xref: /linux/net/ipv4/tcp.c (revision e75e4e074c4475a3a6145593ecf2dcaf3995fa50)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 #include <net/rps.h>
283 
284 /* Track pending CMSGs. */
285 enum {
286 	TCP_CMSG_INQ = 1,
287 	TCP_CMSG_TS = 2
288 };
289 
290 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
291 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
292 
293 long sysctl_tcp_mem[3] __read_mostly;
294 EXPORT_SYMBOL(sysctl_tcp_mem);
295 
296 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
297 EXPORT_SYMBOL(tcp_memory_allocated);
298 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
299 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
300 
301 #if IS_ENABLED(CONFIG_SMC)
302 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
303 EXPORT_SYMBOL(tcp_have_smc);
304 #endif
305 
306 /*
307  * Current number of TCP sockets.
308  */
309 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
310 EXPORT_SYMBOL(tcp_sockets_allocated);
311 
312 /*
313  * TCP splice context
314  */
315 struct tcp_splice_state {
316 	struct pipe_inode_info *pipe;
317 	size_t len;
318 	unsigned int flags;
319 };
320 
321 /*
322  * Pressure flag: try to collapse.
323  * Technical note: it is used by multiple contexts non atomically.
324  * All the __sk_mem_schedule() is of this nature: accounting
325  * is strict, actions are advisory and have some latency.
326  */
327 unsigned long tcp_memory_pressure __read_mostly;
328 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
329 
330 void tcp_enter_memory_pressure(struct sock *sk)
331 {
332 	unsigned long val;
333 
334 	if (READ_ONCE(tcp_memory_pressure))
335 		return;
336 	val = jiffies;
337 
338 	if (!val)
339 		val--;
340 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
341 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
342 }
343 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
344 
345 void tcp_leave_memory_pressure(struct sock *sk)
346 {
347 	unsigned long val;
348 
349 	if (!READ_ONCE(tcp_memory_pressure))
350 		return;
351 	val = xchg(&tcp_memory_pressure, 0);
352 	if (val)
353 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
354 			      jiffies_to_msecs(jiffies - val));
355 }
356 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
357 
358 /* Convert seconds to retransmits based on initial and max timeout */
359 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
360 {
361 	u8 res = 0;
362 
363 	if (seconds > 0) {
364 		int period = timeout;
365 
366 		res = 1;
367 		while (seconds > period && res < 255) {
368 			res++;
369 			timeout <<= 1;
370 			if (timeout > rto_max)
371 				timeout = rto_max;
372 			period += timeout;
373 		}
374 	}
375 	return res;
376 }
377 
378 /* Convert retransmits to seconds based on initial and max timeout */
379 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
380 {
381 	int period = 0;
382 
383 	if (retrans > 0) {
384 		period = timeout;
385 		while (--retrans) {
386 			timeout <<= 1;
387 			if (timeout > rto_max)
388 				timeout = rto_max;
389 			period += timeout;
390 		}
391 	}
392 	return period;
393 }
394 
395 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
396 {
397 	u32 rate = READ_ONCE(tp->rate_delivered);
398 	u32 intv = READ_ONCE(tp->rate_interval_us);
399 	u64 rate64 = 0;
400 
401 	if (rate && intv) {
402 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
403 		do_div(rate64, intv);
404 	}
405 	return rate64;
406 }
407 
408 /* Address-family independent initialization for a tcp_sock.
409  *
410  * NOTE: A lot of things set to zero explicitly by call to
411  *       sk_alloc() so need not be done here.
412  */
413 void tcp_init_sock(struct sock *sk)
414 {
415 	struct inet_connection_sock *icsk = inet_csk(sk);
416 	struct tcp_sock *tp = tcp_sk(sk);
417 
418 	tp->out_of_order_queue = RB_ROOT;
419 	sk->tcp_rtx_queue = RB_ROOT;
420 	tcp_init_xmit_timers(sk);
421 	INIT_LIST_HEAD(&tp->tsq_node);
422 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
423 
424 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
425 	icsk->icsk_rto_min = TCP_RTO_MIN;
426 	icsk->icsk_delack_max = TCP_DELACK_MAX;
427 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
428 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
429 
430 	/* So many TCP implementations out there (incorrectly) count the
431 	 * initial SYN frame in their delayed-ACK and congestion control
432 	 * algorithms that we must have the following bandaid to talk
433 	 * efficiently to them.  -DaveM
434 	 */
435 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
436 
437 	/* There's a bubble in the pipe until at least the first ACK. */
438 	tp->app_limited = ~0U;
439 	tp->rate_app_limited = 1;
440 
441 	/* See draft-stevens-tcpca-spec-01 for discussion of the
442 	 * initialization of these values.
443 	 */
444 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
445 	tp->snd_cwnd_clamp = ~0;
446 	tp->mss_cache = TCP_MSS_DEFAULT;
447 
448 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
449 	tcp_assign_congestion_control(sk);
450 
451 	tp->tsoffset = 0;
452 	tp->rack.reo_wnd_steps = 1;
453 
454 	sk->sk_write_space = sk_stream_write_space;
455 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
456 
457 	icsk->icsk_sync_mss = tcp_sync_mss;
458 
459 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
460 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
461 	tcp_scaling_ratio_init(sk);
462 
463 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
464 	sk_sockets_allocated_inc(sk);
465 }
466 EXPORT_SYMBOL(tcp_init_sock);
467 
468 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
469 {
470 	struct sk_buff *skb = tcp_write_queue_tail(sk);
471 
472 	if (tsflags && skb) {
473 		struct skb_shared_info *shinfo = skb_shinfo(skb);
474 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
475 
476 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
477 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
478 			tcb->txstamp_ack = 1;
479 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
480 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
481 	}
482 }
483 
484 static bool tcp_stream_is_readable(struct sock *sk, int target)
485 {
486 	if (tcp_epollin_ready(sk, target))
487 		return true;
488 	return sk_is_readable(sk);
489 }
490 
491 /*
492  *	Wait for a TCP event.
493  *
494  *	Note that we don't need to lock the socket, as the upper poll layers
495  *	take care of normal races (between the test and the event) and we don't
496  *	go look at any of the socket buffers directly.
497  */
498 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
499 {
500 	__poll_t mask;
501 	struct sock *sk = sock->sk;
502 	const struct tcp_sock *tp = tcp_sk(sk);
503 	u8 shutdown;
504 	int state;
505 
506 	sock_poll_wait(file, sock, wait);
507 
508 	state = inet_sk_state_load(sk);
509 	if (state == TCP_LISTEN)
510 		return inet_csk_listen_poll(sk);
511 
512 	/* Socket is not locked. We are protected from async events
513 	 * by poll logic and correct handling of state changes
514 	 * made by other threads is impossible in any case.
515 	 */
516 
517 	mask = 0;
518 
519 	/*
520 	 * EPOLLHUP is certainly not done right. But poll() doesn't
521 	 * have a notion of HUP in just one direction, and for a
522 	 * socket the read side is more interesting.
523 	 *
524 	 * Some poll() documentation says that EPOLLHUP is incompatible
525 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
526 	 * all. But careful, it tends to be safer to return too many
527 	 * bits than too few, and you can easily break real applications
528 	 * if you don't tell them that something has hung up!
529 	 *
530 	 * Check-me.
531 	 *
532 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
533 	 * our fs/select.c). It means that after we received EOF,
534 	 * poll always returns immediately, making impossible poll() on write()
535 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
536 	 * if and only if shutdown has been made in both directions.
537 	 * Actually, it is interesting to look how Solaris and DUX
538 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
539 	 * then we could set it on SND_SHUTDOWN. BTW examples given
540 	 * in Stevens' books assume exactly this behaviour, it explains
541 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
542 	 *
543 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
544 	 * blocking on fresh not-connected or disconnected socket. --ANK
545 	 */
546 	shutdown = READ_ONCE(sk->sk_shutdown);
547 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
548 		mask |= EPOLLHUP;
549 	if (shutdown & RCV_SHUTDOWN)
550 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
551 
552 	/* Connected or passive Fast Open socket? */
553 	if (state != TCP_SYN_SENT &&
554 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
555 		int target = sock_rcvlowat(sk, 0, INT_MAX);
556 		u16 urg_data = READ_ONCE(tp->urg_data);
557 
558 		if (unlikely(urg_data) &&
559 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
560 		    !sock_flag(sk, SOCK_URGINLINE))
561 			target++;
562 
563 		if (tcp_stream_is_readable(sk, target))
564 			mask |= EPOLLIN | EPOLLRDNORM;
565 
566 		if (!(shutdown & SEND_SHUTDOWN)) {
567 			if (__sk_stream_is_writeable(sk, 1)) {
568 				mask |= EPOLLOUT | EPOLLWRNORM;
569 			} else {  /* send SIGIO later */
570 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
571 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
572 
573 				/* Race breaker. If space is freed after
574 				 * wspace test but before the flags are set,
575 				 * IO signal will be lost. Memory barrier
576 				 * pairs with the input side.
577 				 */
578 				smp_mb__after_atomic();
579 				if (__sk_stream_is_writeable(sk, 1))
580 					mask |= EPOLLOUT | EPOLLWRNORM;
581 			}
582 		} else
583 			mask |= EPOLLOUT | EPOLLWRNORM;
584 
585 		if (urg_data & TCP_URG_VALID)
586 			mask |= EPOLLPRI;
587 	} else if (state == TCP_SYN_SENT &&
588 		   inet_test_bit(DEFER_CONNECT, sk)) {
589 		/* Active TCP fastopen socket with defer_connect
590 		 * Return EPOLLOUT so application can call write()
591 		 * in order for kernel to generate SYN+data
592 		 */
593 		mask |= EPOLLOUT | EPOLLWRNORM;
594 	}
595 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
596 	smp_rmb();
597 	if (READ_ONCE(sk->sk_err) ||
598 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
599 		mask |= EPOLLERR;
600 
601 	return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604 
605 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	int answ;
609 	bool slow;
610 
611 	switch (cmd) {
612 	case SIOCINQ:
613 		if (sk->sk_state == TCP_LISTEN)
614 			return -EINVAL;
615 
616 		slow = lock_sock_fast(sk);
617 		answ = tcp_inq(sk);
618 		unlock_sock_fast(sk, slow);
619 		break;
620 	case SIOCATMARK:
621 		answ = READ_ONCE(tp->urg_data) &&
622 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
623 		break;
624 	case SIOCOUTQ:
625 		if (sk->sk_state == TCP_LISTEN)
626 			return -EINVAL;
627 
628 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
629 			answ = 0;
630 		else
631 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
632 		break;
633 	case SIOCOUTQNSD:
634 		if (sk->sk_state == TCP_LISTEN)
635 			return -EINVAL;
636 
637 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
638 			answ = 0;
639 		else
640 			answ = READ_ONCE(tp->write_seq) -
641 			       READ_ONCE(tp->snd_nxt);
642 		break;
643 	default:
644 		return -ENOIOCTLCMD;
645 	}
646 
647 	*karg = answ;
648 	return 0;
649 }
650 EXPORT_SYMBOL(tcp_ioctl);
651 
652 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
653 {
654 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
655 	tp->pushed_seq = tp->write_seq;
656 }
657 
658 static inline bool forced_push(const struct tcp_sock *tp)
659 {
660 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
661 }
662 
663 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
664 {
665 	struct tcp_sock *tp = tcp_sk(sk);
666 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
667 
668 	tcb->seq     = tcb->end_seq = tp->write_seq;
669 	tcb->tcp_flags = TCPHDR_ACK;
670 	__skb_header_release(skb);
671 	tcp_add_write_queue_tail(sk, skb);
672 	sk_wmem_queued_add(sk, skb->truesize);
673 	sk_mem_charge(sk, skb->truesize);
674 	if (tp->nonagle & TCP_NAGLE_PUSH)
675 		tp->nonagle &= ~TCP_NAGLE_PUSH;
676 
677 	tcp_slow_start_after_idle_check(sk);
678 }
679 
680 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
681 {
682 	if (flags & MSG_OOB)
683 		tp->snd_up = tp->write_seq;
684 }
685 
686 /* If a not yet filled skb is pushed, do not send it if
687  * we have data packets in Qdisc or NIC queues :
688  * Because TX completion will happen shortly, it gives a chance
689  * to coalesce future sendmsg() payload into this skb, without
690  * need for a timer, and with no latency trade off.
691  * As packets containing data payload have a bigger truesize
692  * than pure acks (dataless) packets, the last checks prevent
693  * autocorking if we only have an ACK in Qdisc/NIC queues,
694  * or if TX completion was delayed after we processed ACK packet.
695  */
696 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
697 				int size_goal)
698 {
699 	return skb->len < size_goal &&
700 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
701 	       !tcp_rtx_queue_empty(sk) &&
702 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
703 	       tcp_skb_can_collapse_to(skb);
704 }
705 
706 void tcp_push(struct sock *sk, int flags, int mss_now,
707 	      int nonagle, int size_goal)
708 {
709 	struct tcp_sock *tp = tcp_sk(sk);
710 	struct sk_buff *skb;
711 
712 	skb = tcp_write_queue_tail(sk);
713 	if (!skb)
714 		return;
715 	if (!(flags & MSG_MORE) || forced_push(tp))
716 		tcp_mark_push(tp, skb);
717 
718 	tcp_mark_urg(tp, flags);
719 
720 	if (tcp_should_autocork(sk, skb, size_goal)) {
721 
722 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
723 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
724 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
725 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
726 			smp_mb__after_atomic();
727 		}
728 		/* It is possible TX completion already happened
729 		 * before we set TSQ_THROTTLED.
730 		 */
731 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
732 			return;
733 	}
734 
735 	if (flags & MSG_MORE)
736 		nonagle = TCP_NAGLE_CORK;
737 
738 	__tcp_push_pending_frames(sk, mss_now, nonagle);
739 }
740 
741 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
742 				unsigned int offset, size_t len)
743 {
744 	struct tcp_splice_state *tss = rd_desc->arg.data;
745 	int ret;
746 
747 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
748 			      min(rd_desc->count, len), tss->flags);
749 	if (ret > 0)
750 		rd_desc->count -= ret;
751 	return ret;
752 }
753 
754 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
755 {
756 	/* Store TCP splice context information in read_descriptor_t. */
757 	read_descriptor_t rd_desc = {
758 		.arg.data = tss,
759 		.count	  = tss->len,
760 	};
761 
762 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
763 }
764 
765 /**
766  *  tcp_splice_read - splice data from TCP socket to a pipe
767  * @sock:	socket to splice from
768  * @ppos:	position (not valid)
769  * @pipe:	pipe to splice to
770  * @len:	number of bytes to splice
771  * @flags:	splice modifier flags
772  *
773  * Description:
774  *    Will read pages from given socket and fill them into a pipe.
775  *
776  **/
777 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
778 			struct pipe_inode_info *pipe, size_t len,
779 			unsigned int flags)
780 {
781 	struct sock *sk = sock->sk;
782 	struct tcp_splice_state tss = {
783 		.pipe = pipe,
784 		.len = len,
785 		.flags = flags,
786 	};
787 	long timeo;
788 	ssize_t spliced;
789 	int ret;
790 
791 	sock_rps_record_flow(sk);
792 	/*
793 	 * We can't seek on a socket input
794 	 */
795 	if (unlikely(*ppos))
796 		return -ESPIPE;
797 
798 	ret = spliced = 0;
799 
800 	lock_sock(sk);
801 
802 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
803 	while (tss.len) {
804 		ret = __tcp_splice_read(sk, &tss);
805 		if (ret < 0)
806 			break;
807 		else if (!ret) {
808 			if (spliced)
809 				break;
810 			if (sock_flag(sk, SOCK_DONE))
811 				break;
812 			if (sk->sk_err) {
813 				ret = sock_error(sk);
814 				break;
815 			}
816 			if (sk->sk_shutdown & RCV_SHUTDOWN)
817 				break;
818 			if (sk->sk_state == TCP_CLOSE) {
819 				/*
820 				 * This occurs when user tries to read
821 				 * from never connected socket.
822 				 */
823 				ret = -ENOTCONN;
824 				break;
825 			}
826 			if (!timeo) {
827 				ret = -EAGAIN;
828 				break;
829 			}
830 			/* if __tcp_splice_read() got nothing while we have
831 			 * an skb in receive queue, we do not want to loop.
832 			 * This might happen with URG data.
833 			 */
834 			if (!skb_queue_empty(&sk->sk_receive_queue))
835 				break;
836 			ret = sk_wait_data(sk, &timeo, NULL);
837 			if (ret < 0)
838 				break;
839 			if (signal_pending(current)) {
840 				ret = sock_intr_errno(timeo);
841 				break;
842 			}
843 			continue;
844 		}
845 		tss.len -= ret;
846 		spliced += ret;
847 
848 		if (!tss.len || !timeo)
849 			break;
850 		release_sock(sk);
851 		lock_sock(sk);
852 
853 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
854 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
855 		    signal_pending(current))
856 			break;
857 	}
858 
859 	release_sock(sk);
860 
861 	if (spliced)
862 		return spliced;
863 
864 	return ret;
865 }
866 EXPORT_SYMBOL(tcp_splice_read);
867 
868 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
869 				     bool force_schedule)
870 {
871 	struct sk_buff *skb;
872 
873 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
874 	if (likely(skb)) {
875 		bool mem_scheduled;
876 
877 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
878 		if (force_schedule) {
879 			mem_scheduled = true;
880 			sk_forced_mem_schedule(sk, skb->truesize);
881 		} else {
882 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
883 		}
884 		if (likely(mem_scheduled)) {
885 			skb_reserve(skb, MAX_TCP_HEADER);
886 			skb->ip_summed = CHECKSUM_PARTIAL;
887 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
888 			return skb;
889 		}
890 		__kfree_skb(skb);
891 	} else {
892 		sk->sk_prot->enter_memory_pressure(sk);
893 		sk_stream_moderate_sndbuf(sk);
894 	}
895 	return NULL;
896 }
897 
898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
899 				       int large_allowed)
900 {
901 	struct tcp_sock *tp = tcp_sk(sk);
902 	u32 new_size_goal, size_goal;
903 
904 	if (!large_allowed)
905 		return mss_now;
906 
907 	/* Note : tcp_tso_autosize() will eventually split this later */
908 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
909 
910 	/* We try hard to avoid divides here */
911 	size_goal = tp->gso_segs * mss_now;
912 	if (unlikely(new_size_goal < size_goal ||
913 		     new_size_goal >= size_goal + mss_now)) {
914 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
915 				     sk->sk_gso_max_segs);
916 		size_goal = tp->gso_segs * mss_now;
917 	}
918 
919 	return max(size_goal, mss_now);
920 }
921 
922 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
923 {
924 	int mss_now;
925 
926 	mss_now = tcp_current_mss(sk);
927 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
928 
929 	return mss_now;
930 }
931 
932 /* In some cases, sendmsg() could have added an skb to the write queue,
933  * but failed adding payload on it. We need to remove it to consume less
934  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
935  * epoll() users. Another reason is that tcp_write_xmit() does not like
936  * finding an empty skb in the write queue.
937  */
938 void tcp_remove_empty_skb(struct sock *sk)
939 {
940 	struct sk_buff *skb = tcp_write_queue_tail(sk);
941 
942 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
943 		tcp_unlink_write_queue(skb, sk);
944 		if (tcp_write_queue_empty(sk))
945 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
946 		tcp_wmem_free_skb(sk, skb);
947 	}
948 }
949 
950 /* skb changing from pure zc to mixed, must charge zc */
951 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
952 {
953 	if (unlikely(skb_zcopy_pure(skb))) {
954 		u32 extra = skb->truesize -
955 			    SKB_TRUESIZE(skb_end_offset(skb));
956 
957 		if (!sk_wmem_schedule(sk, extra))
958 			return -ENOMEM;
959 
960 		sk_mem_charge(sk, extra);
961 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
962 	}
963 	return 0;
964 }
965 
966 
967 int tcp_wmem_schedule(struct sock *sk, int copy)
968 {
969 	int left;
970 
971 	if (likely(sk_wmem_schedule(sk, copy)))
972 		return copy;
973 
974 	/* We could be in trouble if we have nothing queued.
975 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
976 	 * to guarantee some progress.
977 	 */
978 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
979 	if (left > 0)
980 		sk_forced_mem_schedule(sk, min(left, copy));
981 	return min(copy, sk->sk_forward_alloc);
982 }
983 
984 void tcp_free_fastopen_req(struct tcp_sock *tp)
985 {
986 	if (tp->fastopen_req) {
987 		kfree(tp->fastopen_req);
988 		tp->fastopen_req = NULL;
989 	}
990 }
991 
992 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
993 			 size_t size, struct ubuf_info *uarg)
994 {
995 	struct tcp_sock *tp = tcp_sk(sk);
996 	struct inet_sock *inet = inet_sk(sk);
997 	struct sockaddr *uaddr = msg->msg_name;
998 	int err, flags;
999 
1000 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1001 	      TFO_CLIENT_ENABLE) ||
1002 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1003 	     uaddr->sa_family == AF_UNSPEC))
1004 		return -EOPNOTSUPP;
1005 	if (tp->fastopen_req)
1006 		return -EALREADY; /* Another Fast Open is in progress */
1007 
1008 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1009 				   sk->sk_allocation);
1010 	if (unlikely(!tp->fastopen_req))
1011 		return -ENOBUFS;
1012 	tp->fastopen_req->data = msg;
1013 	tp->fastopen_req->size = size;
1014 	tp->fastopen_req->uarg = uarg;
1015 
1016 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1017 		err = tcp_connect(sk);
1018 		/* Same failure procedure as in tcp_v4/6_connect */
1019 		if (err) {
1020 			tcp_set_state(sk, TCP_CLOSE);
1021 			inet->inet_dport = 0;
1022 			sk->sk_route_caps = 0;
1023 		}
1024 	}
1025 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1026 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1027 				    msg->msg_namelen, flags, 1);
1028 	/* fastopen_req could already be freed in __inet_stream_connect
1029 	 * if the connection times out or gets rst
1030 	 */
1031 	if (tp->fastopen_req) {
1032 		*copied = tp->fastopen_req->copied;
1033 		tcp_free_fastopen_req(tp);
1034 		inet_clear_bit(DEFER_CONNECT, sk);
1035 	}
1036 	return err;
1037 }
1038 
1039 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1040 {
1041 	struct tcp_sock *tp = tcp_sk(sk);
1042 	struct ubuf_info *uarg = NULL;
1043 	struct sk_buff *skb;
1044 	struct sockcm_cookie sockc;
1045 	int flags, err, copied = 0;
1046 	int mss_now = 0, size_goal, copied_syn = 0;
1047 	int process_backlog = 0;
1048 	int zc = 0;
1049 	long timeo;
1050 
1051 	flags = msg->msg_flags;
1052 
1053 	if ((flags & MSG_ZEROCOPY) && size) {
1054 		if (msg->msg_ubuf) {
1055 			uarg = msg->msg_ubuf;
1056 			if (sk->sk_route_caps & NETIF_F_SG)
1057 				zc = MSG_ZEROCOPY;
1058 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1059 			skb = tcp_write_queue_tail(sk);
1060 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1061 			if (!uarg) {
1062 				err = -ENOBUFS;
1063 				goto out_err;
1064 			}
1065 			if (sk->sk_route_caps & NETIF_F_SG)
1066 				zc = MSG_ZEROCOPY;
1067 			else
1068 				uarg_to_msgzc(uarg)->zerocopy = 0;
1069 		}
1070 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1071 		if (sk->sk_route_caps & NETIF_F_SG)
1072 			zc = MSG_SPLICE_PAGES;
1073 	}
1074 
1075 	if (unlikely(flags & MSG_FASTOPEN ||
1076 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1077 	    !tp->repair) {
1078 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1079 		if (err == -EINPROGRESS && copied_syn > 0)
1080 			goto out;
1081 		else if (err)
1082 			goto out_err;
1083 	}
1084 
1085 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1086 
1087 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1088 
1089 	/* Wait for a connection to finish. One exception is TCP Fast Open
1090 	 * (passive side) where data is allowed to be sent before a connection
1091 	 * is fully established.
1092 	 */
1093 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1094 	    !tcp_passive_fastopen(sk)) {
1095 		err = sk_stream_wait_connect(sk, &timeo);
1096 		if (err != 0)
1097 			goto do_error;
1098 	}
1099 
1100 	if (unlikely(tp->repair)) {
1101 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1102 			copied = tcp_send_rcvq(sk, msg, size);
1103 			goto out_nopush;
1104 		}
1105 
1106 		err = -EINVAL;
1107 		if (tp->repair_queue == TCP_NO_QUEUE)
1108 			goto out_err;
1109 
1110 		/* 'common' sending to sendq */
1111 	}
1112 
1113 	sockcm_init(&sockc, sk);
1114 	if (msg->msg_controllen) {
1115 		err = sock_cmsg_send(sk, msg, &sockc);
1116 		if (unlikely(err)) {
1117 			err = -EINVAL;
1118 			goto out_err;
1119 		}
1120 	}
1121 
1122 	/* This should be in poll */
1123 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1124 
1125 	/* Ok commence sending. */
1126 	copied = 0;
1127 
1128 restart:
1129 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1130 
1131 	err = -EPIPE;
1132 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1133 		goto do_error;
1134 
1135 	while (msg_data_left(msg)) {
1136 		ssize_t copy = 0;
1137 
1138 		skb = tcp_write_queue_tail(sk);
1139 		if (skb)
1140 			copy = size_goal - skb->len;
1141 
1142 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1143 			bool first_skb;
1144 
1145 new_segment:
1146 			if (!sk_stream_memory_free(sk))
1147 				goto wait_for_space;
1148 
1149 			if (unlikely(process_backlog >= 16)) {
1150 				process_backlog = 0;
1151 				if (sk_flush_backlog(sk))
1152 					goto restart;
1153 			}
1154 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1155 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1156 						   first_skb);
1157 			if (!skb)
1158 				goto wait_for_space;
1159 
1160 			process_backlog++;
1161 
1162 			tcp_skb_entail(sk, skb);
1163 			copy = size_goal;
1164 
1165 			/* All packets are restored as if they have
1166 			 * already been sent. skb_mstamp_ns isn't set to
1167 			 * avoid wrong rtt estimation.
1168 			 */
1169 			if (tp->repair)
1170 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1171 		}
1172 
1173 		/* Try to append data to the end of skb. */
1174 		if (copy > msg_data_left(msg))
1175 			copy = msg_data_left(msg);
1176 
1177 		if (zc == 0) {
1178 			bool merge = true;
1179 			int i = skb_shinfo(skb)->nr_frags;
1180 			struct page_frag *pfrag = sk_page_frag(sk);
1181 
1182 			if (!sk_page_frag_refill(sk, pfrag))
1183 				goto wait_for_space;
1184 
1185 			if (!skb_can_coalesce(skb, i, pfrag->page,
1186 					      pfrag->offset)) {
1187 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1188 					tcp_mark_push(tp, skb);
1189 					goto new_segment;
1190 				}
1191 				merge = false;
1192 			}
1193 
1194 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1195 
1196 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1197 				if (tcp_downgrade_zcopy_pure(sk, skb))
1198 					goto wait_for_space;
1199 				skb_zcopy_downgrade_managed(skb);
1200 			}
1201 
1202 			copy = tcp_wmem_schedule(sk, copy);
1203 			if (!copy)
1204 				goto wait_for_space;
1205 
1206 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1207 						       pfrag->page,
1208 						       pfrag->offset,
1209 						       copy);
1210 			if (err)
1211 				goto do_error;
1212 
1213 			/* Update the skb. */
1214 			if (merge) {
1215 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1216 			} else {
1217 				skb_fill_page_desc(skb, i, pfrag->page,
1218 						   pfrag->offset, copy);
1219 				page_ref_inc(pfrag->page);
1220 			}
1221 			pfrag->offset += copy;
1222 		} else if (zc == MSG_ZEROCOPY)  {
1223 			/* First append to a fragless skb builds initial
1224 			 * pure zerocopy skb
1225 			 */
1226 			if (!skb->len)
1227 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1228 
1229 			if (!skb_zcopy_pure(skb)) {
1230 				copy = tcp_wmem_schedule(sk, copy);
1231 				if (!copy)
1232 					goto wait_for_space;
1233 			}
1234 
1235 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1236 			if (err == -EMSGSIZE || err == -EEXIST) {
1237 				tcp_mark_push(tp, skb);
1238 				goto new_segment;
1239 			}
1240 			if (err < 0)
1241 				goto do_error;
1242 			copy = err;
1243 		} else if (zc == MSG_SPLICE_PAGES) {
1244 			/* Splice in data if we can; copy if we can't. */
1245 			if (tcp_downgrade_zcopy_pure(sk, skb))
1246 				goto wait_for_space;
1247 			copy = tcp_wmem_schedule(sk, copy);
1248 			if (!copy)
1249 				goto wait_for_space;
1250 
1251 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1252 						   sk->sk_allocation);
1253 			if (err < 0) {
1254 				if (err == -EMSGSIZE) {
1255 					tcp_mark_push(tp, skb);
1256 					goto new_segment;
1257 				}
1258 				goto do_error;
1259 			}
1260 			copy = err;
1261 
1262 			if (!(flags & MSG_NO_SHARED_FRAGS))
1263 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1264 
1265 			sk_wmem_queued_add(sk, copy);
1266 			sk_mem_charge(sk, copy);
1267 		}
1268 
1269 		if (!copied)
1270 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1271 
1272 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1273 		TCP_SKB_CB(skb)->end_seq += copy;
1274 		tcp_skb_pcount_set(skb, 0);
1275 
1276 		copied += copy;
1277 		if (!msg_data_left(msg)) {
1278 			if (unlikely(flags & MSG_EOR))
1279 				TCP_SKB_CB(skb)->eor = 1;
1280 			goto out;
1281 		}
1282 
1283 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1284 			continue;
1285 
1286 		if (forced_push(tp)) {
1287 			tcp_mark_push(tp, skb);
1288 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1289 		} else if (skb == tcp_send_head(sk))
1290 			tcp_push_one(sk, mss_now);
1291 		continue;
1292 
1293 wait_for_space:
1294 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1295 		tcp_remove_empty_skb(sk);
1296 		if (copied)
1297 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1298 				 TCP_NAGLE_PUSH, size_goal);
1299 
1300 		err = sk_stream_wait_memory(sk, &timeo);
1301 		if (err != 0)
1302 			goto do_error;
1303 
1304 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1305 	}
1306 
1307 out:
1308 	if (copied) {
1309 		tcp_tx_timestamp(sk, sockc.tsflags);
1310 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1311 	}
1312 out_nopush:
1313 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1314 	if (uarg && !msg->msg_ubuf)
1315 		net_zcopy_put(uarg);
1316 	return copied + copied_syn;
1317 
1318 do_error:
1319 	tcp_remove_empty_skb(sk);
1320 
1321 	if (copied + copied_syn)
1322 		goto out;
1323 out_err:
1324 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1325 	if (uarg && !msg->msg_ubuf)
1326 		net_zcopy_put_abort(uarg, true);
1327 	err = sk_stream_error(sk, flags, err);
1328 	/* make sure we wake any epoll edge trigger waiter */
1329 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1330 		sk->sk_write_space(sk);
1331 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1332 	}
1333 	return err;
1334 }
1335 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1336 
1337 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1338 {
1339 	int ret;
1340 
1341 	lock_sock(sk);
1342 	ret = tcp_sendmsg_locked(sk, msg, size);
1343 	release_sock(sk);
1344 
1345 	return ret;
1346 }
1347 EXPORT_SYMBOL(tcp_sendmsg);
1348 
1349 void tcp_splice_eof(struct socket *sock)
1350 {
1351 	struct sock *sk = sock->sk;
1352 	struct tcp_sock *tp = tcp_sk(sk);
1353 	int mss_now, size_goal;
1354 
1355 	if (!tcp_write_queue_tail(sk))
1356 		return;
1357 
1358 	lock_sock(sk);
1359 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1360 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1361 	release_sock(sk);
1362 }
1363 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1364 
1365 /*
1366  *	Handle reading urgent data. BSD has very simple semantics for
1367  *	this, no blocking and very strange errors 8)
1368  */
1369 
1370 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1371 {
1372 	struct tcp_sock *tp = tcp_sk(sk);
1373 
1374 	/* No URG data to read. */
1375 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1376 	    tp->urg_data == TCP_URG_READ)
1377 		return -EINVAL;	/* Yes this is right ! */
1378 
1379 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1380 		return -ENOTCONN;
1381 
1382 	if (tp->urg_data & TCP_URG_VALID) {
1383 		int err = 0;
1384 		char c = tp->urg_data;
1385 
1386 		if (!(flags & MSG_PEEK))
1387 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1388 
1389 		/* Read urgent data. */
1390 		msg->msg_flags |= MSG_OOB;
1391 
1392 		if (len > 0) {
1393 			if (!(flags & MSG_TRUNC))
1394 				err = memcpy_to_msg(msg, &c, 1);
1395 			len = 1;
1396 		} else
1397 			msg->msg_flags |= MSG_TRUNC;
1398 
1399 		return err ? -EFAULT : len;
1400 	}
1401 
1402 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1403 		return 0;
1404 
1405 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1406 	 * the available implementations agree in this case:
1407 	 * this call should never block, independent of the
1408 	 * blocking state of the socket.
1409 	 * Mike <pall@rz.uni-karlsruhe.de>
1410 	 */
1411 	return -EAGAIN;
1412 }
1413 
1414 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1415 {
1416 	struct sk_buff *skb;
1417 	int copied = 0, err = 0;
1418 
1419 	/* XXX -- need to support SO_PEEK_OFF */
1420 
1421 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1422 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1423 		if (err)
1424 			return err;
1425 		copied += skb->len;
1426 	}
1427 
1428 	skb_queue_walk(&sk->sk_write_queue, skb) {
1429 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1430 		if (err)
1431 			break;
1432 
1433 		copied += skb->len;
1434 	}
1435 
1436 	return err ?: copied;
1437 }
1438 
1439 /* Clean up the receive buffer for full frames taken by the user,
1440  * then send an ACK if necessary.  COPIED is the number of bytes
1441  * tcp_recvmsg has given to the user so far, it speeds up the
1442  * calculation of whether or not we must ACK for the sake of
1443  * a window update.
1444  */
1445 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1446 {
1447 	struct tcp_sock *tp = tcp_sk(sk);
1448 	bool time_to_ack = false;
1449 
1450 	if (inet_csk_ack_scheduled(sk)) {
1451 		const struct inet_connection_sock *icsk = inet_csk(sk);
1452 
1453 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1454 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1455 		    /*
1456 		     * If this read emptied read buffer, we send ACK, if
1457 		     * connection is not bidirectional, user drained
1458 		     * receive buffer and there was a small segment
1459 		     * in queue.
1460 		     */
1461 		    (copied > 0 &&
1462 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1463 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1464 		       !inet_csk_in_pingpong_mode(sk))) &&
1465 		      !atomic_read(&sk->sk_rmem_alloc)))
1466 			time_to_ack = true;
1467 	}
1468 
1469 	/* We send an ACK if we can now advertise a non-zero window
1470 	 * which has been raised "significantly".
1471 	 *
1472 	 * Even if window raised up to infinity, do not send window open ACK
1473 	 * in states, where we will not receive more. It is useless.
1474 	 */
1475 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1476 		__u32 rcv_window_now = tcp_receive_window(tp);
1477 
1478 		/* Optimize, __tcp_select_window() is not cheap. */
1479 		if (2*rcv_window_now <= tp->window_clamp) {
1480 			__u32 new_window = __tcp_select_window(sk);
1481 
1482 			/* Send ACK now, if this read freed lots of space
1483 			 * in our buffer. Certainly, new_window is new window.
1484 			 * We can advertise it now, if it is not less than current one.
1485 			 * "Lots" means "at least twice" here.
1486 			 */
1487 			if (new_window && new_window >= 2 * rcv_window_now)
1488 				time_to_ack = true;
1489 		}
1490 	}
1491 	if (time_to_ack)
1492 		tcp_send_ack(sk);
1493 }
1494 
1495 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1496 {
1497 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1498 	struct tcp_sock *tp = tcp_sk(sk);
1499 
1500 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1501 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1502 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1503 	__tcp_cleanup_rbuf(sk, copied);
1504 }
1505 
1506 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1507 {
1508 	__skb_unlink(skb, &sk->sk_receive_queue);
1509 	if (likely(skb->destructor == sock_rfree)) {
1510 		sock_rfree(skb);
1511 		skb->destructor = NULL;
1512 		skb->sk = NULL;
1513 		return skb_attempt_defer_free(skb);
1514 	}
1515 	__kfree_skb(skb);
1516 }
1517 
1518 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1519 {
1520 	struct sk_buff *skb;
1521 	u32 offset;
1522 
1523 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1524 		offset = seq - TCP_SKB_CB(skb)->seq;
1525 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1526 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1527 			offset--;
1528 		}
1529 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1530 			*off = offset;
1531 			return skb;
1532 		}
1533 		/* This looks weird, but this can happen if TCP collapsing
1534 		 * splitted a fat GRO packet, while we released socket lock
1535 		 * in skb_splice_bits()
1536 		 */
1537 		tcp_eat_recv_skb(sk, skb);
1538 	}
1539 	return NULL;
1540 }
1541 EXPORT_SYMBOL(tcp_recv_skb);
1542 
1543 /*
1544  * This routine provides an alternative to tcp_recvmsg() for routines
1545  * that would like to handle copying from skbuffs directly in 'sendfile'
1546  * fashion.
1547  * Note:
1548  *	- It is assumed that the socket was locked by the caller.
1549  *	- The routine does not block.
1550  *	- At present, there is no support for reading OOB data
1551  *	  or for 'peeking' the socket using this routine
1552  *	  (although both would be easy to implement).
1553  */
1554 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1555 		  sk_read_actor_t recv_actor)
1556 {
1557 	struct sk_buff *skb;
1558 	struct tcp_sock *tp = tcp_sk(sk);
1559 	u32 seq = tp->copied_seq;
1560 	u32 offset;
1561 	int copied = 0;
1562 
1563 	if (sk->sk_state == TCP_LISTEN)
1564 		return -ENOTCONN;
1565 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1566 		if (offset < skb->len) {
1567 			int used;
1568 			size_t len;
1569 
1570 			len = skb->len - offset;
1571 			/* Stop reading if we hit a patch of urgent data */
1572 			if (unlikely(tp->urg_data)) {
1573 				u32 urg_offset = tp->urg_seq - seq;
1574 				if (urg_offset < len)
1575 					len = urg_offset;
1576 				if (!len)
1577 					break;
1578 			}
1579 			used = recv_actor(desc, skb, offset, len);
1580 			if (used <= 0) {
1581 				if (!copied)
1582 					copied = used;
1583 				break;
1584 			}
1585 			if (WARN_ON_ONCE(used > len))
1586 				used = len;
1587 			seq += used;
1588 			copied += used;
1589 			offset += used;
1590 
1591 			/* If recv_actor drops the lock (e.g. TCP splice
1592 			 * receive) the skb pointer might be invalid when
1593 			 * getting here: tcp_collapse might have deleted it
1594 			 * while aggregating skbs from the socket queue.
1595 			 */
1596 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1597 			if (!skb)
1598 				break;
1599 			/* TCP coalescing might have appended data to the skb.
1600 			 * Try to splice more frags
1601 			 */
1602 			if (offset + 1 != skb->len)
1603 				continue;
1604 		}
1605 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1606 			tcp_eat_recv_skb(sk, skb);
1607 			++seq;
1608 			break;
1609 		}
1610 		tcp_eat_recv_skb(sk, skb);
1611 		if (!desc->count)
1612 			break;
1613 		WRITE_ONCE(tp->copied_seq, seq);
1614 	}
1615 	WRITE_ONCE(tp->copied_seq, seq);
1616 
1617 	tcp_rcv_space_adjust(sk);
1618 
1619 	/* Clean up data we have read: This will do ACK frames. */
1620 	if (copied > 0) {
1621 		tcp_recv_skb(sk, seq, &offset);
1622 		tcp_cleanup_rbuf(sk, copied);
1623 	}
1624 	return copied;
1625 }
1626 EXPORT_SYMBOL(tcp_read_sock);
1627 
1628 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1629 {
1630 	struct sk_buff *skb;
1631 	int copied = 0;
1632 
1633 	if (sk->sk_state == TCP_LISTEN)
1634 		return -ENOTCONN;
1635 
1636 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1637 		u8 tcp_flags;
1638 		int used;
1639 
1640 		__skb_unlink(skb, &sk->sk_receive_queue);
1641 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1642 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1643 		used = recv_actor(sk, skb);
1644 		if (used < 0) {
1645 			if (!copied)
1646 				copied = used;
1647 			break;
1648 		}
1649 		copied += used;
1650 
1651 		if (tcp_flags & TCPHDR_FIN)
1652 			break;
1653 	}
1654 	return copied;
1655 }
1656 EXPORT_SYMBOL(tcp_read_skb);
1657 
1658 void tcp_read_done(struct sock *sk, size_t len)
1659 {
1660 	struct tcp_sock *tp = tcp_sk(sk);
1661 	u32 seq = tp->copied_seq;
1662 	struct sk_buff *skb;
1663 	size_t left;
1664 	u32 offset;
1665 
1666 	if (sk->sk_state == TCP_LISTEN)
1667 		return;
1668 
1669 	left = len;
1670 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1671 		int used;
1672 
1673 		used = min_t(size_t, skb->len - offset, left);
1674 		seq += used;
1675 		left -= used;
1676 
1677 		if (skb->len > offset + used)
1678 			break;
1679 
1680 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1681 			tcp_eat_recv_skb(sk, skb);
1682 			++seq;
1683 			break;
1684 		}
1685 		tcp_eat_recv_skb(sk, skb);
1686 	}
1687 	WRITE_ONCE(tp->copied_seq, seq);
1688 
1689 	tcp_rcv_space_adjust(sk);
1690 
1691 	/* Clean up data we have read: This will do ACK frames. */
1692 	if (left != len)
1693 		tcp_cleanup_rbuf(sk, len - left);
1694 }
1695 EXPORT_SYMBOL(tcp_read_done);
1696 
1697 int tcp_peek_len(struct socket *sock)
1698 {
1699 	return tcp_inq(sock->sk);
1700 }
1701 EXPORT_SYMBOL(tcp_peek_len);
1702 
1703 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1704 int tcp_set_rcvlowat(struct sock *sk, int val)
1705 {
1706 	int space, cap;
1707 
1708 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1709 		cap = sk->sk_rcvbuf >> 1;
1710 	else
1711 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1712 	val = min(val, cap);
1713 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1714 
1715 	/* Check if we need to signal EPOLLIN right now */
1716 	tcp_data_ready(sk);
1717 
1718 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719 		return 0;
1720 
1721 	space = tcp_space_from_win(sk, val);
1722 	if (space > sk->sk_rcvbuf) {
1723 		WRITE_ONCE(sk->sk_rcvbuf, space);
1724 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1725 	}
1726 	return 0;
1727 }
1728 EXPORT_SYMBOL(tcp_set_rcvlowat);
1729 
1730 void tcp_update_recv_tstamps(struct sk_buff *skb,
1731 			     struct scm_timestamping_internal *tss)
1732 {
1733 	if (skb->tstamp)
1734 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1735 	else
1736 		tss->ts[0] = (struct timespec64) {0};
1737 
1738 	if (skb_hwtstamps(skb)->hwtstamp)
1739 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1740 	else
1741 		tss->ts[2] = (struct timespec64) {0};
1742 }
1743 
1744 #ifdef CONFIG_MMU
1745 static const struct vm_operations_struct tcp_vm_ops = {
1746 };
1747 
1748 int tcp_mmap(struct file *file, struct socket *sock,
1749 	     struct vm_area_struct *vma)
1750 {
1751 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1752 		return -EPERM;
1753 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1754 
1755 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1756 	vm_flags_set(vma, VM_MIXEDMAP);
1757 
1758 	vma->vm_ops = &tcp_vm_ops;
1759 	return 0;
1760 }
1761 EXPORT_SYMBOL(tcp_mmap);
1762 
1763 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1764 				       u32 *offset_frag)
1765 {
1766 	skb_frag_t *frag;
1767 
1768 	if (unlikely(offset_skb >= skb->len))
1769 		return NULL;
1770 
1771 	offset_skb -= skb_headlen(skb);
1772 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1773 		return NULL;
1774 
1775 	frag = skb_shinfo(skb)->frags;
1776 	while (offset_skb) {
1777 		if (skb_frag_size(frag) > offset_skb) {
1778 			*offset_frag = offset_skb;
1779 			return frag;
1780 		}
1781 		offset_skb -= skb_frag_size(frag);
1782 		++frag;
1783 	}
1784 	*offset_frag = 0;
1785 	return frag;
1786 }
1787 
1788 static bool can_map_frag(const skb_frag_t *frag)
1789 {
1790 	struct page *page;
1791 
1792 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1793 		return false;
1794 
1795 	page = skb_frag_page(frag);
1796 
1797 	if (PageCompound(page) || page->mapping)
1798 		return false;
1799 
1800 	return true;
1801 }
1802 
1803 static int find_next_mappable_frag(const skb_frag_t *frag,
1804 				   int remaining_in_skb)
1805 {
1806 	int offset = 0;
1807 
1808 	if (likely(can_map_frag(frag)))
1809 		return 0;
1810 
1811 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1812 		offset += skb_frag_size(frag);
1813 		++frag;
1814 	}
1815 	return offset;
1816 }
1817 
1818 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1819 					  struct tcp_zerocopy_receive *zc,
1820 					  struct sk_buff *skb, u32 offset)
1821 {
1822 	u32 frag_offset, partial_frag_remainder = 0;
1823 	int mappable_offset;
1824 	skb_frag_t *frag;
1825 
1826 	/* worst case: skip to next skb. try to improve on this case below */
1827 	zc->recv_skip_hint = skb->len - offset;
1828 
1829 	/* Find the frag containing this offset (and how far into that frag) */
1830 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1831 	if (!frag)
1832 		return;
1833 
1834 	if (frag_offset) {
1835 		struct skb_shared_info *info = skb_shinfo(skb);
1836 
1837 		/* We read part of the last frag, must recvmsg() rest of skb. */
1838 		if (frag == &info->frags[info->nr_frags - 1])
1839 			return;
1840 
1841 		/* Else, we must at least read the remainder in this frag. */
1842 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1843 		zc->recv_skip_hint -= partial_frag_remainder;
1844 		++frag;
1845 	}
1846 
1847 	/* partial_frag_remainder: If part way through a frag, must read rest.
1848 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1849 	 * in partial_frag_remainder.
1850 	 */
1851 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1852 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1853 }
1854 
1855 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1856 			      int flags, struct scm_timestamping_internal *tss,
1857 			      int *cmsg_flags);
1858 static int receive_fallback_to_copy(struct sock *sk,
1859 				    struct tcp_zerocopy_receive *zc, int inq,
1860 				    struct scm_timestamping_internal *tss)
1861 {
1862 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1863 	struct msghdr msg = {};
1864 	int err;
1865 
1866 	zc->length = 0;
1867 	zc->recv_skip_hint = 0;
1868 
1869 	if (copy_address != zc->copybuf_address)
1870 		return -EINVAL;
1871 
1872 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1873 			  &msg.msg_iter);
1874 	if (err)
1875 		return err;
1876 
1877 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1878 				 tss, &zc->msg_flags);
1879 	if (err < 0)
1880 		return err;
1881 
1882 	zc->copybuf_len = err;
1883 	if (likely(zc->copybuf_len)) {
1884 		struct sk_buff *skb;
1885 		u32 offset;
1886 
1887 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1888 		if (skb)
1889 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1890 	}
1891 	return 0;
1892 }
1893 
1894 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1895 				   struct sk_buff *skb, u32 copylen,
1896 				   u32 *offset, u32 *seq)
1897 {
1898 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1899 	struct msghdr msg = {};
1900 	int err;
1901 
1902 	if (copy_address != zc->copybuf_address)
1903 		return -EINVAL;
1904 
1905 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1906 			  &msg.msg_iter);
1907 	if (err)
1908 		return err;
1909 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1910 	if (err)
1911 		return err;
1912 	zc->recv_skip_hint -= copylen;
1913 	*offset += copylen;
1914 	*seq += copylen;
1915 	return (__s32)copylen;
1916 }
1917 
1918 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1919 				  struct sock *sk,
1920 				  struct sk_buff *skb,
1921 				  u32 *seq,
1922 				  s32 copybuf_len,
1923 				  struct scm_timestamping_internal *tss)
1924 {
1925 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1926 
1927 	if (!copylen)
1928 		return 0;
1929 	/* skb is null if inq < PAGE_SIZE. */
1930 	if (skb) {
1931 		offset = *seq - TCP_SKB_CB(skb)->seq;
1932 	} else {
1933 		skb = tcp_recv_skb(sk, *seq, &offset);
1934 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1935 			tcp_update_recv_tstamps(skb, tss);
1936 			zc->msg_flags |= TCP_CMSG_TS;
1937 		}
1938 	}
1939 
1940 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1941 						  seq);
1942 	return zc->copybuf_len < 0 ? 0 : copylen;
1943 }
1944 
1945 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1946 					      struct page **pending_pages,
1947 					      unsigned long pages_remaining,
1948 					      unsigned long *address,
1949 					      u32 *length,
1950 					      u32 *seq,
1951 					      struct tcp_zerocopy_receive *zc,
1952 					      u32 total_bytes_to_map,
1953 					      int err)
1954 {
1955 	/* At least one page did not map. Try zapping if we skipped earlier. */
1956 	if (err == -EBUSY &&
1957 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1958 		u32 maybe_zap_len;
1959 
1960 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1961 				*length + /* Mapped or pending */
1962 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1963 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1964 		err = 0;
1965 	}
1966 
1967 	if (!err) {
1968 		unsigned long leftover_pages = pages_remaining;
1969 		int bytes_mapped;
1970 
1971 		/* We called zap_page_range_single, try to reinsert. */
1972 		err = vm_insert_pages(vma, *address,
1973 				      pending_pages,
1974 				      &pages_remaining);
1975 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1976 		*seq += bytes_mapped;
1977 		*address += bytes_mapped;
1978 	}
1979 	if (err) {
1980 		/* Either we were unable to zap, OR we zapped, retried an
1981 		 * insert, and still had an issue. Either ways, pages_remaining
1982 		 * is the number of pages we were unable to map, and we unroll
1983 		 * some state we speculatively touched before.
1984 		 */
1985 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1986 
1987 		*length -= bytes_not_mapped;
1988 		zc->recv_skip_hint += bytes_not_mapped;
1989 	}
1990 	return err;
1991 }
1992 
1993 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1994 					struct page **pages,
1995 					unsigned int pages_to_map,
1996 					unsigned long *address,
1997 					u32 *length,
1998 					u32 *seq,
1999 					struct tcp_zerocopy_receive *zc,
2000 					u32 total_bytes_to_map)
2001 {
2002 	unsigned long pages_remaining = pages_to_map;
2003 	unsigned int pages_mapped;
2004 	unsigned int bytes_mapped;
2005 	int err;
2006 
2007 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2008 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2009 	bytes_mapped = PAGE_SIZE * pages_mapped;
2010 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2011 	 * mapping (some but not all of the pages).
2012 	 */
2013 	*seq += bytes_mapped;
2014 	*address += bytes_mapped;
2015 
2016 	if (likely(!err))
2017 		return 0;
2018 
2019 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2020 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2021 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2022 		err);
2023 }
2024 
2025 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2026 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2027 				      struct tcp_zerocopy_receive *zc,
2028 				      struct scm_timestamping_internal *tss)
2029 {
2030 	unsigned long msg_control_addr;
2031 	struct msghdr cmsg_dummy;
2032 
2033 	msg_control_addr = (unsigned long)zc->msg_control;
2034 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2035 	cmsg_dummy.msg_controllen =
2036 		(__kernel_size_t)zc->msg_controllen;
2037 	cmsg_dummy.msg_flags = in_compat_syscall()
2038 		? MSG_CMSG_COMPAT : 0;
2039 	cmsg_dummy.msg_control_is_user = true;
2040 	zc->msg_flags = 0;
2041 	if (zc->msg_control == msg_control_addr &&
2042 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2043 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2044 		zc->msg_control = (__u64)
2045 			((uintptr_t)cmsg_dummy.msg_control_user);
2046 		zc->msg_controllen =
2047 			(__u64)cmsg_dummy.msg_controllen;
2048 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2049 	}
2050 }
2051 
2052 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2053 					   unsigned long address,
2054 					   bool *mmap_locked)
2055 {
2056 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2057 
2058 	if (vma) {
2059 		if (vma->vm_ops != &tcp_vm_ops) {
2060 			vma_end_read(vma);
2061 			return NULL;
2062 		}
2063 		*mmap_locked = false;
2064 		return vma;
2065 	}
2066 
2067 	mmap_read_lock(mm);
2068 	vma = vma_lookup(mm, address);
2069 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2070 		mmap_read_unlock(mm);
2071 		return NULL;
2072 	}
2073 	*mmap_locked = true;
2074 	return vma;
2075 }
2076 
2077 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2078 static int tcp_zerocopy_receive(struct sock *sk,
2079 				struct tcp_zerocopy_receive *zc,
2080 				struct scm_timestamping_internal *tss)
2081 {
2082 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2083 	unsigned long address = (unsigned long)zc->address;
2084 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2085 	s32 copybuf_len = zc->copybuf_len;
2086 	struct tcp_sock *tp = tcp_sk(sk);
2087 	const skb_frag_t *frags = NULL;
2088 	unsigned int pages_to_map = 0;
2089 	struct vm_area_struct *vma;
2090 	struct sk_buff *skb = NULL;
2091 	u32 seq = tp->copied_seq;
2092 	u32 total_bytes_to_map;
2093 	int inq = tcp_inq(sk);
2094 	bool mmap_locked;
2095 	int ret;
2096 
2097 	zc->copybuf_len = 0;
2098 	zc->msg_flags = 0;
2099 
2100 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2101 		return -EINVAL;
2102 
2103 	if (sk->sk_state == TCP_LISTEN)
2104 		return -ENOTCONN;
2105 
2106 	sock_rps_record_flow(sk);
2107 
2108 	if (inq && inq <= copybuf_len)
2109 		return receive_fallback_to_copy(sk, zc, inq, tss);
2110 
2111 	if (inq < PAGE_SIZE) {
2112 		zc->length = 0;
2113 		zc->recv_skip_hint = inq;
2114 		if (!inq && sock_flag(sk, SOCK_DONE))
2115 			return -EIO;
2116 		return 0;
2117 	}
2118 
2119 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2120 	if (!vma)
2121 		return -EINVAL;
2122 
2123 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2124 	avail_len = min_t(u32, vma_len, inq);
2125 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2126 	if (total_bytes_to_map) {
2127 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2128 			zap_page_range_single(vma, address, total_bytes_to_map,
2129 					      NULL);
2130 		zc->length = total_bytes_to_map;
2131 		zc->recv_skip_hint = 0;
2132 	} else {
2133 		zc->length = avail_len;
2134 		zc->recv_skip_hint = avail_len;
2135 	}
2136 	ret = 0;
2137 	while (length + PAGE_SIZE <= zc->length) {
2138 		int mappable_offset;
2139 		struct page *page;
2140 
2141 		if (zc->recv_skip_hint < PAGE_SIZE) {
2142 			u32 offset_frag;
2143 
2144 			if (skb) {
2145 				if (zc->recv_skip_hint > 0)
2146 					break;
2147 				skb = skb->next;
2148 				offset = seq - TCP_SKB_CB(skb)->seq;
2149 			} else {
2150 				skb = tcp_recv_skb(sk, seq, &offset);
2151 			}
2152 
2153 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2154 				tcp_update_recv_tstamps(skb, tss);
2155 				zc->msg_flags |= TCP_CMSG_TS;
2156 			}
2157 			zc->recv_skip_hint = skb->len - offset;
2158 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2159 			if (!frags || offset_frag)
2160 				break;
2161 		}
2162 
2163 		mappable_offset = find_next_mappable_frag(frags,
2164 							  zc->recv_skip_hint);
2165 		if (mappable_offset) {
2166 			zc->recv_skip_hint = mappable_offset;
2167 			break;
2168 		}
2169 		page = skb_frag_page(frags);
2170 		prefetchw(page);
2171 		pages[pages_to_map++] = page;
2172 		length += PAGE_SIZE;
2173 		zc->recv_skip_hint -= PAGE_SIZE;
2174 		frags++;
2175 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2176 		    zc->recv_skip_hint < PAGE_SIZE) {
2177 			/* Either full batch, or we're about to go to next skb
2178 			 * (and we cannot unroll failed ops across skbs).
2179 			 */
2180 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2181 							   pages_to_map,
2182 							   &address, &length,
2183 							   &seq, zc,
2184 							   total_bytes_to_map);
2185 			if (ret)
2186 				goto out;
2187 			pages_to_map = 0;
2188 		}
2189 	}
2190 	if (pages_to_map) {
2191 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2192 						   &address, &length, &seq,
2193 						   zc, total_bytes_to_map);
2194 	}
2195 out:
2196 	if (mmap_locked)
2197 		mmap_read_unlock(current->mm);
2198 	else
2199 		vma_end_read(vma);
2200 	/* Try to copy straggler data. */
2201 	if (!ret)
2202 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2203 
2204 	if (length + copylen) {
2205 		WRITE_ONCE(tp->copied_seq, seq);
2206 		tcp_rcv_space_adjust(sk);
2207 
2208 		/* Clean up data we have read: This will do ACK frames. */
2209 		tcp_recv_skb(sk, seq, &offset);
2210 		tcp_cleanup_rbuf(sk, length + copylen);
2211 		ret = 0;
2212 		if (length == zc->length)
2213 			zc->recv_skip_hint = 0;
2214 	} else {
2215 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2216 			ret = -EIO;
2217 	}
2218 	zc->length = length;
2219 	return ret;
2220 }
2221 #endif
2222 
2223 /* Similar to __sock_recv_timestamp, but does not require an skb */
2224 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2225 			struct scm_timestamping_internal *tss)
2226 {
2227 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2228 	bool has_timestamping = false;
2229 
2230 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2231 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2232 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2233 				if (new_tstamp) {
2234 					struct __kernel_timespec kts = {
2235 						.tv_sec = tss->ts[0].tv_sec,
2236 						.tv_nsec = tss->ts[0].tv_nsec,
2237 					};
2238 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2239 						 sizeof(kts), &kts);
2240 				} else {
2241 					struct __kernel_old_timespec ts_old = {
2242 						.tv_sec = tss->ts[0].tv_sec,
2243 						.tv_nsec = tss->ts[0].tv_nsec,
2244 					};
2245 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2246 						 sizeof(ts_old), &ts_old);
2247 				}
2248 			} else {
2249 				if (new_tstamp) {
2250 					struct __kernel_sock_timeval stv = {
2251 						.tv_sec = tss->ts[0].tv_sec,
2252 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2253 					};
2254 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2255 						 sizeof(stv), &stv);
2256 				} else {
2257 					struct __kernel_old_timeval tv = {
2258 						.tv_sec = tss->ts[0].tv_sec,
2259 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2260 					};
2261 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2262 						 sizeof(tv), &tv);
2263 				}
2264 			}
2265 		}
2266 
2267 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2268 			has_timestamping = true;
2269 		else
2270 			tss->ts[0] = (struct timespec64) {0};
2271 	}
2272 
2273 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2274 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2275 			has_timestamping = true;
2276 		else
2277 			tss->ts[2] = (struct timespec64) {0};
2278 	}
2279 
2280 	if (has_timestamping) {
2281 		tss->ts[1] = (struct timespec64) {0};
2282 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2283 			put_cmsg_scm_timestamping64(msg, tss);
2284 		else
2285 			put_cmsg_scm_timestamping(msg, tss);
2286 	}
2287 }
2288 
2289 static int tcp_inq_hint(struct sock *sk)
2290 {
2291 	const struct tcp_sock *tp = tcp_sk(sk);
2292 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2293 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2294 	int inq;
2295 
2296 	inq = rcv_nxt - copied_seq;
2297 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2298 		lock_sock(sk);
2299 		inq = tp->rcv_nxt - tp->copied_seq;
2300 		release_sock(sk);
2301 	}
2302 	/* After receiving a FIN, tell the user-space to continue reading
2303 	 * by returning a non-zero inq.
2304 	 */
2305 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2306 		inq = 1;
2307 	return inq;
2308 }
2309 
2310 /*
2311  *	This routine copies from a sock struct into the user buffer.
2312  *
2313  *	Technical note: in 2.3 we work on _locked_ socket, so that
2314  *	tricks with *seq access order and skb->users are not required.
2315  *	Probably, code can be easily improved even more.
2316  */
2317 
2318 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2319 			      int flags, struct scm_timestamping_internal *tss,
2320 			      int *cmsg_flags)
2321 {
2322 	struct tcp_sock *tp = tcp_sk(sk);
2323 	int copied = 0;
2324 	u32 peek_seq;
2325 	u32 *seq;
2326 	unsigned long used;
2327 	int err;
2328 	int target;		/* Read at least this many bytes */
2329 	long timeo;
2330 	struct sk_buff *skb, *last;
2331 	u32 urg_hole = 0;
2332 
2333 	err = -ENOTCONN;
2334 	if (sk->sk_state == TCP_LISTEN)
2335 		goto out;
2336 
2337 	if (tp->recvmsg_inq) {
2338 		*cmsg_flags = TCP_CMSG_INQ;
2339 		msg->msg_get_inq = 1;
2340 	}
2341 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2342 
2343 	/* Urgent data needs to be handled specially. */
2344 	if (flags & MSG_OOB)
2345 		goto recv_urg;
2346 
2347 	if (unlikely(tp->repair)) {
2348 		err = -EPERM;
2349 		if (!(flags & MSG_PEEK))
2350 			goto out;
2351 
2352 		if (tp->repair_queue == TCP_SEND_QUEUE)
2353 			goto recv_sndq;
2354 
2355 		err = -EINVAL;
2356 		if (tp->repair_queue == TCP_NO_QUEUE)
2357 			goto out;
2358 
2359 		/* 'common' recv queue MSG_PEEK-ing */
2360 	}
2361 
2362 	seq = &tp->copied_seq;
2363 	if (flags & MSG_PEEK) {
2364 		peek_seq = tp->copied_seq;
2365 		seq = &peek_seq;
2366 	}
2367 
2368 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2369 
2370 	do {
2371 		u32 offset;
2372 
2373 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2374 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2375 			if (copied)
2376 				break;
2377 			if (signal_pending(current)) {
2378 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2379 				break;
2380 			}
2381 		}
2382 
2383 		/* Next get a buffer. */
2384 
2385 		last = skb_peek_tail(&sk->sk_receive_queue);
2386 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2387 			last = skb;
2388 			/* Now that we have two receive queues this
2389 			 * shouldn't happen.
2390 			 */
2391 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2392 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2393 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2394 				 flags))
2395 				break;
2396 
2397 			offset = *seq - TCP_SKB_CB(skb)->seq;
2398 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2399 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2400 				offset--;
2401 			}
2402 			if (offset < skb->len)
2403 				goto found_ok_skb;
2404 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2405 				goto found_fin_ok;
2406 			WARN(!(flags & MSG_PEEK),
2407 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2408 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2409 		}
2410 
2411 		/* Well, if we have backlog, try to process it now yet. */
2412 
2413 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2414 			break;
2415 
2416 		if (copied) {
2417 			if (!timeo ||
2418 			    sk->sk_err ||
2419 			    sk->sk_state == TCP_CLOSE ||
2420 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2421 			    signal_pending(current))
2422 				break;
2423 		} else {
2424 			if (sock_flag(sk, SOCK_DONE))
2425 				break;
2426 
2427 			if (sk->sk_err) {
2428 				copied = sock_error(sk);
2429 				break;
2430 			}
2431 
2432 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2433 				break;
2434 
2435 			if (sk->sk_state == TCP_CLOSE) {
2436 				/* This occurs when user tries to read
2437 				 * from never connected socket.
2438 				 */
2439 				copied = -ENOTCONN;
2440 				break;
2441 			}
2442 
2443 			if (!timeo) {
2444 				copied = -EAGAIN;
2445 				break;
2446 			}
2447 
2448 			if (signal_pending(current)) {
2449 				copied = sock_intr_errno(timeo);
2450 				break;
2451 			}
2452 		}
2453 
2454 		if (copied >= target) {
2455 			/* Do not sleep, just process backlog. */
2456 			__sk_flush_backlog(sk);
2457 		} else {
2458 			tcp_cleanup_rbuf(sk, copied);
2459 			err = sk_wait_data(sk, &timeo, last);
2460 			if (err < 0) {
2461 				err = copied ? : err;
2462 				goto out;
2463 			}
2464 		}
2465 
2466 		if ((flags & MSG_PEEK) &&
2467 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2468 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2469 					    current->comm,
2470 					    task_pid_nr(current));
2471 			peek_seq = tp->copied_seq;
2472 		}
2473 		continue;
2474 
2475 found_ok_skb:
2476 		/* Ok so how much can we use? */
2477 		used = skb->len - offset;
2478 		if (len < used)
2479 			used = len;
2480 
2481 		/* Do we have urgent data here? */
2482 		if (unlikely(tp->urg_data)) {
2483 			u32 urg_offset = tp->urg_seq - *seq;
2484 			if (urg_offset < used) {
2485 				if (!urg_offset) {
2486 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2487 						WRITE_ONCE(*seq, *seq + 1);
2488 						urg_hole++;
2489 						offset++;
2490 						used--;
2491 						if (!used)
2492 							goto skip_copy;
2493 					}
2494 				} else
2495 					used = urg_offset;
2496 			}
2497 		}
2498 
2499 		if (!(flags & MSG_TRUNC)) {
2500 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2501 			if (err) {
2502 				/* Exception. Bailout! */
2503 				if (!copied)
2504 					copied = -EFAULT;
2505 				break;
2506 			}
2507 		}
2508 
2509 		WRITE_ONCE(*seq, *seq + used);
2510 		copied += used;
2511 		len -= used;
2512 
2513 		tcp_rcv_space_adjust(sk);
2514 
2515 skip_copy:
2516 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2517 			WRITE_ONCE(tp->urg_data, 0);
2518 			tcp_fast_path_check(sk);
2519 		}
2520 
2521 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2522 			tcp_update_recv_tstamps(skb, tss);
2523 			*cmsg_flags |= TCP_CMSG_TS;
2524 		}
2525 
2526 		if (used + offset < skb->len)
2527 			continue;
2528 
2529 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2530 			goto found_fin_ok;
2531 		if (!(flags & MSG_PEEK))
2532 			tcp_eat_recv_skb(sk, skb);
2533 		continue;
2534 
2535 found_fin_ok:
2536 		/* Process the FIN. */
2537 		WRITE_ONCE(*seq, *seq + 1);
2538 		if (!(flags & MSG_PEEK))
2539 			tcp_eat_recv_skb(sk, skb);
2540 		break;
2541 	} while (len > 0);
2542 
2543 	/* According to UNIX98, msg_name/msg_namelen are ignored
2544 	 * on connected socket. I was just happy when found this 8) --ANK
2545 	 */
2546 
2547 	/* Clean up data we have read: This will do ACK frames. */
2548 	tcp_cleanup_rbuf(sk, copied);
2549 	return copied;
2550 
2551 out:
2552 	return err;
2553 
2554 recv_urg:
2555 	err = tcp_recv_urg(sk, msg, len, flags);
2556 	goto out;
2557 
2558 recv_sndq:
2559 	err = tcp_peek_sndq(sk, msg, len);
2560 	goto out;
2561 }
2562 
2563 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2564 		int *addr_len)
2565 {
2566 	int cmsg_flags = 0, ret;
2567 	struct scm_timestamping_internal tss;
2568 
2569 	if (unlikely(flags & MSG_ERRQUEUE))
2570 		return inet_recv_error(sk, msg, len, addr_len);
2571 
2572 	if (sk_can_busy_loop(sk) &&
2573 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2574 	    sk->sk_state == TCP_ESTABLISHED)
2575 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2576 
2577 	lock_sock(sk);
2578 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2579 	release_sock(sk);
2580 
2581 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2582 		if (cmsg_flags & TCP_CMSG_TS)
2583 			tcp_recv_timestamp(msg, sk, &tss);
2584 		if (msg->msg_get_inq) {
2585 			msg->msg_inq = tcp_inq_hint(sk);
2586 			if (cmsg_flags & TCP_CMSG_INQ)
2587 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2588 					 sizeof(msg->msg_inq), &msg->msg_inq);
2589 		}
2590 	}
2591 	return ret;
2592 }
2593 EXPORT_SYMBOL(tcp_recvmsg);
2594 
2595 void tcp_set_state(struct sock *sk, int state)
2596 {
2597 	int oldstate = sk->sk_state;
2598 
2599 	/* We defined a new enum for TCP states that are exported in BPF
2600 	 * so as not force the internal TCP states to be frozen. The
2601 	 * following checks will detect if an internal state value ever
2602 	 * differs from the BPF value. If this ever happens, then we will
2603 	 * need to remap the internal value to the BPF value before calling
2604 	 * tcp_call_bpf_2arg.
2605 	 */
2606 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2607 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2608 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2609 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2610 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2611 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2612 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2613 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2614 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2615 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2616 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2617 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2618 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2619 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2620 
2621 	/* bpf uapi header bpf.h defines an anonymous enum with values
2622 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2623 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2624 	 * But clang built vmlinux does not have this enum in DWARF
2625 	 * since clang removes the above code before generating IR/debuginfo.
2626 	 * Let us explicitly emit the type debuginfo to ensure the
2627 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2628 	 * regardless of which compiler is used.
2629 	 */
2630 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2631 
2632 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2633 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2634 
2635 	switch (state) {
2636 	case TCP_ESTABLISHED:
2637 		if (oldstate != TCP_ESTABLISHED)
2638 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2639 		break;
2640 
2641 	case TCP_CLOSE:
2642 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2643 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2644 
2645 		sk->sk_prot->unhash(sk);
2646 		if (inet_csk(sk)->icsk_bind_hash &&
2647 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2648 			inet_put_port(sk);
2649 		fallthrough;
2650 	default:
2651 		if (oldstate == TCP_ESTABLISHED)
2652 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2653 	}
2654 
2655 	/* Change state AFTER socket is unhashed to avoid closed
2656 	 * socket sitting in hash tables.
2657 	 */
2658 	inet_sk_state_store(sk, state);
2659 }
2660 EXPORT_SYMBOL_GPL(tcp_set_state);
2661 
2662 /*
2663  *	State processing on a close. This implements the state shift for
2664  *	sending our FIN frame. Note that we only send a FIN for some
2665  *	states. A shutdown() may have already sent the FIN, or we may be
2666  *	closed.
2667  */
2668 
2669 static const unsigned char new_state[16] = {
2670   /* current state:        new state:      action:	*/
2671   [0 /* (Invalid) */]	= TCP_CLOSE,
2672   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2673   [TCP_SYN_SENT]	= TCP_CLOSE,
2674   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2675   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2676   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2677   [TCP_TIME_WAIT]	= TCP_CLOSE,
2678   [TCP_CLOSE]		= TCP_CLOSE,
2679   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2680   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2681   [TCP_LISTEN]		= TCP_CLOSE,
2682   [TCP_CLOSING]		= TCP_CLOSING,
2683   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2684 };
2685 
2686 static int tcp_close_state(struct sock *sk)
2687 {
2688 	int next = (int)new_state[sk->sk_state];
2689 	int ns = next & TCP_STATE_MASK;
2690 
2691 	tcp_set_state(sk, ns);
2692 
2693 	return next & TCP_ACTION_FIN;
2694 }
2695 
2696 /*
2697  *	Shutdown the sending side of a connection. Much like close except
2698  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2699  */
2700 
2701 void tcp_shutdown(struct sock *sk, int how)
2702 {
2703 	/*	We need to grab some memory, and put together a FIN,
2704 	 *	and then put it into the queue to be sent.
2705 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2706 	 */
2707 	if (!(how & SEND_SHUTDOWN))
2708 		return;
2709 
2710 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2711 	if ((1 << sk->sk_state) &
2712 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2713 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2714 		/* Clear out any half completed packets.  FIN if needed. */
2715 		if (tcp_close_state(sk))
2716 			tcp_send_fin(sk);
2717 	}
2718 }
2719 EXPORT_SYMBOL(tcp_shutdown);
2720 
2721 int tcp_orphan_count_sum(void)
2722 {
2723 	int i, total = 0;
2724 
2725 	for_each_possible_cpu(i)
2726 		total += per_cpu(tcp_orphan_count, i);
2727 
2728 	return max(total, 0);
2729 }
2730 
2731 static int tcp_orphan_cache;
2732 static struct timer_list tcp_orphan_timer;
2733 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2734 
2735 static void tcp_orphan_update(struct timer_list *unused)
2736 {
2737 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2738 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2739 }
2740 
2741 static bool tcp_too_many_orphans(int shift)
2742 {
2743 	return READ_ONCE(tcp_orphan_cache) << shift >
2744 		READ_ONCE(sysctl_tcp_max_orphans);
2745 }
2746 
2747 bool tcp_check_oom(struct sock *sk, int shift)
2748 {
2749 	bool too_many_orphans, out_of_socket_memory;
2750 
2751 	too_many_orphans = tcp_too_many_orphans(shift);
2752 	out_of_socket_memory = tcp_out_of_memory(sk);
2753 
2754 	if (too_many_orphans)
2755 		net_info_ratelimited("too many orphaned sockets\n");
2756 	if (out_of_socket_memory)
2757 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2758 	return too_many_orphans || out_of_socket_memory;
2759 }
2760 
2761 void __tcp_close(struct sock *sk, long timeout)
2762 {
2763 	struct sk_buff *skb;
2764 	int data_was_unread = 0;
2765 	int state;
2766 
2767 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2768 
2769 	if (sk->sk_state == TCP_LISTEN) {
2770 		tcp_set_state(sk, TCP_CLOSE);
2771 
2772 		/* Special case. */
2773 		inet_csk_listen_stop(sk);
2774 
2775 		goto adjudge_to_death;
2776 	}
2777 
2778 	/*  We need to flush the recv. buffs.  We do this only on the
2779 	 *  descriptor close, not protocol-sourced closes, because the
2780 	 *  reader process may not have drained the data yet!
2781 	 */
2782 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2783 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2784 
2785 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2786 			len--;
2787 		data_was_unread += len;
2788 		__kfree_skb(skb);
2789 	}
2790 
2791 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2792 	if (sk->sk_state == TCP_CLOSE)
2793 		goto adjudge_to_death;
2794 
2795 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2796 	 * data was lost. To witness the awful effects of the old behavior of
2797 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2798 	 * GET in an FTP client, suspend the process, wait for the client to
2799 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2800 	 * Note: timeout is always zero in such a case.
2801 	 */
2802 	if (unlikely(tcp_sk(sk)->repair)) {
2803 		sk->sk_prot->disconnect(sk, 0);
2804 	} else if (data_was_unread) {
2805 		/* Unread data was tossed, zap the connection. */
2806 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2807 		tcp_set_state(sk, TCP_CLOSE);
2808 		tcp_send_active_reset(sk, sk->sk_allocation);
2809 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2810 		/* Check zero linger _after_ checking for unread data. */
2811 		sk->sk_prot->disconnect(sk, 0);
2812 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2813 	} else if (tcp_close_state(sk)) {
2814 		/* We FIN if the application ate all the data before
2815 		 * zapping the connection.
2816 		 */
2817 
2818 		/* RED-PEN. Formally speaking, we have broken TCP state
2819 		 * machine. State transitions:
2820 		 *
2821 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2822 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2823 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2824 		 *
2825 		 * are legal only when FIN has been sent (i.e. in window),
2826 		 * rather than queued out of window. Purists blame.
2827 		 *
2828 		 * F.e. "RFC state" is ESTABLISHED,
2829 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2830 		 *
2831 		 * The visible declinations are that sometimes
2832 		 * we enter time-wait state, when it is not required really
2833 		 * (harmless), do not send active resets, when they are
2834 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2835 		 * they look as CLOSING or LAST_ACK for Linux)
2836 		 * Probably, I missed some more holelets.
2837 		 * 						--ANK
2838 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2839 		 * in a single packet! (May consider it later but will
2840 		 * probably need API support or TCP_CORK SYN-ACK until
2841 		 * data is written and socket is closed.)
2842 		 */
2843 		tcp_send_fin(sk);
2844 	}
2845 
2846 	sk_stream_wait_close(sk, timeout);
2847 
2848 adjudge_to_death:
2849 	state = sk->sk_state;
2850 	sock_hold(sk);
2851 	sock_orphan(sk);
2852 
2853 	local_bh_disable();
2854 	bh_lock_sock(sk);
2855 	/* remove backlog if any, without releasing ownership. */
2856 	__release_sock(sk);
2857 
2858 	this_cpu_inc(tcp_orphan_count);
2859 
2860 	/* Have we already been destroyed by a softirq or backlog? */
2861 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2862 		goto out;
2863 
2864 	/*	This is a (useful) BSD violating of the RFC. There is a
2865 	 *	problem with TCP as specified in that the other end could
2866 	 *	keep a socket open forever with no application left this end.
2867 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2868 	 *	our end. If they send after that then tough - BUT: long enough
2869 	 *	that we won't make the old 4*rto = almost no time - whoops
2870 	 *	reset mistake.
2871 	 *
2872 	 *	Nope, it was not mistake. It is really desired behaviour
2873 	 *	f.e. on http servers, when such sockets are useless, but
2874 	 *	consume significant resources. Let's do it with special
2875 	 *	linger2	option.					--ANK
2876 	 */
2877 
2878 	if (sk->sk_state == TCP_FIN_WAIT2) {
2879 		struct tcp_sock *tp = tcp_sk(sk);
2880 		if (READ_ONCE(tp->linger2) < 0) {
2881 			tcp_set_state(sk, TCP_CLOSE);
2882 			tcp_send_active_reset(sk, GFP_ATOMIC);
2883 			__NET_INC_STATS(sock_net(sk),
2884 					LINUX_MIB_TCPABORTONLINGER);
2885 		} else {
2886 			const int tmo = tcp_fin_time(sk);
2887 
2888 			if (tmo > TCP_TIMEWAIT_LEN) {
2889 				inet_csk_reset_keepalive_timer(sk,
2890 						tmo - TCP_TIMEWAIT_LEN);
2891 			} else {
2892 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2893 				goto out;
2894 			}
2895 		}
2896 	}
2897 	if (sk->sk_state != TCP_CLOSE) {
2898 		if (tcp_check_oom(sk, 0)) {
2899 			tcp_set_state(sk, TCP_CLOSE);
2900 			tcp_send_active_reset(sk, GFP_ATOMIC);
2901 			__NET_INC_STATS(sock_net(sk),
2902 					LINUX_MIB_TCPABORTONMEMORY);
2903 		} else if (!check_net(sock_net(sk))) {
2904 			/* Not possible to send reset; just close */
2905 			tcp_set_state(sk, TCP_CLOSE);
2906 		}
2907 	}
2908 
2909 	if (sk->sk_state == TCP_CLOSE) {
2910 		struct request_sock *req;
2911 
2912 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2913 						lockdep_sock_is_held(sk));
2914 		/* We could get here with a non-NULL req if the socket is
2915 		 * aborted (e.g., closed with unread data) before 3WHS
2916 		 * finishes.
2917 		 */
2918 		if (req)
2919 			reqsk_fastopen_remove(sk, req, false);
2920 		inet_csk_destroy_sock(sk);
2921 	}
2922 	/* Otherwise, socket is reprieved until protocol close. */
2923 
2924 out:
2925 	bh_unlock_sock(sk);
2926 	local_bh_enable();
2927 }
2928 
2929 void tcp_close(struct sock *sk, long timeout)
2930 {
2931 	lock_sock(sk);
2932 	__tcp_close(sk, timeout);
2933 	release_sock(sk);
2934 	if (!sk->sk_net_refcnt)
2935 		inet_csk_clear_xmit_timers_sync(sk);
2936 	sock_put(sk);
2937 }
2938 EXPORT_SYMBOL(tcp_close);
2939 
2940 /* These states need RST on ABORT according to RFC793 */
2941 
2942 static inline bool tcp_need_reset(int state)
2943 {
2944 	return (1 << state) &
2945 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2946 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2947 }
2948 
2949 static void tcp_rtx_queue_purge(struct sock *sk)
2950 {
2951 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2952 
2953 	tcp_sk(sk)->highest_sack = NULL;
2954 	while (p) {
2955 		struct sk_buff *skb = rb_to_skb(p);
2956 
2957 		p = rb_next(p);
2958 		/* Since we are deleting whole queue, no need to
2959 		 * list_del(&skb->tcp_tsorted_anchor)
2960 		 */
2961 		tcp_rtx_queue_unlink(skb, sk);
2962 		tcp_wmem_free_skb(sk, skb);
2963 	}
2964 }
2965 
2966 void tcp_write_queue_purge(struct sock *sk)
2967 {
2968 	struct sk_buff *skb;
2969 
2970 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2971 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2972 		tcp_skb_tsorted_anchor_cleanup(skb);
2973 		tcp_wmem_free_skb(sk, skb);
2974 	}
2975 	tcp_rtx_queue_purge(sk);
2976 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2977 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2978 	tcp_sk(sk)->packets_out = 0;
2979 	inet_csk(sk)->icsk_backoff = 0;
2980 }
2981 
2982 int tcp_disconnect(struct sock *sk, int flags)
2983 {
2984 	struct inet_sock *inet = inet_sk(sk);
2985 	struct inet_connection_sock *icsk = inet_csk(sk);
2986 	struct tcp_sock *tp = tcp_sk(sk);
2987 	int old_state = sk->sk_state;
2988 	u32 seq;
2989 
2990 	if (old_state != TCP_CLOSE)
2991 		tcp_set_state(sk, TCP_CLOSE);
2992 
2993 	/* ABORT function of RFC793 */
2994 	if (old_state == TCP_LISTEN) {
2995 		inet_csk_listen_stop(sk);
2996 	} else if (unlikely(tp->repair)) {
2997 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2998 	} else if (tcp_need_reset(old_state) ||
2999 		   (tp->snd_nxt != tp->write_seq &&
3000 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3001 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3002 		 * states
3003 		 */
3004 		tcp_send_active_reset(sk, gfp_any());
3005 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3006 	} else if (old_state == TCP_SYN_SENT)
3007 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3008 
3009 	tcp_clear_xmit_timers(sk);
3010 	__skb_queue_purge(&sk->sk_receive_queue);
3011 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3012 	WRITE_ONCE(tp->urg_data, 0);
3013 	tcp_write_queue_purge(sk);
3014 	tcp_fastopen_active_disable_ofo_check(sk);
3015 	skb_rbtree_purge(&tp->out_of_order_queue);
3016 
3017 	inet->inet_dport = 0;
3018 
3019 	inet_bhash2_reset_saddr(sk);
3020 
3021 	WRITE_ONCE(sk->sk_shutdown, 0);
3022 	sock_reset_flag(sk, SOCK_DONE);
3023 	tp->srtt_us = 0;
3024 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3025 	tp->rcv_rtt_last_tsecr = 0;
3026 
3027 	seq = tp->write_seq + tp->max_window + 2;
3028 	if (!seq)
3029 		seq = 1;
3030 	WRITE_ONCE(tp->write_seq, seq);
3031 
3032 	icsk->icsk_backoff = 0;
3033 	icsk->icsk_probes_out = 0;
3034 	icsk->icsk_probes_tstamp = 0;
3035 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3036 	icsk->icsk_rto_min = TCP_RTO_MIN;
3037 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3038 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3039 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3040 	tp->snd_cwnd_cnt = 0;
3041 	tp->is_cwnd_limited = 0;
3042 	tp->max_packets_out = 0;
3043 	tp->window_clamp = 0;
3044 	tp->delivered = 0;
3045 	tp->delivered_ce = 0;
3046 	if (icsk->icsk_ca_ops->release)
3047 		icsk->icsk_ca_ops->release(sk);
3048 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3049 	icsk->icsk_ca_initialized = 0;
3050 	tcp_set_ca_state(sk, TCP_CA_Open);
3051 	tp->is_sack_reneg = 0;
3052 	tcp_clear_retrans(tp);
3053 	tp->total_retrans = 0;
3054 	inet_csk_delack_init(sk);
3055 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3056 	 * issue in __tcp_select_window()
3057 	 */
3058 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3059 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3060 	__sk_dst_reset(sk);
3061 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3062 	tcp_saved_syn_free(tp);
3063 	tp->compressed_ack = 0;
3064 	tp->segs_in = 0;
3065 	tp->segs_out = 0;
3066 	tp->bytes_sent = 0;
3067 	tp->bytes_acked = 0;
3068 	tp->bytes_received = 0;
3069 	tp->bytes_retrans = 0;
3070 	tp->data_segs_in = 0;
3071 	tp->data_segs_out = 0;
3072 	tp->duplicate_sack[0].start_seq = 0;
3073 	tp->duplicate_sack[0].end_seq = 0;
3074 	tp->dsack_dups = 0;
3075 	tp->reord_seen = 0;
3076 	tp->retrans_out = 0;
3077 	tp->sacked_out = 0;
3078 	tp->tlp_high_seq = 0;
3079 	tp->last_oow_ack_time = 0;
3080 	tp->plb_rehash = 0;
3081 	/* There's a bubble in the pipe until at least the first ACK. */
3082 	tp->app_limited = ~0U;
3083 	tp->rate_app_limited = 1;
3084 	tp->rack.mstamp = 0;
3085 	tp->rack.advanced = 0;
3086 	tp->rack.reo_wnd_steps = 1;
3087 	tp->rack.last_delivered = 0;
3088 	tp->rack.reo_wnd_persist = 0;
3089 	tp->rack.dsack_seen = 0;
3090 	tp->syn_data_acked = 0;
3091 	tp->rx_opt.saw_tstamp = 0;
3092 	tp->rx_opt.dsack = 0;
3093 	tp->rx_opt.num_sacks = 0;
3094 	tp->rcv_ooopack = 0;
3095 
3096 
3097 	/* Clean up fastopen related fields */
3098 	tcp_free_fastopen_req(tp);
3099 	inet_clear_bit(DEFER_CONNECT, sk);
3100 	tp->fastopen_client_fail = 0;
3101 
3102 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3103 
3104 	if (sk->sk_frag.page) {
3105 		put_page(sk->sk_frag.page);
3106 		sk->sk_frag.page = NULL;
3107 		sk->sk_frag.offset = 0;
3108 	}
3109 	sk_error_report(sk);
3110 	return 0;
3111 }
3112 EXPORT_SYMBOL(tcp_disconnect);
3113 
3114 static inline bool tcp_can_repair_sock(const struct sock *sk)
3115 {
3116 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3117 		(sk->sk_state != TCP_LISTEN);
3118 }
3119 
3120 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3121 {
3122 	struct tcp_repair_window opt;
3123 
3124 	if (!tp->repair)
3125 		return -EPERM;
3126 
3127 	if (len != sizeof(opt))
3128 		return -EINVAL;
3129 
3130 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3131 		return -EFAULT;
3132 
3133 	if (opt.max_window < opt.snd_wnd)
3134 		return -EINVAL;
3135 
3136 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3137 		return -EINVAL;
3138 
3139 	if (after(opt.rcv_wup, tp->rcv_nxt))
3140 		return -EINVAL;
3141 
3142 	tp->snd_wl1	= opt.snd_wl1;
3143 	tp->snd_wnd	= opt.snd_wnd;
3144 	tp->max_window	= opt.max_window;
3145 
3146 	tp->rcv_wnd	= opt.rcv_wnd;
3147 	tp->rcv_wup	= opt.rcv_wup;
3148 
3149 	return 0;
3150 }
3151 
3152 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3153 		unsigned int len)
3154 {
3155 	struct tcp_sock *tp = tcp_sk(sk);
3156 	struct tcp_repair_opt opt;
3157 	size_t offset = 0;
3158 
3159 	while (len >= sizeof(opt)) {
3160 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3161 			return -EFAULT;
3162 
3163 		offset += sizeof(opt);
3164 		len -= sizeof(opt);
3165 
3166 		switch (opt.opt_code) {
3167 		case TCPOPT_MSS:
3168 			tp->rx_opt.mss_clamp = opt.opt_val;
3169 			tcp_mtup_init(sk);
3170 			break;
3171 		case TCPOPT_WINDOW:
3172 			{
3173 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3174 				u16 rcv_wscale = opt.opt_val >> 16;
3175 
3176 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3177 					return -EFBIG;
3178 
3179 				tp->rx_opt.snd_wscale = snd_wscale;
3180 				tp->rx_opt.rcv_wscale = rcv_wscale;
3181 				tp->rx_opt.wscale_ok = 1;
3182 			}
3183 			break;
3184 		case TCPOPT_SACK_PERM:
3185 			if (opt.opt_val != 0)
3186 				return -EINVAL;
3187 
3188 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3189 			break;
3190 		case TCPOPT_TIMESTAMP:
3191 			if (opt.opt_val != 0)
3192 				return -EINVAL;
3193 
3194 			tp->rx_opt.tstamp_ok = 1;
3195 			break;
3196 		}
3197 	}
3198 
3199 	return 0;
3200 }
3201 
3202 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3203 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3204 
3205 static void tcp_enable_tx_delay(void)
3206 {
3207 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3208 		static int __tcp_tx_delay_enabled = 0;
3209 
3210 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3211 			static_branch_enable(&tcp_tx_delay_enabled);
3212 			pr_info("TCP_TX_DELAY enabled\n");
3213 		}
3214 	}
3215 }
3216 
3217 /* When set indicates to always queue non-full frames.  Later the user clears
3218  * this option and we transmit any pending partial frames in the queue.  This is
3219  * meant to be used alongside sendfile() to get properly filled frames when the
3220  * user (for example) must write out headers with a write() call first and then
3221  * use sendfile to send out the data parts.
3222  *
3223  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3224  * TCP_NODELAY.
3225  */
3226 void __tcp_sock_set_cork(struct sock *sk, bool on)
3227 {
3228 	struct tcp_sock *tp = tcp_sk(sk);
3229 
3230 	if (on) {
3231 		tp->nonagle |= TCP_NAGLE_CORK;
3232 	} else {
3233 		tp->nonagle &= ~TCP_NAGLE_CORK;
3234 		if (tp->nonagle & TCP_NAGLE_OFF)
3235 			tp->nonagle |= TCP_NAGLE_PUSH;
3236 		tcp_push_pending_frames(sk);
3237 	}
3238 }
3239 
3240 void tcp_sock_set_cork(struct sock *sk, bool on)
3241 {
3242 	lock_sock(sk);
3243 	__tcp_sock_set_cork(sk, on);
3244 	release_sock(sk);
3245 }
3246 EXPORT_SYMBOL(tcp_sock_set_cork);
3247 
3248 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3249  * remembered, but it is not activated until cork is cleared.
3250  *
3251  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3252  * even TCP_CORK for currently queued segments.
3253  */
3254 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3255 {
3256 	if (on) {
3257 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3258 		tcp_push_pending_frames(sk);
3259 	} else {
3260 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3261 	}
3262 }
3263 
3264 void tcp_sock_set_nodelay(struct sock *sk)
3265 {
3266 	lock_sock(sk);
3267 	__tcp_sock_set_nodelay(sk, true);
3268 	release_sock(sk);
3269 }
3270 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3271 
3272 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3273 {
3274 	if (!val) {
3275 		inet_csk_enter_pingpong_mode(sk);
3276 		return;
3277 	}
3278 
3279 	inet_csk_exit_pingpong_mode(sk);
3280 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3281 	    inet_csk_ack_scheduled(sk)) {
3282 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3283 		tcp_cleanup_rbuf(sk, 1);
3284 		if (!(val & 1))
3285 			inet_csk_enter_pingpong_mode(sk);
3286 	}
3287 }
3288 
3289 void tcp_sock_set_quickack(struct sock *sk, int val)
3290 {
3291 	lock_sock(sk);
3292 	__tcp_sock_set_quickack(sk, val);
3293 	release_sock(sk);
3294 }
3295 EXPORT_SYMBOL(tcp_sock_set_quickack);
3296 
3297 int tcp_sock_set_syncnt(struct sock *sk, int val)
3298 {
3299 	if (val < 1 || val > MAX_TCP_SYNCNT)
3300 		return -EINVAL;
3301 
3302 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3303 	return 0;
3304 }
3305 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3306 
3307 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3308 {
3309 	/* Cap the max time in ms TCP will retry or probe the window
3310 	 * before giving up and aborting (ETIMEDOUT) a connection.
3311 	 */
3312 	if (val < 0)
3313 		return -EINVAL;
3314 
3315 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3316 	return 0;
3317 }
3318 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3319 
3320 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3321 {
3322 	struct tcp_sock *tp = tcp_sk(sk);
3323 
3324 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3325 		return -EINVAL;
3326 
3327 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3328 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3329 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3330 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3331 		u32 elapsed = keepalive_time_elapsed(tp);
3332 
3333 		if (tp->keepalive_time > elapsed)
3334 			elapsed = tp->keepalive_time - elapsed;
3335 		else
3336 			elapsed = 0;
3337 		inet_csk_reset_keepalive_timer(sk, elapsed);
3338 	}
3339 
3340 	return 0;
3341 }
3342 
3343 int tcp_sock_set_keepidle(struct sock *sk, int val)
3344 {
3345 	int err;
3346 
3347 	lock_sock(sk);
3348 	err = tcp_sock_set_keepidle_locked(sk, val);
3349 	release_sock(sk);
3350 	return err;
3351 }
3352 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3353 
3354 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3355 {
3356 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3357 		return -EINVAL;
3358 
3359 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3360 	return 0;
3361 }
3362 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3363 
3364 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3365 {
3366 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3367 		return -EINVAL;
3368 
3369 	/* Paired with READ_ONCE() in keepalive_probes() */
3370 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3371 	return 0;
3372 }
3373 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3374 
3375 int tcp_set_window_clamp(struct sock *sk, int val)
3376 {
3377 	struct tcp_sock *tp = tcp_sk(sk);
3378 
3379 	if (!val) {
3380 		if (sk->sk_state != TCP_CLOSE)
3381 			return -EINVAL;
3382 		WRITE_ONCE(tp->window_clamp, 0);
3383 	} else {
3384 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3385 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3386 						SOCK_MIN_RCVBUF / 2 : val;
3387 
3388 		if (new_window_clamp == old_window_clamp)
3389 			return 0;
3390 
3391 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3392 		if (new_window_clamp < old_window_clamp) {
3393 			/* need to apply the reserved mem provisioning only
3394 			 * when shrinking the window clamp
3395 			 */
3396 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3397 
3398 		} else {
3399 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3400 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3401 					       tp->rcv_ssthresh);
3402 		}
3403 	}
3404 	return 0;
3405 }
3406 
3407 /*
3408  *	Socket option code for TCP.
3409  */
3410 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3411 		      sockptr_t optval, unsigned int optlen)
3412 {
3413 	struct tcp_sock *tp = tcp_sk(sk);
3414 	struct inet_connection_sock *icsk = inet_csk(sk);
3415 	struct net *net = sock_net(sk);
3416 	int val;
3417 	int err = 0;
3418 
3419 	/* These are data/string values, all the others are ints */
3420 	switch (optname) {
3421 	case TCP_CONGESTION: {
3422 		char name[TCP_CA_NAME_MAX];
3423 
3424 		if (optlen < 1)
3425 			return -EINVAL;
3426 
3427 		val = strncpy_from_sockptr(name, optval,
3428 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3429 		if (val < 0)
3430 			return -EFAULT;
3431 		name[val] = 0;
3432 
3433 		sockopt_lock_sock(sk);
3434 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3435 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3436 								    CAP_NET_ADMIN));
3437 		sockopt_release_sock(sk);
3438 		return err;
3439 	}
3440 	case TCP_ULP: {
3441 		char name[TCP_ULP_NAME_MAX];
3442 
3443 		if (optlen < 1)
3444 			return -EINVAL;
3445 
3446 		val = strncpy_from_sockptr(name, optval,
3447 					min_t(long, TCP_ULP_NAME_MAX - 1,
3448 					      optlen));
3449 		if (val < 0)
3450 			return -EFAULT;
3451 		name[val] = 0;
3452 
3453 		sockopt_lock_sock(sk);
3454 		err = tcp_set_ulp(sk, name);
3455 		sockopt_release_sock(sk);
3456 		return err;
3457 	}
3458 	case TCP_FASTOPEN_KEY: {
3459 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3460 		__u8 *backup_key = NULL;
3461 
3462 		/* Allow a backup key as well to facilitate key rotation
3463 		 * First key is the active one.
3464 		 */
3465 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3466 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3467 			return -EINVAL;
3468 
3469 		if (copy_from_sockptr(key, optval, optlen))
3470 			return -EFAULT;
3471 
3472 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3473 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3474 
3475 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3476 	}
3477 	default:
3478 		/* fallthru */
3479 		break;
3480 	}
3481 
3482 	if (optlen < sizeof(int))
3483 		return -EINVAL;
3484 
3485 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3486 		return -EFAULT;
3487 
3488 	/* Handle options that can be set without locking the socket. */
3489 	switch (optname) {
3490 	case TCP_SYNCNT:
3491 		return tcp_sock_set_syncnt(sk, val);
3492 	case TCP_USER_TIMEOUT:
3493 		return tcp_sock_set_user_timeout(sk, val);
3494 	case TCP_KEEPINTVL:
3495 		return tcp_sock_set_keepintvl(sk, val);
3496 	case TCP_KEEPCNT:
3497 		return tcp_sock_set_keepcnt(sk, val);
3498 	case TCP_LINGER2:
3499 		if (val < 0)
3500 			WRITE_ONCE(tp->linger2, -1);
3501 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3502 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3503 		else
3504 			WRITE_ONCE(tp->linger2, val * HZ);
3505 		return 0;
3506 	case TCP_DEFER_ACCEPT:
3507 		/* Translate value in seconds to number of retransmits */
3508 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3509 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3510 					   TCP_RTO_MAX / HZ));
3511 		return 0;
3512 	}
3513 
3514 	sockopt_lock_sock(sk);
3515 
3516 	switch (optname) {
3517 	case TCP_MAXSEG:
3518 		/* Values greater than interface MTU won't take effect. However
3519 		 * at the point when this call is done we typically don't yet
3520 		 * know which interface is going to be used
3521 		 */
3522 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3523 			err = -EINVAL;
3524 			break;
3525 		}
3526 		tp->rx_opt.user_mss = val;
3527 		break;
3528 
3529 	case TCP_NODELAY:
3530 		__tcp_sock_set_nodelay(sk, val);
3531 		break;
3532 
3533 	case TCP_THIN_LINEAR_TIMEOUTS:
3534 		if (val < 0 || val > 1)
3535 			err = -EINVAL;
3536 		else
3537 			tp->thin_lto = val;
3538 		break;
3539 
3540 	case TCP_THIN_DUPACK:
3541 		if (val < 0 || val > 1)
3542 			err = -EINVAL;
3543 		break;
3544 
3545 	case TCP_REPAIR:
3546 		if (!tcp_can_repair_sock(sk))
3547 			err = -EPERM;
3548 		else if (val == TCP_REPAIR_ON) {
3549 			tp->repair = 1;
3550 			sk->sk_reuse = SK_FORCE_REUSE;
3551 			tp->repair_queue = TCP_NO_QUEUE;
3552 		} else if (val == TCP_REPAIR_OFF) {
3553 			tp->repair = 0;
3554 			sk->sk_reuse = SK_NO_REUSE;
3555 			tcp_send_window_probe(sk);
3556 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3557 			tp->repair = 0;
3558 			sk->sk_reuse = SK_NO_REUSE;
3559 		} else
3560 			err = -EINVAL;
3561 
3562 		break;
3563 
3564 	case TCP_REPAIR_QUEUE:
3565 		if (!tp->repair)
3566 			err = -EPERM;
3567 		else if ((unsigned int)val < TCP_QUEUES_NR)
3568 			tp->repair_queue = val;
3569 		else
3570 			err = -EINVAL;
3571 		break;
3572 
3573 	case TCP_QUEUE_SEQ:
3574 		if (sk->sk_state != TCP_CLOSE) {
3575 			err = -EPERM;
3576 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3577 			if (!tcp_rtx_queue_empty(sk))
3578 				err = -EPERM;
3579 			else
3580 				WRITE_ONCE(tp->write_seq, val);
3581 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3582 			if (tp->rcv_nxt != tp->copied_seq) {
3583 				err = -EPERM;
3584 			} else {
3585 				WRITE_ONCE(tp->rcv_nxt, val);
3586 				WRITE_ONCE(tp->copied_seq, val);
3587 			}
3588 		} else {
3589 			err = -EINVAL;
3590 		}
3591 		break;
3592 
3593 	case TCP_REPAIR_OPTIONS:
3594 		if (!tp->repair)
3595 			err = -EINVAL;
3596 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3597 			err = tcp_repair_options_est(sk, optval, optlen);
3598 		else
3599 			err = -EPERM;
3600 		break;
3601 
3602 	case TCP_CORK:
3603 		__tcp_sock_set_cork(sk, val);
3604 		break;
3605 
3606 	case TCP_KEEPIDLE:
3607 		err = tcp_sock_set_keepidle_locked(sk, val);
3608 		break;
3609 	case TCP_SAVE_SYN:
3610 		/* 0: disable, 1: enable, 2: start from ether_header */
3611 		if (val < 0 || val > 2)
3612 			err = -EINVAL;
3613 		else
3614 			tp->save_syn = val;
3615 		break;
3616 
3617 	case TCP_WINDOW_CLAMP:
3618 		err = tcp_set_window_clamp(sk, val);
3619 		break;
3620 
3621 	case TCP_QUICKACK:
3622 		__tcp_sock_set_quickack(sk, val);
3623 		break;
3624 
3625 	case TCP_AO_REPAIR:
3626 		if (!tcp_can_repair_sock(sk)) {
3627 			err = -EPERM;
3628 			break;
3629 		}
3630 		err = tcp_ao_set_repair(sk, optval, optlen);
3631 		break;
3632 #ifdef CONFIG_TCP_AO
3633 	case TCP_AO_ADD_KEY:
3634 	case TCP_AO_DEL_KEY:
3635 	case TCP_AO_INFO: {
3636 		/* If this is the first TCP-AO setsockopt() on the socket,
3637 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3638 		 * in any state.
3639 		 */
3640 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3641 			goto ao_parse;
3642 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3643 					      lockdep_sock_is_held(sk)))
3644 			goto ao_parse;
3645 		if (tp->repair)
3646 			goto ao_parse;
3647 		err = -EISCONN;
3648 		break;
3649 ao_parse:
3650 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3651 		break;
3652 	}
3653 #endif
3654 #ifdef CONFIG_TCP_MD5SIG
3655 	case TCP_MD5SIG:
3656 	case TCP_MD5SIG_EXT:
3657 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3658 		break;
3659 #endif
3660 	case TCP_FASTOPEN:
3661 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3662 		    TCPF_LISTEN))) {
3663 			tcp_fastopen_init_key_once(net);
3664 
3665 			fastopen_queue_tune(sk, val);
3666 		} else {
3667 			err = -EINVAL;
3668 		}
3669 		break;
3670 	case TCP_FASTOPEN_CONNECT:
3671 		if (val > 1 || val < 0) {
3672 			err = -EINVAL;
3673 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3674 			   TFO_CLIENT_ENABLE) {
3675 			if (sk->sk_state == TCP_CLOSE)
3676 				tp->fastopen_connect = val;
3677 			else
3678 				err = -EINVAL;
3679 		} else {
3680 			err = -EOPNOTSUPP;
3681 		}
3682 		break;
3683 	case TCP_FASTOPEN_NO_COOKIE:
3684 		if (val > 1 || val < 0)
3685 			err = -EINVAL;
3686 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3687 			err = -EINVAL;
3688 		else
3689 			tp->fastopen_no_cookie = val;
3690 		break;
3691 	case TCP_TIMESTAMP:
3692 		if (!tp->repair) {
3693 			err = -EPERM;
3694 			break;
3695 		}
3696 		/* val is an opaque field,
3697 		 * and low order bit contains usec_ts enable bit.
3698 		 * Its a best effort, and we do not care if user makes an error.
3699 		 */
3700 		tp->tcp_usec_ts = val & 1;
3701 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3702 		break;
3703 	case TCP_REPAIR_WINDOW:
3704 		err = tcp_repair_set_window(tp, optval, optlen);
3705 		break;
3706 	case TCP_NOTSENT_LOWAT:
3707 		WRITE_ONCE(tp->notsent_lowat, val);
3708 		sk->sk_write_space(sk);
3709 		break;
3710 	case TCP_INQ:
3711 		if (val > 1 || val < 0)
3712 			err = -EINVAL;
3713 		else
3714 			tp->recvmsg_inq = val;
3715 		break;
3716 	case TCP_TX_DELAY:
3717 		if (val)
3718 			tcp_enable_tx_delay();
3719 		WRITE_ONCE(tp->tcp_tx_delay, val);
3720 		break;
3721 	default:
3722 		err = -ENOPROTOOPT;
3723 		break;
3724 	}
3725 
3726 	sockopt_release_sock(sk);
3727 	return err;
3728 }
3729 
3730 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3731 		   unsigned int optlen)
3732 {
3733 	const struct inet_connection_sock *icsk = inet_csk(sk);
3734 
3735 	if (level != SOL_TCP)
3736 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3737 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3738 								optval, optlen);
3739 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3740 }
3741 EXPORT_SYMBOL(tcp_setsockopt);
3742 
3743 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3744 				      struct tcp_info *info)
3745 {
3746 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3747 	enum tcp_chrono i;
3748 
3749 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3750 		stats[i] = tp->chrono_stat[i - 1];
3751 		if (i == tp->chrono_type)
3752 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3753 		stats[i] *= USEC_PER_SEC / HZ;
3754 		total += stats[i];
3755 	}
3756 
3757 	info->tcpi_busy_time = total;
3758 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3759 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3760 }
3761 
3762 /* Return information about state of tcp endpoint in API format. */
3763 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3764 {
3765 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3766 	const struct inet_connection_sock *icsk = inet_csk(sk);
3767 	unsigned long rate;
3768 	u32 now;
3769 	u64 rate64;
3770 	bool slow;
3771 
3772 	memset(info, 0, sizeof(*info));
3773 	if (sk->sk_type != SOCK_STREAM)
3774 		return;
3775 
3776 	info->tcpi_state = inet_sk_state_load(sk);
3777 
3778 	/* Report meaningful fields for all TCP states, including listeners */
3779 	rate = READ_ONCE(sk->sk_pacing_rate);
3780 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3781 	info->tcpi_pacing_rate = rate64;
3782 
3783 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3784 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3785 	info->tcpi_max_pacing_rate = rate64;
3786 
3787 	info->tcpi_reordering = tp->reordering;
3788 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3789 
3790 	if (info->tcpi_state == TCP_LISTEN) {
3791 		/* listeners aliased fields :
3792 		 * tcpi_unacked -> Number of children ready for accept()
3793 		 * tcpi_sacked  -> max backlog
3794 		 */
3795 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3796 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3797 		return;
3798 	}
3799 
3800 	slow = lock_sock_fast(sk);
3801 
3802 	info->tcpi_ca_state = icsk->icsk_ca_state;
3803 	info->tcpi_retransmits = icsk->icsk_retransmits;
3804 	info->tcpi_probes = icsk->icsk_probes_out;
3805 	info->tcpi_backoff = icsk->icsk_backoff;
3806 
3807 	if (tp->rx_opt.tstamp_ok)
3808 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3809 	if (tcp_is_sack(tp))
3810 		info->tcpi_options |= TCPI_OPT_SACK;
3811 	if (tp->rx_opt.wscale_ok) {
3812 		info->tcpi_options |= TCPI_OPT_WSCALE;
3813 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3814 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3815 	}
3816 
3817 	if (tp->ecn_flags & TCP_ECN_OK)
3818 		info->tcpi_options |= TCPI_OPT_ECN;
3819 	if (tp->ecn_flags & TCP_ECN_SEEN)
3820 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3821 	if (tp->syn_data_acked)
3822 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3823 	if (tp->tcp_usec_ts)
3824 		info->tcpi_options |= TCPI_OPT_USEC_TS;
3825 
3826 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3827 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3828 						tcp_delack_max(sk)));
3829 	info->tcpi_snd_mss = tp->mss_cache;
3830 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3831 
3832 	info->tcpi_unacked = tp->packets_out;
3833 	info->tcpi_sacked = tp->sacked_out;
3834 
3835 	info->tcpi_lost = tp->lost_out;
3836 	info->tcpi_retrans = tp->retrans_out;
3837 
3838 	now = tcp_jiffies32;
3839 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3840 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3841 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3842 
3843 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3844 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3845 	info->tcpi_rtt = tp->srtt_us >> 3;
3846 	info->tcpi_rttvar = tp->mdev_us >> 2;
3847 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3848 	info->tcpi_advmss = tp->advmss;
3849 
3850 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3851 	info->tcpi_rcv_space = tp->rcvq_space.space;
3852 
3853 	info->tcpi_total_retrans = tp->total_retrans;
3854 
3855 	info->tcpi_bytes_acked = tp->bytes_acked;
3856 	info->tcpi_bytes_received = tp->bytes_received;
3857 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3858 	tcp_get_info_chrono_stats(tp, info);
3859 
3860 	info->tcpi_segs_out = tp->segs_out;
3861 
3862 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3863 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3864 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3865 
3866 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3867 	info->tcpi_data_segs_out = tp->data_segs_out;
3868 
3869 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3870 	rate64 = tcp_compute_delivery_rate(tp);
3871 	if (rate64)
3872 		info->tcpi_delivery_rate = rate64;
3873 	info->tcpi_delivered = tp->delivered;
3874 	info->tcpi_delivered_ce = tp->delivered_ce;
3875 	info->tcpi_bytes_sent = tp->bytes_sent;
3876 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3877 	info->tcpi_dsack_dups = tp->dsack_dups;
3878 	info->tcpi_reord_seen = tp->reord_seen;
3879 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3880 	info->tcpi_snd_wnd = tp->snd_wnd;
3881 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3882 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3883 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3884 
3885 	info->tcpi_total_rto = tp->total_rto;
3886 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3887 	info->tcpi_total_rto_time = tp->total_rto_time;
3888 	if (tp->rto_stamp)
3889 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3890 
3891 	unlock_sock_fast(sk, slow);
3892 }
3893 EXPORT_SYMBOL_GPL(tcp_get_info);
3894 
3895 static size_t tcp_opt_stats_get_size(void)
3896 {
3897 	return
3898 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3899 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3900 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3901 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3902 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3903 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3904 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3905 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3906 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3907 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3908 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3909 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3910 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3911 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3912 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3913 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3914 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3915 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3916 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3917 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3918 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3919 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3920 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3921 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3922 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3923 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3924 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3925 		0;
3926 }
3927 
3928 /* Returns TTL or hop limit of an incoming packet from skb. */
3929 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3930 {
3931 	if (skb->protocol == htons(ETH_P_IP))
3932 		return ip_hdr(skb)->ttl;
3933 	else if (skb->protocol == htons(ETH_P_IPV6))
3934 		return ipv6_hdr(skb)->hop_limit;
3935 	else
3936 		return 0;
3937 }
3938 
3939 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3940 					       const struct sk_buff *orig_skb,
3941 					       const struct sk_buff *ack_skb)
3942 {
3943 	const struct tcp_sock *tp = tcp_sk(sk);
3944 	struct sk_buff *stats;
3945 	struct tcp_info info;
3946 	unsigned long rate;
3947 	u64 rate64;
3948 
3949 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3950 	if (!stats)
3951 		return NULL;
3952 
3953 	tcp_get_info_chrono_stats(tp, &info);
3954 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3955 			  info.tcpi_busy_time, TCP_NLA_PAD);
3956 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3957 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3958 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3959 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3960 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3961 			  tp->data_segs_out, TCP_NLA_PAD);
3962 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3963 			  tp->total_retrans, TCP_NLA_PAD);
3964 
3965 	rate = READ_ONCE(sk->sk_pacing_rate);
3966 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3967 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3968 
3969 	rate64 = tcp_compute_delivery_rate(tp);
3970 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3971 
3972 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3973 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3974 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3975 
3976 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3977 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3978 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3979 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3980 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3981 
3982 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3983 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3984 
3985 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3986 			  TCP_NLA_PAD);
3987 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3988 			  TCP_NLA_PAD);
3989 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3990 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3991 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3992 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3993 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3994 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3995 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3996 			  TCP_NLA_PAD);
3997 	if (ack_skb)
3998 		nla_put_u8(stats, TCP_NLA_TTL,
3999 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4000 
4001 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4002 	return stats;
4003 }
4004 
4005 int do_tcp_getsockopt(struct sock *sk, int level,
4006 		      int optname, sockptr_t optval, sockptr_t optlen)
4007 {
4008 	struct inet_connection_sock *icsk = inet_csk(sk);
4009 	struct tcp_sock *tp = tcp_sk(sk);
4010 	struct net *net = sock_net(sk);
4011 	int val, len;
4012 
4013 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4014 		return -EFAULT;
4015 
4016 	if (len < 0)
4017 		return -EINVAL;
4018 
4019 	len = min_t(unsigned int, len, sizeof(int));
4020 
4021 	switch (optname) {
4022 	case TCP_MAXSEG:
4023 		val = tp->mss_cache;
4024 		if (tp->rx_opt.user_mss &&
4025 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4026 			val = tp->rx_opt.user_mss;
4027 		if (tp->repair)
4028 			val = tp->rx_opt.mss_clamp;
4029 		break;
4030 	case TCP_NODELAY:
4031 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4032 		break;
4033 	case TCP_CORK:
4034 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4035 		break;
4036 	case TCP_KEEPIDLE:
4037 		val = keepalive_time_when(tp) / HZ;
4038 		break;
4039 	case TCP_KEEPINTVL:
4040 		val = keepalive_intvl_when(tp) / HZ;
4041 		break;
4042 	case TCP_KEEPCNT:
4043 		val = keepalive_probes(tp);
4044 		break;
4045 	case TCP_SYNCNT:
4046 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4047 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4048 		break;
4049 	case TCP_LINGER2:
4050 		val = READ_ONCE(tp->linger2);
4051 		if (val >= 0)
4052 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4053 		break;
4054 	case TCP_DEFER_ACCEPT:
4055 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4056 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4057 				      TCP_RTO_MAX / HZ);
4058 		break;
4059 	case TCP_WINDOW_CLAMP:
4060 		val = READ_ONCE(tp->window_clamp);
4061 		break;
4062 	case TCP_INFO: {
4063 		struct tcp_info info;
4064 
4065 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4066 			return -EFAULT;
4067 
4068 		tcp_get_info(sk, &info);
4069 
4070 		len = min_t(unsigned int, len, sizeof(info));
4071 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4072 			return -EFAULT;
4073 		if (copy_to_sockptr(optval, &info, len))
4074 			return -EFAULT;
4075 		return 0;
4076 	}
4077 	case TCP_CC_INFO: {
4078 		const struct tcp_congestion_ops *ca_ops;
4079 		union tcp_cc_info info;
4080 		size_t sz = 0;
4081 		int attr;
4082 
4083 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4084 			return -EFAULT;
4085 
4086 		ca_ops = icsk->icsk_ca_ops;
4087 		if (ca_ops && ca_ops->get_info)
4088 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4089 
4090 		len = min_t(unsigned int, len, sz);
4091 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4092 			return -EFAULT;
4093 		if (copy_to_sockptr(optval, &info, len))
4094 			return -EFAULT;
4095 		return 0;
4096 	}
4097 	case TCP_QUICKACK:
4098 		val = !inet_csk_in_pingpong_mode(sk);
4099 		break;
4100 
4101 	case TCP_CONGESTION:
4102 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4103 			return -EFAULT;
4104 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4105 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4106 			return -EFAULT;
4107 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4108 			return -EFAULT;
4109 		return 0;
4110 
4111 	case TCP_ULP:
4112 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4113 			return -EFAULT;
4114 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4115 		if (!icsk->icsk_ulp_ops) {
4116 			len = 0;
4117 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4118 				return -EFAULT;
4119 			return 0;
4120 		}
4121 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4122 			return -EFAULT;
4123 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4124 			return -EFAULT;
4125 		return 0;
4126 
4127 	case TCP_FASTOPEN_KEY: {
4128 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4129 		unsigned int key_len;
4130 
4131 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4132 			return -EFAULT;
4133 
4134 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4135 				TCP_FASTOPEN_KEY_LENGTH;
4136 		len = min_t(unsigned int, len, key_len);
4137 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4138 			return -EFAULT;
4139 		if (copy_to_sockptr(optval, key, len))
4140 			return -EFAULT;
4141 		return 0;
4142 	}
4143 	case TCP_THIN_LINEAR_TIMEOUTS:
4144 		val = tp->thin_lto;
4145 		break;
4146 
4147 	case TCP_THIN_DUPACK:
4148 		val = 0;
4149 		break;
4150 
4151 	case TCP_REPAIR:
4152 		val = tp->repair;
4153 		break;
4154 
4155 	case TCP_REPAIR_QUEUE:
4156 		if (tp->repair)
4157 			val = tp->repair_queue;
4158 		else
4159 			return -EINVAL;
4160 		break;
4161 
4162 	case TCP_REPAIR_WINDOW: {
4163 		struct tcp_repair_window opt;
4164 
4165 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4166 			return -EFAULT;
4167 
4168 		if (len != sizeof(opt))
4169 			return -EINVAL;
4170 
4171 		if (!tp->repair)
4172 			return -EPERM;
4173 
4174 		opt.snd_wl1	= tp->snd_wl1;
4175 		opt.snd_wnd	= tp->snd_wnd;
4176 		opt.max_window	= tp->max_window;
4177 		opt.rcv_wnd	= tp->rcv_wnd;
4178 		opt.rcv_wup	= tp->rcv_wup;
4179 
4180 		if (copy_to_sockptr(optval, &opt, len))
4181 			return -EFAULT;
4182 		return 0;
4183 	}
4184 	case TCP_QUEUE_SEQ:
4185 		if (tp->repair_queue == TCP_SEND_QUEUE)
4186 			val = tp->write_seq;
4187 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4188 			val = tp->rcv_nxt;
4189 		else
4190 			return -EINVAL;
4191 		break;
4192 
4193 	case TCP_USER_TIMEOUT:
4194 		val = READ_ONCE(icsk->icsk_user_timeout);
4195 		break;
4196 
4197 	case TCP_FASTOPEN:
4198 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4199 		break;
4200 
4201 	case TCP_FASTOPEN_CONNECT:
4202 		val = tp->fastopen_connect;
4203 		break;
4204 
4205 	case TCP_FASTOPEN_NO_COOKIE:
4206 		val = tp->fastopen_no_cookie;
4207 		break;
4208 
4209 	case TCP_TX_DELAY:
4210 		val = READ_ONCE(tp->tcp_tx_delay);
4211 		break;
4212 
4213 	case TCP_TIMESTAMP:
4214 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4215 		if (tp->tcp_usec_ts)
4216 			val |= 1;
4217 		else
4218 			val &= ~1;
4219 		break;
4220 	case TCP_NOTSENT_LOWAT:
4221 		val = READ_ONCE(tp->notsent_lowat);
4222 		break;
4223 	case TCP_INQ:
4224 		val = tp->recvmsg_inq;
4225 		break;
4226 	case TCP_SAVE_SYN:
4227 		val = tp->save_syn;
4228 		break;
4229 	case TCP_SAVED_SYN: {
4230 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4231 			return -EFAULT;
4232 
4233 		sockopt_lock_sock(sk);
4234 		if (tp->saved_syn) {
4235 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4236 				len = tcp_saved_syn_len(tp->saved_syn);
4237 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4238 					sockopt_release_sock(sk);
4239 					return -EFAULT;
4240 				}
4241 				sockopt_release_sock(sk);
4242 				return -EINVAL;
4243 			}
4244 			len = tcp_saved_syn_len(tp->saved_syn);
4245 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4246 				sockopt_release_sock(sk);
4247 				return -EFAULT;
4248 			}
4249 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4250 				sockopt_release_sock(sk);
4251 				return -EFAULT;
4252 			}
4253 			tcp_saved_syn_free(tp);
4254 			sockopt_release_sock(sk);
4255 		} else {
4256 			sockopt_release_sock(sk);
4257 			len = 0;
4258 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4259 				return -EFAULT;
4260 		}
4261 		return 0;
4262 	}
4263 #ifdef CONFIG_MMU
4264 	case TCP_ZEROCOPY_RECEIVE: {
4265 		struct scm_timestamping_internal tss;
4266 		struct tcp_zerocopy_receive zc = {};
4267 		int err;
4268 
4269 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4270 			return -EFAULT;
4271 		if (len < 0 ||
4272 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4273 			return -EINVAL;
4274 		if (unlikely(len > sizeof(zc))) {
4275 			err = check_zeroed_sockptr(optval, sizeof(zc),
4276 						   len - sizeof(zc));
4277 			if (err < 1)
4278 				return err == 0 ? -EINVAL : err;
4279 			len = sizeof(zc);
4280 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4281 				return -EFAULT;
4282 		}
4283 		if (copy_from_sockptr(&zc, optval, len))
4284 			return -EFAULT;
4285 		if (zc.reserved)
4286 			return -EINVAL;
4287 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4288 			return -EINVAL;
4289 		sockopt_lock_sock(sk);
4290 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4291 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4292 							  &zc, &len, err);
4293 		sockopt_release_sock(sk);
4294 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4295 			goto zerocopy_rcv_cmsg;
4296 		switch (len) {
4297 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4298 			goto zerocopy_rcv_cmsg;
4299 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4300 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4301 		case offsetofend(struct tcp_zerocopy_receive, flags):
4302 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4303 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4304 		case offsetofend(struct tcp_zerocopy_receive, err):
4305 			goto zerocopy_rcv_sk_err;
4306 		case offsetofend(struct tcp_zerocopy_receive, inq):
4307 			goto zerocopy_rcv_inq;
4308 		case offsetofend(struct tcp_zerocopy_receive, length):
4309 		default:
4310 			goto zerocopy_rcv_out;
4311 		}
4312 zerocopy_rcv_cmsg:
4313 		if (zc.msg_flags & TCP_CMSG_TS)
4314 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4315 		else
4316 			zc.msg_flags = 0;
4317 zerocopy_rcv_sk_err:
4318 		if (!err)
4319 			zc.err = sock_error(sk);
4320 zerocopy_rcv_inq:
4321 		zc.inq = tcp_inq_hint(sk);
4322 zerocopy_rcv_out:
4323 		if (!err && copy_to_sockptr(optval, &zc, len))
4324 			err = -EFAULT;
4325 		return err;
4326 	}
4327 #endif
4328 	case TCP_AO_REPAIR:
4329 		if (!tcp_can_repair_sock(sk))
4330 			return -EPERM;
4331 		return tcp_ao_get_repair(sk, optval, optlen);
4332 	case TCP_AO_GET_KEYS:
4333 	case TCP_AO_INFO: {
4334 		int err;
4335 
4336 		sockopt_lock_sock(sk);
4337 		if (optname == TCP_AO_GET_KEYS)
4338 			err = tcp_ao_get_mkts(sk, optval, optlen);
4339 		else
4340 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4341 		sockopt_release_sock(sk);
4342 
4343 		return err;
4344 	}
4345 	default:
4346 		return -ENOPROTOOPT;
4347 	}
4348 
4349 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4350 		return -EFAULT;
4351 	if (copy_to_sockptr(optval, &val, len))
4352 		return -EFAULT;
4353 	return 0;
4354 }
4355 
4356 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4357 {
4358 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4359 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4360 	 */
4361 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4362 		return true;
4363 
4364 	return false;
4365 }
4366 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4367 
4368 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4369 		   int __user *optlen)
4370 {
4371 	struct inet_connection_sock *icsk = inet_csk(sk);
4372 
4373 	if (level != SOL_TCP)
4374 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4375 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4376 								optval, optlen);
4377 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4378 				 USER_SOCKPTR(optlen));
4379 }
4380 EXPORT_SYMBOL(tcp_getsockopt);
4381 
4382 #ifdef CONFIG_TCP_MD5SIG
4383 int tcp_md5_sigpool_id = -1;
4384 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4385 
4386 int tcp_md5_alloc_sigpool(void)
4387 {
4388 	size_t scratch_size;
4389 	int ret;
4390 
4391 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4392 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4393 	if (ret >= 0) {
4394 		/* As long as any md5 sigpool was allocated, the return
4395 		 * id would stay the same. Re-write the id only for the case
4396 		 * when previously all MD5 keys were deleted and this call
4397 		 * allocates the first MD5 key, which may return a different
4398 		 * sigpool id than was used previously.
4399 		 */
4400 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4401 		return 0;
4402 	}
4403 	return ret;
4404 }
4405 
4406 void tcp_md5_release_sigpool(void)
4407 {
4408 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4409 }
4410 
4411 void tcp_md5_add_sigpool(void)
4412 {
4413 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4414 }
4415 
4416 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4417 		     const struct tcp_md5sig_key *key)
4418 {
4419 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4420 	struct scatterlist sg;
4421 
4422 	sg_init_one(&sg, key->key, keylen);
4423 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4424 
4425 	/* We use data_race() because tcp_md5_do_add() might change
4426 	 * key->key under us
4427 	 */
4428 	return data_race(crypto_ahash_update(hp->req));
4429 }
4430 EXPORT_SYMBOL(tcp_md5_hash_key);
4431 
4432 /* Called with rcu_read_lock() */
4433 enum skb_drop_reason
4434 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4435 		     const void *saddr, const void *daddr,
4436 		     int family, int l3index, const __u8 *hash_location)
4437 {
4438 	/* This gets called for each TCP segment that has TCP-MD5 option.
4439 	 * We have 3 drop cases:
4440 	 * o No MD5 hash and one expected.
4441 	 * o MD5 hash and we're not expecting one.
4442 	 * o MD5 hash and its wrong.
4443 	 */
4444 	const struct tcp_sock *tp = tcp_sk(sk);
4445 	struct tcp_md5sig_key *key;
4446 	u8 newhash[16];
4447 	int genhash;
4448 
4449 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4450 
4451 	if (!key && hash_location) {
4452 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4453 		tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4454 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4455 	}
4456 
4457 	/* Check the signature.
4458 	 * To support dual stack listeners, we need to handle
4459 	 * IPv4-mapped case.
4460 	 */
4461 	if (family == AF_INET)
4462 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4463 	else
4464 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4465 							 NULL, skb);
4466 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4467 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4468 		if (family == AF_INET) {
4469 			tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4470 				      genhash ? "tcp_v4_calc_md5_hash failed"
4471 				      : "", l3index);
4472 		} else {
4473 			if (genhash) {
4474 				tcp_hash_fail("MD5 Hash failed",
4475 					      AF_INET6, skb, "L3 index %d",
4476 					      l3index);
4477 			} else {
4478 				tcp_hash_fail("MD5 Hash mismatch",
4479 					      AF_INET6, skb, "L3 index %d",
4480 					      l3index);
4481 			}
4482 		}
4483 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4484 	}
4485 	return SKB_NOT_DROPPED_YET;
4486 }
4487 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4488 
4489 #endif
4490 
4491 void tcp_done(struct sock *sk)
4492 {
4493 	struct request_sock *req;
4494 
4495 	/* We might be called with a new socket, after
4496 	 * inet_csk_prepare_forced_close() has been called
4497 	 * so we can not use lockdep_sock_is_held(sk)
4498 	 */
4499 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4500 
4501 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4502 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4503 
4504 	tcp_set_state(sk, TCP_CLOSE);
4505 	tcp_clear_xmit_timers(sk);
4506 	if (req)
4507 		reqsk_fastopen_remove(sk, req, false);
4508 
4509 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4510 
4511 	if (!sock_flag(sk, SOCK_DEAD))
4512 		sk->sk_state_change(sk);
4513 	else
4514 		inet_csk_destroy_sock(sk);
4515 }
4516 EXPORT_SYMBOL_GPL(tcp_done);
4517 
4518 int tcp_abort(struct sock *sk, int err)
4519 {
4520 	int state = inet_sk_state_load(sk);
4521 
4522 	if (state == TCP_NEW_SYN_RECV) {
4523 		struct request_sock *req = inet_reqsk(sk);
4524 
4525 		local_bh_disable();
4526 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4527 		local_bh_enable();
4528 		return 0;
4529 	}
4530 	if (state == TCP_TIME_WAIT) {
4531 		struct inet_timewait_sock *tw = inet_twsk(sk);
4532 
4533 		refcount_inc(&tw->tw_refcnt);
4534 		local_bh_disable();
4535 		inet_twsk_deschedule_put(tw);
4536 		local_bh_enable();
4537 		return 0;
4538 	}
4539 
4540 	/* BPF context ensures sock locking. */
4541 	if (!has_current_bpf_ctx())
4542 		/* Don't race with userspace socket closes such as tcp_close. */
4543 		lock_sock(sk);
4544 
4545 	if (sk->sk_state == TCP_LISTEN) {
4546 		tcp_set_state(sk, TCP_CLOSE);
4547 		inet_csk_listen_stop(sk);
4548 	}
4549 
4550 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4551 	local_bh_disable();
4552 	bh_lock_sock(sk);
4553 
4554 	if (!sock_flag(sk, SOCK_DEAD)) {
4555 		WRITE_ONCE(sk->sk_err, err);
4556 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4557 		smp_wmb();
4558 		sk_error_report(sk);
4559 		if (tcp_need_reset(sk->sk_state))
4560 			tcp_send_active_reset(sk, GFP_ATOMIC);
4561 		tcp_done(sk);
4562 	}
4563 
4564 	bh_unlock_sock(sk);
4565 	local_bh_enable();
4566 	tcp_write_queue_purge(sk);
4567 	if (!has_current_bpf_ctx())
4568 		release_sock(sk);
4569 	return 0;
4570 }
4571 EXPORT_SYMBOL_GPL(tcp_abort);
4572 
4573 extern struct tcp_congestion_ops tcp_reno;
4574 
4575 static __initdata unsigned long thash_entries;
4576 static int __init set_thash_entries(char *str)
4577 {
4578 	ssize_t ret;
4579 
4580 	if (!str)
4581 		return 0;
4582 
4583 	ret = kstrtoul(str, 0, &thash_entries);
4584 	if (ret)
4585 		return 0;
4586 
4587 	return 1;
4588 }
4589 __setup("thash_entries=", set_thash_entries);
4590 
4591 static void __init tcp_init_mem(void)
4592 {
4593 	unsigned long limit = nr_free_buffer_pages() / 16;
4594 
4595 	limit = max(limit, 128UL);
4596 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4597 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4598 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4599 }
4600 
4601 static void __init tcp_struct_check(void)
4602 {
4603 	/* TX read-mostly hotpath cache lines */
4604 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4605 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4606 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4607 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4608 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4609 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4610 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4611 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4612 
4613 	/* TXRX read-mostly hotpath cache lines */
4614 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4615 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4616 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4617 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4618 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4619 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4620 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4621 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4622 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4623 
4624 	/* RX read-mostly hotpath cache lines */
4625 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4626 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4627 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4628 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4629 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4630 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4631 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4632 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4633 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4634 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4635 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4636 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4637 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4638 
4639 	/* TX read-write hotpath cache lines */
4640 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4641 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4642 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4643 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4644 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4645 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4646 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4647 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4648 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4649 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4650 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4651 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_clock_cache);
4652 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_mstamp);
4653 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4654 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4655 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4656 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4657 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 105);
4658 
4659 	/* TXRX read-write hotpath cache lines */
4660 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
4661 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4662 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4663 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4664 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4665 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4666 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4667 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4668 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4669 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4670 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4671 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4672 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4673 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 76);
4674 
4675 	/* RX read-write hotpath cache lines */
4676 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4677 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4678 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4679 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4680 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4681 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4682 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4683 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4684 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4685 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4686 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4687 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4688 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4689 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4690 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4691 }
4692 
4693 void __init tcp_init(void)
4694 {
4695 	int max_rshare, max_wshare, cnt;
4696 	unsigned long limit;
4697 	unsigned int i;
4698 
4699 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4700 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4701 		     sizeof_field(struct sk_buff, cb));
4702 
4703 	tcp_struct_check();
4704 
4705 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4706 
4707 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4708 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4709 
4710 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4711 			    thash_entries, 21,  /* one slot per 2 MB*/
4712 			    0, 64 * 1024);
4713 	tcp_hashinfo.bind_bucket_cachep =
4714 		kmem_cache_create("tcp_bind_bucket",
4715 				  sizeof(struct inet_bind_bucket), 0,
4716 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4717 				  SLAB_ACCOUNT,
4718 				  NULL);
4719 	tcp_hashinfo.bind2_bucket_cachep =
4720 		kmem_cache_create("tcp_bind2_bucket",
4721 				  sizeof(struct inet_bind2_bucket), 0,
4722 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4723 				  SLAB_ACCOUNT,
4724 				  NULL);
4725 
4726 	/* Size and allocate the main established and bind bucket
4727 	 * hash tables.
4728 	 *
4729 	 * The methodology is similar to that of the buffer cache.
4730 	 */
4731 	tcp_hashinfo.ehash =
4732 		alloc_large_system_hash("TCP established",
4733 					sizeof(struct inet_ehash_bucket),
4734 					thash_entries,
4735 					17, /* one slot per 128 KB of memory */
4736 					0,
4737 					NULL,
4738 					&tcp_hashinfo.ehash_mask,
4739 					0,
4740 					thash_entries ? 0 : 512 * 1024);
4741 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4742 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4743 
4744 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4745 		panic("TCP: failed to alloc ehash_locks");
4746 	tcp_hashinfo.bhash =
4747 		alloc_large_system_hash("TCP bind",
4748 					2 * sizeof(struct inet_bind_hashbucket),
4749 					tcp_hashinfo.ehash_mask + 1,
4750 					17, /* one slot per 128 KB of memory */
4751 					0,
4752 					&tcp_hashinfo.bhash_size,
4753 					NULL,
4754 					0,
4755 					64 * 1024);
4756 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4757 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4758 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4759 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4760 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4761 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4762 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4763 	}
4764 
4765 	tcp_hashinfo.pernet = false;
4766 
4767 	cnt = tcp_hashinfo.ehash_mask + 1;
4768 	sysctl_tcp_max_orphans = cnt / 2;
4769 
4770 	tcp_init_mem();
4771 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4772 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4773 	max_wshare = min(4UL*1024*1024, limit);
4774 	max_rshare = min(6UL*1024*1024, limit);
4775 
4776 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4777 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4778 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4779 
4780 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4781 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4782 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4783 
4784 	pr_info("Hash tables configured (established %u bind %u)\n",
4785 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4786 
4787 	tcp_v4_init();
4788 	tcp_metrics_init();
4789 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4790 	tcp_tasklet_init();
4791 	mptcp_init();
4792 }
4793