3187 7 * nla_total_size(sizeof(u32)) + 3188 3 * nla_total_size(sizeof(u8)), GFP_ATOMIC); 3189 if (!stats) 3190 return NULL; 3191 3192 tcp_get_info_chrono_stats(tp, &info); 3193 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3194 info.tcpi_busy_time, TCP_NLA_PAD); 3195 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3196 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3197 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3198 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3199 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3200 tp->data_segs_out, TCP_NLA_PAD); 3201 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3202 tp->total_retrans, TCP_NLA_PAD); 3203 3204 rate = READ_ONCE(sk->sk_pacing_rate); 3205 rate64 = rate != ~0U ? rate : ~0ULL; 3206 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3207 3208 rate64 = tcp_compute_delivery_rate(tp); 3209 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3210 3211 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3212 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3213 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3214 3215 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3216 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3217 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3218 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3219 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3220 3221 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3222 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3223 3224 return stats; 3225 } 3226 3227 static int do_tcp_getsockopt(struct sock *sk, int level, 3228 int optname, char __user *optval, int __user *optlen) 3229 { 3230 struct inet_connection_sock *icsk = inet_csk(sk); 3231 struct tcp_sock *tp = tcp_sk(sk); 3232 struct net *net = sock_net(sk); 3233 int val, len; 3234 3235 if (get_user(len, optlen)) 3236 return -EFAULT; 3237 3238 len = min_t(unsigned int, len, sizeof(int)); 3239 3240 if (len < 0) 3241 return -EINVAL; 3242 3243 switch (optname) { 3244 case TCP_MAXSEG: 3245 val = tp->mss_cache; 3246 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3247 val = tp->rx_opt.user_mss; 3248 if (tp->repair) 3249 val = tp->rx_opt.mss_clamp; 3250 break; 3251 case TCP_NODELAY: 3252 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3253 break; 3254 case TCP_CORK: 3255 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3256 break; 3257 case TCP_KEEPIDLE: 3258 val = keepalive_time_when(tp) / HZ; 3259 break; 3260 case TCP_KEEPINTVL: 3261 val = keepalive_intvl_when(tp) / HZ; 3262 break; 3263 case TCP_KEEPCNT: 3264 val = keepalive_probes(tp); 3265 break; 3266 case TCP_SYNCNT: 3267 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3268 break; 3269 case TCP_LINGER2: 3270 val = tp->linger2; 3271 if (val >= 0) 3272 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3273 break; 3274 case TCP_DEFER_ACCEPT: 3275 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3276 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3277 break; 3278 case TCP_WINDOW_CLAMP: 3279 val = tp->window_clamp; 3280 break; 3281 case TCP_INFO: { 3282 struct tcp_info info; 3283 3284 if (get_user(len, optlen)) 3285 return -EFAULT; 3286 3287 tcp_get_info(sk, &info); 3288 3289 len = min_t(unsigned int, len, sizeof(info)); 3290 if (put_user(len, optlen)) 3291 return -EFAULT; 3292 if (copy_to_user(optval, &info, len)) 3293 return -EFAULT; 3294 return 0; 3295 } 3296 case TCP_CC_INFO: { 3297 const struct tcp_congestion_ops *ca_ops; 3298 union tcp_cc_info info; 3299 size_t sz = 0; 3300 int attr; 3301 3302 if (get_user(len, optlen)) 3303 return -EFAULT; 3304 3305 ca_ops = icsk->icsk_ca_ops; 3306 if (ca_ops && ca_ops->get_info) 3307 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3308 3309 len = min_t(unsigned int, len, sz); 3310 if (put_user(len, optlen)) 3311 return -EFAULT; 3312 if (copy_to_user(optval, &info, len)) 3313 return -EFAULT; 3314 return 0; 3315 } 3316 case TCP_QUICKACK: 3317 val = !icsk->icsk_ack.pingpong; 3318 break; 3319 3320 case TCP_CONGESTION: 3321 if (get_user(len, optlen)) 3322 return -EFAULT; 3323 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3324 if (put_user(len, optlen)) 3325 return -EFAULT; 3326 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3327 return -EFAULT; 3328 return 0; 3329 3330 case TCP_ULP: 3331 if (get_user(len, optlen)) 3332 return -EFAULT; 3333 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3334 if (!icsk->icsk_ulp_ops) { 3335 if (put_user(0, optlen)) 3336 return -EFAULT; 3337 return 0; 3338 } 3339 if (put_user(len, optlen)) 3340 return -EFAULT; 3341 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3342 return -EFAULT; 3343 return 0; 3344 3345 case TCP_FASTOPEN_KEY: { 3346 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3347 struct tcp_fastopen_context *ctx; 3348 3349 if (get_user(len, optlen)) 3350 return -EFAULT; 3351 3352 rcu_read_lock(); 3353 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3354 if (ctx) 3355 memcpy(key, ctx->key, sizeof(key)); 3356 else 3357 len = 0; 3358 rcu_read_unlock(); 3359 3360 len = min_t(unsigned int, len, sizeof(key)); 3361 if (put_user(len, optlen)) 3362 return -EFAULT; 3363 if (copy_to_user(optval, key, len)) 3364 return -EFAULT; 3365 return 0; 3366 } 3367 case TCP_THIN_LINEAR_TIMEOUTS: 3368 val = tp->thin_lto; 3369 break; 3370 3371 case TCP_THIN_DUPACK: 3372 val = 0; 3373 break; 3374 3375 case TCP_REPAIR: 3376 val = tp->repair; 3377 break; 3378 3379 case TCP_REPAIR_QUEUE: 3380 if (tp->repair) 3381 val = tp->repair_queue; 3382 else 3383 return -EINVAL; 3384 break; 3385 3386 case TCP_REPAIR_WINDOW: { 3387 struct tcp_repair_window opt; 3388 3389 if (get_user(len, optlen)) 3390 return -EFAULT; 3391 3392 if (len != sizeof(opt)) 3393 return -EINVAL; 3394 3395 if (!tp->repair) 3396 return -EPERM; 3397 3398 opt.snd_wl1 = tp->snd_wl1; 3399 opt.snd_wnd = tp->snd_wnd; 3400 opt.max_window = tp->max_window; 3401 opt.rcv_wnd = tp->rcv_wnd; 3402 opt.rcv_wup = tp->rcv_wup; 3403 3404 if (copy_to_user(optval, &opt, len)) 3405 return -EFAULT; 3406 return 0; 3407 } 3408 case TCP_QUEUE_SEQ: 3409 if (tp->repair_queue == TCP_SEND_QUEUE) 3410 val = tp->write_seq; 3411 else if (tp->repair_queue == TCP_RECV_QUEUE) 3412 val = tp->rcv_nxt; 3413 else 3414 return -EINVAL; 3415 break; 3416 3417 case TCP_USER_TIMEOUT: 3418 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3419 break; 3420 3421 case TCP_FASTOPEN: 3422 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3423 break; 3424 3425 case TCP_FASTOPEN_CONNECT: 3426 val = tp->fastopen_connect; 3427 break; 3428 3429 case TCP_FASTOPEN_NO_COOKIE: 3430 val = tp->fastopen_no_cookie; 3431 break; 3432 3433 case TCP_TIMESTAMP: 3434 val = tcp_time_stamp_raw() + tp->tsoffset; 3435 break; 3436 case TCP_NOTSENT_LOWAT: 3437 val = tp->notsent_lowat; 3438 break; 3439 case TCP_SAVE_SYN: 3440 val = tp->save_syn; 3441 break; 3442 case TCP_SAVED_SYN: { 3443 if (get_user(len, optlen)) 3444 return -EFAULT; 3445 3446 lock_sock(sk); 3447 if (tp->saved_syn) { 3448 if (len < tp->saved_syn[0]) { 3449 if (put_user(tp->saved_syn[0], optlen)) { 3450 release_sock(sk); 3451 return -EFAULT; 3452 } 3453 release_sock(sk); 3454 return -EINVAL; 3455 } 3456 len = tp->saved_syn[0]; 3457 if (put_user(len, optlen)) { 3458 release_sock(sk); 3459 return -EFAULT; 3460 } 3461 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3462 release_sock(sk); 3463 return -EFAULT; 3464 } 3465 tcp_saved_syn_free(tp); 3466 release_sock(sk); 3467 } else { 3468 release_sock(sk); 3469 len = 0; 3470 if (put_user(len, optlen)) 3471 return -EFAULT; 3472 } 3473 return 0; 3474 } 3475 default: 3476 return -ENOPROTOOPT; 3477 } 3478 3479 if (put_user(len, optlen)) 3480 return -EFAULT; 3481 if (copy_to_user(optval, &val, len)) 3482 return -EFAULT; 3483 return 0; 3484 } 3485 3486 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3487 int __user *optlen) 3488 { 3489 struct inet_connection_sock *icsk = inet_csk(sk); 3490 3491 if (level != SOL_TCP) 3492 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3493 optval, optlen); 3494 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3495 } 3496 EXPORT_SYMBOL(tcp_getsockopt); 3497 3498 #ifdef CONFIG_COMPAT 3499 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3500 char __user *optval, int __user *optlen) 3501 { 3502 if (level != SOL_TCP) 3503 return inet_csk_compat_getsockopt(sk, level, optname, 3504 optval, optlen); 3505 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3506 } 3507 EXPORT_SYMBOL(compat_tcp_getsockopt); 3508 #endif 3509 3510 #ifdef CONFIG_TCP_MD5SIG 3511 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3512 static DEFINE_MUTEX(tcp_md5sig_mutex); 3513 static bool tcp_md5sig_pool_populated = false; 3514 3515 static void __tcp_alloc_md5sig_pool(void) 3516 { 3517 struct crypto_ahash *hash; 3518 int cpu; 3519 3520 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3521 if (IS_ERR(hash)) 3522 return; 3523 3524 for_each_possible_cpu(cpu) { 3525 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3526 struct ahash_request *req; 3527 3528 if (!scratch) { 3529 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3530 sizeof(struct tcphdr), 3531 GFP_KERNEL, 3532 cpu_to_node(cpu)); 3533 if (!scratch) 3534 return; 3535 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3536 } 3537 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3538 continue; 3539 3540 req = ahash_request_alloc(hash, GFP_KERNEL); 3541 if (!req) 3542 return; 3543 3544 ahash_request_set_callback(req, 0, NULL, NULL); 3545 3546 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3547 } 3548 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3549 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3550 */ 3551 smp_wmb(); 3552 tcp_md5sig_pool_populated = true; 3553 } 3554 3555 bool tcp_alloc_md5sig_pool(void) 3556 { 3557 if (unlikely(!tcp_md5sig_pool_populated)) { 3558 mutex_lock(&tcp_md5sig_mutex); 3559 3560 if (!tcp_md5sig_pool_populated) 3561 __tcp_alloc_md5sig_pool(); 3562 3563 mutex_unlock(&tcp_md5sig_mutex); 3564 } 3565 return tcp_md5sig_pool_populated; 3566 } 3567 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3568 3569 3570 /** 3571 * tcp_get_md5sig_pool - get md5sig_pool for this user 3572 * 3573 * We use percpu structure, so if we succeed, we exit with preemption 3574 * and BH disabled, to make sure another thread or softirq handling 3575 * wont try to get same context. 3576 */ 3577 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3578 { 3579 local_bh_disable(); 3580 3581 if (tcp_md5sig_pool_populated) { 3582 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3583 smp_rmb(); 3584 return this_cpu_ptr(&tcp_md5sig_pool); 3585 } 3586 local_bh_enable(); 3587 return NULL; 3588 } 3589 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3590 3591 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3592 const struct sk_buff *skb, unsigned int header_len) 3593 { 3594 struct scatterlist sg; 3595 const struct tcphdr *tp = tcp_hdr(skb); 3596 struct ahash_request *req = hp->md5_req; 3597 unsigned int i; 3598 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3599 skb_headlen(skb) - header_len : 0; 3600 const struct skb_shared_info *shi = skb_shinfo(skb); 3601 struct sk_buff *frag_iter; 3602 3603 sg_init_table(&sg, 1); 3604 3605 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3606 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3607 if (crypto_ahash_update(req)) 3608 return 1; 3609 3610 for (i = 0; i < shi->nr_frags; ++i) { 3611 const struct skb_frag_struct *f = &shi->frags[i]; 3612 unsigned int offset = f->page_offset; 3613 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3614 3615 sg_set_page(&sg, page, skb_frag_size(f), 3616 offset_in_page(offset)); 3617 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3618 if (crypto_ahash_update(req)) 3619 return 1; 3620 } 3621 3622 skb_walk_frags(skb, frag_iter) 3623 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3624 return 1; 3625 3626 return 0; 3627 } 3628 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3629 3630 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3631 { 3632 struct scatterlist sg; 3633 3634 sg_init_one(&sg, key->key, key->keylen); 3635 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3636 return crypto_ahash_update(hp->md5_req); 3637 } 3638 EXPORT_SYMBOL(tcp_md5_hash_key); 3639 3640 #endif 3641 3642 void tcp_done(struct sock *sk) 3643 { 3644 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3645 3646 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3647 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3648 3649 tcp_set_state(sk, TCP_CLOSE); 3650 tcp_clear_xmit_timers(sk); 3651 if (req) 3652 reqsk_fastopen_remove(sk, req, false); 3653 3654 sk->sk_shutdown = SHUTDOWN_MASK; 3655 3656 if (!sock_flag(sk, SOCK_DEAD)) 3657 sk->sk_state_change(sk); 3658 else 3659 inet_csk_destroy_sock(sk); 3660 } 3661 EXPORT_SYMBOL_GPL(tcp_done); 3662 3663 int tcp_abort(struct sock *sk, int err) 3664 { 3665 if (!sk_fullsock(sk)) { 3666 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3667 struct request_sock *req = inet_reqsk(sk); 3668 3669 local_bh_disable(); 3670 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3671 req); 3672 local_bh_enable(); 3673 return 0; 3674 } 3675 return -EOPNOTSUPP; 3676 } 3677 3678 /* Don't race with userspace socket closes such as tcp_close. */ 3679 lock_sock(sk); 3680 3681 if (sk->sk_state == TCP_LISTEN) { 3682 tcp_set_state(sk, TCP_CLOSE); 3683 inet_csk_listen_stop(sk); 3684 } 3685 3686 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3687 local_bh_disable(); 3688 bh_lock_sock(sk); 3689 3690 if (!sock_flag(sk, SOCK_DEAD)) { 3691 sk->sk_err = err; 3692 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3693 smp_wmb(); 3694 sk->sk_error_report(sk); 3695 if (tcp_need_reset(sk->sk_state)) 3696 tcp_send_active_reset(sk, GFP_ATOMIC); 3697 tcp_done(sk); 3698 } 3699 3700 bh_unlock_sock(sk); 3701 local_bh_enable(); 3702 tcp_write_queue_purge(sk); 3703 release_sock(sk); 3704 return 0; 3705 } 3706 EXPORT_SYMBOL_GPL(tcp_abort); 3707 3708 extern struct tcp_congestion_ops tcp_reno; 3709 3710 static __initdata unsigned long thash_entries; 3711 static int __init set_thash_entries(char *str) 3712 { 3713 ssize_t ret; 3714 3715 if (!str) 3716 return 0; 3717 3718 ret = kstrtoul(str, 0, &thash_entries); 3719 if (ret) 3720 return 0; 3721 3722 return 1; 3723 } 3724 __setup("thash_entries=", set_thash_entries); 3725 3726 static void __init tcp_init_mem(void) 3727 { 3728 unsigned long limit = nr_free_buffer_pages() / 16; 3729 3730 limit = max(limit, 128UL); 3731 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3732 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3733 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3734 } 3735 3736 void __init tcp_init(void) 3737 { 3738 int max_rshare, max_wshare, cnt; 3739 unsigned long limit; 3740 unsigned int i; 3741 3742 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3743 FIELD_SIZEOF(struct sk_buff, cb)); 3744 3745 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3746 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3747 inet_hashinfo_init(&tcp_hashinfo); 3748 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3749 thash_entries, 21, /* one slot per 2 MB*/ 3750 0, 64 * 1024); 3751 tcp_hashinfo.bind_bucket_cachep = 3752 kmem_cache_create("tcp_bind_bucket", 3753 sizeof(struct inet_bind_bucket), 0, 3754 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3755 3756 /* Size and allocate the main established and bind bucket 3757 * hash tables. 3758 * 3759 * The methodology is similar to that of the buffer cache. 3760 */ 3761 tcp_hashinfo.ehash = 3762 alloc_large_system_hash("TCP established", 3763 sizeof(struct inet_ehash_bucket), 3764 thash_entries, 3765 17, /* one slot per 128 KB of memory */ 3766 0, 3767 NULL, 3768 &tcp_hashinfo.ehash_mask, 3769 0, 3770 thash_entries ? 0 : 512 * 1024); 3771 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3772 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3773 3774 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3775 panic("TCP: failed to alloc ehash_locks"); 3776 tcp_hashinfo.bhash = 3777 alloc_large_system_hash("TCP bind", 3778 sizeof(struct inet_bind_hashbucket), 3779 tcp_hashinfo.ehash_mask + 1, 3780 17, /* one slot per 128 KB of memory */ 3781 0, 3782 &tcp_hashinfo.bhash_size, 3783 NULL, 3784 0, 3785 64 * 1024); 3786 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3787 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3788 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3789 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3790 } 3791 3792 3793 cnt = tcp_hashinfo.ehash_mask + 1; 3794 sysctl_tcp_max_orphans = cnt / 2; 3795 3796 tcp_init_mem(); 3797 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3798 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3799 max_wshare = min(4UL*1024*1024, limit); 3800 max_rshare = min(6UL*1024*1024, limit); 3801 3802 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3803 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3804 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3805 3806 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3807 init_net.ipv4.sysctl_tcp_rmem[1] = 87380; 3808 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare); 3809 3810 pr_info("Hash tables configured (established %u bind %u)\n", 3811 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3812 3813 tcp_v4_init(); 3814 tcp_metrics_init(); 3815 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3816 tcp_tasklet_init(); 3817 } 3818