xref: /linux/net/ipv4/tcp.c (revision ef9226cd56b718c79184a3466d32984a51cb449c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 #include <net/rps.h>
283 
284 /* Track pending CMSGs. */
285 enum {
286 	TCP_CMSG_INQ = 1,
287 	TCP_CMSG_TS = 2
288 };
289 
290 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
291 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
292 
293 DEFINE_PER_CPU(u32, tcp_tw_isn);
294 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
295 
296 long sysctl_tcp_mem[3] __read_mostly;
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 
299 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
300 EXPORT_SYMBOL(tcp_memory_allocated);
301 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
302 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
303 
304 #if IS_ENABLED(CONFIG_SMC)
305 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
306 EXPORT_SYMBOL(tcp_have_smc);
307 #endif
308 
309 /*
310  * Current number of TCP sockets.
311  */
312 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
313 EXPORT_SYMBOL(tcp_sockets_allocated);
314 
315 /*
316  * TCP splice context
317  */
318 struct tcp_splice_state {
319 	struct pipe_inode_info *pipe;
320 	size_t len;
321 	unsigned int flags;
322 };
323 
324 /*
325  * Pressure flag: try to collapse.
326  * Technical note: it is used by multiple contexts non atomically.
327  * All the __sk_mem_schedule() is of this nature: accounting
328  * is strict, actions are advisory and have some latency.
329  */
330 unsigned long tcp_memory_pressure __read_mostly;
331 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
332 
333 void tcp_enter_memory_pressure(struct sock *sk)
334 {
335 	unsigned long val;
336 
337 	if (READ_ONCE(tcp_memory_pressure))
338 		return;
339 	val = jiffies;
340 
341 	if (!val)
342 		val--;
343 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
344 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
345 }
346 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
347 
348 void tcp_leave_memory_pressure(struct sock *sk)
349 {
350 	unsigned long val;
351 
352 	if (!READ_ONCE(tcp_memory_pressure))
353 		return;
354 	val = xchg(&tcp_memory_pressure, 0);
355 	if (val)
356 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
357 			      jiffies_to_msecs(jiffies - val));
358 }
359 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
360 
361 /* Convert seconds to retransmits based on initial and max timeout */
362 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
363 {
364 	u8 res = 0;
365 
366 	if (seconds > 0) {
367 		int period = timeout;
368 
369 		res = 1;
370 		while (seconds > period && res < 255) {
371 			res++;
372 			timeout <<= 1;
373 			if (timeout > rto_max)
374 				timeout = rto_max;
375 			period += timeout;
376 		}
377 	}
378 	return res;
379 }
380 
381 /* Convert retransmits to seconds based on initial and max timeout */
382 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
383 {
384 	int period = 0;
385 
386 	if (retrans > 0) {
387 		period = timeout;
388 		while (--retrans) {
389 			timeout <<= 1;
390 			if (timeout > rto_max)
391 				timeout = rto_max;
392 			period += timeout;
393 		}
394 	}
395 	return period;
396 }
397 
398 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
399 {
400 	u32 rate = READ_ONCE(tp->rate_delivered);
401 	u32 intv = READ_ONCE(tp->rate_interval_us);
402 	u64 rate64 = 0;
403 
404 	if (rate && intv) {
405 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
406 		do_div(rate64, intv);
407 	}
408 	return rate64;
409 }
410 
411 /* Address-family independent initialization for a tcp_sock.
412  *
413  * NOTE: A lot of things set to zero explicitly by call to
414  *       sk_alloc() so need not be done here.
415  */
416 void tcp_init_sock(struct sock *sk)
417 {
418 	struct inet_connection_sock *icsk = inet_csk(sk);
419 	struct tcp_sock *tp = tcp_sk(sk);
420 
421 	tp->out_of_order_queue = RB_ROOT;
422 	sk->tcp_rtx_queue = RB_ROOT;
423 	tcp_init_xmit_timers(sk);
424 	INIT_LIST_HEAD(&tp->tsq_node);
425 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
426 
427 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
428 	icsk->icsk_rto_min = TCP_RTO_MIN;
429 	icsk->icsk_delack_max = TCP_DELACK_MAX;
430 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
431 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
432 
433 	/* So many TCP implementations out there (incorrectly) count the
434 	 * initial SYN frame in their delayed-ACK and congestion control
435 	 * algorithms that we must have the following bandaid to talk
436 	 * efficiently to them.  -DaveM
437 	 */
438 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
439 
440 	/* There's a bubble in the pipe until at least the first ACK. */
441 	tp->app_limited = ~0U;
442 	tp->rate_app_limited = 1;
443 
444 	/* See draft-stevens-tcpca-spec-01 for discussion of the
445 	 * initialization of these values.
446 	 */
447 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
448 	tp->snd_cwnd_clamp = ~0;
449 	tp->mss_cache = TCP_MSS_DEFAULT;
450 
451 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
452 	tcp_assign_congestion_control(sk);
453 
454 	tp->tsoffset = 0;
455 	tp->rack.reo_wnd_steps = 1;
456 
457 	sk->sk_write_space = sk_stream_write_space;
458 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
459 
460 	icsk->icsk_sync_mss = tcp_sync_mss;
461 
462 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
463 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
464 	tcp_scaling_ratio_init(sk);
465 
466 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
467 	sk_sockets_allocated_inc(sk);
468 }
469 EXPORT_SYMBOL(tcp_init_sock);
470 
471 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
472 {
473 	struct sk_buff *skb = tcp_write_queue_tail(sk);
474 
475 	if (tsflags && skb) {
476 		struct skb_shared_info *shinfo = skb_shinfo(skb);
477 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
478 
479 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
480 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
481 			tcb->txstamp_ack = 1;
482 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
483 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
484 	}
485 }
486 
487 static bool tcp_stream_is_readable(struct sock *sk, int target)
488 {
489 	if (tcp_epollin_ready(sk, target))
490 		return true;
491 	return sk_is_readable(sk);
492 }
493 
494 /*
495  *	Wait for a TCP event.
496  *
497  *	Note that we don't need to lock the socket, as the upper poll layers
498  *	take care of normal races (between the test and the event) and we don't
499  *	go look at any of the socket buffers directly.
500  */
501 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
502 {
503 	__poll_t mask;
504 	struct sock *sk = sock->sk;
505 	const struct tcp_sock *tp = tcp_sk(sk);
506 	u8 shutdown;
507 	int state;
508 
509 	sock_poll_wait(file, sock, wait);
510 
511 	state = inet_sk_state_load(sk);
512 	if (state == TCP_LISTEN)
513 		return inet_csk_listen_poll(sk);
514 
515 	/* Socket is not locked. We are protected from async events
516 	 * by poll logic and correct handling of state changes
517 	 * made by other threads is impossible in any case.
518 	 */
519 
520 	mask = 0;
521 
522 	/*
523 	 * EPOLLHUP is certainly not done right. But poll() doesn't
524 	 * have a notion of HUP in just one direction, and for a
525 	 * socket the read side is more interesting.
526 	 *
527 	 * Some poll() documentation says that EPOLLHUP is incompatible
528 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
529 	 * all. But careful, it tends to be safer to return too many
530 	 * bits than too few, and you can easily break real applications
531 	 * if you don't tell them that something has hung up!
532 	 *
533 	 * Check-me.
534 	 *
535 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
536 	 * our fs/select.c). It means that after we received EOF,
537 	 * poll always returns immediately, making impossible poll() on write()
538 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
539 	 * if and only if shutdown has been made in both directions.
540 	 * Actually, it is interesting to look how Solaris and DUX
541 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
542 	 * then we could set it on SND_SHUTDOWN. BTW examples given
543 	 * in Stevens' books assume exactly this behaviour, it explains
544 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
545 	 *
546 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
547 	 * blocking on fresh not-connected or disconnected socket. --ANK
548 	 */
549 	shutdown = READ_ONCE(sk->sk_shutdown);
550 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 		mask |= EPOLLHUP;
552 	if (shutdown & RCV_SHUTDOWN)
553 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554 
555 	/* Connected or passive Fast Open socket? */
556 	if (state != TCP_SYN_SENT &&
557 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
558 		int target = sock_rcvlowat(sk, 0, INT_MAX);
559 		u16 urg_data = READ_ONCE(tp->urg_data);
560 
561 		if (unlikely(urg_data) &&
562 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
563 		    !sock_flag(sk, SOCK_URGINLINE))
564 			target++;
565 
566 		if (tcp_stream_is_readable(sk, target))
567 			mask |= EPOLLIN | EPOLLRDNORM;
568 
569 		if (!(shutdown & SEND_SHUTDOWN)) {
570 			if (__sk_stream_is_writeable(sk, 1)) {
571 				mask |= EPOLLOUT | EPOLLWRNORM;
572 			} else {  /* send SIGIO later */
573 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
574 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
575 
576 				/* Race breaker. If space is freed after
577 				 * wspace test but before the flags are set,
578 				 * IO signal will be lost. Memory barrier
579 				 * pairs with the input side.
580 				 */
581 				smp_mb__after_atomic();
582 				if (__sk_stream_is_writeable(sk, 1))
583 					mask |= EPOLLOUT | EPOLLWRNORM;
584 			}
585 		} else
586 			mask |= EPOLLOUT | EPOLLWRNORM;
587 
588 		if (urg_data & TCP_URG_VALID)
589 			mask |= EPOLLPRI;
590 	} else if (state == TCP_SYN_SENT &&
591 		   inet_test_bit(DEFER_CONNECT, sk)) {
592 		/* Active TCP fastopen socket with defer_connect
593 		 * Return EPOLLOUT so application can call write()
594 		 * in order for kernel to generate SYN+data
595 		 */
596 		mask |= EPOLLOUT | EPOLLWRNORM;
597 	}
598 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
599 	smp_rmb();
600 	if (READ_ONCE(sk->sk_err) ||
601 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
602 		mask |= EPOLLERR;
603 
604 	return mask;
605 }
606 EXPORT_SYMBOL(tcp_poll);
607 
608 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
609 {
610 	struct tcp_sock *tp = tcp_sk(sk);
611 	int answ;
612 	bool slow;
613 
614 	switch (cmd) {
615 	case SIOCINQ:
616 		if (sk->sk_state == TCP_LISTEN)
617 			return -EINVAL;
618 
619 		slow = lock_sock_fast(sk);
620 		answ = tcp_inq(sk);
621 		unlock_sock_fast(sk, slow);
622 		break;
623 	case SIOCATMARK:
624 		answ = READ_ONCE(tp->urg_data) &&
625 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
626 		break;
627 	case SIOCOUTQ:
628 		if (sk->sk_state == TCP_LISTEN)
629 			return -EINVAL;
630 
631 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
632 			answ = 0;
633 		else
634 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
635 		break;
636 	case SIOCOUTQNSD:
637 		if (sk->sk_state == TCP_LISTEN)
638 			return -EINVAL;
639 
640 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
641 			answ = 0;
642 		else
643 			answ = READ_ONCE(tp->write_seq) -
644 			       READ_ONCE(tp->snd_nxt);
645 		break;
646 	default:
647 		return -ENOIOCTLCMD;
648 	}
649 
650 	*karg = answ;
651 	return 0;
652 }
653 EXPORT_SYMBOL(tcp_ioctl);
654 
655 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
656 {
657 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
658 	tp->pushed_seq = tp->write_seq;
659 }
660 
661 static inline bool forced_push(const struct tcp_sock *tp)
662 {
663 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
664 }
665 
666 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
667 {
668 	struct tcp_sock *tp = tcp_sk(sk);
669 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
670 
671 	tcb->seq     = tcb->end_seq = tp->write_seq;
672 	tcb->tcp_flags = TCPHDR_ACK;
673 	__skb_header_release(skb);
674 	tcp_add_write_queue_tail(sk, skb);
675 	sk_wmem_queued_add(sk, skb->truesize);
676 	sk_mem_charge(sk, skb->truesize);
677 	if (tp->nonagle & TCP_NAGLE_PUSH)
678 		tp->nonagle &= ~TCP_NAGLE_PUSH;
679 
680 	tcp_slow_start_after_idle_check(sk);
681 }
682 
683 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
684 {
685 	if (flags & MSG_OOB)
686 		tp->snd_up = tp->write_seq;
687 }
688 
689 /* If a not yet filled skb is pushed, do not send it if
690  * we have data packets in Qdisc or NIC queues :
691  * Because TX completion will happen shortly, it gives a chance
692  * to coalesce future sendmsg() payload into this skb, without
693  * need for a timer, and with no latency trade off.
694  * As packets containing data payload have a bigger truesize
695  * than pure acks (dataless) packets, the last checks prevent
696  * autocorking if we only have an ACK in Qdisc/NIC queues,
697  * or if TX completion was delayed after we processed ACK packet.
698  */
699 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
700 				int size_goal)
701 {
702 	return skb->len < size_goal &&
703 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
704 	       !tcp_rtx_queue_empty(sk) &&
705 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
706 	       tcp_skb_can_collapse_to(skb);
707 }
708 
709 void tcp_push(struct sock *sk, int flags, int mss_now,
710 	      int nonagle, int size_goal)
711 {
712 	struct tcp_sock *tp = tcp_sk(sk);
713 	struct sk_buff *skb;
714 
715 	skb = tcp_write_queue_tail(sk);
716 	if (!skb)
717 		return;
718 	if (!(flags & MSG_MORE) || forced_push(tp))
719 		tcp_mark_push(tp, skb);
720 
721 	tcp_mark_urg(tp, flags);
722 
723 	if (tcp_should_autocork(sk, skb, size_goal)) {
724 
725 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
726 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
727 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
728 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
729 			smp_mb__after_atomic();
730 		}
731 		/* It is possible TX completion already happened
732 		 * before we set TSQ_THROTTLED.
733 		 */
734 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
735 			return;
736 	}
737 
738 	if (flags & MSG_MORE)
739 		nonagle = TCP_NAGLE_CORK;
740 
741 	__tcp_push_pending_frames(sk, mss_now, nonagle);
742 }
743 
744 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
745 				unsigned int offset, size_t len)
746 {
747 	struct tcp_splice_state *tss = rd_desc->arg.data;
748 	int ret;
749 
750 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
751 			      min(rd_desc->count, len), tss->flags);
752 	if (ret > 0)
753 		rd_desc->count -= ret;
754 	return ret;
755 }
756 
757 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
758 {
759 	/* Store TCP splice context information in read_descriptor_t. */
760 	read_descriptor_t rd_desc = {
761 		.arg.data = tss,
762 		.count	  = tss->len,
763 	};
764 
765 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
766 }
767 
768 /**
769  *  tcp_splice_read - splice data from TCP socket to a pipe
770  * @sock:	socket to splice from
771  * @ppos:	position (not valid)
772  * @pipe:	pipe to splice to
773  * @len:	number of bytes to splice
774  * @flags:	splice modifier flags
775  *
776  * Description:
777  *    Will read pages from given socket and fill them into a pipe.
778  *
779  **/
780 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
781 			struct pipe_inode_info *pipe, size_t len,
782 			unsigned int flags)
783 {
784 	struct sock *sk = sock->sk;
785 	struct tcp_splice_state tss = {
786 		.pipe = pipe,
787 		.len = len,
788 		.flags = flags,
789 	};
790 	long timeo;
791 	ssize_t spliced;
792 	int ret;
793 
794 	sock_rps_record_flow(sk);
795 	/*
796 	 * We can't seek on a socket input
797 	 */
798 	if (unlikely(*ppos))
799 		return -ESPIPE;
800 
801 	ret = spliced = 0;
802 
803 	lock_sock(sk);
804 
805 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
806 	while (tss.len) {
807 		ret = __tcp_splice_read(sk, &tss);
808 		if (ret < 0)
809 			break;
810 		else if (!ret) {
811 			if (spliced)
812 				break;
813 			if (sock_flag(sk, SOCK_DONE))
814 				break;
815 			if (sk->sk_err) {
816 				ret = sock_error(sk);
817 				break;
818 			}
819 			if (sk->sk_shutdown & RCV_SHUTDOWN)
820 				break;
821 			if (sk->sk_state == TCP_CLOSE) {
822 				/*
823 				 * This occurs when user tries to read
824 				 * from never connected socket.
825 				 */
826 				ret = -ENOTCONN;
827 				break;
828 			}
829 			if (!timeo) {
830 				ret = -EAGAIN;
831 				break;
832 			}
833 			/* if __tcp_splice_read() got nothing while we have
834 			 * an skb in receive queue, we do not want to loop.
835 			 * This might happen with URG data.
836 			 */
837 			if (!skb_queue_empty(&sk->sk_receive_queue))
838 				break;
839 			ret = sk_wait_data(sk, &timeo, NULL);
840 			if (ret < 0)
841 				break;
842 			if (signal_pending(current)) {
843 				ret = sock_intr_errno(timeo);
844 				break;
845 			}
846 			continue;
847 		}
848 		tss.len -= ret;
849 		spliced += ret;
850 
851 		if (!tss.len || !timeo)
852 			break;
853 		release_sock(sk);
854 		lock_sock(sk);
855 
856 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
857 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
858 		    signal_pending(current))
859 			break;
860 	}
861 
862 	release_sock(sk);
863 
864 	if (spliced)
865 		return spliced;
866 
867 	return ret;
868 }
869 EXPORT_SYMBOL(tcp_splice_read);
870 
871 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
872 				     bool force_schedule)
873 {
874 	struct sk_buff *skb;
875 
876 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
877 	if (likely(skb)) {
878 		bool mem_scheduled;
879 
880 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
881 		if (force_schedule) {
882 			mem_scheduled = true;
883 			sk_forced_mem_schedule(sk, skb->truesize);
884 		} else {
885 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
886 		}
887 		if (likely(mem_scheduled)) {
888 			skb_reserve(skb, MAX_TCP_HEADER);
889 			skb->ip_summed = CHECKSUM_PARTIAL;
890 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
891 			return skb;
892 		}
893 		__kfree_skb(skb);
894 	} else {
895 		sk->sk_prot->enter_memory_pressure(sk);
896 		sk_stream_moderate_sndbuf(sk);
897 	}
898 	return NULL;
899 }
900 
901 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
902 				       int large_allowed)
903 {
904 	struct tcp_sock *tp = tcp_sk(sk);
905 	u32 new_size_goal, size_goal;
906 
907 	if (!large_allowed)
908 		return mss_now;
909 
910 	/* Note : tcp_tso_autosize() will eventually split this later */
911 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
912 
913 	/* We try hard to avoid divides here */
914 	size_goal = tp->gso_segs * mss_now;
915 	if (unlikely(new_size_goal < size_goal ||
916 		     new_size_goal >= size_goal + mss_now)) {
917 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
918 				     sk->sk_gso_max_segs);
919 		size_goal = tp->gso_segs * mss_now;
920 	}
921 
922 	return max(size_goal, mss_now);
923 }
924 
925 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
926 {
927 	int mss_now;
928 
929 	mss_now = tcp_current_mss(sk);
930 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
931 
932 	return mss_now;
933 }
934 
935 /* In some cases, sendmsg() could have added an skb to the write queue,
936  * but failed adding payload on it. We need to remove it to consume less
937  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
938  * epoll() users. Another reason is that tcp_write_xmit() does not like
939  * finding an empty skb in the write queue.
940  */
941 void tcp_remove_empty_skb(struct sock *sk)
942 {
943 	struct sk_buff *skb = tcp_write_queue_tail(sk);
944 
945 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
946 		tcp_unlink_write_queue(skb, sk);
947 		if (tcp_write_queue_empty(sk))
948 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
949 		tcp_wmem_free_skb(sk, skb);
950 	}
951 }
952 
953 /* skb changing from pure zc to mixed, must charge zc */
954 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
955 {
956 	if (unlikely(skb_zcopy_pure(skb))) {
957 		u32 extra = skb->truesize -
958 			    SKB_TRUESIZE(skb_end_offset(skb));
959 
960 		if (!sk_wmem_schedule(sk, extra))
961 			return -ENOMEM;
962 
963 		sk_mem_charge(sk, extra);
964 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
965 	}
966 	return 0;
967 }
968 
969 
970 int tcp_wmem_schedule(struct sock *sk, int copy)
971 {
972 	int left;
973 
974 	if (likely(sk_wmem_schedule(sk, copy)))
975 		return copy;
976 
977 	/* We could be in trouble if we have nothing queued.
978 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
979 	 * to guarantee some progress.
980 	 */
981 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
982 	if (left > 0)
983 		sk_forced_mem_schedule(sk, min(left, copy));
984 	return min(copy, sk->sk_forward_alloc);
985 }
986 
987 void tcp_free_fastopen_req(struct tcp_sock *tp)
988 {
989 	if (tp->fastopen_req) {
990 		kfree(tp->fastopen_req);
991 		tp->fastopen_req = NULL;
992 	}
993 }
994 
995 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
996 			 size_t size, struct ubuf_info *uarg)
997 {
998 	struct tcp_sock *tp = tcp_sk(sk);
999 	struct inet_sock *inet = inet_sk(sk);
1000 	struct sockaddr *uaddr = msg->msg_name;
1001 	int err, flags;
1002 
1003 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1004 	      TFO_CLIENT_ENABLE) ||
1005 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1006 	     uaddr->sa_family == AF_UNSPEC))
1007 		return -EOPNOTSUPP;
1008 	if (tp->fastopen_req)
1009 		return -EALREADY; /* Another Fast Open is in progress */
1010 
1011 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1012 				   sk->sk_allocation);
1013 	if (unlikely(!tp->fastopen_req))
1014 		return -ENOBUFS;
1015 	tp->fastopen_req->data = msg;
1016 	tp->fastopen_req->size = size;
1017 	tp->fastopen_req->uarg = uarg;
1018 
1019 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1020 		err = tcp_connect(sk);
1021 		/* Same failure procedure as in tcp_v4/6_connect */
1022 		if (err) {
1023 			tcp_set_state(sk, TCP_CLOSE);
1024 			inet->inet_dport = 0;
1025 			sk->sk_route_caps = 0;
1026 		}
1027 	}
1028 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1029 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1030 				    msg->msg_namelen, flags, 1);
1031 	/* fastopen_req could already be freed in __inet_stream_connect
1032 	 * if the connection times out or gets rst
1033 	 */
1034 	if (tp->fastopen_req) {
1035 		*copied = tp->fastopen_req->copied;
1036 		tcp_free_fastopen_req(tp);
1037 		inet_clear_bit(DEFER_CONNECT, sk);
1038 	}
1039 	return err;
1040 }
1041 
1042 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1043 {
1044 	struct tcp_sock *tp = tcp_sk(sk);
1045 	struct ubuf_info *uarg = NULL;
1046 	struct sk_buff *skb;
1047 	struct sockcm_cookie sockc;
1048 	int flags, err, copied = 0;
1049 	int mss_now = 0, size_goal, copied_syn = 0;
1050 	int process_backlog = 0;
1051 	int zc = 0;
1052 	long timeo;
1053 
1054 	flags = msg->msg_flags;
1055 
1056 	if ((flags & MSG_ZEROCOPY) && size) {
1057 		if (msg->msg_ubuf) {
1058 			uarg = msg->msg_ubuf;
1059 			if (sk->sk_route_caps & NETIF_F_SG)
1060 				zc = MSG_ZEROCOPY;
1061 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1062 			skb = tcp_write_queue_tail(sk);
1063 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1064 			if (!uarg) {
1065 				err = -ENOBUFS;
1066 				goto out_err;
1067 			}
1068 			if (sk->sk_route_caps & NETIF_F_SG)
1069 				zc = MSG_ZEROCOPY;
1070 			else
1071 				uarg_to_msgzc(uarg)->zerocopy = 0;
1072 		}
1073 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1074 		if (sk->sk_route_caps & NETIF_F_SG)
1075 			zc = MSG_SPLICE_PAGES;
1076 	}
1077 
1078 	if (unlikely(flags & MSG_FASTOPEN ||
1079 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1080 	    !tp->repair) {
1081 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1082 		if (err == -EINPROGRESS && copied_syn > 0)
1083 			goto out;
1084 		else if (err)
1085 			goto out_err;
1086 	}
1087 
1088 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1089 
1090 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1091 
1092 	/* Wait for a connection to finish. One exception is TCP Fast Open
1093 	 * (passive side) where data is allowed to be sent before a connection
1094 	 * is fully established.
1095 	 */
1096 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1097 	    !tcp_passive_fastopen(sk)) {
1098 		err = sk_stream_wait_connect(sk, &timeo);
1099 		if (err != 0)
1100 			goto do_error;
1101 	}
1102 
1103 	if (unlikely(tp->repair)) {
1104 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1105 			copied = tcp_send_rcvq(sk, msg, size);
1106 			goto out_nopush;
1107 		}
1108 
1109 		err = -EINVAL;
1110 		if (tp->repair_queue == TCP_NO_QUEUE)
1111 			goto out_err;
1112 
1113 		/* 'common' sending to sendq */
1114 	}
1115 
1116 	sockcm_init(&sockc, sk);
1117 	if (msg->msg_controllen) {
1118 		err = sock_cmsg_send(sk, msg, &sockc);
1119 		if (unlikely(err)) {
1120 			err = -EINVAL;
1121 			goto out_err;
1122 		}
1123 	}
1124 
1125 	/* This should be in poll */
1126 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1127 
1128 	/* Ok commence sending. */
1129 	copied = 0;
1130 
1131 restart:
1132 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1133 
1134 	err = -EPIPE;
1135 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1136 		goto do_error;
1137 
1138 	while (msg_data_left(msg)) {
1139 		ssize_t copy = 0;
1140 
1141 		skb = tcp_write_queue_tail(sk);
1142 		if (skb)
1143 			copy = size_goal - skb->len;
1144 
1145 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1146 			bool first_skb;
1147 
1148 new_segment:
1149 			if (!sk_stream_memory_free(sk))
1150 				goto wait_for_space;
1151 
1152 			if (unlikely(process_backlog >= 16)) {
1153 				process_backlog = 0;
1154 				if (sk_flush_backlog(sk))
1155 					goto restart;
1156 			}
1157 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1158 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1159 						   first_skb);
1160 			if (!skb)
1161 				goto wait_for_space;
1162 
1163 			process_backlog++;
1164 
1165 			tcp_skb_entail(sk, skb);
1166 			copy = size_goal;
1167 
1168 			/* All packets are restored as if they have
1169 			 * already been sent. skb_mstamp_ns isn't set to
1170 			 * avoid wrong rtt estimation.
1171 			 */
1172 			if (tp->repair)
1173 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1174 		}
1175 
1176 		/* Try to append data to the end of skb. */
1177 		if (copy > msg_data_left(msg))
1178 			copy = msg_data_left(msg);
1179 
1180 		if (zc == 0) {
1181 			bool merge = true;
1182 			int i = skb_shinfo(skb)->nr_frags;
1183 			struct page_frag *pfrag = sk_page_frag(sk);
1184 
1185 			if (!sk_page_frag_refill(sk, pfrag))
1186 				goto wait_for_space;
1187 
1188 			if (!skb_can_coalesce(skb, i, pfrag->page,
1189 					      pfrag->offset)) {
1190 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1191 					tcp_mark_push(tp, skb);
1192 					goto new_segment;
1193 				}
1194 				merge = false;
1195 			}
1196 
1197 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1198 
1199 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1200 				if (tcp_downgrade_zcopy_pure(sk, skb))
1201 					goto wait_for_space;
1202 				skb_zcopy_downgrade_managed(skb);
1203 			}
1204 
1205 			copy = tcp_wmem_schedule(sk, copy);
1206 			if (!copy)
1207 				goto wait_for_space;
1208 
1209 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1210 						       pfrag->page,
1211 						       pfrag->offset,
1212 						       copy);
1213 			if (err)
1214 				goto do_error;
1215 
1216 			/* Update the skb. */
1217 			if (merge) {
1218 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1219 			} else {
1220 				skb_fill_page_desc(skb, i, pfrag->page,
1221 						   pfrag->offset, copy);
1222 				page_ref_inc(pfrag->page);
1223 			}
1224 			pfrag->offset += copy;
1225 		} else if (zc == MSG_ZEROCOPY)  {
1226 			/* First append to a fragless skb builds initial
1227 			 * pure zerocopy skb
1228 			 */
1229 			if (!skb->len)
1230 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1231 
1232 			if (!skb_zcopy_pure(skb)) {
1233 				copy = tcp_wmem_schedule(sk, copy);
1234 				if (!copy)
1235 					goto wait_for_space;
1236 			}
1237 
1238 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1239 			if (err == -EMSGSIZE || err == -EEXIST) {
1240 				tcp_mark_push(tp, skb);
1241 				goto new_segment;
1242 			}
1243 			if (err < 0)
1244 				goto do_error;
1245 			copy = err;
1246 		} else if (zc == MSG_SPLICE_PAGES) {
1247 			/* Splice in data if we can; copy if we can't. */
1248 			if (tcp_downgrade_zcopy_pure(sk, skb))
1249 				goto wait_for_space;
1250 			copy = tcp_wmem_schedule(sk, copy);
1251 			if (!copy)
1252 				goto wait_for_space;
1253 
1254 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1255 						   sk->sk_allocation);
1256 			if (err < 0) {
1257 				if (err == -EMSGSIZE) {
1258 					tcp_mark_push(tp, skb);
1259 					goto new_segment;
1260 				}
1261 				goto do_error;
1262 			}
1263 			copy = err;
1264 
1265 			if (!(flags & MSG_NO_SHARED_FRAGS))
1266 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1267 
1268 			sk_wmem_queued_add(sk, copy);
1269 			sk_mem_charge(sk, copy);
1270 		}
1271 
1272 		if (!copied)
1273 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1274 
1275 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1276 		TCP_SKB_CB(skb)->end_seq += copy;
1277 		tcp_skb_pcount_set(skb, 0);
1278 
1279 		copied += copy;
1280 		if (!msg_data_left(msg)) {
1281 			if (unlikely(flags & MSG_EOR))
1282 				TCP_SKB_CB(skb)->eor = 1;
1283 			goto out;
1284 		}
1285 
1286 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1287 			continue;
1288 
1289 		if (forced_push(tp)) {
1290 			tcp_mark_push(tp, skb);
1291 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1292 		} else if (skb == tcp_send_head(sk))
1293 			tcp_push_one(sk, mss_now);
1294 		continue;
1295 
1296 wait_for_space:
1297 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1298 		tcp_remove_empty_skb(sk);
1299 		if (copied)
1300 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1301 				 TCP_NAGLE_PUSH, size_goal);
1302 
1303 		err = sk_stream_wait_memory(sk, &timeo);
1304 		if (err != 0)
1305 			goto do_error;
1306 
1307 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1308 	}
1309 
1310 out:
1311 	if (copied) {
1312 		tcp_tx_timestamp(sk, sockc.tsflags);
1313 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1314 	}
1315 out_nopush:
1316 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1317 	if (uarg && !msg->msg_ubuf)
1318 		net_zcopy_put(uarg);
1319 	return copied + copied_syn;
1320 
1321 do_error:
1322 	tcp_remove_empty_skb(sk);
1323 
1324 	if (copied + copied_syn)
1325 		goto out;
1326 out_err:
1327 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1328 	if (uarg && !msg->msg_ubuf)
1329 		net_zcopy_put_abort(uarg, true);
1330 	err = sk_stream_error(sk, flags, err);
1331 	/* make sure we wake any epoll edge trigger waiter */
1332 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1333 		sk->sk_write_space(sk);
1334 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1335 	}
1336 	return err;
1337 }
1338 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1339 
1340 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1341 {
1342 	int ret;
1343 
1344 	lock_sock(sk);
1345 	ret = tcp_sendmsg_locked(sk, msg, size);
1346 	release_sock(sk);
1347 
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL(tcp_sendmsg);
1351 
1352 void tcp_splice_eof(struct socket *sock)
1353 {
1354 	struct sock *sk = sock->sk;
1355 	struct tcp_sock *tp = tcp_sk(sk);
1356 	int mss_now, size_goal;
1357 
1358 	if (!tcp_write_queue_tail(sk))
1359 		return;
1360 
1361 	lock_sock(sk);
1362 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1363 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1364 	release_sock(sk);
1365 }
1366 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1367 
1368 /*
1369  *	Handle reading urgent data. BSD has very simple semantics for
1370  *	this, no blocking and very strange errors 8)
1371  */
1372 
1373 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1374 {
1375 	struct tcp_sock *tp = tcp_sk(sk);
1376 
1377 	/* No URG data to read. */
1378 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1379 	    tp->urg_data == TCP_URG_READ)
1380 		return -EINVAL;	/* Yes this is right ! */
1381 
1382 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1383 		return -ENOTCONN;
1384 
1385 	if (tp->urg_data & TCP_URG_VALID) {
1386 		int err = 0;
1387 		char c = tp->urg_data;
1388 
1389 		if (!(flags & MSG_PEEK))
1390 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1391 
1392 		/* Read urgent data. */
1393 		msg->msg_flags |= MSG_OOB;
1394 
1395 		if (len > 0) {
1396 			if (!(flags & MSG_TRUNC))
1397 				err = memcpy_to_msg(msg, &c, 1);
1398 			len = 1;
1399 		} else
1400 			msg->msg_flags |= MSG_TRUNC;
1401 
1402 		return err ? -EFAULT : len;
1403 	}
1404 
1405 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1406 		return 0;
1407 
1408 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1409 	 * the available implementations agree in this case:
1410 	 * this call should never block, independent of the
1411 	 * blocking state of the socket.
1412 	 * Mike <pall@rz.uni-karlsruhe.de>
1413 	 */
1414 	return -EAGAIN;
1415 }
1416 
1417 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1418 {
1419 	struct sk_buff *skb;
1420 	int copied = 0, err = 0;
1421 
1422 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1423 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1424 		if (err)
1425 			return err;
1426 		copied += skb->len;
1427 	}
1428 
1429 	skb_queue_walk(&sk->sk_write_queue, skb) {
1430 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1431 		if (err)
1432 			break;
1433 
1434 		copied += skb->len;
1435 	}
1436 
1437 	return err ?: copied;
1438 }
1439 
1440 /* Clean up the receive buffer for full frames taken by the user,
1441  * then send an ACK if necessary.  COPIED is the number of bytes
1442  * tcp_recvmsg has given to the user so far, it speeds up the
1443  * calculation of whether or not we must ACK for the sake of
1444  * a window update.
1445  */
1446 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1447 {
1448 	struct tcp_sock *tp = tcp_sk(sk);
1449 	bool time_to_ack = false;
1450 
1451 	if (inet_csk_ack_scheduled(sk)) {
1452 		const struct inet_connection_sock *icsk = inet_csk(sk);
1453 
1454 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1455 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1456 		    /*
1457 		     * If this read emptied read buffer, we send ACK, if
1458 		     * connection is not bidirectional, user drained
1459 		     * receive buffer and there was a small segment
1460 		     * in queue.
1461 		     */
1462 		    (copied > 0 &&
1463 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1464 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1465 		       !inet_csk_in_pingpong_mode(sk))) &&
1466 		      !atomic_read(&sk->sk_rmem_alloc)))
1467 			time_to_ack = true;
1468 	}
1469 
1470 	/* We send an ACK if we can now advertise a non-zero window
1471 	 * which has been raised "significantly".
1472 	 *
1473 	 * Even if window raised up to infinity, do not send window open ACK
1474 	 * in states, where we will not receive more. It is useless.
1475 	 */
1476 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1477 		__u32 rcv_window_now = tcp_receive_window(tp);
1478 
1479 		/* Optimize, __tcp_select_window() is not cheap. */
1480 		if (2*rcv_window_now <= tp->window_clamp) {
1481 			__u32 new_window = __tcp_select_window(sk);
1482 
1483 			/* Send ACK now, if this read freed lots of space
1484 			 * in our buffer. Certainly, new_window is new window.
1485 			 * We can advertise it now, if it is not less than current one.
1486 			 * "Lots" means "at least twice" here.
1487 			 */
1488 			if (new_window && new_window >= 2 * rcv_window_now)
1489 				time_to_ack = true;
1490 		}
1491 	}
1492 	if (time_to_ack)
1493 		tcp_send_ack(sk);
1494 }
1495 
1496 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1497 {
1498 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1499 	struct tcp_sock *tp = tcp_sk(sk);
1500 
1501 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1502 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1503 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1504 	__tcp_cleanup_rbuf(sk, copied);
1505 }
1506 
1507 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1508 {
1509 	__skb_unlink(skb, &sk->sk_receive_queue);
1510 	if (likely(skb->destructor == sock_rfree)) {
1511 		sock_rfree(skb);
1512 		skb->destructor = NULL;
1513 		skb->sk = NULL;
1514 		return skb_attempt_defer_free(skb);
1515 	}
1516 	__kfree_skb(skb);
1517 }
1518 
1519 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1520 {
1521 	struct sk_buff *skb;
1522 	u32 offset;
1523 
1524 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1525 		offset = seq - TCP_SKB_CB(skb)->seq;
1526 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1527 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1528 			offset--;
1529 		}
1530 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1531 			*off = offset;
1532 			return skb;
1533 		}
1534 		/* This looks weird, but this can happen if TCP collapsing
1535 		 * splitted a fat GRO packet, while we released socket lock
1536 		 * in skb_splice_bits()
1537 		 */
1538 		tcp_eat_recv_skb(sk, skb);
1539 	}
1540 	return NULL;
1541 }
1542 EXPORT_SYMBOL(tcp_recv_skb);
1543 
1544 /*
1545  * This routine provides an alternative to tcp_recvmsg() for routines
1546  * that would like to handle copying from skbuffs directly in 'sendfile'
1547  * fashion.
1548  * Note:
1549  *	- It is assumed that the socket was locked by the caller.
1550  *	- The routine does not block.
1551  *	- At present, there is no support for reading OOB data
1552  *	  or for 'peeking' the socket using this routine
1553  *	  (although both would be easy to implement).
1554  */
1555 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1556 		  sk_read_actor_t recv_actor)
1557 {
1558 	struct sk_buff *skb;
1559 	struct tcp_sock *tp = tcp_sk(sk);
1560 	u32 seq = tp->copied_seq;
1561 	u32 offset;
1562 	int copied = 0;
1563 
1564 	if (sk->sk_state == TCP_LISTEN)
1565 		return -ENOTCONN;
1566 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1567 		if (offset < skb->len) {
1568 			int used;
1569 			size_t len;
1570 
1571 			len = skb->len - offset;
1572 			/* Stop reading if we hit a patch of urgent data */
1573 			if (unlikely(tp->urg_data)) {
1574 				u32 urg_offset = tp->urg_seq - seq;
1575 				if (urg_offset < len)
1576 					len = urg_offset;
1577 				if (!len)
1578 					break;
1579 			}
1580 			used = recv_actor(desc, skb, offset, len);
1581 			if (used <= 0) {
1582 				if (!copied)
1583 					copied = used;
1584 				break;
1585 			}
1586 			if (WARN_ON_ONCE(used > len))
1587 				used = len;
1588 			seq += used;
1589 			copied += used;
1590 			offset += used;
1591 
1592 			/* If recv_actor drops the lock (e.g. TCP splice
1593 			 * receive) the skb pointer might be invalid when
1594 			 * getting here: tcp_collapse might have deleted it
1595 			 * while aggregating skbs from the socket queue.
1596 			 */
1597 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1598 			if (!skb)
1599 				break;
1600 			/* TCP coalescing might have appended data to the skb.
1601 			 * Try to splice more frags
1602 			 */
1603 			if (offset + 1 != skb->len)
1604 				continue;
1605 		}
1606 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1607 			tcp_eat_recv_skb(sk, skb);
1608 			++seq;
1609 			break;
1610 		}
1611 		tcp_eat_recv_skb(sk, skb);
1612 		if (!desc->count)
1613 			break;
1614 		WRITE_ONCE(tp->copied_seq, seq);
1615 	}
1616 	WRITE_ONCE(tp->copied_seq, seq);
1617 
1618 	tcp_rcv_space_adjust(sk);
1619 
1620 	/* Clean up data we have read: This will do ACK frames. */
1621 	if (copied > 0) {
1622 		tcp_recv_skb(sk, seq, &offset);
1623 		tcp_cleanup_rbuf(sk, copied);
1624 	}
1625 	return copied;
1626 }
1627 EXPORT_SYMBOL(tcp_read_sock);
1628 
1629 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1630 {
1631 	struct sk_buff *skb;
1632 	int copied = 0;
1633 
1634 	if (sk->sk_state == TCP_LISTEN)
1635 		return -ENOTCONN;
1636 
1637 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1638 		u8 tcp_flags;
1639 		int used;
1640 
1641 		__skb_unlink(skb, &sk->sk_receive_queue);
1642 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1643 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1644 		used = recv_actor(sk, skb);
1645 		if (used < 0) {
1646 			if (!copied)
1647 				copied = used;
1648 			break;
1649 		}
1650 		copied += used;
1651 
1652 		if (tcp_flags & TCPHDR_FIN)
1653 			break;
1654 	}
1655 	return copied;
1656 }
1657 EXPORT_SYMBOL(tcp_read_skb);
1658 
1659 void tcp_read_done(struct sock *sk, size_t len)
1660 {
1661 	struct tcp_sock *tp = tcp_sk(sk);
1662 	u32 seq = tp->copied_seq;
1663 	struct sk_buff *skb;
1664 	size_t left;
1665 	u32 offset;
1666 
1667 	if (sk->sk_state == TCP_LISTEN)
1668 		return;
1669 
1670 	left = len;
1671 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1672 		int used;
1673 
1674 		used = min_t(size_t, skb->len - offset, left);
1675 		seq += used;
1676 		left -= used;
1677 
1678 		if (skb->len > offset + used)
1679 			break;
1680 
1681 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1682 			tcp_eat_recv_skb(sk, skb);
1683 			++seq;
1684 			break;
1685 		}
1686 		tcp_eat_recv_skb(sk, skb);
1687 	}
1688 	WRITE_ONCE(tp->copied_seq, seq);
1689 
1690 	tcp_rcv_space_adjust(sk);
1691 
1692 	/* Clean up data we have read: This will do ACK frames. */
1693 	if (left != len)
1694 		tcp_cleanup_rbuf(sk, len - left);
1695 }
1696 EXPORT_SYMBOL(tcp_read_done);
1697 
1698 int tcp_peek_len(struct socket *sock)
1699 {
1700 	return tcp_inq(sock->sk);
1701 }
1702 EXPORT_SYMBOL(tcp_peek_len);
1703 
1704 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1705 int tcp_set_rcvlowat(struct sock *sk, int val)
1706 {
1707 	int space, cap;
1708 
1709 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1710 		cap = sk->sk_rcvbuf >> 1;
1711 	else
1712 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1713 	val = min(val, cap);
1714 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1715 
1716 	/* Check if we need to signal EPOLLIN right now */
1717 	tcp_data_ready(sk);
1718 
1719 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1720 		return 0;
1721 
1722 	space = tcp_space_from_win(sk, val);
1723 	if (space > sk->sk_rcvbuf) {
1724 		WRITE_ONCE(sk->sk_rcvbuf, space);
1725 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1726 	}
1727 	return 0;
1728 }
1729 EXPORT_SYMBOL(tcp_set_rcvlowat);
1730 
1731 void tcp_update_recv_tstamps(struct sk_buff *skb,
1732 			     struct scm_timestamping_internal *tss)
1733 {
1734 	if (skb->tstamp)
1735 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1736 	else
1737 		tss->ts[0] = (struct timespec64) {0};
1738 
1739 	if (skb_hwtstamps(skb)->hwtstamp)
1740 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1741 	else
1742 		tss->ts[2] = (struct timespec64) {0};
1743 }
1744 
1745 #ifdef CONFIG_MMU
1746 static const struct vm_operations_struct tcp_vm_ops = {
1747 };
1748 
1749 int tcp_mmap(struct file *file, struct socket *sock,
1750 	     struct vm_area_struct *vma)
1751 {
1752 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1753 		return -EPERM;
1754 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1755 
1756 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1757 	vm_flags_set(vma, VM_MIXEDMAP);
1758 
1759 	vma->vm_ops = &tcp_vm_ops;
1760 	return 0;
1761 }
1762 EXPORT_SYMBOL(tcp_mmap);
1763 
1764 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1765 				       u32 *offset_frag)
1766 {
1767 	skb_frag_t *frag;
1768 
1769 	if (unlikely(offset_skb >= skb->len))
1770 		return NULL;
1771 
1772 	offset_skb -= skb_headlen(skb);
1773 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1774 		return NULL;
1775 
1776 	frag = skb_shinfo(skb)->frags;
1777 	while (offset_skb) {
1778 		if (skb_frag_size(frag) > offset_skb) {
1779 			*offset_frag = offset_skb;
1780 			return frag;
1781 		}
1782 		offset_skb -= skb_frag_size(frag);
1783 		++frag;
1784 	}
1785 	*offset_frag = 0;
1786 	return frag;
1787 }
1788 
1789 static bool can_map_frag(const skb_frag_t *frag)
1790 {
1791 	struct page *page;
1792 
1793 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1794 		return false;
1795 
1796 	page = skb_frag_page(frag);
1797 
1798 	if (PageCompound(page) || page->mapping)
1799 		return false;
1800 
1801 	return true;
1802 }
1803 
1804 static int find_next_mappable_frag(const skb_frag_t *frag,
1805 				   int remaining_in_skb)
1806 {
1807 	int offset = 0;
1808 
1809 	if (likely(can_map_frag(frag)))
1810 		return 0;
1811 
1812 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1813 		offset += skb_frag_size(frag);
1814 		++frag;
1815 	}
1816 	return offset;
1817 }
1818 
1819 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1820 					  struct tcp_zerocopy_receive *zc,
1821 					  struct sk_buff *skb, u32 offset)
1822 {
1823 	u32 frag_offset, partial_frag_remainder = 0;
1824 	int mappable_offset;
1825 	skb_frag_t *frag;
1826 
1827 	/* worst case: skip to next skb. try to improve on this case below */
1828 	zc->recv_skip_hint = skb->len - offset;
1829 
1830 	/* Find the frag containing this offset (and how far into that frag) */
1831 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1832 	if (!frag)
1833 		return;
1834 
1835 	if (frag_offset) {
1836 		struct skb_shared_info *info = skb_shinfo(skb);
1837 
1838 		/* We read part of the last frag, must recvmsg() rest of skb. */
1839 		if (frag == &info->frags[info->nr_frags - 1])
1840 			return;
1841 
1842 		/* Else, we must at least read the remainder in this frag. */
1843 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1844 		zc->recv_skip_hint -= partial_frag_remainder;
1845 		++frag;
1846 	}
1847 
1848 	/* partial_frag_remainder: If part way through a frag, must read rest.
1849 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1850 	 * in partial_frag_remainder.
1851 	 */
1852 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1853 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1854 }
1855 
1856 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1857 			      int flags, struct scm_timestamping_internal *tss,
1858 			      int *cmsg_flags);
1859 static int receive_fallback_to_copy(struct sock *sk,
1860 				    struct tcp_zerocopy_receive *zc, int inq,
1861 				    struct scm_timestamping_internal *tss)
1862 {
1863 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1864 	struct msghdr msg = {};
1865 	int err;
1866 
1867 	zc->length = 0;
1868 	zc->recv_skip_hint = 0;
1869 
1870 	if (copy_address != zc->copybuf_address)
1871 		return -EINVAL;
1872 
1873 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1874 			  &msg.msg_iter);
1875 	if (err)
1876 		return err;
1877 
1878 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1879 				 tss, &zc->msg_flags);
1880 	if (err < 0)
1881 		return err;
1882 
1883 	zc->copybuf_len = err;
1884 	if (likely(zc->copybuf_len)) {
1885 		struct sk_buff *skb;
1886 		u32 offset;
1887 
1888 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1889 		if (skb)
1890 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1891 	}
1892 	return 0;
1893 }
1894 
1895 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1896 				   struct sk_buff *skb, u32 copylen,
1897 				   u32 *offset, u32 *seq)
1898 {
1899 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1900 	struct msghdr msg = {};
1901 	int err;
1902 
1903 	if (copy_address != zc->copybuf_address)
1904 		return -EINVAL;
1905 
1906 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1907 			  &msg.msg_iter);
1908 	if (err)
1909 		return err;
1910 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1911 	if (err)
1912 		return err;
1913 	zc->recv_skip_hint -= copylen;
1914 	*offset += copylen;
1915 	*seq += copylen;
1916 	return (__s32)copylen;
1917 }
1918 
1919 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1920 				  struct sock *sk,
1921 				  struct sk_buff *skb,
1922 				  u32 *seq,
1923 				  s32 copybuf_len,
1924 				  struct scm_timestamping_internal *tss)
1925 {
1926 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1927 
1928 	if (!copylen)
1929 		return 0;
1930 	/* skb is null if inq < PAGE_SIZE. */
1931 	if (skb) {
1932 		offset = *seq - TCP_SKB_CB(skb)->seq;
1933 	} else {
1934 		skb = tcp_recv_skb(sk, *seq, &offset);
1935 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1936 			tcp_update_recv_tstamps(skb, tss);
1937 			zc->msg_flags |= TCP_CMSG_TS;
1938 		}
1939 	}
1940 
1941 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1942 						  seq);
1943 	return zc->copybuf_len < 0 ? 0 : copylen;
1944 }
1945 
1946 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1947 					      struct page **pending_pages,
1948 					      unsigned long pages_remaining,
1949 					      unsigned long *address,
1950 					      u32 *length,
1951 					      u32 *seq,
1952 					      struct tcp_zerocopy_receive *zc,
1953 					      u32 total_bytes_to_map,
1954 					      int err)
1955 {
1956 	/* At least one page did not map. Try zapping if we skipped earlier. */
1957 	if (err == -EBUSY &&
1958 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1959 		u32 maybe_zap_len;
1960 
1961 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1962 				*length + /* Mapped or pending */
1963 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1964 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1965 		err = 0;
1966 	}
1967 
1968 	if (!err) {
1969 		unsigned long leftover_pages = pages_remaining;
1970 		int bytes_mapped;
1971 
1972 		/* We called zap_page_range_single, try to reinsert. */
1973 		err = vm_insert_pages(vma, *address,
1974 				      pending_pages,
1975 				      &pages_remaining);
1976 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1977 		*seq += bytes_mapped;
1978 		*address += bytes_mapped;
1979 	}
1980 	if (err) {
1981 		/* Either we were unable to zap, OR we zapped, retried an
1982 		 * insert, and still had an issue. Either ways, pages_remaining
1983 		 * is the number of pages we were unable to map, and we unroll
1984 		 * some state we speculatively touched before.
1985 		 */
1986 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1987 
1988 		*length -= bytes_not_mapped;
1989 		zc->recv_skip_hint += bytes_not_mapped;
1990 	}
1991 	return err;
1992 }
1993 
1994 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1995 					struct page **pages,
1996 					unsigned int pages_to_map,
1997 					unsigned long *address,
1998 					u32 *length,
1999 					u32 *seq,
2000 					struct tcp_zerocopy_receive *zc,
2001 					u32 total_bytes_to_map)
2002 {
2003 	unsigned long pages_remaining = pages_to_map;
2004 	unsigned int pages_mapped;
2005 	unsigned int bytes_mapped;
2006 	int err;
2007 
2008 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2009 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2010 	bytes_mapped = PAGE_SIZE * pages_mapped;
2011 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2012 	 * mapping (some but not all of the pages).
2013 	 */
2014 	*seq += bytes_mapped;
2015 	*address += bytes_mapped;
2016 
2017 	if (likely(!err))
2018 		return 0;
2019 
2020 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2021 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2022 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2023 		err);
2024 }
2025 
2026 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2027 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2028 				      struct tcp_zerocopy_receive *zc,
2029 				      struct scm_timestamping_internal *tss)
2030 {
2031 	unsigned long msg_control_addr;
2032 	struct msghdr cmsg_dummy;
2033 
2034 	msg_control_addr = (unsigned long)zc->msg_control;
2035 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2036 	cmsg_dummy.msg_controllen =
2037 		(__kernel_size_t)zc->msg_controllen;
2038 	cmsg_dummy.msg_flags = in_compat_syscall()
2039 		? MSG_CMSG_COMPAT : 0;
2040 	cmsg_dummy.msg_control_is_user = true;
2041 	zc->msg_flags = 0;
2042 	if (zc->msg_control == msg_control_addr &&
2043 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2044 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2045 		zc->msg_control = (__u64)
2046 			((uintptr_t)cmsg_dummy.msg_control_user);
2047 		zc->msg_controllen =
2048 			(__u64)cmsg_dummy.msg_controllen;
2049 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2050 	}
2051 }
2052 
2053 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2054 					   unsigned long address,
2055 					   bool *mmap_locked)
2056 {
2057 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2058 
2059 	if (vma) {
2060 		if (vma->vm_ops != &tcp_vm_ops) {
2061 			vma_end_read(vma);
2062 			return NULL;
2063 		}
2064 		*mmap_locked = false;
2065 		return vma;
2066 	}
2067 
2068 	mmap_read_lock(mm);
2069 	vma = vma_lookup(mm, address);
2070 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2071 		mmap_read_unlock(mm);
2072 		return NULL;
2073 	}
2074 	*mmap_locked = true;
2075 	return vma;
2076 }
2077 
2078 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2079 static int tcp_zerocopy_receive(struct sock *sk,
2080 				struct tcp_zerocopy_receive *zc,
2081 				struct scm_timestamping_internal *tss)
2082 {
2083 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2084 	unsigned long address = (unsigned long)zc->address;
2085 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2086 	s32 copybuf_len = zc->copybuf_len;
2087 	struct tcp_sock *tp = tcp_sk(sk);
2088 	const skb_frag_t *frags = NULL;
2089 	unsigned int pages_to_map = 0;
2090 	struct vm_area_struct *vma;
2091 	struct sk_buff *skb = NULL;
2092 	u32 seq = tp->copied_seq;
2093 	u32 total_bytes_to_map;
2094 	int inq = tcp_inq(sk);
2095 	bool mmap_locked;
2096 	int ret;
2097 
2098 	zc->copybuf_len = 0;
2099 	zc->msg_flags = 0;
2100 
2101 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2102 		return -EINVAL;
2103 
2104 	if (sk->sk_state == TCP_LISTEN)
2105 		return -ENOTCONN;
2106 
2107 	sock_rps_record_flow(sk);
2108 
2109 	if (inq && inq <= copybuf_len)
2110 		return receive_fallback_to_copy(sk, zc, inq, tss);
2111 
2112 	if (inq < PAGE_SIZE) {
2113 		zc->length = 0;
2114 		zc->recv_skip_hint = inq;
2115 		if (!inq && sock_flag(sk, SOCK_DONE))
2116 			return -EIO;
2117 		return 0;
2118 	}
2119 
2120 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2121 	if (!vma)
2122 		return -EINVAL;
2123 
2124 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2125 	avail_len = min_t(u32, vma_len, inq);
2126 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2127 	if (total_bytes_to_map) {
2128 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2129 			zap_page_range_single(vma, address, total_bytes_to_map,
2130 					      NULL);
2131 		zc->length = total_bytes_to_map;
2132 		zc->recv_skip_hint = 0;
2133 	} else {
2134 		zc->length = avail_len;
2135 		zc->recv_skip_hint = avail_len;
2136 	}
2137 	ret = 0;
2138 	while (length + PAGE_SIZE <= zc->length) {
2139 		int mappable_offset;
2140 		struct page *page;
2141 
2142 		if (zc->recv_skip_hint < PAGE_SIZE) {
2143 			u32 offset_frag;
2144 
2145 			if (skb) {
2146 				if (zc->recv_skip_hint > 0)
2147 					break;
2148 				skb = skb->next;
2149 				offset = seq - TCP_SKB_CB(skb)->seq;
2150 			} else {
2151 				skb = tcp_recv_skb(sk, seq, &offset);
2152 			}
2153 
2154 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2155 				tcp_update_recv_tstamps(skb, tss);
2156 				zc->msg_flags |= TCP_CMSG_TS;
2157 			}
2158 			zc->recv_skip_hint = skb->len - offset;
2159 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2160 			if (!frags || offset_frag)
2161 				break;
2162 		}
2163 
2164 		mappable_offset = find_next_mappable_frag(frags,
2165 							  zc->recv_skip_hint);
2166 		if (mappable_offset) {
2167 			zc->recv_skip_hint = mappable_offset;
2168 			break;
2169 		}
2170 		page = skb_frag_page(frags);
2171 		prefetchw(page);
2172 		pages[pages_to_map++] = page;
2173 		length += PAGE_SIZE;
2174 		zc->recv_skip_hint -= PAGE_SIZE;
2175 		frags++;
2176 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2177 		    zc->recv_skip_hint < PAGE_SIZE) {
2178 			/* Either full batch, or we're about to go to next skb
2179 			 * (and we cannot unroll failed ops across skbs).
2180 			 */
2181 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2182 							   pages_to_map,
2183 							   &address, &length,
2184 							   &seq, zc,
2185 							   total_bytes_to_map);
2186 			if (ret)
2187 				goto out;
2188 			pages_to_map = 0;
2189 		}
2190 	}
2191 	if (pages_to_map) {
2192 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2193 						   &address, &length, &seq,
2194 						   zc, total_bytes_to_map);
2195 	}
2196 out:
2197 	if (mmap_locked)
2198 		mmap_read_unlock(current->mm);
2199 	else
2200 		vma_end_read(vma);
2201 	/* Try to copy straggler data. */
2202 	if (!ret)
2203 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2204 
2205 	if (length + copylen) {
2206 		WRITE_ONCE(tp->copied_seq, seq);
2207 		tcp_rcv_space_adjust(sk);
2208 
2209 		/* Clean up data we have read: This will do ACK frames. */
2210 		tcp_recv_skb(sk, seq, &offset);
2211 		tcp_cleanup_rbuf(sk, length + copylen);
2212 		ret = 0;
2213 		if (length == zc->length)
2214 			zc->recv_skip_hint = 0;
2215 	} else {
2216 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2217 			ret = -EIO;
2218 	}
2219 	zc->length = length;
2220 	return ret;
2221 }
2222 #endif
2223 
2224 /* Similar to __sock_recv_timestamp, but does not require an skb */
2225 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2226 			struct scm_timestamping_internal *tss)
2227 {
2228 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2229 	bool has_timestamping = false;
2230 
2231 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2232 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2233 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2234 				if (new_tstamp) {
2235 					struct __kernel_timespec kts = {
2236 						.tv_sec = tss->ts[0].tv_sec,
2237 						.tv_nsec = tss->ts[0].tv_nsec,
2238 					};
2239 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2240 						 sizeof(kts), &kts);
2241 				} else {
2242 					struct __kernel_old_timespec ts_old = {
2243 						.tv_sec = tss->ts[0].tv_sec,
2244 						.tv_nsec = tss->ts[0].tv_nsec,
2245 					};
2246 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2247 						 sizeof(ts_old), &ts_old);
2248 				}
2249 			} else {
2250 				if (new_tstamp) {
2251 					struct __kernel_sock_timeval stv = {
2252 						.tv_sec = tss->ts[0].tv_sec,
2253 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2254 					};
2255 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2256 						 sizeof(stv), &stv);
2257 				} else {
2258 					struct __kernel_old_timeval tv = {
2259 						.tv_sec = tss->ts[0].tv_sec,
2260 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2261 					};
2262 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2263 						 sizeof(tv), &tv);
2264 				}
2265 			}
2266 		}
2267 
2268 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2269 			has_timestamping = true;
2270 		else
2271 			tss->ts[0] = (struct timespec64) {0};
2272 	}
2273 
2274 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2275 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2276 			has_timestamping = true;
2277 		else
2278 			tss->ts[2] = (struct timespec64) {0};
2279 	}
2280 
2281 	if (has_timestamping) {
2282 		tss->ts[1] = (struct timespec64) {0};
2283 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2284 			put_cmsg_scm_timestamping64(msg, tss);
2285 		else
2286 			put_cmsg_scm_timestamping(msg, tss);
2287 	}
2288 }
2289 
2290 static int tcp_inq_hint(struct sock *sk)
2291 {
2292 	const struct tcp_sock *tp = tcp_sk(sk);
2293 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2294 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2295 	int inq;
2296 
2297 	inq = rcv_nxt - copied_seq;
2298 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2299 		lock_sock(sk);
2300 		inq = tp->rcv_nxt - tp->copied_seq;
2301 		release_sock(sk);
2302 	}
2303 	/* After receiving a FIN, tell the user-space to continue reading
2304 	 * by returning a non-zero inq.
2305 	 */
2306 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2307 		inq = 1;
2308 	return inq;
2309 }
2310 
2311 /*
2312  *	This routine copies from a sock struct into the user buffer.
2313  *
2314  *	Technical note: in 2.3 we work on _locked_ socket, so that
2315  *	tricks with *seq access order and skb->users are not required.
2316  *	Probably, code can be easily improved even more.
2317  */
2318 
2319 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2320 			      int flags, struct scm_timestamping_internal *tss,
2321 			      int *cmsg_flags)
2322 {
2323 	struct tcp_sock *tp = tcp_sk(sk);
2324 	int copied = 0;
2325 	u32 peek_seq;
2326 	u32 *seq;
2327 	unsigned long used;
2328 	int err;
2329 	int target;		/* Read at least this many bytes */
2330 	long timeo;
2331 	struct sk_buff *skb, *last;
2332 	u32 peek_offset = 0;
2333 	u32 urg_hole = 0;
2334 
2335 	err = -ENOTCONN;
2336 	if (sk->sk_state == TCP_LISTEN)
2337 		goto out;
2338 
2339 	if (tp->recvmsg_inq) {
2340 		*cmsg_flags = TCP_CMSG_INQ;
2341 		msg->msg_get_inq = 1;
2342 	}
2343 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2344 
2345 	/* Urgent data needs to be handled specially. */
2346 	if (flags & MSG_OOB)
2347 		goto recv_urg;
2348 
2349 	if (unlikely(tp->repair)) {
2350 		err = -EPERM;
2351 		if (!(flags & MSG_PEEK))
2352 			goto out;
2353 
2354 		if (tp->repair_queue == TCP_SEND_QUEUE)
2355 			goto recv_sndq;
2356 
2357 		err = -EINVAL;
2358 		if (tp->repair_queue == TCP_NO_QUEUE)
2359 			goto out;
2360 
2361 		/* 'common' recv queue MSG_PEEK-ing */
2362 	}
2363 
2364 	seq = &tp->copied_seq;
2365 	if (flags & MSG_PEEK) {
2366 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2367 		peek_seq = tp->copied_seq + peek_offset;
2368 		seq = &peek_seq;
2369 	}
2370 
2371 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2372 
2373 	do {
2374 		u32 offset;
2375 
2376 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2377 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2378 			if (copied)
2379 				break;
2380 			if (signal_pending(current)) {
2381 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2382 				break;
2383 			}
2384 		}
2385 
2386 		/* Next get a buffer. */
2387 
2388 		last = skb_peek_tail(&sk->sk_receive_queue);
2389 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2390 			last = skb;
2391 			/* Now that we have two receive queues this
2392 			 * shouldn't happen.
2393 			 */
2394 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2395 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2396 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2397 				 flags))
2398 				break;
2399 
2400 			offset = *seq - TCP_SKB_CB(skb)->seq;
2401 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2402 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2403 				offset--;
2404 			}
2405 			if (offset < skb->len)
2406 				goto found_ok_skb;
2407 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2408 				goto found_fin_ok;
2409 			WARN(!(flags & MSG_PEEK),
2410 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2411 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2412 		}
2413 
2414 		/* Well, if we have backlog, try to process it now yet. */
2415 
2416 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2417 			break;
2418 
2419 		if (copied) {
2420 			if (!timeo ||
2421 			    sk->sk_err ||
2422 			    sk->sk_state == TCP_CLOSE ||
2423 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2424 			    signal_pending(current))
2425 				break;
2426 		} else {
2427 			if (sock_flag(sk, SOCK_DONE))
2428 				break;
2429 
2430 			if (sk->sk_err) {
2431 				copied = sock_error(sk);
2432 				break;
2433 			}
2434 
2435 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2436 				break;
2437 
2438 			if (sk->sk_state == TCP_CLOSE) {
2439 				/* This occurs when user tries to read
2440 				 * from never connected socket.
2441 				 */
2442 				copied = -ENOTCONN;
2443 				break;
2444 			}
2445 
2446 			if (!timeo) {
2447 				copied = -EAGAIN;
2448 				break;
2449 			}
2450 
2451 			if (signal_pending(current)) {
2452 				copied = sock_intr_errno(timeo);
2453 				break;
2454 			}
2455 		}
2456 
2457 		if (copied >= target) {
2458 			/* Do not sleep, just process backlog. */
2459 			__sk_flush_backlog(sk);
2460 		} else {
2461 			tcp_cleanup_rbuf(sk, copied);
2462 			err = sk_wait_data(sk, &timeo, last);
2463 			if (err < 0) {
2464 				err = copied ? : err;
2465 				goto out;
2466 			}
2467 		}
2468 
2469 		if ((flags & MSG_PEEK) &&
2470 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2471 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2472 					    current->comm,
2473 					    task_pid_nr(current));
2474 			peek_seq = tp->copied_seq + peek_offset;
2475 		}
2476 		continue;
2477 
2478 found_ok_skb:
2479 		/* Ok so how much can we use? */
2480 		used = skb->len - offset;
2481 		if (len < used)
2482 			used = len;
2483 
2484 		/* Do we have urgent data here? */
2485 		if (unlikely(tp->urg_data)) {
2486 			u32 urg_offset = tp->urg_seq - *seq;
2487 			if (urg_offset < used) {
2488 				if (!urg_offset) {
2489 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2490 						WRITE_ONCE(*seq, *seq + 1);
2491 						urg_hole++;
2492 						offset++;
2493 						used--;
2494 						if (!used)
2495 							goto skip_copy;
2496 					}
2497 				} else
2498 					used = urg_offset;
2499 			}
2500 		}
2501 
2502 		if (!(flags & MSG_TRUNC)) {
2503 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2504 			if (err) {
2505 				/* Exception. Bailout! */
2506 				if (!copied)
2507 					copied = -EFAULT;
2508 				break;
2509 			}
2510 		}
2511 
2512 		WRITE_ONCE(*seq, *seq + used);
2513 		copied += used;
2514 		len -= used;
2515 		if (flags & MSG_PEEK)
2516 			sk_peek_offset_fwd(sk, used);
2517 		else
2518 			sk_peek_offset_bwd(sk, used);
2519 		tcp_rcv_space_adjust(sk);
2520 
2521 skip_copy:
2522 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2523 			WRITE_ONCE(tp->urg_data, 0);
2524 			tcp_fast_path_check(sk);
2525 		}
2526 
2527 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2528 			tcp_update_recv_tstamps(skb, tss);
2529 			*cmsg_flags |= TCP_CMSG_TS;
2530 		}
2531 
2532 		if (used + offset < skb->len)
2533 			continue;
2534 
2535 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2536 			goto found_fin_ok;
2537 		if (!(flags & MSG_PEEK))
2538 			tcp_eat_recv_skb(sk, skb);
2539 		continue;
2540 
2541 found_fin_ok:
2542 		/* Process the FIN. */
2543 		WRITE_ONCE(*seq, *seq + 1);
2544 		if (!(flags & MSG_PEEK))
2545 			tcp_eat_recv_skb(sk, skb);
2546 		break;
2547 	} while (len > 0);
2548 
2549 	/* According to UNIX98, msg_name/msg_namelen are ignored
2550 	 * on connected socket. I was just happy when found this 8) --ANK
2551 	 */
2552 
2553 	/* Clean up data we have read: This will do ACK frames. */
2554 	tcp_cleanup_rbuf(sk, copied);
2555 	return copied;
2556 
2557 out:
2558 	return err;
2559 
2560 recv_urg:
2561 	err = tcp_recv_urg(sk, msg, len, flags);
2562 	goto out;
2563 
2564 recv_sndq:
2565 	err = tcp_peek_sndq(sk, msg, len);
2566 	goto out;
2567 }
2568 
2569 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2570 		int *addr_len)
2571 {
2572 	int cmsg_flags = 0, ret;
2573 	struct scm_timestamping_internal tss;
2574 
2575 	if (unlikely(flags & MSG_ERRQUEUE))
2576 		return inet_recv_error(sk, msg, len, addr_len);
2577 
2578 	if (sk_can_busy_loop(sk) &&
2579 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2580 	    sk->sk_state == TCP_ESTABLISHED)
2581 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2582 
2583 	lock_sock(sk);
2584 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2585 	release_sock(sk);
2586 
2587 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2588 		if (cmsg_flags & TCP_CMSG_TS)
2589 			tcp_recv_timestamp(msg, sk, &tss);
2590 		if (msg->msg_get_inq) {
2591 			msg->msg_inq = tcp_inq_hint(sk);
2592 			if (cmsg_flags & TCP_CMSG_INQ)
2593 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2594 					 sizeof(msg->msg_inq), &msg->msg_inq);
2595 		}
2596 	}
2597 	return ret;
2598 }
2599 EXPORT_SYMBOL(tcp_recvmsg);
2600 
2601 void tcp_set_state(struct sock *sk, int state)
2602 {
2603 	int oldstate = sk->sk_state;
2604 
2605 	/* We defined a new enum for TCP states that are exported in BPF
2606 	 * so as not force the internal TCP states to be frozen. The
2607 	 * following checks will detect if an internal state value ever
2608 	 * differs from the BPF value. If this ever happens, then we will
2609 	 * need to remap the internal value to the BPF value before calling
2610 	 * tcp_call_bpf_2arg.
2611 	 */
2612 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2613 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2614 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2615 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2616 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2617 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2618 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2619 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2620 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2621 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2622 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2623 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2624 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2625 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2626 
2627 	/* bpf uapi header bpf.h defines an anonymous enum with values
2628 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2629 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2630 	 * But clang built vmlinux does not have this enum in DWARF
2631 	 * since clang removes the above code before generating IR/debuginfo.
2632 	 * Let us explicitly emit the type debuginfo to ensure the
2633 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2634 	 * regardless of which compiler is used.
2635 	 */
2636 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2637 
2638 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2639 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2640 
2641 	switch (state) {
2642 	case TCP_ESTABLISHED:
2643 		if (oldstate != TCP_ESTABLISHED)
2644 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2645 		break;
2646 
2647 	case TCP_CLOSE:
2648 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2649 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2650 
2651 		sk->sk_prot->unhash(sk);
2652 		if (inet_csk(sk)->icsk_bind_hash &&
2653 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2654 			inet_put_port(sk);
2655 		fallthrough;
2656 	default:
2657 		if (oldstate == TCP_ESTABLISHED)
2658 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2659 	}
2660 
2661 	/* Change state AFTER socket is unhashed to avoid closed
2662 	 * socket sitting in hash tables.
2663 	 */
2664 	inet_sk_state_store(sk, state);
2665 }
2666 EXPORT_SYMBOL_GPL(tcp_set_state);
2667 
2668 /*
2669  *	State processing on a close. This implements the state shift for
2670  *	sending our FIN frame. Note that we only send a FIN for some
2671  *	states. A shutdown() may have already sent the FIN, or we may be
2672  *	closed.
2673  */
2674 
2675 static const unsigned char new_state[16] = {
2676   /* current state:        new state:      action:	*/
2677   [0 /* (Invalid) */]	= TCP_CLOSE,
2678   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2679   [TCP_SYN_SENT]	= TCP_CLOSE,
2680   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2681   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2682   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2683   [TCP_TIME_WAIT]	= TCP_CLOSE,
2684   [TCP_CLOSE]		= TCP_CLOSE,
2685   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2686   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2687   [TCP_LISTEN]		= TCP_CLOSE,
2688   [TCP_CLOSING]		= TCP_CLOSING,
2689   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2690 };
2691 
2692 static int tcp_close_state(struct sock *sk)
2693 {
2694 	int next = (int)new_state[sk->sk_state];
2695 	int ns = next & TCP_STATE_MASK;
2696 
2697 	tcp_set_state(sk, ns);
2698 
2699 	return next & TCP_ACTION_FIN;
2700 }
2701 
2702 /*
2703  *	Shutdown the sending side of a connection. Much like close except
2704  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2705  */
2706 
2707 void tcp_shutdown(struct sock *sk, int how)
2708 {
2709 	/*	We need to grab some memory, and put together a FIN,
2710 	 *	and then put it into the queue to be sent.
2711 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2712 	 */
2713 	if (!(how & SEND_SHUTDOWN))
2714 		return;
2715 
2716 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2717 	if ((1 << sk->sk_state) &
2718 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2719 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2720 		/* Clear out any half completed packets.  FIN if needed. */
2721 		if (tcp_close_state(sk))
2722 			tcp_send_fin(sk);
2723 	}
2724 }
2725 EXPORT_SYMBOL(tcp_shutdown);
2726 
2727 int tcp_orphan_count_sum(void)
2728 {
2729 	int i, total = 0;
2730 
2731 	for_each_possible_cpu(i)
2732 		total += per_cpu(tcp_orphan_count, i);
2733 
2734 	return max(total, 0);
2735 }
2736 
2737 static int tcp_orphan_cache;
2738 static struct timer_list tcp_orphan_timer;
2739 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2740 
2741 static void tcp_orphan_update(struct timer_list *unused)
2742 {
2743 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2744 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2745 }
2746 
2747 static bool tcp_too_many_orphans(int shift)
2748 {
2749 	return READ_ONCE(tcp_orphan_cache) << shift >
2750 		READ_ONCE(sysctl_tcp_max_orphans);
2751 }
2752 
2753 bool tcp_check_oom(struct sock *sk, int shift)
2754 {
2755 	bool too_many_orphans, out_of_socket_memory;
2756 
2757 	too_many_orphans = tcp_too_many_orphans(shift);
2758 	out_of_socket_memory = tcp_out_of_memory(sk);
2759 
2760 	if (too_many_orphans)
2761 		net_info_ratelimited("too many orphaned sockets\n");
2762 	if (out_of_socket_memory)
2763 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2764 	return too_many_orphans || out_of_socket_memory;
2765 }
2766 
2767 void __tcp_close(struct sock *sk, long timeout)
2768 {
2769 	struct sk_buff *skb;
2770 	int data_was_unread = 0;
2771 	int state;
2772 
2773 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2774 
2775 	if (sk->sk_state == TCP_LISTEN) {
2776 		tcp_set_state(sk, TCP_CLOSE);
2777 
2778 		/* Special case. */
2779 		inet_csk_listen_stop(sk);
2780 
2781 		goto adjudge_to_death;
2782 	}
2783 
2784 	/*  We need to flush the recv. buffs.  We do this only on the
2785 	 *  descriptor close, not protocol-sourced closes, because the
2786 	 *  reader process may not have drained the data yet!
2787 	 */
2788 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2789 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2790 
2791 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2792 			len--;
2793 		data_was_unread += len;
2794 		__kfree_skb(skb);
2795 	}
2796 
2797 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2798 	if (sk->sk_state == TCP_CLOSE)
2799 		goto adjudge_to_death;
2800 
2801 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2802 	 * data was lost. To witness the awful effects of the old behavior of
2803 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2804 	 * GET in an FTP client, suspend the process, wait for the client to
2805 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2806 	 * Note: timeout is always zero in such a case.
2807 	 */
2808 	if (unlikely(tcp_sk(sk)->repair)) {
2809 		sk->sk_prot->disconnect(sk, 0);
2810 	} else if (data_was_unread) {
2811 		/* Unread data was tossed, zap the connection. */
2812 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2813 		tcp_set_state(sk, TCP_CLOSE);
2814 		tcp_send_active_reset(sk, sk->sk_allocation);
2815 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2816 		/* Check zero linger _after_ checking for unread data. */
2817 		sk->sk_prot->disconnect(sk, 0);
2818 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2819 	} else if (tcp_close_state(sk)) {
2820 		/* We FIN if the application ate all the data before
2821 		 * zapping the connection.
2822 		 */
2823 
2824 		/* RED-PEN. Formally speaking, we have broken TCP state
2825 		 * machine. State transitions:
2826 		 *
2827 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2828 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2829 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2830 		 *
2831 		 * are legal only when FIN has been sent (i.e. in window),
2832 		 * rather than queued out of window. Purists blame.
2833 		 *
2834 		 * F.e. "RFC state" is ESTABLISHED,
2835 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2836 		 *
2837 		 * The visible declinations are that sometimes
2838 		 * we enter time-wait state, when it is not required really
2839 		 * (harmless), do not send active resets, when they are
2840 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2841 		 * they look as CLOSING or LAST_ACK for Linux)
2842 		 * Probably, I missed some more holelets.
2843 		 * 						--ANK
2844 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2845 		 * in a single packet! (May consider it later but will
2846 		 * probably need API support or TCP_CORK SYN-ACK until
2847 		 * data is written and socket is closed.)
2848 		 */
2849 		tcp_send_fin(sk);
2850 	}
2851 
2852 	sk_stream_wait_close(sk, timeout);
2853 
2854 adjudge_to_death:
2855 	state = sk->sk_state;
2856 	sock_hold(sk);
2857 	sock_orphan(sk);
2858 
2859 	local_bh_disable();
2860 	bh_lock_sock(sk);
2861 	/* remove backlog if any, without releasing ownership. */
2862 	__release_sock(sk);
2863 
2864 	this_cpu_inc(tcp_orphan_count);
2865 
2866 	/* Have we already been destroyed by a softirq or backlog? */
2867 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2868 		goto out;
2869 
2870 	/*	This is a (useful) BSD violating of the RFC. There is a
2871 	 *	problem with TCP as specified in that the other end could
2872 	 *	keep a socket open forever with no application left this end.
2873 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2874 	 *	our end. If they send after that then tough - BUT: long enough
2875 	 *	that we won't make the old 4*rto = almost no time - whoops
2876 	 *	reset mistake.
2877 	 *
2878 	 *	Nope, it was not mistake. It is really desired behaviour
2879 	 *	f.e. on http servers, when such sockets are useless, but
2880 	 *	consume significant resources. Let's do it with special
2881 	 *	linger2	option.					--ANK
2882 	 */
2883 
2884 	if (sk->sk_state == TCP_FIN_WAIT2) {
2885 		struct tcp_sock *tp = tcp_sk(sk);
2886 		if (READ_ONCE(tp->linger2) < 0) {
2887 			tcp_set_state(sk, TCP_CLOSE);
2888 			tcp_send_active_reset(sk, GFP_ATOMIC);
2889 			__NET_INC_STATS(sock_net(sk),
2890 					LINUX_MIB_TCPABORTONLINGER);
2891 		} else {
2892 			const int tmo = tcp_fin_time(sk);
2893 
2894 			if (tmo > TCP_TIMEWAIT_LEN) {
2895 				inet_csk_reset_keepalive_timer(sk,
2896 						tmo - TCP_TIMEWAIT_LEN);
2897 			} else {
2898 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2899 				goto out;
2900 			}
2901 		}
2902 	}
2903 	if (sk->sk_state != TCP_CLOSE) {
2904 		if (tcp_check_oom(sk, 0)) {
2905 			tcp_set_state(sk, TCP_CLOSE);
2906 			tcp_send_active_reset(sk, GFP_ATOMIC);
2907 			__NET_INC_STATS(sock_net(sk),
2908 					LINUX_MIB_TCPABORTONMEMORY);
2909 		} else if (!check_net(sock_net(sk))) {
2910 			/* Not possible to send reset; just close */
2911 			tcp_set_state(sk, TCP_CLOSE);
2912 		}
2913 	}
2914 
2915 	if (sk->sk_state == TCP_CLOSE) {
2916 		struct request_sock *req;
2917 
2918 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2919 						lockdep_sock_is_held(sk));
2920 		/* We could get here with a non-NULL req if the socket is
2921 		 * aborted (e.g., closed with unread data) before 3WHS
2922 		 * finishes.
2923 		 */
2924 		if (req)
2925 			reqsk_fastopen_remove(sk, req, false);
2926 		inet_csk_destroy_sock(sk);
2927 	}
2928 	/* Otherwise, socket is reprieved until protocol close. */
2929 
2930 out:
2931 	bh_unlock_sock(sk);
2932 	local_bh_enable();
2933 }
2934 
2935 void tcp_close(struct sock *sk, long timeout)
2936 {
2937 	lock_sock(sk);
2938 	__tcp_close(sk, timeout);
2939 	release_sock(sk);
2940 	if (!sk->sk_net_refcnt)
2941 		inet_csk_clear_xmit_timers_sync(sk);
2942 	sock_put(sk);
2943 }
2944 EXPORT_SYMBOL(tcp_close);
2945 
2946 /* These states need RST on ABORT according to RFC793 */
2947 
2948 static inline bool tcp_need_reset(int state)
2949 {
2950 	return (1 << state) &
2951 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2952 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2953 }
2954 
2955 static void tcp_rtx_queue_purge(struct sock *sk)
2956 {
2957 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2958 
2959 	tcp_sk(sk)->highest_sack = NULL;
2960 	while (p) {
2961 		struct sk_buff *skb = rb_to_skb(p);
2962 
2963 		p = rb_next(p);
2964 		/* Since we are deleting whole queue, no need to
2965 		 * list_del(&skb->tcp_tsorted_anchor)
2966 		 */
2967 		tcp_rtx_queue_unlink(skb, sk);
2968 		tcp_wmem_free_skb(sk, skb);
2969 	}
2970 }
2971 
2972 void tcp_write_queue_purge(struct sock *sk)
2973 {
2974 	struct sk_buff *skb;
2975 
2976 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2977 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2978 		tcp_skb_tsorted_anchor_cleanup(skb);
2979 		tcp_wmem_free_skb(sk, skb);
2980 	}
2981 	tcp_rtx_queue_purge(sk);
2982 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2983 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2984 	tcp_sk(sk)->packets_out = 0;
2985 	inet_csk(sk)->icsk_backoff = 0;
2986 }
2987 
2988 int tcp_disconnect(struct sock *sk, int flags)
2989 {
2990 	struct inet_sock *inet = inet_sk(sk);
2991 	struct inet_connection_sock *icsk = inet_csk(sk);
2992 	struct tcp_sock *tp = tcp_sk(sk);
2993 	int old_state = sk->sk_state;
2994 	u32 seq;
2995 
2996 	if (old_state != TCP_CLOSE)
2997 		tcp_set_state(sk, TCP_CLOSE);
2998 
2999 	/* ABORT function of RFC793 */
3000 	if (old_state == TCP_LISTEN) {
3001 		inet_csk_listen_stop(sk);
3002 	} else if (unlikely(tp->repair)) {
3003 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3004 	} else if (tcp_need_reset(old_state) ||
3005 		   (tp->snd_nxt != tp->write_seq &&
3006 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3007 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3008 		 * states
3009 		 */
3010 		tcp_send_active_reset(sk, gfp_any());
3011 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3012 	} else if (old_state == TCP_SYN_SENT)
3013 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3014 
3015 	tcp_clear_xmit_timers(sk);
3016 	__skb_queue_purge(&sk->sk_receive_queue);
3017 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3018 	WRITE_ONCE(tp->urg_data, 0);
3019 	sk_set_peek_off(sk, -1);
3020 	tcp_write_queue_purge(sk);
3021 	tcp_fastopen_active_disable_ofo_check(sk);
3022 	skb_rbtree_purge(&tp->out_of_order_queue);
3023 
3024 	inet->inet_dport = 0;
3025 
3026 	inet_bhash2_reset_saddr(sk);
3027 
3028 	WRITE_ONCE(sk->sk_shutdown, 0);
3029 	sock_reset_flag(sk, SOCK_DONE);
3030 	tp->srtt_us = 0;
3031 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3032 	tp->rcv_rtt_last_tsecr = 0;
3033 
3034 	seq = tp->write_seq + tp->max_window + 2;
3035 	if (!seq)
3036 		seq = 1;
3037 	WRITE_ONCE(tp->write_seq, seq);
3038 
3039 	icsk->icsk_backoff = 0;
3040 	icsk->icsk_probes_out = 0;
3041 	icsk->icsk_probes_tstamp = 0;
3042 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3043 	icsk->icsk_rto_min = TCP_RTO_MIN;
3044 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3045 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3046 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3047 	tp->snd_cwnd_cnt = 0;
3048 	tp->is_cwnd_limited = 0;
3049 	tp->max_packets_out = 0;
3050 	tp->window_clamp = 0;
3051 	tp->delivered = 0;
3052 	tp->delivered_ce = 0;
3053 	if (icsk->icsk_ca_ops->release)
3054 		icsk->icsk_ca_ops->release(sk);
3055 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3056 	icsk->icsk_ca_initialized = 0;
3057 	tcp_set_ca_state(sk, TCP_CA_Open);
3058 	tp->is_sack_reneg = 0;
3059 	tcp_clear_retrans(tp);
3060 	tp->total_retrans = 0;
3061 	inet_csk_delack_init(sk);
3062 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3063 	 * issue in __tcp_select_window()
3064 	 */
3065 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3066 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3067 	__sk_dst_reset(sk);
3068 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3069 	tcp_saved_syn_free(tp);
3070 	tp->compressed_ack = 0;
3071 	tp->segs_in = 0;
3072 	tp->segs_out = 0;
3073 	tp->bytes_sent = 0;
3074 	tp->bytes_acked = 0;
3075 	tp->bytes_received = 0;
3076 	tp->bytes_retrans = 0;
3077 	tp->data_segs_in = 0;
3078 	tp->data_segs_out = 0;
3079 	tp->duplicate_sack[0].start_seq = 0;
3080 	tp->duplicate_sack[0].end_seq = 0;
3081 	tp->dsack_dups = 0;
3082 	tp->reord_seen = 0;
3083 	tp->retrans_out = 0;
3084 	tp->sacked_out = 0;
3085 	tp->tlp_high_seq = 0;
3086 	tp->last_oow_ack_time = 0;
3087 	tp->plb_rehash = 0;
3088 	/* There's a bubble in the pipe until at least the first ACK. */
3089 	tp->app_limited = ~0U;
3090 	tp->rate_app_limited = 1;
3091 	tp->rack.mstamp = 0;
3092 	tp->rack.advanced = 0;
3093 	tp->rack.reo_wnd_steps = 1;
3094 	tp->rack.last_delivered = 0;
3095 	tp->rack.reo_wnd_persist = 0;
3096 	tp->rack.dsack_seen = 0;
3097 	tp->syn_data_acked = 0;
3098 	tp->rx_opt.saw_tstamp = 0;
3099 	tp->rx_opt.dsack = 0;
3100 	tp->rx_opt.num_sacks = 0;
3101 	tp->rcv_ooopack = 0;
3102 
3103 
3104 	/* Clean up fastopen related fields */
3105 	tcp_free_fastopen_req(tp);
3106 	inet_clear_bit(DEFER_CONNECT, sk);
3107 	tp->fastopen_client_fail = 0;
3108 
3109 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3110 
3111 	if (sk->sk_frag.page) {
3112 		put_page(sk->sk_frag.page);
3113 		sk->sk_frag.page = NULL;
3114 		sk->sk_frag.offset = 0;
3115 	}
3116 	sk_error_report(sk);
3117 	return 0;
3118 }
3119 EXPORT_SYMBOL(tcp_disconnect);
3120 
3121 static inline bool tcp_can_repair_sock(const struct sock *sk)
3122 {
3123 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3124 		(sk->sk_state != TCP_LISTEN);
3125 }
3126 
3127 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3128 {
3129 	struct tcp_repair_window opt;
3130 
3131 	if (!tp->repair)
3132 		return -EPERM;
3133 
3134 	if (len != sizeof(opt))
3135 		return -EINVAL;
3136 
3137 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3138 		return -EFAULT;
3139 
3140 	if (opt.max_window < opt.snd_wnd)
3141 		return -EINVAL;
3142 
3143 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3144 		return -EINVAL;
3145 
3146 	if (after(opt.rcv_wup, tp->rcv_nxt))
3147 		return -EINVAL;
3148 
3149 	tp->snd_wl1	= opt.snd_wl1;
3150 	tp->snd_wnd	= opt.snd_wnd;
3151 	tp->max_window	= opt.max_window;
3152 
3153 	tp->rcv_wnd	= opt.rcv_wnd;
3154 	tp->rcv_wup	= opt.rcv_wup;
3155 
3156 	return 0;
3157 }
3158 
3159 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3160 		unsigned int len)
3161 {
3162 	struct tcp_sock *tp = tcp_sk(sk);
3163 	struct tcp_repair_opt opt;
3164 	size_t offset = 0;
3165 
3166 	while (len >= sizeof(opt)) {
3167 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3168 			return -EFAULT;
3169 
3170 		offset += sizeof(opt);
3171 		len -= sizeof(opt);
3172 
3173 		switch (opt.opt_code) {
3174 		case TCPOPT_MSS:
3175 			tp->rx_opt.mss_clamp = opt.opt_val;
3176 			tcp_mtup_init(sk);
3177 			break;
3178 		case TCPOPT_WINDOW:
3179 			{
3180 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3181 				u16 rcv_wscale = opt.opt_val >> 16;
3182 
3183 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3184 					return -EFBIG;
3185 
3186 				tp->rx_opt.snd_wscale = snd_wscale;
3187 				tp->rx_opt.rcv_wscale = rcv_wscale;
3188 				tp->rx_opt.wscale_ok = 1;
3189 			}
3190 			break;
3191 		case TCPOPT_SACK_PERM:
3192 			if (opt.opt_val != 0)
3193 				return -EINVAL;
3194 
3195 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3196 			break;
3197 		case TCPOPT_TIMESTAMP:
3198 			if (opt.opt_val != 0)
3199 				return -EINVAL;
3200 
3201 			tp->rx_opt.tstamp_ok = 1;
3202 			break;
3203 		}
3204 	}
3205 
3206 	return 0;
3207 }
3208 
3209 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3210 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3211 
3212 static void tcp_enable_tx_delay(void)
3213 {
3214 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3215 		static int __tcp_tx_delay_enabled = 0;
3216 
3217 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3218 			static_branch_enable(&tcp_tx_delay_enabled);
3219 			pr_info("TCP_TX_DELAY enabled\n");
3220 		}
3221 	}
3222 }
3223 
3224 /* When set indicates to always queue non-full frames.  Later the user clears
3225  * this option and we transmit any pending partial frames in the queue.  This is
3226  * meant to be used alongside sendfile() to get properly filled frames when the
3227  * user (for example) must write out headers with a write() call first and then
3228  * use sendfile to send out the data parts.
3229  *
3230  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3231  * TCP_NODELAY.
3232  */
3233 void __tcp_sock_set_cork(struct sock *sk, bool on)
3234 {
3235 	struct tcp_sock *tp = tcp_sk(sk);
3236 
3237 	if (on) {
3238 		tp->nonagle |= TCP_NAGLE_CORK;
3239 	} else {
3240 		tp->nonagle &= ~TCP_NAGLE_CORK;
3241 		if (tp->nonagle & TCP_NAGLE_OFF)
3242 			tp->nonagle |= TCP_NAGLE_PUSH;
3243 		tcp_push_pending_frames(sk);
3244 	}
3245 }
3246 
3247 void tcp_sock_set_cork(struct sock *sk, bool on)
3248 {
3249 	lock_sock(sk);
3250 	__tcp_sock_set_cork(sk, on);
3251 	release_sock(sk);
3252 }
3253 EXPORT_SYMBOL(tcp_sock_set_cork);
3254 
3255 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3256  * remembered, but it is not activated until cork is cleared.
3257  *
3258  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3259  * even TCP_CORK for currently queued segments.
3260  */
3261 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3262 {
3263 	if (on) {
3264 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3265 		tcp_push_pending_frames(sk);
3266 	} else {
3267 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3268 	}
3269 }
3270 
3271 void tcp_sock_set_nodelay(struct sock *sk)
3272 {
3273 	lock_sock(sk);
3274 	__tcp_sock_set_nodelay(sk, true);
3275 	release_sock(sk);
3276 }
3277 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3278 
3279 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3280 {
3281 	if (!val) {
3282 		inet_csk_enter_pingpong_mode(sk);
3283 		return;
3284 	}
3285 
3286 	inet_csk_exit_pingpong_mode(sk);
3287 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3288 	    inet_csk_ack_scheduled(sk)) {
3289 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3290 		tcp_cleanup_rbuf(sk, 1);
3291 		if (!(val & 1))
3292 			inet_csk_enter_pingpong_mode(sk);
3293 	}
3294 }
3295 
3296 void tcp_sock_set_quickack(struct sock *sk, int val)
3297 {
3298 	lock_sock(sk);
3299 	__tcp_sock_set_quickack(sk, val);
3300 	release_sock(sk);
3301 }
3302 EXPORT_SYMBOL(tcp_sock_set_quickack);
3303 
3304 int tcp_sock_set_syncnt(struct sock *sk, int val)
3305 {
3306 	if (val < 1 || val > MAX_TCP_SYNCNT)
3307 		return -EINVAL;
3308 
3309 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3310 	return 0;
3311 }
3312 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3313 
3314 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3315 {
3316 	/* Cap the max time in ms TCP will retry or probe the window
3317 	 * before giving up and aborting (ETIMEDOUT) a connection.
3318 	 */
3319 	if (val < 0)
3320 		return -EINVAL;
3321 
3322 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3323 	return 0;
3324 }
3325 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3326 
3327 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3328 {
3329 	struct tcp_sock *tp = tcp_sk(sk);
3330 
3331 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3332 		return -EINVAL;
3333 
3334 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3335 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3336 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3337 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3338 		u32 elapsed = keepalive_time_elapsed(tp);
3339 
3340 		if (tp->keepalive_time > elapsed)
3341 			elapsed = tp->keepalive_time - elapsed;
3342 		else
3343 			elapsed = 0;
3344 		inet_csk_reset_keepalive_timer(sk, elapsed);
3345 	}
3346 
3347 	return 0;
3348 }
3349 
3350 int tcp_sock_set_keepidle(struct sock *sk, int val)
3351 {
3352 	int err;
3353 
3354 	lock_sock(sk);
3355 	err = tcp_sock_set_keepidle_locked(sk, val);
3356 	release_sock(sk);
3357 	return err;
3358 }
3359 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3360 
3361 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3362 {
3363 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3364 		return -EINVAL;
3365 
3366 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3367 	return 0;
3368 }
3369 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3370 
3371 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3372 {
3373 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3374 		return -EINVAL;
3375 
3376 	/* Paired with READ_ONCE() in keepalive_probes() */
3377 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3378 	return 0;
3379 }
3380 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3381 
3382 int tcp_set_window_clamp(struct sock *sk, int val)
3383 {
3384 	struct tcp_sock *tp = tcp_sk(sk);
3385 
3386 	if (!val) {
3387 		if (sk->sk_state != TCP_CLOSE)
3388 			return -EINVAL;
3389 		WRITE_ONCE(tp->window_clamp, 0);
3390 	} else {
3391 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3392 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3393 						SOCK_MIN_RCVBUF / 2 : val;
3394 
3395 		if (new_window_clamp == old_window_clamp)
3396 			return 0;
3397 
3398 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3399 		if (new_window_clamp < old_window_clamp) {
3400 			/* need to apply the reserved mem provisioning only
3401 			 * when shrinking the window clamp
3402 			 */
3403 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3404 
3405 		} else {
3406 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3407 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3408 					       tp->rcv_ssthresh);
3409 		}
3410 	}
3411 	return 0;
3412 }
3413 
3414 /*
3415  *	Socket option code for TCP.
3416  */
3417 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3418 		      sockptr_t optval, unsigned int optlen)
3419 {
3420 	struct tcp_sock *tp = tcp_sk(sk);
3421 	struct inet_connection_sock *icsk = inet_csk(sk);
3422 	struct net *net = sock_net(sk);
3423 	int val;
3424 	int err = 0;
3425 
3426 	/* These are data/string values, all the others are ints */
3427 	switch (optname) {
3428 	case TCP_CONGESTION: {
3429 		char name[TCP_CA_NAME_MAX];
3430 
3431 		if (optlen < 1)
3432 			return -EINVAL;
3433 
3434 		val = strncpy_from_sockptr(name, optval,
3435 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3436 		if (val < 0)
3437 			return -EFAULT;
3438 		name[val] = 0;
3439 
3440 		sockopt_lock_sock(sk);
3441 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3442 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3443 								    CAP_NET_ADMIN));
3444 		sockopt_release_sock(sk);
3445 		return err;
3446 	}
3447 	case TCP_ULP: {
3448 		char name[TCP_ULP_NAME_MAX];
3449 
3450 		if (optlen < 1)
3451 			return -EINVAL;
3452 
3453 		val = strncpy_from_sockptr(name, optval,
3454 					min_t(long, TCP_ULP_NAME_MAX - 1,
3455 					      optlen));
3456 		if (val < 0)
3457 			return -EFAULT;
3458 		name[val] = 0;
3459 
3460 		sockopt_lock_sock(sk);
3461 		err = tcp_set_ulp(sk, name);
3462 		sockopt_release_sock(sk);
3463 		return err;
3464 	}
3465 	case TCP_FASTOPEN_KEY: {
3466 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3467 		__u8 *backup_key = NULL;
3468 
3469 		/* Allow a backup key as well to facilitate key rotation
3470 		 * First key is the active one.
3471 		 */
3472 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3473 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3474 			return -EINVAL;
3475 
3476 		if (copy_from_sockptr(key, optval, optlen))
3477 			return -EFAULT;
3478 
3479 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3480 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3481 
3482 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3483 	}
3484 	default:
3485 		/* fallthru */
3486 		break;
3487 	}
3488 
3489 	if (optlen < sizeof(int))
3490 		return -EINVAL;
3491 
3492 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3493 		return -EFAULT;
3494 
3495 	/* Handle options that can be set without locking the socket. */
3496 	switch (optname) {
3497 	case TCP_SYNCNT:
3498 		return tcp_sock_set_syncnt(sk, val);
3499 	case TCP_USER_TIMEOUT:
3500 		return tcp_sock_set_user_timeout(sk, val);
3501 	case TCP_KEEPINTVL:
3502 		return tcp_sock_set_keepintvl(sk, val);
3503 	case TCP_KEEPCNT:
3504 		return tcp_sock_set_keepcnt(sk, val);
3505 	case TCP_LINGER2:
3506 		if (val < 0)
3507 			WRITE_ONCE(tp->linger2, -1);
3508 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3509 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3510 		else
3511 			WRITE_ONCE(tp->linger2, val * HZ);
3512 		return 0;
3513 	case TCP_DEFER_ACCEPT:
3514 		/* Translate value in seconds to number of retransmits */
3515 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3516 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3517 					   TCP_RTO_MAX / HZ));
3518 		return 0;
3519 	}
3520 
3521 	sockopt_lock_sock(sk);
3522 
3523 	switch (optname) {
3524 	case TCP_MAXSEG:
3525 		/* Values greater than interface MTU won't take effect. However
3526 		 * at the point when this call is done we typically don't yet
3527 		 * know which interface is going to be used
3528 		 */
3529 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3530 			err = -EINVAL;
3531 			break;
3532 		}
3533 		tp->rx_opt.user_mss = val;
3534 		break;
3535 
3536 	case TCP_NODELAY:
3537 		__tcp_sock_set_nodelay(sk, val);
3538 		break;
3539 
3540 	case TCP_THIN_LINEAR_TIMEOUTS:
3541 		if (val < 0 || val > 1)
3542 			err = -EINVAL;
3543 		else
3544 			tp->thin_lto = val;
3545 		break;
3546 
3547 	case TCP_THIN_DUPACK:
3548 		if (val < 0 || val > 1)
3549 			err = -EINVAL;
3550 		break;
3551 
3552 	case TCP_REPAIR:
3553 		if (!tcp_can_repair_sock(sk))
3554 			err = -EPERM;
3555 		else if (val == TCP_REPAIR_ON) {
3556 			tp->repair = 1;
3557 			sk->sk_reuse = SK_FORCE_REUSE;
3558 			tp->repair_queue = TCP_NO_QUEUE;
3559 		} else if (val == TCP_REPAIR_OFF) {
3560 			tp->repair = 0;
3561 			sk->sk_reuse = SK_NO_REUSE;
3562 			tcp_send_window_probe(sk);
3563 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3564 			tp->repair = 0;
3565 			sk->sk_reuse = SK_NO_REUSE;
3566 		} else
3567 			err = -EINVAL;
3568 
3569 		break;
3570 
3571 	case TCP_REPAIR_QUEUE:
3572 		if (!tp->repair)
3573 			err = -EPERM;
3574 		else if ((unsigned int)val < TCP_QUEUES_NR)
3575 			tp->repair_queue = val;
3576 		else
3577 			err = -EINVAL;
3578 		break;
3579 
3580 	case TCP_QUEUE_SEQ:
3581 		if (sk->sk_state != TCP_CLOSE) {
3582 			err = -EPERM;
3583 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3584 			if (!tcp_rtx_queue_empty(sk))
3585 				err = -EPERM;
3586 			else
3587 				WRITE_ONCE(tp->write_seq, val);
3588 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3589 			if (tp->rcv_nxt != tp->copied_seq) {
3590 				err = -EPERM;
3591 			} else {
3592 				WRITE_ONCE(tp->rcv_nxt, val);
3593 				WRITE_ONCE(tp->copied_seq, val);
3594 			}
3595 		} else {
3596 			err = -EINVAL;
3597 		}
3598 		break;
3599 
3600 	case TCP_REPAIR_OPTIONS:
3601 		if (!tp->repair)
3602 			err = -EINVAL;
3603 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3604 			err = tcp_repair_options_est(sk, optval, optlen);
3605 		else
3606 			err = -EPERM;
3607 		break;
3608 
3609 	case TCP_CORK:
3610 		__tcp_sock_set_cork(sk, val);
3611 		break;
3612 
3613 	case TCP_KEEPIDLE:
3614 		err = tcp_sock_set_keepidle_locked(sk, val);
3615 		break;
3616 	case TCP_SAVE_SYN:
3617 		/* 0: disable, 1: enable, 2: start from ether_header */
3618 		if (val < 0 || val > 2)
3619 			err = -EINVAL;
3620 		else
3621 			tp->save_syn = val;
3622 		break;
3623 
3624 	case TCP_WINDOW_CLAMP:
3625 		err = tcp_set_window_clamp(sk, val);
3626 		break;
3627 
3628 	case TCP_QUICKACK:
3629 		__tcp_sock_set_quickack(sk, val);
3630 		break;
3631 
3632 	case TCP_AO_REPAIR:
3633 		if (!tcp_can_repair_sock(sk)) {
3634 			err = -EPERM;
3635 			break;
3636 		}
3637 		err = tcp_ao_set_repair(sk, optval, optlen);
3638 		break;
3639 #ifdef CONFIG_TCP_AO
3640 	case TCP_AO_ADD_KEY:
3641 	case TCP_AO_DEL_KEY:
3642 	case TCP_AO_INFO: {
3643 		/* If this is the first TCP-AO setsockopt() on the socket,
3644 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3645 		 * in any state.
3646 		 */
3647 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3648 			goto ao_parse;
3649 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3650 					      lockdep_sock_is_held(sk)))
3651 			goto ao_parse;
3652 		if (tp->repair)
3653 			goto ao_parse;
3654 		err = -EISCONN;
3655 		break;
3656 ao_parse:
3657 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3658 		break;
3659 	}
3660 #endif
3661 #ifdef CONFIG_TCP_MD5SIG
3662 	case TCP_MD5SIG:
3663 	case TCP_MD5SIG_EXT:
3664 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3665 		break;
3666 #endif
3667 	case TCP_FASTOPEN:
3668 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3669 		    TCPF_LISTEN))) {
3670 			tcp_fastopen_init_key_once(net);
3671 
3672 			fastopen_queue_tune(sk, val);
3673 		} else {
3674 			err = -EINVAL;
3675 		}
3676 		break;
3677 	case TCP_FASTOPEN_CONNECT:
3678 		if (val > 1 || val < 0) {
3679 			err = -EINVAL;
3680 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3681 			   TFO_CLIENT_ENABLE) {
3682 			if (sk->sk_state == TCP_CLOSE)
3683 				tp->fastopen_connect = val;
3684 			else
3685 				err = -EINVAL;
3686 		} else {
3687 			err = -EOPNOTSUPP;
3688 		}
3689 		break;
3690 	case TCP_FASTOPEN_NO_COOKIE:
3691 		if (val > 1 || val < 0)
3692 			err = -EINVAL;
3693 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3694 			err = -EINVAL;
3695 		else
3696 			tp->fastopen_no_cookie = val;
3697 		break;
3698 	case TCP_TIMESTAMP:
3699 		if (!tp->repair) {
3700 			err = -EPERM;
3701 			break;
3702 		}
3703 		/* val is an opaque field,
3704 		 * and low order bit contains usec_ts enable bit.
3705 		 * Its a best effort, and we do not care if user makes an error.
3706 		 */
3707 		tp->tcp_usec_ts = val & 1;
3708 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3709 		break;
3710 	case TCP_REPAIR_WINDOW:
3711 		err = tcp_repair_set_window(tp, optval, optlen);
3712 		break;
3713 	case TCP_NOTSENT_LOWAT:
3714 		WRITE_ONCE(tp->notsent_lowat, val);
3715 		sk->sk_write_space(sk);
3716 		break;
3717 	case TCP_INQ:
3718 		if (val > 1 || val < 0)
3719 			err = -EINVAL;
3720 		else
3721 			tp->recvmsg_inq = val;
3722 		break;
3723 	case TCP_TX_DELAY:
3724 		if (val)
3725 			tcp_enable_tx_delay();
3726 		WRITE_ONCE(tp->tcp_tx_delay, val);
3727 		break;
3728 	default:
3729 		err = -ENOPROTOOPT;
3730 		break;
3731 	}
3732 
3733 	sockopt_release_sock(sk);
3734 	return err;
3735 }
3736 
3737 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3738 		   unsigned int optlen)
3739 {
3740 	const struct inet_connection_sock *icsk = inet_csk(sk);
3741 
3742 	if (level != SOL_TCP)
3743 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3744 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3745 								optval, optlen);
3746 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3747 }
3748 EXPORT_SYMBOL(tcp_setsockopt);
3749 
3750 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3751 				      struct tcp_info *info)
3752 {
3753 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3754 	enum tcp_chrono i;
3755 
3756 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3757 		stats[i] = tp->chrono_stat[i - 1];
3758 		if (i == tp->chrono_type)
3759 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3760 		stats[i] *= USEC_PER_SEC / HZ;
3761 		total += stats[i];
3762 	}
3763 
3764 	info->tcpi_busy_time = total;
3765 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3766 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3767 }
3768 
3769 /* Return information about state of tcp endpoint in API format. */
3770 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3771 {
3772 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3773 	const struct inet_connection_sock *icsk = inet_csk(sk);
3774 	unsigned long rate;
3775 	u32 now;
3776 	u64 rate64;
3777 	bool slow;
3778 
3779 	memset(info, 0, sizeof(*info));
3780 	if (sk->sk_type != SOCK_STREAM)
3781 		return;
3782 
3783 	info->tcpi_state = inet_sk_state_load(sk);
3784 
3785 	/* Report meaningful fields for all TCP states, including listeners */
3786 	rate = READ_ONCE(sk->sk_pacing_rate);
3787 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3788 	info->tcpi_pacing_rate = rate64;
3789 
3790 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3791 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3792 	info->tcpi_max_pacing_rate = rate64;
3793 
3794 	info->tcpi_reordering = tp->reordering;
3795 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3796 
3797 	if (info->tcpi_state == TCP_LISTEN) {
3798 		/* listeners aliased fields :
3799 		 * tcpi_unacked -> Number of children ready for accept()
3800 		 * tcpi_sacked  -> max backlog
3801 		 */
3802 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3803 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3804 		return;
3805 	}
3806 
3807 	slow = lock_sock_fast(sk);
3808 
3809 	info->tcpi_ca_state = icsk->icsk_ca_state;
3810 	info->tcpi_retransmits = icsk->icsk_retransmits;
3811 	info->tcpi_probes = icsk->icsk_probes_out;
3812 	info->tcpi_backoff = icsk->icsk_backoff;
3813 
3814 	if (tp->rx_opt.tstamp_ok)
3815 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3816 	if (tcp_is_sack(tp))
3817 		info->tcpi_options |= TCPI_OPT_SACK;
3818 	if (tp->rx_opt.wscale_ok) {
3819 		info->tcpi_options |= TCPI_OPT_WSCALE;
3820 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3821 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3822 	}
3823 
3824 	if (tp->ecn_flags & TCP_ECN_OK)
3825 		info->tcpi_options |= TCPI_OPT_ECN;
3826 	if (tp->ecn_flags & TCP_ECN_SEEN)
3827 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3828 	if (tp->syn_data_acked)
3829 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3830 	if (tp->tcp_usec_ts)
3831 		info->tcpi_options |= TCPI_OPT_USEC_TS;
3832 
3833 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3834 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3835 						tcp_delack_max(sk)));
3836 	info->tcpi_snd_mss = tp->mss_cache;
3837 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3838 
3839 	info->tcpi_unacked = tp->packets_out;
3840 	info->tcpi_sacked = tp->sacked_out;
3841 
3842 	info->tcpi_lost = tp->lost_out;
3843 	info->tcpi_retrans = tp->retrans_out;
3844 
3845 	now = tcp_jiffies32;
3846 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3847 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3848 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3849 
3850 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3851 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3852 	info->tcpi_rtt = tp->srtt_us >> 3;
3853 	info->tcpi_rttvar = tp->mdev_us >> 2;
3854 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3855 	info->tcpi_advmss = tp->advmss;
3856 
3857 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3858 	info->tcpi_rcv_space = tp->rcvq_space.space;
3859 
3860 	info->tcpi_total_retrans = tp->total_retrans;
3861 
3862 	info->tcpi_bytes_acked = tp->bytes_acked;
3863 	info->tcpi_bytes_received = tp->bytes_received;
3864 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3865 	tcp_get_info_chrono_stats(tp, info);
3866 
3867 	info->tcpi_segs_out = tp->segs_out;
3868 
3869 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3870 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3871 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3872 
3873 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3874 	info->tcpi_data_segs_out = tp->data_segs_out;
3875 
3876 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3877 	rate64 = tcp_compute_delivery_rate(tp);
3878 	if (rate64)
3879 		info->tcpi_delivery_rate = rate64;
3880 	info->tcpi_delivered = tp->delivered;
3881 	info->tcpi_delivered_ce = tp->delivered_ce;
3882 	info->tcpi_bytes_sent = tp->bytes_sent;
3883 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3884 	info->tcpi_dsack_dups = tp->dsack_dups;
3885 	info->tcpi_reord_seen = tp->reord_seen;
3886 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3887 	info->tcpi_snd_wnd = tp->snd_wnd;
3888 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3889 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3890 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3891 
3892 	info->tcpi_total_rto = tp->total_rto;
3893 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3894 	info->tcpi_total_rto_time = tp->total_rto_time;
3895 	if (tp->rto_stamp)
3896 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3897 
3898 	unlock_sock_fast(sk, slow);
3899 }
3900 EXPORT_SYMBOL_GPL(tcp_get_info);
3901 
3902 static size_t tcp_opt_stats_get_size(void)
3903 {
3904 	return
3905 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3906 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3907 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3908 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3909 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3910 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3911 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3912 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3913 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3914 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3915 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3916 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3917 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3918 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3919 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3920 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3921 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3922 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3923 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3924 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3925 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3926 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3927 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3928 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3929 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3930 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3931 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3932 		0;
3933 }
3934 
3935 /* Returns TTL or hop limit of an incoming packet from skb. */
3936 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3937 {
3938 	if (skb->protocol == htons(ETH_P_IP))
3939 		return ip_hdr(skb)->ttl;
3940 	else if (skb->protocol == htons(ETH_P_IPV6))
3941 		return ipv6_hdr(skb)->hop_limit;
3942 	else
3943 		return 0;
3944 }
3945 
3946 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3947 					       const struct sk_buff *orig_skb,
3948 					       const struct sk_buff *ack_skb)
3949 {
3950 	const struct tcp_sock *tp = tcp_sk(sk);
3951 	struct sk_buff *stats;
3952 	struct tcp_info info;
3953 	unsigned long rate;
3954 	u64 rate64;
3955 
3956 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3957 	if (!stats)
3958 		return NULL;
3959 
3960 	tcp_get_info_chrono_stats(tp, &info);
3961 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3962 			  info.tcpi_busy_time, TCP_NLA_PAD);
3963 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3964 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3965 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3966 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3967 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3968 			  tp->data_segs_out, TCP_NLA_PAD);
3969 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3970 			  tp->total_retrans, TCP_NLA_PAD);
3971 
3972 	rate = READ_ONCE(sk->sk_pacing_rate);
3973 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3974 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3975 
3976 	rate64 = tcp_compute_delivery_rate(tp);
3977 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3978 
3979 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3980 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3981 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3982 
3983 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3984 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3985 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3986 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3987 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3988 
3989 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3990 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3991 
3992 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3993 			  TCP_NLA_PAD);
3994 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3995 			  TCP_NLA_PAD);
3996 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3997 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3998 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3999 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4000 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4001 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4002 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4003 			  TCP_NLA_PAD);
4004 	if (ack_skb)
4005 		nla_put_u8(stats, TCP_NLA_TTL,
4006 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4007 
4008 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4009 	return stats;
4010 }
4011 
4012 int do_tcp_getsockopt(struct sock *sk, int level,
4013 		      int optname, sockptr_t optval, sockptr_t optlen)
4014 {
4015 	struct inet_connection_sock *icsk = inet_csk(sk);
4016 	struct tcp_sock *tp = tcp_sk(sk);
4017 	struct net *net = sock_net(sk);
4018 	int val, len;
4019 
4020 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4021 		return -EFAULT;
4022 
4023 	if (len < 0)
4024 		return -EINVAL;
4025 
4026 	len = min_t(unsigned int, len, sizeof(int));
4027 
4028 	switch (optname) {
4029 	case TCP_MAXSEG:
4030 		val = tp->mss_cache;
4031 		if (tp->rx_opt.user_mss &&
4032 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4033 			val = tp->rx_opt.user_mss;
4034 		if (tp->repair)
4035 			val = tp->rx_opt.mss_clamp;
4036 		break;
4037 	case TCP_NODELAY:
4038 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4039 		break;
4040 	case TCP_CORK:
4041 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4042 		break;
4043 	case TCP_KEEPIDLE:
4044 		val = keepalive_time_when(tp) / HZ;
4045 		break;
4046 	case TCP_KEEPINTVL:
4047 		val = keepalive_intvl_when(tp) / HZ;
4048 		break;
4049 	case TCP_KEEPCNT:
4050 		val = keepalive_probes(tp);
4051 		break;
4052 	case TCP_SYNCNT:
4053 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4054 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4055 		break;
4056 	case TCP_LINGER2:
4057 		val = READ_ONCE(tp->linger2);
4058 		if (val >= 0)
4059 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4060 		break;
4061 	case TCP_DEFER_ACCEPT:
4062 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4063 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4064 				      TCP_RTO_MAX / HZ);
4065 		break;
4066 	case TCP_WINDOW_CLAMP:
4067 		val = READ_ONCE(tp->window_clamp);
4068 		break;
4069 	case TCP_INFO: {
4070 		struct tcp_info info;
4071 
4072 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4073 			return -EFAULT;
4074 
4075 		tcp_get_info(sk, &info);
4076 
4077 		len = min_t(unsigned int, len, sizeof(info));
4078 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4079 			return -EFAULT;
4080 		if (copy_to_sockptr(optval, &info, len))
4081 			return -EFAULT;
4082 		return 0;
4083 	}
4084 	case TCP_CC_INFO: {
4085 		const struct tcp_congestion_ops *ca_ops;
4086 		union tcp_cc_info info;
4087 		size_t sz = 0;
4088 		int attr;
4089 
4090 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4091 			return -EFAULT;
4092 
4093 		ca_ops = icsk->icsk_ca_ops;
4094 		if (ca_ops && ca_ops->get_info)
4095 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4096 
4097 		len = min_t(unsigned int, len, sz);
4098 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4099 			return -EFAULT;
4100 		if (copy_to_sockptr(optval, &info, len))
4101 			return -EFAULT;
4102 		return 0;
4103 	}
4104 	case TCP_QUICKACK:
4105 		val = !inet_csk_in_pingpong_mode(sk);
4106 		break;
4107 
4108 	case TCP_CONGESTION:
4109 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4110 			return -EFAULT;
4111 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4112 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4113 			return -EFAULT;
4114 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4115 			return -EFAULT;
4116 		return 0;
4117 
4118 	case TCP_ULP:
4119 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4120 			return -EFAULT;
4121 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4122 		if (!icsk->icsk_ulp_ops) {
4123 			len = 0;
4124 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4125 				return -EFAULT;
4126 			return 0;
4127 		}
4128 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4129 			return -EFAULT;
4130 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4131 			return -EFAULT;
4132 		return 0;
4133 
4134 	case TCP_FASTOPEN_KEY: {
4135 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4136 		unsigned int key_len;
4137 
4138 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4139 			return -EFAULT;
4140 
4141 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4142 				TCP_FASTOPEN_KEY_LENGTH;
4143 		len = min_t(unsigned int, len, key_len);
4144 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4145 			return -EFAULT;
4146 		if (copy_to_sockptr(optval, key, len))
4147 			return -EFAULT;
4148 		return 0;
4149 	}
4150 	case TCP_THIN_LINEAR_TIMEOUTS:
4151 		val = tp->thin_lto;
4152 		break;
4153 
4154 	case TCP_THIN_DUPACK:
4155 		val = 0;
4156 		break;
4157 
4158 	case TCP_REPAIR:
4159 		val = tp->repair;
4160 		break;
4161 
4162 	case TCP_REPAIR_QUEUE:
4163 		if (tp->repair)
4164 			val = tp->repair_queue;
4165 		else
4166 			return -EINVAL;
4167 		break;
4168 
4169 	case TCP_REPAIR_WINDOW: {
4170 		struct tcp_repair_window opt;
4171 
4172 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4173 			return -EFAULT;
4174 
4175 		if (len != sizeof(opt))
4176 			return -EINVAL;
4177 
4178 		if (!tp->repair)
4179 			return -EPERM;
4180 
4181 		opt.snd_wl1	= tp->snd_wl1;
4182 		opt.snd_wnd	= tp->snd_wnd;
4183 		opt.max_window	= tp->max_window;
4184 		opt.rcv_wnd	= tp->rcv_wnd;
4185 		opt.rcv_wup	= tp->rcv_wup;
4186 
4187 		if (copy_to_sockptr(optval, &opt, len))
4188 			return -EFAULT;
4189 		return 0;
4190 	}
4191 	case TCP_QUEUE_SEQ:
4192 		if (tp->repair_queue == TCP_SEND_QUEUE)
4193 			val = tp->write_seq;
4194 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4195 			val = tp->rcv_nxt;
4196 		else
4197 			return -EINVAL;
4198 		break;
4199 
4200 	case TCP_USER_TIMEOUT:
4201 		val = READ_ONCE(icsk->icsk_user_timeout);
4202 		break;
4203 
4204 	case TCP_FASTOPEN:
4205 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4206 		break;
4207 
4208 	case TCP_FASTOPEN_CONNECT:
4209 		val = tp->fastopen_connect;
4210 		break;
4211 
4212 	case TCP_FASTOPEN_NO_COOKIE:
4213 		val = tp->fastopen_no_cookie;
4214 		break;
4215 
4216 	case TCP_TX_DELAY:
4217 		val = READ_ONCE(tp->tcp_tx_delay);
4218 		break;
4219 
4220 	case TCP_TIMESTAMP:
4221 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4222 		if (tp->tcp_usec_ts)
4223 			val |= 1;
4224 		else
4225 			val &= ~1;
4226 		break;
4227 	case TCP_NOTSENT_LOWAT:
4228 		val = READ_ONCE(tp->notsent_lowat);
4229 		break;
4230 	case TCP_INQ:
4231 		val = tp->recvmsg_inq;
4232 		break;
4233 	case TCP_SAVE_SYN:
4234 		val = tp->save_syn;
4235 		break;
4236 	case TCP_SAVED_SYN: {
4237 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4238 			return -EFAULT;
4239 
4240 		sockopt_lock_sock(sk);
4241 		if (tp->saved_syn) {
4242 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4243 				len = tcp_saved_syn_len(tp->saved_syn);
4244 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4245 					sockopt_release_sock(sk);
4246 					return -EFAULT;
4247 				}
4248 				sockopt_release_sock(sk);
4249 				return -EINVAL;
4250 			}
4251 			len = tcp_saved_syn_len(tp->saved_syn);
4252 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4253 				sockopt_release_sock(sk);
4254 				return -EFAULT;
4255 			}
4256 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4257 				sockopt_release_sock(sk);
4258 				return -EFAULT;
4259 			}
4260 			tcp_saved_syn_free(tp);
4261 			sockopt_release_sock(sk);
4262 		} else {
4263 			sockopt_release_sock(sk);
4264 			len = 0;
4265 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4266 				return -EFAULT;
4267 		}
4268 		return 0;
4269 	}
4270 #ifdef CONFIG_MMU
4271 	case TCP_ZEROCOPY_RECEIVE: {
4272 		struct scm_timestamping_internal tss;
4273 		struct tcp_zerocopy_receive zc = {};
4274 		int err;
4275 
4276 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4277 			return -EFAULT;
4278 		if (len < 0 ||
4279 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4280 			return -EINVAL;
4281 		if (unlikely(len > sizeof(zc))) {
4282 			err = check_zeroed_sockptr(optval, sizeof(zc),
4283 						   len - sizeof(zc));
4284 			if (err < 1)
4285 				return err == 0 ? -EINVAL : err;
4286 			len = sizeof(zc);
4287 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4288 				return -EFAULT;
4289 		}
4290 		if (copy_from_sockptr(&zc, optval, len))
4291 			return -EFAULT;
4292 		if (zc.reserved)
4293 			return -EINVAL;
4294 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4295 			return -EINVAL;
4296 		sockopt_lock_sock(sk);
4297 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4298 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4299 							  &zc, &len, err);
4300 		sockopt_release_sock(sk);
4301 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4302 			goto zerocopy_rcv_cmsg;
4303 		switch (len) {
4304 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4305 			goto zerocopy_rcv_cmsg;
4306 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4307 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4308 		case offsetofend(struct tcp_zerocopy_receive, flags):
4309 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4310 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4311 		case offsetofend(struct tcp_zerocopy_receive, err):
4312 			goto zerocopy_rcv_sk_err;
4313 		case offsetofend(struct tcp_zerocopy_receive, inq):
4314 			goto zerocopy_rcv_inq;
4315 		case offsetofend(struct tcp_zerocopy_receive, length):
4316 		default:
4317 			goto zerocopy_rcv_out;
4318 		}
4319 zerocopy_rcv_cmsg:
4320 		if (zc.msg_flags & TCP_CMSG_TS)
4321 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4322 		else
4323 			zc.msg_flags = 0;
4324 zerocopy_rcv_sk_err:
4325 		if (!err)
4326 			zc.err = sock_error(sk);
4327 zerocopy_rcv_inq:
4328 		zc.inq = tcp_inq_hint(sk);
4329 zerocopy_rcv_out:
4330 		if (!err && copy_to_sockptr(optval, &zc, len))
4331 			err = -EFAULT;
4332 		return err;
4333 	}
4334 #endif
4335 	case TCP_AO_REPAIR:
4336 		if (!tcp_can_repair_sock(sk))
4337 			return -EPERM;
4338 		return tcp_ao_get_repair(sk, optval, optlen);
4339 	case TCP_AO_GET_KEYS:
4340 	case TCP_AO_INFO: {
4341 		int err;
4342 
4343 		sockopt_lock_sock(sk);
4344 		if (optname == TCP_AO_GET_KEYS)
4345 			err = tcp_ao_get_mkts(sk, optval, optlen);
4346 		else
4347 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4348 		sockopt_release_sock(sk);
4349 
4350 		return err;
4351 	}
4352 	default:
4353 		return -ENOPROTOOPT;
4354 	}
4355 
4356 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4357 		return -EFAULT;
4358 	if (copy_to_sockptr(optval, &val, len))
4359 		return -EFAULT;
4360 	return 0;
4361 }
4362 
4363 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4364 {
4365 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4366 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4367 	 */
4368 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4369 		return true;
4370 
4371 	return false;
4372 }
4373 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4374 
4375 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4376 		   int __user *optlen)
4377 {
4378 	struct inet_connection_sock *icsk = inet_csk(sk);
4379 
4380 	if (level != SOL_TCP)
4381 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4382 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4383 								optval, optlen);
4384 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4385 				 USER_SOCKPTR(optlen));
4386 }
4387 EXPORT_SYMBOL(tcp_getsockopt);
4388 
4389 #ifdef CONFIG_TCP_MD5SIG
4390 int tcp_md5_sigpool_id = -1;
4391 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4392 
4393 int tcp_md5_alloc_sigpool(void)
4394 {
4395 	size_t scratch_size;
4396 	int ret;
4397 
4398 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4399 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4400 	if (ret >= 0) {
4401 		/* As long as any md5 sigpool was allocated, the return
4402 		 * id would stay the same. Re-write the id only for the case
4403 		 * when previously all MD5 keys were deleted and this call
4404 		 * allocates the first MD5 key, which may return a different
4405 		 * sigpool id than was used previously.
4406 		 */
4407 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4408 		return 0;
4409 	}
4410 	return ret;
4411 }
4412 
4413 void tcp_md5_release_sigpool(void)
4414 {
4415 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4416 }
4417 
4418 void tcp_md5_add_sigpool(void)
4419 {
4420 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4421 }
4422 
4423 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4424 		     const struct tcp_md5sig_key *key)
4425 {
4426 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4427 	struct scatterlist sg;
4428 
4429 	sg_init_one(&sg, key->key, keylen);
4430 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4431 
4432 	/* We use data_race() because tcp_md5_do_add() might change
4433 	 * key->key under us
4434 	 */
4435 	return data_race(crypto_ahash_update(hp->req));
4436 }
4437 EXPORT_SYMBOL(tcp_md5_hash_key);
4438 
4439 /* Called with rcu_read_lock() */
4440 enum skb_drop_reason
4441 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4442 		     const void *saddr, const void *daddr,
4443 		     int family, int l3index, const __u8 *hash_location)
4444 {
4445 	/* This gets called for each TCP segment that has TCP-MD5 option.
4446 	 * We have 3 drop cases:
4447 	 * o No MD5 hash and one expected.
4448 	 * o MD5 hash and we're not expecting one.
4449 	 * o MD5 hash and its wrong.
4450 	 */
4451 	const struct tcp_sock *tp = tcp_sk(sk);
4452 	struct tcp_md5sig_key *key;
4453 	u8 newhash[16];
4454 	int genhash;
4455 
4456 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4457 
4458 	if (!key && hash_location) {
4459 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4460 		tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4461 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4462 	}
4463 
4464 	/* Check the signature.
4465 	 * To support dual stack listeners, we need to handle
4466 	 * IPv4-mapped case.
4467 	 */
4468 	if (family == AF_INET)
4469 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4470 	else
4471 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4472 							 NULL, skb);
4473 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4474 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4475 		if (family == AF_INET) {
4476 			tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4477 				      genhash ? "tcp_v4_calc_md5_hash failed"
4478 				      : "", l3index);
4479 		} else {
4480 			if (genhash) {
4481 				tcp_hash_fail("MD5 Hash failed",
4482 					      AF_INET6, skb, "L3 index %d",
4483 					      l3index);
4484 			} else {
4485 				tcp_hash_fail("MD5 Hash mismatch",
4486 					      AF_INET6, skb, "L3 index %d",
4487 					      l3index);
4488 			}
4489 		}
4490 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4491 	}
4492 	return SKB_NOT_DROPPED_YET;
4493 }
4494 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4495 
4496 #endif
4497 
4498 void tcp_done(struct sock *sk)
4499 {
4500 	struct request_sock *req;
4501 
4502 	/* We might be called with a new socket, after
4503 	 * inet_csk_prepare_forced_close() has been called
4504 	 * so we can not use lockdep_sock_is_held(sk)
4505 	 */
4506 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4507 
4508 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4509 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4510 
4511 	tcp_set_state(sk, TCP_CLOSE);
4512 	tcp_clear_xmit_timers(sk);
4513 	if (req)
4514 		reqsk_fastopen_remove(sk, req, false);
4515 
4516 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4517 
4518 	if (!sock_flag(sk, SOCK_DEAD))
4519 		sk->sk_state_change(sk);
4520 	else
4521 		inet_csk_destroy_sock(sk);
4522 }
4523 EXPORT_SYMBOL_GPL(tcp_done);
4524 
4525 int tcp_abort(struct sock *sk, int err)
4526 {
4527 	int state = inet_sk_state_load(sk);
4528 
4529 	if (state == TCP_NEW_SYN_RECV) {
4530 		struct request_sock *req = inet_reqsk(sk);
4531 
4532 		local_bh_disable();
4533 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4534 		local_bh_enable();
4535 		return 0;
4536 	}
4537 	if (state == TCP_TIME_WAIT) {
4538 		struct inet_timewait_sock *tw = inet_twsk(sk);
4539 
4540 		refcount_inc(&tw->tw_refcnt);
4541 		local_bh_disable();
4542 		inet_twsk_deschedule_put(tw);
4543 		local_bh_enable();
4544 		return 0;
4545 	}
4546 
4547 	/* BPF context ensures sock locking. */
4548 	if (!has_current_bpf_ctx())
4549 		/* Don't race with userspace socket closes such as tcp_close. */
4550 		lock_sock(sk);
4551 
4552 	if (sk->sk_state == TCP_LISTEN) {
4553 		tcp_set_state(sk, TCP_CLOSE);
4554 		inet_csk_listen_stop(sk);
4555 	}
4556 
4557 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4558 	local_bh_disable();
4559 	bh_lock_sock(sk);
4560 
4561 	if (!sock_flag(sk, SOCK_DEAD)) {
4562 		WRITE_ONCE(sk->sk_err, err);
4563 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4564 		smp_wmb();
4565 		sk_error_report(sk);
4566 		if (tcp_need_reset(sk->sk_state))
4567 			tcp_send_active_reset(sk, GFP_ATOMIC);
4568 		tcp_done(sk);
4569 	}
4570 
4571 	bh_unlock_sock(sk);
4572 	local_bh_enable();
4573 	tcp_write_queue_purge(sk);
4574 	if (!has_current_bpf_ctx())
4575 		release_sock(sk);
4576 	return 0;
4577 }
4578 EXPORT_SYMBOL_GPL(tcp_abort);
4579 
4580 extern struct tcp_congestion_ops tcp_reno;
4581 
4582 static __initdata unsigned long thash_entries;
4583 static int __init set_thash_entries(char *str)
4584 {
4585 	ssize_t ret;
4586 
4587 	if (!str)
4588 		return 0;
4589 
4590 	ret = kstrtoul(str, 0, &thash_entries);
4591 	if (ret)
4592 		return 0;
4593 
4594 	return 1;
4595 }
4596 __setup("thash_entries=", set_thash_entries);
4597 
4598 static void __init tcp_init_mem(void)
4599 {
4600 	unsigned long limit = nr_free_buffer_pages() / 16;
4601 
4602 	limit = max(limit, 128UL);
4603 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4604 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4605 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4606 }
4607 
4608 static void __init tcp_struct_check(void)
4609 {
4610 	/* TX read-mostly hotpath cache lines */
4611 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4612 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4613 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4614 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4615 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4616 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4617 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4618 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4619 
4620 	/* TXRX read-mostly hotpath cache lines */
4621 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4622 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4623 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4624 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4625 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4626 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4627 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4628 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4629 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4630 
4631 	/* RX read-mostly hotpath cache lines */
4632 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4633 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4634 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4635 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4636 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4637 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4638 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4639 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4640 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4641 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4642 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4643 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4644 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4645 
4646 	/* TX read-write hotpath cache lines */
4647 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4648 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4649 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4650 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4651 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4652 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4653 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4654 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4655 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4656 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4657 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4658 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4659 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4660 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4661 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4662 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
4663 
4664 	/* TXRX read-write hotpath cache lines */
4665 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
4666 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
4667 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
4668 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4669 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4670 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4671 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4672 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4673 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4674 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4675 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4676 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4677 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4678 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4679 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4680 
4681 	/* 32bit arches with 8byte alignment on u64 fields might need padding
4682 	 * before tcp_clock_cache.
4683 	 */
4684 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
4685 
4686 	/* RX read-write hotpath cache lines */
4687 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4688 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4689 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4690 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4691 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4692 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4693 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4694 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4695 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4696 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4697 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4698 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4699 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4700 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4701 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4702 }
4703 
4704 void __init tcp_init(void)
4705 {
4706 	int max_rshare, max_wshare, cnt;
4707 	unsigned long limit;
4708 	unsigned int i;
4709 
4710 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4711 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4712 		     sizeof_field(struct sk_buff, cb));
4713 
4714 	tcp_struct_check();
4715 
4716 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4717 
4718 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4719 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4720 
4721 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4722 			    thash_entries, 21,  /* one slot per 2 MB*/
4723 			    0, 64 * 1024);
4724 	tcp_hashinfo.bind_bucket_cachep =
4725 		kmem_cache_create("tcp_bind_bucket",
4726 				  sizeof(struct inet_bind_bucket), 0,
4727 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4728 				  SLAB_ACCOUNT,
4729 				  NULL);
4730 	tcp_hashinfo.bind2_bucket_cachep =
4731 		kmem_cache_create("tcp_bind2_bucket",
4732 				  sizeof(struct inet_bind2_bucket), 0,
4733 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4734 				  SLAB_ACCOUNT,
4735 				  NULL);
4736 
4737 	/* Size and allocate the main established and bind bucket
4738 	 * hash tables.
4739 	 *
4740 	 * The methodology is similar to that of the buffer cache.
4741 	 */
4742 	tcp_hashinfo.ehash =
4743 		alloc_large_system_hash("TCP established",
4744 					sizeof(struct inet_ehash_bucket),
4745 					thash_entries,
4746 					17, /* one slot per 128 KB of memory */
4747 					0,
4748 					NULL,
4749 					&tcp_hashinfo.ehash_mask,
4750 					0,
4751 					thash_entries ? 0 : 512 * 1024);
4752 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4753 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4754 
4755 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4756 		panic("TCP: failed to alloc ehash_locks");
4757 	tcp_hashinfo.bhash =
4758 		alloc_large_system_hash("TCP bind",
4759 					2 * sizeof(struct inet_bind_hashbucket),
4760 					tcp_hashinfo.ehash_mask + 1,
4761 					17, /* one slot per 128 KB of memory */
4762 					0,
4763 					&tcp_hashinfo.bhash_size,
4764 					NULL,
4765 					0,
4766 					64 * 1024);
4767 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4768 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4769 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4770 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4771 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4772 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4773 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4774 	}
4775 
4776 	tcp_hashinfo.pernet = false;
4777 
4778 	cnt = tcp_hashinfo.ehash_mask + 1;
4779 	sysctl_tcp_max_orphans = cnt / 2;
4780 
4781 	tcp_init_mem();
4782 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4783 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4784 	max_wshare = min(4UL*1024*1024, limit);
4785 	max_rshare = min(6UL*1024*1024, limit);
4786 
4787 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4788 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4789 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4790 
4791 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4792 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4793 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4794 
4795 	pr_info("Hash tables configured (established %u bind %u)\n",
4796 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4797 
4798 	tcp_v4_init();
4799 	tcp_metrics_init();
4800 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4801 	tcp_tasklet_init();
4802 	mptcp_init();
4803 }
4804