1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 tcp_scaling_ratio_init(sk); 461 462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 463 sk_sockets_allocated_inc(sk); 464 } 465 EXPORT_SYMBOL(tcp_init_sock); 466 467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 468 { 469 struct sk_buff *skb = tcp_write_queue_tail(sk); 470 471 if (tsflags && skb) { 472 struct skb_shared_info *shinfo = skb_shinfo(skb); 473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 474 475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 476 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 477 tcb->txstamp_ack = 1; 478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 480 } 481 } 482 483 static bool tcp_stream_is_readable(struct sock *sk, int target) 484 { 485 if (tcp_epollin_ready(sk, target)) 486 return true; 487 return sk_is_readable(sk); 488 } 489 490 /* 491 * Wait for a TCP event. 492 * 493 * Note that we don't need to lock the socket, as the upper poll layers 494 * take care of normal races (between the test and the event) and we don't 495 * go look at any of the socket buffers directly. 496 */ 497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 498 { 499 __poll_t mask; 500 struct sock *sk = sock->sk; 501 const struct tcp_sock *tp = tcp_sk(sk); 502 u8 shutdown; 503 int state; 504 505 sock_poll_wait(file, sock, wait); 506 507 state = inet_sk_state_load(sk); 508 if (state == TCP_LISTEN) 509 return inet_csk_listen_poll(sk); 510 511 /* Socket is not locked. We are protected from async events 512 * by poll logic and correct handling of state changes 513 * made by other threads is impossible in any case. 514 */ 515 516 mask = 0; 517 518 /* 519 * EPOLLHUP is certainly not done right. But poll() doesn't 520 * have a notion of HUP in just one direction, and for a 521 * socket the read side is more interesting. 522 * 523 * Some poll() documentation says that EPOLLHUP is incompatible 524 * with the EPOLLOUT/POLLWR flags, so somebody should check this 525 * all. But careful, it tends to be safer to return too many 526 * bits than too few, and you can easily break real applications 527 * if you don't tell them that something has hung up! 528 * 529 * Check-me. 530 * 531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 532 * our fs/select.c). It means that after we received EOF, 533 * poll always returns immediately, making impossible poll() on write() 534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 535 * if and only if shutdown has been made in both directions. 536 * Actually, it is interesting to look how Solaris and DUX 537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 538 * then we could set it on SND_SHUTDOWN. BTW examples given 539 * in Stevens' books assume exactly this behaviour, it explains 540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 541 * 542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 543 * blocking on fresh not-connected or disconnected socket. --ANK 544 */ 545 shutdown = READ_ONCE(sk->sk_shutdown); 546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 547 mask |= EPOLLHUP; 548 if (shutdown & RCV_SHUTDOWN) 549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 550 551 /* Connected or passive Fast Open socket? */ 552 if (state != TCP_SYN_SENT && 553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 554 int target = sock_rcvlowat(sk, 0, INT_MAX); 555 u16 urg_data = READ_ONCE(tp->urg_data); 556 557 if (unlikely(urg_data) && 558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE)) 560 target++; 561 562 if (tcp_stream_is_readable(sk, target)) 563 mask |= EPOLLIN | EPOLLRDNORM; 564 565 if (!(shutdown & SEND_SHUTDOWN)) { 566 if (__sk_stream_is_writeable(sk, 1)) { 567 mask |= EPOLLOUT | EPOLLWRNORM; 568 } else { /* send SIGIO later */ 569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 571 572 /* Race breaker. If space is freed after 573 * wspace test but before the flags are set, 574 * IO signal will be lost. Memory barrier 575 * pairs with the input side. 576 */ 577 smp_mb__after_atomic(); 578 if (__sk_stream_is_writeable(sk, 1)) 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 } 581 } else 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 584 if (urg_data & TCP_URG_VALID) 585 mask |= EPOLLPRI; 586 } else if (state == TCP_SYN_SENT && 587 inet_test_bit(DEFER_CONNECT, sk)) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 595 smp_rmb(); 596 if (READ_ONCE(sk->sk_err) || 597 !skb_queue_empty_lockless(&sk->sk_error_queue)) 598 mask |= EPOLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = READ_ONCE(tp->urg_data) && 621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - 640 READ_ONCE(tp->snd_nxt); 641 break; 642 default: 643 return -ENOIOCTLCMD; 644 } 645 646 *karg = answ; 647 return 0; 648 } 649 EXPORT_SYMBOL(tcp_ioctl); 650 651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 652 { 653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 654 tp->pushed_seq = tp->write_seq; 655 } 656 657 static inline bool forced_push(const struct tcp_sock *tp) 658 { 659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 660 } 661 662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 666 667 tcb->seq = tcb->end_seq = tp->write_seq; 668 tcb->tcp_flags = TCPHDR_ACK; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 702 tcp_skb_can_collapse_to(skb); 703 } 704 705 void tcp_push(struct sock *sk, int flags, int mss_now, 706 int nonagle, int size_goal) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct sk_buff *skb; 710 711 skb = tcp_write_queue_tail(sk); 712 if (!skb) 713 return; 714 if (!(flags & MSG_MORE) || forced_push(tp)) 715 tcp_mark_push(tp, skb); 716 717 tcp_mark_urg(tp, flags); 718 719 if (tcp_should_autocork(sk, skb, size_goal)) { 720 721 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 725 smp_mb__after_atomic(); 726 } 727 /* It is possible TX completion already happened 728 * before we set TSQ_THROTTLED. 729 */ 730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 731 return; 732 } 733 734 if (flags & MSG_MORE) 735 nonagle = TCP_NAGLE_CORK; 736 737 __tcp_push_pending_frames(sk, mss_now, nonagle); 738 } 739 740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 741 unsigned int offset, size_t len) 742 { 743 struct tcp_splice_state *tss = rd_desc->arg.data; 744 int ret; 745 746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 747 min(rd_desc->count, len), tss->flags); 748 if (ret > 0) 749 rd_desc->count -= ret; 750 return ret; 751 } 752 753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 754 { 755 /* Store TCP splice context information in read_descriptor_t. */ 756 read_descriptor_t rd_desc = { 757 .arg.data = tss, 758 .count = tss->len, 759 }; 760 761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 762 } 763 764 /** 765 * tcp_splice_read - splice data from TCP socket to a pipe 766 * @sock: socket to splice from 767 * @ppos: position (not valid) 768 * @pipe: pipe to splice to 769 * @len: number of bytes to splice 770 * @flags: splice modifier flags 771 * 772 * Description: 773 * Will read pages from given socket and fill them into a pipe. 774 * 775 **/ 776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 777 struct pipe_inode_info *pipe, size_t len, 778 unsigned int flags) 779 { 780 struct sock *sk = sock->sk; 781 struct tcp_splice_state tss = { 782 .pipe = pipe, 783 .len = len, 784 .flags = flags, 785 }; 786 long timeo; 787 ssize_t spliced; 788 int ret; 789 790 sock_rps_record_flow(sk); 791 /* 792 * We can't seek on a socket input 793 */ 794 if (unlikely(*ppos)) 795 return -ESPIPE; 796 797 ret = spliced = 0; 798 799 lock_sock(sk); 800 801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 802 while (tss.len) { 803 ret = __tcp_splice_read(sk, &tss); 804 if (ret < 0) 805 break; 806 else if (!ret) { 807 if (spliced) 808 break; 809 if (sock_flag(sk, SOCK_DONE)) 810 break; 811 if (sk->sk_err) { 812 ret = sock_error(sk); 813 break; 814 } 815 if (sk->sk_shutdown & RCV_SHUTDOWN) 816 break; 817 if (sk->sk_state == TCP_CLOSE) { 818 /* 819 * This occurs when user tries to read 820 * from never connected socket. 821 */ 822 ret = -ENOTCONN; 823 break; 824 } 825 if (!timeo) { 826 ret = -EAGAIN; 827 break; 828 } 829 /* if __tcp_splice_read() got nothing while we have 830 * an skb in receive queue, we do not want to loop. 831 * This might happen with URG data. 832 */ 833 if (!skb_queue_empty(&sk->sk_receive_queue)) 834 break; 835 ret = sk_wait_data(sk, &timeo, NULL); 836 if (ret < 0) 837 break; 838 if (signal_pending(current)) { 839 ret = sock_intr_errno(timeo); 840 break; 841 } 842 continue; 843 } 844 tss.len -= ret; 845 spliced += ret; 846 847 if (!tss.len || !timeo) 848 break; 849 release_sock(sk); 850 lock_sock(sk); 851 852 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 853 (sk->sk_shutdown & RCV_SHUTDOWN) || 854 signal_pending(current)) 855 break; 856 } 857 858 release_sock(sk); 859 860 if (spliced) 861 return spliced; 862 863 return ret; 864 } 865 EXPORT_SYMBOL(tcp_splice_read); 866 867 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 868 bool force_schedule) 869 { 870 struct sk_buff *skb; 871 872 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 873 if (likely(skb)) { 874 bool mem_scheduled; 875 876 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 877 if (force_schedule) { 878 mem_scheduled = true; 879 sk_forced_mem_schedule(sk, skb->truesize); 880 } else { 881 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 882 } 883 if (likely(mem_scheduled)) { 884 skb_reserve(skb, MAX_TCP_HEADER); 885 skb->ip_summed = CHECKSUM_PARTIAL; 886 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 887 return skb; 888 } 889 __kfree_skb(skb); 890 } else { 891 sk->sk_prot->enter_memory_pressure(sk); 892 sk_stream_moderate_sndbuf(sk); 893 } 894 return NULL; 895 } 896 897 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 898 int large_allowed) 899 { 900 struct tcp_sock *tp = tcp_sk(sk); 901 u32 new_size_goal, size_goal; 902 903 if (!large_allowed) 904 return mss_now; 905 906 /* Note : tcp_tso_autosize() will eventually split this later */ 907 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 908 909 /* We try hard to avoid divides here */ 910 size_goal = tp->gso_segs * mss_now; 911 if (unlikely(new_size_goal < size_goal || 912 new_size_goal >= size_goal + mss_now)) { 913 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 914 sk->sk_gso_max_segs); 915 size_goal = tp->gso_segs * mss_now; 916 } 917 918 return max(size_goal, mss_now); 919 } 920 921 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 922 { 923 int mss_now; 924 925 mss_now = tcp_current_mss(sk); 926 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 927 928 return mss_now; 929 } 930 931 /* In some cases, sendmsg() could have added an skb to the write queue, 932 * but failed adding payload on it. We need to remove it to consume less 933 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 934 * epoll() users. Another reason is that tcp_write_xmit() does not like 935 * finding an empty skb in the write queue. 936 */ 937 void tcp_remove_empty_skb(struct sock *sk) 938 { 939 struct sk_buff *skb = tcp_write_queue_tail(sk); 940 941 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 942 tcp_unlink_write_queue(skb, sk); 943 if (tcp_write_queue_empty(sk)) 944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 945 tcp_wmem_free_skb(sk, skb); 946 } 947 } 948 949 /* skb changing from pure zc to mixed, must charge zc */ 950 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 951 { 952 if (unlikely(skb_zcopy_pure(skb))) { 953 u32 extra = skb->truesize - 954 SKB_TRUESIZE(skb_end_offset(skb)); 955 956 if (!sk_wmem_schedule(sk, extra)) 957 return -ENOMEM; 958 959 sk_mem_charge(sk, extra); 960 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 961 } 962 return 0; 963 } 964 965 966 int tcp_wmem_schedule(struct sock *sk, int copy) 967 { 968 int left; 969 970 if (likely(sk_wmem_schedule(sk, copy))) 971 return copy; 972 973 /* We could be in trouble if we have nothing queued. 974 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 975 * to guarantee some progress. 976 */ 977 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 978 if (left > 0) 979 sk_forced_mem_schedule(sk, min(left, copy)); 980 return min(copy, sk->sk_forward_alloc); 981 } 982 983 void tcp_free_fastopen_req(struct tcp_sock *tp) 984 { 985 if (tp->fastopen_req) { 986 kfree(tp->fastopen_req); 987 tp->fastopen_req = NULL; 988 } 989 } 990 991 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 992 size_t size, struct ubuf_info *uarg) 993 { 994 struct tcp_sock *tp = tcp_sk(sk); 995 struct inet_sock *inet = inet_sk(sk); 996 struct sockaddr *uaddr = msg->msg_name; 997 int err, flags; 998 999 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1000 TFO_CLIENT_ENABLE) || 1001 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1002 uaddr->sa_family == AF_UNSPEC)) 1003 return -EOPNOTSUPP; 1004 if (tp->fastopen_req) 1005 return -EALREADY; /* Another Fast Open is in progress */ 1006 1007 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1008 sk->sk_allocation); 1009 if (unlikely(!tp->fastopen_req)) 1010 return -ENOBUFS; 1011 tp->fastopen_req->data = msg; 1012 tp->fastopen_req->size = size; 1013 tp->fastopen_req->uarg = uarg; 1014 1015 if (inet_test_bit(DEFER_CONNECT, sk)) { 1016 err = tcp_connect(sk); 1017 /* Same failure procedure as in tcp_v4/6_connect */ 1018 if (err) { 1019 tcp_set_state(sk, TCP_CLOSE); 1020 inet->inet_dport = 0; 1021 sk->sk_route_caps = 0; 1022 } 1023 } 1024 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1025 err = __inet_stream_connect(sk->sk_socket, uaddr, 1026 msg->msg_namelen, flags, 1); 1027 /* fastopen_req could already be freed in __inet_stream_connect 1028 * if the connection times out or gets rst 1029 */ 1030 if (tp->fastopen_req) { 1031 *copied = tp->fastopen_req->copied; 1032 tcp_free_fastopen_req(tp); 1033 inet_clear_bit(DEFER_CONNECT, sk); 1034 } 1035 return err; 1036 } 1037 1038 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 struct ubuf_info *uarg = NULL; 1042 struct sk_buff *skb; 1043 struct sockcm_cookie sockc; 1044 int flags, err, copied = 0; 1045 int mss_now = 0, size_goal, copied_syn = 0; 1046 int process_backlog = 0; 1047 int zc = 0; 1048 long timeo; 1049 1050 flags = msg->msg_flags; 1051 1052 if ((flags & MSG_ZEROCOPY) && size) { 1053 if (msg->msg_ubuf) { 1054 uarg = msg->msg_ubuf; 1055 if (sk->sk_route_caps & NETIF_F_SG) 1056 zc = MSG_ZEROCOPY; 1057 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1058 skb = tcp_write_queue_tail(sk); 1059 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1060 if (!uarg) { 1061 err = -ENOBUFS; 1062 goto out_err; 1063 } 1064 if (sk->sk_route_caps & NETIF_F_SG) 1065 zc = MSG_ZEROCOPY; 1066 else 1067 uarg_to_msgzc(uarg)->zerocopy = 0; 1068 } 1069 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1070 if (sk->sk_route_caps & NETIF_F_SG) 1071 zc = MSG_SPLICE_PAGES; 1072 } 1073 1074 if (unlikely(flags & MSG_FASTOPEN || 1075 inet_test_bit(DEFER_CONNECT, sk)) && 1076 !tp->repair) { 1077 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1078 if (err == -EINPROGRESS && copied_syn > 0) 1079 goto out; 1080 else if (err) 1081 goto out_err; 1082 } 1083 1084 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1085 1086 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1087 1088 /* Wait for a connection to finish. One exception is TCP Fast Open 1089 * (passive side) where data is allowed to be sent before a connection 1090 * is fully established. 1091 */ 1092 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1093 !tcp_passive_fastopen(sk)) { 1094 err = sk_stream_wait_connect(sk, &timeo); 1095 if (err != 0) 1096 goto do_error; 1097 } 1098 1099 if (unlikely(tp->repair)) { 1100 if (tp->repair_queue == TCP_RECV_QUEUE) { 1101 copied = tcp_send_rcvq(sk, msg, size); 1102 goto out_nopush; 1103 } 1104 1105 err = -EINVAL; 1106 if (tp->repair_queue == TCP_NO_QUEUE) 1107 goto out_err; 1108 1109 /* 'common' sending to sendq */ 1110 } 1111 1112 sockcm_init(&sockc, sk); 1113 if (msg->msg_controllen) { 1114 err = sock_cmsg_send(sk, msg, &sockc); 1115 if (unlikely(err)) { 1116 err = -EINVAL; 1117 goto out_err; 1118 } 1119 } 1120 1121 /* This should be in poll */ 1122 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1123 1124 /* Ok commence sending. */ 1125 copied = 0; 1126 1127 restart: 1128 mss_now = tcp_send_mss(sk, &size_goal, flags); 1129 1130 err = -EPIPE; 1131 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1132 goto do_error; 1133 1134 while (msg_data_left(msg)) { 1135 ssize_t copy = 0; 1136 1137 skb = tcp_write_queue_tail(sk); 1138 if (skb) 1139 copy = size_goal - skb->len; 1140 1141 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1142 bool first_skb; 1143 1144 new_segment: 1145 if (!sk_stream_memory_free(sk)) 1146 goto wait_for_space; 1147 1148 if (unlikely(process_backlog >= 16)) { 1149 process_backlog = 0; 1150 if (sk_flush_backlog(sk)) 1151 goto restart; 1152 } 1153 first_skb = tcp_rtx_and_write_queues_empty(sk); 1154 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1155 first_skb); 1156 if (!skb) 1157 goto wait_for_space; 1158 1159 process_backlog++; 1160 1161 tcp_skb_entail(sk, skb); 1162 copy = size_goal; 1163 1164 /* All packets are restored as if they have 1165 * already been sent. skb_mstamp_ns isn't set to 1166 * avoid wrong rtt estimation. 1167 */ 1168 if (tp->repair) 1169 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1170 } 1171 1172 /* Try to append data to the end of skb. */ 1173 if (copy > msg_data_left(msg)) 1174 copy = msg_data_left(msg); 1175 1176 if (zc == 0) { 1177 bool merge = true; 1178 int i = skb_shinfo(skb)->nr_frags; 1179 struct page_frag *pfrag = sk_page_frag(sk); 1180 1181 if (!sk_page_frag_refill(sk, pfrag)) 1182 goto wait_for_space; 1183 1184 if (!skb_can_coalesce(skb, i, pfrag->page, 1185 pfrag->offset)) { 1186 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1187 tcp_mark_push(tp, skb); 1188 goto new_segment; 1189 } 1190 merge = false; 1191 } 1192 1193 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1194 1195 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1196 if (tcp_downgrade_zcopy_pure(sk, skb)) 1197 goto wait_for_space; 1198 skb_zcopy_downgrade_managed(skb); 1199 } 1200 1201 copy = tcp_wmem_schedule(sk, copy); 1202 if (!copy) 1203 goto wait_for_space; 1204 1205 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1206 pfrag->page, 1207 pfrag->offset, 1208 copy); 1209 if (err) 1210 goto do_error; 1211 1212 /* Update the skb. */ 1213 if (merge) { 1214 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1215 } else { 1216 skb_fill_page_desc(skb, i, pfrag->page, 1217 pfrag->offset, copy); 1218 page_ref_inc(pfrag->page); 1219 } 1220 pfrag->offset += copy; 1221 } else if (zc == MSG_ZEROCOPY) { 1222 /* First append to a fragless skb builds initial 1223 * pure zerocopy skb 1224 */ 1225 if (!skb->len) 1226 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1227 1228 if (!skb_zcopy_pure(skb)) { 1229 copy = tcp_wmem_schedule(sk, copy); 1230 if (!copy) 1231 goto wait_for_space; 1232 } 1233 1234 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1235 if (err == -EMSGSIZE || err == -EEXIST) { 1236 tcp_mark_push(tp, skb); 1237 goto new_segment; 1238 } 1239 if (err < 0) 1240 goto do_error; 1241 copy = err; 1242 } else if (zc == MSG_SPLICE_PAGES) { 1243 /* Splice in data if we can; copy if we can't. */ 1244 if (tcp_downgrade_zcopy_pure(sk, skb)) 1245 goto wait_for_space; 1246 copy = tcp_wmem_schedule(sk, copy); 1247 if (!copy) 1248 goto wait_for_space; 1249 1250 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1251 sk->sk_allocation); 1252 if (err < 0) { 1253 if (err == -EMSGSIZE) { 1254 tcp_mark_push(tp, skb); 1255 goto new_segment; 1256 } 1257 goto do_error; 1258 } 1259 copy = err; 1260 1261 if (!(flags & MSG_NO_SHARED_FRAGS)) 1262 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1263 1264 sk_wmem_queued_add(sk, copy); 1265 sk_mem_charge(sk, copy); 1266 } 1267 1268 if (!copied) 1269 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1270 1271 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1272 TCP_SKB_CB(skb)->end_seq += copy; 1273 tcp_skb_pcount_set(skb, 0); 1274 1275 copied += copy; 1276 if (!msg_data_left(msg)) { 1277 if (unlikely(flags & MSG_EOR)) 1278 TCP_SKB_CB(skb)->eor = 1; 1279 goto out; 1280 } 1281 1282 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1283 continue; 1284 1285 if (forced_push(tp)) { 1286 tcp_mark_push(tp, skb); 1287 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1288 } else if (skb == tcp_send_head(sk)) 1289 tcp_push_one(sk, mss_now); 1290 continue; 1291 1292 wait_for_space: 1293 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1294 tcp_remove_empty_skb(sk); 1295 if (copied) 1296 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1297 TCP_NAGLE_PUSH, size_goal); 1298 1299 err = sk_stream_wait_memory(sk, &timeo); 1300 if (err != 0) 1301 goto do_error; 1302 1303 mss_now = tcp_send_mss(sk, &size_goal, flags); 1304 } 1305 1306 out: 1307 if (copied) { 1308 tcp_tx_timestamp(sk, sockc.tsflags); 1309 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1310 } 1311 out_nopush: 1312 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1313 if (uarg && !msg->msg_ubuf) 1314 net_zcopy_put(uarg); 1315 return copied + copied_syn; 1316 1317 do_error: 1318 tcp_remove_empty_skb(sk); 1319 1320 if (copied + copied_syn) 1321 goto out; 1322 out_err: 1323 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1324 if (uarg && !msg->msg_ubuf) 1325 net_zcopy_put_abort(uarg, true); 1326 err = sk_stream_error(sk, flags, err); 1327 /* make sure we wake any epoll edge trigger waiter */ 1328 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1329 sk->sk_write_space(sk); 1330 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1331 } 1332 return err; 1333 } 1334 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1335 1336 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1337 { 1338 int ret; 1339 1340 lock_sock(sk); 1341 ret = tcp_sendmsg_locked(sk, msg, size); 1342 release_sock(sk); 1343 1344 return ret; 1345 } 1346 EXPORT_SYMBOL(tcp_sendmsg); 1347 1348 void tcp_splice_eof(struct socket *sock) 1349 { 1350 struct sock *sk = sock->sk; 1351 struct tcp_sock *tp = tcp_sk(sk); 1352 int mss_now, size_goal; 1353 1354 if (!tcp_write_queue_tail(sk)) 1355 return; 1356 1357 lock_sock(sk); 1358 mss_now = tcp_send_mss(sk, &size_goal, 0); 1359 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1360 release_sock(sk); 1361 } 1362 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1363 1364 /* 1365 * Handle reading urgent data. BSD has very simple semantics for 1366 * this, no blocking and very strange errors 8) 1367 */ 1368 1369 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1370 { 1371 struct tcp_sock *tp = tcp_sk(sk); 1372 1373 /* No URG data to read. */ 1374 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1375 tp->urg_data == TCP_URG_READ) 1376 return -EINVAL; /* Yes this is right ! */ 1377 1378 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1379 return -ENOTCONN; 1380 1381 if (tp->urg_data & TCP_URG_VALID) { 1382 int err = 0; 1383 char c = tp->urg_data; 1384 1385 if (!(flags & MSG_PEEK)) 1386 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1387 1388 /* Read urgent data. */ 1389 msg->msg_flags |= MSG_OOB; 1390 1391 if (len > 0) { 1392 if (!(flags & MSG_TRUNC)) 1393 err = memcpy_to_msg(msg, &c, 1); 1394 len = 1; 1395 } else 1396 msg->msg_flags |= MSG_TRUNC; 1397 1398 return err ? -EFAULT : len; 1399 } 1400 1401 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1402 return 0; 1403 1404 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1405 * the available implementations agree in this case: 1406 * this call should never block, independent of the 1407 * blocking state of the socket. 1408 * Mike <pall@rz.uni-karlsruhe.de> 1409 */ 1410 return -EAGAIN; 1411 } 1412 1413 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1414 { 1415 struct sk_buff *skb; 1416 int copied = 0, err = 0; 1417 1418 /* XXX -- need to support SO_PEEK_OFF */ 1419 1420 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1421 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1422 if (err) 1423 return err; 1424 copied += skb->len; 1425 } 1426 1427 skb_queue_walk(&sk->sk_write_queue, skb) { 1428 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1429 if (err) 1430 break; 1431 1432 copied += skb->len; 1433 } 1434 1435 return err ?: copied; 1436 } 1437 1438 /* Clean up the receive buffer for full frames taken by the user, 1439 * then send an ACK if necessary. COPIED is the number of bytes 1440 * tcp_recvmsg has given to the user so far, it speeds up the 1441 * calculation of whether or not we must ACK for the sake of 1442 * a window update. 1443 */ 1444 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1445 { 1446 struct tcp_sock *tp = tcp_sk(sk); 1447 bool time_to_ack = false; 1448 1449 if (inet_csk_ack_scheduled(sk)) { 1450 const struct inet_connection_sock *icsk = inet_csk(sk); 1451 1452 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1453 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1454 /* 1455 * If this read emptied read buffer, we send ACK, if 1456 * connection is not bidirectional, user drained 1457 * receive buffer and there was a small segment 1458 * in queue. 1459 */ 1460 (copied > 0 && 1461 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1462 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1463 !inet_csk_in_pingpong_mode(sk))) && 1464 !atomic_read(&sk->sk_rmem_alloc))) 1465 time_to_ack = true; 1466 } 1467 1468 /* We send an ACK if we can now advertise a non-zero window 1469 * which has been raised "significantly". 1470 * 1471 * Even if window raised up to infinity, do not send window open ACK 1472 * in states, where we will not receive more. It is useless. 1473 */ 1474 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1475 __u32 rcv_window_now = tcp_receive_window(tp); 1476 1477 /* Optimize, __tcp_select_window() is not cheap. */ 1478 if (2*rcv_window_now <= tp->window_clamp) { 1479 __u32 new_window = __tcp_select_window(sk); 1480 1481 /* Send ACK now, if this read freed lots of space 1482 * in our buffer. Certainly, new_window is new window. 1483 * We can advertise it now, if it is not less than current one. 1484 * "Lots" means "at least twice" here. 1485 */ 1486 if (new_window && new_window >= 2 * rcv_window_now) 1487 time_to_ack = true; 1488 } 1489 } 1490 if (time_to_ack) 1491 tcp_send_ack(sk); 1492 } 1493 1494 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1495 { 1496 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1497 struct tcp_sock *tp = tcp_sk(sk); 1498 1499 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1500 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1501 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1502 __tcp_cleanup_rbuf(sk, copied); 1503 } 1504 1505 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1506 { 1507 __skb_unlink(skb, &sk->sk_receive_queue); 1508 if (likely(skb->destructor == sock_rfree)) { 1509 sock_rfree(skb); 1510 skb->destructor = NULL; 1511 skb->sk = NULL; 1512 return skb_attempt_defer_free(skb); 1513 } 1514 __kfree_skb(skb); 1515 } 1516 1517 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1518 { 1519 struct sk_buff *skb; 1520 u32 offset; 1521 1522 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1523 offset = seq - TCP_SKB_CB(skb)->seq; 1524 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1525 pr_err_once("%s: found a SYN, please report !\n", __func__); 1526 offset--; 1527 } 1528 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1529 *off = offset; 1530 return skb; 1531 } 1532 /* This looks weird, but this can happen if TCP collapsing 1533 * splitted a fat GRO packet, while we released socket lock 1534 * in skb_splice_bits() 1535 */ 1536 tcp_eat_recv_skb(sk, skb); 1537 } 1538 return NULL; 1539 } 1540 EXPORT_SYMBOL(tcp_recv_skb); 1541 1542 /* 1543 * This routine provides an alternative to tcp_recvmsg() for routines 1544 * that would like to handle copying from skbuffs directly in 'sendfile' 1545 * fashion. 1546 * Note: 1547 * - It is assumed that the socket was locked by the caller. 1548 * - The routine does not block. 1549 * - At present, there is no support for reading OOB data 1550 * or for 'peeking' the socket using this routine 1551 * (although both would be easy to implement). 1552 */ 1553 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1554 sk_read_actor_t recv_actor) 1555 { 1556 struct sk_buff *skb; 1557 struct tcp_sock *tp = tcp_sk(sk); 1558 u32 seq = tp->copied_seq; 1559 u32 offset; 1560 int copied = 0; 1561 1562 if (sk->sk_state == TCP_LISTEN) 1563 return -ENOTCONN; 1564 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1565 if (offset < skb->len) { 1566 int used; 1567 size_t len; 1568 1569 len = skb->len - offset; 1570 /* Stop reading if we hit a patch of urgent data */ 1571 if (unlikely(tp->urg_data)) { 1572 u32 urg_offset = tp->urg_seq - seq; 1573 if (urg_offset < len) 1574 len = urg_offset; 1575 if (!len) 1576 break; 1577 } 1578 used = recv_actor(desc, skb, offset, len); 1579 if (used <= 0) { 1580 if (!copied) 1581 copied = used; 1582 break; 1583 } 1584 if (WARN_ON_ONCE(used > len)) 1585 used = len; 1586 seq += used; 1587 copied += used; 1588 offset += used; 1589 1590 /* If recv_actor drops the lock (e.g. TCP splice 1591 * receive) the skb pointer might be invalid when 1592 * getting here: tcp_collapse might have deleted it 1593 * while aggregating skbs from the socket queue. 1594 */ 1595 skb = tcp_recv_skb(sk, seq - 1, &offset); 1596 if (!skb) 1597 break; 1598 /* TCP coalescing might have appended data to the skb. 1599 * Try to splice more frags 1600 */ 1601 if (offset + 1 != skb->len) 1602 continue; 1603 } 1604 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1605 tcp_eat_recv_skb(sk, skb); 1606 ++seq; 1607 break; 1608 } 1609 tcp_eat_recv_skb(sk, skb); 1610 if (!desc->count) 1611 break; 1612 WRITE_ONCE(tp->copied_seq, seq); 1613 } 1614 WRITE_ONCE(tp->copied_seq, seq); 1615 1616 tcp_rcv_space_adjust(sk); 1617 1618 /* Clean up data we have read: This will do ACK frames. */ 1619 if (copied > 0) { 1620 tcp_recv_skb(sk, seq, &offset); 1621 tcp_cleanup_rbuf(sk, copied); 1622 } 1623 return copied; 1624 } 1625 EXPORT_SYMBOL(tcp_read_sock); 1626 1627 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1628 { 1629 struct sk_buff *skb; 1630 int copied = 0; 1631 1632 if (sk->sk_state == TCP_LISTEN) 1633 return -ENOTCONN; 1634 1635 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1636 u8 tcp_flags; 1637 int used; 1638 1639 __skb_unlink(skb, &sk->sk_receive_queue); 1640 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1641 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1642 used = recv_actor(sk, skb); 1643 if (used < 0) { 1644 if (!copied) 1645 copied = used; 1646 break; 1647 } 1648 copied += used; 1649 1650 if (tcp_flags & TCPHDR_FIN) 1651 break; 1652 } 1653 return copied; 1654 } 1655 EXPORT_SYMBOL(tcp_read_skb); 1656 1657 void tcp_read_done(struct sock *sk, size_t len) 1658 { 1659 struct tcp_sock *tp = tcp_sk(sk); 1660 u32 seq = tp->copied_seq; 1661 struct sk_buff *skb; 1662 size_t left; 1663 u32 offset; 1664 1665 if (sk->sk_state == TCP_LISTEN) 1666 return; 1667 1668 left = len; 1669 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1670 int used; 1671 1672 used = min_t(size_t, skb->len - offset, left); 1673 seq += used; 1674 left -= used; 1675 1676 if (skb->len > offset + used) 1677 break; 1678 1679 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1680 tcp_eat_recv_skb(sk, skb); 1681 ++seq; 1682 break; 1683 } 1684 tcp_eat_recv_skb(sk, skb); 1685 } 1686 WRITE_ONCE(tp->copied_seq, seq); 1687 1688 tcp_rcv_space_adjust(sk); 1689 1690 /* Clean up data we have read: This will do ACK frames. */ 1691 if (left != len) 1692 tcp_cleanup_rbuf(sk, len - left); 1693 } 1694 EXPORT_SYMBOL(tcp_read_done); 1695 1696 int tcp_peek_len(struct socket *sock) 1697 { 1698 return tcp_inq(sock->sk); 1699 } 1700 EXPORT_SYMBOL(tcp_peek_len); 1701 1702 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1703 int tcp_set_rcvlowat(struct sock *sk, int val) 1704 { 1705 int space, cap; 1706 1707 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1708 cap = sk->sk_rcvbuf >> 1; 1709 else 1710 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1711 val = min(val, cap); 1712 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1713 1714 /* Check if we need to signal EPOLLIN right now */ 1715 tcp_data_ready(sk); 1716 1717 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1718 return 0; 1719 1720 space = tcp_space_from_win(sk, val); 1721 if (space > sk->sk_rcvbuf) { 1722 WRITE_ONCE(sk->sk_rcvbuf, space); 1723 tcp_sk(sk)->window_clamp = val; 1724 } 1725 return 0; 1726 } 1727 EXPORT_SYMBOL(tcp_set_rcvlowat); 1728 1729 void tcp_update_recv_tstamps(struct sk_buff *skb, 1730 struct scm_timestamping_internal *tss) 1731 { 1732 if (skb->tstamp) 1733 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1734 else 1735 tss->ts[0] = (struct timespec64) {0}; 1736 1737 if (skb_hwtstamps(skb)->hwtstamp) 1738 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1739 else 1740 tss->ts[2] = (struct timespec64) {0}; 1741 } 1742 1743 #ifdef CONFIG_MMU 1744 static const struct vm_operations_struct tcp_vm_ops = { 1745 }; 1746 1747 int tcp_mmap(struct file *file, struct socket *sock, 1748 struct vm_area_struct *vma) 1749 { 1750 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1751 return -EPERM; 1752 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1753 1754 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1755 vm_flags_set(vma, VM_MIXEDMAP); 1756 1757 vma->vm_ops = &tcp_vm_ops; 1758 return 0; 1759 } 1760 EXPORT_SYMBOL(tcp_mmap); 1761 1762 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1763 u32 *offset_frag) 1764 { 1765 skb_frag_t *frag; 1766 1767 if (unlikely(offset_skb >= skb->len)) 1768 return NULL; 1769 1770 offset_skb -= skb_headlen(skb); 1771 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1772 return NULL; 1773 1774 frag = skb_shinfo(skb)->frags; 1775 while (offset_skb) { 1776 if (skb_frag_size(frag) > offset_skb) { 1777 *offset_frag = offset_skb; 1778 return frag; 1779 } 1780 offset_skb -= skb_frag_size(frag); 1781 ++frag; 1782 } 1783 *offset_frag = 0; 1784 return frag; 1785 } 1786 1787 static bool can_map_frag(const skb_frag_t *frag) 1788 { 1789 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1790 } 1791 1792 static int find_next_mappable_frag(const skb_frag_t *frag, 1793 int remaining_in_skb) 1794 { 1795 int offset = 0; 1796 1797 if (likely(can_map_frag(frag))) 1798 return 0; 1799 1800 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1801 offset += skb_frag_size(frag); 1802 ++frag; 1803 } 1804 return offset; 1805 } 1806 1807 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1808 struct tcp_zerocopy_receive *zc, 1809 struct sk_buff *skb, u32 offset) 1810 { 1811 u32 frag_offset, partial_frag_remainder = 0; 1812 int mappable_offset; 1813 skb_frag_t *frag; 1814 1815 /* worst case: skip to next skb. try to improve on this case below */ 1816 zc->recv_skip_hint = skb->len - offset; 1817 1818 /* Find the frag containing this offset (and how far into that frag) */ 1819 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1820 if (!frag) 1821 return; 1822 1823 if (frag_offset) { 1824 struct skb_shared_info *info = skb_shinfo(skb); 1825 1826 /* We read part of the last frag, must recvmsg() rest of skb. */ 1827 if (frag == &info->frags[info->nr_frags - 1]) 1828 return; 1829 1830 /* Else, we must at least read the remainder in this frag. */ 1831 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1832 zc->recv_skip_hint -= partial_frag_remainder; 1833 ++frag; 1834 } 1835 1836 /* partial_frag_remainder: If part way through a frag, must read rest. 1837 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1838 * in partial_frag_remainder. 1839 */ 1840 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1841 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1842 } 1843 1844 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1845 int flags, struct scm_timestamping_internal *tss, 1846 int *cmsg_flags); 1847 static int receive_fallback_to_copy(struct sock *sk, 1848 struct tcp_zerocopy_receive *zc, int inq, 1849 struct scm_timestamping_internal *tss) 1850 { 1851 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1852 struct msghdr msg = {}; 1853 int err; 1854 1855 zc->length = 0; 1856 zc->recv_skip_hint = 0; 1857 1858 if (copy_address != zc->copybuf_address) 1859 return -EINVAL; 1860 1861 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1862 &msg.msg_iter); 1863 if (err) 1864 return err; 1865 1866 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1867 tss, &zc->msg_flags); 1868 if (err < 0) 1869 return err; 1870 1871 zc->copybuf_len = err; 1872 if (likely(zc->copybuf_len)) { 1873 struct sk_buff *skb; 1874 u32 offset; 1875 1876 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1877 if (skb) 1878 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1879 } 1880 return 0; 1881 } 1882 1883 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1884 struct sk_buff *skb, u32 copylen, 1885 u32 *offset, u32 *seq) 1886 { 1887 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1888 struct msghdr msg = {}; 1889 int err; 1890 1891 if (copy_address != zc->copybuf_address) 1892 return -EINVAL; 1893 1894 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1895 &msg.msg_iter); 1896 if (err) 1897 return err; 1898 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1899 if (err) 1900 return err; 1901 zc->recv_skip_hint -= copylen; 1902 *offset += copylen; 1903 *seq += copylen; 1904 return (__s32)copylen; 1905 } 1906 1907 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1908 struct sock *sk, 1909 struct sk_buff *skb, 1910 u32 *seq, 1911 s32 copybuf_len, 1912 struct scm_timestamping_internal *tss) 1913 { 1914 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1915 1916 if (!copylen) 1917 return 0; 1918 /* skb is null if inq < PAGE_SIZE. */ 1919 if (skb) { 1920 offset = *seq - TCP_SKB_CB(skb)->seq; 1921 } else { 1922 skb = tcp_recv_skb(sk, *seq, &offset); 1923 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1924 tcp_update_recv_tstamps(skb, tss); 1925 zc->msg_flags |= TCP_CMSG_TS; 1926 } 1927 } 1928 1929 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1930 seq); 1931 return zc->copybuf_len < 0 ? 0 : copylen; 1932 } 1933 1934 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1935 struct page **pending_pages, 1936 unsigned long pages_remaining, 1937 unsigned long *address, 1938 u32 *length, 1939 u32 *seq, 1940 struct tcp_zerocopy_receive *zc, 1941 u32 total_bytes_to_map, 1942 int err) 1943 { 1944 /* At least one page did not map. Try zapping if we skipped earlier. */ 1945 if (err == -EBUSY && 1946 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1947 u32 maybe_zap_len; 1948 1949 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1950 *length + /* Mapped or pending */ 1951 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1952 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1953 err = 0; 1954 } 1955 1956 if (!err) { 1957 unsigned long leftover_pages = pages_remaining; 1958 int bytes_mapped; 1959 1960 /* We called zap_page_range_single, try to reinsert. */ 1961 err = vm_insert_pages(vma, *address, 1962 pending_pages, 1963 &pages_remaining); 1964 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1965 *seq += bytes_mapped; 1966 *address += bytes_mapped; 1967 } 1968 if (err) { 1969 /* Either we were unable to zap, OR we zapped, retried an 1970 * insert, and still had an issue. Either ways, pages_remaining 1971 * is the number of pages we were unable to map, and we unroll 1972 * some state we speculatively touched before. 1973 */ 1974 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1975 1976 *length -= bytes_not_mapped; 1977 zc->recv_skip_hint += bytes_not_mapped; 1978 } 1979 return err; 1980 } 1981 1982 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1983 struct page **pages, 1984 unsigned int pages_to_map, 1985 unsigned long *address, 1986 u32 *length, 1987 u32 *seq, 1988 struct tcp_zerocopy_receive *zc, 1989 u32 total_bytes_to_map) 1990 { 1991 unsigned long pages_remaining = pages_to_map; 1992 unsigned int pages_mapped; 1993 unsigned int bytes_mapped; 1994 int err; 1995 1996 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1997 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1998 bytes_mapped = PAGE_SIZE * pages_mapped; 1999 /* Even if vm_insert_pages fails, it may have partially succeeded in 2000 * mapping (some but not all of the pages). 2001 */ 2002 *seq += bytes_mapped; 2003 *address += bytes_mapped; 2004 2005 if (likely(!err)) 2006 return 0; 2007 2008 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2009 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2010 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2011 err); 2012 } 2013 2014 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2015 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2016 struct tcp_zerocopy_receive *zc, 2017 struct scm_timestamping_internal *tss) 2018 { 2019 unsigned long msg_control_addr; 2020 struct msghdr cmsg_dummy; 2021 2022 msg_control_addr = (unsigned long)zc->msg_control; 2023 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2024 cmsg_dummy.msg_controllen = 2025 (__kernel_size_t)zc->msg_controllen; 2026 cmsg_dummy.msg_flags = in_compat_syscall() 2027 ? MSG_CMSG_COMPAT : 0; 2028 cmsg_dummy.msg_control_is_user = true; 2029 zc->msg_flags = 0; 2030 if (zc->msg_control == msg_control_addr && 2031 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2032 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2033 zc->msg_control = (__u64) 2034 ((uintptr_t)cmsg_dummy.msg_control_user); 2035 zc->msg_controllen = 2036 (__u64)cmsg_dummy.msg_controllen; 2037 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2038 } 2039 } 2040 2041 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2042 unsigned long address, 2043 bool *mmap_locked) 2044 { 2045 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2046 2047 if (vma) { 2048 if (vma->vm_ops != &tcp_vm_ops) { 2049 vma_end_read(vma); 2050 return NULL; 2051 } 2052 *mmap_locked = false; 2053 return vma; 2054 } 2055 2056 mmap_read_lock(mm); 2057 vma = vma_lookup(mm, address); 2058 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2059 mmap_read_unlock(mm); 2060 return NULL; 2061 } 2062 *mmap_locked = true; 2063 return vma; 2064 } 2065 2066 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2067 static int tcp_zerocopy_receive(struct sock *sk, 2068 struct tcp_zerocopy_receive *zc, 2069 struct scm_timestamping_internal *tss) 2070 { 2071 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2072 unsigned long address = (unsigned long)zc->address; 2073 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2074 s32 copybuf_len = zc->copybuf_len; 2075 struct tcp_sock *tp = tcp_sk(sk); 2076 const skb_frag_t *frags = NULL; 2077 unsigned int pages_to_map = 0; 2078 struct vm_area_struct *vma; 2079 struct sk_buff *skb = NULL; 2080 u32 seq = tp->copied_seq; 2081 u32 total_bytes_to_map; 2082 int inq = tcp_inq(sk); 2083 bool mmap_locked; 2084 int ret; 2085 2086 zc->copybuf_len = 0; 2087 zc->msg_flags = 0; 2088 2089 if (address & (PAGE_SIZE - 1) || address != zc->address) 2090 return -EINVAL; 2091 2092 if (sk->sk_state == TCP_LISTEN) 2093 return -ENOTCONN; 2094 2095 sock_rps_record_flow(sk); 2096 2097 if (inq && inq <= copybuf_len) 2098 return receive_fallback_to_copy(sk, zc, inq, tss); 2099 2100 if (inq < PAGE_SIZE) { 2101 zc->length = 0; 2102 zc->recv_skip_hint = inq; 2103 if (!inq && sock_flag(sk, SOCK_DONE)) 2104 return -EIO; 2105 return 0; 2106 } 2107 2108 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2109 if (!vma) 2110 return -EINVAL; 2111 2112 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2113 avail_len = min_t(u32, vma_len, inq); 2114 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2115 if (total_bytes_to_map) { 2116 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2117 zap_page_range_single(vma, address, total_bytes_to_map, 2118 NULL); 2119 zc->length = total_bytes_to_map; 2120 zc->recv_skip_hint = 0; 2121 } else { 2122 zc->length = avail_len; 2123 zc->recv_skip_hint = avail_len; 2124 } 2125 ret = 0; 2126 while (length + PAGE_SIZE <= zc->length) { 2127 int mappable_offset; 2128 struct page *page; 2129 2130 if (zc->recv_skip_hint < PAGE_SIZE) { 2131 u32 offset_frag; 2132 2133 if (skb) { 2134 if (zc->recv_skip_hint > 0) 2135 break; 2136 skb = skb->next; 2137 offset = seq - TCP_SKB_CB(skb)->seq; 2138 } else { 2139 skb = tcp_recv_skb(sk, seq, &offset); 2140 } 2141 2142 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2143 tcp_update_recv_tstamps(skb, tss); 2144 zc->msg_flags |= TCP_CMSG_TS; 2145 } 2146 zc->recv_skip_hint = skb->len - offset; 2147 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2148 if (!frags || offset_frag) 2149 break; 2150 } 2151 2152 mappable_offset = find_next_mappable_frag(frags, 2153 zc->recv_skip_hint); 2154 if (mappable_offset) { 2155 zc->recv_skip_hint = mappable_offset; 2156 break; 2157 } 2158 page = skb_frag_page(frags); 2159 prefetchw(page); 2160 pages[pages_to_map++] = page; 2161 length += PAGE_SIZE; 2162 zc->recv_skip_hint -= PAGE_SIZE; 2163 frags++; 2164 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2165 zc->recv_skip_hint < PAGE_SIZE) { 2166 /* Either full batch, or we're about to go to next skb 2167 * (and we cannot unroll failed ops across skbs). 2168 */ 2169 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2170 pages_to_map, 2171 &address, &length, 2172 &seq, zc, 2173 total_bytes_to_map); 2174 if (ret) 2175 goto out; 2176 pages_to_map = 0; 2177 } 2178 } 2179 if (pages_to_map) { 2180 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2181 &address, &length, &seq, 2182 zc, total_bytes_to_map); 2183 } 2184 out: 2185 if (mmap_locked) 2186 mmap_read_unlock(current->mm); 2187 else 2188 vma_end_read(vma); 2189 /* Try to copy straggler data. */ 2190 if (!ret) 2191 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2192 2193 if (length + copylen) { 2194 WRITE_ONCE(tp->copied_seq, seq); 2195 tcp_rcv_space_adjust(sk); 2196 2197 /* Clean up data we have read: This will do ACK frames. */ 2198 tcp_recv_skb(sk, seq, &offset); 2199 tcp_cleanup_rbuf(sk, length + copylen); 2200 ret = 0; 2201 if (length == zc->length) 2202 zc->recv_skip_hint = 0; 2203 } else { 2204 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2205 ret = -EIO; 2206 } 2207 zc->length = length; 2208 return ret; 2209 } 2210 #endif 2211 2212 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2213 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2214 struct scm_timestamping_internal *tss) 2215 { 2216 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2217 bool has_timestamping = false; 2218 2219 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2220 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2221 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2222 if (new_tstamp) { 2223 struct __kernel_timespec kts = { 2224 .tv_sec = tss->ts[0].tv_sec, 2225 .tv_nsec = tss->ts[0].tv_nsec, 2226 }; 2227 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2228 sizeof(kts), &kts); 2229 } else { 2230 struct __kernel_old_timespec ts_old = { 2231 .tv_sec = tss->ts[0].tv_sec, 2232 .tv_nsec = tss->ts[0].tv_nsec, 2233 }; 2234 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2235 sizeof(ts_old), &ts_old); 2236 } 2237 } else { 2238 if (new_tstamp) { 2239 struct __kernel_sock_timeval stv = { 2240 .tv_sec = tss->ts[0].tv_sec, 2241 .tv_usec = tss->ts[0].tv_nsec / 1000, 2242 }; 2243 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2244 sizeof(stv), &stv); 2245 } else { 2246 struct __kernel_old_timeval tv = { 2247 .tv_sec = tss->ts[0].tv_sec, 2248 .tv_usec = tss->ts[0].tv_nsec / 1000, 2249 }; 2250 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2251 sizeof(tv), &tv); 2252 } 2253 } 2254 } 2255 2256 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2257 has_timestamping = true; 2258 else 2259 tss->ts[0] = (struct timespec64) {0}; 2260 } 2261 2262 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2263 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2264 has_timestamping = true; 2265 else 2266 tss->ts[2] = (struct timespec64) {0}; 2267 } 2268 2269 if (has_timestamping) { 2270 tss->ts[1] = (struct timespec64) {0}; 2271 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2272 put_cmsg_scm_timestamping64(msg, tss); 2273 else 2274 put_cmsg_scm_timestamping(msg, tss); 2275 } 2276 } 2277 2278 static int tcp_inq_hint(struct sock *sk) 2279 { 2280 const struct tcp_sock *tp = tcp_sk(sk); 2281 u32 copied_seq = READ_ONCE(tp->copied_seq); 2282 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2283 int inq; 2284 2285 inq = rcv_nxt - copied_seq; 2286 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2287 lock_sock(sk); 2288 inq = tp->rcv_nxt - tp->copied_seq; 2289 release_sock(sk); 2290 } 2291 /* After receiving a FIN, tell the user-space to continue reading 2292 * by returning a non-zero inq. 2293 */ 2294 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2295 inq = 1; 2296 return inq; 2297 } 2298 2299 /* 2300 * This routine copies from a sock struct into the user buffer. 2301 * 2302 * Technical note: in 2.3 we work on _locked_ socket, so that 2303 * tricks with *seq access order and skb->users are not required. 2304 * Probably, code can be easily improved even more. 2305 */ 2306 2307 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2308 int flags, struct scm_timestamping_internal *tss, 2309 int *cmsg_flags) 2310 { 2311 struct tcp_sock *tp = tcp_sk(sk); 2312 int copied = 0; 2313 u32 peek_seq; 2314 u32 *seq; 2315 unsigned long used; 2316 int err; 2317 int target; /* Read at least this many bytes */ 2318 long timeo; 2319 struct sk_buff *skb, *last; 2320 u32 urg_hole = 0; 2321 2322 err = -ENOTCONN; 2323 if (sk->sk_state == TCP_LISTEN) 2324 goto out; 2325 2326 if (tp->recvmsg_inq) { 2327 *cmsg_flags = TCP_CMSG_INQ; 2328 msg->msg_get_inq = 1; 2329 } 2330 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2331 2332 /* Urgent data needs to be handled specially. */ 2333 if (flags & MSG_OOB) 2334 goto recv_urg; 2335 2336 if (unlikely(tp->repair)) { 2337 err = -EPERM; 2338 if (!(flags & MSG_PEEK)) 2339 goto out; 2340 2341 if (tp->repair_queue == TCP_SEND_QUEUE) 2342 goto recv_sndq; 2343 2344 err = -EINVAL; 2345 if (tp->repair_queue == TCP_NO_QUEUE) 2346 goto out; 2347 2348 /* 'common' recv queue MSG_PEEK-ing */ 2349 } 2350 2351 seq = &tp->copied_seq; 2352 if (flags & MSG_PEEK) { 2353 peek_seq = tp->copied_seq; 2354 seq = &peek_seq; 2355 } 2356 2357 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2358 2359 do { 2360 u32 offset; 2361 2362 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2363 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2364 if (copied) 2365 break; 2366 if (signal_pending(current)) { 2367 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2368 break; 2369 } 2370 } 2371 2372 /* Next get a buffer. */ 2373 2374 last = skb_peek_tail(&sk->sk_receive_queue); 2375 skb_queue_walk(&sk->sk_receive_queue, skb) { 2376 last = skb; 2377 /* Now that we have two receive queues this 2378 * shouldn't happen. 2379 */ 2380 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2381 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2382 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2383 flags)) 2384 break; 2385 2386 offset = *seq - TCP_SKB_CB(skb)->seq; 2387 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2388 pr_err_once("%s: found a SYN, please report !\n", __func__); 2389 offset--; 2390 } 2391 if (offset < skb->len) 2392 goto found_ok_skb; 2393 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2394 goto found_fin_ok; 2395 WARN(!(flags & MSG_PEEK), 2396 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2397 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2398 } 2399 2400 /* Well, if we have backlog, try to process it now yet. */ 2401 2402 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2403 break; 2404 2405 if (copied) { 2406 if (!timeo || 2407 sk->sk_err || 2408 sk->sk_state == TCP_CLOSE || 2409 (sk->sk_shutdown & RCV_SHUTDOWN) || 2410 signal_pending(current)) 2411 break; 2412 } else { 2413 if (sock_flag(sk, SOCK_DONE)) 2414 break; 2415 2416 if (sk->sk_err) { 2417 copied = sock_error(sk); 2418 break; 2419 } 2420 2421 if (sk->sk_shutdown & RCV_SHUTDOWN) 2422 break; 2423 2424 if (sk->sk_state == TCP_CLOSE) { 2425 /* This occurs when user tries to read 2426 * from never connected socket. 2427 */ 2428 copied = -ENOTCONN; 2429 break; 2430 } 2431 2432 if (!timeo) { 2433 copied = -EAGAIN; 2434 break; 2435 } 2436 2437 if (signal_pending(current)) { 2438 copied = sock_intr_errno(timeo); 2439 break; 2440 } 2441 } 2442 2443 if (copied >= target) { 2444 /* Do not sleep, just process backlog. */ 2445 __sk_flush_backlog(sk); 2446 } else { 2447 tcp_cleanup_rbuf(sk, copied); 2448 err = sk_wait_data(sk, &timeo, last); 2449 if (err < 0) { 2450 err = copied ? : err; 2451 goto out; 2452 } 2453 } 2454 2455 if ((flags & MSG_PEEK) && 2456 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2457 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2458 current->comm, 2459 task_pid_nr(current)); 2460 peek_seq = tp->copied_seq; 2461 } 2462 continue; 2463 2464 found_ok_skb: 2465 /* Ok so how much can we use? */ 2466 used = skb->len - offset; 2467 if (len < used) 2468 used = len; 2469 2470 /* Do we have urgent data here? */ 2471 if (unlikely(tp->urg_data)) { 2472 u32 urg_offset = tp->urg_seq - *seq; 2473 if (urg_offset < used) { 2474 if (!urg_offset) { 2475 if (!sock_flag(sk, SOCK_URGINLINE)) { 2476 WRITE_ONCE(*seq, *seq + 1); 2477 urg_hole++; 2478 offset++; 2479 used--; 2480 if (!used) 2481 goto skip_copy; 2482 } 2483 } else 2484 used = urg_offset; 2485 } 2486 } 2487 2488 if (!(flags & MSG_TRUNC)) { 2489 err = skb_copy_datagram_msg(skb, offset, msg, used); 2490 if (err) { 2491 /* Exception. Bailout! */ 2492 if (!copied) 2493 copied = -EFAULT; 2494 break; 2495 } 2496 } 2497 2498 WRITE_ONCE(*seq, *seq + used); 2499 copied += used; 2500 len -= used; 2501 2502 tcp_rcv_space_adjust(sk); 2503 2504 skip_copy: 2505 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2506 WRITE_ONCE(tp->urg_data, 0); 2507 tcp_fast_path_check(sk); 2508 } 2509 2510 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2511 tcp_update_recv_tstamps(skb, tss); 2512 *cmsg_flags |= TCP_CMSG_TS; 2513 } 2514 2515 if (used + offset < skb->len) 2516 continue; 2517 2518 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2519 goto found_fin_ok; 2520 if (!(flags & MSG_PEEK)) 2521 tcp_eat_recv_skb(sk, skb); 2522 continue; 2523 2524 found_fin_ok: 2525 /* Process the FIN. */ 2526 WRITE_ONCE(*seq, *seq + 1); 2527 if (!(flags & MSG_PEEK)) 2528 tcp_eat_recv_skb(sk, skb); 2529 break; 2530 } while (len > 0); 2531 2532 /* According to UNIX98, msg_name/msg_namelen are ignored 2533 * on connected socket. I was just happy when found this 8) --ANK 2534 */ 2535 2536 /* Clean up data we have read: This will do ACK frames. */ 2537 tcp_cleanup_rbuf(sk, copied); 2538 return copied; 2539 2540 out: 2541 return err; 2542 2543 recv_urg: 2544 err = tcp_recv_urg(sk, msg, len, flags); 2545 goto out; 2546 2547 recv_sndq: 2548 err = tcp_peek_sndq(sk, msg, len); 2549 goto out; 2550 } 2551 2552 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2553 int *addr_len) 2554 { 2555 int cmsg_flags = 0, ret; 2556 struct scm_timestamping_internal tss; 2557 2558 if (unlikely(flags & MSG_ERRQUEUE)) 2559 return inet_recv_error(sk, msg, len, addr_len); 2560 2561 if (sk_can_busy_loop(sk) && 2562 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2563 sk->sk_state == TCP_ESTABLISHED) 2564 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2565 2566 lock_sock(sk); 2567 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2568 release_sock(sk); 2569 2570 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2571 if (cmsg_flags & TCP_CMSG_TS) 2572 tcp_recv_timestamp(msg, sk, &tss); 2573 if (msg->msg_get_inq) { 2574 msg->msg_inq = tcp_inq_hint(sk); 2575 if (cmsg_flags & TCP_CMSG_INQ) 2576 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2577 sizeof(msg->msg_inq), &msg->msg_inq); 2578 } 2579 } 2580 return ret; 2581 } 2582 EXPORT_SYMBOL(tcp_recvmsg); 2583 2584 void tcp_set_state(struct sock *sk, int state) 2585 { 2586 int oldstate = sk->sk_state; 2587 2588 /* We defined a new enum for TCP states that are exported in BPF 2589 * so as not force the internal TCP states to be frozen. The 2590 * following checks will detect if an internal state value ever 2591 * differs from the BPF value. If this ever happens, then we will 2592 * need to remap the internal value to the BPF value before calling 2593 * tcp_call_bpf_2arg. 2594 */ 2595 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2596 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2597 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2598 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2599 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2600 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2601 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2602 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2603 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2604 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2605 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2606 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2607 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2608 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2609 2610 /* bpf uapi header bpf.h defines an anonymous enum with values 2611 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2612 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2613 * But clang built vmlinux does not have this enum in DWARF 2614 * since clang removes the above code before generating IR/debuginfo. 2615 * Let us explicitly emit the type debuginfo to ensure the 2616 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2617 * regardless of which compiler is used. 2618 */ 2619 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2620 2621 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2622 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2623 2624 switch (state) { 2625 case TCP_ESTABLISHED: 2626 if (oldstate != TCP_ESTABLISHED) 2627 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2628 break; 2629 2630 case TCP_CLOSE: 2631 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2632 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2633 2634 sk->sk_prot->unhash(sk); 2635 if (inet_csk(sk)->icsk_bind_hash && 2636 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2637 inet_put_port(sk); 2638 fallthrough; 2639 default: 2640 if (oldstate == TCP_ESTABLISHED) 2641 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2642 } 2643 2644 /* Change state AFTER socket is unhashed to avoid closed 2645 * socket sitting in hash tables. 2646 */ 2647 inet_sk_state_store(sk, state); 2648 } 2649 EXPORT_SYMBOL_GPL(tcp_set_state); 2650 2651 /* 2652 * State processing on a close. This implements the state shift for 2653 * sending our FIN frame. Note that we only send a FIN for some 2654 * states. A shutdown() may have already sent the FIN, or we may be 2655 * closed. 2656 */ 2657 2658 static const unsigned char new_state[16] = { 2659 /* current state: new state: action: */ 2660 [0 /* (Invalid) */] = TCP_CLOSE, 2661 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2662 [TCP_SYN_SENT] = TCP_CLOSE, 2663 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2664 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2665 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2666 [TCP_TIME_WAIT] = TCP_CLOSE, 2667 [TCP_CLOSE] = TCP_CLOSE, 2668 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2669 [TCP_LAST_ACK] = TCP_LAST_ACK, 2670 [TCP_LISTEN] = TCP_CLOSE, 2671 [TCP_CLOSING] = TCP_CLOSING, 2672 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2673 }; 2674 2675 static int tcp_close_state(struct sock *sk) 2676 { 2677 int next = (int)new_state[sk->sk_state]; 2678 int ns = next & TCP_STATE_MASK; 2679 2680 tcp_set_state(sk, ns); 2681 2682 return next & TCP_ACTION_FIN; 2683 } 2684 2685 /* 2686 * Shutdown the sending side of a connection. Much like close except 2687 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2688 */ 2689 2690 void tcp_shutdown(struct sock *sk, int how) 2691 { 2692 /* We need to grab some memory, and put together a FIN, 2693 * and then put it into the queue to be sent. 2694 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2695 */ 2696 if (!(how & SEND_SHUTDOWN)) 2697 return; 2698 2699 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2700 if ((1 << sk->sk_state) & 2701 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2702 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2703 /* Clear out any half completed packets. FIN if needed. */ 2704 if (tcp_close_state(sk)) 2705 tcp_send_fin(sk); 2706 } 2707 } 2708 EXPORT_SYMBOL(tcp_shutdown); 2709 2710 int tcp_orphan_count_sum(void) 2711 { 2712 int i, total = 0; 2713 2714 for_each_possible_cpu(i) 2715 total += per_cpu(tcp_orphan_count, i); 2716 2717 return max(total, 0); 2718 } 2719 2720 static int tcp_orphan_cache; 2721 static struct timer_list tcp_orphan_timer; 2722 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2723 2724 static void tcp_orphan_update(struct timer_list *unused) 2725 { 2726 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2727 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2728 } 2729 2730 static bool tcp_too_many_orphans(int shift) 2731 { 2732 return READ_ONCE(tcp_orphan_cache) << shift > 2733 READ_ONCE(sysctl_tcp_max_orphans); 2734 } 2735 2736 bool tcp_check_oom(struct sock *sk, int shift) 2737 { 2738 bool too_many_orphans, out_of_socket_memory; 2739 2740 too_many_orphans = tcp_too_many_orphans(shift); 2741 out_of_socket_memory = tcp_out_of_memory(sk); 2742 2743 if (too_many_orphans) 2744 net_info_ratelimited("too many orphaned sockets\n"); 2745 if (out_of_socket_memory) 2746 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2747 return too_many_orphans || out_of_socket_memory; 2748 } 2749 2750 void __tcp_close(struct sock *sk, long timeout) 2751 { 2752 struct sk_buff *skb; 2753 int data_was_unread = 0; 2754 int state; 2755 2756 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2757 2758 if (sk->sk_state == TCP_LISTEN) { 2759 tcp_set_state(sk, TCP_CLOSE); 2760 2761 /* Special case. */ 2762 inet_csk_listen_stop(sk); 2763 2764 goto adjudge_to_death; 2765 } 2766 2767 /* We need to flush the recv. buffs. We do this only on the 2768 * descriptor close, not protocol-sourced closes, because the 2769 * reader process may not have drained the data yet! 2770 */ 2771 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2772 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2773 2774 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2775 len--; 2776 data_was_unread += len; 2777 __kfree_skb(skb); 2778 } 2779 2780 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2781 if (sk->sk_state == TCP_CLOSE) 2782 goto adjudge_to_death; 2783 2784 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2785 * data was lost. To witness the awful effects of the old behavior of 2786 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2787 * GET in an FTP client, suspend the process, wait for the client to 2788 * advertise a zero window, then kill -9 the FTP client, wheee... 2789 * Note: timeout is always zero in such a case. 2790 */ 2791 if (unlikely(tcp_sk(sk)->repair)) { 2792 sk->sk_prot->disconnect(sk, 0); 2793 } else if (data_was_unread) { 2794 /* Unread data was tossed, zap the connection. */ 2795 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2796 tcp_set_state(sk, TCP_CLOSE); 2797 tcp_send_active_reset(sk, sk->sk_allocation); 2798 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2799 /* Check zero linger _after_ checking for unread data. */ 2800 sk->sk_prot->disconnect(sk, 0); 2801 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2802 } else if (tcp_close_state(sk)) { 2803 /* We FIN if the application ate all the data before 2804 * zapping the connection. 2805 */ 2806 2807 /* RED-PEN. Formally speaking, we have broken TCP state 2808 * machine. State transitions: 2809 * 2810 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2811 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2812 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2813 * 2814 * are legal only when FIN has been sent (i.e. in window), 2815 * rather than queued out of window. Purists blame. 2816 * 2817 * F.e. "RFC state" is ESTABLISHED, 2818 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2819 * 2820 * The visible declinations are that sometimes 2821 * we enter time-wait state, when it is not required really 2822 * (harmless), do not send active resets, when they are 2823 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2824 * they look as CLOSING or LAST_ACK for Linux) 2825 * Probably, I missed some more holelets. 2826 * --ANK 2827 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2828 * in a single packet! (May consider it later but will 2829 * probably need API support or TCP_CORK SYN-ACK until 2830 * data is written and socket is closed.) 2831 */ 2832 tcp_send_fin(sk); 2833 } 2834 2835 sk_stream_wait_close(sk, timeout); 2836 2837 adjudge_to_death: 2838 state = sk->sk_state; 2839 sock_hold(sk); 2840 sock_orphan(sk); 2841 2842 local_bh_disable(); 2843 bh_lock_sock(sk); 2844 /* remove backlog if any, without releasing ownership. */ 2845 __release_sock(sk); 2846 2847 this_cpu_inc(tcp_orphan_count); 2848 2849 /* Have we already been destroyed by a softirq or backlog? */ 2850 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2851 goto out; 2852 2853 /* This is a (useful) BSD violating of the RFC. There is a 2854 * problem with TCP as specified in that the other end could 2855 * keep a socket open forever with no application left this end. 2856 * We use a 1 minute timeout (about the same as BSD) then kill 2857 * our end. If they send after that then tough - BUT: long enough 2858 * that we won't make the old 4*rto = almost no time - whoops 2859 * reset mistake. 2860 * 2861 * Nope, it was not mistake. It is really desired behaviour 2862 * f.e. on http servers, when such sockets are useless, but 2863 * consume significant resources. Let's do it with special 2864 * linger2 option. --ANK 2865 */ 2866 2867 if (sk->sk_state == TCP_FIN_WAIT2) { 2868 struct tcp_sock *tp = tcp_sk(sk); 2869 if (READ_ONCE(tp->linger2) < 0) { 2870 tcp_set_state(sk, TCP_CLOSE); 2871 tcp_send_active_reset(sk, GFP_ATOMIC); 2872 __NET_INC_STATS(sock_net(sk), 2873 LINUX_MIB_TCPABORTONLINGER); 2874 } else { 2875 const int tmo = tcp_fin_time(sk); 2876 2877 if (tmo > TCP_TIMEWAIT_LEN) { 2878 inet_csk_reset_keepalive_timer(sk, 2879 tmo - TCP_TIMEWAIT_LEN); 2880 } else { 2881 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2882 goto out; 2883 } 2884 } 2885 } 2886 if (sk->sk_state != TCP_CLOSE) { 2887 if (tcp_check_oom(sk, 0)) { 2888 tcp_set_state(sk, TCP_CLOSE); 2889 tcp_send_active_reset(sk, GFP_ATOMIC); 2890 __NET_INC_STATS(sock_net(sk), 2891 LINUX_MIB_TCPABORTONMEMORY); 2892 } else if (!check_net(sock_net(sk))) { 2893 /* Not possible to send reset; just close */ 2894 tcp_set_state(sk, TCP_CLOSE); 2895 } 2896 } 2897 2898 if (sk->sk_state == TCP_CLOSE) { 2899 struct request_sock *req; 2900 2901 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2902 lockdep_sock_is_held(sk)); 2903 /* We could get here with a non-NULL req if the socket is 2904 * aborted (e.g., closed with unread data) before 3WHS 2905 * finishes. 2906 */ 2907 if (req) 2908 reqsk_fastopen_remove(sk, req, false); 2909 inet_csk_destroy_sock(sk); 2910 } 2911 /* Otherwise, socket is reprieved until protocol close. */ 2912 2913 out: 2914 bh_unlock_sock(sk); 2915 local_bh_enable(); 2916 } 2917 2918 void tcp_close(struct sock *sk, long timeout) 2919 { 2920 lock_sock(sk); 2921 __tcp_close(sk, timeout); 2922 release_sock(sk); 2923 sock_put(sk); 2924 } 2925 EXPORT_SYMBOL(tcp_close); 2926 2927 /* These states need RST on ABORT according to RFC793 */ 2928 2929 static inline bool tcp_need_reset(int state) 2930 { 2931 return (1 << state) & 2932 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2933 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2934 } 2935 2936 static void tcp_rtx_queue_purge(struct sock *sk) 2937 { 2938 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2939 2940 tcp_sk(sk)->highest_sack = NULL; 2941 while (p) { 2942 struct sk_buff *skb = rb_to_skb(p); 2943 2944 p = rb_next(p); 2945 /* Since we are deleting whole queue, no need to 2946 * list_del(&skb->tcp_tsorted_anchor) 2947 */ 2948 tcp_rtx_queue_unlink(skb, sk); 2949 tcp_wmem_free_skb(sk, skb); 2950 } 2951 } 2952 2953 void tcp_write_queue_purge(struct sock *sk) 2954 { 2955 struct sk_buff *skb; 2956 2957 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2958 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2959 tcp_skb_tsorted_anchor_cleanup(skb); 2960 tcp_wmem_free_skb(sk, skb); 2961 } 2962 tcp_rtx_queue_purge(sk); 2963 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2964 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2965 tcp_sk(sk)->packets_out = 0; 2966 inet_csk(sk)->icsk_backoff = 0; 2967 } 2968 2969 int tcp_disconnect(struct sock *sk, int flags) 2970 { 2971 struct inet_sock *inet = inet_sk(sk); 2972 struct inet_connection_sock *icsk = inet_csk(sk); 2973 struct tcp_sock *tp = tcp_sk(sk); 2974 int old_state = sk->sk_state; 2975 u32 seq; 2976 2977 if (old_state != TCP_CLOSE) 2978 tcp_set_state(sk, TCP_CLOSE); 2979 2980 /* ABORT function of RFC793 */ 2981 if (old_state == TCP_LISTEN) { 2982 inet_csk_listen_stop(sk); 2983 } else if (unlikely(tp->repair)) { 2984 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2985 } else if (tcp_need_reset(old_state) || 2986 (tp->snd_nxt != tp->write_seq && 2987 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2988 /* The last check adjusts for discrepancy of Linux wrt. RFC 2989 * states 2990 */ 2991 tcp_send_active_reset(sk, gfp_any()); 2992 WRITE_ONCE(sk->sk_err, ECONNRESET); 2993 } else if (old_state == TCP_SYN_SENT) 2994 WRITE_ONCE(sk->sk_err, ECONNRESET); 2995 2996 tcp_clear_xmit_timers(sk); 2997 __skb_queue_purge(&sk->sk_receive_queue); 2998 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2999 WRITE_ONCE(tp->urg_data, 0); 3000 tcp_write_queue_purge(sk); 3001 tcp_fastopen_active_disable_ofo_check(sk); 3002 skb_rbtree_purge(&tp->out_of_order_queue); 3003 3004 inet->inet_dport = 0; 3005 3006 inet_bhash2_reset_saddr(sk); 3007 3008 WRITE_ONCE(sk->sk_shutdown, 0); 3009 sock_reset_flag(sk, SOCK_DONE); 3010 tp->srtt_us = 0; 3011 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3012 tp->rcv_rtt_last_tsecr = 0; 3013 3014 seq = tp->write_seq + tp->max_window + 2; 3015 if (!seq) 3016 seq = 1; 3017 WRITE_ONCE(tp->write_seq, seq); 3018 3019 icsk->icsk_backoff = 0; 3020 icsk->icsk_probes_out = 0; 3021 icsk->icsk_probes_tstamp = 0; 3022 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3023 icsk->icsk_rto_min = TCP_RTO_MIN; 3024 icsk->icsk_delack_max = TCP_DELACK_MAX; 3025 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3026 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3027 tp->snd_cwnd_cnt = 0; 3028 tp->is_cwnd_limited = 0; 3029 tp->max_packets_out = 0; 3030 tp->window_clamp = 0; 3031 tp->delivered = 0; 3032 tp->delivered_ce = 0; 3033 if (icsk->icsk_ca_ops->release) 3034 icsk->icsk_ca_ops->release(sk); 3035 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3036 icsk->icsk_ca_initialized = 0; 3037 tcp_set_ca_state(sk, TCP_CA_Open); 3038 tp->is_sack_reneg = 0; 3039 tcp_clear_retrans(tp); 3040 tp->total_retrans = 0; 3041 inet_csk_delack_init(sk); 3042 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3043 * issue in __tcp_select_window() 3044 */ 3045 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3046 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3047 __sk_dst_reset(sk); 3048 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3049 tcp_saved_syn_free(tp); 3050 tp->compressed_ack = 0; 3051 tp->segs_in = 0; 3052 tp->segs_out = 0; 3053 tp->bytes_sent = 0; 3054 tp->bytes_acked = 0; 3055 tp->bytes_received = 0; 3056 tp->bytes_retrans = 0; 3057 tp->data_segs_in = 0; 3058 tp->data_segs_out = 0; 3059 tp->duplicate_sack[0].start_seq = 0; 3060 tp->duplicate_sack[0].end_seq = 0; 3061 tp->dsack_dups = 0; 3062 tp->reord_seen = 0; 3063 tp->retrans_out = 0; 3064 tp->sacked_out = 0; 3065 tp->tlp_high_seq = 0; 3066 tp->last_oow_ack_time = 0; 3067 tp->plb_rehash = 0; 3068 /* There's a bubble in the pipe until at least the first ACK. */ 3069 tp->app_limited = ~0U; 3070 tp->rate_app_limited = 1; 3071 tp->rack.mstamp = 0; 3072 tp->rack.advanced = 0; 3073 tp->rack.reo_wnd_steps = 1; 3074 tp->rack.last_delivered = 0; 3075 tp->rack.reo_wnd_persist = 0; 3076 tp->rack.dsack_seen = 0; 3077 tp->syn_data_acked = 0; 3078 tp->rx_opt.saw_tstamp = 0; 3079 tp->rx_opt.dsack = 0; 3080 tp->rx_opt.num_sacks = 0; 3081 tp->rcv_ooopack = 0; 3082 3083 3084 /* Clean up fastopen related fields */ 3085 tcp_free_fastopen_req(tp); 3086 inet_clear_bit(DEFER_CONNECT, sk); 3087 tp->fastopen_client_fail = 0; 3088 3089 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3090 3091 if (sk->sk_frag.page) { 3092 put_page(sk->sk_frag.page); 3093 sk->sk_frag.page = NULL; 3094 sk->sk_frag.offset = 0; 3095 } 3096 sk_error_report(sk); 3097 return 0; 3098 } 3099 EXPORT_SYMBOL(tcp_disconnect); 3100 3101 static inline bool tcp_can_repair_sock(const struct sock *sk) 3102 { 3103 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3104 (sk->sk_state != TCP_LISTEN); 3105 } 3106 3107 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3108 { 3109 struct tcp_repair_window opt; 3110 3111 if (!tp->repair) 3112 return -EPERM; 3113 3114 if (len != sizeof(opt)) 3115 return -EINVAL; 3116 3117 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3118 return -EFAULT; 3119 3120 if (opt.max_window < opt.snd_wnd) 3121 return -EINVAL; 3122 3123 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3124 return -EINVAL; 3125 3126 if (after(opt.rcv_wup, tp->rcv_nxt)) 3127 return -EINVAL; 3128 3129 tp->snd_wl1 = opt.snd_wl1; 3130 tp->snd_wnd = opt.snd_wnd; 3131 tp->max_window = opt.max_window; 3132 3133 tp->rcv_wnd = opt.rcv_wnd; 3134 tp->rcv_wup = opt.rcv_wup; 3135 3136 return 0; 3137 } 3138 3139 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3140 unsigned int len) 3141 { 3142 struct tcp_sock *tp = tcp_sk(sk); 3143 struct tcp_repair_opt opt; 3144 size_t offset = 0; 3145 3146 while (len >= sizeof(opt)) { 3147 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3148 return -EFAULT; 3149 3150 offset += sizeof(opt); 3151 len -= sizeof(opt); 3152 3153 switch (opt.opt_code) { 3154 case TCPOPT_MSS: 3155 tp->rx_opt.mss_clamp = opt.opt_val; 3156 tcp_mtup_init(sk); 3157 break; 3158 case TCPOPT_WINDOW: 3159 { 3160 u16 snd_wscale = opt.opt_val & 0xFFFF; 3161 u16 rcv_wscale = opt.opt_val >> 16; 3162 3163 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3164 return -EFBIG; 3165 3166 tp->rx_opt.snd_wscale = snd_wscale; 3167 tp->rx_opt.rcv_wscale = rcv_wscale; 3168 tp->rx_opt.wscale_ok = 1; 3169 } 3170 break; 3171 case TCPOPT_SACK_PERM: 3172 if (opt.opt_val != 0) 3173 return -EINVAL; 3174 3175 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3176 break; 3177 case TCPOPT_TIMESTAMP: 3178 if (opt.opt_val != 0) 3179 return -EINVAL; 3180 3181 tp->rx_opt.tstamp_ok = 1; 3182 break; 3183 } 3184 } 3185 3186 return 0; 3187 } 3188 3189 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3190 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3191 3192 static void tcp_enable_tx_delay(void) 3193 { 3194 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3195 static int __tcp_tx_delay_enabled = 0; 3196 3197 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3198 static_branch_enable(&tcp_tx_delay_enabled); 3199 pr_info("TCP_TX_DELAY enabled\n"); 3200 } 3201 } 3202 } 3203 3204 /* When set indicates to always queue non-full frames. Later the user clears 3205 * this option and we transmit any pending partial frames in the queue. This is 3206 * meant to be used alongside sendfile() to get properly filled frames when the 3207 * user (for example) must write out headers with a write() call first and then 3208 * use sendfile to send out the data parts. 3209 * 3210 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3211 * TCP_NODELAY. 3212 */ 3213 void __tcp_sock_set_cork(struct sock *sk, bool on) 3214 { 3215 struct tcp_sock *tp = tcp_sk(sk); 3216 3217 if (on) { 3218 tp->nonagle |= TCP_NAGLE_CORK; 3219 } else { 3220 tp->nonagle &= ~TCP_NAGLE_CORK; 3221 if (tp->nonagle & TCP_NAGLE_OFF) 3222 tp->nonagle |= TCP_NAGLE_PUSH; 3223 tcp_push_pending_frames(sk); 3224 } 3225 } 3226 3227 void tcp_sock_set_cork(struct sock *sk, bool on) 3228 { 3229 lock_sock(sk); 3230 __tcp_sock_set_cork(sk, on); 3231 release_sock(sk); 3232 } 3233 EXPORT_SYMBOL(tcp_sock_set_cork); 3234 3235 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3236 * remembered, but it is not activated until cork is cleared. 3237 * 3238 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3239 * even TCP_CORK for currently queued segments. 3240 */ 3241 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3242 { 3243 if (on) { 3244 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3245 tcp_push_pending_frames(sk); 3246 } else { 3247 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3248 } 3249 } 3250 3251 void tcp_sock_set_nodelay(struct sock *sk) 3252 { 3253 lock_sock(sk); 3254 __tcp_sock_set_nodelay(sk, true); 3255 release_sock(sk); 3256 } 3257 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3258 3259 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3260 { 3261 if (!val) { 3262 inet_csk_enter_pingpong_mode(sk); 3263 return; 3264 } 3265 3266 inet_csk_exit_pingpong_mode(sk); 3267 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3268 inet_csk_ack_scheduled(sk)) { 3269 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3270 tcp_cleanup_rbuf(sk, 1); 3271 if (!(val & 1)) 3272 inet_csk_enter_pingpong_mode(sk); 3273 } 3274 } 3275 3276 void tcp_sock_set_quickack(struct sock *sk, int val) 3277 { 3278 lock_sock(sk); 3279 __tcp_sock_set_quickack(sk, val); 3280 release_sock(sk); 3281 } 3282 EXPORT_SYMBOL(tcp_sock_set_quickack); 3283 3284 int tcp_sock_set_syncnt(struct sock *sk, int val) 3285 { 3286 if (val < 1 || val > MAX_TCP_SYNCNT) 3287 return -EINVAL; 3288 3289 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3290 return 0; 3291 } 3292 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3293 3294 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3295 { 3296 /* Cap the max time in ms TCP will retry or probe the window 3297 * before giving up and aborting (ETIMEDOUT) a connection. 3298 */ 3299 if (val < 0) 3300 return -EINVAL; 3301 3302 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3303 return 0; 3304 } 3305 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3306 3307 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3308 { 3309 struct tcp_sock *tp = tcp_sk(sk); 3310 3311 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3312 return -EINVAL; 3313 3314 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3315 WRITE_ONCE(tp->keepalive_time, val * HZ); 3316 if (sock_flag(sk, SOCK_KEEPOPEN) && 3317 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3318 u32 elapsed = keepalive_time_elapsed(tp); 3319 3320 if (tp->keepalive_time > elapsed) 3321 elapsed = tp->keepalive_time - elapsed; 3322 else 3323 elapsed = 0; 3324 inet_csk_reset_keepalive_timer(sk, elapsed); 3325 } 3326 3327 return 0; 3328 } 3329 3330 int tcp_sock_set_keepidle(struct sock *sk, int val) 3331 { 3332 int err; 3333 3334 lock_sock(sk); 3335 err = tcp_sock_set_keepidle_locked(sk, val); 3336 release_sock(sk); 3337 return err; 3338 } 3339 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3340 3341 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3342 { 3343 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3344 return -EINVAL; 3345 3346 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3347 return 0; 3348 } 3349 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3350 3351 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3352 { 3353 if (val < 1 || val > MAX_TCP_KEEPCNT) 3354 return -EINVAL; 3355 3356 /* Paired with READ_ONCE() in keepalive_probes() */ 3357 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3358 return 0; 3359 } 3360 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3361 3362 int tcp_set_window_clamp(struct sock *sk, int val) 3363 { 3364 struct tcp_sock *tp = tcp_sk(sk); 3365 3366 if (!val) { 3367 if (sk->sk_state != TCP_CLOSE) 3368 return -EINVAL; 3369 tp->window_clamp = 0; 3370 } else { 3371 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3372 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3373 SOCK_MIN_RCVBUF / 2 : val; 3374 3375 if (new_window_clamp == old_window_clamp) 3376 return 0; 3377 3378 tp->window_clamp = new_window_clamp; 3379 if (new_window_clamp < old_window_clamp) { 3380 /* need to apply the reserved mem provisioning only 3381 * when shrinking the window clamp 3382 */ 3383 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3384 3385 } else { 3386 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3387 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3388 tp->rcv_ssthresh); 3389 } 3390 } 3391 return 0; 3392 } 3393 3394 /* 3395 * Socket option code for TCP. 3396 */ 3397 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3398 sockptr_t optval, unsigned int optlen) 3399 { 3400 struct tcp_sock *tp = tcp_sk(sk); 3401 struct inet_connection_sock *icsk = inet_csk(sk); 3402 struct net *net = sock_net(sk); 3403 int val; 3404 int err = 0; 3405 3406 /* These are data/string values, all the others are ints */ 3407 switch (optname) { 3408 case TCP_CONGESTION: { 3409 char name[TCP_CA_NAME_MAX]; 3410 3411 if (optlen < 1) 3412 return -EINVAL; 3413 3414 val = strncpy_from_sockptr(name, optval, 3415 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3416 if (val < 0) 3417 return -EFAULT; 3418 name[val] = 0; 3419 3420 sockopt_lock_sock(sk); 3421 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3422 sockopt_ns_capable(sock_net(sk)->user_ns, 3423 CAP_NET_ADMIN)); 3424 sockopt_release_sock(sk); 3425 return err; 3426 } 3427 case TCP_ULP: { 3428 char name[TCP_ULP_NAME_MAX]; 3429 3430 if (optlen < 1) 3431 return -EINVAL; 3432 3433 val = strncpy_from_sockptr(name, optval, 3434 min_t(long, TCP_ULP_NAME_MAX - 1, 3435 optlen)); 3436 if (val < 0) 3437 return -EFAULT; 3438 name[val] = 0; 3439 3440 sockopt_lock_sock(sk); 3441 err = tcp_set_ulp(sk, name); 3442 sockopt_release_sock(sk); 3443 return err; 3444 } 3445 case TCP_FASTOPEN_KEY: { 3446 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3447 __u8 *backup_key = NULL; 3448 3449 /* Allow a backup key as well to facilitate key rotation 3450 * First key is the active one. 3451 */ 3452 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3453 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3454 return -EINVAL; 3455 3456 if (copy_from_sockptr(key, optval, optlen)) 3457 return -EFAULT; 3458 3459 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3460 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3461 3462 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3463 } 3464 default: 3465 /* fallthru */ 3466 break; 3467 } 3468 3469 if (optlen < sizeof(int)) 3470 return -EINVAL; 3471 3472 if (copy_from_sockptr(&val, optval, sizeof(val))) 3473 return -EFAULT; 3474 3475 /* Handle options that can be set without locking the socket. */ 3476 switch (optname) { 3477 case TCP_SYNCNT: 3478 return tcp_sock_set_syncnt(sk, val); 3479 case TCP_USER_TIMEOUT: 3480 return tcp_sock_set_user_timeout(sk, val); 3481 case TCP_KEEPINTVL: 3482 return tcp_sock_set_keepintvl(sk, val); 3483 case TCP_KEEPCNT: 3484 return tcp_sock_set_keepcnt(sk, val); 3485 case TCP_LINGER2: 3486 if (val < 0) 3487 WRITE_ONCE(tp->linger2, -1); 3488 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3489 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3490 else 3491 WRITE_ONCE(tp->linger2, val * HZ); 3492 return 0; 3493 case TCP_DEFER_ACCEPT: 3494 /* Translate value in seconds to number of retransmits */ 3495 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3496 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3497 TCP_RTO_MAX / HZ)); 3498 return 0; 3499 } 3500 3501 sockopt_lock_sock(sk); 3502 3503 switch (optname) { 3504 case TCP_MAXSEG: 3505 /* Values greater than interface MTU won't take effect. However 3506 * at the point when this call is done we typically don't yet 3507 * know which interface is going to be used 3508 */ 3509 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3510 err = -EINVAL; 3511 break; 3512 } 3513 tp->rx_opt.user_mss = val; 3514 break; 3515 3516 case TCP_NODELAY: 3517 __tcp_sock_set_nodelay(sk, val); 3518 break; 3519 3520 case TCP_THIN_LINEAR_TIMEOUTS: 3521 if (val < 0 || val > 1) 3522 err = -EINVAL; 3523 else 3524 tp->thin_lto = val; 3525 break; 3526 3527 case TCP_THIN_DUPACK: 3528 if (val < 0 || val > 1) 3529 err = -EINVAL; 3530 break; 3531 3532 case TCP_REPAIR: 3533 if (!tcp_can_repair_sock(sk)) 3534 err = -EPERM; 3535 else if (val == TCP_REPAIR_ON) { 3536 tp->repair = 1; 3537 sk->sk_reuse = SK_FORCE_REUSE; 3538 tp->repair_queue = TCP_NO_QUEUE; 3539 } else if (val == TCP_REPAIR_OFF) { 3540 tp->repair = 0; 3541 sk->sk_reuse = SK_NO_REUSE; 3542 tcp_send_window_probe(sk); 3543 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3544 tp->repair = 0; 3545 sk->sk_reuse = SK_NO_REUSE; 3546 } else 3547 err = -EINVAL; 3548 3549 break; 3550 3551 case TCP_REPAIR_QUEUE: 3552 if (!tp->repair) 3553 err = -EPERM; 3554 else if ((unsigned int)val < TCP_QUEUES_NR) 3555 tp->repair_queue = val; 3556 else 3557 err = -EINVAL; 3558 break; 3559 3560 case TCP_QUEUE_SEQ: 3561 if (sk->sk_state != TCP_CLOSE) { 3562 err = -EPERM; 3563 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3564 if (!tcp_rtx_queue_empty(sk)) 3565 err = -EPERM; 3566 else 3567 WRITE_ONCE(tp->write_seq, val); 3568 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3569 if (tp->rcv_nxt != tp->copied_seq) { 3570 err = -EPERM; 3571 } else { 3572 WRITE_ONCE(tp->rcv_nxt, val); 3573 WRITE_ONCE(tp->copied_seq, val); 3574 } 3575 } else { 3576 err = -EINVAL; 3577 } 3578 break; 3579 3580 case TCP_REPAIR_OPTIONS: 3581 if (!tp->repair) 3582 err = -EINVAL; 3583 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3584 err = tcp_repair_options_est(sk, optval, optlen); 3585 else 3586 err = -EPERM; 3587 break; 3588 3589 case TCP_CORK: 3590 __tcp_sock_set_cork(sk, val); 3591 break; 3592 3593 case TCP_KEEPIDLE: 3594 err = tcp_sock_set_keepidle_locked(sk, val); 3595 break; 3596 case TCP_SAVE_SYN: 3597 /* 0: disable, 1: enable, 2: start from ether_header */ 3598 if (val < 0 || val > 2) 3599 err = -EINVAL; 3600 else 3601 tp->save_syn = val; 3602 break; 3603 3604 case TCP_WINDOW_CLAMP: 3605 err = tcp_set_window_clamp(sk, val); 3606 break; 3607 3608 case TCP_QUICKACK: 3609 __tcp_sock_set_quickack(sk, val); 3610 break; 3611 3612 case TCP_AO_REPAIR: 3613 if (!tcp_can_repair_sock(sk)) { 3614 err = -EPERM; 3615 break; 3616 } 3617 err = tcp_ao_set_repair(sk, optval, optlen); 3618 break; 3619 #ifdef CONFIG_TCP_AO 3620 case TCP_AO_ADD_KEY: 3621 case TCP_AO_DEL_KEY: 3622 case TCP_AO_INFO: { 3623 /* If this is the first TCP-AO setsockopt() on the socket, 3624 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3625 * in any state. 3626 */ 3627 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3628 goto ao_parse; 3629 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3630 lockdep_sock_is_held(sk))) 3631 goto ao_parse; 3632 if (tp->repair) 3633 goto ao_parse; 3634 err = -EISCONN; 3635 break; 3636 ao_parse: 3637 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3638 break; 3639 } 3640 #endif 3641 #ifdef CONFIG_TCP_MD5SIG 3642 case TCP_MD5SIG: 3643 case TCP_MD5SIG_EXT: 3644 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3645 break; 3646 #endif 3647 case TCP_FASTOPEN: 3648 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3649 TCPF_LISTEN))) { 3650 tcp_fastopen_init_key_once(net); 3651 3652 fastopen_queue_tune(sk, val); 3653 } else { 3654 err = -EINVAL; 3655 } 3656 break; 3657 case TCP_FASTOPEN_CONNECT: 3658 if (val > 1 || val < 0) { 3659 err = -EINVAL; 3660 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3661 TFO_CLIENT_ENABLE) { 3662 if (sk->sk_state == TCP_CLOSE) 3663 tp->fastopen_connect = val; 3664 else 3665 err = -EINVAL; 3666 } else { 3667 err = -EOPNOTSUPP; 3668 } 3669 break; 3670 case TCP_FASTOPEN_NO_COOKIE: 3671 if (val > 1 || val < 0) 3672 err = -EINVAL; 3673 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3674 err = -EINVAL; 3675 else 3676 tp->fastopen_no_cookie = val; 3677 break; 3678 case TCP_TIMESTAMP: 3679 if (!tp->repair) { 3680 err = -EPERM; 3681 break; 3682 } 3683 /* val is an opaque field, 3684 * and low order bit contains usec_ts enable bit. 3685 * Its a best effort, and we do not care if user makes an error. 3686 */ 3687 tp->tcp_usec_ts = val & 1; 3688 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 3689 break; 3690 case TCP_REPAIR_WINDOW: 3691 err = tcp_repair_set_window(tp, optval, optlen); 3692 break; 3693 case TCP_NOTSENT_LOWAT: 3694 WRITE_ONCE(tp->notsent_lowat, val); 3695 sk->sk_write_space(sk); 3696 break; 3697 case TCP_INQ: 3698 if (val > 1 || val < 0) 3699 err = -EINVAL; 3700 else 3701 tp->recvmsg_inq = val; 3702 break; 3703 case TCP_TX_DELAY: 3704 if (val) 3705 tcp_enable_tx_delay(); 3706 WRITE_ONCE(tp->tcp_tx_delay, val); 3707 break; 3708 default: 3709 err = -ENOPROTOOPT; 3710 break; 3711 } 3712 3713 sockopt_release_sock(sk); 3714 return err; 3715 } 3716 3717 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3718 unsigned int optlen) 3719 { 3720 const struct inet_connection_sock *icsk = inet_csk(sk); 3721 3722 if (level != SOL_TCP) 3723 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3724 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3725 optval, optlen); 3726 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3727 } 3728 EXPORT_SYMBOL(tcp_setsockopt); 3729 3730 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3731 struct tcp_info *info) 3732 { 3733 u64 stats[__TCP_CHRONO_MAX], total = 0; 3734 enum tcp_chrono i; 3735 3736 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3737 stats[i] = tp->chrono_stat[i - 1]; 3738 if (i == tp->chrono_type) 3739 stats[i] += tcp_jiffies32 - tp->chrono_start; 3740 stats[i] *= USEC_PER_SEC / HZ; 3741 total += stats[i]; 3742 } 3743 3744 info->tcpi_busy_time = total; 3745 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3746 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3747 } 3748 3749 /* Return information about state of tcp endpoint in API format. */ 3750 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3751 { 3752 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3753 const struct inet_connection_sock *icsk = inet_csk(sk); 3754 unsigned long rate; 3755 u32 now; 3756 u64 rate64; 3757 bool slow; 3758 3759 memset(info, 0, sizeof(*info)); 3760 if (sk->sk_type != SOCK_STREAM) 3761 return; 3762 3763 info->tcpi_state = inet_sk_state_load(sk); 3764 3765 /* Report meaningful fields for all TCP states, including listeners */ 3766 rate = READ_ONCE(sk->sk_pacing_rate); 3767 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3768 info->tcpi_pacing_rate = rate64; 3769 3770 rate = READ_ONCE(sk->sk_max_pacing_rate); 3771 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3772 info->tcpi_max_pacing_rate = rate64; 3773 3774 info->tcpi_reordering = tp->reordering; 3775 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3776 3777 if (info->tcpi_state == TCP_LISTEN) { 3778 /* listeners aliased fields : 3779 * tcpi_unacked -> Number of children ready for accept() 3780 * tcpi_sacked -> max backlog 3781 */ 3782 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3783 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3784 return; 3785 } 3786 3787 slow = lock_sock_fast(sk); 3788 3789 info->tcpi_ca_state = icsk->icsk_ca_state; 3790 info->tcpi_retransmits = icsk->icsk_retransmits; 3791 info->tcpi_probes = icsk->icsk_probes_out; 3792 info->tcpi_backoff = icsk->icsk_backoff; 3793 3794 if (tp->rx_opt.tstamp_ok) 3795 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3796 if (tcp_is_sack(tp)) 3797 info->tcpi_options |= TCPI_OPT_SACK; 3798 if (tp->rx_opt.wscale_ok) { 3799 info->tcpi_options |= TCPI_OPT_WSCALE; 3800 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3801 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3802 } 3803 3804 if (tp->ecn_flags & TCP_ECN_OK) 3805 info->tcpi_options |= TCPI_OPT_ECN; 3806 if (tp->ecn_flags & TCP_ECN_SEEN) 3807 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3808 if (tp->syn_data_acked) 3809 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3810 if (tp->tcp_usec_ts) 3811 info->tcpi_options |= TCPI_OPT_USEC_TS; 3812 3813 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3814 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 3815 tcp_delack_max(sk))); 3816 info->tcpi_snd_mss = tp->mss_cache; 3817 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3818 3819 info->tcpi_unacked = tp->packets_out; 3820 info->tcpi_sacked = tp->sacked_out; 3821 3822 info->tcpi_lost = tp->lost_out; 3823 info->tcpi_retrans = tp->retrans_out; 3824 3825 now = tcp_jiffies32; 3826 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3827 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3828 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3829 3830 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3831 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3832 info->tcpi_rtt = tp->srtt_us >> 3; 3833 info->tcpi_rttvar = tp->mdev_us >> 2; 3834 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3835 info->tcpi_advmss = tp->advmss; 3836 3837 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3838 info->tcpi_rcv_space = tp->rcvq_space.space; 3839 3840 info->tcpi_total_retrans = tp->total_retrans; 3841 3842 info->tcpi_bytes_acked = tp->bytes_acked; 3843 info->tcpi_bytes_received = tp->bytes_received; 3844 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3845 tcp_get_info_chrono_stats(tp, info); 3846 3847 info->tcpi_segs_out = tp->segs_out; 3848 3849 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3850 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3851 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3852 3853 info->tcpi_min_rtt = tcp_min_rtt(tp); 3854 info->tcpi_data_segs_out = tp->data_segs_out; 3855 3856 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3857 rate64 = tcp_compute_delivery_rate(tp); 3858 if (rate64) 3859 info->tcpi_delivery_rate = rate64; 3860 info->tcpi_delivered = tp->delivered; 3861 info->tcpi_delivered_ce = tp->delivered_ce; 3862 info->tcpi_bytes_sent = tp->bytes_sent; 3863 info->tcpi_bytes_retrans = tp->bytes_retrans; 3864 info->tcpi_dsack_dups = tp->dsack_dups; 3865 info->tcpi_reord_seen = tp->reord_seen; 3866 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3867 info->tcpi_snd_wnd = tp->snd_wnd; 3868 info->tcpi_rcv_wnd = tp->rcv_wnd; 3869 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3870 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3871 3872 info->tcpi_total_rto = tp->total_rto; 3873 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 3874 info->tcpi_total_rto_time = tp->total_rto_time; 3875 if (tp->rto_stamp) 3876 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 3877 3878 unlock_sock_fast(sk, slow); 3879 } 3880 EXPORT_SYMBOL_GPL(tcp_get_info); 3881 3882 static size_t tcp_opt_stats_get_size(void) 3883 { 3884 return 3885 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3886 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3887 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3888 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3889 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3890 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3891 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3892 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3893 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3894 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3895 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3896 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3897 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3898 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3899 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3900 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3901 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3902 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3903 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3904 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3905 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3906 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3907 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3908 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3909 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3910 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3911 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3912 0; 3913 } 3914 3915 /* Returns TTL or hop limit of an incoming packet from skb. */ 3916 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3917 { 3918 if (skb->protocol == htons(ETH_P_IP)) 3919 return ip_hdr(skb)->ttl; 3920 else if (skb->protocol == htons(ETH_P_IPV6)) 3921 return ipv6_hdr(skb)->hop_limit; 3922 else 3923 return 0; 3924 } 3925 3926 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3927 const struct sk_buff *orig_skb, 3928 const struct sk_buff *ack_skb) 3929 { 3930 const struct tcp_sock *tp = tcp_sk(sk); 3931 struct sk_buff *stats; 3932 struct tcp_info info; 3933 unsigned long rate; 3934 u64 rate64; 3935 3936 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3937 if (!stats) 3938 return NULL; 3939 3940 tcp_get_info_chrono_stats(tp, &info); 3941 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3942 info.tcpi_busy_time, TCP_NLA_PAD); 3943 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3944 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3945 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3946 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3947 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3948 tp->data_segs_out, TCP_NLA_PAD); 3949 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3950 tp->total_retrans, TCP_NLA_PAD); 3951 3952 rate = READ_ONCE(sk->sk_pacing_rate); 3953 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3954 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3955 3956 rate64 = tcp_compute_delivery_rate(tp); 3957 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3958 3959 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3960 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3961 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3962 3963 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3964 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3965 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3966 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3967 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3968 3969 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3970 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3971 3972 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3973 TCP_NLA_PAD); 3974 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3975 TCP_NLA_PAD); 3976 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3977 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3978 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3979 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3980 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3981 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3982 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3983 TCP_NLA_PAD); 3984 if (ack_skb) 3985 nla_put_u8(stats, TCP_NLA_TTL, 3986 tcp_skb_ttl_or_hop_limit(ack_skb)); 3987 3988 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3989 return stats; 3990 } 3991 3992 int do_tcp_getsockopt(struct sock *sk, int level, 3993 int optname, sockptr_t optval, sockptr_t optlen) 3994 { 3995 struct inet_connection_sock *icsk = inet_csk(sk); 3996 struct tcp_sock *tp = tcp_sk(sk); 3997 struct net *net = sock_net(sk); 3998 int val, len; 3999 4000 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4001 return -EFAULT; 4002 4003 len = min_t(unsigned int, len, sizeof(int)); 4004 4005 if (len < 0) 4006 return -EINVAL; 4007 4008 switch (optname) { 4009 case TCP_MAXSEG: 4010 val = tp->mss_cache; 4011 if (tp->rx_opt.user_mss && 4012 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4013 val = tp->rx_opt.user_mss; 4014 if (tp->repair) 4015 val = tp->rx_opt.mss_clamp; 4016 break; 4017 case TCP_NODELAY: 4018 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4019 break; 4020 case TCP_CORK: 4021 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4022 break; 4023 case TCP_KEEPIDLE: 4024 val = keepalive_time_when(tp) / HZ; 4025 break; 4026 case TCP_KEEPINTVL: 4027 val = keepalive_intvl_when(tp) / HZ; 4028 break; 4029 case TCP_KEEPCNT: 4030 val = keepalive_probes(tp); 4031 break; 4032 case TCP_SYNCNT: 4033 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4034 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4035 break; 4036 case TCP_LINGER2: 4037 val = READ_ONCE(tp->linger2); 4038 if (val >= 0) 4039 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4040 break; 4041 case TCP_DEFER_ACCEPT: 4042 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4043 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4044 TCP_RTO_MAX / HZ); 4045 break; 4046 case TCP_WINDOW_CLAMP: 4047 val = tp->window_clamp; 4048 break; 4049 case TCP_INFO: { 4050 struct tcp_info info; 4051 4052 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4053 return -EFAULT; 4054 4055 tcp_get_info(sk, &info); 4056 4057 len = min_t(unsigned int, len, sizeof(info)); 4058 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4059 return -EFAULT; 4060 if (copy_to_sockptr(optval, &info, len)) 4061 return -EFAULT; 4062 return 0; 4063 } 4064 case TCP_CC_INFO: { 4065 const struct tcp_congestion_ops *ca_ops; 4066 union tcp_cc_info info; 4067 size_t sz = 0; 4068 int attr; 4069 4070 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4071 return -EFAULT; 4072 4073 ca_ops = icsk->icsk_ca_ops; 4074 if (ca_ops && ca_ops->get_info) 4075 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4076 4077 len = min_t(unsigned int, len, sz); 4078 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4079 return -EFAULT; 4080 if (copy_to_sockptr(optval, &info, len)) 4081 return -EFAULT; 4082 return 0; 4083 } 4084 case TCP_QUICKACK: 4085 val = !inet_csk_in_pingpong_mode(sk); 4086 break; 4087 4088 case TCP_CONGESTION: 4089 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4090 return -EFAULT; 4091 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4092 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4093 return -EFAULT; 4094 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4095 return -EFAULT; 4096 return 0; 4097 4098 case TCP_ULP: 4099 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4100 return -EFAULT; 4101 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4102 if (!icsk->icsk_ulp_ops) { 4103 len = 0; 4104 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4105 return -EFAULT; 4106 return 0; 4107 } 4108 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4109 return -EFAULT; 4110 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4111 return -EFAULT; 4112 return 0; 4113 4114 case TCP_FASTOPEN_KEY: { 4115 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4116 unsigned int key_len; 4117 4118 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4119 return -EFAULT; 4120 4121 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4122 TCP_FASTOPEN_KEY_LENGTH; 4123 len = min_t(unsigned int, len, key_len); 4124 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4125 return -EFAULT; 4126 if (copy_to_sockptr(optval, key, len)) 4127 return -EFAULT; 4128 return 0; 4129 } 4130 case TCP_THIN_LINEAR_TIMEOUTS: 4131 val = tp->thin_lto; 4132 break; 4133 4134 case TCP_THIN_DUPACK: 4135 val = 0; 4136 break; 4137 4138 case TCP_REPAIR: 4139 val = tp->repair; 4140 break; 4141 4142 case TCP_REPAIR_QUEUE: 4143 if (tp->repair) 4144 val = tp->repair_queue; 4145 else 4146 return -EINVAL; 4147 break; 4148 4149 case TCP_REPAIR_WINDOW: { 4150 struct tcp_repair_window opt; 4151 4152 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4153 return -EFAULT; 4154 4155 if (len != sizeof(opt)) 4156 return -EINVAL; 4157 4158 if (!tp->repair) 4159 return -EPERM; 4160 4161 opt.snd_wl1 = tp->snd_wl1; 4162 opt.snd_wnd = tp->snd_wnd; 4163 opt.max_window = tp->max_window; 4164 opt.rcv_wnd = tp->rcv_wnd; 4165 opt.rcv_wup = tp->rcv_wup; 4166 4167 if (copy_to_sockptr(optval, &opt, len)) 4168 return -EFAULT; 4169 return 0; 4170 } 4171 case TCP_QUEUE_SEQ: 4172 if (tp->repair_queue == TCP_SEND_QUEUE) 4173 val = tp->write_seq; 4174 else if (tp->repair_queue == TCP_RECV_QUEUE) 4175 val = tp->rcv_nxt; 4176 else 4177 return -EINVAL; 4178 break; 4179 4180 case TCP_USER_TIMEOUT: 4181 val = READ_ONCE(icsk->icsk_user_timeout); 4182 break; 4183 4184 case TCP_FASTOPEN: 4185 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4186 break; 4187 4188 case TCP_FASTOPEN_CONNECT: 4189 val = tp->fastopen_connect; 4190 break; 4191 4192 case TCP_FASTOPEN_NO_COOKIE: 4193 val = tp->fastopen_no_cookie; 4194 break; 4195 4196 case TCP_TX_DELAY: 4197 val = READ_ONCE(tp->tcp_tx_delay); 4198 break; 4199 4200 case TCP_TIMESTAMP: 4201 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4202 if (tp->tcp_usec_ts) 4203 val |= 1; 4204 else 4205 val &= ~1; 4206 break; 4207 case TCP_NOTSENT_LOWAT: 4208 val = READ_ONCE(tp->notsent_lowat); 4209 break; 4210 case TCP_INQ: 4211 val = tp->recvmsg_inq; 4212 break; 4213 case TCP_SAVE_SYN: 4214 val = tp->save_syn; 4215 break; 4216 case TCP_SAVED_SYN: { 4217 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4218 return -EFAULT; 4219 4220 sockopt_lock_sock(sk); 4221 if (tp->saved_syn) { 4222 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4223 len = tcp_saved_syn_len(tp->saved_syn); 4224 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4225 sockopt_release_sock(sk); 4226 return -EFAULT; 4227 } 4228 sockopt_release_sock(sk); 4229 return -EINVAL; 4230 } 4231 len = tcp_saved_syn_len(tp->saved_syn); 4232 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4233 sockopt_release_sock(sk); 4234 return -EFAULT; 4235 } 4236 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4237 sockopt_release_sock(sk); 4238 return -EFAULT; 4239 } 4240 tcp_saved_syn_free(tp); 4241 sockopt_release_sock(sk); 4242 } else { 4243 sockopt_release_sock(sk); 4244 len = 0; 4245 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4246 return -EFAULT; 4247 } 4248 return 0; 4249 } 4250 #ifdef CONFIG_MMU 4251 case TCP_ZEROCOPY_RECEIVE: { 4252 struct scm_timestamping_internal tss; 4253 struct tcp_zerocopy_receive zc = {}; 4254 int err; 4255 4256 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4257 return -EFAULT; 4258 if (len < 0 || 4259 len < offsetofend(struct tcp_zerocopy_receive, length)) 4260 return -EINVAL; 4261 if (unlikely(len > sizeof(zc))) { 4262 err = check_zeroed_sockptr(optval, sizeof(zc), 4263 len - sizeof(zc)); 4264 if (err < 1) 4265 return err == 0 ? -EINVAL : err; 4266 len = sizeof(zc); 4267 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4268 return -EFAULT; 4269 } 4270 if (copy_from_sockptr(&zc, optval, len)) 4271 return -EFAULT; 4272 if (zc.reserved) 4273 return -EINVAL; 4274 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4275 return -EINVAL; 4276 sockopt_lock_sock(sk); 4277 err = tcp_zerocopy_receive(sk, &zc, &tss); 4278 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4279 &zc, &len, err); 4280 sockopt_release_sock(sk); 4281 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4282 goto zerocopy_rcv_cmsg; 4283 switch (len) { 4284 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4285 goto zerocopy_rcv_cmsg; 4286 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4287 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4288 case offsetofend(struct tcp_zerocopy_receive, flags): 4289 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4290 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4291 case offsetofend(struct tcp_zerocopy_receive, err): 4292 goto zerocopy_rcv_sk_err; 4293 case offsetofend(struct tcp_zerocopy_receive, inq): 4294 goto zerocopy_rcv_inq; 4295 case offsetofend(struct tcp_zerocopy_receive, length): 4296 default: 4297 goto zerocopy_rcv_out; 4298 } 4299 zerocopy_rcv_cmsg: 4300 if (zc.msg_flags & TCP_CMSG_TS) 4301 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4302 else 4303 zc.msg_flags = 0; 4304 zerocopy_rcv_sk_err: 4305 if (!err) 4306 zc.err = sock_error(sk); 4307 zerocopy_rcv_inq: 4308 zc.inq = tcp_inq_hint(sk); 4309 zerocopy_rcv_out: 4310 if (!err && copy_to_sockptr(optval, &zc, len)) 4311 err = -EFAULT; 4312 return err; 4313 } 4314 #endif 4315 case TCP_AO_REPAIR: 4316 if (!tcp_can_repair_sock(sk)) 4317 return -EPERM; 4318 return tcp_ao_get_repair(sk, optval, optlen); 4319 case TCP_AO_GET_KEYS: 4320 case TCP_AO_INFO: { 4321 int err; 4322 4323 sockopt_lock_sock(sk); 4324 if (optname == TCP_AO_GET_KEYS) 4325 err = tcp_ao_get_mkts(sk, optval, optlen); 4326 else 4327 err = tcp_ao_get_sock_info(sk, optval, optlen); 4328 sockopt_release_sock(sk); 4329 4330 return err; 4331 } 4332 default: 4333 return -ENOPROTOOPT; 4334 } 4335 4336 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4337 return -EFAULT; 4338 if (copy_to_sockptr(optval, &val, len)) 4339 return -EFAULT; 4340 return 0; 4341 } 4342 4343 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4344 { 4345 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4346 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4347 */ 4348 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4349 return true; 4350 4351 return false; 4352 } 4353 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4354 4355 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4356 int __user *optlen) 4357 { 4358 struct inet_connection_sock *icsk = inet_csk(sk); 4359 4360 if (level != SOL_TCP) 4361 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4362 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4363 optval, optlen); 4364 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4365 USER_SOCKPTR(optlen)); 4366 } 4367 EXPORT_SYMBOL(tcp_getsockopt); 4368 4369 #ifdef CONFIG_TCP_MD5SIG 4370 int tcp_md5_sigpool_id = -1; 4371 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4372 4373 int tcp_md5_alloc_sigpool(void) 4374 { 4375 size_t scratch_size; 4376 int ret; 4377 4378 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4379 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4380 if (ret >= 0) { 4381 /* As long as any md5 sigpool was allocated, the return 4382 * id would stay the same. Re-write the id only for the case 4383 * when previously all MD5 keys were deleted and this call 4384 * allocates the first MD5 key, which may return a different 4385 * sigpool id than was used previously. 4386 */ 4387 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4388 return 0; 4389 } 4390 return ret; 4391 } 4392 4393 void tcp_md5_release_sigpool(void) 4394 { 4395 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4396 } 4397 4398 void tcp_md5_add_sigpool(void) 4399 { 4400 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4401 } 4402 4403 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4404 const struct tcp_md5sig_key *key) 4405 { 4406 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4407 struct scatterlist sg; 4408 4409 sg_init_one(&sg, key->key, keylen); 4410 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4411 4412 /* We use data_race() because tcp_md5_do_add() might change 4413 * key->key under us 4414 */ 4415 return data_race(crypto_ahash_update(hp->req)); 4416 } 4417 EXPORT_SYMBOL(tcp_md5_hash_key); 4418 4419 /* Called with rcu_read_lock() */ 4420 enum skb_drop_reason 4421 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4422 const void *saddr, const void *daddr, 4423 int family, int l3index, const __u8 *hash_location) 4424 { 4425 /* This gets called for each TCP segment that has TCP-MD5 option. 4426 * We have 3 drop cases: 4427 * o No MD5 hash and one expected. 4428 * o MD5 hash and we're not expecting one. 4429 * o MD5 hash and its wrong. 4430 */ 4431 const struct tcp_sock *tp = tcp_sk(sk); 4432 struct tcp_md5sig_key *key; 4433 u8 newhash[16]; 4434 int genhash; 4435 4436 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4437 4438 if (!key && hash_location) { 4439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4440 tcp_hash_fail("Unexpected MD5 Hash found", family, skb, ""); 4441 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4442 } 4443 4444 /* Check the signature. 4445 * To support dual stack listeners, we need to handle 4446 * IPv4-mapped case. 4447 */ 4448 if (family == AF_INET) 4449 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4450 else 4451 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4452 NULL, skb); 4453 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4455 if (family == AF_INET) { 4456 tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d", 4457 genhash ? "tcp_v4_calc_md5_hash failed" 4458 : "", l3index); 4459 } else { 4460 if (genhash) { 4461 tcp_hash_fail("MD5 Hash failed", 4462 AF_INET6, skb, "L3 index %d", 4463 l3index); 4464 } else { 4465 tcp_hash_fail("MD5 Hash mismatch", 4466 AF_INET6, skb, "L3 index %d", 4467 l3index); 4468 } 4469 } 4470 return SKB_DROP_REASON_TCP_MD5FAILURE; 4471 } 4472 return SKB_NOT_DROPPED_YET; 4473 } 4474 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4475 4476 #endif 4477 4478 void tcp_done(struct sock *sk) 4479 { 4480 struct request_sock *req; 4481 4482 /* We might be called with a new socket, after 4483 * inet_csk_prepare_forced_close() has been called 4484 * so we can not use lockdep_sock_is_held(sk) 4485 */ 4486 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4487 4488 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4489 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4490 4491 tcp_set_state(sk, TCP_CLOSE); 4492 tcp_clear_xmit_timers(sk); 4493 if (req) 4494 reqsk_fastopen_remove(sk, req, false); 4495 4496 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4497 4498 if (!sock_flag(sk, SOCK_DEAD)) 4499 sk->sk_state_change(sk); 4500 else 4501 inet_csk_destroy_sock(sk); 4502 } 4503 EXPORT_SYMBOL_GPL(tcp_done); 4504 4505 int tcp_abort(struct sock *sk, int err) 4506 { 4507 int state = inet_sk_state_load(sk); 4508 4509 if (state == TCP_NEW_SYN_RECV) { 4510 struct request_sock *req = inet_reqsk(sk); 4511 4512 local_bh_disable(); 4513 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4514 local_bh_enable(); 4515 return 0; 4516 } 4517 if (state == TCP_TIME_WAIT) { 4518 struct inet_timewait_sock *tw = inet_twsk(sk); 4519 4520 refcount_inc(&tw->tw_refcnt); 4521 local_bh_disable(); 4522 inet_twsk_deschedule_put(tw); 4523 local_bh_enable(); 4524 return 0; 4525 } 4526 4527 /* BPF context ensures sock locking. */ 4528 if (!has_current_bpf_ctx()) 4529 /* Don't race with userspace socket closes such as tcp_close. */ 4530 lock_sock(sk); 4531 4532 if (sk->sk_state == TCP_LISTEN) { 4533 tcp_set_state(sk, TCP_CLOSE); 4534 inet_csk_listen_stop(sk); 4535 } 4536 4537 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4538 local_bh_disable(); 4539 bh_lock_sock(sk); 4540 4541 if (!sock_flag(sk, SOCK_DEAD)) { 4542 WRITE_ONCE(sk->sk_err, err); 4543 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4544 smp_wmb(); 4545 sk_error_report(sk); 4546 if (tcp_need_reset(sk->sk_state)) 4547 tcp_send_active_reset(sk, GFP_ATOMIC); 4548 tcp_done(sk); 4549 } 4550 4551 bh_unlock_sock(sk); 4552 local_bh_enable(); 4553 tcp_write_queue_purge(sk); 4554 if (!has_current_bpf_ctx()) 4555 release_sock(sk); 4556 return 0; 4557 } 4558 EXPORT_SYMBOL_GPL(tcp_abort); 4559 4560 extern struct tcp_congestion_ops tcp_reno; 4561 4562 static __initdata unsigned long thash_entries; 4563 static int __init set_thash_entries(char *str) 4564 { 4565 ssize_t ret; 4566 4567 if (!str) 4568 return 0; 4569 4570 ret = kstrtoul(str, 0, &thash_entries); 4571 if (ret) 4572 return 0; 4573 4574 return 1; 4575 } 4576 __setup("thash_entries=", set_thash_entries); 4577 4578 static void __init tcp_init_mem(void) 4579 { 4580 unsigned long limit = nr_free_buffer_pages() / 16; 4581 4582 limit = max(limit, 128UL); 4583 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4584 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4585 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4586 } 4587 4588 static void __init tcp_struct_check(void) 4589 { 4590 /* TX read-mostly hotpath cache lines */ 4591 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4592 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4593 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4594 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4595 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4596 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4597 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4598 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4599 4600 /* TXRX read-mostly hotpath cache lines */ 4601 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4602 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4603 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4604 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4605 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4606 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4607 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4608 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 31); 4609 4610 /* RX read-mostly hotpath cache lines */ 4611 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 4612 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 4613 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 4614 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 4615 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 4616 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 4617 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 4618 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 4619 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 4620 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 4621 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 4622 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 4623 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 4624 4625 /* TX read-write hotpath cache lines */ 4626 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 4627 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 4628 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 4629 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 4630 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 4631 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 4632 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 4633 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 4634 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 4635 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 4636 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 4637 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_clock_cache); 4638 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_mstamp); 4639 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 4640 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 4641 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 4642 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 4643 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 113); 4644 4645 /* TXRX read-write hotpath cache lines */ 4646 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 4647 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 4648 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 4649 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 4650 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 4651 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 4652 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 4653 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 4654 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 4655 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 4656 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 4657 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 4658 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 4659 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 76); 4660 4661 /* RX read-write hotpath cache lines */ 4662 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 4663 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 4664 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 4665 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 4666 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 4667 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 4668 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 4669 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 4670 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 4671 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 4672 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 4673 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 4674 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 4675 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 4676 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 4677 } 4678 4679 void __init tcp_init(void) 4680 { 4681 int max_rshare, max_wshare, cnt; 4682 unsigned long limit; 4683 unsigned int i; 4684 4685 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4686 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4687 sizeof_field(struct sk_buff, cb)); 4688 4689 tcp_struct_check(); 4690 4691 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4692 4693 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4694 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4695 4696 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4697 thash_entries, 21, /* one slot per 2 MB*/ 4698 0, 64 * 1024); 4699 tcp_hashinfo.bind_bucket_cachep = 4700 kmem_cache_create("tcp_bind_bucket", 4701 sizeof(struct inet_bind_bucket), 0, 4702 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4703 SLAB_ACCOUNT, 4704 NULL); 4705 tcp_hashinfo.bind2_bucket_cachep = 4706 kmem_cache_create("tcp_bind2_bucket", 4707 sizeof(struct inet_bind2_bucket), 0, 4708 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4709 SLAB_ACCOUNT, 4710 NULL); 4711 4712 /* Size and allocate the main established and bind bucket 4713 * hash tables. 4714 * 4715 * The methodology is similar to that of the buffer cache. 4716 */ 4717 tcp_hashinfo.ehash = 4718 alloc_large_system_hash("TCP established", 4719 sizeof(struct inet_ehash_bucket), 4720 thash_entries, 4721 17, /* one slot per 128 KB of memory */ 4722 0, 4723 NULL, 4724 &tcp_hashinfo.ehash_mask, 4725 0, 4726 thash_entries ? 0 : 512 * 1024); 4727 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4728 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4729 4730 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4731 panic("TCP: failed to alloc ehash_locks"); 4732 tcp_hashinfo.bhash = 4733 alloc_large_system_hash("TCP bind", 4734 2 * sizeof(struct inet_bind_hashbucket), 4735 tcp_hashinfo.ehash_mask + 1, 4736 17, /* one slot per 128 KB of memory */ 4737 0, 4738 &tcp_hashinfo.bhash_size, 4739 NULL, 4740 0, 4741 64 * 1024); 4742 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4743 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4744 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4745 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4746 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4747 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4748 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4749 } 4750 4751 tcp_hashinfo.pernet = false; 4752 4753 cnt = tcp_hashinfo.ehash_mask + 1; 4754 sysctl_tcp_max_orphans = cnt / 2; 4755 4756 tcp_init_mem(); 4757 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4758 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4759 max_wshare = min(4UL*1024*1024, limit); 4760 max_rshare = min(6UL*1024*1024, limit); 4761 4762 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4763 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4764 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4765 4766 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4767 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4768 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4769 4770 pr_info("Hash tables configured (established %u bind %u)\n", 4771 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4772 4773 tcp_v4_init(); 4774 tcp_metrics_init(); 4775 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4776 tcp_tasklet_init(); 4777 mptcp_init(); 4778 } 4779