1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 #include <net/rps.h> 283 284 /* Track pending CMSGs. */ 285 enum { 286 TCP_CMSG_INQ = 1, 287 TCP_CMSG_TS = 2 288 }; 289 290 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 291 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 292 293 long sysctl_tcp_mem[3] __read_mostly; 294 EXPORT_SYMBOL(sysctl_tcp_mem); 295 296 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 297 EXPORT_SYMBOL(tcp_memory_allocated); 298 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 299 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 300 301 #if IS_ENABLED(CONFIG_SMC) 302 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 303 EXPORT_SYMBOL(tcp_have_smc); 304 #endif 305 306 /* 307 * Current number of TCP sockets. 308 */ 309 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 310 EXPORT_SYMBOL(tcp_sockets_allocated); 311 312 /* 313 * TCP splice context 314 */ 315 struct tcp_splice_state { 316 struct pipe_inode_info *pipe; 317 size_t len; 318 unsigned int flags; 319 }; 320 321 /* 322 * Pressure flag: try to collapse. 323 * Technical note: it is used by multiple contexts non atomically. 324 * All the __sk_mem_schedule() is of this nature: accounting 325 * is strict, actions are advisory and have some latency. 326 */ 327 unsigned long tcp_memory_pressure __read_mostly; 328 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 329 330 void tcp_enter_memory_pressure(struct sock *sk) 331 { 332 unsigned long val; 333 334 if (READ_ONCE(tcp_memory_pressure)) 335 return; 336 val = jiffies; 337 338 if (!val) 339 val--; 340 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 341 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 342 } 343 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 344 345 void tcp_leave_memory_pressure(struct sock *sk) 346 { 347 unsigned long val; 348 349 if (!READ_ONCE(tcp_memory_pressure)) 350 return; 351 val = xchg(&tcp_memory_pressure, 0); 352 if (val) 353 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 354 jiffies_to_msecs(jiffies - val)); 355 } 356 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 357 358 /* Convert seconds to retransmits based on initial and max timeout */ 359 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 360 { 361 u8 res = 0; 362 363 if (seconds > 0) { 364 int period = timeout; 365 366 res = 1; 367 while (seconds > period && res < 255) { 368 res++; 369 timeout <<= 1; 370 if (timeout > rto_max) 371 timeout = rto_max; 372 period += timeout; 373 } 374 } 375 return res; 376 } 377 378 /* Convert retransmits to seconds based on initial and max timeout */ 379 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 380 { 381 int period = 0; 382 383 if (retrans > 0) { 384 period = timeout; 385 while (--retrans) { 386 timeout <<= 1; 387 if (timeout > rto_max) 388 timeout = rto_max; 389 period += timeout; 390 } 391 } 392 return period; 393 } 394 395 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 396 { 397 u32 rate = READ_ONCE(tp->rate_delivered); 398 u32 intv = READ_ONCE(tp->rate_interval_us); 399 u64 rate64 = 0; 400 401 if (rate && intv) { 402 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 403 do_div(rate64, intv); 404 } 405 return rate64; 406 } 407 408 /* Address-family independent initialization for a tcp_sock. 409 * 410 * NOTE: A lot of things set to zero explicitly by call to 411 * sk_alloc() so need not be done here. 412 */ 413 void tcp_init_sock(struct sock *sk) 414 { 415 struct inet_connection_sock *icsk = inet_csk(sk); 416 struct tcp_sock *tp = tcp_sk(sk); 417 418 tp->out_of_order_queue = RB_ROOT; 419 sk->tcp_rtx_queue = RB_ROOT; 420 tcp_init_xmit_timers(sk); 421 INIT_LIST_HEAD(&tp->tsq_node); 422 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 423 424 icsk->icsk_rto = TCP_TIMEOUT_INIT; 425 icsk->icsk_rto_min = TCP_RTO_MIN; 426 icsk->icsk_delack_max = TCP_DELACK_MAX; 427 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 428 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 429 430 /* So many TCP implementations out there (incorrectly) count the 431 * initial SYN frame in their delayed-ACK and congestion control 432 * algorithms that we must have the following bandaid to talk 433 * efficiently to them. -DaveM 434 */ 435 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 436 437 /* There's a bubble in the pipe until at least the first ACK. */ 438 tp->app_limited = ~0U; 439 tp->rate_app_limited = 1; 440 441 /* See draft-stevens-tcpca-spec-01 for discussion of the 442 * initialization of these values. 443 */ 444 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 445 tp->snd_cwnd_clamp = ~0; 446 tp->mss_cache = TCP_MSS_DEFAULT; 447 448 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 449 tcp_assign_congestion_control(sk); 450 451 tp->tsoffset = 0; 452 tp->rack.reo_wnd_steps = 1; 453 454 sk->sk_write_space = sk_stream_write_space; 455 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 456 457 icsk->icsk_sync_mss = tcp_sync_mss; 458 459 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 460 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 461 tcp_scaling_ratio_init(sk); 462 463 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 464 sk_sockets_allocated_inc(sk); 465 } 466 EXPORT_SYMBOL(tcp_init_sock); 467 468 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 469 { 470 struct sk_buff *skb = tcp_write_queue_tail(sk); 471 472 if (tsflags && skb) { 473 struct skb_shared_info *shinfo = skb_shinfo(skb); 474 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 475 476 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 477 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 478 tcb->txstamp_ack = 1; 479 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 480 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 481 } 482 } 483 484 static bool tcp_stream_is_readable(struct sock *sk, int target) 485 { 486 if (tcp_epollin_ready(sk, target)) 487 return true; 488 return sk_is_readable(sk); 489 } 490 491 /* 492 * Wait for a TCP event. 493 * 494 * Note that we don't need to lock the socket, as the upper poll layers 495 * take care of normal races (between the test and the event) and we don't 496 * go look at any of the socket buffers directly. 497 */ 498 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 499 { 500 __poll_t mask; 501 struct sock *sk = sock->sk; 502 const struct tcp_sock *tp = tcp_sk(sk); 503 u8 shutdown; 504 int state; 505 506 sock_poll_wait(file, sock, wait); 507 508 state = inet_sk_state_load(sk); 509 if (state == TCP_LISTEN) 510 return inet_csk_listen_poll(sk); 511 512 /* Socket is not locked. We are protected from async events 513 * by poll logic and correct handling of state changes 514 * made by other threads is impossible in any case. 515 */ 516 517 mask = 0; 518 519 /* 520 * EPOLLHUP is certainly not done right. But poll() doesn't 521 * have a notion of HUP in just one direction, and for a 522 * socket the read side is more interesting. 523 * 524 * Some poll() documentation says that EPOLLHUP is incompatible 525 * with the EPOLLOUT/POLLWR flags, so somebody should check this 526 * all. But careful, it tends to be safer to return too many 527 * bits than too few, and you can easily break real applications 528 * if you don't tell them that something has hung up! 529 * 530 * Check-me. 531 * 532 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 533 * our fs/select.c). It means that after we received EOF, 534 * poll always returns immediately, making impossible poll() on write() 535 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 536 * if and only if shutdown has been made in both directions. 537 * Actually, it is interesting to look how Solaris and DUX 538 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 539 * then we could set it on SND_SHUTDOWN. BTW examples given 540 * in Stevens' books assume exactly this behaviour, it explains 541 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 542 * 543 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 544 * blocking on fresh not-connected or disconnected socket. --ANK 545 */ 546 shutdown = READ_ONCE(sk->sk_shutdown); 547 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 548 mask |= EPOLLHUP; 549 if (shutdown & RCV_SHUTDOWN) 550 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 551 552 /* Connected or passive Fast Open socket? */ 553 if (state != TCP_SYN_SENT && 554 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 555 int target = sock_rcvlowat(sk, 0, INT_MAX); 556 u16 urg_data = READ_ONCE(tp->urg_data); 557 558 if (unlikely(urg_data) && 559 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 560 !sock_flag(sk, SOCK_URGINLINE)) 561 target++; 562 563 if (tcp_stream_is_readable(sk, target)) 564 mask |= EPOLLIN | EPOLLRDNORM; 565 566 if (!(shutdown & SEND_SHUTDOWN)) { 567 if (__sk_stream_is_writeable(sk, 1)) { 568 mask |= EPOLLOUT | EPOLLWRNORM; 569 } else { /* send SIGIO later */ 570 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 571 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 572 573 /* Race breaker. If space is freed after 574 * wspace test but before the flags are set, 575 * IO signal will be lost. Memory barrier 576 * pairs with the input side. 577 */ 578 smp_mb__after_atomic(); 579 if (__sk_stream_is_writeable(sk, 1)) 580 mask |= EPOLLOUT | EPOLLWRNORM; 581 } 582 } else 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 585 if (urg_data & TCP_URG_VALID) 586 mask |= EPOLLPRI; 587 } else if (state == TCP_SYN_SENT && 588 inet_test_bit(DEFER_CONNECT, sk)) { 589 /* Active TCP fastopen socket with defer_connect 590 * Return EPOLLOUT so application can call write() 591 * in order for kernel to generate SYN+data 592 */ 593 mask |= EPOLLOUT | EPOLLWRNORM; 594 } 595 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 596 smp_rmb(); 597 if (READ_ONCE(sk->sk_err) || 598 !skb_queue_empty_lockless(&sk->sk_error_queue)) 599 mask |= EPOLLERR; 600 601 return mask; 602 } 603 EXPORT_SYMBOL(tcp_poll); 604 605 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 int answ; 609 bool slow; 610 611 switch (cmd) { 612 case SIOCINQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 slow = lock_sock_fast(sk); 617 answ = tcp_inq(sk); 618 unlock_sock_fast(sk, slow); 619 break; 620 case SIOCATMARK: 621 answ = READ_ONCE(tp->urg_data) && 622 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 623 break; 624 case SIOCOUTQ: 625 if (sk->sk_state == TCP_LISTEN) 626 return -EINVAL; 627 628 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 629 answ = 0; 630 else 631 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 632 break; 633 case SIOCOUTQNSD: 634 if (sk->sk_state == TCP_LISTEN) 635 return -EINVAL; 636 637 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 638 answ = 0; 639 else 640 answ = READ_ONCE(tp->write_seq) - 641 READ_ONCE(tp->snd_nxt); 642 break; 643 default: 644 return -ENOIOCTLCMD; 645 } 646 647 *karg = answ; 648 return 0; 649 } 650 EXPORT_SYMBOL(tcp_ioctl); 651 652 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 653 { 654 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 655 tp->pushed_seq = tp->write_seq; 656 } 657 658 static inline bool forced_push(const struct tcp_sock *tp) 659 { 660 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 661 } 662 663 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 664 { 665 struct tcp_sock *tp = tcp_sk(sk); 666 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 667 668 tcb->seq = tcb->end_seq = tp->write_seq; 669 tcb->tcp_flags = TCPHDR_ACK; 670 __skb_header_release(skb); 671 tcp_add_write_queue_tail(sk, skb); 672 sk_wmem_queued_add(sk, skb->truesize); 673 sk_mem_charge(sk, skb->truesize); 674 if (tp->nonagle & TCP_NAGLE_PUSH) 675 tp->nonagle &= ~TCP_NAGLE_PUSH; 676 677 tcp_slow_start_after_idle_check(sk); 678 } 679 680 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 681 { 682 if (flags & MSG_OOB) 683 tp->snd_up = tp->write_seq; 684 } 685 686 /* If a not yet filled skb is pushed, do not send it if 687 * we have data packets in Qdisc or NIC queues : 688 * Because TX completion will happen shortly, it gives a chance 689 * to coalesce future sendmsg() payload into this skb, without 690 * need for a timer, and with no latency trade off. 691 * As packets containing data payload have a bigger truesize 692 * than pure acks (dataless) packets, the last checks prevent 693 * autocorking if we only have an ACK in Qdisc/NIC queues, 694 * or if TX completion was delayed after we processed ACK packet. 695 */ 696 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 697 int size_goal) 698 { 699 return skb->len < size_goal && 700 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 701 !tcp_rtx_queue_empty(sk) && 702 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 703 tcp_skb_can_collapse_to(skb); 704 } 705 706 void tcp_push(struct sock *sk, int flags, int mss_now, 707 int nonagle, int size_goal) 708 { 709 struct tcp_sock *tp = tcp_sk(sk); 710 struct sk_buff *skb; 711 712 skb = tcp_write_queue_tail(sk); 713 if (!skb) 714 return; 715 if (!(flags & MSG_MORE) || forced_push(tp)) 716 tcp_mark_push(tp, skb); 717 718 tcp_mark_urg(tp, flags); 719 720 if (tcp_should_autocork(sk, skb, size_goal)) { 721 722 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 723 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 724 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 725 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 726 smp_mb__after_atomic(); 727 } 728 /* It is possible TX completion already happened 729 * before we set TSQ_THROTTLED. 730 */ 731 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 732 return; 733 } 734 735 if (flags & MSG_MORE) 736 nonagle = TCP_NAGLE_CORK; 737 738 __tcp_push_pending_frames(sk, mss_now, nonagle); 739 } 740 741 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 742 unsigned int offset, size_t len) 743 { 744 struct tcp_splice_state *tss = rd_desc->arg.data; 745 int ret; 746 747 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 748 min(rd_desc->count, len), tss->flags); 749 if (ret > 0) 750 rd_desc->count -= ret; 751 return ret; 752 } 753 754 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 755 { 756 /* Store TCP splice context information in read_descriptor_t. */ 757 read_descriptor_t rd_desc = { 758 .arg.data = tss, 759 .count = tss->len, 760 }; 761 762 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 763 } 764 765 /** 766 * tcp_splice_read - splice data from TCP socket to a pipe 767 * @sock: socket to splice from 768 * @ppos: position (not valid) 769 * @pipe: pipe to splice to 770 * @len: number of bytes to splice 771 * @flags: splice modifier flags 772 * 773 * Description: 774 * Will read pages from given socket and fill them into a pipe. 775 * 776 **/ 777 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 778 struct pipe_inode_info *pipe, size_t len, 779 unsigned int flags) 780 { 781 struct sock *sk = sock->sk; 782 struct tcp_splice_state tss = { 783 .pipe = pipe, 784 .len = len, 785 .flags = flags, 786 }; 787 long timeo; 788 ssize_t spliced; 789 int ret; 790 791 sock_rps_record_flow(sk); 792 /* 793 * We can't seek on a socket input 794 */ 795 if (unlikely(*ppos)) 796 return -ESPIPE; 797 798 ret = spliced = 0; 799 800 lock_sock(sk); 801 802 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 803 while (tss.len) { 804 ret = __tcp_splice_read(sk, &tss); 805 if (ret < 0) 806 break; 807 else if (!ret) { 808 if (spliced) 809 break; 810 if (sock_flag(sk, SOCK_DONE)) 811 break; 812 if (sk->sk_err) { 813 ret = sock_error(sk); 814 break; 815 } 816 if (sk->sk_shutdown & RCV_SHUTDOWN) 817 break; 818 if (sk->sk_state == TCP_CLOSE) { 819 /* 820 * This occurs when user tries to read 821 * from never connected socket. 822 */ 823 ret = -ENOTCONN; 824 break; 825 } 826 if (!timeo) { 827 ret = -EAGAIN; 828 break; 829 } 830 /* if __tcp_splice_read() got nothing while we have 831 * an skb in receive queue, we do not want to loop. 832 * This might happen with URG data. 833 */ 834 if (!skb_queue_empty(&sk->sk_receive_queue)) 835 break; 836 ret = sk_wait_data(sk, &timeo, NULL); 837 if (ret < 0) 838 break; 839 if (signal_pending(current)) { 840 ret = sock_intr_errno(timeo); 841 break; 842 } 843 continue; 844 } 845 tss.len -= ret; 846 spliced += ret; 847 848 if (!tss.len || !timeo) 849 break; 850 release_sock(sk); 851 lock_sock(sk); 852 853 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 854 (sk->sk_shutdown & RCV_SHUTDOWN) || 855 signal_pending(current)) 856 break; 857 } 858 859 release_sock(sk); 860 861 if (spliced) 862 return spliced; 863 864 return ret; 865 } 866 EXPORT_SYMBOL(tcp_splice_read); 867 868 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 869 bool force_schedule) 870 { 871 struct sk_buff *skb; 872 873 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 874 if (likely(skb)) { 875 bool mem_scheduled; 876 877 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 878 if (force_schedule) { 879 mem_scheduled = true; 880 sk_forced_mem_schedule(sk, skb->truesize); 881 } else { 882 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 883 } 884 if (likely(mem_scheduled)) { 885 skb_reserve(skb, MAX_TCP_HEADER); 886 skb->ip_summed = CHECKSUM_PARTIAL; 887 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 888 return skb; 889 } 890 __kfree_skb(skb); 891 } else { 892 sk->sk_prot->enter_memory_pressure(sk); 893 sk_stream_moderate_sndbuf(sk); 894 } 895 return NULL; 896 } 897 898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 899 int large_allowed) 900 { 901 struct tcp_sock *tp = tcp_sk(sk); 902 u32 new_size_goal, size_goal; 903 904 if (!large_allowed) 905 return mss_now; 906 907 /* Note : tcp_tso_autosize() will eventually split this later */ 908 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 909 910 /* We try hard to avoid divides here */ 911 size_goal = tp->gso_segs * mss_now; 912 if (unlikely(new_size_goal < size_goal || 913 new_size_goal >= size_goal + mss_now)) { 914 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 915 sk->sk_gso_max_segs); 916 size_goal = tp->gso_segs * mss_now; 917 } 918 919 return max(size_goal, mss_now); 920 } 921 922 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 923 { 924 int mss_now; 925 926 mss_now = tcp_current_mss(sk); 927 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 928 929 return mss_now; 930 } 931 932 /* In some cases, sendmsg() could have added an skb to the write queue, 933 * but failed adding payload on it. We need to remove it to consume less 934 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 935 * epoll() users. Another reason is that tcp_write_xmit() does not like 936 * finding an empty skb in the write queue. 937 */ 938 void tcp_remove_empty_skb(struct sock *sk) 939 { 940 struct sk_buff *skb = tcp_write_queue_tail(sk); 941 942 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 943 tcp_unlink_write_queue(skb, sk); 944 if (tcp_write_queue_empty(sk)) 945 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 946 tcp_wmem_free_skb(sk, skb); 947 } 948 } 949 950 /* skb changing from pure zc to mixed, must charge zc */ 951 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 952 { 953 if (unlikely(skb_zcopy_pure(skb))) { 954 u32 extra = skb->truesize - 955 SKB_TRUESIZE(skb_end_offset(skb)); 956 957 if (!sk_wmem_schedule(sk, extra)) 958 return -ENOMEM; 959 960 sk_mem_charge(sk, extra); 961 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 962 } 963 return 0; 964 } 965 966 967 int tcp_wmem_schedule(struct sock *sk, int copy) 968 { 969 int left; 970 971 if (likely(sk_wmem_schedule(sk, copy))) 972 return copy; 973 974 /* We could be in trouble if we have nothing queued. 975 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 976 * to guarantee some progress. 977 */ 978 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 979 if (left > 0) 980 sk_forced_mem_schedule(sk, min(left, copy)); 981 return min(copy, sk->sk_forward_alloc); 982 } 983 984 void tcp_free_fastopen_req(struct tcp_sock *tp) 985 { 986 if (tp->fastopen_req) { 987 kfree(tp->fastopen_req); 988 tp->fastopen_req = NULL; 989 } 990 } 991 992 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 993 size_t size, struct ubuf_info *uarg) 994 { 995 struct tcp_sock *tp = tcp_sk(sk); 996 struct inet_sock *inet = inet_sk(sk); 997 struct sockaddr *uaddr = msg->msg_name; 998 int err, flags; 999 1000 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1001 TFO_CLIENT_ENABLE) || 1002 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1003 uaddr->sa_family == AF_UNSPEC)) 1004 return -EOPNOTSUPP; 1005 if (tp->fastopen_req) 1006 return -EALREADY; /* Another Fast Open is in progress */ 1007 1008 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1009 sk->sk_allocation); 1010 if (unlikely(!tp->fastopen_req)) 1011 return -ENOBUFS; 1012 tp->fastopen_req->data = msg; 1013 tp->fastopen_req->size = size; 1014 tp->fastopen_req->uarg = uarg; 1015 1016 if (inet_test_bit(DEFER_CONNECT, sk)) { 1017 err = tcp_connect(sk); 1018 /* Same failure procedure as in tcp_v4/6_connect */ 1019 if (err) { 1020 tcp_set_state(sk, TCP_CLOSE); 1021 inet->inet_dport = 0; 1022 sk->sk_route_caps = 0; 1023 } 1024 } 1025 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1026 err = __inet_stream_connect(sk->sk_socket, uaddr, 1027 msg->msg_namelen, flags, 1); 1028 /* fastopen_req could already be freed in __inet_stream_connect 1029 * if the connection times out or gets rst 1030 */ 1031 if (tp->fastopen_req) { 1032 *copied = tp->fastopen_req->copied; 1033 tcp_free_fastopen_req(tp); 1034 inet_clear_bit(DEFER_CONNECT, sk); 1035 } 1036 return err; 1037 } 1038 1039 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1040 { 1041 struct tcp_sock *tp = tcp_sk(sk); 1042 struct ubuf_info *uarg = NULL; 1043 struct sk_buff *skb; 1044 struct sockcm_cookie sockc; 1045 int flags, err, copied = 0; 1046 int mss_now = 0, size_goal, copied_syn = 0; 1047 int process_backlog = 0; 1048 int zc = 0; 1049 long timeo; 1050 1051 flags = msg->msg_flags; 1052 1053 if ((flags & MSG_ZEROCOPY) && size) { 1054 if (msg->msg_ubuf) { 1055 uarg = msg->msg_ubuf; 1056 if (sk->sk_route_caps & NETIF_F_SG) 1057 zc = MSG_ZEROCOPY; 1058 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1059 skb = tcp_write_queue_tail(sk); 1060 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1061 if (!uarg) { 1062 err = -ENOBUFS; 1063 goto out_err; 1064 } 1065 if (sk->sk_route_caps & NETIF_F_SG) 1066 zc = MSG_ZEROCOPY; 1067 else 1068 uarg_to_msgzc(uarg)->zerocopy = 0; 1069 } 1070 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1071 if (sk->sk_route_caps & NETIF_F_SG) 1072 zc = MSG_SPLICE_PAGES; 1073 } 1074 1075 if (unlikely(flags & MSG_FASTOPEN || 1076 inet_test_bit(DEFER_CONNECT, sk)) && 1077 !tp->repair) { 1078 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1079 if (err == -EINPROGRESS && copied_syn > 0) 1080 goto out; 1081 else if (err) 1082 goto out_err; 1083 } 1084 1085 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1086 1087 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1088 1089 /* Wait for a connection to finish. One exception is TCP Fast Open 1090 * (passive side) where data is allowed to be sent before a connection 1091 * is fully established. 1092 */ 1093 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1094 !tcp_passive_fastopen(sk)) { 1095 err = sk_stream_wait_connect(sk, &timeo); 1096 if (err != 0) 1097 goto do_error; 1098 } 1099 1100 if (unlikely(tp->repair)) { 1101 if (tp->repair_queue == TCP_RECV_QUEUE) { 1102 copied = tcp_send_rcvq(sk, msg, size); 1103 goto out_nopush; 1104 } 1105 1106 err = -EINVAL; 1107 if (tp->repair_queue == TCP_NO_QUEUE) 1108 goto out_err; 1109 1110 /* 'common' sending to sendq */ 1111 } 1112 1113 sockcm_init(&sockc, sk); 1114 if (msg->msg_controllen) { 1115 err = sock_cmsg_send(sk, msg, &sockc); 1116 if (unlikely(err)) { 1117 err = -EINVAL; 1118 goto out_err; 1119 } 1120 } 1121 1122 /* This should be in poll */ 1123 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1124 1125 /* Ok commence sending. */ 1126 copied = 0; 1127 1128 restart: 1129 mss_now = tcp_send_mss(sk, &size_goal, flags); 1130 1131 err = -EPIPE; 1132 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1133 goto do_error; 1134 1135 while (msg_data_left(msg)) { 1136 ssize_t copy = 0; 1137 1138 skb = tcp_write_queue_tail(sk); 1139 if (skb) 1140 copy = size_goal - skb->len; 1141 1142 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1143 bool first_skb; 1144 1145 new_segment: 1146 if (!sk_stream_memory_free(sk)) 1147 goto wait_for_space; 1148 1149 if (unlikely(process_backlog >= 16)) { 1150 process_backlog = 0; 1151 if (sk_flush_backlog(sk)) 1152 goto restart; 1153 } 1154 first_skb = tcp_rtx_and_write_queues_empty(sk); 1155 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1156 first_skb); 1157 if (!skb) 1158 goto wait_for_space; 1159 1160 process_backlog++; 1161 1162 tcp_skb_entail(sk, skb); 1163 copy = size_goal; 1164 1165 /* All packets are restored as if they have 1166 * already been sent. skb_mstamp_ns isn't set to 1167 * avoid wrong rtt estimation. 1168 */ 1169 if (tp->repair) 1170 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1171 } 1172 1173 /* Try to append data to the end of skb. */ 1174 if (copy > msg_data_left(msg)) 1175 copy = msg_data_left(msg); 1176 1177 if (zc == 0) { 1178 bool merge = true; 1179 int i = skb_shinfo(skb)->nr_frags; 1180 struct page_frag *pfrag = sk_page_frag(sk); 1181 1182 if (!sk_page_frag_refill(sk, pfrag)) 1183 goto wait_for_space; 1184 1185 if (!skb_can_coalesce(skb, i, pfrag->page, 1186 pfrag->offset)) { 1187 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1188 tcp_mark_push(tp, skb); 1189 goto new_segment; 1190 } 1191 merge = false; 1192 } 1193 1194 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1195 1196 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1197 if (tcp_downgrade_zcopy_pure(sk, skb)) 1198 goto wait_for_space; 1199 skb_zcopy_downgrade_managed(skb); 1200 } 1201 1202 copy = tcp_wmem_schedule(sk, copy); 1203 if (!copy) 1204 goto wait_for_space; 1205 1206 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1207 pfrag->page, 1208 pfrag->offset, 1209 copy); 1210 if (err) 1211 goto do_error; 1212 1213 /* Update the skb. */ 1214 if (merge) { 1215 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1216 } else { 1217 skb_fill_page_desc(skb, i, pfrag->page, 1218 pfrag->offset, copy); 1219 page_ref_inc(pfrag->page); 1220 } 1221 pfrag->offset += copy; 1222 } else if (zc == MSG_ZEROCOPY) { 1223 /* First append to a fragless skb builds initial 1224 * pure zerocopy skb 1225 */ 1226 if (!skb->len) 1227 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1228 1229 if (!skb_zcopy_pure(skb)) { 1230 copy = tcp_wmem_schedule(sk, copy); 1231 if (!copy) 1232 goto wait_for_space; 1233 } 1234 1235 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1236 if (err == -EMSGSIZE || err == -EEXIST) { 1237 tcp_mark_push(tp, skb); 1238 goto new_segment; 1239 } 1240 if (err < 0) 1241 goto do_error; 1242 copy = err; 1243 } else if (zc == MSG_SPLICE_PAGES) { 1244 /* Splice in data if we can; copy if we can't. */ 1245 if (tcp_downgrade_zcopy_pure(sk, skb)) 1246 goto wait_for_space; 1247 copy = tcp_wmem_schedule(sk, copy); 1248 if (!copy) 1249 goto wait_for_space; 1250 1251 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1252 sk->sk_allocation); 1253 if (err < 0) { 1254 if (err == -EMSGSIZE) { 1255 tcp_mark_push(tp, skb); 1256 goto new_segment; 1257 } 1258 goto do_error; 1259 } 1260 copy = err; 1261 1262 if (!(flags & MSG_NO_SHARED_FRAGS)) 1263 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1264 1265 sk_wmem_queued_add(sk, copy); 1266 sk_mem_charge(sk, copy); 1267 } 1268 1269 if (!copied) 1270 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1271 1272 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1273 TCP_SKB_CB(skb)->end_seq += copy; 1274 tcp_skb_pcount_set(skb, 0); 1275 1276 copied += copy; 1277 if (!msg_data_left(msg)) { 1278 if (unlikely(flags & MSG_EOR)) 1279 TCP_SKB_CB(skb)->eor = 1; 1280 goto out; 1281 } 1282 1283 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1284 continue; 1285 1286 if (forced_push(tp)) { 1287 tcp_mark_push(tp, skb); 1288 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1289 } else if (skb == tcp_send_head(sk)) 1290 tcp_push_one(sk, mss_now); 1291 continue; 1292 1293 wait_for_space: 1294 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1295 tcp_remove_empty_skb(sk); 1296 if (copied) 1297 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1298 TCP_NAGLE_PUSH, size_goal); 1299 1300 err = sk_stream_wait_memory(sk, &timeo); 1301 if (err != 0) 1302 goto do_error; 1303 1304 mss_now = tcp_send_mss(sk, &size_goal, flags); 1305 } 1306 1307 out: 1308 if (copied) { 1309 tcp_tx_timestamp(sk, sockc.tsflags); 1310 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1311 } 1312 out_nopush: 1313 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1314 if (uarg && !msg->msg_ubuf) 1315 net_zcopy_put(uarg); 1316 return copied + copied_syn; 1317 1318 do_error: 1319 tcp_remove_empty_skb(sk); 1320 1321 if (copied + copied_syn) 1322 goto out; 1323 out_err: 1324 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1325 if (uarg && !msg->msg_ubuf) 1326 net_zcopy_put_abort(uarg, true); 1327 err = sk_stream_error(sk, flags, err); 1328 /* make sure we wake any epoll edge trigger waiter */ 1329 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1330 sk->sk_write_space(sk); 1331 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1332 } 1333 return err; 1334 } 1335 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1336 1337 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1338 { 1339 int ret; 1340 1341 lock_sock(sk); 1342 ret = tcp_sendmsg_locked(sk, msg, size); 1343 release_sock(sk); 1344 1345 return ret; 1346 } 1347 EXPORT_SYMBOL(tcp_sendmsg); 1348 1349 void tcp_splice_eof(struct socket *sock) 1350 { 1351 struct sock *sk = sock->sk; 1352 struct tcp_sock *tp = tcp_sk(sk); 1353 int mss_now, size_goal; 1354 1355 if (!tcp_write_queue_tail(sk)) 1356 return; 1357 1358 lock_sock(sk); 1359 mss_now = tcp_send_mss(sk, &size_goal, 0); 1360 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1361 release_sock(sk); 1362 } 1363 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1364 1365 /* 1366 * Handle reading urgent data. BSD has very simple semantics for 1367 * this, no blocking and very strange errors 8) 1368 */ 1369 1370 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1371 { 1372 struct tcp_sock *tp = tcp_sk(sk); 1373 1374 /* No URG data to read. */ 1375 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1376 tp->urg_data == TCP_URG_READ) 1377 return -EINVAL; /* Yes this is right ! */ 1378 1379 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1380 return -ENOTCONN; 1381 1382 if (tp->urg_data & TCP_URG_VALID) { 1383 int err = 0; 1384 char c = tp->urg_data; 1385 1386 if (!(flags & MSG_PEEK)) 1387 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1388 1389 /* Read urgent data. */ 1390 msg->msg_flags |= MSG_OOB; 1391 1392 if (len > 0) { 1393 if (!(flags & MSG_TRUNC)) 1394 err = memcpy_to_msg(msg, &c, 1); 1395 len = 1; 1396 } else 1397 msg->msg_flags |= MSG_TRUNC; 1398 1399 return err ? -EFAULT : len; 1400 } 1401 1402 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1403 return 0; 1404 1405 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1406 * the available implementations agree in this case: 1407 * this call should never block, independent of the 1408 * blocking state of the socket. 1409 * Mike <pall@rz.uni-karlsruhe.de> 1410 */ 1411 return -EAGAIN; 1412 } 1413 1414 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1415 { 1416 struct sk_buff *skb; 1417 int copied = 0, err = 0; 1418 1419 /* XXX -- need to support SO_PEEK_OFF */ 1420 1421 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1422 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1423 if (err) 1424 return err; 1425 copied += skb->len; 1426 } 1427 1428 skb_queue_walk(&sk->sk_write_queue, skb) { 1429 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1430 if (err) 1431 break; 1432 1433 copied += skb->len; 1434 } 1435 1436 return err ?: copied; 1437 } 1438 1439 /* Clean up the receive buffer for full frames taken by the user, 1440 * then send an ACK if necessary. COPIED is the number of bytes 1441 * tcp_recvmsg has given to the user so far, it speeds up the 1442 * calculation of whether or not we must ACK for the sake of 1443 * a window update. 1444 */ 1445 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1446 { 1447 struct tcp_sock *tp = tcp_sk(sk); 1448 bool time_to_ack = false; 1449 1450 if (inet_csk_ack_scheduled(sk)) { 1451 const struct inet_connection_sock *icsk = inet_csk(sk); 1452 1453 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1454 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1455 /* 1456 * If this read emptied read buffer, we send ACK, if 1457 * connection is not bidirectional, user drained 1458 * receive buffer and there was a small segment 1459 * in queue. 1460 */ 1461 (copied > 0 && 1462 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1463 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1464 !inet_csk_in_pingpong_mode(sk))) && 1465 !atomic_read(&sk->sk_rmem_alloc))) 1466 time_to_ack = true; 1467 } 1468 1469 /* We send an ACK if we can now advertise a non-zero window 1470 * which has been raised "significantly". 1471 * 1472 * Even if window raised up to infinity, do not send window open ACK 1473 * in states, where we will not receive more. It is useless. 1474 */ 1475 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1476 __u32 rcv_window_now = tcp_receive_window(tp); 1477 1478 /* Optimize, __tcp_select_window() is not cheap. */ 1479 if (2*rcv_window_now <= tp->window_clamp) { 1480 __u32 new_window = __tcp_select_window(sk); 1481 1482 /* Send ACK now, if this read freed lots of space 1483 * in our buffer. Certainly, new_window is new window. 1484 * We can advertise it now, if it is not less than current one. 1485 * "Lots" means "at least twice" here. 1486 */ 1487 if (new_window && new_window >= 2 * rcv_window_now) 1488 time_to_ack = true; 1489 } 1490 } 1491 if (time_to_ack) 1492 tcp_send_ack(sk); 1493 } 1494 1495 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1496 { 1497 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1498 struct tcp_sock *tp = tcp_sk(sk); 1499 1500 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1501 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1502 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1503 __tcp_cleanup_rbuf(sk, copied); 1504 } 1505 1506 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1507 { 1508 __skb_unlink(skb, &sk->sk_receive_queue); 1509 if (likely(skb->destructor == sock_rfree)) { 1510 sock_rfree(skb); 1511 skb->destructor = NULL; 1512 skb->sk = NULL; 1513 return skb_attempt_defer_free(skb); 1514 } 1515 __kfree_skb(skb); 1516 } 1517 1518 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1519 { 1520 struct sk_buff *skb; 1521 u32 offset; 1522 1523 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1524 offset = seq - TCP_SKB_CB(skb)->seq; 1525 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1526 pr_err_once("%s: found a SYN, please report !\n", __func__); 1527 offset--; 1528 } 1529 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1530 *off = offset; 1531 return skb; 1532 } 1533 /* This looks weird, but this can happen if TCP collapsing 1534 * splitted a fat GRO packet, while we released socket lock 1535 * in skb_splice_bits() 1536 */ 1537 tcp_eat_recv_skb(sk, skb); 1538 } 1539 return NULL; 1540 } 1541 EXPORT_SYMBOL(tcp_recv_skb); 1542 1543 /* 1544 * This routine provides an alternative to tcp_recvmsg() for routines 1545 * that would like to handle copying from skbuffs directly in 'sendfile' 1546 * fashion. 1547 * Note: 1548 * - It is assumed that the socket was locked by the caller. 1549 * - The routine does not block. 1550 * - At present, there is no support for reading OOB data 1551 * or for 'peeking' the socket using this routine 1552 * (although both would be easy to implement). 1553 */ 1554 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1555 sk_read_actor_t recv_actor) 1556 { 1557 struct sk_buff *skb; 1558 struct tcp_sock *tp = tcp_sk(sk); 1559 u32 seq = tp->copied_seq; 1560 u32 offset; 1561 int copied = 0; 1562 1563 if (sk->sk_state == TCP_LISTEN) 1564 return -ENOTCONN; 1565 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1566 if (offset < skb->len) { 1567 int used; 1568 size_t len; 1569 1570 len = skb->len - offset; 1571 /* Stop reading if we hit a patch of urgent data */ 1572 if (unlikely(tp->urg_data)) { 1573 u32 urg_offset = tp->urg_seq - seq; 1574 if (urg_offset < len) 1575 len = urg_offset; 1576 if (!len) 1577 break; 1578 } 1579 used = recv_actor(desc, skb, offset, len); 1580 if (used <= 0) { 1581 if (!copied) 1582 copied = used; 1583 break; 1584 } 1585 if (WARN_ON_ONCE(used > len)) 1586 used = len; 1587 seq += used; 1588 copied += used; 1589 offset += used; 1590 1591 /* If recv_actor drops the lock (e.g. TCP splice 1592 * receive) the skb pointer might be invalid when 1593 * getting here: tcp_collapse might have deleted it 1594 * while aggregating skbs from the socket queue. 1595 */ 1596 skb = tcp_recv_skb(sk, seq - 1, &offset); 1597 if (!skb) 1598 break; 1599 /* TCP coalescing might have appended data to the skb. 1600 * Try to splice more frags 1601 */ 1602 if (offset + 1 != skb->len) 1603 continue; 1604 } 1605 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1606 tcp_eat_recv_skb(sk, skb); 1607 ++seq; 1608 break; 1609 } 1610 tcp_eat_recv_skb(sk, skb); 1611 if (!desc->count) 1612 break; 1613 WRITE_ONCE(tp->copied_seq, seq); 1614 } 1615 WRITE_ONCE(tp->copied_seq, seq); 1616 1617 tcp_rcv_space_adjust(sk); 1618 1619 /* Clean up data we have read: This will do ACK frames. */ 1620 if (copied > 0) { 1621 tcp_recv_skb(sk, seq, &offset); 1622 tcp_cleanup_rbuf(sk, copied); 1623 } 1624 return copied; 1625 } 1626 EXPORT_SYMBOL(tcp_read_sock); 1627 1628 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1629 { 1630 struct sk_buff *skb; 1631 int copied = 0; 1632 1633 if (sk->sk_state == TCP_LISTEN) 1634 return -ENOTCONN; 1635 1636 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1637 u8 tcp_flags; 1638 int used; 1639 1640 __skb_unlink(skb, &sk->sk_receive_queue); 1641 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1642 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1643 used = recv_actor(sk, skb); 1644 if (used < 0) { 1645 if (!copied) 1646 copied = used; 1647 break; 1648 } 1649 copied += used; 1650 1651 if (tcp_flags & TCPHDR_FIN) 1652 break; 1653 } 1654 return copied; 1655 } 1656 EXPORT_SYMBOL(tcp_read_skb); 1657 1658 void tcp_read_done(struct sock *sk, size_t len) 1659 { 1660 struct tcp_sock *tp = tcp_sk(sk); 1661 u32 seq = tp->copied_seq; 1662 struct sk_buff *skb; 1663 size_t left; 1664 u32 offset; 1665 1666 if (sk->sk_state == TCP_LISTEN) 1667 return; 1668 1669 left = len; 1670 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1671 int used; 1672 1673 used = min_t(size_t, skb->len - offset, left); 1674 seq += used; 1675 left -= used; 1676 1677 if (skb->len > offset + used) 1678 break; 1679 1680 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1681 tcp_eat_recv_skb(sk, skb); 1682 ++seq; 1683 break; 1684 } 1685 tcp_eat_recv_skb(sk, skb); 1686 } 1687 WRITE_ONCE(tp->copied_seq, seq); 1688 1689 tcp_rcv_space_adjust(sk); 1690 1691 /* Clean up data we have read: This will do ACK frames. */ 1692 if (left != len) 1693 tcp_cleanup_rbuf(sk, len - left); 1694 } 1695 EXPORT_SYMBOL(tcp_read_done); 1696 1697 int tcp_peek_len(struct socket *sock) 1698 { 1699 return tcp_inq(sock->sk); 1700 } 1701 EXPORT_SYMBOL(tcp_peek_len); 1702 1703 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1704 int tcp_set_rcvlowat(struct sock *sk, int val) 1705 { 1706 int space, cap; 1707 1708 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1709 cap = sk->sk_rcvbuf >> 1; 1710 else 1711 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1712 val = min(val, cap); 1713 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1714 1715 /* Check if we need to signal EPOLLIN right now */ 1716 tcp_data_ready(sk); 1717 1718 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1719 return 0; 1720 1721 space = tcp_space_from_win(sk, val); 1722 if (space > sk->sk_rcvbuf) { 1723 WRITE_ONCE(sk->sk_rcvbuf, space); 1724 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1725 } 1726 return 0; 1727 } 1728 EXPORT_SYMBOL(tcp_set_rcvlowat); 1729 1730 void tcp_update_recv_tstamps(struct sk_buff *skb, 1731 struct scm_timestamping_internal *tss) 1732 { 1733 if (skb->tstamp) 1734 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1735 else 1736 tss->ts[0] = (struct timespec64) {0}; 1737 1738 if (skb_hwtstamps(skb)->hwtstamp) 1739 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1740 else 1741 tss->ts[2] = (struct timespec64) {0}; 1742 } 1743 1744 #ifdef CONFIG_MMU 1745 static const struct vm_operations_struct tcp_vm_ops = { 1746 }; 1747 1748 int tcp_mmap(struct file *file, struct socket *sock, 1749 struct vm_area_struct *vma) 1750 { 1751 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1752 return -EPERM; 1753 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1754 1755 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1756 vm_flags_set(vma, VM_MIXEDMAP); 1757 1758 vma->vm_ops = &tcp_vm_ops; 1759 return 0; 1760 } 1761 EXPORT_SYMBOL(tcp_mmap); 1762 1763 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1764 u32 *offset_frag) 1765 { 1766 skb_frag_t *frag; 1767 1768 if (unlikely(offset_skb >= skb->len)) 1769 return NULL; 1770 1771 offset_skb -= skb_headlen(skb); 1772 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1773 return NULL; 1774 1775 frag = skb_shinfo(skb)->frags; 1776 while (offset_skb) { 1777 if (skb_frag_size(frag) > offset_skb) { 1778 *offset_frag = offset_skb; 1779 return frag; 1780 } 1781 offset_skb -= skb_frag_size(frag); 1782 ++frag; 1783 } 1784 *offset_frag = 0; 1785 return frag; 1786 } 1787 1788 static bool can_map_frag(const skb_frag_t *frag) 1789 { 1790 struct page *page; 1791 1792 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1793 return false; 1794 1795 page = skb_frag_page(frag); 1796 1797 if (PageCompound(page) || page->mapping) 1798 return false; 1799 1800 return true; 1801 } 1802 1803 static int find_next_mappable_frag(const skb_frag_t *frag, 1804 int remaining_in_skb) 1805 { 1806 int offset = 0; 1807 1808 if (likely(can_map_frag(frag))) 1809 return 0; 1810 1811 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1812 offset += skb_frag_size(frag); 1813 ++frag; 1814 } 1815 return offset; 1816 } 1817 1818 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1819 struct tcp_zerocopy_receive *zc, 1820 struct sk_buff *skb, u32 offset) 1821 { 1822 u32 frag_offset, partial_frag_remainder = 0; 1823 int mappable_offset; 1824 skb_frag_t *frag; 1825 1826 /* worst case: skip to next skb. try to improve on this case below */ 1827 zc->recv_skip_hint = skb->len - offset; 1828 1829 /* Find the frag containing this offset (and how far into that frag) */ 1830 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1831 if (!frag) 1832 return; 1833 1834 if (frag_offset) { 1835 struct skb_shared_info *info = skb_shinfo(skb); 1836 1837 /* We read part of the last frag, must recvmsg() rest of skb. */ 1838 if (frag == &info->frags[info->nr_frags - 1]) 1839 return; 1840 1841 /* Else, we must at least read the remainder in this frag. */ 1842 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1843 zc->recv_skip_hint -= partial_frag_remainder; 1844 ++frag; 1845 } 1846 1847 /* partial_frag_remainder: If part way through a frag, must read rest. 1848 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1849 * in partial_frag_remainder. 1850 */ 1851 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1852 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1853 } 1854 1855 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1856 int flags, struct scm_timestamping_internal *tss, 1857 int *cmsg_flags); 1858 static int receive_fallback_to_copy(struct sock *sk, 1859 struct tcp_zerocopy_receive *zc, int inq, 1860 struct scm_timestamping_internal *tss) 1861 { 1862 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1863 struct msghdr msg = {}; 1864 int err; 1865 1866 zc->length = 0; 1867 zc->recv_skip_hint = 0; 1868 1869 if (copy_address != zc->copybuf_address) 1870 return -EINVAL; 1871 1872 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1873 &msg.msg_iter); 1874 if (err) 1875 return err; 1876 1877 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1878 tss, &zc->msg_flags); 1879 if (err < 0) 1880 return err; 1881 1882 zc->copybuf_len = err; 1883 if (likely(zc->copybuf_len)) { 1884 struct sk_buff *skb; 1885 u32 offset; 1886 1887 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1888 if (skb) 1889 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1890 } 1891 return 0; 1892 } 1893 1894 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1895 struct sk_buff *skb, u32 copylen, 1896 u32 *offset, u32 *seq) 1897 { 1898 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1899 struct msghdr msg = {}; 1900 int err; 1901 1902 if (copy_address != zc->copybuf_address) 1903 return -EINVAL; 1904 1905 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1906 &msg.msg_iter); 1907 if (err) 1908 return err; 1909 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1910 if (err) 1911 return err; 1912 zc->recv_skip_hint -= copylen; 1913 *offset += copylen; 1914 *seq += copylen; 1915 return (__s32)copylen; 1916 } 1917 1918 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1919 struct sock *sk, 1920 struct sk_buff *skb, 1921 u32 *seq, 1922 s32 copybuf_len, 1923 struct scm_timestamping_internal *tss) 1924 { 1925 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1926 1927 if (!copylen) 1928 return 0; 1929 /* skb is null if inq < PAGE_SIZE. */ 1930 if (skb) { 1931 offset = *seq - TCP_SKB_CB(skb)->seq; 1932 } else { 1933 skb = tcp_recv_skb(sk, *seq, &offset); 1934 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1935 tcp_update_recv_tstamps(skb, tss); 1936 zc->msg_flags |= TCP_CMSG_TS; 1937 } 1938 } 1939 1940 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1941 seq); 1942 return zc->copybuf_len < 0 ? 0 : copylen; 1943 } 1944 1945 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1946 struct page **pending_pages, 1947 unsigned long pages_remaining, 1948 unsigned long *address, 1949 u32 *length, 1950 u32 *seq, 1951 struct tcp_zerocopy_receive *zc, 1952 u32 total_bytes_to_map, 1953 int err) 1954 { 1955 /* At least one page did not map. Try zapping if we skipped earlier. */ 1956 if (err == -EBUSY && 1957 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1958 u32 maybe_zap_len; 1959 1960 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1961 *length + /* Mapped or pending */ 1962 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1963 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1964 err = 0; 1965 } 1966 1967 if (!err) { 1968 unsigned long leftover_pages = pages_remaining; 1969 int bytes_mapped; 1970 1971 /* We called zap_page_range_single, try to reinsert. */ 1972 err = vm_insert_pages(vma, *address, 1973 pending_pages, 1974 &pages_remaining); 1975 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1976 *seq += bytes_mapped; 1977 *address += bytes_mapped; 1978 } 1979 if (err) { 1980 /* Either we were unable to zap, OR we zapped, retried an 1981 * insert, and still had an issue. Either ways, pages_remaining 1982 * is the number of pages we were unable to map, and we unroll 1983 * some state we speculatively touched before. 1984 */ 1985 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1986 1987 *length -= bytes_not_mapped; 1988 zc->recv_skip_hint += bytes_not_mapped; 1989 } 1990 return err; 1991 } 1992 1993 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1994 struct page **pages, 1995 unsigned int pages_to_map, 1996 unsigned long *address, 1997 u32 *length, 1998 u32 *seq, 1999 struct tcp_zerocopy_receive *zc, 2000 u32 total_bytes_to_map) 2001 { 2002 unsigned long pages_remaining = pages_to_map; 2003 unsigned int pages_mapped; 2004 unsigned int bytes_mapped; 2005 int err; 2006 2007 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2008 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2009 bytes_mapped = PAGE_SIZE * pages_mapped; 2010 /* Even if vm_insert_pages fails, it may have partially succeeded in 2011 * mapping (some but not all of the pages). 2012 */ 2013 *seq += bytes_mapped; 2014 *address += bytes_mapped; 2015 2016 if (likely(!err)) 2017 return 0; 2018 2019 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2020 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2021 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2022 err); 2023 } 2024 2025 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2026 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2027 struct tcp_zerocopy_receive *zc, 2028 struct scm_timestamping_internal *tss) 2029 { 2030 unsigned long msg_control_addr; 2031 struct msghdr cmsg_dummy; 2032 2033 msg_control_addr = (unsigned long)zc->msg_control; 2034 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2035 cmsg_dummy.msg_controllen = 2036 (__kernel_size_t)zc->msg_controllen; 2037 cmsg_dummy.msg_flags = in_compat_syscall() 2038 ? MSG_CMSG_COMPAT : 0; 2039 cmsg_dummy.msg_control_is_user = true; 2040 zc->msg_flags = 0; 2041 if (zc->msg_control == msg_control_addr && 2042 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2043 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2044 zc->msg_control = (__u64) 2045 ((uintptr_t)cmsg_dummy.msg_control_user); 2046 zc->msg_controllen = 2047 (__u64)cmsg_dummy.msg_controllen; 2048 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2049 } 2050 } 2051 2052 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2053 unsigned long address, 2054 bool *mmap_locked) 2055 { 2056 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2057 2058 if (vma) { 2059 if (vma->vm_ops != &tcp_vm_ops) { 2060 vma_end_read(vma); 2061 return NULL; 2062 } 2063 *mmap_locked = false; 2064 return vma; 2065 } 2066 2067 mmap_read_lock(mm); 2068 vma = vma_lookup(mm, address); 2069 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2070 mmap_read_unlock(mm); 2071 return NULL; 2072 } 2073 *mmap_locked = true; 2074 return vma; 2075 } 2076 2077 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2078 static int tcp_zerocopy_receive(struct sock *sk, 2079 struct tcp_zerocopy_receive *zc, 2080 struct scm_timestamping_internal *tss) 2081 { 2082 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2083 unsigned long address = (unsigned long)zc->address; 2084 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2085 s32 copybuf_len = zc->copybuf_len; 2086 struct tcp_sock *tp = tcp_sk(sk); 2087 const skb_frag_t *frags = NULL; 2088 unsigned int pages_to_map = 0; 2089 struct vm_area_struct *vma; 2090 struct sk_buff *skb = NULL; 2091 u32 seq = tp->copied_seq; 2092 u32 total_bytes_to_map; 2093 int inq = tcp_inq(sk); 2094 bool mmap_locked; 2095 int ret; 2096 2097 zc->copybuf_len = 0; 2098 zc->msg_flags = 0; 2099 2100 if (address & (PAGE_SIZE - 1) || address != zc->address) 2101 return -EINVAL; 2102 2103 if (sk->sk_state == TCP_LISTEN) 2104 return -ENOTCONN; 2105 2106 sock_rps_record_flow(sk); 2107 2108 if (inq && inq <= copybuf_len) 2109 return receive_fallback_to_copy(sk, zc, inq, tss); 2110 2111 if (inq < PAGE_SIZE) { 2112 zc->length = 0; 2113 zc->recv_skip_hint = inq; 2114 if (!inq && sock_flag(sk, SOCK_DONE)) 2115 return -EIO; 2116 return 0; 2117 } 2118 2119 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2120 if (!vma) 2121 return -EINVAL; 2122 2123 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2124 avail_len = min_t(u32, vma_len, inq); 2125 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2126 if (total_bytes_to_map) { 2127 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2128 zap_page_range_single(vma, address, total_bytes_to_map, 2129 NULL); 2130 zc->length = total_bytes_to_map; 2131 zc->recv_skip_hint = 0; 2132 } else { 2133 zc->length = avail_len; 2134 zc->recv_skip_hint = avail_len; 2135 } 2136 ret = 0; 2137 while (length + PAGE_SIZE <= zc->length) { 2138 int mappable_offset; 2139 struct page *page; 2140 2141 if (zc->recv_skip_hint < PAGE_SIZE) { 2142 u32 offset_frag; 2143 2144 if (skb) { 2145 if (zc->recv_skip_hint > 0) 2146 break; 2147 skb = skb->next; 2148 offset = seq - TCP_SKB_CB(skb)->seq; 2149 } else { 2150 skb = tcp_recv_skb(sk, seq, &offset); 2151 } 2152 2153 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2154 tcp_update_recv_tstamps(skb, tss); 2155 zc->msg_flags |= TCP_CMSG_TS; 2156 } 2157 zc->recv_skip_hint = skb->len - offset; 2158 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2159 if (!frags || offset_frag) 2160 break; 2161 } 2162 2163 mappable_offset = find_next_mappable_frag(frags, 2164 zc->recv_skip_hint); 2165 if (mappable_offset) { 2166 zc->recv_skip_hint = mappable_offset; 2167 break; 2168 } 2169 page = skb_frag_page(frags); 2170 prefetchw(page); 2171 pages[pages_to_map++] = page; 2172 length += PAGE_SIZE; 2173 zc->recv_skip_hint -= PAGE_SIZE; 2174 frags++; 2175 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2176 zc->recv_skip_hint < PAGE_SIZE) { 2177 /* Either full batch, or we're about to go to next skb 2178 * (and we cannot unroll failed ops across skbs). 2179 */ 2180 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2181 pages_to_map, 2182 &address, &length, 2183 &seq, zc, 2184 total_bytes_to_map); 2185 if (ret) 2186 goto out; 2187 pages_to_map = 0; 2188 } 2189 } 2190 if (pages_to_map) { 2191 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2192 &address, &length, &seq, 2193 zc, total_bytes_to_map); 2194 } 2195 out: 2196 if (mmap_locked) 2197 mmap_read_unlock(current->mm); 2198 else 2199 vma_end_read(vma); 2200 /* Try to copy straggler data. */ 2201 if (!ret) 2202 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2203 2204 if (length + copylen) { 2205 WRITE_ONCE(tp->copied_seq, seq); 2206 tcp_rcv_space_adjust(sk); 2207 2208 /* Clean up data we have read: This will do ACK frames. */ 2209 tcp_recv_skb(sk, seq, &offset); 2210 tcp_cleanup_rbuf(sk, length + copylen); 2211 ret = 0; 2212 if (length == zc->length) 2213 zc->recv_skip_hint = 0; 2214 } else { 2215 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2216 ret = -EIO; 2217 } 2218 zc->length = length; 2219 return ret; 2220 } 2221 #endif 2222 2223 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2224 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2225 struct scm_timestamping_internal *tss) 2226 { 2227 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2228 bool has_timestamping = false; 2229 2230 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2231 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2232 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2233 if (new_tstamp) { 2234 struct __kernel_timespec kts = { 2235 .tv_sec = tss->ts[0].tv_sec, 2236 .tv_nsec = tss->ts[0].tv_nsec, 2237 }; 2238 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2239 sizeof(kts), &kts); 2240 } else { 2241 struct __kernel_old_timespec ts_old = { 2242 .tv_sec = tss->ts[0].tv_sec, 2243 .tv_nsec = tss->ts[0].tv_nsec, 2244 }; 2245 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2246 sizeof(ts_old), &ts_old); 2247 } 2248 } else { 2249 if (new_tstamp) { 2250 struct __kernel_sock_timeval stv = { 2251 .tv_sec = tss->ts[0].tv_sec, 2252 .tv_usec = tss->ts[0].tv_nsec / 1000, 2253 }; 2254 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2255 sizeof(stv), &stv); 2256 } else { 2257 struct __kernel_old_timeval tv = { 2258 .tv_sec = tss->ts[0].tv_sec, 2259 .tv_usec = tss->ts[0].tv_nsec / 1000, 2260 }; 2261 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2262 sizeof(tv), &tv); 2263 } 2264 } 2265 } 2266 2267 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2268 has_timestamping = true; 2269 else 2270 tss->ts[0] = (struct timespec64) {0}; 2271 } 2272 2273 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2274 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2275 has_timestamping = true; 2276 else 2277 tss->ts[2] = (struct timespec64) {0}; 2278 } 2279 2280 if (has_timestamping) { 2281 tss->ts[1] = (struct timespec64) {0}; 2282 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2283 put_cmsg_scm_timestamping64(msg, tss); 2284 else 2285 put_cmsg_scm_timestamping(msg, tss); 2286 } 2287 } 2288 2289 static int tcp_inq_hint(struct sock *sk) 2290 { 2291 const struct tcp_sock *tp = tcp_sk(sk); 2292 u32 copied_seq = READ_ONCE(tp->copied_seq); 2293 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2294 int inq; 2295 2296 inq = rcv_nxt - copied_seq; 2297 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2298 lock_sock(sk); 2299 inq = tp->rcv_nxt - tp->copied_seq; 2300 release_sock(sk); 2301 } 2302 /* After receiving a FIN, tell the user-space to continue reading 2303 * by returning a non-zero inq. 2304 */ 2305 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2306 inq = 1; 2307 return inq; 2308 } 2309 2310 /* 2311 * This routine copies from a sock struct into the user buffer. 2312 * 2313 * Technical note: in 2.3 we work on _locked_ socket, so that 2314 * tricks with *seq access order and skb->users are not required. 2315 * Probably, code can be easily improved even more. 2316 */ 2317 2318 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2319 int flags, struct scm_timestamping_internal *tss, 2320 int *cmsg_flags) 2321 { 2322 struct tcp_sock *tp = tcp_sk(sk); 2323 int copied = 0; 2324 u32 peek_seq; 2325 u32 *seq; 2326 unsigned long used; 2327 int err; 2328 int target; /* Read at least this many bytes */ 2329 long timeo; 2330 struct sk_buff *skb, *last; 2331 u32 urg_hole = 0; 2332 2333 err = -ENOTCONN; 2334 if (sk->sk_state == TCP_LISTEN) 2335 goto out; 2336 2337 if (tp->recvmsg_inq) { 2338 *cmsg_flags = TCP_CMSG_INQ; 2339 msg->msg_get_inq = 1; 2340 } 2341 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2342 2343 /* Urgent data needs to be handled specially. */ 2344 if (flags & MSG_OOB) 2345 goto recv_urg; 2346 2347 if (unlikely(tp->repair)) { 2348 err = -EPERM; 2349 if (!(flags & MSG_PEEK)) 2350 goto out; 2351 2352 if (tp->repair_queue == TCP_SEND_QUEUE) 2353 goto recv_sndq; 2354 2355 err = -EINVAL; 2356 if (tp->repair_queue == TCP_NO_QUEUE) 2357 goto out; 2358 2359 /* 'common' recv queue MSG_PEEK-ing */ 2360 } 2361 2362 seq = &tp->copied_seq; 2363 if (flags & MSG_PEEK) { 2364 peek_seq = tp->copied_seq; 2365 seq = &peek_seq; 2366 } 2367 2368 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2369 2370 do { 2371 u32 offset; 2372 2373 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2374 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2375 if (copied) 2376 break; 2377 if (signal_pending(current)) { 2378 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2379 break; 2380 } 2381 } 2382 2383 /* Next get a buffer. */ 2384 2385 last = skb_peek_tail(&sk->sk_receive_queue); 2386 skb_queue_walk(&sk->sk_receive_queue, skb) { 2387 last = skb; 2388 /* Now that we have two receive queues this 2389 * shouldn't happen. 2390 */ 2391 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2392 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2393 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2394 flags)) 2395 break; 2396 2397 offset = *seq - TCP_SKB_CB(skb)->seq; 2398 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2399 pr_err_once("%s: found a SYN, please report !\n", __func__); 2400 offset--; 2401 } 2402 if (offset < skb->len) 2403 goto found_ok_skb; 2404 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2405 goto found_fin_ok; 2406 WARN(!(flags & MSG_PEEK), 2407 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2408 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2409 } 2410 2411 /* Well, if we have backlog, try to process it now yet. */ 2412 2413 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2414 break; 2415 2416 if (copied) { 2417 if (!timeo || 2418 sk->sk_err || 2419 sk->sk_state == TCP_CLOSE || 2420 (sk->sk_shutdown & RCV_SHUTDOWN) || 2421 signal_pending(current)) 2422 break; 2423 } else { 2424 if (sock_flag(sk, SOCK_DONE)) 2425 break; 2426 2427 if (sk->sk_err) { 2428 copied = sock_error(sk); 2429 break; 2430 } 2431 2432 if (sk->sk_shutdown & RCV_SHUTDOWN) 2433 break; 2434 2435 if (sk->sk_state == TCP_CLOSE) { 2436 /* This occurs when user tries to read 2437 * from never connected socket. 2438 */ 2439 copied = -ENOTCONN; 2440 break; 2441 } 2442 2443 if (!timeo) { 2444 copied = -EAGAIN; 2445 break; 2446 } 2447 2448 if (signal_pending(current)) { 2449 copied = sock_intr_errno(timeo); 2450 break; 2451 } 2452 } 2453 2454 if (copied >= target) { 2455 /* Do not sleep, just process backlog. */ 2456 __sk_flush_backlog(sk); 2457 } else { 2458 tcp_cleanup_rbuf(sk, copied); 2459 err = sk_wait_data(sk, &timeo, last); 2460 if (err < 0) { 2461 err = copied ? : err; 2462 goto out; 2463 } 2464 } 2465 2466 if ((flags & MSG_PEEK) && 2467 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2468 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2469 current->comm, 2470 task_pid_nr(current)); 2471 peek_seq = tp->copied_seq; 2472 } 2473 continue; 2474 2475 found_ok_skb: 2476 /* Ok so how much can we use? */ 2477 used = skb->len - offset; 2478 if (len < used) 2479 used = len; 2480 2481 /* Do we have urgent data here? */ 2482 if (unlikely(tp->urg_data)) { 2483 u32 urg_offset = tp->urg_seq - *seq; 2484 if (urg_offset < used) { 2485 if (!urg_offset) { 2486 if (!sock_flag(sk, SOCK_URGINLINE)) { 2487 WRITE_ONCE(*seq, *seq + 1); 2488 urg_hole++; 2489 offset++; 2490 used--; 2491 if (!used) 2492 goto skip_copy; 2493 } 2494 } else 2495 used = urg_offset; 2496 } 2497 } 2498 2499 if (!(flags & MSG_TRUNC)) { 2500 err = skb_copy_datagram_msg(skb, offset, msg, used); 2501 if (err) { 2502 /* Exception. Bailout! */ 2503 if (!copied) 2504 copied = -EFAULT; 2505 break; 2506 } 2507 } 2508 2509 WRITE_ONCE(*seq, *seq + used); 2510 copied += used; 2511 len -= used; 2512 2513 tcp_rcv_space_adjust(sk); 2514 2515 skip_copy: 2516 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2517 WRITE_ONCE(tp->urg_data, 0); 2518 tcp_fast_path_check(sk); 2519 } 2520 2521 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2522 tcp_update_recv_tstamps(skb, tss); 2523 *cmsg_flags |= TCP_CMSG_TS; 2524 } 2525 2526 if (used + offset < skb->len) 2527 continue; 2528 2529 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2530 goto found_fin_ok; 2531 if (!(flags & MSG_PEEK)) 2532 tcp_eat_recv_skb(sk, skb); 2533 continue; 2534 2535 found_fin_ok: 2536 /* Process the FIN. */ 2537 WRITE_ONCE(*seq, *seq + 1); 2538 if (!(flags & MSG_PEEK)) 2539 tcp_eat_recv_skb(sk, skb); 2540 break; 2541 } while (len > 0); 2542 2543 /* According to UNIX98, msg_name/msg_namelen are ignored 2544 * on connected socket. I was just happy when found this 8) --ANK 2545 */ 2546 2547 /* Clean up data we have read: This will do ACK frames. */ 2548 tcp_cleanup_rbuf(sk, copied); 2549 return copied; 2550 2551 out: 2552 return err; 2553 2554 recv_urg: 2555 err = tcp_recv_urg(sk, msg, len, flags); 2556 goto out; 2557 2558 recv_sndq: 2559 err = tcp_peek_sndq(sk, msg, len); 2560 goto out; 2561 } 2562 2563 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2564 int *addr_len) 2565 { 2566 int cmsg_flags = 0, ret; 2567 struct scm_timestamping_internal tss; 2568 2569 if (unlikely(flags & MSG_ERRQUEUE)) 2570 return inet_recv_error(sk, msg, len, addr_len); 2571 2572 if (sk_can_busy_loop(sk) && 2573 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2574 sk->sk_state == TCP_ESTABLISHED) 2575 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2576 2577 lock_sock(sk); 2578 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2579 release_sock(sk); 2580 2581 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2582 if (cmsg_flags & TCP_CMSG_TS) 2583 tcp_recv_timestamp(msg, sk, &tss); 2584 if (msg->msg_get_inq) { 2585 msg->msg_inq = tcp_inq_hint(sk); 2586 if (cmsg_flags & TCP_CMSG_INQ) 2587 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2588 sizeof(msg->msg_inq), &msg->msg_inq); 2589 } 2590 } 2591 return ret; 2592 } 2593 EXPORT_SYMBOL(tcp_recvmsg); 2594 2595 void tcp_set_state(struct sock *sk, int state) 2596 { 2597 int oldstate = sk->sk_state; 2598 2599 /* We defined a new enum for TCP states that are exported in BPF 2600 * so as not force the internal TCP states to be frozen. The 2601 * following checks will detect if an internal state value ever 2602 * differs from the BPF value. If this ever happens, then we will 2603 * need to remap the internal value to the BPF value before calling 2604 * tcp_call_bpf_2arg. 2605 */ 2606 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2607 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2608 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2609 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2610 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2611 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2612 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2613 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2614 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2615 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2616 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2617 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2618 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2619 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2620 2621 /* bpf uapi header bpf.h defines an anonymous enum with values 2622 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2623 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2624 * But clang built vmlinux does not have this enum in DWARF 2625 * since clang removes the above code before generating IR/debuginfo. 2626 * Let us explicitly emit the type debuginfo to ensure the 2627 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2628 * regardless of which compiler is used. 2629 */ 2630 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2631 2632 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2633 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2634 2635 switch (state) { 2636 case TCP_ESTABLISHED: 2637 if (oldstate != TCP_ESTABLISHED) 2638 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2639 break; 2640 2641 case TCP_CLOSE: 2642 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2643 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2644 2645 sk->sk_prot->unhash(sk); 2646 if (inet_csk(sk)->icsk_bind_hash && 2647 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2648 inet_put_port(sk); 2649 fallthrough; 2650 default: 2651 if (oldstate == TCP_ESTABLISHED) 2652 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2653 } 2654 2655 /* Change state AFTER socket is unhashed to avoid closed 2656 * socket sitting in hash tables. 2657 */ 2658 inet_sk_state_store(sk, state); 2659 } 2660 EXPORT_SYMBOL_GPL(tcp_set_state); 2661 2662 /* 2663 * State processing on a close. This implements the state shift for 2664 * sending our FIN frame. Note that we only send a FIN for some 2665 * states. A shutdown() may have already sent the FIN, or we may be 2666 * closed. 2667 */ 2668 2669 static const unsigned char new_state[16] = { 2670 /* current state: new state: action: */ 2671 [0 /* (Invalid) */] = TCP_CLOSE, 2672 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2673 [TCP_SYN_SENT] = TCP_CLOSE, 2674 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2675 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2676 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2677 [TCP_TIME_WAIT] = TCP_CLOSE, 2678 [TCP_CLOSE] = TCP_CLOSE, 2679 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2680 [TCP_LAST_ACK] = TCP_LAST_ACK, 2681 [TCP_LISTEN] = TCP_CLOSE, 2682 [TCP_CLOSING] = TCP_CLOSING, 2683 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2684 }; 2685 2686 static int tcp_close_state(struct sock *sk) 2687 { 2688 int next = (int)new_state[sk->sk_state]; 2689 int ns = next & TCP_STATE_MASK; 2690 2691 tcp_set_state(sk, ns); 2692 2693 return next & TCP_ACTION_FIN; 2694 } 2695 2696 /* 2697 * Shutdown the sending side of a connection. Much like close except 2698 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2699 */ 2700 2701 void tcp_shutdown(struct sock *sk, int how) 2702 { 2703 /* We need to grab some memory, and put together a FIN, 2704 * and then put it into the queue to be sent. 2705 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2706 */ 2707 if (!(how & SEND_SHUTDOWN)) 2708 return; 2709 2710 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2711 if ((1 << sk->sk_state) & 2712 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2713 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2714 /* Clear out any half completed packets. FIN if needed. */ 2715 if (tcp_close_state(sk)) 2716 tcp_send_fin(sk); 2717 } 2718 } 2719 EXPORT_SYMBOL(tcp_shutdown); 2720 2721 int tcp_orphan_count_sum(void) 2722 { 2723 int i, total = 0; 2724 2725 for_each_possible_cpu(i) 2726 total += per_cpu(tcp_orphan_count, i); 2727 2728 return max(total, 0); 2729 } 2730 2731 static int tcp_orphan_cache; 2732 static struct timer_list tcp_orphan_timer; 2733 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2734 2735 static void tcp_orphan_update(struct timer_list *unused) 2736 { 2737 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2738 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2739 } 2740 2741 static bool tcp_too_many_orphans(int shift) 2742 { 2743 return READ_ONCE(tcp_orphan_cache) << shift > 2744 READ_ONCE(sysctl_tcp_max_orphans); 2745 } 2746 2747 bool tcp_check_oom(struct sock *sk, int shift) 2748 { 2749 bool too_many_orphans, out_of_socket_memory; 2750 2751 too_many_orphans = tcp_too_many_orphans(shift); 2752 out_of_socket_memory = tcp_out_of_memory(sk); 2753 2754 if (too_many_orphans) 2755 net_info_ratelimited("too many orphaned sockets\n"); 2756 if (out_of_socket_memory) 2757 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2758 return too_many_orphans || out_of_socket_memory; 2759 } 2760 2761 void __tcp_close(struct sock *sk, long timeout) 2762 { 2763 struct sk_buff *skb; 2764 int data_was_unread = 0; 2765 int state; 2766 2767 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2768 2769 if (sk->sk_state == TCP_LISTEN) { 2770 tcp_set_state(sk, TCP_CLOSE); 2771 2772 /* Special case. */ 2773 inet_csk_listen_stop(sk); 2774 2775 goto adjudge_to_death; 2776 } 2777 2778 /* We need to flush the recv. buffs. We do this only on the 2779 * descriptor close, not protocol-sourced closes, because the 2780 * reader process may not have drained the data yet! 2781 */ 2782 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2783 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2784 2785 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2786 len--; 2787 data_was_unread += len; 2788 __kfree_skb(skb); 2789 } 2790 2791 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2792 if (sk->sk_state == TCP_CLOSE) 2793 goto adjudge_to_death; 2794 2795 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2796 * data was lost. To witness the awful effects of the old behavior of 2797 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2798 * GET in an FTP client, suspend the process, wait for the client to 2799 * advertise a zero window, then kill -9 the FTP client, wheee... 2800 * Note: timeout is always zero in such a case. 2801 */ 2802 if (unlikely(tcp_sk(sk)->repair)) { 2803 sk->sk_prot->disconnect(sk, 0); 2804 } else if (data_was_unread) { 2805 /* Unread data was tossed, zap the connection. */ 2806 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2807 tcp_set_state(sk, TCP_CLOSE); 2808 tcp_send_active_reset(sk, sk->sk_allocation); 2809 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2810 /* Check zero linger _after_ checking for unread data. */ 2811 sk->sk_prot->disconnect(sk, 0); 2812 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2813 } else if (tcp_close_state(sk)) { 2814 /* We FIN if the application ate all the data before 2815 * zapping the connection. 2816 */ 2817 2818 /* RED-PEN. Formally speaking, we have broken TCP state 2819 * machine. State transitions: 2820 * 2821 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2822 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2823 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2824 * 2825 * are legal only when FIN has been sent (i.e. in window), 2826 * rather than queued out of window. Purists blame. 2827 * 2828 * F.e. "RFC state" is ESTABLISHED, 2829 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2830 * 2831 * The visible declinations are that sometimes 2832 * we enter time-wait state, when it is not required really 2833 * (harmless), do not send active resets, when they are 2834 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2835 * they look as CLOSING or LAST_ACK for Linux) 2836 * Probably, I missed some more holelets. 2837 * --ANK 2838 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2839 * in a single packet! (May consider it later but will 2840 * probably need API support or TCP_CORK SYN-ACK until 2841 * data is written and socket is closed.) 2842 */ 2843 tcp_send_fin(sk); 2844 } 2845 2846 sk_stream_wait_close(sk, timeout); 2847 2848 adjudge_to_death: 2849 state = sk->sk_state; 2850 sock_hold(sk); 2851 sock_orphan(sk); 2852 2853 local_bh_disable(); 2854 bh_lock_sock(sk); 2855 /* remove backlog if any, without releasing ownership. */ 2856 __release_sock(sk); 2857 2858 this_cpu_inc(tcp_orphan_count); 2859 2860 /* Have we already been destroyed by a softirq or backlog? */ 2861 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2862 goto out; 2863 2864 /* This is a (useful) BSD violating of the RFC. There is a 2865 * problem with TCP as specified in that the other end could 2866 * keep a socket open forever with no application left this end. 2867 * We use a 1 minute timeout (about the same as BSD) then kill 2868 * our end. If they send after that then tough - BUT: long enough 2869 * that we won't make the old 4*rto = almost no time - whoops 2870 * reset mistake. 2871 * 2872 * Nope, it was not mistake. It is really desired behaviour 2873 * f.e. on http servers, when such sockets are useless, but 2874 * consume significant resources. Let's do it with special 2875 * linger2 option. --ANK 2876 */ 2877 2878 if (sk->sk_state == TCP_FIN_WAIT2) { 2879 struct tcp_sock *tp = tcp_sk(sk); 2880 if (READ_ONCE(tp->linger2) < 0) { 2881 tcp_set_state(sk, TCP_CLOSE); 2882 tcp_send_active_reset(sk, GFP_ATOMIC); 2883 __NET_INC_STATS(sock_net(sk), 2884 LINUX_MIB_TCPABORTONLINGER); 2885 } else { 2886 const int tmo = tcp_fin_time(sk); 2887 2888 if (tmo > TCP_TIMEWAIT_LEN) { 2889 inet_csk_reset_keepalive_timer(sk, 2890 tmo - TCP_TIMEWAIT_LEN); 2891 } else { 2892 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2893 goto out; 2894 } 2895 } 2896 } 2897 if (sk->sk_state != TCP_CLOSE) { 2898 if (tcp_check_oom(sk, 0)) { 2899 tcp_set_state(sk, TCP_CLOSE); 2900 tcp_send_active_reset(sk, GFP_ATOMIC); 2901 __NET_INC_STATS(sock_net(sk), 2902 LINUX_MIB_TCPABORTONMEMORY); 2903 } else if (!check_net(sock_net(sk))) { 2904 /* Not possible to send reset; just close */ 2905 tcp_set_state(sk, TCP_CLOSE); 2906 } 2907 } 2908 2909 if (sk->sk_state == TCP_CLOSE) { 2910 struct request_sock *req; 2911 2912 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2913 lockdep_sock_is_held(sk)); 2914 /* We could get here with a non-NULL req if the socket is 2915 * aborted (e.g., closed with unread data) before 3WHS 2916 * finishes. 2917 */ 2918 if (req) 2919 reqsk_fastopen_remove(sk, req, false); 2920 inet_csk_destroy_sock(sk); 2921 } 2922 /* Otherwise, socket is reprieved until protocol close. */ 2923 2924 out: 2925 bh_unlock_sock(sk); 2926 local_bh_enable(); 2927 } 2928 2929 void tcp_close(struct sock *sk, long timeout) 2930 { 2931 lock_sock(sk); 2932 __tcp_close(sk, timeout); 2933 release_sock(sk); 2934 if (!sk->sk_net_refcnt) 2935 inet_csk_clear_xmit_timers_sync(sk); 2936 sock_put(sk); 2937 } 2938 EXPORT_SYMBOL(tcp_close); 2939 2940 /* These states need RST on ABORT according to RFC793 */ 2941 2942 static inline bool tcp_need_reset(int state) 2943 { 2944 return (1 << state) & 2945 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2946 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2947 } 2948 2949 static void tcp_rtx_queue_purge(struct sock *sk) 2950 { 2951 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2952 2953 tcp_sk(sk)->highest_sack = NULL; 2954 while (p) { 2955 struct sk_buff *skb = rb_to_skb(p); 2956 2957 p = rb_next(p); 2958 /* Since we are deleting whole queue, no need to 2959 * list_del(&skb->tcp_tsorted_anchor) 2960 */ 2961 tcp_rtx_queue_unlink(skb, sk); 2962 tcp_wmem_free_skb(sk, skb); 2963 } 2964 } 2965 2966 void tcp_write_queue_purge(struct sock *sk) 2967 { 2968 struct sk_buff *skb; 2969 2970 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2971 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2972 tcp_skb_tsorted_anchor_cleanup(skb); 2973 tcp_wmem_free_skb(sk, skb); 2974 } 2975 tcp_rtx_queue_purge(sk); 2976 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2977 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2978 tcp_sk(sk)->packets_out = 0; 2979 inet_csk(sk)->icsk_backoff = 0; 2980 } 2981 2982 int tcp_disconnect(struct sock *sk, int flags) 2983 { 2984 struct inet_sock *inet = inet_sk(sk); 2985 struct inet_connection_sock *icsk = inet_csk(sk); 2986 struct tcp_sock *tp = tcp_sk(sk); 2987 int old_state = sk->sk_state; 2988 u32 seq; 2989 2990 if (old_state != TCP_CLOSE) 2991 tcp_set_state(sk, TCP_CLOSE); 2992 2993 /* ABORT function of RFC793 */ 2994 if (old_state == TCP_LISTEN) { 2995 inet_csk_listen_stop(sk); 2996 } else if (unlikely(tp->repair)) { 2997 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2998 } else if (tcp_need_reset(old_state) || 2999 (tp->snd_nxt != tp->write_seq && 3000 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3001 /* The last check adjusts for discrepancy of Linux wrt. RFC 3002 * states 3003 */ 3004 tcp_send_active_reset(sk, gfp_any()); 3005 WRITE_ONCE(sk->sk_err, ECONNRESET); 3006 } else if (old_state == TCP_SYN_SENT) 3007 WRITE_ONCE(sk->sk_err, ECONNRESET); 3008 3009 tcp_clear_xmit_timers(sk); 3010 __skb_queue_purge(&sk->sk_receive_queue); 3011 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3012 WRITE_ONCE(tp->urg_data, 0); 3013 tcp_write_queue_purge(sk); 3014 tcp_fastopen_active_disable_ofo_check(sk); 3015 skb_rbtree_purge(&tp->out_of_order_queue); 3016 3017 inet->inet_dport = 0; 3018 3019 inet_bhash2_reset_saddr(sk); 3020 3021 WRITE_ONCE(sk->sk_shutdown, 0); 3022 sock_reset_flag(sk, SOCK_DONE); 3023 tp->srtt_us = 0; 3024 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3025 tp->rcv_rtt_last_tsecr = 0; 3026 3027 seq = tp->write_seq + tp->max_window + 2; 3028 if (!seq) 3029 seq = 1; 3030 WRITE_ONCE(tp->write_seq, seq); 3031 3032 icsk->icsk_backoff = 0; 3033 icsk->icsk_probes_out = 0; 3034 icsk->icsk_probes_tstamp = 0; 3035 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3036 icsk->icsk_rto_min = TCP_RTO_MIN; 3037 icsk->icsk_delack_max = TCP_DELACK_MAX; 3038 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3039 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3040 tp->snd_cwnd_cnt = 0; 3041 tp->is_cwnd_limited = 0; 3042 tp->max_packets_out = 0; 3043 tp->window_clamp = 0; 3044 tp->delivered = 0; 3045 tp->delivered_ce = 0; 3046 if (icsk->icsk_ca_ops->release) 3047 icsk->icsk_ca_ops->release(sk); 3048 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3049 icsk->icsk_ca_initialized = 0; 3050 tcp_set_ca_state(sk, TCP_CA_Open); 3051 tp->is_sack_reneg = 0; 3052 tcp_clear_retrans(tp); 3053 tp->total_retrans = 0; 3054 inet_csk_delack_init(sk); 3055 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3056 * issue in __tcp_select_window() 3057 */ 3058 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3059 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3060 __sk_dst_reset(sk); 3061 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3062 tcp_saved_syn_free(tp); 3063 tp->compressed_ack = 0; 3064 tp->segs_in = 0; 3065 tp->segs_out = 0; 3066 tp->bytes_sent = 0; 3067 tp->bytes_acked = 0; 3068 tp->bytes_received = 0; 3069 tp->bytes_retrans = 0; 3070 tp->data_segs_in = 0; 3071 tp->data_segs_out = 0; 3072 tp->duplicate_sack[0].start_seq = 0; 3073 tp->duplicate_sack[0].end_seq = 0; 3074 tp->dsack_dups = 0; 3075 tp->reord_seen = 0; 3076 tp->retrans_out = 0; 3077 tp->sacked_out = 0; 3078 tp->tlp_high_seq = 0; 3079 tp->last_oow_ack_time = 0; 3080 tp->plb_rehash = 0; 3081 /* There's a bubble in the pipe until at least the first ACK. */ 3082 tp->app_limited = ~0U; 3083 tp->rate_app_limited = 1; 3084 tp->rack.mstamp = 0; 3085 tp->rack.advanced = 0; 3086 tp->rack.reo_wnd_steps = 1; 3087 tp->rack.last_delivered = 0; 3088 tp->rack.reo_wnd_persist = 0; 3089 tp->rack.dsack_seen = 0; 3090 tp->syn_data_acked = 0; 3091 tp->rx_opt.saw_tstamp = 0; 3092 tp->rx_opt.dsack = 0; 3093 tp->rx_opt.num_sacks = 0; 3094 tp->rcv_ooopack = 0; 3095 3096 3097 /* Clean up fastopen related fields */ 3098 tcp_free_fastopen_req(tp); 3099 inet_clear_bit(DEFER_CONNECT, sk); 3100 tp->fastopen_client_fail = 0; 3101 3102 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3103 3104 if (sk->sk_frag.page) { 3105 put_page(sk->sk_frag.page); 3106 sk->sk_frag.page = NULL; 3107 sk->sk_frag.offset = 0; 3108 } 3109 sk_error_report(sk); 3110 return 0; 3111 } 3112 EXPORT_SYMBOL(tcp_disconnect); 3113 3114 static inline bool tcp_can_repair_sock(const struct sock *sk) 3115 { 3116 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3117 (sk->sk_state != TCP_LISTEN); 3118 } 3119 3120 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3121 { 3122 struct tcp_repair_window opt; 3123 3124 if (!tp->repair) 3125 return -EPERM; 3126 3127 if (len != sizeof(opt)) 3128 return -EINVAL; 3129 3130 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3131 return -EFAULT; 3132 3133 if (opt.max_window < opt.snd_wnd) 3134 return -EINVAL; 3135 3136 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3137 return -EINVAL; 3138 3139 if (after(opt.rcv_wup, tp->rcv_nxt)) 3140 return -EINVAL; 3141 3142 tp->snd_wl1 = opt.snd_wl1; 3143 tp->snd_wnd = opt.snd_wnd; 3144 tp->max_window = opt.max_window; 3145 3146 tp->rcv_wnd = opt.rcv_wnd; 3147 tp->rcv_wup = opt.rcv_wup; 3148 3149 return 0; 3150 } 3151 3152 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3153 unsigned int len) 3154 { 3155 struct tcp_sock *tp = tcp_sk(sk); 3156 struct tcp_repair_opt opt; 3157 size_t offset = 0; 3158 3159 while (len >= sizeof(opt)) { 3160 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3161 return -EFAULT; 3162 3163 offset += sizeof(opt); 3164 len -= sizeof(opt); 3165 3166 switch (opt.opt_code) { 3167 case TCPOPT_MSS: 3168 tp->rx_opt.mss_clamp = opt.opt_val; 3169 tcp_mtup_init(sk); 3170 break; 3171 case TCPOPT_WINDOW: 3172 { 3173 u16 snd_wscale = opt.opt_val & 0xFFFF; 3174 u16 rcv_wscale = opt.opt_val >> 16; 3175 3176 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3177 return -EFBIG; 3178 3179 tp->rx_opt.snd_wscale = snd_wscale; 3180 tp->rx_opt.rcv_wscale = rcv_wscale; 3181 tp->rx_opt.wscale_ok = 1; 3182 } 3183 break; 3184 case TCPOPT_SACK_PERM: 3185 if (opt.opt_val != 0) 3186 return -EINVAL; 3187 3188 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3189 break; 3190 case TCPOPT_TIMESTAMP: 3191 if (opt.opt_val != 0) 3192 return -EINVAL; 3193 3194 tp->rx_opt.tstamp_ok = 1; 3195 break; 3196 } 3197 } 3198 3199 return 0; 3200 } 3201 3202 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3203 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3204 3205 static void tcp_enable_tx_delay(void) 3206 { 3207 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3208 static int __tcp_tx_delay_enabled = 0; 3209 3210 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3211 static_branch_enable(&tcp_tx_delay_enabled); 3212 pr_info("TCP_TX_DELAY enabled\n"); 3213 } 3214 } 3215 } 3216 3217 /* When set indicates to always queue non-full frames. Later the user clears 3218 * this option and we transmit any pending partial frames in the queue. This is 3219 * meant to be used alongside sendfile() to get properly filled frames when the 3220 * user (for example) must write out headers with a write() call first and then 3221 * use sendfile to send out the data parts. 3222 * 3223 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3224 * TCP_NODELAY. 3225 */ 3226 void __tcp_sock_set_cork(struct sock *sk, bool on) 3227 { 3228 struct tcp_sock *tp = tcp_sk(sk); 3229 3230 if (on) { 3231 tp->nonagle |= TCP_NAGLE_CORK; 3232 } else { 3233 tp->nonagle &= ~TCP_NAGLE_CORK; 3234 if (tp->nonagle & TCP_NAGLE_OFF) 3235 tp->nonagle |= TCP_NAGLE_PUSH; 3236 tcp_push_pending_frames(sk); 3237 } 3238 } 3239 3240 void tcp_sock_set_cork(struct sock *sk, bool on) 3241 { 3242 lock_sock(sk); 3243 __tcp_sock_set_cork(sk, on); 3244 release_sock(sk); 3245 } 3246 EXPORT_SYMBOL(tcp_sock_set_cork); 3247 3248 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3249 * remembered, but it is not activated until cork is cleared. 3250 * 3251 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3252 * even TCP_CORK for currently queued segments. 3253 */ 3254 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3255 { 3256 if (on) { 3257 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3258 tcp_push_pending_frames(sk); 3259 } else { 3260 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3261 } 3262 } 3263 3264 void tcp_sock_set_nodelay(struct sock *sk) 3265 { 3266 lock_sock(sk); 3267 __tcp_sock_set_nodelay(sk, true); 3268 release_sock(sk); 3269 } 3270 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3271 3272 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3273 { 3274 if (!val) { 3275 inet_csk_enter_pingpong_mode(sk); 3276 return; 3277 } 3278 3279 inet_csk_exit_pingpong_mode(sk); 3280 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3281 inet_csk_ack_scheduled(sk)) { 3282 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3283 tcp_cleanup_rbuf(sk, 1); 3284 if (!(val & 1)) 3285 inet_csk_enter_pingpong_mode(sk); 3286 } 3287 } 3288 3289 void tcp_sock_set_quickack(struct sock *sk, int val) 3290 { 3291 lock_sock(sk); 3292 __tcp_sock_set_quickack(sk, val); 3293 release_sock(sk); 3294 } 3295 EXPORT_SYMBOL(tcp_sock_set_quickack); 3296 3297 int tcp_sock_set_syncnt(struct sock *sk, int val) 3298 { 3299 if (val < 1 || val > MAX_TCP_SYNCNT) 3300 return -EINVAL; 3301 3302 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3303 return 0; 3304 } 3305 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3306 3307 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3308 { 3309 /* Cap the max time in ms TCP will retry or probe the window 3310 * before giving up and aborting (ETIMEDOUT) a connection. 3311 */ 3312 if (val < 0) 3313 return -EINVAL; 3314 3315 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3316 return 0; 3317 } 3318 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3319 3320 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3321 { 3322 struct tcp_sock *tp = tcp_sk(sk); 3323 3324 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3325 return -EINVAL; 3326 3327 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3328 WRITE_ONCE(tp->keepalive_time, val * HZ); 3329 if (sock_flag(sk, SOCK_KEEPOPEN) && 3330 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3331 u32 elapsed = keepalive_time_elapsed(tp); 3332 3333 if (tp->keepalive_time > elapsed) 3334 elapsed = tp->keepalive_time - elapsed; 3335 else 3336 elapsed = 0; 3337 inet_csk_reset_keepalive_timer(sk, elapsed); 3338 } 3339 3340 return 0; 3341 } 3342 3343 int tcp_sock_set_keepidle(struct sock *sk, int val) 3344 { 3345 int err; 3346 3347 lock_sock(sk); 3348 err = tcp_sock_set_keepidle_locked(sk, val); 3349 release_sock(sk); 3350 return err; 3351 } 3352 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3353 3354 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3355 { 3356 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3357 return -EINVAL; 3358 3359 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3360 return 0; 3361 } 3362 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3363 3364 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3365 { 3366 if (val < 1 || val > MAX_TCP_KEEPCNT) 3367 return -EINVAL; 3368 3369 /* Paired with READ_ONCE() in keepalive_probes() */ 3370 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3371 return 0; 3372 } 3373 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3374 3375 int tcp_set_window_clamp(struct sock *sk, int val) 3376 { 3377 struct tcp_sock *tp = tcp_sk(sk); 3378 3379 if (!val) { 3380 if (sk->sk_state != TCP_CLOSE) 3381 return -EINVAL; 3382 WRITE_ONCE(tp->window_clamp, 0); 3383 } else { 3384 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3385 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3386 SOCK_MIN_RCVBUF / 2 : val; 3387 3388 if (new_window_clamp == old_window_clamp) 3389 return 0; 3390 3391 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3392 if (new_window_clamp < old_window_clamp) { 3393 /* need to apply the reserved mem provisioning only 3394 * when shrinking the window clamp 3395 */ 3396 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3397 3398 } else { 3399 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3400 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3401 tp->rcv_ssthresh); 3402 } 3403 } 3404 return 0; 3405 } 3406 3407 /* 3408 * Socket option code for TCP. 3409 */ 3410 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3411 sockptr_t optval, unsigned int optlen) 3412 { 3413 struct tcp_sock *tp = tcp_sk(sk); 3414 struct inet_connection_sock *icsk = inet_csk(sk); 3415 struct net *net = sock_net(sk); 3416 int val; 3417 int err = 0; 3418 3419 /* These are data/string values, all the others are ints */ 3420 switch (optname) { 3421 case TCP_CONGESTION: { 3422 char name[TCP_CA_NAME_MAX]; 3423 3424 if (optlen < 1) 3425 return -EINVAL; 3426 3427 val = strncpy_from_sockptr(name, optval, 3428 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3429 if (val < 0) 3430 return -EFAULT; 3431 name[val] = 0; 3432 3433 sockopt_lock_sock(sk); 3434 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3435 sockopt_ns_capable(sock_net(sk)->user_ns, 3436 CAP_NET_ADMIN)); 3437 sockopt_release_sock(sk); 3438 return err; 3439 } 3440 case TCP_ULP: { 3441 char name[TCP_ULP_NAME_MAX]; 3442 3443 if (optlen < 1) 3444 return -EINVAL; 3445 3446 val = strncpy_from_sockptr(name, optval, 3447 min_t(long, TCP_ULP_NAME_MAX - 1, 3448 optlen)); 3449 if (val < 0) 3450 return -EFAULT; 3451 name[val] = 0; 3452 3453 sockopt_lock_sock(sk); 3454 err = tcp_set_ulp(sk, name); 3455 sockopt_release_sock(sk); 3456 return err; 3457 } 3458 case TCP_FASTOPEN_KEY: { 3459 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3460 __u8 *backup_key = NULL; 3461 3462 /* Allow a backup key as well to facilitate key rotation 3463 * First key is the active one. 3464 */ 3465 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3466 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3467 return -EINVAL; 3468 3469 if (copy_from_sockptr(key, optval, optlen)) 3470 return -EFAULT; 3471 3472 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3473 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3474 3475 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3476 } 3477 default: 3478 /* fallthru */ 3479 break; 3480 } 3481 3482 if (optlen < sizeof(int)) 3483 return -EINVAL; 3484 3485 if (copy_from_sockptr(&val, optval, sizeof(val))) 3486 return -EFAULT; 3487 3488 /* Handle options that can be set without locking the socket. */ 3489 switch (optname) { 3490 case TCP_SYNCNT: 3491 return tcp_sock_set_syncnt(sk, val); 3492 case TCP_USER_TIMEOUT: 3493 return tcp_sock_set_user_timeout(sk, val); 3494 case TCP_KEEPINTVL: 3495 return tcp_sock_set_keepintvl(sk, val); 3496 case TCP_KEEPCNT: 3497 return tcp_sock_set_keepcnt(sk, val); 3498 case TCP_LINGER2: 3499 if (val < 0) 3500 WRITE_ONCE(tp->linger2, -1); 3501 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3502 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3503 else 3504 WRITE_ONCE(tp->linger2, val * HZ); 3505 return 0; 3506 case TCP_DEFER_ACCEPT: 3507 /* Translate value in seconds to number of retransmits */ 3508 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3509 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3510 TCP_RTO_MAX / HZ)); 3511 return 0; 3512 } 3513 3514 sockopt_lock_sock(sk); 3515 3516 switch (optname) { 3517 case TCP_MAXSEG: 3518 /* Values greater than interface MTU won't take effect. However 3519 * at the point when this call is done we typically don't yet 3520 * know which interface is going to be used 3521 */ 3522 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3523 err = -EINVAL; 3524 break; 3525 } 3526 tp->rx_opt.user_mss = val; 3527 break; 3528 3529 case TCP_NODELAY: 3530 __tcp_sock_set_nodelay(sk, val); 3531 break; 3532 3533 case TCP_THIN_LINEAR_TIMEOUTS: 3534 if (val < 0 || val > 1) 3535 err = -EINVAL; 3536 else 3537 tp->thin_lto = val; 3538 break; 3539 3540 case TCP_THIN_DUPACK: 3541 if (val < 0 || val > 1) 3542 err = -EINVAL; 3543 break; 3544 3545 case TCP_REPAIR: 3546 if (!tcp_can_repair_sock(sk)) 3547 err = -EPERM; 3548 else if (val == TCP_REPAIR_ON) { 3549 tp->repair = 1; 3550 sk->sk_reuse = SK_FORCE_REUSE; 3551 tp->repair_queue = TCP_NO_QUEUE; 3552 } else if (val == TCP_REPAIR_OFF) { 3553 tp->repair = 0; 3554 sk->sk_reuse = SK_NO_REUSE; 3555 tcp_send_window_probe(sk); 3556 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3557 tp->repair = 0; 3558 sk->sk_reuse = SK_NO_REUSE; 3559 } else 3560 err = -EINVAL; 3561 3562 break; 3563 3564 case TCP_REPAIR_QUEUE: 3565 if (!tp->repair) 3566 err = -EPERM; 3567 else if ((unsigned int)val < TCP_QUEUES_NR) 3568 tp->repair_queue = val; 3569 else 3570 err = -EINVAL; 3571 break; 3572 3573 case TCP_QUEUE_SEQ: 3574 if (sk->sk_state != TCP_CLOSE) { 3575 err = -EPERM; 3576 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3577 if (!tcp_rtx_queue_empty(sk)) 3578 err = -EPERM; 3579 else 3580 WRITE_ONCE(tp->write_seq, val); 3581 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3582 if (tp->rcv_nxt != tp->copied_seq) { 3583 err = -EPERM; 3584 } else { 3585 WRITE_ONCE(tp->rcv_nxt, val); 3586 WRITE_ONCE(tp->copied_seq, val); 3587 } 3588 } else { 3589 err = -EINVAL; 3590 } 3591 break; 3592 3593 case TCP_REPAIR_OPTIONS: 3594 if (!tp->repair) 3595 err = -EINVAL; 3596 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3597 err = tcp_repair_options_est(sk, optval, optlen); 3598 else 3599 err = -EPERM; 3600 break; 3601 3602 case TCP_CORK: 3603 __tcp_sock_set_cork(sk, val); 3604 break; 3605 3606 case TCP_KEEPIDLE: 3607 err = tcp_sock_set_keepidle_locked(sk, val); 3608 break; 3609 case TCP_SAVE_SYN: 3610 /* 0: disable, 1: enable, 2: start from ether_header */ 3611 if (val < 0 || val > 2) 3612 err = -EINVAL; 3613 else 3614 tp->save_syn = val; 3615 break; 3616 3617 case TCP_WINDOW_CLAMP: 3618 err = tcp_set_window_clamp(sk, val); 3619 break; 3620 3621 case TCP_QUICKACK: 3622 __tcp_sock_set_quickack(sk, val); 3623 break; 3624 3625 case TCP_AO_REPAIR: 3626 if (!tcp_can_repair_sock(sk)) { 3627 err = -EPERM; 3628 break; 3629 } 3630 err = tcp_ao_set_repair(sk, optval, optlen); 3631 break; 3632 #ifdef CONFIG_TCP_AO 3633 case TCP_AO_ADD_KEY: 3634 case TCP_AO_DEL_KEY: 3635 case TCP_AO_INFO: { 3636 /* If this is the first TCP-AO setsockopt() on the socket, 3637 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3638 * in any state. 3639 */ 3640 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3641 goto ao_parse; 3642 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3643 lockdep_sock_is_held(sk))) 3644 goto ao_parse; 3645 if (tp->repair) 3646 goto ao_parse; 3647 err = -EISCONN; 3648 break; 3649 ao_parse: 3650 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3651 break; 3652 } 3653 #endif 3654 #ifdef CONFIG_TCP_MD5SIG 3655 case TCP_MD5SIG: 3656 case TCP_MD5SIG_EXT: 3657 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3658 break; 3659 #endif 3660 case TCP_FASTOPEN: 3661 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3662 TCPF_LISTEN))) { 3663 tcp_fastopen_init_key_once(net); 3664 3665 fastopen_queue_tune(sk, val); 3666 } else { 3667 err = -EINVAL; 3668 } 3669 break; 3670 case TCP_FASTOPEN_CONNECT: 3671 if (val > 1 || val < 0) { 3672 err = -EINVAL; 3673 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3674 TFO_CLIENT_ENABLE) { 3675 if (sk->sk_state == TCP_CLOSE) 3676 tp->fastopen_connect = val; 3677 else 3678 err = -EINVAL; 3679 } else { 3680 err = -EOPNOTSUPP; 3681 } 3682 break; 3683 case TCP_FASTOPEN_NO_COOKIE: 3684 if (val > 1 || val < 0) 3685 err = -EINVAL; 3686 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3687 err = -EINVAL; 3688 else 3689 tp->fastopen_no_cookie = val; 3690 break; 3691 case TCP_TIMESTAMP: 3692 if (!tp->repair) { 3693 err = -EPERM; 3694 break; 3695 } 3696 /* val is an opaque field, 3697 * and low order bit contains usec_ts enable bit. 3698 * Its a best effort, and we do not care if user makes an error. 3699 */ 3700 tp->tcp_usec_ts = val & 1; 3701 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 3702 break; 3703 case TCP_REPAIR_WINDOW: 3704 err = tcp_repair_set_window(tp, optval, optlen); 3705 break; 3706 case TCP_NOTSENT_LOWAT: 3707 WRITE_ONCE(tp->notsent_lowat, val); 3708 sk->sk_write_space(sk); 3709 break; 3710 case TCP_INQ: 3711 if (val > 1 || val < 0) 3712 err = -EINVAL; 3713 else 3714 tp->recvmsg_inq = val; 3715 break; 3716 case TCP_TX_DELAY: 3717 if (val) 3718 tcp_enable_tx_delay(); 3719 WRITE_ONCE(tp->tcp_tx_delay, val); 3720 break; 3721 default: 3722 err = -ENOPROTOOPT; 3723 break; 3724 } 3725 3726 sockopt_release_sock(sk); 3727 return err; 3728 } 3729 3730 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3731 unsigned int optlen) 3732 { 3733 const struct inet_connection_sock *icsk = inet_csk(sk); 3734 3735 if (level != SOL_TCP) 3736 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3737 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3738 optval, optlen); 3739 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3740 } 3741 EXPORT_SYMBOL(tcp_setsockopt); 3742 3743 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3744 struct tcp_info *info) 3745 { 3746 u64 stats[__TCP_CHRONO_MAX], total = 0; 3747 enum tcp_chrono i; 3748 3749 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3750 stats[i] = tp->chrono_stat[i - 1]; 3751 if (i == tp->chrono_type) 3752 stats[i] += tcp_jiffies32 - tp->chrono_start; 3753 stats[i] *= USEC_PER_SEC / HZ; 3754 total += stats[i]; 3755 } 3756 3757 info->tcpi_busy_time = total; 3758 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3759 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3760 } 3761 3762 /* Return information about state of tcp endpoint in API format. */ 3763 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3764 { 3765 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3766 const struct inet_connection_sock *icsk = inet_csk(sk); 3767 unsigned long rate; 3768 u32 now; 3769 u64 rate64; 3770 bool slow; 3771 3772 memset(info, 0, sizeof(*info)); 3773 if (sk->sk_type != SOCK_STREAM) 3774 return; 3775 3776 info->tcpi_state = inet_sk_state_load(sk); 3777 3778 /* Report meaningful fields for all TCP states, including listeners */ 3779 rate = READ_ONCE(sk->sk_pacing_rate); 3780 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3781 info->tcpi_pacing_rate = rate64; 3782 3783 rate = READ_ONCE(sk->sk_max_pacing_rate); 3784 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3785 info->tcpi_max_pacing_rate = rate64; 3786 3787 info->tcpi_reordering = tp->reordering; 3788 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3789 3790 if (info->tcpi_state == TCP_LISTEN) { 3791 /* listeners aliased fields : 3792 * tcpi_unacked -> Number of children ready for accept() 3793 * tcpi_sacked -> max backlog 3794 */ 3795 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3796 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3797 return; 3798 } 3799 3800 slow = lock_sock_fast(sk); 3801 3802 info->tcpi_ca_state = icsk->icsk_ca_state; 3803 info->tcpi_retransmits = icsk->icsk_retransmits; 3804 info->tcpi_probes = icsk->icsk_probes_out; 3805 info->tcpi_backoff = icsk->icsk_backoff; 3806 3807 if (tp->rx_opt.tstamp_ok) 3808 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3809 if (tcp_is_sack(tp)) 3810 info->tcpi_options |= TCPI_OPT_SACK; 3811 if (tp->rx_opt.wscale_ok) { 3812 info->tcpi_options |= TCPI_OPT_WSCALE; 3813 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3814 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3815 } 3816 3817 if (tp->ecn_flags & TCP_ECN_OK) 3818 info->tcpi_options |= TCPI_OPT_ECN; 3819 if (tp->ecn_flags & TCP_ECN_SEEN) 3820 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3821 if (tp->syn_data_acked) 3822 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3823 if (tp->tcp_usec_ts) 3824 info->tcpi_options |= TCPI_OPT_USEC_TS; 3825 3826 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3827 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 3828 tcp_delack_max(sk))); 3829 info->tcpi_snd_mss = tp->mss_cache; 3830 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3831 3832 info->tcpi_unacked = tp->packets_out; 3833 info->tcpi_sacked = tp->sacked_out; 3834 3835 info->tcpi_lost = tp->lost_out; 3836 info->tcpi_retrans = tp->retrans_out; 3837 3838 now = tcp_jiffies32; 3839 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3840 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3841 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3842 3843 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3844 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3845 info->tcpi_rtt = tp->srtt_us >> 3; 3846 info->tcpi_rttvar = tp->mdev_us >> 2; 3847 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3848 info->tcpi_advmss = tp->advmss; 3849 3850 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3851 info->tcpi_rcv_space = tp->rcvq_space.space; 3852 3853 info->tcpi_total_retrans = tp->total_retrans; 3854 3855 info->tcpi_bytes_acked = tp->bytes_acked; 3856 info->tcpi_bytes_received = tp->bytes_received; 3857 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3858 tcp_get_info_chrono_stats(tp, info); 3859 3860 info->tcpi_segs_out = tp->segs_out; 3861 3862 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3863 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3864 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3865 3866 info->tcpi_min_rtt = tcp_min_rtt(tp); 3867 info->tcpi_data_segs_out = tp->data_segs_out; 3868 3869 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3870 rate64 = tcp_compute_delivery_rate(tp); 3871 if (rate64) 3872 info->tcpi_delivery_rate = rate64; 3873 info->tcpi_delivered = tp->delivered; 3874 info->tcpi_delivered_ce = tp->delivered_ce; 3875 info->tcpi_bytes_sent = tp->bytes_sent; 3876 info->tcpi_bytes_retrans = tp->bytes_retrans; 3877 info->tcpi_dsack_dups = tp->dsack_dups; 3878 info->tcpi_reord_seen = tp->reord_seen; 3879 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3880 info->tcpi_snd_wnd = tp->snd_wnd; 3881 info->tcpi_rcv_wnd = tp->rcv_wnd; 3882 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3883 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3884 3885 info->tcpi_total_rto = tp->total_rto; 3886 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 3887 info->tcpi_total_rto_time = tp->total_rto_time; 3888 if (tp->rto_stamp) 3889 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 3890 3891 unlock_sock_fast(sk, slow); 3892 } 3893 EXPORT_SYMBOL_GPL(tcp_get_info); 3894 3895 static size_t tcp_opt_stats_get_size(void) 3896 { 3897 return 3898 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3899 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3900 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3901 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3902 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3903 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3904 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3905 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3906 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3907 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3908 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3909 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3910 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3911 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3912 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3913 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3914 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3915 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3916 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3917 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3918 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3919 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3920 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3921 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3922 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3923 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3924 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3925 0; 3926 } 3927 3928 /* Returns TTL or hop limit of an incoming packet from skb. */ 3929 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3930 { 3931 if (skb->protocol == htons(ETH_P_IP)) 3932 return ip_hdr(skb)->ttl; 3933 else if (skb->protocol == htons(ETH_P_IPV6)) 3934 return ipv6_hdr(skb)->hop_limit; 3935 else 3936 return 0; 3937 } 3938 3939 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3940 const struct sk_buff *orig_skb, 3941 const struct sk_buff *ack_skb) 3942 { 3943 const struct tcp_sock *tp = tcp_sk(sk); 3944 struct sk_buff *stats; 3945 struct tcp_info info; 3946 unsigned long rate; 3947 u64 rate64; 3948 3949 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3950 if (!stats) 3951 return NULL; 3952 3953 tcp_get_info_chrono_stats(tp, &info); 3954 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3955 info.tcpi_busy_time, TCP_NLA_PAD); 3956 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3957 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3958 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3959 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3960 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3961 tp->data_segs_out, TCP_NLA_PAD); 3962 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3963 tp->total_retrans, TCP_NLA_PAD); 3964 3965 rate = READ_ONCE(sk->sk_pacing_rate); 3966 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3967 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3968 3969 rate64 = tcp_compute_delivery_rate(tp); 3970 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3971 3972 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3973 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3974 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3975 3976 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3977 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3978 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3979 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3980 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3981 3982 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3983 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3984 3985 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3986 TCP_NLA_PAD); 3987 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3988 TCP_NLA_PAD); 3989 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3990 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3991 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3992 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3993 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3994 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3995 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3996 TCP_NLA_PAD); 3997 if (ack_skb) 3998 nla_put_u8(stats, TCP_NLA_TTL, 3999 tcp_skb_ttl_or_hop_limit(ack_skb)); 4000 4001 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4002 return stats; 4003 } 4004 4005 int do_tcp_getsockopt(struct sock *sk, int level, 4006 int optname, sockptr_t optval, sockptr_t optlen) 4007 { 4008 struct inet_connection_sock *icsk = inet_csk(sk); 4009 struct tcp_sock *tp = tcp_sk(sk); 4010 struct net *net = sock_net(sk); 4011 int val, len; 4012 4013 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4014 return -EFAULT; 4015 4016 if (len < 0) 4017 return -EINVAL; 4018 4019 len = min_t(unsigned int, len, sizeof(int)); 4020 4021 switch (optname) { 4022 case TCP_MAXSEG: 4023 val = tp->mss_cache; 4024 if (tp->rx_opt.user_mss && 4025 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4026 val = tp->rx_opt.user_mss; 4027 if (tp->repair) 4028 val = tp->rx_opt.mss_clamp; 4029 break; 4030 case TCP_NODELAY: 4031 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4032 break; 4033 case TCP_CORK: 4034 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4035 break; 4036 case TCP_KEEPIDLE: 4037 val = keepalive_time_when(tp) / HZ; 4038 break; 4039 case TCP_KEEPINTVL: 4040 val = keepalive_intvl_when(tp) / HZ; 4041 break; 4042 case TCP_KEEPCNT: 4043 val = keepalive_probes(tp); 4044 break; 4045 case TCP_SYNCNT: 4046 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4047 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4048 break; 4049 case TCP_LINGER2: 4050 val = READ_ONCE(tp->linger2); 4051 if (val >= 0) 4052 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4053 break; 4054 case TCP_DEFER_ACCEPT: 4055 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4056 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4057 TCP_RTO_MAX / HZ); 4058 break; 4059 case TCP_WINDOW_CLAMP: 4060 val = READ_ONCE(tp->window_clamp); 4061 break; 4062 case TCP_INFO: { 4063 struct tcp_info info; 4064 4065 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4066 return -EFAULT; 4067 4068 tcp_get_info(sk, &info); 4069 4070 len = min_t(unsigned int, len, sizeof(info)); 4071 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4072 return -EFAULT; 4073 if (copy_to_sockptr(optval, &info, len)) 4074 return -EFAULT; 4075 return 0; 4076 } 4077 case TCP_CC_INFO: { 4078 const struct tcp_congestion_ops *ca_ops; 4079 union tcp_cc_info info; 4080 size_t sz = 0; 4081 int attr; 4082 4083 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4084 return -EFAULT; 4085 4086 ca_ops = icsk->icsk_ca_ops; 4087 if (ca_ops && ca_ops->get_info) 4088 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4089 4090 len = min_t(unsigned int, len, sz); 4091 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4092 return -EFAULT; 4093 if (copy_to_sockptr(optval, &info, len)) 4094 return -EFAULT; 4095 return 0; 4096 } 4097 case TCP_QUICKACK: 4098 val = !inet_csk_in_pingpong_mode(sk); 4099 break; 4100 4101 case TCP_CONGESTION: 4102 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4103 return -EFAULT; 4104 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4105 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4106 return -EFAULT; 4107 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4108 return -EFAULT; 4109 return 0; 4110 4111 case TCP_ULP: 4112 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4113 return -EFAULT; 4114 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4115 if (!icsk->icsk_ulp_ops) { 4116 len = 0; 4117 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4118 return -EFAULT; 4119 return 0; 4120 } 4121 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4122 return -EFAULT; 4123 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4124 return -EFAULT; 4125 return 0; 4126 4127 case TCP_FASTOPEN_KEY: { 4128 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4129 unsigned int key_len; 4130 4131 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4132 return -EFAULT; 4133 4134 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4135 TCP_FASTOPEN_KEY_LENGTH; 4136 len = min_t(unsigned int, len, key_len); 4137 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4138 return -EFAULT; 4139 if (copy_to_sockptr(optval, key, len)) 4140 return -EFAULT; 4141 return 0; 4142 } 4143 case TCP_THIN_LINEAR_TIMEOUTS: 4144 val = tp->thin_lto; 4145 break; 4146 4147 case TCP_THIN_DUPACK: 4148 val = 0; 4149 break; 4150 4151 case TCP_REPAIR: 4152 val = tp->repair; 4153 break; 4154 4155 case TCP_REPAIR_QUEUE: 4156 if (tp->repair) 4157 val = tp->repair_queue; 4158 else 4159 return -EINVAL; 4160 break; 4161 4162 case TCP_REPAIR_WINDOW: { 4163 struct tcp_repair_window opt; 4164 4165 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4166 return -EFAULT; 4167 4168 if (len != sizeof(opt)) 4169 return -EINVAL; 4170 4171 if (!tp->repair) 4172 return -EPERM; 4173 4174 opt.snd_wl1 = tp->snd_wl1; 4175 opt.snd_wnd = tp->snd_wnd; 4176 opt.max_window = tp->max_window; 4177 opt.rcv_wnd = tp->rcv_wnd; 4178 opt.rcv_wup = tp->rcv_wup; 4179 4180 if (copy_to_sockptr(optval, &opt, len)) 4181 return -EFAULT; 4182 return 0; 4183 } 4184 case TCP_QUEUE_SEQ: 4185 if (tp->repair_queue == TCP_SEND_QUEUE) 4186 val = tp->write_seq; 4187 else if (tp->repair_queue == TCP_RECV_QUEUE) 4188 val = tp->rcv_nxt; 4189 else 4190 return -EINVAL; 4191 break; 4192 4193 case TCP_USER_TIMEOUT: 4194 val = READ_ONCE(icsk->icsk_user_timeout); 4195 break; 4196 4197 case TCP_FASTOPEN: 4198 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4199 break; 4200 4201 case TCP_FASTOPEN_CONNECT: 4202 val = tp->fastopen_connect; 4203 break; 4204 4205 case TCP_FASTOPEN_NO_COOKIE: 4206 val = tp->fastopen_no_cookie; 4207 break; 4208 4209 case TCP_TX_DELAY: 4210 val = READ_ONCE(tp->tcp_tx_delay); 4211 break; 4212 4213 case TCP_TIMESTAMP: 4214 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4215 if (tp->tcp_usec_ts) 4216 val |= 1; 4217 else 4218 val &= ~1; 4219 break; 4220 case TCP_NOTSENT_LOWAT: 4221 val = READ_ONCE(tp->notsent_lowat); 4222 break; 4223 case TCP_INQ: 4224 val = tp->recvmsg_inq; 4225 break; 4226 case TCP_SAVE_SYN: 4227 val = tp->save_syn; 4228 break; 4229 case TCP_SAVED_SYN: { 4230 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4231 return -EFAULT; 4232 4233 sockopt_lock_sock(sk); 4234 if (tp->saved_syn) { 4235 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4236 len = tcp_saved_syn_len(tp->saved_syn); 4237 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4238 sockopt_release_sock(sk); 4239 return -EFAULT; 4240 } 4241 sockopt_release_sock(sk); 4242 return -EINVAL; 4243 } 4244 len = tcp_saved_syn_len(tp->saved_syn); 4245 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4246 sockopt_release_sock(sk); 4247 return -EFAULT; 4248 } 4249 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4250 sockopt_release_sock(sk); 4251 return -EFAULT; 4252 } 4253 tcp_saved_syn_free(tp); 4254 sockopt_release_sock(sk); 4255 } else { 4256 sockopt_release_sock(sk); 4257 len = 0; 4258 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4259 return -EFAULT; 4260 } 4261 return 0; 4262 } 4263 #ifdef CONFIG_MMU 4264 case TCP_ZEROCOPY_RECEIVE: { 4265 struct scm_timestamping_internal tss; 4266 struct tcp_zerocopy_receive zc = {}; 4267 int err; 4268 4269 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4270 return -EFAULT; 4271 if (len < 0 || 4272 len < offsetofend(struct tcp_zerocopy_receive, length)) 4273 return -EINVAL; 4274 if (unlikely(len > sizeof(zc))) { 4275 err = check_zeroed_sockptr(optval, sizeof(zc), 4276 len - sizeof(zc)); 4277 if (err < 1) 4278 return err == 0 ? -EINVAL : err; 4279 len = sizeof(zc); 4280 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4281 return -EFAULT; 4282 } 4283 if (copy_from_sockptr(&zc, optval, len)) 4284 return -EFAULT; 4285 if (zc.reserved) 4286 return -EINVAL; 4287 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4288 return -EINVAL; 4289 sockopt_lock_sock(sk); 4290 err = tcp_zerocopy_receive(sk, &zc, &tss); 4291 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4292 &zc, &len, err); 4293 sockopt_release_sock(sk); 4294 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4295 goto zerocopy_rcv_cmsg; 4296 switch (len) { 4297 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4298 goto zerocopy_rcv_cmsg; 4299 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4300 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4301 case offsetofend(struct tcp_zerocopy_receive, flags): 4302 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4303 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4304 case offsetofend(struct tcp_zerocopy_receive, err): 4305 goto zerocopy_rcv_sk_err; 4306 case offsetofend(struct tcp_zerocopy_receive, inq): 4307 goto zerocopy_rcv_inq; 4308 case offsetofend(struct tcp_zerocopy_receive, length): 4309 default: 4310 goto zerocopy_rcv_out; 4311 } 4312 zerocopy_rcv_cmsg: 4313 if (zc.msg_flags & TCP_CMSG_TS) 4314 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4315 else 4316 zc.msg_flags = 0; 4317 zerocopy_rcv_sk_err: 4318 if (!err) 4319 zc.err = sock_error(sk); 4320 zerocopy_rcv_inq: 4321 zc.inq = tcp_inq_hint(sk); 4322 zerocopy_rcv_out: 4323 if (!err && copy_to_sockptr(optval, &zc, len)) 4324 err = -EFAULT; 4325 return err; 4326 } 4327 #endif 4328 case TCP_AO_REPAIR: 4329 if (!tcp_can_repair_sock(sk)) 4330 return -EPERM; 4331 return tcp_ao_get_repair(sk, optval, optlen); 4332 case TCP_AO_GET_KEYS: 4333 case TCP_AO_INFO: { 4334 int err; 4335 4336 sockopt_lock_sock(sk); 4337 if (optname == TCP_AO_GET_KEYS) 4338 err = tcp_ao_get_mkts(sk, optval, optlen); 4339 else 4340 err = tcp_ao_get_sock_info(sk, optval, optlen); 4341 sockopt_release_sock(sk); 4342 4343 return err; 4344 } 4345 default: 4346 return -ENOPROTOOPT; 4347 } 4348 4349 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4350 return -EFAULT; 4351 if (copy_to_sockptr(optval, &val, len)) 4352 return -EFAULT; 4353 return 0; 4354 } 4355 4356 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4357 { 4358 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4359 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4360 */ 4361 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4362 return true; 4363 4364 return false; 4365 } 4366 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4367 4368 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4369 int __user *optlen) 4370 { 4371 struct inet_connection_sock *icsk = inet_csk(sk); 4372 4373 if (level != SOL_TCP) 4374 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4375 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4376 optval, optlen); 4377 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4378 USER_SOCKPTR(optlen)); 4379 } 4380 EXPORT_SYMBOL(tcp_getsockopt); 4381 4382 #ifdef CONFIG_TCP_MD5SIG 4383 int tcp_md5_sigpool_id = -1; 4384 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4385 4386 int tcp_md5_alloc_sigpool(void) 4387 { 4388 size_t scratch_size; 4389 int ret; 4390 4391 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4392 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4393 if (ret >= 0) { 4394 /* As long as any md5 sigpool was allocated, the return 4395 * id would stay the same. Re-write the id only for the case 4396 * when previously all MD5 keys were deleted and this call 4397 * allocates the first MD5 key, which may return a different 4398 * sigpool id than was used previously. 4399 */ 4400 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4401 return 0; 4402 } 4403 return ret; 4404 } 4405 4406 void tcp_md5_release_sigpool(void) 4407 { 4408 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4409 } 4410 4411 void tcp_md5_add_sigpool(void) 4412 { 4413 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4414 } 4415 4416 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4417 const struct tcp_md5sig_key *key) 4418 { 4419 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4420 struct scatterlist sg; 4421 4422 sg_init_one(&sg, key->key, keylen); 4423 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4424 4425 /* We use data_race() because tcp_md5_do_add() might change 4426 * key->key under us 4427 */ 4428 return data_race(crypto_ahash_update(hp->req)); 4429 } 4430 EXPORT_SYMBOL(tcp_md5_hash_key); 4431 4432 /* Called with rcu_read_lock() */ 4433 enum skb_drop_reason 4434 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4435 const void *saddr, const void *daddr, 4436 int family, int l3index, const __u8 *hash_location) 4437 { 4438 /* This gets called for each TCP segment that has TCP-MD5 option. 4439 * We have 3 drop cases: 4440 * o No MD5 hash and one expected. 4441 * o MD5 hash and we're not expecting one. 4442 * o MD5 hash and its wrong. 4443 */ 4444 const struct tcp_sock *tp = tcp_sk(sk); 4445 struct tcp_md5sig_key *key; 4446 u8 newhash[16]; 4447 int genhash; 4448 4449 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4450 4451 if (!key && hash_location) { 4452 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4453 tcp_hash_fail("Unexpected MD5 Hash found", family, skb, ""); 4454 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4455 } 4456 4457 /* Check the signature. 4458 * To support dual stack listeners, we need to handle 4459 * IPv4-mapped case. 4460 */ 4461 if (family == AF_INET) 4462 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4463 else 4464 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4465 NULL, skb); 4466 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4467 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4468 if (family == AF_INET) { 4469 tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d", 4470 genhash ? "tcp_v4_calc_md5_hash failed" 4471 : "", l3index); 4472 } else { 4473 if (genhash) { 4474 tcp_hash_fail("MD5 Hash failed", 4475 AF_INET6, skb, "L3 index %d", 4476 l3index); 4477 } else { 4478 tcp_hash_fail("MD5 Hash mismatch", 4479 AF_INET6, skb, "L3 index %d", 4480 l3index); 4481 } 4482 } 4483 return SKB_DROP_REASON_TCP_MD5FAILURE; 4484 } 4485 return SKB_NOT_DROPPED_YET; 4486 } 4487 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4488 4489 #endif 4490 4491 void tcp_done(struct sock *sk) 4492 { 4493 struct request_sock *req; 4494 4495 /* We might be called with a new socket, after 4496 * inet_csk_prepare_forced_close() has been called 4497 * so we can not use lockdep_sock_is_held(sk) 4498 */ 4499 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4500 4501 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4502 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4503 4504 tcp_set_state(sk, TCP_CLOSE); 4505 tcp_clear_xmit_timers(sk); 4506 if (req) 4507 reqsk_fastopen_remove(sk, req, false); 4508 4509 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4510 4511 if (!sock_flag(sk, SOCK_DEAD)) 4512 sk->sk_state_change(sk); 4513 else 4514 inet_csk_destroy_sock(sk); 4515 } 4516 EXPORT_SYMBOL_GPL(tcp_done); 4517 4518 int tcp_abort(struct sock *sk, int err) 4519 { 4520 int state = inet_sk_state_load(sk); 4521 4522 if (state == TCP_NEW_SYN_RECV) { 4523 struct request_sock *req = inet_reqsk(sk); 4524 4525 local_bh_disable(); 4526 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4527 local_bh_enable(); 4528 return 0; 4529 } 4530 if (state == TCP_TIME_WAIT) { 4531 struct inet_timewait_sock *tw = inet_twsk(sk); 4532 4533 refcount_inc(&tw->tw_refcnt); 4534 local_bh_disable(); 4535 inet_twsk_deschedule_put(tw); 4536 local_bh_enable(); 4537 return 0; 4538 } 4539 4540 /* BPF context ensures sock locking. */ 4541 if (!has_current_bpf_ctx()) 4542 /* Don't race with userspace socket closes such as tcp_close. */ 4543 lock_sock(sk); 4544 4545 if (sk->sk_state == TCP_LISTEN) { 4546 tcp_set_state(sk, TCP_CLOSE); 4547 inet_csk_listen_stop(sk); 4548 } 4549 4550 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4551 local_bh_disable(); 4552 bh_lock_sock(sk); 4553 4554 if (!sock_flag(sk, SOCK_DEAD)) { 4555 WRITE_ONCE(sk->sk_err, err); 4556 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4557 smp_wmb(); 4558 sk_error_report(sk); 4559 if (tcp_need_reset(sk->sk_state)) 4560 tcp_send_active_reset(sk, GFP_ATOMIC); 4561 tcp_done(sk); 4562 } 4563 4564 bh_unlock_sock(sk); 4565 local_bh_enable(); 4566 tcp_write_queue_purge(sk); 4567 if (!has_current_bpf_ctx()) 4568 release_sock(sk); 4569 return 0; 4570 } 4571 EXPORT_SYMBOL_GPL(tcp_abort); 4572 4573 extern struct tcp_congestion_ops tcp_reno; 4574 4575 static __initdata unsigned long thash_entries; 4576 static int __init set_thash_entries(char *str) 4577 { 4578 ssize_t ret; 4579 4580 if (!str) 4581 return 0; 4582 4583 ret = kstrtoul(str, 0, &thash_entries); 4584 if (ret) 4585 return 0; 4586 4587 return 1; 4588 } 4589 __setup("thash_entries=", set_thash_entries); 4590 4591 static void __init tcp_init_mem(void) 4592 { 4593 unsigned long limit = nr_free_buffer_pages() / 16; 4594 4595 limit = max(limit, 128UL); 4596 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4597 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4598 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4599 } 4600 4601 static void __init tcp_struct_check(void) 4602 { 4603 /* TX read-mostly hotpath cache lines */ 4604 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4605 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4606 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4607 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4608 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4609 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4610 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4611 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4612 4613 /* TXRX read-mostly hotpath cache lines */ 4614 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4615 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4616 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4617 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4618 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4619 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4620 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4621 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 4622 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 4623 4624 /* RX read-mostly hotpath cache lines */ 4625 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 4626 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 4627 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 4628 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 4629 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 4630 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 4631 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 4632 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 4633 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 4634 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 4635 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 4636 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 4637 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 4638 4639 /* TX read-write hotpath cache lines */ 4640 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 4641 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 4642 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 4643 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 4644 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 4645 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 4646 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 4647 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 4648 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 4649 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 4650 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 4651 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_clock_cache); 4652 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_mstamp); 4653 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 4654 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 4655 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 4656 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 4657 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 105); 4658 4659 /* TXRX read-write hotpath cache lines */ 4660 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 4661 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 4662 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 4663 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 4664 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 4665 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 4666 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 4667 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 4668 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 4669 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 4670 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 4671 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 4672 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 4673 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 76); 4674 4675 /* RX read-write hotpath cache lines */ 4676 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 4677 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 4678 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 4679 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 4680 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 4681 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 4682 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 4683 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 4684 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 4685 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 4686 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 4687 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 4688 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 4689 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 4690 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 4691 } 4692 4693 void __init tcp_init(void) 4694 { 4695 int max_rshare, max_wshare, cnt; 4696 unsigned long limit; 4697 unsigned int i; 4698 4699 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4700 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4701 sizeof_field(struct sk_buff, cb)); 4702 4703 tcp_struct_check(); 4704 4705 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4706 4707 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4708 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4709 4710 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4711 thash_entries, 21, /* one slot per 2 MB*/ 4712 0, 64 * 1024); 4713 tcp_hashinfo.bind_bucket_cachep = 4714 kmem_cache_create("tcp_bind_bucket", 4715 sizeof(struct inet_bind_bucket), 0, 4716 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4717 SLAB_ACCOUNT, 4718 NULL); 4719 tcp_hashinfo.bind2_bucket_cachep = 4720 kmem_cache_create("tcp_bind2_bucket", 4721 sizeof(struct inet_bind2_bucket), 0, 4722 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4723 SLAB_ACCOUNT, 4724 NULL); 4725 4726 /* Size and allocate the main established and bind bucket 4727 * hash tables. 4728 * 4729 * The methodology is similar to that of the buffer cache. 4730 */ 4731 tcp_hashinfo.ehash = 4732 alloc_large_system_hash("TCP established", 4733 sizeof(struct inet_ehash_bucket), 4734 thash_entries, 4735 17, /* one slot per 128 KB of memory */ 4736 0, 4737 NULL, 4738 &tcp_hashinfo.ehash_mask, 4739 0, 4740 thash_entries ? 0 : 512 * 1024); 4741 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4742 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4743 4744 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4745 panic("TCP: failed to alloc ehash_locks"); 4746 tcp_hashinfo.bhash = 4747 alloc_large_system_hash("TCP bind", 4748 2 * sizeof(struct inet_bind_hashbucket), 4749 tcp_hashinfo.ehash_mask + 1, 4750 17, /* one slot per 128 KB of memory */ 4751 0, 4752 &tcp_hashinfo.bhash_size, 4753 NULL, 4754 0, 4755 64 * 1024); 4756 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4757 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4758 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4759 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4760 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4761 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4762 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4763 } 4764 4765 tcp_hashinfo.pernet = false; 4766 4767 cnt = tcp_hashinfo.ehash_mask + 1; 4768 sysctl_tcp_max_orphans = cnt / 2; 4769 4770 tcp_init_mem(); 4771 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4772 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4773 max_wshare = min(4UL*1024*1024, limit); 4774 max_rshare = min(6UL*1024*1024, limit); 4775 4776 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4777 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4778 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4779 4780 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4781 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4782 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4783 4784 pr_info("Hash tables configured (established %u bind %u)\n", 4785 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4786 4787 tcp_v4_init(); 4788 tcp_metrics_init(); 4789 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4790 tcp_tasklet_init(); 4791 mptcp_init(); 4792 } 4793