xref: /linux/net/ipv4/tcp.c (revision e8dfd42c17faf183415323db1ef0c977be0d6489)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 #include <net/rstreason.h>
279 
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 #include <net/rps.h>
284 
285 /* Track pending CMSGs. */
286 enum {
287 	TCP_CMSG_INQ = 1,
288 	TCP_CMSG_TS = 2
289 };
290 
291 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
292 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
293 
294 DEFINE_PER_CPU(u32, tcp_tw_isn);
295 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
296 
297 long sysctl_tcp_mem[3] __read_mostly;
298 EXPORT_SYMBOL(sysctl_tcp_mem);
299 
300 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
303 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
304 
305 #if IS_ENABLED(CONFIG_SMC)
306 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
307 EXPORT_SYMBOL(tcp_have_smc);
308 #endif
309 
310 /*
311  * Current number of TCP sockets.
312  */
313 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
314 EXPORT_SYMBOL(tcp_sockets_allocated);
315 
316 /*
317  * TCP splice context
318  */
319 struct tcp_splice_state {
320 	struct pipe_inode_info *pipe;
321 	size_t len;
322 	unsigned int flags;
323 };
324 
325 /*
326  * Pressure flag: try to collapse.
327  * Technical note: it is used by multiple contexts non atomically.
328  * All the __sk_mem_schedule() is of this nature: accounting
329  * is strict, actions are advisory and have some latency.
330  */
331 unsigned long tcp_memory_pressure __read_mostly;
332 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
333 
334 void tcp_enter_memory_pressure(struct sock *sk)
335 {
336 	unsigned long val;
337 
338 	if (READ_ONCE(tcp_memory_pressure))
339 		return;
340 	val = jiffies;
341 
342 	if (!val)
343 		val--;
344 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
345 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
346 }
347 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
348 
349 void tcp_leave_memory_pressure(struct sock *sk)
350 {
351 	unsigned long val;
352 
353 	if (!READ_ONCE(tcp_memory_pressure))
354 		return;
355 	val = xchg(&tcp_memory_pressure, 0);
356 	if (val)
357 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
358 			      jiffies_to_msecs(jiffies - val));
359 }
360 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
361 
362 /* Convert seconds to retransmits based on initial and max timeout */
363 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
364 {
365 	u8 res = 0;
366 
367 	if (seconds > 0) {
368 		int period = timeout;
369 
370 		res = 1;
371 		while (seconds > period && res < 255) {
372 			res++;
373 			timeout <<= 1;
374 			if (timeout > rto_max)
375 				timeout = rto_max;
376 			period += timeout;
377 		}
378 	}
379 	return res;
380 }
381 
382 /* Convert retransmits to seconds based on initial and max timeout */
383 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
384 {
385 	int period = 0;
386 
387 	if (retrans > 0) {
388 		period = timeout;
389 		while (--retrans) {
390 			timeout <<= 1;
391 			if (timeout > rto_max)
392 				timeout = rto_max;
393 			period += timeout;
394 		}
395 	}
396 	return period;
397 }
398 
399 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
400 {
401 	u32 rate = READ_ONCE(tp->rate_delivered);
402 	u32 intv = READ_ONCE(tp->rate_interval_us);
403 	u64 rate64 = 0;
404 
405 	if (rate && intv) {
406 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
407 		do_div(rate64, intv);
408 	}
409 	return rate64;
410 }
411 
412 /* Address-family independent initialization for a tcp_sock.
413  *
414  * NOTE: A lot of things set to zero explicitly by call to
415  *       sk_alloc() so need not be done here.
416  */
417 void tcp_init_sock(struct sock *sk)
418 {
419 	struct inet_connection_sock *icsk = inet_csk(sk);
420 	struct tcp_sock *tp = tcp_sk(sk);
421 
422 	tp->out_of_order_queue = RB_ROOT;
423 	sk->tcp_rtx_queue = RB_ROOT;
424 	tcp_init_xmit_timers(sk);
425 	INIT_LIST_HEAD(&tp->tsq_node);
426 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
427 
428 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
429 	icsk->icsk_rto_min = TCP_RTO_MIN;
430 	icsk->icsk_delack_max = TCP_DELACK_MAX;
431 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
432 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
433 
434 	/* So many TCP implementations out there (incorrectly) count the
435 	 * initial SYN frame in their delayed-ACK and congestion control
436 	 * algorithms that we must have the following bandaid to talk
437 	 * efficiently to them.  -DaveM
438 	 */
439 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
440 
441 	/* There's a bubble in the pipe until at least the first ACK. */
442 	tp->app_limited = ~0U;
443 	tp->rate_app_limited = 1;
444 
445 	/* See draft-stevens-tcpca-spec-01 for discussion of the
446 	 * initialization of these values.
447 	 */
448 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
449 	tp->snd_cwnd_clamp = ~0;
450 	tp->mss_cache = TCP_MSS_DEFAULT;
451 
452 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
453 	tcp_assign_congestion_control(sk);
454 
455 	tp->tsoffset = 0;
456 	tp->rack.reo_wnd_steps = 1;
457 
458 	sk->sk_write_space = sk_stream_write_space;
459 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
460 
461 	icsk->icsk_sync_mss = tcp_sync_mss;
462 
463 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
464 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
465 	tcp_scaling_ratio_init(sk);
466 
467 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
468 	sk_sockets_allocated_inc(sk);
469 }
470 EXPORT_SYMBOL(tcp_init_sock);
471 
472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473 {
474 	struct sk_buff *skb = tcp_write_queue_tail(sk);
475 
476 	if (tsflags && skb) {
477 		struct skb_shared_info *shinfo = skb_shinfo(skb);
478 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479 
480 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 			tcb->txstamp_ack = 1;
483 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 	}
486 }
487 
488 static bool tcp_stream_is_readable(struct sock *sk, int target)
489 {
490 	if (tcp_epollin_ready(sk, target))
491 		return true;
492 	return sk_is_readable(sk);
493 }
494 
495 /*
496  *	Wait for a TCP event.
497  *
498  *	Note that we don't need to lock the socket, as the upper poll layers
499  *	take care of normal races (between the test and the event) and we don't
500  *	go look at any of the socket buffers directly.
501  */
502 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
503 {
504 	__poll_t mask;
505 	struct sock *sk = sock->sk;
506 	const struct tcp_sock *tp = tcp_sk(sk);
507 	u8 shutdown;
508 	int state;
509 
510 	sock_poll_wait(file, sock, wait);
511 
512 	state = inet_sk_state_load(sk);
513 	if (state == TCP_LISTEN)
514 		return inet_csk_listen_poll(sk);
515 
516 	/* Socket is not locked. We are protected from async events
517 	 * by poll logic and correct handling of state changes
518 	 * made by other threads is impossible in any case.
519 	 */
520 
521 	mask = 0;
522 
523 	/*
524 	 * EPOLLHUP is certainly not done right. But poll() doesn't
525 	 * have a notion of HUP in just one direction, and for a
526 	 * socket the read side is more interesting.
527 	 *
528 	 * Some poll() documentation says that EPOLLHUP is incompatible
529 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 	 * all. But careful, it tends to be safer to return too many
531 	 * bits than too few, and you can easily break real applications
532 	 * if you don't tell them that something has hung up!
533 	 *
534 	 * Check-me.
535 	 *
536 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 	 * our fs/select.c). It means that after we received EOF,
538 	 * poll always returns immediately, making impossible poll() on write()
539 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 	 * if and only if shutdown has been made in both directions.
541 	 * Actually, it is interesting to look how Solaris and DUX
542 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 	 * then we could set it on SND_SHUTDOWN. BTW examples given
544 	 * in Stevens' books assume exactly this behaviour, it explains
545 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
546 	 *
547 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 	 * blocking on fresh not-connected or disconnected socket. --ANK
549 	 */
550 	shutdown = READ_ONCE(sk->sk_shutdown);
551 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
552 		mask |= EPOLLHUP;
553 	if (shutdown & RCV_SHUTDOWN)
554 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
555 
556 	/* Connected or passive Fast Open socket? */
557 	if (state != TCP_SYN_SENT &&
558 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
559 		int target = sock_rcvlowat(sk, 0, INT_MAX);
560 		u16 urg_data = READ_ONCE(tp->urg_data);
561 
562 		if (unlikely(urg_data) &&
563 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
564 		    !sock_flag(sk, SOCK_URGINLINE))
565 			target++;
566 
567 		if (tcp_stream_is_readable(sk, target))
568 			mask |= EPOLLIN | EPOLLRDNORM;
569 
570 		if (!(shutdown & SEND_SHUTDOWN)) {
571 			if (__sk_stream_is_writeable(sk, 1)) {
572 				mask |= EPOLLOUT | EPOLLWRNORM;
573 			} else {  /* send SIGIO later */
574 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
575 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
576 
577 				/* Race breaker. If space is freed after
578 				 * wspace test but before the flags are set,
579 				 * IO signal will be lost. Memory barrier
580 				 * pairs with the input side.
581 				 */
582 				smp_mb__after_atomic();
583 				if (__sk_stream_is_writeable(sk, 1))
584 					mask |= EPOLLOUT | EPOLLWRNORM;
585 			}
586 		} else
587 			mask |= EPOLLOUT | EPOLLWRNORM;
588 
589 		if (urg_data & TCP_URG_VALID)
590 			mask |= EPOLLPRI;
591 	} else if (state == TCP_SYN_SENT &&
592 		   inet_test_bit(DEFER_CONNECT, sk)) {
593 		/* Active TCP fastopen socket with defer_connect
594 		 * Return EPOLLOUT so application can call write()
595 		 * in order for kernel to generate SYN+data
596 		 */
597 		mask |= EPOLLOUT | EPOLLWRNORM;
598 	}
599 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
600 	smp_rmb();
601 	if (READ_ONCE(sk->sk_err) ||
602 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
603 		mask |= EPOLLERR;
604 
605 	return mask;
606 }
607 EXPORT_SYMBOL(tcp_poll);
608 
609 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
610 {
611 	struct tcp_sock *tp = tcp_sk(sk);
612 	int answ;
613 	bool slow;
614 
615 	switch (cmd) {
616 	case SIOCINQ:
617 		if (sk->sk_state == TCP_LISTEN)
618 			return -EINVAL;
619 
620 		slow = lock_sock_fast(sk);
621 		answ = tcp_inq(sk);
622 		unlock_sock_fast(sk, slow);
623 		break;
624 	case SIOCATMARK:
625 		answ = READ_ONCE(tp->urg_data) &&
626 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
627 		break;
628 	case SIOCOUTQ:
629 		if (sk->sk_state == TCP_LISTEN)
630 			return -EINVAL;
631 
632 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
633 			answ = 0;
634 		else
635 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
636 		break;
637 	case SIOCOUTQNSD:
638 		if (sk->sk_state == TCP_LISTEN)
639 			return -EINVAL;
640 
641 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
642 			answ = 0;
643 		else
644 			answ = READ_ONCE(tp->write_seq) -
645 			       READ_ONCE(tp->snd_nxt);
646 		break;
647 	default:
648 		return -ENOIOCTLCMD;
649 	}
650 
651 	*karg = answ;
652 	return 0;
653 }
654 EXPORT_SYMBOL(tcp_ioctl);
655 
656 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
657 {
658 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
659 	tp->pushed_seq = tp->write_seq;
660 }
661 
662 static inline bool forced_push(const struct tcp_sock *tp)
663 {
664 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
665 }
666 
667 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
668 {
669 	struct tcp_sock *tp = tcp_sk(sk);
670 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
671 
672 	tcb->seq     = tcb->end_seq = tp->write_seq;
673 	tcb->tcp_flags = TCPHDR_ACK;
674 	__skb_header_release(skb);
675 	tcp_add_write_queue_tail(sk, skb);
676 	sk_wmem_queued_add(sk, skb->truesize);
677 	sk_mem_charge(sk, skb->truesize);
678 	if (tp->nonagle & TCP_NAGLE_PUSH)
679 		tp->nonagle &= ~TCP_NAGLE_PUSH;
680 
681 	tcp_slow_start_after_idle_check(sk);
682 }
683 
684 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
685 {
686 	if (flags & MSG_OOB)
687 		tp->snd_up = tp->write_seq;
688 }
689 
690 /* If a not yet filled skb is pushed, do not send it if
691  * we have data packets in Qdisc or NIC queues :
692  * Because TX completion will happen shortly, it gives a chance
693  * to coalesce future sendmsg() payload into this skb, without
694  * need for a timer, and with no latency trade off.
695  * As packets containing data payload have a bigger truesize
696  * than pure acks (dataless) packets, the last checks prevent
697  * autocorking if we only have an ACK in Qdisc/NIC queues,
698  * or if TX completion was delayed after we processed ACK packet.
699  */
700 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
701 				int size_goal)
702 {
703 	return skb->len < size_goal &&
704 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
705 	       !tcp_rtx_queue_empty(sk) &&
706 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
707 	       tcp_skb_can_collapse_to(skb);
708 }
709 
710 void tcp_push(struct sock *sk, int flags, int mss_now,
711 	      int nonagle, int size_goal)
712 {
713 	struct tcp_sock *tp = tcp_sk(sk);
714 	struct sk_buff *skb;
715 
716 	skb = tcp_write_queue_tail(sk);
717 	if (!skb)
718 		return;
719 	if (!(flags & MSG_MORE) || forced_push(tp))
720 		tcp_mark_push(tp, skb);
721 
722 	tcp_mark_urg(tp, flags);
723 
724 	if (tcp_should_autocork(sk, skb, size_goal)) {
725 
726 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
727 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
728 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
729 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
730 			smp_mb__after_atomic();
731 		}
732 		/* It is possible TX completion already happened
733 		 * before we set TSQ_THROTTLED.
734 		 */
735 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
736 			return;
737 	}
738 
739 	if (flags & MSG_MORE)
740 		nonagle = TCP_NAGLE_CORK;
741 
742 	__tcp_push_pending_frames(sk, mss_now, nonagle);
743 }
744 
745 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
746 				unsigned int offset, size_t len)
747 {
748 	struct tcp_splice_state *tss = rd_desc->arg.data;
749 	int ret;
750 
751 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
752 			      min(rd_desc->count, len), tss->flags);
753 	if (ret > 0)
754 		rd_desc->count -= ret;
755 	return ret;
756 }
757 
758 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
759 {
760 	/* Store TCP splice context information in read_descriptor_t. */
761 	read_descriptor_t rd_desc = {
762 		.arg.data = tss,
763 		.count	  = tss->len,
764 	};
765 
766 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
767 }
768 
769 /**
770  *  tcp_splice_read - splice data from TCP socket to a pipe
771  * @sock:	socket to splice from
772  * @ppos:	position (not valid)
773  * @pipe:	pipe to splice to
774  * @len:	number of bytes to splice
775  * @flags:	splice modifier flags
776  *
777  * Description:
778  *    Will read pages from given socket and fill them into a pipe.
779  *
780  **/
781 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
782 			struct pipe_inode_info *pipe, size_t len,
783 			unsigned int flags)
784 {
785 	struct sock *sk = sock->sk;
786 	struct tcp_splice_state tss = {
787 		.pipe = pipe,
788 		.len = len,
789 		.flags = flags,
790 	};
791 	long timeo;
792 	ssize_t spliced;
793 	int ret;
794 
795 	sock_rps_record_flow(sk);
796 	/*
797 	 * We can't seek on a socket input
798 	 */
799 	if (unlikely(*ppos))
800 		return -ESPIPE;
801 
802 	ret = spliced = 0;
803 
804 	lock_sock(sk);
805 
806 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
807 	while (tss.len) {
808 		ret = __tcp_splice_read(sk, &tss);
809 		if (ret < 0)
810 			break;
811 		else if (!ret) {
812 			if (spliced)
813 				break;
814 			if (sock_flag(sk, SOCK_DONE))
815 				break;
816 			if (sk->sk_err) {
817 				ret = sock_error(sk);
818 				break;
819 			}
820 			if (sk->sk_shutdown & RCV_SHUTDOWN)
821 				break;
822 			if (sk->sk_state == TCP_CLOSE) {
823 				/*
824 				 * This occurs when user tries to read
825 				 * from never connected socket.
826 				 */
827 				ret = -ENOTCONN;
828 				break;
829 			}
830 			if (!timeo) {
831 				ret = -EAGAIN;
832 				break;
833 			}
834 			/* if __tcp_splice_read() got nothing while we have
835 			 * an skb in receive queue, we do not want to loop.
836 			 * This might happen with URG data.
837 			 */
838 			if (!skb_queue_empty(&sk->sk_receive_queue))
839 				break;
840 			ret = sk_wait_data(sk, &timeo, NULL);
841 			if (ret < 0)
842 				break;
843 			if (signal_pending(current)) {
844 				ret = sock_intr_errno(timeo);
845 				break;
846 			}
847 			continue;
848 		}
849 		tss.len -= ret;
850 		spliced += ret;
851 
852 		if (!tss.len || !timeo)
853 			break;
854 		release_sock(sk);
855 		lock_sock(sk);
856 
857 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
858 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
859 		    signal_pending(current))
860 			break;
861 	}
862 
863 	release_sock(sk);
864 
865 	if (spliced)
866 		return spliced;
867 
868 	return ret;
869 }
870 EXPORT_SYMBOL(tcp_splice_read);
871 
872 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
873 				     bool force_schedule)
874 {
875 	struct sk_buff *skb;
876 
877 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
878 	if (likely(skb)) {
879 		bool mem_scheduled;
880 
881 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
882 		if (force_schedule) {
883 			mem_scheduled = true;
884 			sk_forced_mem_schedule(sk, skb->truesize);
885 		} else {
886 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
887 		}
888 		if (likely(mem_scheduled)) {
889 			skb_reserve(skb, MAX_TCP_HEADER);
890 			skb->ip_summed = CHECKSUM_PARTIAL;
891 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
892 			return skb;
893 		}
894 		__kfree_skb(skb);
895 	} else {
896 		sk->sk_prot->enter_memory_pressure(sk);
897 		sk_stream_moderate_sndbuf(sk);
898 	}
899 	return NULL;
900 }
901 
902 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
903 				       int large_allowed)
904 {
905 	struct tcp_sock *tp = tcp_sk(sk);
906 	u32 new_size_goal, size_goal;
907 
908 	if (!large_allowed)
909 		return mss_now;
910 
911 	/* Note : tcp_tso_autosize() will eventually split this later */
912 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
913 
914 	/* We try hard to avoid divides here */
915 	size_goal = tp->gso_segs * mss_now;
916 	if (unlikely(new_size_goal < size_goal ||
917 		     new_size_goal >= size_goal + mss_now)) {
918 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
919 				     sk->sk_gso_max_segs);
920 		size_goal = tp->gso_segs * mss_now;
921 	}
922 
923 	return max(size_goal, mss_now);
924 }
925 
926 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
927 {
928 	int mss_now;
929 
930 	mss_now = tcp_current_mss(sk);
931 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
932 
933 	return mss_now;
934 }
935 
936 /* In some cases, sendmsg() could have added an skb to the write queue,
937  * but failed adding payload on it. We need to remove it to consume less
938  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
939  * epoll() users. Another reason is that tcp_write_xmit() does not like
940  * finding an empty skb in the write queue.
941  */
942 void tcp_remove_empty_skb(struct sock *sk)
943 {
944 	struct sk_buff *skb = tcp_write_queue_tail(sk);
945 
946 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
947 		tcp_unlink_write_queue(skb, sk);
948 		if (tcp_write_queue_empty(sk))
949 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
950 		tcp_wmem_free_skb(sk, skb);
951 	}
952 }
953 
954 /* skb changing from pure zc to mixed, must charge zc */
955 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
956 {
957 	if (unlikely(skb_zcopy_pure(skb))) {
958 		u32 extra = skb->truesize -
959 			    SKB_TRUESIZE(skb_end_offset(skb));
960 
961 		if (!sk_wmem_schedule(sk, extra))
962 			return -ENOMEM;
963 
964 		sk_mem_charge(sk, extra);
965 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
966 	}
967 	return 0;
968 }
969 
970 
971 int tcp_wmem_schedule(struct sock *sk, int copy)
972 {
973 	int left;
974 
975 	if (likely(sk_wmem_schedule(sk, copy)))
976 		return copy;
977 
978 	/* We could be in trouble if we have nothing queued.
979 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
980 	 * to guarantee some progress.
981 	 */
982 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
983 	if (left > 0)
984 		sk_forced_mem_schedule(sk, min(left, copy));
985 	return min(copy, sk->sk_forward_alloc);
986 }
987 
988 void tcp_free_fastopen_req(struct tcp_sock *tp)
989 {
990 	if (tp->fastopen_req) {
991 		kfree(tp->fastopen_req);
992 		tp->fastopen_req = NULL;
993 	}
994 }
995 
996 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
997 			 size_t size, struct ubuf_info *uarg)
998 {
999 	struct tcp_sock *tp = tcp_sk(sk);
1000 	struct inet_sock *inet = inet_sk(sk);
1001 	struct sockaddr *uaddr = msg->msg_name;
1002 	int err, flags;
1003 
1004 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1005 	      TFO_CLIENT_ENABLE) ||
1006 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1007 	     uaddr->sa_family == AF_UNSPEC))
1008 		return -EOPNOTSUPP;
1009 	if (tp->fastopen_req)
1010 		return -EALREADY; /* Another Fast Open is in progress */
1011 
1012 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1013 				   sk->sk_allocation);
1014 	if (unlikely(!tp->fastopen_req))
1015 		return -ENOBUFS;
1016 	tp->fastopen_req->data = msg;
1017 	tp->fastopen_req->size = size;
1018 	tp->fastopen_req->uarg = uarg;
1019 
1020 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1021 		err = tcp_connect(sk);
1022 		/* Same failure procedure as in tcp_v4/6_connect */
1023 		if (err) {
1024 			tcp_set_state(sk, TCP_CLOSE);
1025 			inet->inet_dport = 0;
1026 			sk->sk_route_caps = 0;
1027 		}
1028 	}
1029 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1030 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1031 				    msg->msg_namelen, flags, 1);
1032 	/* fastopen_req could already be freed in __inet_stream_connect
1033 	 * if the connection times out or gets rst
1034 	 */
1035 	if (tp->fastopen_req) {
1036 		*copied = tp->fastopen_req->copied;
1037 		tcp_free_fastopen_req(tp);
1038 		inet_clear_bit(DEFER_CONNECT, sk);
1039 	}
1040 	return err;
1041 }
1042 
1043 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1044 {
1045 	struct tcp_sock *tp = tcp_sk(sk);
1046 	struct ubuf_info *uarg = NULL;
1047 	struct sk_buff *skb;
1048 	struct sockcm_cookie sockc;
1049 	int flags, err, copied = 0;
1050 	int mss_now = 0, size_goal, copied_syn = 0;
1051 	int process_backlog = 0;
1052 	int zc = 0;
1053 	long timeo;
1054 
1055 	flags = msg->msg_flags;
1056 
1057 	if ((flags & MSG_ZEROCOPY) && size) {
1058 		if (msg->msg_ubuf) {
1059 			uarg = msg->msg_ubuf;
1060 			if (sk->sk_route_caps & NETIF_F_SG)
1061 				zc = MSG_ZEROCOPY;
1062 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1063 			skb = tcp_write_queue_tail(sk);
1064 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1065 			if (!uarg) {
1066 				err = -ENOBUFS;
1067 				goto out_err;
1068 			}
1069 			if (sk->sk_route_caps & NETIF_F_SG)
1070 				zc = MSG_ZEROCOPY;
1071 			else
1072 				uarg_to_msgzc(uarg)->zerocopy = 0;
1073 		}
1074 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1075 		if (sk->sk_route_caps & NETIF_F_SG)
1076 			zc = MSG_SPLICE_PAGES;
1077 	}
1078 
1079 	if (unlikely(flags & MSG_FASTOPEN ||
1080 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1081 	    !tp->repair) {
1082 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1083 		if (err == -EINPROGRESS && copied_syn > 0)
1084 			goto out;
1085 		else if (err)
1086 			goto out_err;
1087 	}
1088 
1089 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1090 
1091 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1092 
1093 	/* Wait for a connection to finish. One exception is TCP Fast Open
1094 	 * (passive side) where data is allowed to be sent before a connection
1095 	 * is fully established.
1096 	 */
1097 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1098 	    !tcp_passive_fastopen(sk)) {
1099 		err = sk_stream_wait_connect(sk, &timeo);
1100 		if (err != 0)
1101 			goto do_error;
1102 	}
1103 
1104 	if (unlikely(tp->repair)) {
1105 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1106 			copied = tcp_send_rcvq(sk, msg, size);
1107 			goto out_nopush;
1108 		}
1109 
1110 		err = -EINVAL;
1111 		if (tp->repair_queue == TCP_NO_QUEUE)
1112 			goto out_err;
1113 
1114 		/* 'common' sending to sendq */
1115 	}
1116 
1117 	sockcm_init(&sockc, sk);
1118 	if (msg->msg_controllen) {
1119 		err = sock_cmsg_send(sk, msg, &sockc);
1120 		if (unlikely(err)) {
1121 			err = -EINVAL;
1122 			goto out_err;
1123 		}
1124 	}
1125 
1126 	/* This should be in poll */
1127 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1128 
1129 	/* Ok commence sending. */
1130 	copied = 0;
1131 
1132 restart:
1133 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1134 
1135 	err = -EPIPE;
1136 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1137 		goto do_error;
1138 
1139 	while (msg_data_left(msg)) {
1140 		ssize_t copy = 0;
1141 
1142 		skb = tcp_write_queue_tail(sk);
1143 		if (skb)
1144 			copy = size_goal - skb->len;
1145 
1146 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1147 			bool first_skb;
1148 
1149 new_segment:
1150 			if (!sk_stream_memory_free(sk))
1151 				goto wait_for_space;
1152 
1153 			if (unlikely(process_backlog >= 16)) {
1154 				process_backlog = 0;
1155 				if (sk_flush_backlog(sk))
1156 					goto restart;
1157 			}
1158 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1159 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1160 						   first_skb);
1161 			if (!skb)
1162 				goto wait_for_space;
1163 
1164 			process_backlog++;
1165 
1166 			tcp_skb_entail(sk, skb);
1167 			copy = size_goal;
1168 
1169 			/* All packets are restored as if they have
1170 			 * already been sent. skb_mstamp_ns isn't set to
1171 			 * avoid wrong rtt estimation.
1172 			 */
1173 			if (tp->repair)
1174 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1175 		}
1176 
1177 		/* Try to append data to the end of skb. */
1178 		if (copy > msg_data_left(msg))
1179 			copy = msg_data_left(msg);
1180 
1181 		if (zc == 0) {
1182 			bool merge = true;
1183 			int i = skb_shinfo(skb)->nr_frags;
1184 			struct page_frag *pfrag = sk_page_frag(sk);
1185 
1186 			if (!sk_page_frag_refill(sk, pfrag))
1187 				goto wait_for_space;
1188 
1189 			if (!skb_can_coalesce(skb, i, pfrag->page,
1190 					      pfrag->offset)) {
1191 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1192 					tcp_mark_push(tp, skb);
1193 					goto new_segment;
1194 				}
1195 				merge = false;
1196 			}
1197 
1198 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1199 
1200 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1201 				if (tcp_downgrade_zcopy_pure(sk, skb))
1202 					goto wait_for_space;
1203 				skb_zcopy_downgrade_managed(skb);
1204 			}
1205 
1206 			copy = tcp_wmem_schedule(sk, copy);
1207 			if (!copy)
1208 				goto wait_for_space;
1209 
1210 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1211 						       pfrag->page,
1212 						       pfrag->offset,
1213 						       copy);
1214 			if (err)
1215 				goto do_error;
1216 
1217 			/* Update the skb. */
1218 			if (merge) {
1219 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1220 			} else {
1221 				skb_fill_page_desc(skb, i, pfrag->page,
1222 						   pfrag->offset, copy);
1223 				page_ref_inc(pfrag->page);
1224 			}
1225 			pfrag->offset += copy;
1226 		} else if (zc == MSG_ZEROCOPY)  {
1227 			/* First append to a fragless skb builds initial
1228 			 * pure zerocopy skb
1229 			 */
1230 			if (!skb->len)
1231 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1232 
1233 			if (!skb_zcopy_pure(skb)) {
1234 				copy = tcp_wmem_schedule(sk, copy);
1235 				if (!copy)
1236 					goto wait_for_space;
1237 			}
1238 
1239 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1240 			if (err == -EMSGSIZE || err == -EEXIST) {
1241 				tcp_mark_push(tp, skb);
1242 				goto new_segment;
1243 			}
1244 			if (err < 0)
1245 				goto do_error;
1246 			copy = err;
1247 		} else if (zc == MSG_SPLICE_PAGES) {
1248 			/* Splice in data if we can; copy if we can't. */
1249 			if (tcp_downgrade_zcopy_pure(sk, skb))
1250 				goto wait_for_space;
1251 			copy = tcp_wmem_schedule(sk, copy);
1252 			if (!copy)
1253 				goto wait_for_space;
1254 
1255 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1256 						   sk->sk_allocation);
1257 			if (err < 0) {
1258 				if (err == -EMSGSIZE) {
1259 					tcp_mark_push(tp, skb);
1260 					goto new_segment;
1261 				}
1262 				goto do_error;
1263 			}
1264 			copy = err;
1265 
1266 			if (!(flags & MSG_NO_SHARED_FRAGS))
1267 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1268 
1269 			sk_wmem_queued_add(sk, copy);
1270 			sk_mem_charge(sk, copy);
1271 		}
1272 
1273 		if (!copied)
1274 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1275 
1276 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1277 		TCP_SKB_CB(skb)->end_seq += copy;
1278 		tcp_skb_pcount_set(skb, 0);
1279 
1280 		copied += copy;
1281 		if (!msg_data_left(msg)) {
1282 			if (unlikely(flags & MSG_EOR))
1283 				TCP_SKB_CB(skb)->eor = 1;
1284 			goto out;
1285 		}
1286 
1287 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1288 			continue;
1289 
1290 		if (forced_push(tp)) {
1291 			tcp_mark_push(tp, skb);
1292 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1293 		} else if (skb == tcp_send_head(sk))
1294 			tcp_push_one(sk, mss_now);
1295 		continue;
1296 
1297 wait_for_space:
1298 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1299 		tcp_remove_empty_skb(sk);
1300 		if (copied)
1301 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1302 				 TCP_NAGLE_PUSH, size_goal);
1303 
1304 		err = sk_stream_wait_memory(sk, &timeo);
1305 		if (err != 0)
1306 			goto do_error;
1307 
1308 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1309 	}
1310 
1311 out:
1312 	if (copied) {
1313 		tcp_tx_timestamp(sk, sockc.tsflags);
1314 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1315 	}
1316 out_nopush:
1317 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1318 	if (uarg && !msg->msg_ubuf)
1319 		net_zcopy_put(uarg);
1320 	return copied + copied_syn;
1321 
1322 do_error:
1323 	tcp_remove_empty_skb(sk);
1324 
1325 	if (copied + copied_syn)
1326 		goto out;
1327 out_err:
1328 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1329 	if (uarg && !msg->msg_ubuf)
1330 		net_zcopy_put_abort(uarg, true);
1331 	err = sk_stream_error(sk, flags, err);
1332 	/* make sure we wake any epoll edge trigger waiter */
1333 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1334 		sk->sk_write_space(sk);
1335 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1336 	}
1337 	return err;
1338 }
1339 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1340 
1341 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1342 {
1343 	int ret;
1344 
1345 	lock_sock(sk);
1346 	ret = tcp_sendmsg_locked(sk, msg, size);
1347 	release_sock(sk);
1348 
1349 	return ret;
1350 }
1351 EXPORT_SYMBOL(tcp_sendmsg);
1352 
1353 void tcp_splice_eof(struct socket *sock)
1354 {
1355 	struct sock *sk = sock->sk;
1356 	struct tcp_sock *tp = tcp_sk(sk);
1357 	int mss_now, size_goal;
1358 
1359 	if (!tcp_write_queue_tail(sk))
1360 		return;
1361 
1362 	lock_sock(sk);
1363 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1364 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1365 	release_sock(sk);
1366 }
1367 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1368 
1369 /*
1370  *	Handle reading urgent data. BSD has very simple semantics for
1371  *	this, no blocking and very strange errors 8)
1372  */
1373 
1374 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1375 {
1376 	struct tcp_sock *tp = tcp_sk(sk);
1377 
1378 	/* No URG data to read. */
1379 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1380 	    tp->urg_data == TCP_URG_READ)
1381 		return -EINVAL;	/* Yes this is right ! */
1382 
1383 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1384 		return -ENOTCONN;
1385 
1386 	if (tp->urg_data & TCP_URG_VALID) {
1387 		int err = 0;
1388 		char c = tp->urg_data;
1389 
1390 		if (!(flags & MSG_PEEK))
1391 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1392 
1393 		/* Read urgent data. */
1394 		msg->msg_flags |= MSG_OOB;
1395 
1396 		if (len > 0) {
1397 			if (!(flags & MSG_TRUNC))
1398 				err = memcpy_to_msg(msg, &c, 1);
1399 			len = 1;
1400 		} else
1401 			msg->msg_flags |= MSG_TRUNC;
1402 
1403 		return err ? -EFAULT : len;
1404 	}
1405 
1406 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1407 		return 0;
1408 
1409 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1410 	 * the available implementations agree in this case:
1411 	 * this call should never block, independent of the
1412 	 * blocking state of the socket.
1413 	 * Mike <pall@rz.uni-karlsruhe.de>
1414 	 */
1415 	return -EAGAIN;
1416 }
1417 
1418 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1419 {
1420 	struct sk_buff *skb;
1421 	int copied = 0, err = 0;
1422 
1423 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1424 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1425 		if (err)
1426 			return err;
1427 		copied += skb->len;
1428 	}
1429 
1430 	skb_queue_walk(&sk->sk_write_queue, skb) {
1431 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1432 		if (err)
1433 			break;
1434 
1435 		copied += skb->len;
1436 	}
1437 
1438 	return err ?: copied;
1439 }
1440 
1441 /* Clean up the receive buffer for full frames taken by the user,
1442  * then send an ACK if necessary.  COPIED is the number of bytes
1443  * tcp_recvmsg has given to the user so far, it speeds up the
1444  * calculation of whether or not we must ACK for the sake of
1445  * a window update.
1446  */
1447 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1448 {
1449 	struct tcp_sock *tp = tcp_sk(sk);
1450 	bool time_to_ack = false;
1451 
1452 	if (inet_csk_ack_scheduled(sk)) {
1453 		const struct inet_connection_sock *icsk = inet_csk(sk);
1454 
1455 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1456 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1457 		    /*
1458 		     * If this read emptied read buffer, we send ACK, if
1459 		     * connection is not bidirectional, user drained
1460 		     * receive buffer and there was a small segment
1461 		     * in queue.
1462 		     */
1463 		    (copied > 0 &&
1464 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1465 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1466 		       !inet_csk_in_pingpong_mode(sk))) &&
1467 		      !atomic_read(&sk->sk_rmem_alloc)))
1468 			time_to_ack = true;
1469 	}
1470 
1471 	/* We send an ACK if we can now advertise a non-zero window
1472 	 * which has been raised "significantly".
1473 	 *
1474 	 * Even if window raised up to infinity, do not send window open ACK
1475 	 * in states, where we will not receive more. It is useless.
1476 	 */
1477 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1478 		__u32 rcv_window_now = tcp_receive_window(tp);
1479 
1480 		/* Optimize, __tcp_select_window() is not cheap. */
1481 		if (2*rcv_window_now <= tp->window_clamp) {
1482 			__u32 new_window = __tcp_select_window(sk);
1483 
1484 			/* Send ACK now, if this read freed lots of space
1485 			 * in our buffer. Certainly, new_window is new window.
1486 			 * We can advertise it now, if it is not less than current one.
1487 			 * "Lots" means "at least twice" here.
1488 			 */
1489 			if (new_window && new_window >= 2 * rcv_window_now)
1490 				time_to_ack = true;
1491 		}
1492 	}
1493 	if (time_to_ack)
1494 		tcp_send_ack(sk);
1495 }
1496 
1497 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1498 {
1499 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1500 	struct tcp_sock *tp = tcp_sk(sk);
1501 
1502 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1503 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1504 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1505 	__tcp_cleanup_rbuf(sk, copied);
1506 }
1507 
1508 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1509 {
1510 	__skb_unlink(skb, &sk->sk_receive_queue);
1511 	if (likely(skb->destructor == sock_rfree)) {
1512 		sock_rfree(skb);
1513 		skb->destructor = NULL;
1514 		skb->sk = NULL;
1515 		return skb_attempt_defer_free(skb);
1516 	}
1517 	__kfree_skb(skb);
1518 }
1519 
1520 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1521 {
1522 	struct sk_buff *skb;
1523 	u32 offset;
1524 
1525 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1526 		offset = seq - TCP_SKB_CB(skb)->seq;
1527 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1528 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1529 			offset--;
1530 		}
1531 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1532 			*off = offset;
1533 			return skb;
1534 		}
1535 		/* This looks weird, but this can happen if TCP collapsing
1536 		 * splitted a fat GRO packet, while we released socket lock
1537 		 * in skb_splice_bits()
1538 		 */
1539 		tcp_eat_recv_skb(sk, skb);
1540 	}
1541 	return NULL;
1542 }
1543 EXPORT_SYMBOL(tcp_recv_skb);
1544 
1545 /*
1546  * This routine provides an alternative to tcp_recvmsg() for routines
1547  * that would like to handle copying from skbuffs directly in 'sendfile'
1548  * fashion.
1549  * Note:
1550  *	- It is assumed that the socket was locked by the caller.
1551  *	- The routine does not block.
1552  *	- At present, there is no support for reading OOB data
1553  *	  or for 'peeking' the socket using this routine
1554  *	  (although both would be easy to implement).
1555  */
1556 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1557 		  sk_read_actor_t recv_actor)
1558 {
1559 	struct sk_buff *skb;
1560 	struct tcp_sock *tp = tcp_sk(sk);
1561 	u32 seq = tp->copied_seq;
1562 	u32 offset;
1563 	int copied = 0;
1564 
1565 	if (sk->sk_state == TCP_LISTEN)
1566 		return -ENOTCONN;
1567 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1568 		if (offset < skb->len) {
1569 			int used;
1570 			size_t len;
1571 
1572 			len = skb->len - offset;
1573 			/* Stop reading if we hit a patch of urgent data */
1574 			if (unlikely(tp->urg_data)) {
1575 				u32 urg_offset = tp->urg_seq - seq;
1576 				if (urg_offset < len)
1577 					len = urg_offset;
1578 				if (!len)
1579 					break;
1580 			}
1581 			used = recv_actor(desc, skb, offset, len);
1582 			if (used <= 0) {
1583 				if (!copied)
1584 					copied = used;
1585 				break;
1586 			}
1587 			if (WARN_ON_ONCE(used > len))
1588 				used = len;
1589 			seq += used;
1590 			copied += used;
1591 			offset += used;
1592 
1593 			/* If recv_actor drops the lock (e.g. TCP splice
1594 			 * receive) the skb pointer might be invalid when
1595 			 * getting here: tcp_collapse might have deleted it
1596 			 * while aggregating skbs from the socket queue.
1597 			 */
1598 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1599 			if (!skb)
1600 				break;
1601 			/* TCP coalescing might have appended data to the skb.
1602 			 * Try to splice more frags
1603 			 */
1604 			if (offset + 1 != skb->len)
1605 				continue;
1606 		}
1607 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1608 			tcp_eat_recv_skb(sk, skb);
1609 			++seq;
1610 			break;
1611 		}
1612 		tcp_eat_recv_skb(sk, skb);
1613 		if (!desc->count)
1614 			break;
1615 		WRITE_ONCE(tp->copied_seq, seq);
1616 	}
1617 	WRITE_ONCE(tp->copied_seq, seq);
1618 
1619 	tcp_rcv_space_adjust(sk);
1620 
1621 	/* Clean up data we have read: This will do ACK frames. */
1622 	if (copied > 0) {
1623 		tcp_recv_skb(sk, seq, &offset);
1624 		tcp_cleanup_rbuf(sk, copied);
1625 	}
1626 	return copied;
1627 }
1628 EXPORT_SYMBOL(tcp_read_sock);
1629 
1630 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1631 {
1632 	struct sk_buff *skb;
1633 	int copied = 0;
1634 
1635 	if (sk->sk_state == TCP_LISTEN)
1636 		return -ENOTCONN;
1637 
1638 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1639 		u8 tcp_flags;
1640 		int used;
1641 
1642 		__skb_unlink(skb, &sk->sk_receive_queue);
1643 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1644 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1645 		used = recv_actor(sk, skb);
1646 		if (used < 0) {
1647 			if (!copied)
1648 				copied = used;
1649 			break;
1650 		}
1651 		copied += used;
1652 
1653 		if (tcp_flags & TCPHDR_FIN)
1654 			break;
1655 	}
1656 	return copied;
1657 }
1658 EXPORT_SYMBOL(tcp_read_skb);
1659 
1660 void tcp_read_done(struct sock *sk, size_t len)
1661 {
1662 	struct tcp_sock *tp = tcp_sk(sk);
1663 	u32 seq = tp->copied_seq;
1664 	struct sk_buff *skb;
1665 	size_t left;
1666 	u32 offset;
1667 
1668 	if (sk->sk_state == TCP_LISTEN)
1669 		return;
1670 
1671 	left = len;
1672 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1673 		int used;
1674 
1675 		used = min_t(size_t, skb->len - offset, left);
1676 		seq += used;
1677 		left -= used;
1678 
1679 		if (skb->len > offset + used)
1680 			break;
1681 
1682 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1683 			tcp_eat_recv_skb(sk, skb);
1684 			++seq;
1685 			break;
1686 		}
1687 		tcp_eat_recv_skb(sk, skb);
1688 	}
1689 	WRITE_ONCE(tp->copied_seq, seq);
1690 
1691 	tcp_rcv_space_adjust(sk);
1692 
1693 	/* Clean up data we have read: This will do ACK frames. */
1694 	if (left != len)
1695 		tcp_cleanup_rbuf(sk, len - left);
1696 }
1697 EXPORT_SYMBOL(tcp_read_done);
1698 
1699 int tcp_peek_len(struct socket *sock)
1700 {
1701 	return tcp_inq(sock->sk);
1702 }
1703 EXPORT_SYMBOL(tcp_peek_len);
1704 
1705 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1706 int tcp_set_rcvlowat(struct sock *sk, int val)
1707 {
1708 	int space, cap;
1709 
1710 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1711 		cap = sk->sk_rcvbuf >> 1;
1712 	else
1713 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1714 	val = min(val, cap);
1715 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1716 
1717 	/* Check if we need to signal EPOLLIN right now */
1718 	tcp_data_ready(sk);
1719 
1720 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1721 		return 0;
1722 
1723 	space = tcp_space_from_win(sk, val);
1724 	if (space > sk->sk_rcvbuf) {
1725 		WRITE_ONCE(sk->sk_rcvbuf, space);
1726 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1727 	}
1728 	return 0;
1729 }
1730 EXPORT_SYMBOL(tcp_set_rcvlowat);
1731 
1732 void tcp_update_recv_tstamps(struct sk_buff *skb,
1733 			     struct scm_timestamping_internal *tss)
1734 {
1735 	if (skb->tstamp)
1736 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1737 	else
1738 		tss->ts[0] = (struct timespec64) {0};
1739 
1740 	if (skb_hwtstamps(skb)->hwtstamp)
1741 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1742 	else
1743 		tss->ts[2] = (struct timespec64) {0};
1744 }
1745 
1746 #ifdef CONFIG_MMU
1747 static const struct vm_operations_struct tcp_vm_ops = {
1748 };
1749 
1750 int tcp_mmap(struct file *file, struct socket *sock,
1751 	     struct vm_area_struct *vma)
1752 {
1753 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1754 		return -EPERM;
1755 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1756 
1757 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1758 	vm_flags_set(vma, VM_MIXEDMAP);
1759 
1760 	vma->vm_ops = &tcp_vm_ops;
1761 	return 0;
1762 }
1763 EXPORT_SYMBOL(tcp_mmap);
1764 
1765 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1766 				       u32 *offset_frag)
1767 {
1768 	skb_frag_t *frag;
1769 
1770 	if (unlikely(offset_skb >= skb->len))
1771 		return NULL;
1772 
1773 	offset_skb -= skb_headlen(skb);
1774 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1775 		return NULL;
1776 
1777 	frag = skb_shinfo(skb)->frags;
1778 	while (offset_skb) {
1779 		if (skb_frag_size(frag) > offset_skb) {
1780 			*offset_frag = offset_skb;
1781 			return frag;
1782 		}
1783 		offset_skb -= skb_frag_size(frag);
1784 		++frag;
1785 	}
1786 	*offset_frag = 0;
1787 	return frag;
1788 }
1789 
1790 static bool can_map_frag(const skb_frag_t *frag)
1791 {
1792 	struct page *page;
1793 
1794 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1795 		return false;
1796 
1797 	page = skb_frag_page(frag);
1798 
1799 	if (PageCompound(page) || page->mapping)
1800 		return false;
1801 
1802 	return true;
1803 }
1804 
1805 static int find_next_mappable_frag(const skb_frag_t *frag,
1806 				   int remaining_in_skb)
1807 {
1808 	int offset = 0;
1809 
1810 	if (likely(can_map_frag(frag)))
1811 		return 0;
1812 
1813 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1814 		offset += skb_frag_size(frag);
1815 		++frag;
1816 	}
1817 	return offset;
1818 }
1819 
1820 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1821 					  struct tcp_zerocopy_receive *zc,
1822 					  struct sk_buff *skb, u32 offset)
1823 {
1824 	u32 frag_offset, partial_frag_remainder = 0;
1825 	int mappable_offset;
1826 	skb_frag_t *frag;
1827 
1828 	/* worst case: skip to next skb. try to improve on this case below */
1829 	zc->recv_skip_hint = skb->len - offset;
1830 
1831 	/* Find the frag containing this offset (and how far into that frag) */
1832 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1833 	if (!frag)
1834 		return;
1835 
1836 	if (frag_offset) {
1837 		struct skb_shared_info *info = skb_shinfo(skb);
1838 
1839 		/* We read part of the last frag, must recvmsg() rest of skb. */
1840 		if (frag == &info->frags[info->nr_frags - 1])
1841 			return;
1842 
1843 		/* Else, we must at least read the remainder in this frag. */
1844 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1845 		zc->recv_skip_hint -= partial_frag_remainder;
1846 		++frag;
1847 	}
1848 
1849 	/* partial_frag_remainder: If part way through a frag, must read rest.
1850 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1851 	 * in partial_frag_remainder.
1852 	 */
1853 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1854 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1855 }
1856 
1857 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1858 			      int flags, struct scm_timestamping_internal *tss,
1859 			      int *cmsg_flags);
1860 static int receive_fallback_to_copy(struct sock *sk,
1861 				    struct tcp_zerocopy_receive *zc, int inq,
1862 				    struct scm_timestamping_internal *tss)
1863 {
1864 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1865 	struct msghdr msg = {};
1866 	int err;
1867 
1868 	zc->length = 0;
1869 	zc->recv_skip_hint = 0;
1870 
1871 	if (copy_address != zc->copybuf_address)
1872 		return -EINVAL;
1873 
1874 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1875 			  &msg.msg_iter);
1876 	if (err)
1877 		return err;
1878 
1879 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1880 				 tss, &zc->msg_flags);
1881 	if (err < 0)
1882 		return err;
1883 
1884 	zc->copybuf_len = err;
1885 	if (likely(zc->copybuf_len)) {
1886 		struct sk_buff *skb;
1887 		u32 offset;
1888 
1889 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1890 		if (skb)
1891 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1892 	}
1893 	return 0;
1894 }
1895 
1896 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1897 				   struct sk_buff *skb, u32 copylen,
1898 				   u32 *offset, u32 *seq)
1899 {
1900 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1901 	struct msghdr msg = {};
1902 	int err;
1903 
1904 	if (copy_address != zc->copybuf_address)
1905 		return -EINVAL;
1906 
1907 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1908 			  &msg.msg_iter);
1909 	if (err)
1910 		return err;
1911 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1912 	if (err)
1913 		return err;
1914 	zc->recv_skip_hint -= copylen;
1915 	*offset += copylen;
1916 	*seq += copylen;
1917 	return (__s32)copylen;
1918 }
1919 
1920 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1921 				  struct sock *sk,
1922 				  struct sk_buff *skb,
1923 				  u32 *seq,
1924 				  s32 copybuf_len,
1925 				  struct scm_timestamping_internal *tss)
1926 {
1927 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1928 
1929 	if (!copylen)
1930 		return 0;
1931 	/* skb is null if inq < PAGE_SIZE. */
1932 	if (skb) {
1933 		offset = *seq - TCP_SKB_CB(skb)->seq;
1934 	} else {
1935 		skb = tcp_recv_skb(sk, *seq, &offset);
1936 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1937 			tcp_update_recv_tstamps(skb, tss);
1938 			zc->msg_flags |= TCP_CMSG_TS;
1939 		}
1940 	}
1941 
1942 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1943 						  seq);
1944 	return zc->copybuf_len < 0 ? 0 : copylen;
1945 }
1946 
1947 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1948 					      struct page **pending_pages,
1949 					      unsigned long pages_remaining,
1950 					      unsigned long *address,
1951 					      u32 *length,
1952 					      u32 *seq,
1953 					      struct tcp_zerocopy_receive *zc,
1954 					      u32 total_bytes_to_map,
1955 					      int err)
1956 {
1957 	/* At least one page did not map. Try zapping if we skipped earlier. */
1958 	if (err == -EBUSY &&
1959 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1960 		u32 maybe_zap_len;
1961 
1962 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1963 				*length + /* Mapped or pending */
1964 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1965 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1966 		err = 0;
1967 	}
1968 
1969 	if (!err) {
1970 		unsigned long leftover_pages = pages_remaining;
1971 		int bytes_mapped;
1972 
1973 		/* We called zap_page_range_single, try to reinsert. */
1974 		err = vm_insert_pages(vma, *address,
1975 				      pending_pages,
1976 				      &pages_remaining);
1977 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1978 		*seq += bytes_mapped;
1979 		*address += bytes_mapped;
1980 	}
1981 	if (err) {
1982 		/* Either we were unable to zap, OR we zapped, retried an
1983 		 * insert, and still had an issue. Either ways, pages_remaining
1984 		 * is the number of pages we were unable to map, and we unroll
1985 		 * some state we speculatively touched before.
1986 		 */
1987 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1988 
1989 		*length -= bytes_not_mapped;
1990 		zc->recv_skip_hint += bytes_not_mapped;
1991 	}
1992 	return err;
1993 }
1994 
1995 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1996 					struct page **pages,
1997 					unsigned int pages_to_map,
1998 					unsigned long *address,
1999 					u32 *length,
2000 					u32 *seq,
2001 					struct tcp_zerocopy_receive *zc,
2002 					u32 total_bytes_to_map)
2003 {
2004 	unsigned long pages_remaining = pages_to_map;
2005 	unsigned int pages_mapped;
2006 	unsigned int bytes_mapped;
2007 	int err;
2008 
2009 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2010 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2011 	bytes_mapped = PAGE_SIZE * pages_mapped;
2012 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2013 	 * mapping (some but not all of the pages).
2014 	 */
2015 	*seq += bytes_mapped;
2016 	*address += bytes_mapped;
2017 
2018 	if (likely(!err))
2019 		return 0;
2020 
2021 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2022 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2023 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2024 		err);
2025 }
2026 
2027 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2028 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2029 				      struct tcp_zerocopy_receive *zc,
2030 				      struct scm_timestamping_internal *tss)
2031 {
2032 	unsigned long msg_control_addr;
2033 	struct msghdr cmsg_dummy;
2034 
2035 	msg_control_addr = (unsigned long)zc->msg_control;
2036 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2037 	cmsg_dummy.msg_controllen =
2038 		(__kernel_size_t)zc->msg_controllen;
2039 	cmsg_dummy.msg_flags = in_compat_syscall()
2040 		? MSG_CMSG_COMPAT : 0;
2041 	cmsg_dummy.msg_control_is_user = true;
2042 	zc->msg_flags = 0;
2043 	if (zc->msg_control == msg_control_addr &&
2044 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2045 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2046 		zc->msg_control = (__u64)
2047 			((uintptr_t)cmsg_dummy.msg_control_user);
2048 		zc->msg_controllen =
2049 			(__u64)cmsg_dummy.msg_controllen;
2050 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2051 	}
2052 }
2053 
2054 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2055 					   unsigned long address,
2056 					   bool *mmap_locked)
2057 {
2058 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2059 
2060 	if (vma) {
2061 		if (vma->vm_ops != &tcp_vm_ops) {
2062 			vma_end_read(vma);
2063 			return NULL;
2064 		}
2065 		*mmap_locked = false;
2066 		return vma;
2067 	}
2068 
2069 	mmap_read_lock(mm);
2070 	vma = vma_lookup(mm, address);
2071 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2072 		mmap_read_unlock(mm);
2073 		return NULL;
2074 	}
2075 	*mmap_locked = true;
2076 	return vma;
2077 }
2078 
2079 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2080 static int tcp_zerocopy_receive(struct sock *sk,
2081 				struct tcp_zerocopy_receive *zc,
2082 				struct scm_timestamping_internal *tss)
2083 {
2084 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2085 	unsigned long address = (unsigned long)zc->address;
2086 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2087 	s32 copybuf_len = zc->copybuf_len;
2088 	struct tcp_sock *tp = tcp_sk(sk);
2089 	const skb_frag_t *frags = NULL;
2090 	unsigned int pages_to_map = 0;
2091 	struct vm_area_struct *vma;
2092 	struct sk_buff *skb = NULL;
2093 	u32 seq = tp->copied_seq;
2094 	u32 total_bytes_to_map;
2095 	int inq = tcp_inq(sk);
2096 	bool mmap_locked;
2097 	int ret;
2098 
2099 	zc->copybuf_len = 0;
2100 	zc->msg_flags = 0;
2101 
2102 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2103 		return -EINVAL;
2104 
2105 	if (sk->sk_state == TCP_LISTEN)
2106 		return -ENOTCONN;
2107 
2108 	sock_rps_record_flow(sk);
2109 
2110 	if (inq && inq <= copybuf_len)
2111 		return receive_fallback_to_copy(sk, zc, inq, tss);
2112 
2113 	if (inq < PAGE_SIZE) {
2114 		zc->length = 0;
2115 		zc->recv_skip_hint = inq;
2116 		if (!inq && sock_flag(sk, SOCK_DONE))
2117 			return -EIO;
2118 		return 0;
2119 	}
2120 
2121 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2122 	if (!vma)
2123 		return -EINVAL;
2124 
2125 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2126 	avail_len = min_t(u32, vma_len, inq);
2127 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2128 	if (total_bytes_to_map) {
2129 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2130 			zap_page_range_single(vma, address, total_bytes_to_map,
2131 					      NULL);
2132 		zc->length = total_bytes_to_map;
2133 		zc->recv_skip_hint = 0;
2134 	} else {
2135 		zc->length = avail_len;
2136 		zc->recv_skip_hint = avail_len;
2137 	}
2138 	ret = 0;
2139 	while (length + PAGE_SIZE <= zc->length) {
2140 		int mappable_offset;
2141 		struct page *page;
2142 
2143 		if (zc->recv_skip_hint < PAGE_SIZE) {
2144 			u32 offset_frag;
2145 
2146 			if (skb) {
2147 				if (zc->recv_skip_hint > 0)
2148 					break;
2149 				skb = skb->next;
2150 				offset = seq - TCP_SKB_CB(skb)->seq;
2151 			} else {
2152 				skb = tcp_recv_skb(sk, seq, &offset);
2153 			}
2154 
2155 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2156 				tcp_update_recv_tstamps(skb, tss);
2157 				zc->msg_flags |= TCP_CMSG_TS;
2158 			}
2159 			zc->recv_skip_hint = skb->len - offset;
2160 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2161 			if (!frags || offset_frag)
2162 				break;
2163 		}
2164 
2165 		mappable_offset = find_next_mappable_frag(frags,
2166 							  zc->recv_skip_hint);
2167 		if (mappable_offset) {
2168 			zc->recv_skip_hint = mappable_offset;
2169 			break;
2170 		}
2171 		page = skb_frag_page(frags);
2172 		prefetchw(page);
2173 		pages[pages_to_map++] = page;
2174 		length += PAGE_SIZE;
2175 		zc->recv_skip_hint -= PAGE_SIZE;
2176 		frags++;
2177 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2178 		    zc->recv_skip_hint < PAGE_SIZE) {
2179 			/* Either full batch, or we're about to go to next skb
2180 			 * (and we cannot unroll failed ops across skbs).
2181 			 */
2182 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2183 							   pages_to_map,
2184 							   &address, &length,
2185 							   &seq, zc,
2186 							   total_bytes_to_map);
2187 			if (ret)
2188 				goto out;
2189 			pages_to_map = 0;
2190 		}
2191 	}
2192 	if (pages_to_map) {
2193 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2194 						   &address, &length, &seq,
2195 						   zc, total_bytes_to_map);
2196 	}
2197 out:
2198 	if (mmap_locked)
2199 		mmap_read_unlock(current->mm);
2200 	else
2201 		vma_end_read(vma);
2202 	/* Try to copy straggler data. */
2203 	if (!ret)
2204 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2205 
2206 	if (length + copylen) {
2207 		WRITE_ONCE(tp->copied_seq, seq);
2208 		tcp_rcv_space_adjust(sk);
2209 
2210 		/* Clean up data we have read: This will do ACK frames. */
2211 		tcp_recv_skb(sk, seq, &offset);
2212 		tcp_cleanup_rbuf(sk, length + copylen);
2213 		ret = 0;
2214 		if (length == zc->length)
2215 			zc->recv_skip_hint = 0;
2216 	} else {
2217 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2218 			ret = -EIO;
2219 	}
2220 	zc->length = length;
2221 	return ret;
2222 }
2223 #endif
2224 
2225 /* Similar to __sock_recv_timestamp, but does not require an skb */
2226 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2227 			struct scm_timestamping_internal *tss)
2228 {
2229 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2230 	bool has_timestamping = false;
2231 
2232 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2233 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2234 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2235 				if (new_tstamp) {
2236 					struct __kernel_timespec kts = {
2237 						.tv_sec = tss->ts[0].tv_sec,
2238 						.tv_nsec = tss->ts[0].tv_nsec,
2239 					};
2240 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2241 						 sizeof(kts), &kts);
2242 				} else {
2243 					struct __kernel_old_timespec ts_old = {
2244 						.tv_sec = tss->ts[0].tv_sec,
2245 						.tv_nsec = tss->ts[0].tv_nsec,
2246 					};
2247 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2248 						 sizeof(ts_old), &ts_old);
2249 				}
2250 			} else {
2251 				if (new_tstamp) {
2252 					struct __kernel_sock_timeval stv = {
2253 						.tv_sec = tss->ts[0].tv_sec,
2254 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2255 					};
2256 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2257 						 sizeof(stv), &stv);
2258 				} else {
2259 					struct __kernel_old_timeval tv = {
2260 						.tv_sec = tss->ts[0].tv_sec,
2261 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2262 					};
2263 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2264 						 sizeof(tv), &tv);
2265 				}
2266 			}
2267 		}
2268 
2269 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2270 			has_timestamping = true;
2271 		else
2272 			tss->ts[0] = (struct timespec64) {0};
2273 	}
2274 
2275 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2276 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2277 			has_timestamping = true;
2278 		else
2279 			tss->ts[2] = (struct timespec64) {0};
2280 	}
2281 
2282 	if (has_timestamping) {
2283 		tss->ts[1] = (struct timespec64) {0};
2284 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2285 			put_cmsg_scm_timestamping64(msg, tss);
2286 		else
2287 			put_cmsg_scm_timestamping(msg, tss);
2288 	}
2289 }
2290 
2291 static int tcp_inq_hint(struct sock *sk)
2292 {
2293 	const struct tcp_sock *tp = tcp_sk(sk);
2294 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2295 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2296 	int inq;
2297 
2298 	inq = rcv_nxt - copied_seq;
2299 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2300 		lock_sock(sk);
2301 		inq = tp->rcv_nxt - tp->copied_seq;
2302 		release_sock(sk);
2303 	}
2304 	/* After receiving a FIN, tell the user-space to continue reading
2305 	 * by returning a non-zero inq.
2306 	 */
2307 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2308 		inq = 1;
2309 	return inq;
2310 }
2311 
2312 /*
2313  *	This routine copies from a sock struct into the user buffer.
2314  *
2315  *	Technical note: in 2.3 we work on _locked_ socket, so that
2316  *	tricks with *seq access order and skb->users are not required.
2317  *	Probably, code can be easily improved even more.
2318  */
2319 
2320 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2321 			      int flags, struct scm_timestamping_internal *tss,
2322 			      int *cmsg_flags)
2323 {
2324 	struct tcp_sock *tp = tcp_sk(sk);
2325 	int copied = 0;
2326 	u32 peek_seq;
2327 	u32 *seq;
2328 	unsigned long used;
2329 	int err;
2330 	int target;		/* Read at least this many bytes */
2331 	long timeo;
2332 	struct sk_buff *skb, *last;
2333 	u32 peek_offset = 0;
2334 	u32 urg_hole = 0;
2335 
2336 	err = -ENOTCONN;
2337 	if (sk->sk_state == TCP_LISTEN)
2338 		goto out;
2339 
2340 	if (tp->recvmsg_inq) {
2341 		*cmsg_flags = TCP_CMSG_INQ;
2342 		msg->msg_get_inq = 1;
2343 	}
2344 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2345 
2346 	/* Urgent data needs to be handled specially. */
2347 	if (flags & MSG_OOB)
2348 		goto recv_urg;
2349 
2350 	if (unlikely(tp->repair)) {
2351 		err = -EPERM;
2352 		if (!(flags & MSG_PEEK))
2353 			goto out;
2354 
2355 		if (tp->repair_queue == TCP_SEND_QUEUE)
2356 			goto recv_sndq;
2357 
2358 		err = -EINVAL;
2359 		if (tp->repair_queue == TCP_NO_QUEUE)
2360 			goto out;
2361 
2362 		/* 'common' recv queue MSG_PEEK-ing */
2363 	}
2364 
2365 	seq = &tp->copied_seq;
2366 	if (flags & MSG_PEEK) {
2367 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2368 		peek_seq = tp->copied_seq + peek_offset;
2369 		seq = &peek_seq;
2370 	}
2371 
2372 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2373 
2374 	do {
2375 		u32 offset;
2376 
2377 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2378 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2379 			if (copied)
2380 				break;
2381 			if (signal_pending(current)) {
2382 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2383 				break;
2384 			}
2385 		}
2386 
2387 		/* Next get a buffer. */
2388 
2389 		last = skb_peek_tail(&sk->sk_receive_queue);
2390 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2391 			last = skb;
2392 			/* Now that we have two receive queues this
2393 			 * shouldn't happen.
2394 			 */
2395 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2396 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2397 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2398 				 flags))
2399 				break;
2400 
2401 			offset = *seq - TCP_SKB_CB(skb)->seq;
2402 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2403 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2404 				offset--;
2405 			}
2406 			if (offset < skb->len)
2407 				goto found_ok_skb;
2408 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2409 				goto found_fin_ok;
2410 			WARN(!(flags & MSG_PEEK),
2411 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2412 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2413 		}
2414 
2415 		/* Well, if we have backlog, try to process it now yet. */
2416 
2417 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2418 			break;
2419 
2420 		if (copied) {
2421 			if (!timeo ||
2422 			    sk->sk_err ||
2423 			    sk->sk_state == TCP_CLOSE ||
2424 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2425 			    signal_pending(current))
2426 				break;
2427 		} else {
2428 			if (sock_flag(sk, SOCK_DONE))
2429 				break;
2430 
2431 			if (sk->sk_err) {
2432 				copied = sock_error(sk);
2433 				break;
2434 			}
2435 
2436 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2437 				break;
2438 
2439 			if (sk->sk_state == TCP_CLOSE) {
2440 				/* This occurs when user tries to read
2441 				 * from never connected socket.
2442 				 */
2443 				copied = -ENOTCONN;
2444 				break;
2445 			}
2446 
2447 			if (!timeo) {
2448 				copied = -EAGAIN;
2449 				break;
2450 			}
2451 
2452 			if (signal_pending(current)) {
2453 				copied = sock_intr_errno(timeo);
2454 				break;
2455 			}
2456 		}
2457 
2458 		if (copied >= target) {
2459 			/* Do not sleep, just process backlog. */
2460 			__sk_flush_backlog(sk);
2461 		} else {
2462 			tcp_cleanup_rbuf(sk, copied);
2463 			err = sk_wait_data(sk, &timeo, last);
2464 			if (err < 0) {
2465 				err = copied ? : err;
2466 				goto out;
2467 			}
2468 		}
2469 
2470 		if ((flags & MSG_PEEK) &&
2471 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2472 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2473 					    current->comm,
2474 					    task_pid_nr(current));
2475 			peek_seq = tp->copied_seq + peek_offset;
2476 		}
2477 		continue;
2478 
2479 found_ok_skb:
2480 		/* Ok so how much can we use? */
2481 		used = skb->len - offset;
2482 		if (len < used)
2483 			used = len;
2484 
2485 		/* Do we have urgent data here? */
2486 		if (unlikely(tp->urg_data)) {
2487 			u32 urg_offset = tp->urg_seq - *seq;
2488 			if (urg_offset < used) {
2489 				if (!urg_offset) {
2490 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2491 						WRITE_ONCE(*seq, *seq + 1);
2492 						urg_hole++;
2493 						offset++;
2494 						used--;
2495 						if (!used)
2496 							goto skip_copy;
2497 					}
2498 				} else
2499 					used = urg_offset;
2500 			}
2501 		}
2502 
2503 		if (!(flags & MSG_TRUNC)) {
2504 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2505 			if (err) {
2506 				/* Exception. Bailout! */
2507 				if (!copied)
2508 					copied = -EFAULT;
2509 				break;
2510 			}
2511 		}
2512 
2513 		WRITE_ONCE(*seq, *seq + used);
2514 		copied += used;
2515 		len -= used;
2516 		if (flags & MSG_PEEK)
2517 			sk_peek_offset_fwd(sk, used);
2518 		else
2519 			sk_peek_offset_bwd(sk, used);
2520 		tcp_rcv_space_adjust(sk);
2521 
2522 skip_copy:
2523 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2524 			WRITE_ONCE(tp->urg_data, 0);
2525 			tcp_fast_path_check(sk);
2526 		}
2527 
2528 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2529 			tcp_update_recv_tstamps(skb, tss);
2530 			*cmsg_flags |= TCP_CMSG_TS;
2531 		}
2532 
2533 		if (used + offset < skb->len)
2534 			continue;
2535 
2536 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2537 			goto found_fin_ok;
2538 		if (!(flags & MSG_PEEK))
2539 			tcp_eat_recv_skb(sk, skb);
2540 		continue;
2541 
2542 found_fin_ok:
2543 		/* Process the FIN. */
2544 		WRITE_ONCE(*seq, *seq + 1);
2545 		if (!(flags & MSG_PEEK))
2546 			tcp_eat_recv_skb(sk, skb);
2547 		break;
2548 	} while (len > 0);
2549 
2550 	/* According to UNIX98, msg_name/msg_namelen are ignored
2551 	 * on connected socket. I was just happy when found this 8) --ANK
2552 	 */
2553 
2554 	/* Clean up data we have read: This will do ACK frames. */
2555 	tcp_cleanup_rbuf(sk, copied);
2556 	return copied;
2557 
2558 out:
2559 	return err;
2560 
2561 recv_urg:
2562 	err = tcp_recv_urg(sk, msg, len, flags);
2563 	goto out;
2564 
2565 recv_sndq:
2566 	err = tcp_peek_sndq(sk, msg, len);
2567 	goto out;
2568 }
2569 
2570 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2571 		int *addr_len)
2572 {
2573 	int cmsg_flags = 0, ret;
2574 	struct scm_timestamping_internal tss;
2575 
2576 	if (unlikely(flags & MSG_ERRQUEUE))
2577 		return inet_recv_error(sk, msg, len, addr_len);
2578 
2579 	if (sk_can_busy_loop(sk) &&
2580 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2581 	    sk->sk_state == TCP_ESTABLISHED)
2582 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2583 
2584 	lock_sock(sk);
2585 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2586 	release_sock(sk);
2587 
2588 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2589 		if (cmsg_flags & TCP_CMSG_TS)
2590 			tcp_recv_timestamp(msg, sk, &tss);
2591 		if (msg->msg_get_inq) {
2592 			msg->msg_inq = tcp_inq_hint(sk);
2593 			if (cmsg_flags & TCP_CMSG_INQ)
2594 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2595 					 sizeof(msg->msg_inq), &msg->msg_inq);
2596 		}
2597 	}
2598 	return ret;
2599 }
2600 EXPORT_SYMBOL(tcp_recvmsg);
2601 
2602 void tcp_set_state(struct sock *sk, int state)
2603 {
2604 	int oldstate = sk->sk_state;
2605 
2606 	/* We defined a new enum for TCP states that are exported in BPF
2607 	 * so as not force the internal TCP states to be frozen. The
2608 	 * following checks will detect if an internal state value ever
2609 	 * differs from the BPF value. If this ever happens, then we will
2610 	 * need to remap the internal value to the BPF value before calling
2611 	 * tcp_call_bpf_2arg.
2612 	 */
2613 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2614 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2615 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2616 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2617 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2618 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2619 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2620 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2621 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2622 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2623 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2624 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2625 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2626 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2627 
2628 	/* bpf uapi header bpf.h defines an anonymous enum with values
2629 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2630 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2631 	 * But clang built vmlinux does not have this enum in DWARF
2632 	 * since clang removes the above code before generating IR/debuginfo.
2633 	 * Let us explicitly emit the type debuginfo to ensure the
2634 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2635 	 * regardless of which compiler is used.
2636 	 */
2637 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2638 
2639 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2640 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2641 
2642 	switch (state) {
2643 	case TCP_ESTABLISHED:
2644 		if (oldstate != TCP_ESTABLISHED)
2645 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2646 		break;
2647 
2648 	case TCP_CLOSE:
2649 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2650 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2651 
2652 		sk->sk_prot->unhash(sk);
2653 		if (inet_csk(sk)->icsk_bind_hash &&
2654 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2655 			inet_put_port(sk);
2656 		fallthrough;
2657 	default:
2658 		if (oldstate == TCP_ESTABLISHED)
2659 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2660 	}
2661 
2662 	/* Change state AFTER socket is unhashed to avoid closed
2663 	 * socket sitting in hash tables.
2664 	 */
2665 	inet_sk_state_store(sk, state);
2666 }
2667 EXPORT_SYMBOL_GPL(tcp_set_state);
2668 
2669 /*
2670  *	State processing on a close. This implements the state shift for
2671  *	sending our FIN frame. Note that we only send a FIN for some
2672  *	states. A shutdown() may have already sent the FIN, or we may be
2673  *	closed.
2674  */
2675 
2676 static const unsigned char new_state[16] = {
2677   /* current state:        new state:      action:	*/
2678   [0 /* (Invalid) */]	= TCP_CLOSE,
2679   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2680   [TCP_SYN_SENT]	= TCP_CLOSE,
2681   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2682   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2683   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2684   [TCP_TIME_WAIT]	= TCP_CLOSE,
2685   [TCP_CLOSE]		= TCP_CLOSE,
2686   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2687   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2688   [TCP_LISTEN]		= TCP_CLOSE,
2689   [TCP_CLOSING]		= TCP_CLOSING,
2690   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2691 };
2692 
2693 static int tcp_close_state(struct sock *sk)
2694 {
2695 	int next = (int)new_state[sk->sk_state];
2696 	int ns = next & TCP_STATE_MASK;
2697 
2698 	tcp_set_state(sk, ns);
2699 
2700 	return next & TCP_ACTION_FIN;
2701 }
2702 
2703 /*
2704  *	Shutdown the sending side of a connection. Much like close except
2705  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2706  */
2707 
2708 void tcp_shutdown(struct sock *sk, int how)
2709 {
2710 	/*	We need to grab some memory, and put together a FIN,
2711 	 *	and then put it into the queue to be sent.
2712 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2713 	 */
2714 	if (!(how & SEND_SHUTDOWN))
2715 		return;
2716 
2717 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2718 	if ((1 << sk->sk_state) &
2719 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2720 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2721 		/* Clear out any half completed packets.  FIN if needed. */
2722 		if (tcp_close_state(sk))
2723 			tcp_send_fin(sk);
2724 	}
2725 }
2726 EXPORT_SYMBOL(tcp_shutdown);
2727 
2728 int tcp_orphan_count_sum(void)
2729 {
2730 	int i, total = 0;
2731 
2732 	for_each_possible_cpu(i)
2733 		total += per_cpu(tcp_orphan_count, i);
2734 
2735 	return max(total, 0);
2736 }
2737 
2738 static int tcp_orphan_cache;
2739 static struct timer_list tcp_orphan_timer;
2740 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2741 
2742 static void tcp_orphan_update(struct timer_list *unused)
2743 {
2744 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2745 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2746 }
2747 
2748 static bool tcp_too_many_orphans(int shift)
2749 {
2750 	return READ_ONCE(tcp_orphan_cache) << shift >
2751 		READ_ONCE(sysctl_tcp_max_orphans);
2752 }
2753 
2754 bool tcp_check_oom(struct sock *sk, int shift)
2755 {
2756 	bool too_many_orphans, out_of_socket_memory;
2757 
2758 	too_many_orphans = tcp_too_many_orphans(shift);
2759 	out_of_socket_memory = tcp_out_of_memory(sk);
2760 
2761 	if (too_many_orphans)
2762 		net_info_ratelimited("too many orphaned sockets\n");
2763 	if (out_of_socket_memory)
2764 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2765 	return too_many_orphans || out_of_socket_memory;
2766 }
2767 
2768 void __tcp_close(struct sock *sk, long timeout)
2769 {
2770 	struct sk_buff *skb;
2771 	int data_was_unread = 0;
2772 	int state;
2773 
2774 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2775 
2776 	if (sk->sk_state == TCP_LISTEN) {
2777 		tcp_set_state(sk, TCP_CLOSE);
2778 
2779 		/* Special case. */
2780 		inet_csk_listen_stop(sk);
2781 
2782 		goto adjudge_to_death;
2783 	}
2784 
2785 	/*  We need to flush the recv. buffs.  We do this only on the
2786 	 *  descriptor close, not protocol-sourced closes, because the
2787 	 *  reader process may not have drained the data yet!
2788 	 */
2789 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2790 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2791 
2792 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2793 			len--;
2794 		data_was_unread += len;
2795 		__kfree_skb(skb);
2796 	}
2797 
2798 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2799 	if (sk->sk_state == TCP_CLOSE)
2800 		goto adjudge_to_death;
2801 
2802 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2803 	 * data was lost. To witness the awful effects of the old behavior of
2804 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2805 	 * GET in an FTP client, suspend the process, wait for the client to
2806 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2807 	 * Note: timeout is always zero in such a case.
2808 	 */
2809 	if (unlikely(tcp_sk(sk)->repair)) {
2810 		sk->sk_prot->disconnect(sk, 0);
2811 	} else if (data_was_unread) {
2812 		/* Unread data was tossed, zap the connection. */
2813 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2814 		tcp_set_state(sk, TCP_CLOSE);
2815 		tcp_send_active_reset(sk, sk->sk_allocation,
2816 				      SK_RST_REASON_NOT_SPECIFIED);
2817 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2818 		/* Check zero linger _after_ checking for unread data. */
2819 		sk->sk_prot->disconnect(sk, 0);
2820 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2821 	} else if (tcp_close_state(sk)) {
2822 		/* We FIN if the application ate all the data before
2823 		 * zapping the connection.
2824 		 */
2825 
2826 		/* RED-PEN. Formally speaking, we have broken TCP state
2827 		 * machine. State transitions:
2828 		 *
2829 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2830 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2831 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2832 		 *
2833 		 * are legal only when FIN has been sent (i.e. in window),
2834 		 * rather than queued out of window. Purists blame.
2835 		 *
2836 		 * F.e. "RFC state" is ESTABLISHED,
2837 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2838 		 *
2839 		 * The visible declinations are that sometimes
2840 		 * we enter time-wait state, when it is not required really
2841 		 * (harmless), do not send active resets, when they are
2842 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2843 		 * they look as CLOSING or LAST_ACK for Linux)
2844 		 * Probably, I missed some more holelets.
2845 		 * 						--ANK
2846 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2847 		 * in a single packet! (May consider it later but will
2848 		 * probably need API support or TCP_CORK SYN-ACK until
2849 		 * data is written and socket is closed.)
2850 		 */
2851 		tcp_send_fin(sk);
2852 	}
2853 
2854 	sk_stream_wait_close(sk, timeout);
2855 
2856 adjudge_to_death:
2857 	state = sk->sk_state;
2858 	sock_hold(sk);
2859 	sock_orphan(sk);
2860 
2861 	local_bh_disable();
2862 	bh_lock_sock(sk);
2863 	/* remove backlog if any, without releasing ownership. */
2864 	__release_sock(sk);
2865 
2866 	this_cpu_inc(tcp_orphan_count);
2867 
2868 	/* Have we already been destroyed by a softirq or backlog? */
2869 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2870 		goto out;
2871 
2872 	/*	This is a (useful) BSD violating of the RFC. There is a
2873 	 *	problem with TCP as specified in that the other end could
2874 	 *	keep a socket open forever with no application left this end.
2875 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2876 	 *	our end. If they send after that then tough - BUT: long enough
2877 	 *	that we won't make the old 4*rto = almost no time - whoops
2878 	 *	reset mistake.
2879 	 *
2880 	 *	Nope, it was not mistake. It is really desired behaviour
2881 	 *	f.e. on http servers, when such sockets are useless, but
2882 	 *	consume significant resources. Let's do it with special
2883 	 *	linger2	option.					--ANK
2884 	 */
2885 
2886 	if (sk->sk_state == TCP_FIN_WAIT2) {
2887 		struct tcp_sock *tp = tcp_sk(sk);
2888 		if (READ_ONCE(tp->linger2) < 0) {
2889 			tcp_set_state(sk, TCP_CLOSE);
2890 			tcp_send_active_reset(sk, GFP_ATOMIC,
2891 					      SK_RST_REASON_NOT_SPECIFIED);
2892 			__NET_INC_STATS(sock_net(sk),
2893 					LINUX_MIB_TCPABORTONLINGER);
2894 		} else {
2895 			const int tmo = tcp_fin_time(sk);
2896 
2897 			if (tmo > TCP_TIMEWAIT_LEN) {
2898 				inet_csk_reset_keepalive_timer(sk,
2899 						tmo - TCP_TIMEWAIT_LEN);
2900 			} else {
2901 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2902 				goto out;
2903 			}
2904 		}
2905 	}
2906 	if (sk->sk_state != TCP_CLOSE) {
2907 		if (tcp_check_oom(sk, 0)) {
2908 			tcp_set_state(sk, TCP_CLOSE);
2909 			tcp_send_active_reset(sk, GFP_ATOMIC,
2910 					      SK_RST_REASON_NOT_SPECIFIED);
2911 			__NET_INC_STATS(sock_net(sk),
2912 					LINUX_MIB_TCPABORTONMEMORY);
2913 		} else if (!check_net(sock_net(sk))) {
2914 			/* Not possible to send reset; just close */
2915 			tcp_set_state(sk, TCP_CLOSE);
2916 		}
2917 	}
2918 
2919 	if (sk->sk_state == TCP_CLOSE) {
2920 		struct request_sock *req;
2921 
2922 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2923 						lockdep_sock_is_held(sk));
2924 		/* We could get here with a non-NULL req if the socket is
2925 		 * aborted (e.g., closed with unread data) before 3WHS
2926 		 * finishes.
2927 		 */
2928 		if (req)
2929 			reqsk_fastopen_remove(sk, req, false);
2930 		inet_csk_destroy_sock(sk);
2931 	}
2932 	/* Otherwise, socket is reprieved until protocol close. */
2933 
2934 out:
2935 	bh_unlock_sock(sk);
2936 	local_bh_enable();
2937 }
2938 
2939 void tcp_close(struct sock *sk, long timeout)
2940 {
2941 	lock_sock(sk);
2942 	__tcp_close(sk, timeout);
2943 	release_sock(sk);
2944 	if (!sk->sk_net_refcnt)
2945 		inet_csk_clear_xmit_timers_sync(sk);
2946 	sock_put(sk);
2947 }
2948 EXPORT_SYMBOL(tcp_close);
2949 
2950 /* These states need RST on ABORT according to RFC793 */
2951 
2952 static inline bool tcp_need_reset(int state)
2953 {
2954 	return (1 << state) &
2955 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2956 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2957 }
2958 
2959 static void tcp_rtx_queue_purge(struct sock *sk)
2960 {
2961 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2962 
2963 	tcp_sk(sk)->highest_sack = NULL;
2964 	while (p) {
2965 		struct sk_buff *skb = rb_to_skb(p);
2966 
2967 		p = rb_next(p);
2968 		/* Since we are deleting whole queue, no need to
2969 		 * list_del(&skb->tcp_tsorted_anchor)
2970 		 */
2971 		tcp_rtx_queue_unlink(skb, sk);
2972 		tcp_wmem_free_skb(sk, skb);
2973 	}
2974 }
2975 
2976 void tcp_write_queue_purge(struct sock *sk)
2977 {
2978 	struct sk_buff *skb;
2979 
2980 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2981 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2982 		tcp_skb_tsorted_anchor_cleanup(skb);
2983 		tcp_wmem_free_skb(sk, skb);
2984 	}
2985 	tcp_rtx_queue_purge(sk);
2986 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2987 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2988 	tcp_sk(sk)->packets_out = 0;
2989 	inet_csk(sk)->icsk_backoff = 0;
2990 }
2991 
2992 int tcp_disconnect(struct sock *sk, int flags)
2993 {
2994 	struct inet_sock *inet = inet_sk(sk);
2995 	struct inet_connection_sock *icsk = inet_csk(sk);
2996 	struct tcp_sock *tp = tcp_sk(sk);
2997 	int old_state = sk->sk_state;
2998 	u32 seq;
2999 
3000 	if (old_state != TCP_CLOSE)
3001 		tcp_set_state(sk, TCP_CLOSE);
3002 
3003 	/* ABORT function of RFC793 */
3004 	if (old_state == TCP_LISTEN) {
3005 		inet_csk_listen_stop(sk);
3006 	} else if (unlikely(tp->repair)) {
3007 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3008 	} else if (tcp_need_reset(old_state) ||
3009 		   (tp->snd_nxt != tp->write_seq &&
3010 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3011 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3012 		 * states
3013 		 */
3014 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_NOT_SPECIFIED);
3015 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3016 	} else if (old_state == TCP_SYN_SENT)
3017 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3018 
3019 	tcp_clear_xmit_timers(sk);
3020 	__skb_queue_purge(&sk->sk_receive_queue);
3021 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3022 	WRITE_ONCE(tp->urg_data, 0);
3023 	sk_set_peek_off(sk, -1);
3024 	tcp_write_queue_purge(sk);
3025 	tcp_fastopen_active_disable_ofo_check(sk);
3026 	skb_rbtree_purge(&tp->out_of_order_queue);
3027 
3028 	inet->inet_dport = 0;
3029 
3030 	inet_bhash2_reset_saddr(sk);
3031 
3032 	WRITE_ONCE(sk->sk_shutdown, 0);
3033 	sock_reset_flag(sk, SOCK_DONE);
3034 	tp->srtt_us = 0;
3035 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3036 	tp->rcv_rtt_last_tsecr = 0;
3037 
3038 	seq = tp->write_seq + tp->max_window + 2;
3039 	if (!seq)
3040 		seq = 1;
3041 	WRITE_ONCE(tp->write_seq, seq);
3042 
3043 	icsk->icsk_backoff = 0;
3044 	icsk->icsk_probes_out = 0;
3045 	icsk->icsk_probes_tstamp = 0;
3046 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3047 	icsk->icsk_rto_min = TCP_RTO_MIN;
3048 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3049 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3050 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3051 	tp->snd_cwnd_cnt = 0;
3052 	tp->is_cwnd_limited = 0;
3053 	tp->max_packets_out = 0;
3054 	tp->window_clamp = 0;
3055 	tp->delivered = 0;
3056 	tp->delivered_ce = 0;
3057 	if (icsk->icsk_ca_ops->release)
3058 		icsk->icsk_ca_ops->release(sk);
3059 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3060 	icsk->icsk_ca_initialized = 0;
3061 	tcp_set_ca_state(sk, TCP_CA_Open);
3062 	tp->is_sack_reneg = 0;
3063 	tcp_clear_retrans(tp);
3064 	tp->total_retrans = 0;
3065 	inet_csk_delack_init(sk);
3066 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3067 	 * issue in __tcp_select_window()
3068 	 */
3069 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3070 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3071 	__sk_dst_reset(sk);
3072 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3073 	tcp_saved_syn_free(tp);
3074 	tp->compressed_ack = 0;
3075 	tp->segs_in = 0;
3076 	tp->segs_out = 0;
3077 	tp->bytes_sent = 0;
3078 	tp->bytes_acked = 0;
3079 	tp->bytes_received = 0;
3080 	tp->bytes_retrans = 0;
3081 	tp->data_segs_in = 0;
3082 	tp->data_segs_out = 0;
3083 	tp->duplicate_sack[0].start_seq = 0;
3084 	tp->duplicate_sack[0].end_seq = 0;
3085 	tp->dsack_dups = 0;
3086 	tp->reord_seen = 0;
3087 	tp->retrans_out = 0;
3088 	tp->sacked_out = 0;
3089 	tp->tlp_high_seq = 0;
3090 	tp->last_oow_ack_time = 0;
3091 	tp->plb_rehash = 0;
3092 	/* There's a bubble in the pipe until at least the first ACK. */
3093 	tp->app_limited = ~0U;
3094 	tp->rate_app_limited = 1;
3095 	tp->rack.mstamp = 0;
3096 	tp->rack.advanced = 0;
3097 	tp->rack.reo_wnd_steps = 1;
3098 	tp->rack.last_delivered = 0;
3099 	tp->rack.reo_wnd_persist = 0;
3100 	tp->rack.dsack_seen = 0;
3101 	tp->syn_data_acked = 0;
3102 	tp->rx_opt.saw_tstamp = 0;
3103 	tp->rx_opt.dsack = 0;
3104 	tp->rx_opt.num_sacks = 0;
3105 	tp->rcv_ooopack = 0;
3106 
3107 
3108 	/* Clean up fastopen related fields */
3109 	tcp_free_fastopen_req(tp);
3110 	inet_clear_bit(DEFER_CONNECT, sk);
3111 	tp->fastopen_client_fail = 0;
3112 
3113 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3114 
3115 	if (sk->sk_frag.page) {
3116 		put_page(sk->sk_frag.page);
3117 		sk->sk_frag.page = NULL;
3118 		sk->sk_frag.offset = 0;
3119 	}
3120 	sk_error_report(sk);
3121 	return 0;
3122 }
3123 EXPORT_SYMBOL(tcp_disconnect);
3124 
3125 static inline bool tcp_can_repair_sock(const struct sock *sk)
3126 {
3127 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3128 		(sk->sk_state != TCP_LISTEN);
3129 }
3130 
3131 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3132 {
3133 	struct tcp_repair_window opt;
3134 
3135 	if (!tp->repair)
3136 		return -EPERM;
3137 
3138 	if (len != sizeof(opt))
3139 		return -EINVAL;
3140 
3141 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3142 		return -EFAULT;
3143 
3144 	if (opt.max_window < opt.snd_wnd)
3145 		return -EINVAL;
3146 
3147 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3148 		return -EINVAL;
3149 
3150 	if (after(opt.rcv_wup, tp->rcv_nxt))
3151 		return -EINVAL;
3152 
3153 	tp->snd_wl1	= opt.snd_wl1;
3154 	tp->snd_wnd	= opt.snd_wnd;
3155 	tp->max_window	= opt.max_window;
3156 
3157 	tp->rcv_wnd	= opt.rcv_wnd;
3158 	tp->rcv_wup	= opt.rcv_wup;
3159 
3160 	return 0;
3161 }
3162 
3163 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3164 		unsigned int len)
3165 {
3166 	struct tcp_sock *tp = tcp_sk(sk);
3167 	struct tcp_repair_opt opt;
3168 	size_t offset = 0;
3169 
3170 	while (len >= sizeof(opt)) {
3171 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3172 			return -EFAULT;
3173 
3174 		offset += sizeof(opt);
3175 		len -= sizeof(opt);
3176 
3177 		switch (opt.opt_code) {
3178 		case TCPOPT_MSS:
3179 			tp->rx_opt.mss_clamp = opt.opt_val;
3180 			tcp_mtup_init(sk);
3181 			break;
3182 		case TCPOPT_WINDOW:
3183 			{
3184 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3185 				u16 rcv_wscale = opt.opt_val >> 16;
3186 
3187 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3188 					return -EFBIG;
3189 
3190 				tp->rx_opt.snd_wscale = snd_wscale;
3191 				tp->rx_opt.rcv_wscale = rcv_wscale;
3192 				tp->rx_opt.wscale_ok = 1;
3193 			}
3194 			break;
3195 		case TCPOPT_SACK_PERM:
3196 			if (opt.opt_val != 0)
3197 				return -EINVAL;
3198 
3199 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3200 			break;
3201 		case TCPOPT_TIMESTAMP:
3202 			if (opt.opt_val != 0)
3203 				return -EINVAL;
3204 
3205 			tp->rx_opt.tstamp_ok = 1;
3206 			break;
3207 		}
3208 	}
3209 
3210 	return 0;
3211 }
3212 
3213 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3214 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3215 
3216 static void tcp_enable_tx_delay(void)
3217 {
3218 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3219 		static int __tcp_tx_delay_enabled = 0;
3220 
3221 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3222 			static_branch_enable(&tcp_tx_delay_enabled);
3223 			pr_info("TCP_TX_DELAY enabled\n");
3224 		}
3225 	}
3226 }
3227 
3228 /* When set indicates to always queue non-full frames.  Later the user clears
3229  * this option and we transmit any pending partial frames in the queue.  This is
3230  * meant to be used alongside sendfile() to get properly filled frames when the
3231  * user (for example) must write out headers with a write() call first and then
3232  * use sendfile to send out the data parts.
3233  *
3234  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3235  * TCP_NODELAY.
3236  */
3237 void __tcp_sock_set_cork(struct sock *sk, bool on)
3238 {
3239 	struct tcp_sock *tp = tcp_sk(sk);
3240 
3241 	if (on) {
3242 		tp->nonagle |= TCP_NAGLE_CORK;
3243 	} else {
3244 		tp->nonagle &= ~TCP_NAGLE_CORK;
3245 		if (tp->nonagle & TCP_NAGLE_OFF)
3246 			tp->nonagle |= TCP_NAGLE_PUSH;
3247 		tcp_push_pending_frames(sk);
3248 	}
3249 }
3250 
3251 void tcp_sock_set_cork(struct sock *sk, bool on)
3252 {
3253 	lock_sock(sk);
3254 	__tcp_sock_set_cork(sk, on);
3255 	release_sock(sk);
3256 }
3257 EXPORT_SYMBOL(tcp_sock_set_cork);
3258 
3259 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3260  * remembered, but it is not activated until cork is cleared.
3261  *
3262  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3263  * even TCP_CORK for currently queued segments.
3264  */
3265 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3266 {
3267 	if (on) {
3268 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3269 		tcp_push_pending_frames(sk);
3270 	} else {
3271 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3272 	}
3273 }
3274 
3275 void tcp_sock_set_nodelay(struct sock *sk)
3276 {
3277 	lock_sock(sk);
3278 	__tcp_sock_set_nodelay(sk, true);
3279 	release_sock(sk);
3280 }
3281 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3282 
3283 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3284 {
3285 	if (!val) {
3286 		inet_csk_enter_pingpong_mode(sk);
3287 		return;
3288 	}
3289 
3290 	inet_csk_exit_pingpong_mode(sk);
3291 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3292 	    inet_csk_ack_scheduled(sk)) {
3293 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3294 		tcp_cleanup_rbuf(sk, 1);
3295 		if (!(val & 1))
3296 			inet_csk_enter_pingpong_mode(sk);
3297 	}
3298 }
3299 
3300 void tcp_sock_set_quickack(struct sock *sk, int val)
3301 {
3302 	lock_sock(sk);
3303 	__tcp_sock_set_quickack(sk, val);
3304 	release_sock(sk);
3305 }
3306 EXPORT_SYMBOL(tcp_sock_set_quickack);
3307 
3308 int tcp_sock_set_syncnt(struct sock *sk, int val)
3309 {
3310 	if (val < 1 || val > MAX_TCP_SYNCNT)
3311 		return -EINVAL;
3312 
3313 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3314 	return 0;
3315 }
3316 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3317 
3318 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3319 {
3320 	/* Cap the max time in ms TCP will retry or probe the window
3321 	 * before giving up and aborting (ETIMEDOUT) a connection.
3322 	 */
3323 	if (val < 0)
3324 		return -EINVAL;
3325 
3326 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3327 	return 0;
3328 }
3329 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3330 
3331 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3332 {
3333 	struct tcp_sock *tp = tcp_sk(sk);
3334 
3335 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3336 		return -EINVAL;
3337 
3338 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3339 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3340 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3341 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3342 		u32 elapsed = keepalive_time_elapsed(tp);
3343 
3344 		if (tp->keepalive_time > elapsed)
3345 			elapsed = tp->keepalive_time - elapsed;
3346 		else
3347 			elapsed = 0;
3348 		inet_csk_reset_keepalive_timer(sk, elapsed);
3349 	}
3350 
3351 	return 0;
3352 }
3353 
3354 int tcp_sock_set_keepidle(struct sock *sk, int val)
3355 {
3356 	int err;
3357 
3358 	lock_sock(sk);
3359 	err = tcp_sock_set_keepidle_locked(sk, val);
3360 	release_sock(sk);
3361 	return err;
3362 }
3363 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3364 
3365 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3366 {
3367 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3368 		return -EINVAL;
3369 
3370 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3371 	return 0;
3372 }
3373 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3374 
3375 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3376 {
3377 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3378 		return -EINVAL;
3379 
3380 	/* Paired with READ_ONCE() in keepalive_probes() */
3381 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3382 	return 0;
3383 }
3384 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3385 
3386 int tcp_set_window_clamp(struct sock *sk, int val)
3387 {
3388 	struct tcp_sock *tp = tcp_sk(sk);
3389 
3390 	if (!val) {
3391 		if (sk->sk_state != TCP_CLOSE)
3392 			return -EINVAL;
3393 		WRITE_ONCE(tp->window_clamp, 0);
3394 	} else {
3395 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3396 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3397 						SOCK_MIN_RCVBUF / 2 : val;
3398 
3399 		if (new_window_clamp == old_window_clamp)
3400 			return 0;
3401 
3402 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3403 		if (new_window_clamp < old_window_clamp) {
3404 			/* need to apply the reserved mem provisioning only
3405 			 * when shrinking the window clamp
3406 			 */
3407 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3408 
3409 		} else {
3410 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3411 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3412 					       tp->rcv_ssthresh);
3413 		}
3414 	}
3415 	return 0;
3416 }
3417 
3418 /*
3419  *	Socket option code for TCP.
3420  */
3421 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3422 		      sockptr_t optval, unsigned int optlen)
3423 {
3424 	struct tcp_sock *tp = tcp_sk(sk);
3425 	struct inet_connection_sock *icsk = inet_csk(sk);
3426 	struct net *net = sock_net(sk);
3427 	int val;
3428 	int err = 0;
3429 
3430 	/* These are data/string values, all the others are ints */
3431 	switch (optname) {
3432 	case TCP_CONGESTION: {
3433 		char name[TCP_CA_NAME_MAX];
3434 
3435 		if (optlen < 1)
3436 			return -EINVAL;
3437 
3438 		val = strncpy_from_sockptr(name, optval,
3439 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3440 		if (val < 0)
3441 			return -EFAULT;
3442 		name[val] = 0;
3443 
3444 		sockopt_lock_sock(sk);
3445 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3446 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3447 								    CAP_NET_ADMIN));
3448 		sockopt_release_sock(sk);
3449 		return err;
3450 	}
3451 	case TCP_ULP: {
3452 		char name[TCP_ULP_NAME_MAX];
3453 
3454 		if (optlen < 1)
3455 			return -EINVAL;
3456 
3457 		val = strncpy_from_sockptr(name, optval,
3458 					min_t(long, TCP_ULP_NAME_MAX - 1,
3459 					      optlen));
3460 		if (val < 0)
3461 			return -EFAULT;
3462 		name[val] = 0;
3463 
3464 		sockopt_lock_sock(sk);
3465 		err = tcp_set_ulp(sk, name);
3466 		sockopt_release_sock(sk);
3467 		return err;
3468 	}
3469 	case TCP_FASTOPEN_KEY: {
3470 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3471 		__u8 *backup_key = NULL;
3472 
3473 		/* Allow a backup key as well to facilitate key rotation
3474 		 * First key is the active one.
3475 		 */
3476 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3477 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3478 			return -EINVAL;
3479 
3480 		if (copy_from_sockptr(key, optval, optlen))
3481 			return -EFAULT;
3482 
3483 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3484 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3485 
3486 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3487 	}
3488 	default:
3489 		/* fallthru */
3490 		break;
3491 	}
3492 
3493 	if (optlen < sizeof(int))
3494 		return -EINVAL;
3495 
3496 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3497 		return -EFAULT;
3498 
3499 	/* Handle options that can be set without locking the socket. */
3500 	switch (optname) {
3501 	case TCP_SYNCNT:
3502 		return tcp_sock_set_syncnt(sk, val);
3503 	case TCP_USER_TIMEOUT:
3504 		return tcp_sock_set_user_timeout(sk, val);
3505 	case TCP_KEEPINTVL:
3506 		return tcp_sock_set_keepintvl(sk, val);
3507 	case TCP_KEEPCNT:
3508 		return tcp_sock_set_keepcnt(sk, val);
3509 	case TCP_LINGER2:
3510 		if (val < 0)
3511 			WRITE_ONCE(tp->linger2, -1);
3512 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3513 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3514 		else
3515 			WRITE_ONCE(tp->linger2, val * HZ);
3516 		return 0;
3517 	case TCP_DEFER_ACCEPT:
3518 		/* Translate value in seconds to number of retransmits */
3519 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3520 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3521 					   TCP_RTO_MAX / HZ));
3522 		return 0;
3523 	}
3524 
3525 	sockopt_lock_sock(sk);
3526 
3527 	switch (optname) {
3528 	case TCP_MAXSEG:
3529 		/* Values greater than interface MTU won't take effect. However
3530 		 * at the point when this call is done we typically don't yet
3531 		 * know which interface is going to be used
3532 		 */
3533 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3534 			err = -EINVAL;
3535 			break;
3536 		}
3537 		tp->rx_opt.user_mss = val;
3538 		break;
3539 
3540 	case TCP_NODELAY:
3541 		__tcp_sock_set_nodelay(sk, val);
3542 		break;
3543 
3544 	case TCP_THIN_LINEAR_TIMEOUTS:
3545 		if (val < 0 || val > 1)
3546 			err = -EINVAL;
3547 		else
3548 			tp->thin_lto = val;
3549 		break;
3550 
3551 	case TCP_THIN_DUPACK:
3552 		if (val < 0 || val > 1)
3553 			err = -EINVAL;
3554 		break;
3555 
3556 	case TCP_REPAIR:
3557 		if (!tcp_can_repair_sock(sk))
3558 			err = -EPERM;
3559 		else if (val == TCP_REPAIR_ON) {
3560 			tp->repair = 1;
3561 			sk->sk_reuse = SK_FORCE_REUSE;
3562 			tp->repair_queue = TCP_NO_QUEUE;
3563 		} else if (val == TCP_REPAIR_OFF) {
3564 			tp->repair = 0;
3565 			sk->sk_reuse = SK_NO_REUSE;
3566 			tcp_send_window_probe(sk);
3567 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3568 			tp->repair = 0;
3569 			sk->sk_reuse = SK_NO_REUSE;
3570 		} else
3571 			err = -EINVAL;
3572 
3573 		break;
3574 
3575 	case TCP_REPAIR_QUEUE:
3576 		if (!tp->repair)
3577 			err = -EPERM;
3578 		else if ((unsigned int)val < TCP_QUEUES_NR)
3579 			tp->repair_queue = val;
3580 		else
3581 			err = -EINVAL;
3582 		break;
3583 
3584 	case TCP_QUEUE_SEQ:
3585 		if (sk->sk_state != TCP_CLOSE) {
3586 			err = -EPERM;
3587 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3588 			if (!tcp_rtx_queue_empty(sk))
3589 				err = -EPERM;
3590 			else
3591 				WRITE_ONCE(tp->write_seq, val);
3592 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3593 			if (tp->rcv_nxt != tp->copied_seq) {
3594 				err = -EPERM;
3595 			} else {
3596 				WRITE_ONCE(tp->rcv_nxt, val);
3597 				WRITE_ONCE(tp->copied_seq, val);
3598 			}
3599 		} else {
3600 			err = -EINVAL;
3601 		}
3602 		break;
3603 
3604 	case TCP_REPAIR_OPTIONS:
3605 		if (!tp->repair)
3606 			err = -EINVAL;
3607 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3608 			err = tcp_repair_options_est(sk, optval, optlen);
3609 		else
3610 			err = -EPERM;
3611 		break;
3612 
3613 	case TCP_CORK:
3614 		__tcp_sock_set_cork(sk, val);
3615 		break;
3616 
3617 	case TCP_KEEPIDLE:
3618 		err = tcp_sock_set_keepidle_locked(sk, val);
3619 		break;
3620 	case TCP_SAVE_SYN:
3621 		/* 0: disable, 1: enable, 2: start from ether_header */
3622 		if (val < 0 || val > 2)
3623 			err = -EINVAL;
3624 		else
3625 			tp->save_syn = val;
3626 		break;
3627 
3628 	case TCP_WINDOW_CLAMP:
3629 		err = tcp_set_window_clamp(sk, val);
3630 		break;
3631 
3632 	case TCP_QUICKACK:
3633 		__tcp_sock_set_quickack(sk, val);
3634 		break;
3635 
3636 	case TCP_AO_REPAIR:
3637 		if (!tcp_can_repair_sock(sk)) {
3638 			err = -EPERM;
3639 			break;
3640 		}
3641 		err = tcp_ao_set_repair(sk, optval, optlen);
3642 		break;
3643 #ifdef CONFIG_TCP_AO
3644 	case TCP_AO_ADD_KEY:
3645 	case TCP_AO_DEL_KEY:
3646 	case TCP_AO_INFO: {
3647 		/* If this is the first TCP-AO setsockopt() on the socket,
3648 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3649 		 * in any state.
3650 		 */
3651 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3652 			goto ao_parse;
3653 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3654 					      lockdep_sock_is_held(sk)))
3655 			goto ao_parse;
3656 		if (tp->repair)
3657 			goto ao_parse;
3658 		err = -EISCONN;
3659 		break;
3660 ao_parse:
3661 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3662 		break;
3663 	}
3664 #endif
3665 #ifdef CONFIG_TCP_MD5SIG
3666 	case TCP_MD5SIG:
3667 	case TCP_MD5SIG_EXT:
3668 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3669 		break;
3670 #endif
3671 	case TCP_FASTOPEN:
3672 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3673 		    TCPF_LISTEN))) {
3674 			tcp_fastopen_init_key_once(net);
3675 
3676 			fastopen_queue_tune(sk, val);
3677 		} else {
3678 			err = -EINVAL;
3679 		}
3680 		break;
3681 	case TCP_FASTOPEN_CONNECT:
3682 		if (val > 1 || val < 0) {
3683 			err = -EINVAL;
3684 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3685 			   TFO_CLIENT_ENABLE) {
3686 			if (sk->sk_state == TCP_CLOSE)
3687 				tp->fastopen_connect = val;
3688 			else
3689 				err = -EINVAL;
3690 		} else {
3691 			err = -EOPNOTSUPP;
3692 		}
3693 		break;
3694 	case TCP_FASTOPEN_NO_COOKIE:
3695 		if (val > 1 || val < 0)
3696 			err = -EINVAL;
3697 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3698 			err = -EINVAL;
3699 		else
3700 			tp->fastopen_no_cookie = val;
3701 		break;
3702 	case TCP_TIMESTAMP:
3703 		if (!tp->repair) {
3704 			err = -EPERM;
3705 			break;
3706 		}
3707 		/* val is an opaque field,
3708 		 * and low order bit contains usec_ts enable bit.
3709 		 * Its a best effort, and we do not care if user makes an error.
3710 		 */
3711 		tp->tcp_usec_ts = val & 1;
3712 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3713 		break;
3714 	case TCP_REPAIR_WINDOW:
3715 		err = tcp_repair_set_window(tp, optval, optlen);
3716 		break;
3717 	case TCP_NOTSENT_LOWAT:
3718 		WRITE_ONCE(tp->notsent_lowat, val);
3719 		sk->sk_write_space(sk);
3720 		break;
3721 	case TCP_INQ:
3722 		if (val > 1 || val < 0)
3723 			err = -EINVAL;
3724 		else
3725 			tp->recvmsg_inq = val;
3726 		break;
3727 	case TCP_TX_DELAY:
3728 		if (val)
3729 			tcp_enable_tx_delay();
3730 		WRITE_ONCE(tp->tcp_tx_delay, val);
3731 		break;
3732 	default:
3733 		err = -ENOPROTOOPT;
3734 		break;
3735 	}
3736 
3737 	sockopt_release_sock(sk);
3738 	return err;
3739 }
3740 
3741 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3742 		   unsigned int optlen)
3743 {
3744 	const struct inet_connection_sock *icsk = inet_csk(sk);
3745 
3746 	if (level != SOL_TCP)
3747 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3748 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3749 								optval, optlen);
3750 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3751 }
3752 EXPORT_SYMBOL(tcp_setsockopt);
3753 
3754 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3755 				      struct tcp_info *info)
3756 {
3757 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3758 	enum tcp_chrono i;
3759 
3760 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3761 		stats[i] = tp->chrono_stat[i - 1];
3762 		if (i == tp->chrono_type)
3763 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3764 		stats[i] *= USEC_PER_SEC / HZ;
3765 		total += stats[i];
3766 	}
3767 
3768 	info->tcpi_busy_time = total;
3769 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3770 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3771 }
3772 
3773 /* Return information about state of tcp endpoint in API format. */
3774 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3775 {
3776 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3777 	const struct inet_connection_sock *icsk = inet_csk(sk);
3778 	unsigned long rate;
3779 	u32 now;
3780 	u64 rate64;
3781 	bool slow;
3782 
3783 	memset(info, 0, sizeof(*info));
3784 	if (sk->sk_type != SOCK_STREAM)
3785 		return;
3786 
3787 	info->tcpi_state = inet_sk_state_load(sk);
3788 
3789 	/* Report meaningful fields for all TCP states, including listeners */
3790 	rate = READ_ONCE(sk->sk_pacing_rate);
3791 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3792 	info->tcpi_pacing_rate = rate64;
3793 
3794 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3795 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3796 	info->tcpi_max_pacing_rate = rate64;
3797 
3798 	info->tcpi_reordering = tp->reordering;
3799 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3800 
3801 	if (info->tcpi_state == TCP_LISTEN) {
3802 		/* listeners aliased fields :
3803 		 * tcpi_unacked -> Number of children ready for accept()
3804 		 * tcpi_sacked  -> max backlog
3805 		 */
3806 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3807 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3808 		return;
3809 	}
3810 
3811 	slow = lock_sock_fast(sk);
3812 
3813 	info->tcpi_ca_state = icsk->icsk_ca_state;
3814 	info->tcpi_retransmits = icsk->icsk_retransmits;
3815 	info->tcpi_probes = icsk->icsk_probes_out;
3816 	info->tcpi_backoff = icsk->icsk_backoff;
3817 
3818 	if (tp->rx_opt.tstamp_ok)
3819 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3820 	if (tcp_is_sack(tp))
3821 		info->tcpi_options |= TCPI_OPT_SACK;
3822 	if (tp->rx_opt.wscale_ok) {
3823 		info->tcpi_options |= TCPI_OPT_WSCALE;
3824 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3825 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3826 	}
3827 
3828 	if (tp->ecn_flags & TCP_ECN_OK)
3829 		info->tcpi_options |= TCPI_OPT_ECN;
3830 	if (tp->ecn_flags & TCP_ECN_SEEN)
3831 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3832 	if (tp->syn_data_acked)
3833 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3834 	if (tp->tcp_usec_ts)
3835 		info->tcpi_options |= TCPI_OPT_USEC_TS;
3836 
3837 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3838 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3839 						tcp_delack_max(sk)));
3840 	info->tcpi_snd_mss = tp->mss_cache;
3841 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3842 
3843 	info->tcpi_unacked = tp->packets_out;
3844 	info->tcpi_sacked = tp->sacked_out;
3845 
3846 	info->tcpi_lost = tp->lost_out;
3847 	info->tcpi_retrans = tp->retrans_out;
3848 
3849 	now = tcp_jiffies32;
3850 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3851 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3852 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3853 
3854 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3855 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3856 	info->tcpi_rtt = tp->srtt_us >> 3;
3857 	info->tcpi_rttvar = tp->mdev_us >> 2;
3858 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3859 	info->tcpi_advmss = tp->advmss;
3860 
3861 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3862 	info->tcpi_rcv_space = tp->rcvq_space.space;
3863 
3864 	info->tcpi_total_retrans = tp->total_retrans;
3865 
3866 	info->tcpi_bytes_acked = tp->bytes_acked;
3867 	info->tcpi_bytes_received = tp->bytes_received;
3868 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3869 	tcp_get_info_chrono_stats(tp, info);
3870 
3871 	info->tcpi_segs_out = tp->segs_out;
3872 
3873 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3874 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3875 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3876 
3877 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3878 	info->tcpi_data_segs_out = tp->data_segs_out;
3879 
3880 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3881 	rate64 = tcp_compute_delivery_rate(tp);
3882 	if (rate64)
3883 		info->tcpi_delivery_rate = rate64;
3884 	info->tcpi_delivered = tp->delivered;
3885 	info->tcpi_delivered_ce = tp->delivered_ce;
3886 	info->tcpi_bytes_sent = tp->bytes_sent;
3887 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3888 	info->tcpi_dsack_dups = tp->dsack_dups;
3889 	info->tcpi_reord_seen = tp->reord_seen;
3890 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3891 	info->tcpi_snd_wnd = tp->snd_wnd;
3892 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3893 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3894 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3895 
3896 	info->tcpi_total_rto = tp->total_rto;
3897 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3898 	info->tcpi_total_rto_time = tp->total_rto_time;
3899 	if (tp->rto_stamp)
3900 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3901 
3902 	unlock_sock_fast(sk, slow);
3903 }
3904 EXPORT_SYMBOL_GPL(tcp_get_info);
3905 
3906 static size_t tcp_opt_stats_get_size(void)
3907 {
3908 	return
3909 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3910 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3911 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3912 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3913 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3914 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3915 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3916 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3917 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3918 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3919 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3920 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3921 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3922 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3923 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3924 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3925 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3926 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3927 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3928 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3929 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3930 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3931 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3932 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3933 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3934 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3935 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3936 		0;
3937 }
3938 
3939 /* Returns TTL or hop limit of an incoming packet from skb. */
3940 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3941 {
3942 	if (skb->protocol == htons(ETH_P_IP))
3943 		return ip_hdr(skb)->ttl;
3944 	else if (skb->protocol == htons(ETH_P_IPV6))
3945 		return ipv6_hdr(skb)->hop_limit;
3946 	else
3947 		return 0;
3948 }
3949 
3950 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3951 					       const struct sk_buff *orig_skb,
3952 					       const struct sk_buff *ack_skb)
3953 {
3954 	const struct tcp_sock *tp = tcp_sk(sk);
3955 	struct sk_buff *stats;
3956 	struct tcp_info info;
3957 	unsigned long rate;
3958 	u64 rate64;
3959 
3960 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3961 	if (!stats)
3962 		return NULL;
3963 
3964 	tcp_get_info_chrono_stats(tp, &info);
3965 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3966 			  info.tcpi_busy_time, TCP_NLA_PAD);
3967 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3968 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3969 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3970 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3971 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3972 			  tp->data_segs_out, TCP_NLA_PAD);
3973 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3974 			  tp->total_retrans, TCP_NLA_PAD);
3975 
3976 	rate = READ_ONCE(sk->sk_pacing_rate);
3977 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3978 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3979 
3980 	rate64 = tcp_compute_delivery_rate(tp);
3981 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3982 
3983 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3984 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3985 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3986 
3987 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3988 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3989 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3990 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3991 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3992 
3993 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3994 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3995 
3996 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3997 			  TCP_NLA_PAD);
3998 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3999 			  TCP_NLA_PAD);
4000 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4001 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4002 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4003 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4004 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4005 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4006 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4007 			  TCP_NLA_PAD);
4008 	if (ack_skb)
4009 		nla_put_u8(stats, TCP_NLA_TTL,
4010 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4011 
4012 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4013 	return stats;
4014 }
4015 
4016 int do_tcp_getsockopt(struct sock *sk, int level,
4017 		      int optname, sockptr_t optval, sockptr_t optlen)
4018 {
4019 	struct inet_connection_sock *icsk = inet_csk(sk);
4020 	struct tcp_sock *tp = tcp_sk(sk);
4021 	struct net *net = sock_net(sk);
4022 	int val, len;
4023 
4024 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4025 		return -EFAULT;
4026 
4027 	if (len < 0)
4028 		return -EINVAL;
4029 
4030 	len = min_t(unsigned int, len, sizeof(int));
4031 
4032 	switch (optname) {
4033 	case TCP_MAXSEG:
4034 		val = tp->mss_cache;
4035 		if (tp->rx_opt.user_mss &&
4036 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4037 			val = tp->rx_opt.user_mss;
4038 		if (tp->repair)
4039 			val = tp->rx_opt.mss_clamp;
4040 		break;
4041 	case TCP_NODELAY:
4042 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4043 		break;
4044 	case TCP_CORK:
4045 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4046 		break;
4047 	case TCP_KEEPIDLE:
4048 		val = keepalive_time_when(tp) / HZ;
4049 		break;
4050 	case TCP_KEEPINTVL:
4051 		val = keepalive_intvl_when(tp) / HZ;
4052 		break;
4053 	case TCP_KEEPCNT:
4054 		val = keepalive_probes(tp);
4055 		break;
4056 	case TCP_SYNCNT:
4057 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4058 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4059 		break;
4060 	case TCP_LINGER2:
4061 		val = READ_ONCE(tp->linger2);
4062 		if (val >= 0)
4063 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4064 		break;
4065 	case TCP_DEFER_ACCEPT:
4066 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4067 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4068 				      TCP_RTO_MAX / HZ);
4069 		break;
4070 	case TCP_WINDOW_CLAMP:
4071 		val = READ_ONCE(tp->window_clamp);
4072 		break;
4073 	case TCP_INFO: {
4074 		struct tcp_info info;
4075 
4076 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4077 			return -EFAULT;
4078 
4079 		tcp_get_info(sk, &info);
4080 
4081 		len = min_t(unsigned int, len, sizeof(info));
4082 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4083 			return -EFAULT;
4084 		if (copy_to_sockptr(optval, &info, len))
4085 			return -EFAULT;
4086 		return 0;
4087 	}
4088 	case TCP_CC_INFO: {
4089 		const struct tcp_congestion_ops *ca_ops;
4090 		union tcp_cc_info info;
4091 		size_t sz = 0;
4092 		int attr;
4093 
4094 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4095 			return -EFAULT;
4096 
4097 		ca_ops = icsk->icsk_ca_ops;
4098 		if (ca_ops && ca_ops->get_info)
4099 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4100 
4101 		len = min_t(unsigned int, len, sz);
4102 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4103 			return -EFAULT;
4104 		if (copy_to_sockptr(optval, &info, len))
4105 			return -EFAULT;
4106 		return 0;
4107 	}
4108 	case TCP_QUICKACK:
4109 		val = !inet_csk_in_pingpong_mode(sk);
4110 		break;
4111 
4112 	case TCP_CONGESTION:
4113 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4114 			return -EFAULT;
4115 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4116 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4117 			return -EFAULT;
4118 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4119 			return -EFAULT;
4120 		return 0;
4121 
4122 	case TCP_ULP:
4123 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4124 			return -EFAULT;
4125 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4126 		if (!icsk->icsk_ulp_ops) {
4127 			len = 0;
4128 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4129 				return -EFAULT;
4130 			return 0;
4131 		}
4132 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4133 			return -EFAULT;
4134 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4135 			return -EFAULT;
4136 		return 0;
4137 
4138 	case TCP_FASTOPEN_KEY: {
4139 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4140 		unsigned int key_len;
4141 
4142 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4143 			return -EFAULT;
4144 
4145 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4146 				TCP_FASTOPEN_KEY_LENGTH;
4147 		len = min_t(unsigned int, len, key_len);
4148 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4149 			return -EFAULT;
4150 		if (copy_to_sockptr(optval, key, len))
4151 			return -EFAULT;
4152 		return 0;
4153 	}
4154 	case TCP_THIN_LINEAR_TIMEOUTS:
4155 		val = tp->thin_lto;
4156 		break;
4157 
4158 	case TCP_THIN_DUPACK:
4159 		val = 0;
4160 		break;
4161 
4162 	case TCP_REPAIR:
4163 		val = tp->repair;
4164 		break;
4165 
4166 	case TCP_REPAIR_QUEUE:
4167 		if (tp->repair)
4168 			val = tp->repair_queue;
4169 		else
4170 			return -EINVAL;
4171 		break;
4172 
4173 	case TCP_REPAIR_WINDOW: {
4174 		struct tcp_repair_window opt;
4175 
4176 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4177 			return -EFAULT;
4178 
4179 		if (len != sizeof(opt))
4180 			return -EINVAL;
4181 
4182 		if (!tp->repair)
4183 			return -EPERM;
4184 
4185 		opt.snd_wl1	= tp->snd_wl1;
4186 		opt.snd_wnd	= tp->snd_wnd;
4187 		opt.max_window	= tp->max_window;
4188 		opt.rcv_wnd	= tp->rcv_wnd;
4189 		opt.rcv_wup	= tp->rcv_wup;
4190 
4191 		if (copy_to_sockptr(optval, &opt, len))
4192 			return -EFAULT;
4193 		return 0;
4194 	}
4195 	case TCP_QUEUE_SEQ:
4196 		if (tp->repair_queue == TCP_SEND_QUEUE)
4197 			val = tp->write_seq;
4198 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4199 			val = tp->rcv_nxt;
4200 		else
4201 			return -EINVAL;
4202 		break;
4203 
4204 	case TCP_USER_TIMEOUT:
4205 		val = READ_ONCE(icsk->icsk_user_timeout);
4206 		break;
4207 
4208 	case TCP_FASTOPEN:
4209 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4210 		break;
4211 
4212 	case TCP_FASTOPEN_CONNECT:
4213 		val = tp->fastopen_connect;
4214 		break;
4215 
4216 	case TCP_FASTOPEN_NO_COOKIE:
4217 		val = tp->fastopen_no_cookie;
4218 		break;
4219 
4220 	case TCP_TX_DELAY:
4221 		val = READ_ONCE(tp->tcp_tx_delay);
4222 		break;
4223 
4224 	case TCP_TIMESTAMP:
4225 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4226 		if (tp->tcp_usec_ts)
4227 			val |= 1;
4228 		else
4229 			val &= ~1;
4230 		break;
4231 	case TCP_NOTSENT_LOWAT:
4232 		val = READ_ONCE(tp->notsent_lowat);
4233 		break;
4234 	case TCP_INQ:
4235 		val = tp->recvmsg_inq;
4236 		break;
4237 	case TCP_SAVE_SYN:
4238 		val = tp->save_syn;
4239 		break;
4240 	case TCP_SAVED_SYN: {
4241 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4242 			return -EFAULT;
4243 
4244 		sockopt_lock_sock(sk);
4245 		if (tp->saved_syn) {
4246 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4247 				len = tcp_saved_syn_len(tp->saved_syn);
4248 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4249 					sockopt_release_sock(sk);
4250 					return -EFAULT;
4251 				}
4252 				sockopt_release_sock(sk);
4253 				return -EINVAL;
4254 			}
4255 			len = tcp_saved_syn_len(tp->saved_syn);
4256 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4257 				sockopt_release_sock(sk);
4258 				return -EFAULT;
4259 			}
4260 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4261 				sockopt_release_sock(sk);
4262 				return -EFAULT;
4263 			}
4264 			tcp_saved_syn_free(tp);
4265 			sockopt_release_sock(sk);
4266 		} else {
4267 			sockopt_release_sock(sk);
4268 			len = 0;
4269 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4270 				return -EFAULT;
4271 		}
4272 		return 0;
4273 	}
4274 #ifdef CONFIG_MMU
4275 	case TCP_ZEROCOPY_RECEIVE: {
4276 		struct scm_timestamping_internal tss;
4277 		struct tcp_zerocopy_receive zc = {};
4278 		int err;
4279 
4280 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4281 			return -EFAULT;
4282 		if (len < 0 ||
4283 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4284 			return -EINVAL;
4285 		if (unlikely(len > sizeof(zc))) {
4286 			err = check_zeroed_sockptr(optval, sizeof(zc),
4287 						   len - sizeof(zc));
4288 			if (err < 1)
4289 				return err == 0 ? -EINVAL : err;
4290 			len = sizeof(zc);
4291 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4292 				return -EFAULT;
4293 		}
4294 		if (copy_from_sockptr(&zc, optval, len))
4295 			return -EFAULT;
4296 		if (zc.reserved)
4297 			return -EINVAL;
4298 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4299 			return -EINVAL;
4300 		sockopt_lock_sock(sk);
4301 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4302 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4303 							  &zc, &len, err);
4304 		sockopt_release_sock(sk);
4305 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4306 			goto zerocopy_rcv_cmsg;
4307 		switch (len) {
4308 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4309 			goto zerocopy_rcv_cmsg;
4310 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4311 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4312 		case offsetofend(struct tcp_zerocopy_receive, flags):
4313 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4314 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4315 		case offsetofend(struct tcp_zerocopy_receive, err):
4316 			goto zerocopy_rcv_sk_err;
4317 		case offsetofend(struct tcp_zerocopy_receive, inq):
4318 			goto zerocopy_rcv_inq;
4319 		case offsetofend(struct tcp_zerocopy_receive, length):
4320 		default:
4321 			goto zerocopy_rcv_out;
4322 		}
4323 zerocopy_rcv_cmsg:
4324 		if (zc.msg_flags & TCP_CMSG_TS)
4325 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4326 		else
4327 			zc.msg_flags = 0;
4328 zerocopy_rcv_sk_err:
4329 		if (!err)
4330 			zc.err = sock_error(sk);
4331 zerocopy_rcv_inq:
4332 		zc.inq = tcp_inq_hint(sk);
4333 zerocopy_rcv_out:
4334 		if (!err && copy_to_sockptr(optval, &zc, len))
4335 			err = -EFAULT;
4336 		return err;
4337 	}
4338 #endif
4339 	case TCP_AO_REPAIR:
4340 		if (!tcp_can_repair_sock(sk))
4341 			return -EPERM;
4342 		return tcp_ao_get_repair(sk, optval, optlen);
4343 	case TCP_AO_GET_KEYS:
4344 	case TCP_AO_INFO: {
4345 		int err;
4346 
4347 		sockopt_lock_sock(sk);
4348 		if (optname == TCP_AO_GET_KEYS)
4349 			err = tcp_ao_get_mkts(sk, optval, optlen);
4350 		else
4351 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4352 		sockopt_release_sock(sk);
4353 
4354 		return err;
4355 	}
4356 	default:
4357 		return -ENOPROTOOPT;
4358 	}
4359 
4360 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4361 		return -EFAULT;
4362 	if (copy_to_sockptr(optval, &val, len))
4363 		return -EFAULT;
4364 	return 0;
4365 }
4366 
4367 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4368 {
4369 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4370 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4371 	 */
4372 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4373 		return true;
4374 
4375 	return false;
4376 }
4377 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4378 
4379 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4380 		   int __user *optlen)
4381 {
4382 	struct inet_connection_sock *icsk = inet_csk(sk);
4383 
4384 	if (level != SOL_TCP)
4385 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4386 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4387 								optval, optlen);
4388 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4389 				 USER_SOCKPTR(optlen));
4390 }
4391 EXPORT_SYMBOL(tcp_getsockopt);
4392 
4393 #ifdef CONFIG_TCP_MD5SIG
4394 int tcp_md5_sigpool_id = -1;
4395 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4396 
4397 int tcp_md5_alloc_sigpool(void)
4398 {
4399 	size_t scratch_size;
4400 	int ret;
4401 
4402 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4403 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4404 	if (ret >= 0) {
4405 		/* As long as any md5 sigpool was allocated, the return
4406 		 * id would stay the same. Re-write the id only for the case
4407 		 * when previously all MD5 keys were deleted and this call
4408 		 * allocates the first MD5 key, which may return a different
4409 		 * sigpool id than was used previously.
4410 		 */
4411 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4412 		return 0;
4413 	}
4414 	return ret;
4415 }
4416 
4417 void tcp_md5_release_sigpool(void)
4418 {
4419 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4420 }
4421 
4422 void tcp_md5_add_sigpool(void)
4423 {
4424 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4425 }
4426 
4427 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4428 		     const struct tcp_md5sig_key *key)
4429 {
4430 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4431 	struct scatterlist sg;
4432 
4433 	sg_init_one(&sg, key->key, keylen);
4434 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4435 
4436 	/* We use data_race() because tcp_md5_do_add() might change
4437 	 * key->key under us
4438 	 */
4439 	return data_race(crypto_ahash_update(hp->req));
4440 }
4441 EXPORT_SYMBOL(tcp_md5_hash_key);
4442 
4443 /* Called with rcu_read_lock() */
4444 enum skb_drop_reason
4445 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4446 		     const void *saddr, const void *daddr,
4447 		     int family, int l3index, const __u8 *hash_location)
4448 {
4449 	/* This gets called for each TCP segment that has TCP-MD5 option.
4450 	 * We have 3 drop cases:
4451 	 * o No MD5 hash and one expected.
4452 	 * o MD5 hash and we're not expecting one.
4453 	 * o MD5 hash and its wrong.
4454 	 */
4455 	const struct tcp_sock *tp = tcp_sk(sk);
4456 	struct tcp_md5sig_key *key;
4457 	u8 newhash[16];
4458 	int genhash;
4459 
4460 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4461 
4462 	if (!key && hash_location) {
4463 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4464 		tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4465 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4466 	}
4467 
4468 	/* Check the signature.
4469 	 * To support dual stack listeners, we need to handle
4470 	 * IPv4-mapped case.
4471 	 */
4472 	if (family == AF_INET)
4473 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4474 	else
4475 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4476 							 NULL, skb);
4477 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4478 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4479 		if (family == AF_INET) {
4480 			tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4481 				      genhash ? "tcp_v4_calc_md5_hash failed"
4482 				      : "", l3index);
4483 		} else {
4484 			if (genhash) {
4485 				tcp_hash_fail("MD5 Hash failed",
4486 					      AF_INET6, skb, "L3 index %d",
4487 					      l3index);
4488 			} else {
4489 				tcp_hash_fail("MD5 Hash mismatch",
4490 					      AF_INET6, skb, "L3 index %d",
4491 					      l3index);
4492 			}
4493 		}
4494 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4495 	}
4496 	return SKB_NOT_DROPPED_YET;
4497 }
4498 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4499 
4500 #endif
4501 
4502 void tcp_done(struct sock *sk)
4503 {
4504 	struct request_sock *req;
4505 
4506 	/* We might be called with a new socket, after
4507 	 * inet_csk_prepare_forced_close() has been called
4508 	 * so we can not use lockdep_sock_is_held(sk)
4509 	 */
4510 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4511 
4512 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4513 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4514 
4515 	tcp_set_state(sk, TCP_CLOSE);
4516 	tcp_clear_xmit_timers(sk);
4517 	if (req)
4518 		reqsk_fastopen_remove(sk, req, false);
4519 
4520 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4521 
4522 	if (!sock_flag(sk, SOCK_DEAD))
4523 		sk->sk_state_change(sk);
4524 	else
4525 		inet_csk_destroy_sock(sk);
4526 }
4527 EXPORT_SYMBOL_GPL(tcp_done);
4528 
4529 int tcp_abort(struct sock *sk, int err)
4530 {
4531 	int state = inet_sk_state_load(sk);
4532 
4533 	if (state == TCP_NEW_SYN_RECV) {
4534 		struct request_sock *req = inet_reqsk(sk);
4535 
4536 		local_bh_disable();
4537 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4538 		local_bh_enable();
4539 		return 0;
4540 	}
4541 	if (state == TCP_TIME_WAIT) {
4542 		struct inet_timewait_sock *tw = inet_twsk(sk);
4543 
4544 		refcount_inc(&tw->tw_refcnt);
4545 		local_bh_disable();
4546 		inet_twsk_deschedule_put(tw);
4547 		local_bh_enable();
4548 		return 0;
4549 	}
4550 
4551 	/* BPF context ensures sock locking. */
4552 	if (!has_current_bpf_ctx())
4553 		/* Don't race with userspace socket closes such as tcp_close. */
4554 		lock_sock(sk);
4555 
4556 	if (sk->sk_state == TCP_LISTEN) {
4557 		tcp_set_state(sk, TCP_CLOSE);
4558 		inet_csk_listen_stop(sk);
4559 	}
4560 
4561 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4562 	local_bh_disable();
4563 	bh_lock_sock(sk);
4564 
4565 	if (!sock_flag(sk, SOCK_DEAD)) {
4566 		WRITE_ONCE(sk->sk_err, err);
4567 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4568 		smp_wmb();
4569 		sk_error_report(sk);
4570 		if (tcp_need_reset(sk->sk_state))
4571 			tcp_send_active_reset(sk, GFP_ATOMIC,
4572 					      SK_RST_REASON_NOT_SPECIFIED);
4573 		tcp_done(sk);
4574 	}
4575 
4576 	bh_unlock_sock(sk);
4577 	local_bh_enable();
4578 	tcp_write_queue_purge(sk);
4579 	if (!has_current_bpf_ctx())
4580 		release_sock(sk);
4581 	return 0;
4582 }
4583 EXPORT_SYMBOL_GPL(tcp_abort);
4584 
4585 extern struct tcp_congestion_ops tcp_reno;
4586 
4587 static __initdata unsigned long thash_entries;
4588 static int __init set_thash_entries(char *str)
4589 {
4590 	ssize_t ret;
4591 
4592 	if (!str)
4593 		return 0;
4594 
4595 	ret = kstrtoul(str, 0, &thash_entries);
4596 	if (ret)
4597 		return 0;
4598 
4599 	return 1;
4600 }
4601 __setup("thash_entries=", set_thash_entries);
4602 
4603 static void __init tcp_init_mem(void)
4604 {
4605 	unsigned long limit = nr_free_buffer_pages() / 16;
4606 
4607 	limit = max(limit, 128UL);
4608 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4609 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4610 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4611 }
4612 
4613 static void __init tcp_struct_check(void)
4614 {
4615 	/* TX read-mostly hotpath cache lines */
4616 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4617 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4618 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4619 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4620 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4621 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4622 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4623 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4624 
4625 	/* TXRX read-mostly hotpath cache lines */
4626 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4627 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4628 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4629 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4630 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4631 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4632 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4633 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4634 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4635 
4636 	/* RX read-mostly hotpath cache lines */
4637 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4638 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4639 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4640 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4641 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4642 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4643 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4644 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4645 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4646 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4647 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4648 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4649 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4650 
4651 	/* TX read-write hotpath cache lines */
4652 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4653 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4654 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4655 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4656 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4657 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4658 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4659 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4660 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4661 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4662 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4663 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4664 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4665 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4666 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4667 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
4668 
4669 	/* TXRX read-write hotpath cache lines */
4670 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
4671 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
4672 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
4673 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4674 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4675 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4676 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4677 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4678 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4679 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4680 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4681 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4682 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4683 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4684 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4685 
4686 	/* 32bit arches with 8byte alignment on u64 fields might need padding
4687 	 * before tcp_clock_cache.
4688 	 */
4689 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
4690 
4691 	/* RX read-write hotpath cache lines */
4692 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4693 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4694 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4695 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4696 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4697 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4698 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4699 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4700 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4701 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4702 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4703 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4704 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4705 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4706 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4707 }
4708 
4709 void __init tcp_init(void)
4710 {
4711 	int max_rshare, max_wshare, cnt;
4712 	unsigned long limit;
4713 	unsigned int i;
4714 
4715 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4716 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4717 		     sizeof_field(struct sk_buff, cb));
4718 
4719 	tcp_struct_check();
4720 
4721 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4722 
4723 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4724 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4725 
4726 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4727 			    thash_entries, 21,  /* one slot per 2 MB*/
4728 			    0, 64 * 1024);
4729 	tcp_hashinfo.bind_bucket_cachep =
4730 		kmem_cache_create("tcp_bind_bucket",
4731 				  sizeof(struct inet_bind_bucket), 0,
4732 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4733 				  SLAB_ACCOUNT,
4734 				  NULL);
4735 	tcp_hashinfo.bind2_bucket_cachep =
4736 		kmem_cache_create("tcp_bind2_bucket",
4737 				  sizeof(struct inet_bind2_bucket), 0,
4738 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4739 				  SLAB_ACCOUNT,
4740 				  NULL);
4741 
4742 	/* Size and allocate the main established and bind bucket
4743 	 * hash tables.
4744 	 *
4745 	 * The methodology is similar to that of the buffer cache.
4746 	 */
4747 	tcp_hashinfo.ehash =
4748 		alloc_large_system_hash("TCP established",
4749 					sizeof(struct inet_ehash_bucket),
4750 					thash_entries,
4751 					17, /* one slot per 128 KB of memory */
4752 					0,
4753 					NULL,
4754 					&tcp_hashinfo.ehash_mask,
4755 					0,
4756 					thash_entries ? 0 : 512 * 1024);
4757 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4758 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4759 
4760 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4761 		panic("TCP: failed to alloc ehash_locks");
4762 	tcp_hashinfo.bhash =
4763 		alloc_large_system_hash("TCP bind",
4764 					2 * sizeof(struct inet_bind_hashbucket),
4765 					tcp_hashinfo.ehash_mask + 1,
4766 					17, /* one slot per 128 KB of memory */
4767 					0,
4768 					&tcp_hashinfo.bhash_size,
4769 					NULL,
4770 					0,
4771 					64 * 1024);
4772 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4773 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4774 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4775 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4776 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4777 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4778 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4779 	}
4780 
4781 	tcp_hashinfo.pernet = false;
4782 
4783 	cnt = tcp_hashinfo.ehash_mask + 1;
4784 	sysctl_tcp_max_orphans = cnt / 2;
4785 
4786 	tcp_init_mem();
4787 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4788 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4789 	max_wshare = min(4UL*1024*1024, limit);
4790 	max_rshare = min(6UL*1024*1024, limit);
4791 
4792 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4793 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4794 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4795 
4796 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4797 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4798 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4799 
4800 	pr_info("Hash tables configured (established %u bind %u)\n",
4801 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4802 
4803 	tcp_v4_init();
4804 	tcp_metrics_init();
4805 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4806 	tcp_tasklet_init();
4807 	mptcp_init();
4808 }
4809