1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/xfrm.h> 275 #include <net/ip.h> 276 #include <net/sock.h> 277 278 #include <linux/uaccess.h> 279 #include <asm/ioctls.h> 280 #include <net/busy_poll.h> 281 282 struct percpu_counter tcp_orphan_count; 283 EXPORT_SYMBOL_GPL(tcp_orphan_count); 284 285 long sysctl_tcp_mem[3] __read_mostly; 286 EXPORT_SYMBOL(sysctl_tcp_mem); 287 288 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 289 EXPORT_SYMBOL(tcp_memory_allocated); 290 291 #if IS_ENABLED(CONFIG_SMC) 292 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 293 EXPORT_SYMBOL(tcp_have_smc); 294 #endif 295 296 /* 297 * Current number of TCP sockets. 298 */ 299 struct percpu_counter tcp_sockets_allocated; 300 EXPORT_SYMBOL(tcp_sockets_allocated); 301 302 /* 303 * TCP splice context 304 */ 305 struct tcp_splice_state { 306 struct pipe_inode_info *pipe; 307 size_t len; 308 unsigned int flags; 309 }; 310 311 /* 312 * Pressure flag: try to collapse. 313 * Technical note: it is used by multiple contexts non atomically. 314 * All the __sk_mem_schedule() is of this nature: accounting 315 * is strict, actions are advisory and have some latency. 316 */ 317 unsigned long tcp_memory_pressure __read_mostly; 318 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 319 320 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 321 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 322 323 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 324 325 void tcp_enter_memory_pressure(struct sock *sk) 326 { 327 unsigned long val; 328 329 if (tcp_memory_pressure) 330 return; 331 val = jiffies; 332 333 if (!val) 334 val--; 335 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 337 } 338 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 339 340 void tcp_leave_memory_pressure(struct sock *sk) 341 { 342 unsigned long val; 343 344 if (!tcp_memory_pressure) 345 return; 346 val = xchg(&tcp_memory_pressure, 0); 347 if (val) 348 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 349 jiffies_to_msecs(jiffies - val)); 350 } 351 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 352 353 /* Convert seconds to retransmits based on initial and max timeout */ 354 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 355 { 356 u8 res = 0; 357 358 if (seconds > 0) { 359 int period = timeout; 360 361 res = 1; 362 while (seconds > period && res < 255) { 363 res++; 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return res; 371 } 372 373 /* Convert retransmits to seconds based on initial and max timeout */ 374 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 375 { 376 int period = 0; 377 378 if (retrans > 0) { 379 period = timeout; 380 while (--retrans) { 381 timeout <<= 1; 382 if (timeout > rto_max) 383 timeout = rto_max; 384 period += timeout; 385 } 386 } 387 return period; 388 } 389 390 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 391 { 392 u32 rate = READ_ONCE(tp->rate_delivered); 393 u32 intv = READ_ONCE(tp->rate_interval_us); 394 u64 rate64 = 0; 395 396 if (rate && intv) { 397 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 398 do_div(rate64, intv); 399 } 400 return rate64; 401 } 402 403 /* Address-family independent initialization for a tcp_sock. 404 * 405 * NOTE: A lot of things set to zero explicitly by call to 406 * sk_alloc() so need not be done here. 407 */ 408 void tcp_init_sock(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 struct tcp_sock *tp = tcp_sk(sk); 412 413 tp->out_of_order_queue = RB_ROOT; 414 sk->tcp_rtx_queue = RB_ROOT; 415 tcp_init_xmit_timers(sk); 416 INIT_LIST_HEAD(&tp->tsq_node); 417 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 418 419 icsk->icsk_rto = TCP_TIMEOUT_INIT; 420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 422 423 /* So many TCP implementations out there (incorrectly) count the 424 * initial SYN frame in their delayed-ACK and congestion control 425 * algorithms that we must have the following bandaid to talk 426 * efficiently to them. -DaveM 427 */ 428 tp->snd_cwnd = TCP_INIT_CWND; 429 430 /* There's a bubble in the pipe until at least the first ACK. */ 431 tp->app_limited = ~0U; 432 433 /* See draft-stevens-tcpca-spec-01 for discussion of the 434 * initialization of these values. 435 */ 436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 437 tp->snd_cwnd_clamp = ~0; 438 tp->mss_cache = TCP_MSS_DEFAULT; 439 440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 441 tcp_assign_congestion_control(sk); 442 443 tp->tsoffset = 0; 444 tp->rack.reo_wnd_steps = 1; 445 446 sk->sk_state = TCP_CLOSE; 447 448 sk->sk_write_space = sk_stream_write_space; 449 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 450 451 icsk->icsk_sync_mss = tcp_sync_mss; 452 453 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 454 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 455 456 sk_sockets_allocated_inc(sk); 457 sk->sk_route_forced_caps = NETIF_F_GSO; 458 } 459 EXPORT_SYMBOL(tcp_init_sock); 460 461 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 462 { 463 struct sk_buff *skb = tcp_write_queue_tail(sk); 464 465 if (tsflags && skb) { 466 struct skb_shared_info *shinfo = skb_shinfo(skb); 467 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 468 469 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 470 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 471 tcb->txstamp_ack = 1; 472 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 473 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 474 } 475 } 476 477 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 478 int target, struct sock *sk) 479 { 480 return (tp->rcv_nxt - tp->copied_seq >= target) || 481 (sk->sk_prot->stream_memory_read ? 482 sk->sk_prot->stream_memory_read(sk) : false); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ 492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 549 if (tp->urg_seq == tp->copied_seq && 550 !sock_flag(sk, SOCK_URGINLINE) && 551 tp->urg_data) 552 target++; 553 554 if (tcp_stream_is_readable(tp, target, sk)) 555 mask |= EPOLLIN | EPOLLRDNORM; 556 557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 558 if (sk_stream_is_writeable(sk)) { 559 mask |= EPOLLOUT | EPOLLWRNORM; 560 } else { /* send SIGIO later */ 561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 563 564 /* Race breaker. If space is freed after 565 * wspace test but before the flags are set, 566 * IO signal will be lost. Memory barrier 567 * pairs with the input side. 568 */ 569 smp_mb__after_atomic(); 570 if (sk_stream_is_writeable(sk)) 571 mask |= EPOLLOUT | EPOLLWRNORM; 572 } 573 } else 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 576 if (tp->urg_data & TCP_URG_VALID) 577 mask |= EPOLLPRI; 578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 579 /* Active TCP fastopen socket with defer_connect 580 * Return EPOLLOUT so application can call write() 581 * in order for kernel to generate SYN+data 582 */ 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 } 585 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 586 smp_rmb(); 587 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 588 mask |= EPOLLERR; 589 590 return mask; 591 } 592 EXPORT_SYMBOL(tcp_poll); 593 594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 int answ; 598 bool slow; 599 600 switch (cmd) { 601 case SIOCINQ: 602 if (sk->sk_state == TCP_LISTEN) 603 return -EINVAL; 604 605 slow = lock_sock_fast(sk); 606 answ = tcp_inq(sk); 607 unlock_sock_fast(sk, slow); 608 break; 609 case SIOCATMARK: 610 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 611 break; 612 case SIOCOUTQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 617 answ = 0; 618 else 619 answ = tp->write_seq - tp->snd_una; 620 break; 621 case SIOCOUTQNSD: 622 if (sk->sk_state == TCP_LISTEN) 623 return -EINVAL; 624 625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 626 answ = 0; 627 else 628 answ = tp->write_seq - tp->snd_nxt; 629 break; 630 default: 631 return -ENOIOCTLCMD; 632 } 633 634 return put_user(answ, (int __user *)arg); 635 } 636 EXPORT_SYMBOL(tcp_ioctl); 637 638 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 639 { 640 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 641 tp->pushed_seq = tp->write_seq; 642 } 643 644 static inline bool forced_push(const struct tcp_sock *tp) 645 { 646 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 647 } 648 649 static void skb_entail(struct sock *sk, struct sk_buff *skb) 650 { 651 struct tcp_sock *tp = tcp_sk(sk); 652 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 653 654 skb->csum = 0; 655 tcb->seq = tcb->end_seq = tp->write_seq; 656 tcb->tcp_flags = TCPHDR_ACK; 657 tcb->sacked = 0; 658 __skb_header_release(skb); 659 tcp_add_write_queue_tail(sk, skb); 660 sk->sk_wmem_queued += skb->truesize; 661 sk_mem_charge(sk, skb->truesize); 662 if (tp->nonagle & TCP_NAGLE_PUSH) 663 tp->nonagle &= ~TCP_NAGLE_PUSH; 664 665 tcp_slow_start_after_idle_check(sk); 666 } 667 668 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 669 { 670 if (flags & MSG_OOB) 671 tp->snd_up = tp->write_seq; 672 } 673 674 /* If a not yet filled skb is pushed, do not send it if 675 * we have data packets in Qdisc or NIC queues : 676 * Because TX completion will happen shortly, it gives a chance 677 * to coalesce future sendmsg() payload into this skb, without 678 * need for a timer, and with no latency trade off. 679 * As packets containing data payload have a bigger truesize 680 * than pure acks (dataless) packets, the last checks prevent 681 * autocorking if we only have an ACK in Qdisc/NIC queues, 682 * or if TX completion was delayed after we processed ACK packet. 683 */ 684 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 685 int size_goal) 686 { 687 return skb->len < size_goal && 688 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 689 !tcp_rtx_queue_empty(sk) && 690 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 691 } 692 693 static void tcp_push(struct sock *sk, int flags, int mss_now, 694 int nonagle, int size_goal) 695 { 696 struct tcp_sock *tp = tcp_sk(sk); 697 struct sk_buff *skb; 698 699 skb = tcp_write_queue_tail(sk); 700 if (!skb) 701 return; 702 if (!(flags & MSG_MORE) || forced_push(tp)) 703 tcp_mark_push(tp, skb); 704 705 tcp_mark_urg(tp, flags); 706 707 if (tcp_should_autocork(sk, skb, size_goal)) { 708 709 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 710 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 711 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 712 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 713 } 714 /* It is possible TX completion already happened 715 * before we set TSQ_THROTTLED. 716 */ 717 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 718 return; 719 } 720 721 if (flags & MSG_MORE) 722 nonagle = TCP_NAGLE_CORK; 723 724 __tcp_push_pending_frames(sk, mss_now, nonagle); 725 } 726 727 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 728 unsigned int offset, size_t len) 729 { 730 struct tcp_splice_state *tss = rd_desc->arg.data; 731 int ret; 732 733 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 734 min(rd_desc->count, len), tss->flags); 735 if (ret > 0) 736 rd_desc->count -= ret; 737 return ret; 738 } 739 740 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 741 { 742 /* Store TCP splice context information in read_descriptor_t. */ 743 read_descriptor_t rd_desc = { 744 .arg.data = tss, 745 .count = tss->len, 746 }; 747 748 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 749 } 750 751 /** 752 * tcp_splice_read - splice data from TCP socket to a pipe 753 * @sock: socket to splice from 754 * @ppos: position (not valid) 755 * @pipe: pipe to splice to 756 * @len: number of bytes to splice 757 * @flags: splice modifier flags 758 * 759 * Description: 760 * Will read pages from given socket and fill them into a pipe. 761 * 762 **/ 763 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 764 struct pipe_inode_info *pipe, size_t len, 765 unsigned int flags) 766 { 767 struct sock *sk = sock->sk; 768 struct tcp_splice_state tss = { 769 .pipe = pipe, 770 .len = len, 771 .flags = flags, 772 }; 773 long timeo; 774 ssize_t spliced; 775 int ret; 776 777 sock_rps_record_flow(sk); 778 /* 779 * We can't seek on a socket input 780 */ 781 if (unlikely(*ppos)) 782 return -ESPIPE; 783 784 ret = spliced = 0; 785 786 lock_sock(sk); 787 788 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 789 while (tss.len) { 790 ret = __tcp_splice_read(sk, &tss); 791 if (ret < 0) 792 break; 793 else if (!ret) { 794 if (spliced) 795 break; 796 if (sock_flag(sk, SOCK_DONE)) 797 break; 798 if (sk->sk_err) { 799 ret = sock_error(sk); 800 break; 801 } 802 if (sk->sk_shutdown & RCV_SHUTDOWN) 803 break; 804 if (sk->sk_state == TCP_CLOSE) { 805 /* 806 * This occurs when user tries to read 807 * from never connected socket. 808 */ 809 ret = -ENOTCONN; 810 break; 811 } 812 if (!timeo) { 813 ret = -EAGAIN; 814 break; 815 } 816 /* if __tcp_splice_read() got nothing while we have 817 * an skb in receive queue, we do not want to loop. 818 * This might happen with URG data. 819 */ 820 if (!skb_queue_empty(&sk->sk_receive_queue)) 821 break; 822 sk_wait_data(sk, &timeo, NULL); 823 if (signal_pending(current)) { 824 ret = sock_intr_errno(timeo); 825 break; 826 } 827 continue; 828 } 829 tss.len -= ret; 830 spliced += ret; 831 832 if (!timeo) 833 break; 834 release_sock(sk); 835 lock_sock(sk); 836 837 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 838 (sk->sk_shutdown & RCV_SHUTDOWN) || 839 signal_pending(current)) 840 break; 841 } 842 843 release_sock(sk); 844 845 if (spliced) 846 return spliced; 847 848 return ret; 849 } 850 EXPORT_SYMBOL(tcp_splice_read); 851 852 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 853 bool force_schedule) 854 { 855 struct sk_buff *skb; 856 857 if (likely(!size)) { 858 skb = sk->sk_tx_skb_cache; 859 if (skb) { 860 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 861 sk->sk_tx_skb_cache = NULL; 862 pskb_trim(skb, 0); 863 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 864 skb_shinfo(skb)->tx_flags = 0; 865 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 866 return skb; 867 } 868 } 869 /* The TCP header must be at least 32-bit aligned. */ 870 size = ALIGN(size, 4); 871 872 if (unlikely(tcp_under_memory_pressure(sk))) 873 sk_mem_reclaim_partial(sk); 874 875 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 876 if (likely(skb)) { 877 bool mem_scheduled; 878 879 if (force_schedule) { 880 mem_scheduled = true; 881 sk_forced_mem_schedule(sk, skb->truesize); 882 } else { 883 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 884 } 885 if (likely(mem_scheduled)) { 886 skb_reserve(skb, sk->sk_prot->max_header); 887 /* 888 * Make sure that we have exactly size bytes 889 * available to the caller, no more, no less. 890 */ 891 skb->reserved_tailroom = skb->end - skb->tail - size; 892 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 893 return skb; 894 } 895 __kfree_skb(skb); 896 } else { 897 sk->sk_prot->enter_memory_pressure(sk); 898 sk_stream_moderate_sndbuf(sk); 899 } 900 return NULL; 901 } 902 903 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 904 int large_allowed) 905 { 906 struct tcp_sock *tp = tcp_sk(sk); 907 u32 new_size_goal, size_goal; 908 909 if (!large_allowed) 910 return mss_now; 911 912 /* Note : tcp_tso_autosize() will eventually split this later */ 913 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 914 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 915 916 /* We try hard to avoid divides here */ 917 size_goal = tp->gso_segs * mss_now; 918 if (unlikely(new_size_goal < size_goal || 919 new_size_goal >= size_goal + mss_now)) { 920 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 921 sk->sk_gso_max_segs); 922 size_goal = tp->gso_segs * mss_now; 923 } 924 925 return max(size_goal, mss_now); 926 } 927 928 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 929 { 930 int mss_now; 931 932 mss_now = tcp_current_mss(sk); 933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 934 935 return mss_now; 936 } 937 938 /* In some cases, both sendpage() and sendmsg() could have added 939 * an skb to the write queue, but failed adding payload on it. 940 * We need to remove it to consume less memory, but more 941 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 942 * users. 943 */ 944 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 945 { 946 if (skb && !skb->len) { 947 tcp_unlink_write_queue(skb, sk); 948 if (tcp_write_queue_empty(sk)) 949 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 950 sk_wmem_free_skb(sk, skb); 951 } 952 } 953 954 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 955 size_t size, int flags) 956 { 957 struct tcp_sock *tp = tcp_sk(sk); 958 int mss_now, size_goal; 959 int err; 960 ssize_t copied; 961 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 962 963 if (IS_ENABLED(CONFIG_DEBUG_VM) && 964 WARN_ONCE(PageSlab(page), "page must not be a Slab one")) 965 return -EINVAL; 966 967 /* Wait for a connection to finish. One exception is TCP Fast Open 968 * (passive side) where data is allowed to be sent before a connection 969 * is fully established. 970 */ 971 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 972 !tcp_passive_fastopen(sk)) { 973 err = sk_stream_wait_connect(sk, &timeo); 974 if (err != 0) 975 goto out_err; 976 } 977 978 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 979 980 mss_now = tcp_send_mss(sk, &size_goal, flags); 981 copied = 0; 982 983 err = -EPIPE; 984 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 985 goto out_err; 986 987 while (size > 0) { 988 struct sk_buff *skb = tcp_write_queue_tail(sk); 989 int copy, i; 990 bool can_coalesce; 991 992 if (!skb || (copy = size_goal - skb->len) <= 0 || 993 !tcp_skb_can_collapse_to(skb)) { 994 new_segment: 995 if (!sk_stream_memory_free(sk)) 996 goto wait_for_sndbuf; 997 998 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 999 tcp_rtx_and_write_queues_empty(sk)); 1000 if (!skb) 1001 goto wait_for_memory; 1002 1003 #ifdef CONFIG_TLS_DEVICE 1004 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1005 #endif 1006 skb_entail(sk, skb); 1007 copy = size_goal; 1008 } 1009 1010 if (copy > size) 1011 copy = size; 1012 1013 i = skb_shinfo(skb)->nr_frags; 1014 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1015 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1016 tcp_mark_push(tp, skb); 1017 goto new_segment; 1018 } 1019 if (!sk_wmem_schedule(sk, copy)) 1020 goto wait_for_memory; 1021 1022 if (can_coalesce) { 1023 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1024 } else { 1025 get_page(page); 1026 skb_fill_page_desc(skb, i, page, offset, copy); 1027 } 1028 1029 if (!(flags & MSG_NO_SHARED_FRAGS)) 1030 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1031 1032 skb->len += copy; 1033 skb->data_len += copy; 1034 skb->truesize += copy; 1035 sk->sk_wmem_queued += copy; 1036 sk_mem_charge(sk, copy); 1037 skb->ip_summed = CHECKSUM_PARTIAL; 1038 tp->write_seq += copy; 1039 TCP_SKB_CB(skb)->end_seq += copy; 1040 tcp_skb_pcount_set(skb, 0); 1041 1042 if (!copied) 1043 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1044 1045 copied += copy; 1046 offset += copy; 1047 size -= copy; 1048 if (!size) 1049 goto out; 1050 1051 if (skb->len < size_goal || (flags & MSG_OOB)) 1052 continue; 1053 1054 if (forced_push(tp)) { 1055 tcp_mark_push(tp, skb); 1056 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1057 } else if (skb == tcp_send_head(sk)) 1058 tcp_push_one(sk, mss_now); 1059 continue; 1060 1061 wait_for_sndbuf: 1062 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1063 wait_for_memory: 1064 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1065 TCP_NAGLE_PUSH, size_goal); 1066 1067 err = sk_stream_wait_memory(sk, &timeo); 1068 if (err != 0) 1069 goto do_error; 1070 1071 mss_now = tcp_send_mss(sk, &size_goal, flags); 1072 } 1073 1074 out: 1075 if (copied) { 1076 tcp_tx_timestamp(sk, sk->sk_tsflags); 1077 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1078 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1079 } 1080 return copied; 1081 1082 do_error: 1083 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1084 if (copied) 1085 goto out; 1086 out_err: 1087 /* make sure we wake any epoll edge trigger waiter */ 1088 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1089 err == -EAGAIN)) { 1090 sk->sk_write_space(sk); 1091 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1092 } 1093 return sk_stream_error(sk, flags, err); 1094 } 1095 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1096 1097 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1098 size_t size, int flags) 1099 { 1100 if (!(sk->sk_route_caps & NETIF_F_SG)) 1101 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1102 1103 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1104 1105 return do_tcp_sendpages(sk, page, offset, size, flags); 1106 } 1107 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1108 1109 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1110 size_t size, int flags) 1111 { 1112 int ret; 1113 1114 lock_sock(sk); 1115 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1116 release_sock(sk); 1117 1118 return ret; 1119 } 1120 EXPORT_SYMBOL(tcp_sendpage); 1121 1122 void tcp_free_fastopen_req(struct tcp_sock *tp) 1123 { 1124 if (tp->fastopen_req) { 1125 kfree(tp->fastopen_req); 1126 tp->fastopen_req = NULL; 1127 } 1128 } 1129 1130 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1131 int *copied, size_t size, 1132 struct ubuf_info *uarg) 1133 { 1134 struct tcp_sock *tp = tcp_sk(sk); 1135 struct inet_sock *inet = inet_sk(sk); 1136 struct sockaddr *uaddr = msg->msg_name; 1137 int err, flags; 1138 1139 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1140 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1141 uaddr->sa_family == AF_UNSPEC)) 1142 return -EOPNOTSUPP; 1143 if (tp->fastopen_req) 1144 return -EALREADY; /* Another Fast Open is in progress */ 1145 1146 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1147 sk->sk_allocation); 1148 if (unlikely(!tp->fastopen_req)) 1149 return -ENOBUFS; 1150 tp->fastopen_req->data = msg; 1151 tp->fastopen_req->size = size; 1152 tp->fastopen_req->uarg = uarg; 1153 1154 if (inet->defer_connect) { 1155 err = tcp_connect(sk); 1156 /* Same failure procedure as in tcp_v4/6_connect */ 1157 if (err) { 1158 tcp_set_state(sk, TCP_CLOSE); 1159 inet->inet_dport = 0; 1160 sk->sk_route_caps = 0; 1161 } 1162 } 1163 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1164 err = __inet_stream_connect(sk->sk_socket, uaddr, 1165 msg->msg_namelen, flags, 1); 1166 /* fastopen_req could already be freed in __inet_stream_connect 1167 * if the connection times out or gets rst 1168 */ 1169 if (tp->fastopen_req) { 1170 *copied = tp->fastopen_req->copied; 1171 tcp_free_fastopen_req(tp); 1172 inet->defer_connect = 0; 1173 } 1174 return err; 1175 } 1176 1177 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1178 { 1179 struct tcp_sock *tp = tcp_sk(sk); 1180 struct ubuf_info *uarg = NULL; 1181 struct sk_buff *skb; 1182 struct sockcm_cookie sockc; 1183 int flags, err, copied = 0; 1184 int mss_now = 0, size_goal, copied_syn = 0; 1185 bool process_backlog = false; 1186 bool zc = false; 1187 long timeo; 1188 1189 flags = msg->msg_flags; 1190 1191 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1192 skb = tcp_write_queue_tail(sk); 1193 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1194 if (!uarg) { 1195 err = -ENOBUFS; 1196 goto out_err; 1197 } 1198 1199 zc = sk->sk_route_caps & NETIF_F_SG; 1200 if (!zc) 1201 uarg->zerocopy = 0; 1202 } 1203 1204 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1205 !tp->repair) { 1206 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1207 if (err == -EINPROGRESS && copied_syn > 0) 1208 goto out; 1209 else if (err) 1210 goto out_err; 1211 } 1212 1213 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1214 1215 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1216 1217 /* Wait for a connection to finish. One exception is TCP Fast Open 1218 * (passive side) where data is allowed to be sent before a connection 1219 * is fully established. 1220 */ 1221 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1222 !tcp_passive_fastopen(sk)) { 1223 err = sk_stream_wait_connect(sk, &timeo); 1224 if (err != 0) 1225 goto do_error; 1226 } 1227 1228 if (unlikely(tp->repair)) { 1229 if (tp->repair_queue == TCP_RECV_QUEUE) { 1230 copied = tcp_send_rcvq(sk, msg, size); 1231 goto out_nopush; 1232 } 1233 1234 err = -EINVAL; 1235 if (tp->repair_queue == TCP_NO_QUEUE) 1236 goto out_err; 1237 1238 /* 'common' sending to sendq */ 1239 } 1240 1241 sockcm_init(&sockc, sk); 1242 if (msg->msg_controllen) { 1243 err = sock_cmsg_send(sk, msg, &sockc); 1244 if (unlikely(err)) { 1245 err = -EINVAL; 1246 goto out_err; 1247 } 1248 } 1249 1250 /* This should be in poll */ 1251 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1252 1253 /* Ok commence sending. */ 1254 copied = 0; 1255 1256 restart: 1257 mss_now = tcp_send_mss(sk, &size_goal, flags); 1258 1259 err = -EPIPE; 1260 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1261 goto do_error; 1262 1263 while (msg_data_left(msg)) { 1264 int copy = 0; 1265 1266 skb = tcp_write_queue_tail(sk); 1267 if (skb) 1268 copy = size_goal - skb->len; 1269 1270 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1271 bool first_skb; 1272 1273 new_segment: 1274 if (!sk_stream_memory_free(sk)) 1275 goto wait_for_sndbuf; 1276 1277 if (process_backlog && sk_flush_backlog(sk)) { 1278 process_backlog = false; 1279 goto restart; 1280 } 1281 first_skb = tcp_rtx_and_write_queues_empty(sk); 1282 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1283 first_skb); 1284 if (!skb) 1285 goto wait_for_memory; 1286 1287 process_backlog = true; 1288 skb->ip_summed = CHECKSUM_PARTIAL; 1289 1290 skb_entail(sk, skb); 1291 copy = size_goal; 1292 1293 /* All packets are restored as if they have 1294 * already been sent. skb_mstamp_ns isn't set to 1295 * avoid wrong rtt estimation. 1296 */ 1297 if (tp->repair) 1298 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1299 } 1300 1301 /* Try to append data to the end of skb. */ 1302 if (copy > msg_data_left(msg)) 1303 copy = msg_data_left(msg); 1304 1305 /* Where to copy to? */ 1306 if (skb_availroom(skb) > 0 && !zc) { 1307 /* We have some space in skb head. Superb! */ 1308 copy = min_t(int, copy, skb_availroom(skb)); 1309 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1310 if (err) 1311 goto do_fault; 1312 } else if (!zc) { 1313 bool merge = true; 1314 int i = skb_shinfo(skb)->nr_frags; 1315 struct page_frag *pfrag = sk_page_frag(sk); 1316 1317 if (!sk_page_frag_refill(sk, pfrag)) 1318 goto wait_for_memory; 1319 1320 if (!skb_can_coalesce(skb, i, pfrag->page, 1321 pfrag->offset)) { 1322 if (i >= sysctl_max_skb_frags) { 1323 tcp_mark_push(tp, skb); 1324 goto new_segment; 1325 } 1326 merge = false; 1327 } 1328 1329 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1330 1331 if (!sk_wmem_schedule(sk, copy)) 1332 goto wait_for_memory; 1333 1334 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1335 pfrag->page, 1336 pfrag->offset, 1337 copy); 1338 if (err) 1339 goto do_error; 1340 1341 /* Update the skb. */ 1342 if (merge) { 1343 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1344 } else { 1345 skb_fill_page_desc(skb, i, pfrag->page, 1346 pfrag->offset, copy); 1347 page_ref_inc(pfrag->page); 1348 } 1349 pfrag->offset += copy; 1350 } else { 1351 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1352 if (err == -EMSGSIZE || err == -EEXIST) { 1353 tcp_mark_push(tp, skb); 1354 goto new_segment; 1355 } 1356 if (err < 0) 1357 goto do_error; 1358 copy = err; 1359 } 1360 1361 if (!copied) 1362 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1363 1364 tp->write_seq += copy; 1365 TCP_SKB_CB(skb)->end_seq += copy; 1366 tcp_skb_pcount_set(skb, 0); 1367 1368 copied += copy; 1369 if (!msg_data_left(msg)) { 1370 if (unlikely(flags & MSG_EOR)) 1371 TCP_SKB_CB(skb)->eor = 1; 1372 goto out; 1373 } 1374 1375 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1376 continue; 1377 1378 if (forced_push(tp)) { 1379 tcp_mark_push(tp, skb); 1380 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1381 } else if (skb == tcp_send_head(sk)) 1382 tcp_push_one(sk, mss_now); 1383 continue; 1384 1385 wait_for_sndbuf: 1386 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1387 wait_for_memory: 1388 if (copied) 1389 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1390 TCP_NAGLE_PUSH, size_goal); 1391 1392 err = sk_stream_wait_memory(sk, &timeo); 1393 if (err != 0) 1394 goto do_error; 1395 1396 mss_now = tcp_send_mss(sk, &size_goal, flags); 1397 } 1398 1399 out: 1400 if (copied) { 1401 tcp_tx_timestamp(sk, sockc.tsflags); 1402 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1403 } 1404 out_nopush: 1405 sock_zerocopy_put(uarg); 1406 return copied + copied_syn; 1407 1408 do_error: 1409 skb = tcp_write_queue_tail(sk); 1410 do_fault: 1411 tcp_remove_empty_skb(sk, skb); 1412 1413 if (copied + copied_syn) 1414 goto out; 1415 out_err: 1416 sock_zerocopy_put_abort(uarg, true); 1417 err = sk_stream_error(sk, flags, err); 1418 /* make sure we wake any epoll edge trigger waiter */ 1419 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1420 err == -EAGAIN)) { 1421 sk->sk_write_space(sk); 1422 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1423 } 1424 return err; 1425 } 1426 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1427 1428 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1429 { 1430 int ret; 1431 1432 lock_sock(sk); 1433 ret = tcp_sendmsg_locked(sk, msg, size); 1434 release_sock(sk); 1435 1436 return ret; 1437 } 1438 EXPORT_SYMBOL(tcp_sendmsg); 1439 1440 /* 1441 * Handle reading urgent data. BSD has very simple semantics for 1442 * this, no blocking and very strange errors 8) 1443 */ 1444 1445 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1446 { 1447 struct tcp_sock *tp = tcp_sk(sk); 1448 1449 /* No URG data to read. */ 1450 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1451 tp->urg_data == TCP_URG_READ) 1452 return -EINVAL; /* Yes this is right ! */ 1453 1454 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1455 return -ENOTCONN; 1456 1457 if (tp->urg_data & TCP_URG_VALID) { 1458 int err = 0; 1459 char c = tp->urg_data; 1460 1461 if (!(flags & MSG_PEEK)) 1462 tp->urg_data = TCP_URG_READ; 1463 1464 /* Read urgent data. */ 1465 msg->msg_flags |= MSG_OOB; 1466 1467 if (len > 0) { 1468 if (!(flags & MSG_TRUNC)) 1469 err = memcpy_to_msg(msg, &c, 1); 1470 len = 1; 1471 } else 1472 msg->msg_flags |= MSG_TRUNC; 1473 1474 return err ? -EFAULT : len; 1475 } 1476 1477 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1478 return 0; 1479 1480 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1481 * the available implementations agree in this case: 1482 * this call should never block, independent of the 1483 * blocking state of the socket. 1484 * Mike <pall@rz.uni-karlsruhe.de> 1485 */ 1486 return -EAGAIN; 1487 } 1488 1489 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1490 { 1491 struct sk_buff *skb; 1492 int copied = 0, err = 0; 1493 1494 /* XXX -- need to support SO_PEEK_OFF */ 1495 1496 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1497 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1498 if (err) 1499 return err; 1500 copied += skb->len; 1501 } 1502 1503 skb_queue_walk(&sk->sk_write_queue, skb) { 1504 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1505 if (err) 1506 break; 1507 1508 copied += skb->len; 1509 } 1510 1511 return err ?: copied; 1512 } 1513 1514 /* Clean up the receive buffer for full frames taken by the user, 1515 * then send an ACK if necessary. COPIED is the number of bytes 1516 * tcp_recvmsg has given to the user so far, it speeds up the 1517 * calculation of whether or not we must ACK for the sake of 1518 * a window update. 1519 */ 1520 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1521 { 1522 struct tcp_sock *tp = tcp_sk(sk); 1523 bool time_to_ack = false; 1524 1525 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1526 1527 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1528 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1529 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1530 1531 if (inet_csk_ack_scheduled(sk)) { 1532 const struct inet_connection_sock *icsk = inet_csk(sk); 1533 /* Delayed ACKs frequently hit locked sockets during bulk 1534 * receive. */ 1535 if (icsk->icsk_ack.blocked || 1536 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1537 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1538 /* 1539 * If this read emptied read buffer, we send ACK, if 1540 * connection is not bidirectional, user drained 1541 * receive buffer and there was a small segment 1542 * in queue. 1543 */ 1544 (copied > 0 && 1545 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1546 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1547 !inet_csk_in_pingpong_mode(sk))) && 1548 !atomic_read(&sk->sk_rmem_alloc))) 1549 time_to_ack = true; 1550 } 1551 1552 /* We send an ACK if we can now advertise a non-zero window 1553 * which has been raised "significantly". 1554 * 1555 * Even if window raised up to infinity, do not send window open ACK 1556 * in states, where we will not receive more. It is useless. 1557 */ 1558 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1559 __u32 rcv_window_now = tcp_receive_window(tp); 1560 1561 /* Optimize, __tcp_select_window() is not cheap. */ 1562 if (2*rcv_window_now <= tp->window_clamp) { 1563 __u32 new_window = __tcp_select_window(sk); 1564 1565 /* Send ACK now, if this read freed lots of space 1566 * in our buffer. Certainly, new_window is new window. 1567 * We can advertise it now, if it is not less than current one. 1568 * "Lots" means "at least twice" here. 1569 */ 1570 if (new_window && new_window >= 2 * rcv_window_now) 1571 time_to_ack = true; 1572 } 1573 } 1574 if (time_to_ack) 1575 tcp_send_ack(sk); 1576 } 1577 1578 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1579 { 1580 struct sk_buff *skb; 1581 u32 offset; 1582 1583 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1584 offset = seq - TCP_SKB_CB(skb)->seq; 1585 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1586 pr_err_once("%s: found a SYN, please report !\n", __func__); 1587 offset--; 1588 } 1589 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1590 *off = offset; 1591 return skb; 1592 } 1593 /* This looks weird, but this can happen if TCP collapsing 1594 * splitted a fat GRO packet, while we released socket lock 1595 * in skb_splice_bits() 1596 */ 1597 sk_eat_skb(sk, skb); 1598 } 1599 return NULL; 1600 } 1601 1602 /* 1603 * This routine provides an alternative to tcp_recvmsg() for routines 1604 * that would like to handle copying from skbuffs directly in 'sendfile' 1605 * fashion. 1606 * Note: 1607 * - It is assumed that the socket was locked by the caller. 1608 * - The routine does not block. 1609 * - At present, there is no support for reading OOB data 1610 * or for 'peeking' the socket using this routine 1611 * (although both would be easy to implement). 1612 */ 1613 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1614 sk_read_actor_t recv_actor) 1615 { 1616 struct sk_buff *skb; 1617 struct tcp_sock *tp = tcp_sk(sk); 1618 u32 seq = tp->copied_seq; 1619 u32 offset; 1620 int copied = 0; 1621 1622 if (sk->sk_state == TCP_LISTEN) 1623 return -ENOTCONN; 1624 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1625 if (offset < skb->len) { 1626 int used; 1627 size_t len; 1628 1629 len = skb->len - offset; 1630 /* Stop reading if we hit a patch of urgent data */ 1631 if (tp->urg_data) { 1632 u32 urg_offset = tp->urg_seq - seq; 1633 if (urg_offset < len) 1634 len = urg_offset; 1635 if (!len) 1636 break; 1637 } 1638 used = recv_actor(desc, skb, offset, len); 1639 if (used <= 0) { 1640 if (!copied) 1641 copied = used; 1642 break; 1643 } else if (used <= len) { 1644 seq += used; 1645 copied += used; 1646 offset += used; 1647 } 1648 /* If recv_actor drops the lock (e.g. TCP splice 1649 * receive) the skb pointer might be invalid when 1650 * getting here: tcp_collapse might have deleted it 1651 * while aggregating skbs from the socket queue. 1652 */ 1653 skb = tcp_recv_skb(sk, seq - 1, &offset); 1654 if (!skb) 1655 break; 1656 /* TCP coalescing might have appended data to the skb. 1657 * Try to splice more frags 1658 */ 1659 if (offset + 1 != skb->len) 1660 continue; 1661 } 1662 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1663 sk_eat_skb(sk, skb); 1664 ++seq; 1665 break; 1666 } 1667 sk_eat_skb(sk, skb); 1668 if (!desc->count) 1669 break; 1670 tp->copied_seq = seq; 1671 } 1672 tp->copied_seq = seq; 1673 1674 tcp_rcv_space_adjust(sk); 1675 1676 /* Clean up data we have read: This will do ACK frames. */ 1677 if (copied > 0) { 1678 tcp_recv_skb(sk, seq, &offset); 1679 tcp_cleanup_rbuf(sk, copied); 1680 } 1681 return copied; 1682 } 1683 EXPORT_SYMBOL(tcp_read_sock); 1684 1685 int tcp_peek_len(struct socket *sock) 1686 { 1687 return tcp_inq(sock->sk); 1688 } 1689 EXPORT_SYMBOL(tcp_peek_len); 1690 1691 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1692 int tcp_set_rcvlowat(struct sock *sk, int val) 1693 { 1694 int cap; 1695 1696 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1697 cap = sk->sk_rcvbuf >> 1; 1698 else 1699 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1700 val = min(val, cap); 1701 sk->sk_rcvlowat = val ? : 1; 1702 1703 /* Check if we need to signal EPOLLIN right now */ 1704 tcp_data_ready(sk); 1705 1706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1707 return 0; 1708 1709 val <<= 1; 1710 if (val > sk->sk_rcvbuf) { 1711 sk->sk_rcvbuf = val; 1712 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1713 } 1714 return 0; 1715 } 1716 EXPORT_SYMBOL(tcp_set_rcvlowat); 1717 1718 #ifdef CONFIG_MMU 1719 static const struct vm_operations_struct tcp_vm_ops = { 1720 }; 1721 1722 int tcp_mmap(struct file *file, struct socket *sock, 1723 struct vm_area_struct *vma) 1724 { 1725 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1726 return -EPERM; 1727 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1728 1729 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1730 vma->vm_flags |= VM_MIXEDMAP; 1731 1732 vma->vm_ops = &tcp_vm_ops; 1733 return 0; 1734 } 1735 EXPORT_SYMBOL(tcp_mmap); 1736 1737 static int tcp_zerocopy_receive(struct sock *sk, 1738 struct tcp_zerocopy_receive *zc) 1739 { 1740 unsigned long address = (unsigned long)zc->address; 1741 const skb_frag_t *frags = NULL; 1742 u32 length = 0, seq, offset; 1743 struct vm_area_struct *vma; 1744 struct sk_buff *skb = NULL; 1745 struct tcp_sock *tp; 1746 int inq; 1747 int ret; 1748 1749 if (address & (PAGE_SIZE - 1) || address != zc->address) 1750 return -EINVAL; 1751 1752 if (sk->sk_state == TCP_LISTEN) 1753 return -ENOTCONN; 1754 1755 sock_rps_record_flow(sk); 1756 1757 down_read(¤t->mm->mmap_sem); 1758 1759 ret = -EINVAL; 1760 vma = find_vma(current->mm, address); 1761 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1762 goto out; 1763 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1764 1765 tp = tcp_sk(sk); 1766 seq = tp->copied_seq; 1767 inq = tcp_inq(sk); 1768 zc->length = min_t(u32, zc->length, inq); 1769 zc->length &= ~(PAGE_SIZE - 1); 1770 if (zc->length) { 1771 zap_page_range(vma, address, zc->length); 1772 zc->recv_skip_hint = 0; 1773 } else { 1774 zc->recv_skip_hint = inq; 1775 } 1776 ret = 0; 1777 while (length + PAGE_SIZE <= zc->length) { 1778 if (zc->recv_skip_hint < PAGE_SIZE) { 1779 if (skb) { 1780 skb = skb->next; 1781 offset = seq - TCP_SKB_CB(skb)->seq; 1782 } else { 1783 skb = tcp_recv_skb(sk, seq, &offset); 1784 } 1785 1786 zc->recv_skip_hint = skb->len - offset; 1787 offset -= skb_headlen(skb); 1788 if ((int)offset < 0 || skb_has_frag_list(skb)) 1789 break; 1790 frags = skb_shinfo(skb)->frags; 1791 while (offset) { 1792 if (frags->size > offset) 1793 goto out; 1794 offset -= frags->size; 1795 frags++; 1796 } 1797 } 1798 if (frags->size != PAGE_SIZE || frags->page_offset) { 1799 int remaining = zc->recv_skip_hint; 1800 1801 while (remaining && (frags->size != PAGE_SIZE || 1802 frags->page_offset)) { 1803 remaining -= frags->size; 1804 frags++; 1805 } 1806 zc->recv_skip_hint -= remaining; 1807 break; 1808 } 1809 ret = vm_insert_page(vma, address + length, 1810 skb_frag_page(frags)); 1811 if (ret) 1812 break; 1813 length += PAGE_SIZE; 1814 seq += PAGE_SIZE; 1815 zc->recv_skip_hint -= PAGE_SIZE; 1816 frags++; 1817 } 1818 out: 1819 up_read(¤t->mm->mmap_sem); 1820 if (length) { 1821 tp->copied_seq = seq; 1822 tcp_rcv_space_adjust(sk); 1823 1824 /* Clean up data we have read: This will do ACK frames. */ 1825 tcp_recv_skb(sk, seq, &offset); 1826 tcp_cleanup_rbuf(sk, length); 1827 ret = 0; 1828 if (length == zc->length) 1829 zc->recv_skip_hint = 0; 1830 } else { 1831 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1832 ret = -EIO; 1833 } 1834 zc->length = length; 1835 return ret; 1836 } 1837 #endif 1838 1839 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1840 struct scm_timestamping_internal *tss) 1841 { 1842 if (skb->tstamp) 1843 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1844 else 1845 tss->ts[0] = (struct timespec64) {0}; 1846 1847 if (skb_hwtstamps(skb)->hwtstamp) 1848 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1849 else 1850 tss->ts[2] = (struct timespec64) {0}; 1851 } 1852 1853 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1854 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1855 struct scm_timestamping_internal *tss) 1856 { 1857 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1858 bool has_timestamping = false; 1859 1860 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1861 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1862 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1863 if (new_tstamp) { 1864 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec}; 1865 1866 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1867 sizeof(kts), &kts); 1868 } else { 1869 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]); 1870 1871 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1872 sizeof(ts_old), &ts_old); 1873 } 1874 } else { 1875 if (new_tstamp) { 1876 struct __kernel_sock_timeval stv; 1877 1878 stv.tv_sec = tss->ts[0].tv_sec; 1879 stv.tv_usec = tss->ts[0].tv_nsec / 1000; 1880 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1881 sizeof(stv), &stv); 1882 } else { 1883 struct __kernel_old_timeval tv; 1884 1885 tv.tv_sec = tss->ts[0].tv_sec; 1886 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1887 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1888 sizeof(tv), &tv); 1889 } 1890 } 1891 } 1892 1893 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1894 has_timestamping = true; 1895 else 1896 tss->ts[0] = (struct timespec64) {0}; 1897 } 1898 1899 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1900 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1901 has_timestamping = true; 1902 else 1903 tss->ts[2] = (struct timespec64) {0}; 1904 } 1905 1906 if (has_timestamping) { 1907 tss->ts[1] = (struct timespec64) {0}; 1908 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1909 put_cmsg_scm_timestamping64(msg, tss); 1910 else 1911 put_cmsg_scm_timestamping(msg, tss); 1912 } 1913 } 1914 1915 static int tcp_inq_hint(struct sock *sk) 1916 { 1917 const struct tcp_sock *tp = tcp_sk(sk); 1918 u32 copied_seq = READ_ONCE(tp->copied_seq); 1919 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1920 int inq; 1921 1922 inq = rcv_nxt - copied_seq; 1923 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1924 lock_sock(sk); 1925 inq = tp->rcv_nxt - tp->copied_seq; 1926 release_sock(sk); 1927 } 1928 /* After receiving a FIN, tell the user-space to continue reading 1929 * by returning a non-zero inq. 1930 */ 1931 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 1932 inq = 1; 1933 return inq; 1934 } 1935 1936 /* 1937 * This routine copies from a sock struct into the user buffer. 1938 * 1939 * Technical note: in 2.3 we work on _locked_ socket, so that 1940 * tricks with *seq access order and skb->users are not required. 1941 * Probably, code can be easily improved even more. 1942 */ 1943 1944 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1945 int flags, int *addr_len) 1946 { 1947 struct tcp_sock *tp = tcp_sk(sk); 1948 int copied = 0; 1949 u32 peek_seq; 1950 u32 *seq; 1951 unsigned long used; 1952 int err, inq; 1953 int target; /* Read at least this many bytes */ 1954 long timeo; 1955 struct sk_buff *skb, *last; 1956 u32 urg_hole = 0; 1957 struct scm_timestamping_internal tss; 1958 bool has_tss = false; 1959 bool has_cmsg; 1960 1961 if (unlikely(flags & MSG_ERRQUEUE)) 1962 return inet_recv_error(sk, msg, len, addr_len); 1963 1964 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1965 (sk->sk_state == TCP_ESTABLISHED)) 1966 sk_busy_loop(sk, nonblock); 1967 1968 lock_sock(sk); 1969 1970 err = -ENOTCONN; 1971 if (sk->sk_state == TCP_LISTEN) 1972 goto out; 1973 1974 has_cmsg = tp->recvmsg_inq; 1975 timeo = sock_rcvtimeo(sk, nonblock); 1976 1977 /* Urgent data needs to be handled specially. */ 1978 if (flags & MSG_OOB) 1979 goto recv_urg; 1980 1981 if (unlikely(tp->repair)) { 1982 err = -EPERM; 1983 if (!(flags & MSG_PEEK)) 1984 goto out; 1985 1986 if (tp->repair_queue == TCP_SEND_QUEUE) 1987 goto recv_sndq; 1988 1989 err = -EINVAL; 1990 if (tp->repair_queue == TCP_NO_QUEUE) 1991 goto out; 1992 1993 /* 'common' recv queue MSG_PEEK-ing */ 1994 } 1995 1996 seq = &tp->copied_seq; 1997 if (flags & MSG_PEEK) { 1998 peek_seq = tp->copied_seq; 1999 seq = &peek_seq; 2000 } 2001 2002 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2003 2004 do { 2005 u32 offset; 2006 2007 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2008 if (tp->urg_data && tp->urg_seq == *seq) { 2009 if (copied) 2010 break; 2011 if (signal_pending(current)) { 2012 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2013 break; 2014 } 2015 } 2016 2017 /* Next get a buffer. */ 2018 2019 last = skb_peek_tail(&sk->sk_receive_queue); 2020 skb_queue_walk(&sk->sk_receive_queue, skb) { 2021 last = skb; 2022 /* Now that we have two receive queues this 2023 * shouldn't happen. 2024 */ 2025 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2026 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2027 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2028 flags)) 2029 break; 2030 2031 offset = *seq - TCP_SKB_CB(skb)->seq; 2032 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2033 pr_err_once("%s: found a SYN, please report !\n", __func__); 2034 offset--; 2035 } 2036 if (offset < skb->len) 2037 goto found_ok_skb; 2038 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2039 goto found_fin_ok; 2040 WARN(!(flags & MSG_PEEK), 2041 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2042 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2043 } 2044 2045 /* Well, if we have backlog, try to process it now yet. */ 2046 2047 if (copied >= target && !sk->sk_backlog.tail) 2048 break; 2049 2050 if (copied) { 2051 if (sk->sk_err || 2052 sk->sk_state == TCP_CLOSE || 2053 (sk->sk_shutdown & RCV_SHUTDOWN) || 2054 !timeo || 2055 signal_pending(current)) 2056 break; 2057 } else { 2058 if (sock_flag(sk, SOCK_DONE)) 2059 break; 2060 2061 if (sk->sk_err) { 2062 copied = sock_error(sk); 2063 break; 2064 } 2065 2066 if (sk->sk_shutdown & RCV_SHUTDOWN) 2067 break; 2068 2069 if (sk->sk_state == TCP_CLOSE) { 2070 /* This occurs when user tries to read 2071 * from never connected socket. 2072 */ 2073 copied = -ENOTCONN; 2074 break; 2075 } 2076 2077 if (!timeo) { 2078 copied = -EAGAIN; 2079 break; 2080 } 2081 2082 if (signal_pending(current)) { 2083 copied = sock_intr_errno(timeo); 2084 break; 2085 } 2086 } 2087 2088 tcp_cleanup_rbuf(sk, copied); 2089 2090 if (copied >= target) { 2091 /* Do not sleep, just process backlog. */ 2092 release_sock(sk); 2093 lock_sock(sk); 2094 } else { 2095 sk_wait_data(sk, &timeo, last); 2096 } 2097 2098 if ((flags & MSG_PEEK) && 2099 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2100 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2101 current->comm, 2102 task_pid_nr(current)); 2103 peek_seq = tp->copied_seq; 2104 } 2105 continue; 2106 2107 found_ok_skb: 2108 /* Ok so how much can we use? */ 2109 used = skb->len - offset; 2110 if (len < used) 2111 used = len; 2112 2113 /* Do we have urgent data here? */ 2114 if (tp->urg_data) { 2115 u32 urg_offset = tp->urg_seq - *seq; 2116 if (urg_offset < used) { 2117 if (!urg_offset) { 2118 if (!sock_flag(sk, SOCK_URGINLINE)) { 2119 ++*seq; 2120 urg_hole++; 2121 offset++; 2122 used--; 2123 if (!used) 2124 goto skip_copy; 2125 } 2126 } else 2127 used = urg_offset; 2128 } 2129 } 2130 2131 if (!(flags & MSG_TRUNC)) { 2132 err = skb_copy_datagram_msg(skb, offset, msg, used); 2133 if (err) { 2134 /* Exception. Bailout! */ 2135 if (!copied) 2136 copied = -EFAULT; 2137 break; 2138 } 2139 } 2140 2141 *seq += used; 2142 copied += used; 2143 len -= used; 2144 2145 tcp_rcv_space_adjust(sk); 2146 2147 skip_copy: 2148 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2149 tp->urg_data = 0; 2150 tcp_fast_path_check(sk); 2151 } 2152 if (used + offset < skb->len) 2153 continue; 2154 2155 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2156 tcp_update_recv_tstamps(skb, &tss); 2157 has_tss = true; 2158 has_cmsg = true; 2159 } 2160 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2161 goto found_fin_ok; 2162 if (!(flags & MSG_PEEK)) 2163 sk_eat_skb(sk, skb); 2164 continue; 2165 2166 found_fin_ok: 2167 /* Process the FIN. */ 2168 ++*seq; 2169 if (!(flags & MSG_PEEK)) 2170 sk_eat_skb(sk, skb); 2171 break; 2172 } while (len > 0); 2173 2174 /* According to UNIX98, msg_name/msg_namelen are ignored 2175 * on connected socket. I was just happy when found this 8) --ANK 2176 */ 2177 2178 /* Clean up data we have read: This will do ACK frames. */ 2179 tcp_cleanup_rbuf(sk, copied); 2180 2181 release_sock(sk); 2182 2183 if (has_cmsg) { 2184 if (has_tss) 2185 tcp_recv_timestamp(msg, sk, &tss); 2186 if (tp->recvmsg_inq) { 2187 inq = tcp_inq_hint(sk); 2188 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2189 } 2190 } 2191 2192 return copied; 2193 2194 out: 2195 release_sock(sk); 2196 return err; 2197 2198 recv_urg: 2199 err = tcp_recv_urg(sk, msg, len, flags); 2200 goto out; 2201 2202 recv_sndq: 2203 err = tcp_peek_sndq(sk, msg, len); 2204 goto out; 2205 } 2206 EXPORT_SYMBOL(tcp_recvmsg); 2207 2208 void tcp_set_state(struct sock *sk, int state) 2209 { 2210 int oldstate = sk->sk_state; 2211 2212 /* We defined a new enum for TCP states that are exported in BPF 2213 * so as not force the internal TCP states to be frozen. The 2214 * following checks will detect if an internal state value ever 2215 * differs from the BPF value. If this ever happens, then we will 2216 * need to remap the internal value to the BPF value before calling 2217 * tcp_call_bpf_2arg. 2218 */ 2219 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2220 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2221 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2222 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2223 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2224 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2225 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2226 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2227 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2228 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2229 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2230 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2231 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2232 2233 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2234 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2235 2236 switch (state) { 2237 case TCP_ESTABLISHED: 2238 if (oldstate != TCP_ESTABLISHED) 2239 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2240 break; 2241 2242 case TCP_CLOSE: 2243 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2244 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2245 2246 sk->sk_prot->unhash(sk); 2247 if (inet_csk(sk)->icsk_bind_hash && 2248 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2249 inet_put_port(sk); 2250 /* fall through */ 2251 default: 2252 if (oldstate == TCP_ESTABLISHED) 2253 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2254 } 2255 2256 /* Change state AFTER socket is unhashed to avoid closed 2257 * socket sitting in hash tables. 2258 */ 2259 inet_sk_state_store(sk, state); 2260 } 2261 EXPORT_SYMBOL_GPL(tcp_set_state); 2262 2263 /* 2264 * State processing on a close. This implements the state shift for 2265 * sending our FIN frame. Note that we only send a FIN for some 2266 * states. A shutdown() may have already sent the FIN, or we may be 2267 * closed. 2268 */ 2269 2270 static const unsigned char new_state[16] = { 2271 /* current state: new state: action: */ 2272 [0 /* (Invalid) */] = TCP_CLOSE, 2273 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2274 [TCP_SYN_SENT] = TCP_CLOSE, 2275 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2276 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2277 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2278 [TCP_TIME_WAIT] = TCP_CLOSE, 2279 [TCP_CLOSE] = TCP_CLOSE, 2280 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2281 [TCP_LAST_ACK] = TCP_LAST_ACK, 2282 [TCP_LISTEN] = TCP_CLOSE, 2283 [TCP_CLOSING] = TCP_CLOSING, 2284 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2285 }; 2286 2287 static int tcp_close_state(struct sock *sk) 2288 { 2289 int next = (int)new_state[sk->sk_state]; 2290 int ns = next & TCP_STATE_MASK; 2291 2292 tcp_set_state(sk, ns); 2293 2294 return next & TCP_ACTION_FIN; 2295 } 2296 2297 /* 2298 * Shutdown the sending side of a connection. Much like close except 2299 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2300 */ 2301 2302 void tcp_shutdown(struct sock *sk, int how) 2303 { 2304 /* We need to grab some memory, and put together a FIN, 2305 * and then put it into the queue to be sent. 2306 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2307 */ 2308 if (!(how & SEND_SHUTDOWN)) 2309 return; 2310 2311 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2312 if ((1 << sk->sk_state) & 2313 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2314 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2315 /* Clear out any half completed packets. FIN if needed. */ 2316 if (tcp_close_state(sk)) 2317 tcp_send_fin(sk); 2318 } 2319 } 2320 EXPORT_SYMBOL(tcp_shutdown); 2321 2322 bool tcp_check_oom(struct sock *sk, int shift) 2323 { 2324 bool too_many_orphans, out_of_socket_memory; 2325 2326 too_many_orphans = tcp_too_many_orphans(sk, shift); 2327 out_of_socket_memory = tcp_out_of_memory(sk); 2328 2329 if (too_many_orphans) 2330 net_info_ratelimited("too many orphaned sockets\n"); 2331 if (out_of_socket_memory) 2332 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2333 return too_many_orphans || out_of_socket_memory; 2334 } 2335 2336 void tcp_close(struct sock *sk, long timeout) 2337 { 2338 struct sk_buff *skb; 2339 int data_was_unread = 0; 2340 int state; 2341 2342 lock_sock(sk); 2343 sk->sk_shutdown = SHUTDOWN_MASK; 2344 2345 if (sk->sk_state == TCP_LISTEN) { 2346 tcp_set_state(sk, TCP_CLOSE); 2347 2348 /* Special case. */ 2349 inet_csk_listen_stop(sk); 2350 2351 goto adjudge_to_death; 2352 } 2353 2354 /* We need to flush the recv. buffs. We do this only on the 2355 * descriptor close, not protocol-sourced closes, because the 2356 * reader process may not have drained the data yet! 2357 */ 2358 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2359 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2360 2361 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2362 len--; 2363 data_was_unread += len; 2364 __kfree_skb(skb); 2365 } 2366 2367 sk_mem_reclaim(sk); 2368 2369 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2370 if (sk->sk_state == TCP_CLOSE) 2371 goto adjudge_to_death; 2372 2373 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2374 * data was lost. To witness the awful effects of the old behavior of 2375 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2376 * GET in an FTP client, suspend the process, wait for the client to 2377 * advertise a zero window, then kill -9 the FTP client, wheee... 2378 * Note: timeout is always zero in such a case. 2379 */ 2380 if (unlikely(tcp_sk(sk)->repair)) { 2381 sk->sk_prot->disconnect(sk, 0); 2382 } else if (data_was_unread) { 2383 /* Unread data was tossed, zap the connection. */ 2384 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2385 tcp_set_state(sk, TCP_CLOSE); 2386 tcp_send_active_reset(sk, sk->sk_allocation); 2387 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2388 /* Check zero linger _after_ checking for unread data. */ 2389 sk->sk_prot->disconnect(sk, 0); 2390 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2391 } else if (tcp_close_state(sk)) { 2392 /* We FIN if the application ate all the data before 2393 * zapping the connection. 2394 */ 2395 2396 /* RED-PEN. Formally speaking, we have broken TCP state 2397 * machine. State transitions: 2398 * 2399 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2400 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2401 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2402 * 2403 * are legal only when FIN has been sent (i.e. in window), 2404 * rather than queued out of window. Purists blame. 2405 * 2406 * F.e. "RFC state" is ESTABLISHED, 2407 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2408 * 2409 * The visible declinations are that sometimes 2410 * we enter time-wait state, when it is not required really 2411 * (harmless), do not send active resets, when they are 2412 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2413 * they look as CLOSING or LAST_ACK for Linux) 2414 * Probably, I missed some more holelets. 2415 * --ANK 2416 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2417 * in a single packet! (May consider it later but will 2418 * probably need API support or TCP_CORK SYN-ACK until 2419 * data is written and socket is closed.) 2420 */ 2421 tcp_send_fin(sk); 2422 } 2423 2424 sk_stream_wait_close(sk, timeout); 2425 2426 adjudge_to_death: 2427 state = sk->sk_state; 2428 sock_hold(sk); 2429 sock_orphan(sk); 2430 2431 local_bh_disable(); 2432 bh_lock_sock(sk); 2433 /* remove backlog if any, without releasing ownership. */ 2434 __release_sock(sk); 2435 2436 percpu_counter_inc(sk->sk_prot->orphan_count); 2437 2438 /* Have we already been destroyed by a softirq or backlog? */ 2439 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2440 goto out; 2441 2442 /* This is a (useful) BSD violating of the RFC. There is a 2443 * problem with TCP as specified in that the other end could 2444 * keep a socket open forever with no application left this end. 2445 * We use a 1 minute timeout (about the same as BSD) then kill 2446 * our end. If they send after that then tough - BUT: long enough 2447 * that we won't make the old 4*rto = almost no time - whoops 2448 * reset mistake. 2449 * 2450 * Nope, it was not mistake. It is really desired behaviour 2451 * f.e. on http servers, when such sockets are useless, but 2452 * consume significant resources. Let's do it with special 2453 * linger2 option. --ANK 2454 */ 2455 2456 if (sk->sk_state == TCP_FIN_WAIT2) { 2457 struct tcp_sock *tp = tcp_sk(sk); 2458 if (tp->linger2 < 0) { 2459 tcp_set_state(sk, TCP_CLOSE); 2460 tcp_send_active_reset(sk, GFP_ATOMIC); 2461 __NET_INC_STATS(sock_net(sk), 2462 LINUX_MIB_TCPABORTONLINGER); 2463 } else { 2464 const int tmo = tcp_fin_time(sk); 2465 2466 if (tmo > TCP_TIMEWAIT_LEN) { 2467 inet_csk_reset_keepalive_timer(sk, 2468 tmo - TCP_TIMEWAIT_LEN); 2469 } else { 2470 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2471 goto out; 2472 } 2473 } 2474 } 2475 if (sk->sk_state != TCP_CLOSE) { 2476 sk_mem_reclaim(sk); 2477 if (tcp_check_oom(sk, 0)) { 2478 tcp_set_state(sk, TCP_CLOSE); 2479 tcp_send_active_reset(sk, GFP_ATOMIC); 2480 __NET_INC_STATS(sock_net(sk), 2481 LINUX_MIB_TCPABORTONMEMORY); 2482 } else if (!check_net(sock_net(sk))) { 2483 /* Not possible to send reset; just close */ 2484 tcp_set_state(sk, TCP_CLOSE); 2485 } 2486 } 2487 2488 if (sk->sk_state == TCP_CLOSE) { 2489 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2490 /* We could get here with a non-NULL req if the socket is 2491 * aborted (e.g., closed with unread data) before 3WHS 2492 * finishes. 2493 */ 2494 if (req) 2495 reqsk_fastopen_remove(sk, req, false); 2496 inet_csk_destroy_sock(sk); 2497 } 2498 /* Otherwise, socket is reprieved until protocol close. */ 2499 2500 out: 2501 bh_unlock_sock(sk); 2502 local_bh_enable(); 2503 release_sock(sk); 2504 sock_put(sk); 2505 } 2506 EXPORT_SYMBOL(tcp_close); 2507 2508 /* These states need RST on ABORT according to RFC793 */ 2509 2510 static inline bool tcp_need_reset(int state) 2511 { 2512 return (1 << state) & 2513 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2514 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2515 } 2516 2517 static void tcp_rtx_queue_purge(struct sock *sk) 2518 { 2519 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2520 2521 while (p) { 2522 struct sk_buff *skb = rb_to_skb(p); 2523 2524 p = rb_next(p); 2525 /* Since we are deleting whole queue, no need to 2526 * list_del(&skb->tcp_tsorted_anchor) 2527 */ 2528 tcp_rtx_queue_unlink(skb, sk); 2529 sk_wmem_free_skb(sk, skb); 2530 } 2531 } 2532 2533 void tcp_write_queue_purge(struct sock *sk) 2534 { 2535 struct sk_buff *skb; 2536 2537 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2538 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2539 tcp_skb_tsorted_anchor_cleanup(skb); 2540 sk_wmem_free_skb(sk, skb); 2541 } 2542 tcp_rtx_queue_purge(sk); 2543 skb = sk->sk_tx_skb_cache; 2544 if (skb) { 2545 __kfree_skb(skb); 2546 sk->sk_tx_skb_cache = NULL; 2547 } 2548 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2549 sk_mem_reclaim(sk); 2550 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2551 tcp_sk(sk)->packets_out = 0; 2552 inet_csk(sk)->icsk_backoff = 0; 2553 } 2554 2555 int tcp_disconnect(struct sock *sk, int flags) 2556 { 2557 struct inet_sock *inet = inet_sk(sk); 2558 struct inet_connection_sock *icsk = inet_csk(sk); 2559 struct tcp_sock *tp = tcp_sk(sk); 2560 int old_state = sk->sk_state; 2561 2562 if (old_state != TCP_CLOSE) 2563 tcp_set_state(sk, TCP_CLOSE); 2564 2565 /* ABORT function of RFC793 */ 2566 if (old_state == TCP_LISTEN) { 2567 inet_csk_listen_stop(sk); 2568 } else if (unlikely(tp->repair)) { 2569 sk->sk_err = ECONNABORTED; 2570 } else if (tcp_need_reset(old_state) || 2571 (tp->snd_nxt != tp->write_seq && 2572 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2573 /* The last check adjusts for discrepancy of Linux wrt. RFC 2574 * states 2575 */ 2576 tcp_send_active_reset(sk, gfp_any()); 2577 sk->sk_err = ECONNRESET; 2578 } else if (old_state == TCP_SYN_SENT) 2579 sk->sk_err = ECONNRESET; 2580 2581 tcp_clear_xmit_timers(sk); 2582 __skb_queue_purge(&sk->sk_receive_queue); 2583 if (sk->sk_rx_skb_cache) { 2584 __kfree_skb(sk->sk_rx_skb_cache); 2585 sk->sk_rx_skb_cache = NULL; 2586 } 2587 tp->copied_seq = tp->rcv_nxt; 2588 tp->urg_data = 0; 2589 tcp_write_queue_purge(sk); 2590 tcp_fastopen_active_disable_ofo_check(sk); 2591 skb_rbtree_purge(&tp->out_of_order_queue); 2592 2593 inet->inet_dport = 0; 2594 2595 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2596 inet_reset_saddr(sk); 2597 2598 sk->sk_shutdown = 0; 2599 sock_reset_flag(sk, SOCK_DONE); 2600 tp->srtt_us = 0; 2601 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2602 tp->rcv_rtt_last_tsecr = 0; 2603 tp->write_seq += tp->max_window + 2; 2604 if (tp->write_seq == 0) 2605 tp->write_seq = 1; 2606 icsk->icsk_backoff = 0; 2607 tp->snd_cwnd = 2; 2608 icsk->icsk_probes_out = 0; 2609 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2610 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2611 tp->snd_cwnd = TCP_INIT_CWND; 2612 tp->snd_cwnd_cnt = 0; 2613 tp->window_clamp = 0; 2614 tp->delivered_ce = 0; 2615 tcp_set_ca_state(sk, TCP_CA_Open); 2616 tp->is_sack_reneg = 0; 2617 tcp_clear_retrans(tp); 2618 inet_csk_delack_init(sk); 2619 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2620 * issue in __tcp_select_window() 2621 */ 2622 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2623 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2624 __sk_dst_reset(sk); 2625 dst_release(sk->sk_rx_dst); 2626 sk->sk_rx_dst = NULL; 2627 tcp_saved_syn_free(tp); 2628 tp->compressed_ack = 0; 2629 tp->bytes_sent = 0; 2630 tp->bytes_acked = 0; 2631 tp->bytes_received = 0; 2632 tp->bytes_retrans = 0; 2633 tp->duplicate_sack[0].start_seq = 0; 2634 tp->duplicate_sack[0].end_seq = 0; 2635 tp->dsack_dups = 0; 2636 tp->reord_seen = 0; 2637 tp->retrans_out = 0; 2638 tp->sacked_out = 0; 2639 tp->tlp_high_seq = 0; 2640 tp->last_oow_ack_time = 0; 2641 /* There's a bubble in the pipe until at least the first ACK. */ 2642 tp->app_limited = ~0U; 2643 tp->rack.mstamp = 0; 2644 tp->rack.advanced = 0; 2645 tp->rack.reo_wnd_steps = 1; 2646 tp->rack.last_delivered = 0; 2647 tp->rack.reo_wnd_persist = 0; 2648 tp->rack.dsack_seen = 0; 2649 tp->syn_data_acked = 0; 2650 tp->rx_opt.saw_tstamp = 0; 2651 tp->rx_opt.dsack = 0; 2652 tp->rx_opt.num_sacks = 0; 2653 2654 2655 /* Clean up fastopen related fields */ 2656 tcp_free_fastopen_req(tp); 2657 inet->defer_connect = 0; 2658 2659 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2660 2661 if (sk->sk_frag.page) { 2662 put_page(sk->sk_frag.page); 2663 sk->sk_frag.page = NULL; 2664 sk->sk_frag.offset = 0; 2665 } 2666 2667 sk->sk_error_report(sk); 2668 return 0; 2669 } 2670 EXPORT_SYMBOL(tcp_disconnect); 2671 2672 static inline bool tcp_can_repair_sock(const struct sock *sk) 2673 { 2674 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2675 (sk->sk_state != TCP_LISTEN); 2676 } 2677 2678 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2679 { 2680 struct tcp_repair_window opt; 2681 2682 if (!tp->repair) 2683 return -EPERM; 2684 2685 if (len != sizeof(opt)) 2686 return -EINVAL; 2687 2688 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2689 return -EFAULT; 2690 2691 if (opt.max_window < opt.snd_wnd) 2692 return -EINVAL; 2693 2694 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2695 return -EINVAL; 2696 2697 if (after(opt.rcv_wup, tp->rcv_nxt)) 2698 return -EINVAL; 2699 2700 tp->snd_wl1 = opt.snd_wl1; 2701 tp->snd_wnd = opt.snd_wnd; 2702 tp->max_window = opt.max_window; 2703 2704 tp->rcv_wnd = opt.rcv_wnd; 2705 tp->rcv_wup = opt.rcv_wup; 2706 2707 return 0; 2708 } 2709 2710 static int tcp_repair_options_est(struct sock *sk, 2711 struct tcp_repair_opt __user *optbuf, unsigned int len) 2712 { 2713 struct tcp_sock *tp = tcp_sk(sk); 2714 struct tcp_repair_opt opt; 2715 2716 while (len >= sizeof(opt)) { 2717 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2718 return -EFAULT; 2719 2720 optbuf++; 2721 len -= sizeof(opt); 2722 2723 switch (opt.opt_code) { 2724 case TCPOPT_MSS: 2725 tp->rx_opt.mss_clamp = opt.opt_val; 2726 tcp_mtup_init(sk); 2727 break; 2728 case TCPOPT_WINDOW: 2729 { 2730 u16 snd_wscale = opt.opt_val & 0xFFFF; 2731 u16 rcv_wscale = opt.opt_val >> 16; 2732 2733 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2734 return -EFBIG; 2735 2736 tp->rx_opt.snd_wscale = snd_wscale; 2737 tp->rx_opt.rcv_wscale = rcv_wscale; 2738 tp->rx_opt.wscale_ok = 1; 2739 } 2740 break; 2741 case TCPOPT_SACK_PERM: 2742 if (opt.opt_val != 0) 2743 return -EINVAL; 2744 2745 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2746 break; 2747 case TCPOPT_TIMESTAMP: 2748 if (opt.opt_val != 0) 2749 return -EINVAL; 2750 2751 tp->rx_opt.tstamp_ok = 1; 2752 break; 2753 } 2754 } 2755 2756 return 0; 2757 } 2758 2759 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2760 EXPORT_SYMBOL(tcp_tx_delay_enabled); 2761 2762 static void tcp_enable_tx_delay(void) 2763 { 2764 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 2765 static int __tcp_tx_delay_enabled = 0; 2766 2767 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 2768 static_branch_enable(&tcp_tx_delay_enabled); 2769 pr_info("TCP_TX_DELAY enabled\n"); 2770 } 2771 } 2772 } 2773 2774 /* 2775 * Socket option code for TCP. 2776 */ 2777 static int do_tcp_setsockopt(struct sock *sk, int level, 2778 int optname, char __user *optval, unsigned int optlen) 2779 { 2780 struct tcp_sock *tp = tcp_sk(sk); 2781 struct inet_connection_sock *icsk = inet_csk(sk); 2782 struct net *net = sock_net(sk); 2783 int val; 2784 int err = 0; 2785 2786 /* These are data/string values, all the others are ints */ 2787 switch (optname) { 2788 case TCP_CONGESTION: { 2789 char name[TCP_CA_NAME_MAX]; 2790 2791 if (optlen < 1) 2792 return -EINVAL; 2793 2794 val = strncpy_from_user(name, optval, 2795 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2796 if (val < 0) 2797 return -EFAULT; 2798 name[val] = 0; 2799 2800 lock_sock(sk); 2801 err = tcp_set_congestion_control(sk, name, true, true, 2802 ns_capable(sock_net(sk)->user_ns, 2803 CAP_NET_ADMIN)); 2804 release_sock(sk); 2805 return err; 2806 } 2807 case TCP_ULP: { 2808 char name[TCP_ULP_NAME_MAX]; 2809 2810 if (optlen < 1) 2811 return -EINVAL; 2812 2813 val = strncpy_from_user(name, optval, 2814 min_t(long, TCP_ULP_NAME_MAX - 1, 2815 optlen)); 2816 if (val < 0) 2817 return -EFAULT; 2818 name[val] = 0; 2819 2820 lock_sock(sk); 2821 err = tcp_set_ulp(sk, name); 2822 release_sock(sk); 2823 return err; 2824 } 2825 case TCP_FASTOPEN_KEY: { 2826 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 2827 __u8 *backup_key = NULL; 2828 2829 /* Allow a backup key as well to facilitate key rotation 2830 * First key is the active one. 2831 */ 2832 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 2833 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 2834 return -EINVAL; 2835 2836 if (copy_from_user(key, optval, optlen)) 2837 return -EFAULT; 2838 2839 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 2840 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 2841 2842 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 2843 } 2844 default: 2845 /* fallthru */ 2846 break; 2847 } 2848 2849 if (optlen < sizeof(int)) 2850 return -EINVAL; 2851 2852 if (get_user(val, (int __user *)optval)) 2853 return -EFAULT; 2854 2855 lock_sock(sk); 2856 2857 switch (optname) { 2858 case TCP_MAXSEG: 2859 /* Values greater than interface MTU won't take effect. However 2860 * at the point when this call is done we typically don't yet 2861 * know which interface is going to be used 2862 */ 2863 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2864 err = -EINVAL; 2865 break; 2866 } 2867 tp->rx_opt.user_mss = val; 2868 break; 2869 2870 case TCP_NODELAY: 2871 if (val) { 2872 /* TCP_NODELAY is weaker than TCP_CORK, so that 2873 * this option on corked socket is remembered, but 2874 * it is not activated until cork is cleared. 2875 * 2876 * However, when TCP_NODELAY is set we make 2877 * an explicit push, which overrides even TCP_CORK 2878 * for currently queued segments. 2879 */ 2880 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2881 tcp_push_pending_frames(sk); 2882 } else { 2883 tp->nonagle &= ~TCP_NAGLE_OFF; 2884 } 2885 break; 2886 2887 case TCP_THIN_LINEAR_TIMEOUTS: 2888 if (val < 0 || val > 1) 2889 err = -EINVAL; 2890 else 2891 tp->thin_lto = val; 2892 break; 2893 2894 case TCP_THIN_DUPACK: 2895 if (val < 0 || val > 1) 2896 err = -EINVAL; 2897 break; 2898 2899 case TCP_REPAIR: 2900 if (!tcp_can_repair_sock(sk)) 2901 err = -EPERM; 2902 else if (val == TCP_REPAIR_ON) { 2903 tp->repair = 1; 2904 sk->sk_reuse = SK_FORCE_REUSE; 2905 tp->repair_queue = TCP_NO_QUEUE; 2906 } else if (val == TCP_REPAIR_OFF) { 2907 tp->repair = 0; 2908 sk->sk_reuse = SK_NO_REUSE; 2909 tcp_send_window_probe(sk); 2910 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2911 tp->repair = 0; 2912 sk->sk_reuse = SK_NO_REUSE; 2913 } else 2914 err = -EINVAL; 2915 2916 break; 2917 2918 case TCP_REPAIR_QUEUE: 2919 if (!tp->repair) 2920 err = -EPERM; 2921 else if ((unsigned int)val < TCP_QUEUES_NR) 2922 tp->repair_queue = val; 2923 else 2924 err = -EINVAL; 2925 break; 2926 2927 case TCP_QUEUE_SEQ: 2928 if (sk->sk_state != TCP_CLOSE) 2929 err = -EPERM; 2930 else if (tp->repair_queue == TCP_SEND_QUEUE) 2931 tp->write_seq = val; 2932 else if (tp->repair_queue == TCP_RECV_QUEUE) 2933 tp->rcv_nxt = val; 2934 else 2935 err = -EINVAL; 2936 break; 2937 2938 case TCP_REPAIR_OPTIONS: 2939 if (!tp->repair) 2940 err = -EINVAL; 2941 else if (sk->sk_state == TCP_ESTABLISHED) 2942 err = tcp_repair_options_est(sk, 2943 (struct tcp_repair_opt __user *)optval, 2944 optlen); 2945 else 2946 err = -EPERM; 2947 break; 2948 2949 case TCP_CORK: 2950 /* When set indicates to always queue non-full frames. 2951 * Later the user clears this option and we transmit 2952 * any pending partial frames in the queue. This is 2953 * meant to be used alongside sendfile() to get properly 2954 * filled frames when the user (for example) must write 2955 * out headers with a write() call first and then use 2956 * sendfile to send out the data parts. 2957 * 2958 * TCP_CORK can be set together with TCP_NODELAY and it is 2959 * stronger than TCP_NODELAY. 2960 */ 2961 if (val) { 2962 tp->nonagle |= TCP_NAGLE_CORK; 2963 } else { 2964 tp->nonagle &= ~TCP_NAGLE_CORK; 2965 if (tp->nonagle&TCP_NAGLE_OFF) 2966 tp->nonagle |= TCP_NAGLE_PUSH; 2967 tcp_push_pending_frames(sk); 2968 } 2969 break; 2970 2971 case TCP_KEEPIDLE: 2972 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2973 err = -EINVAL; 2974 else { 2975 tp->keepalive_time = val * HZ; 2976 if (sock_flag(sk, SOCK_KEEPOPEN) && 2977 !((1 << sk->sk_state) & 2978 (TCPF_CLOSE | TCPF_LISTEN))) { 2979 u32 elapsed = keepalive_time_elapsed(tp); 2980 if (tp->keepalive_time > elapsed) 2981 elapsed = tp->keepalive_time - elapsed; 2982 else 2983 elapsed = 0; 2984 inet_csk_reset_keepalive_timer(sk, elapsed); 2985 } 2986 } 2987 break; 2988 case TCP_KEEPINTVL: 2989 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2990 err = -EINVAL; 2991 else 2992 tp->keepalive_intvl = val * HZ; 2993 break; 2994 case TCP_KEEPCNT: 2995 if (val < 1 || val > MAX_TCP_KEEPCNT) 2996 err = -EINVAL; 2997 else 2998 tp->keepalive_probes = val; 2999 break; 3000 case TCP_SYNCNT: 3001 if (val < 1 || val > MAX_TCP_SYNCNT) 3002 err = -EINVAL; 3003 else 3004 icsk->icsk_syn_retries = val; 3005 break; 3006 3007 case TCP_SAVE_SYN: 3008 if (val < 0 || val > 1) 3009 err = -EINVAL; 3010 else 3011 tp->save_syn = val; 3012 break; 3013 3014 case TCP_LINGER2: 3015 if (val < 0) 3016 tp->linger2 = -1; 3017 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 3018 tp->linger2 = 0; 3019 else 3020 tp->linger2 = val * HZ; 3021 break; 3022 3023 case TCP_DEFER_ACCEPT: 3024 /* Translate value in seconds to number of retransmits */ 3025 icsk->icsk_accept_queue.rskq_defer_accept = 3026 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3027 TCP_RTO_MAX / HZ); 3028 break; 3029 3030 case TCP_WINDOW_CLAMP: 3031 if (!val) { 3032 if (sk->sk_state != TCP_CLOSE) { 3033 err = -EINVAL; 3034 break; 3035 } 3036 tp->window_clamp = 0; 3037 } else 3038 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3039 SOCK_MIN_RCVBUF / 2 : val; 3040 break; 3041 3042 case TCP_QUICKACK: 3043 if (!val) { 3044 inet_csk_enter_pingpong_mode(sk); 3045 } else { 3046 inet_csk_exit_pingpong_mode(sk); 3047 if ((1 << sk->sk_state) & 3048 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3049 inet_csk_ack_scheduled(sk)) { 3050 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 3051 tcp_cleanup_rbuf(sk, 1); 3052 if (!(val & 1)) 3053 inet_csk_enter_pingpong_mode(sk); 3054 } 3055 } 3056 break; 3057 3058 #ifdef CONFIG_TCP_MD5SIG 3059 case TCP_MD5SIG: 3060 case TCP_MD5SIG_EXT: 3061 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 3062 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3063 else 3064 err = -EINVAL; 3065 break; 3066 #endif 3067 case TCP_USER_TIMEOUT: 3068 /* Cap the max time in ms TCP will retry or probe the window 3069 * before giving up and aborting (ETIMEDOUT) a connection. 3070 */ 3071 if (val < 0) 3072 err = -EINVAL; 3073 else 3074 icsk->icsk_user_timeout = val; 3075 break; 3076 3077 case TCP_FASTOPEN: 3078 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3079 TCPF_LISTEN))) { 3080 tcp_fastopen_init_key_once(net); 3081 3082 fastopen_queue_tune(sk, val); 3083 } else { 3084 err = -EINVAL; 3085 } 3086 break; 3087 case TCP_FASTOPEN_CONNECT: 3088 if (val > 1 || val < 0) { 3089 err = -EINVAL; 3090 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3091 if (sk->sk_state == TCP_CLOSE) 3092 tp->fastopen_connect = val; 3093 else 3094 err = -EINVAL; 3095 } else { 3096 err = -EOPNOTSUPP; 3097 } 3098 break; 3099 case TCP_FASTOPEN_NO_COOKIE: 3100 if (val > 1 || val < 0) 3101 err = -EINVAL; 3102 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3103 err = -EINVAL; 3104 else 3105 tp->fastopen_no_cookie = val; 3106 break; 3107 case TCP_TIMESTAMP: 3108 if (!tp->repair) 3109 err = -EPERM; 3110 else 3111 tp->tsoffset = val - tcp_time_stamp_raw(); 3112 break; 3113 case TCP_REPAIR_WINDOW: 3114 err = tcp_repair_set_window(tp, optval, optlen); 3115 break; 3116 case TCP_NOTSENT_LOWAT: 3117 tp->notsent_lowat = val; 3118 sk->sk_write_space(sk); 3119 break; 3120 case TCP_INQ: 3121 if (val > 1 || val < 0) 3122 err = -EINVAL; 3123 else 3124 tp->recvmsg_inq = val; 3125 break; 3126 case TCP_TX_DELAY: 3127 if (val) 3128 tcp_enable_tx_delay(); 3129 tp->tcp_tx_delay = val; 3130 break; 3131 default: 3132 err = -ENOPROTOOPT; 3133 break; 3134 } 3135 3136 release_sock(sk); 3137 return err; 3138 } 3139 3140 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3141 unsigned int optlen) 3142 { 3143 const struct inet_connection_sock *icsk = inet_csk(sk); 3144 3145 if (level != SOL_TCP) 3146 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3147 optval, optlen); 3148 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3149 } 3150 EXPORT_SYMBOL(tcp_setsockopt); 3151 3152 #ifdef CONFIG_COMPAT 3153 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3154 char __user *optval, unsigned int optlen) 3155 { 3156 if (level != SOL_TCP) 3157 return inet_csk_compat_setsockopt(sk, level, optname, 3158 optval, optlen); 3159 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3160 } 3161 EXPORT_SYMBOL(compat_tcp_setsockopt); 3162 #endif 3163 3164 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3165 struct tcp_info *info) 3166 { 3167 u64 stats[__TCP_CHRONO_MAX], total = 0; 3168 enum tcp_chrono i; 3169 3170 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3171 stats[i] = tp->chrono_stat[i - 1]; 3172 if (i == tp->chrono_type) 3173 stats[i] += tcp_jiffies32 - tp->chrono_start; 3174 stats[i] *= USEC_PER_SEC / HZ; 3175 total += stats[i]; 3176 } 3177 3178 info->tcpi_busy_time = total; 3179 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3180 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3181 } 3182 3183 /* Return information about state of tcp endpoint in API format. */ 3184 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3185 { 3186 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3187 const struct inet_connection_sock *icsk = inet_csk(sk); 3188 unsigned long rate; 3189 u32 now; 3190 u64 rate64; 3191 bool slow; 3192 3193 memset(info, 0, sizeof(*info)); 3194 if (sk->sk_type != SOCK_STREAM) 3195 return; 3196 3197 info->tcpi_state = inet_sk_state_load(sk); 3198 3199 /* Report meaningful fields for all TCP states, including listeners */ 3200 rate = READ_ONCE(sk->sk_pacing_rate); 3201 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3202 info->tcpi_pacing_rate = rate64; 3203 3204 rate = READ_ONCE(sk->sk_max_pacing_rate); 3205 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3206 info->tcpi_max_pacing_rate = rate64; 3207 3208 info->tcpi_reordering = tp->reordering; 3209 info->tcpi_snd_cwnd = tp->snd_cwnd; 3210 3211 if (info->tcpi_state == TCP_LISTEN) { 3212 /* listeners aliased fields : 3213 * tcpi_unacked -> Number of children ready for accept() 3214 * tcpi_sacked -> max backlog 3215 */ 3216 info->tcpi_unacked = sk->sk_ack_backlog; 3217 info->tcpi_sacked = sk->sk_max_ack_backlog; 3218 return; 3219 } 3220 3221 slow = lock_sock_fast(sk); 3222 3223 info->tcpi_ca_state = icsk->icsk_ca_state; 3224 info->tcpi_retransmits = icsk->icsk_retransmits; 3225 info->tcpi_probes = icsk->icsk_probes_out; 3226 info->tcpi_backoff = icsk->icsk_backoff; 3227 3228 if (tp->rx_opt.tstamp_ok) 3229 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3230 if (tcp_is_sack(tp)) 3231 info->tcpi_options |= TCPI_OPT_SACK; 3232 if (tp->rx_opt.wscale_ok) { 3233 info->tcpi_options |= TCPI_OPT_WSCALE; 3234 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3235 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3236 } 3237 3238 if (tp->ecn_flags & TCP_ECN_OK) 3239 info->tcpi_options |= TCPI_OPT_ECN; 3240 if (tp->ecn_flags & TCP_ECN_SEEN) 3241 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3242 if (tp->syn_data_acked) 3243 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3244 3245 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3246 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3247 info->tcpi_snd_mss = tp->mss_cache; 3248 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3249 3250 info->tcpi_unacked = tp->packets_out; 3251 info->tcpi_sacked = tp->sacked_out; 3252 3253 info->tcpi_lost = tp->lost_out; 3254 info->tcpi_retrans = tp->retrans_out; 3255 3256 now = tcp_jiffies32; 3257 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3258 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3259 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3260 3261 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3262 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3263 info->tcpi_rtt = tp->srtt_us >> 3; 3264 info->tcpi_rttvar = tp->mdev_us >> 2; 3265 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3266 info->tcpi_advmss = tp->advmss; 3267 3268 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3269 info->tcpi_rcv_space = tp->rcvq_space.space; 3270 3271 info->tcpi_total_retrans = tp->total_retrans; 3272 3273 info->tcpi_bytes_acked = tp->bytes_acked; 3274 info->tcpi_bytes_received = tp->bytes_received; 3275 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3276 tcp_get_info_chrono_stats(tp, info); 3277 3278 info->tcpi_segs_out = tp->segs_out; 3279 info->tcpi_segs_in = tp->segs_in; 3280 3281 info->tcpi_min_rtt = tcp_min_rtt(tp); 3282 info->tcpi_data_segs_in = tp->data_segs_in; 3283 info->tcpi_data_segs_out = tp->data_segs_out; 3284 3285 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3286 rate64 = tcp_compute_delivery_rate(tp); 3287 if (rate64) 3288 info->tcpi_delivery_rate = rate64; 3289 info->tcpi_delivered = tp->delivered; 3290 info->tcpi_delivered_ce = tp->delivered_ce; 3291 info->tcpi_bytes_sent = tp->bytes_sent; 3292 info->tcpi_bytes_retrans = tp->bytes_retrans; 3293 info->tcpi_dsack_dups = tp->dsack_dups; 3294 info->tcpi_reord_seen = tp->reord_seen; 3295 unlock_sock_fast(sk, slow); 3296 } 3297 EXPORT_SYMBOL_GPL(tcp_get_info); 3298 3299 static size_t tcp_opt_stats_get_size(void) 3300 { 3301 return 3302 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3303 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3304 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3305 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3306 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3307 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3308 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3309 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3310 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3311 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3312 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3313 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3314 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3315 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3316 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3317 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3318 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3319 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3320 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3321 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3322 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3323 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3324 0; 3325 } 3326 3327 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3328 { 3329 const struct tcp_sock *tp = tcp_sk(sk); 3330 struct sk_buff *stats; 3331 struct tcp_info info; 3332 unsigned long rate; 3333 u64 rate64; 3334 3335 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3336 if (!stats) 3337 return NULL; 3338 3339 tcp_get_info_chrono_stats(tp, &info); 3340 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3341 info.tcpi_busy_time, TCP_NLA_PAD); 3342 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3343 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3344 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3345 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3346 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3347 tp->data_segs_out, TCP_NLA_PAD); 3348 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3349 tp->total_retrans, TCP_NLA_PAD); 3350 3351 rate = READ_ONCE(sk->sk_pacing_rate); 3352 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3353 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3354 3355 rate64 = tcp_compute_delivery_rate(tp); 3356 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3357 3358 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3359 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3360 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3361 3362 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3363 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3364 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3365 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3366 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3367 3368 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3369 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3370 3371 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3372 TCP_NLA_PAD); 3373 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3374 TCP_NLA_PAD); 3375 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3376 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3377 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3378 3379 return stats; 3380 } 3381 3382 static int do_tcp_getsockopt(struct sock *sk, int level, 3383 int optname, char __user *optval, int __user *optlen) 3384 { 3385 struct inet_connection_sock *icsk = inet_csk(sk); 3386 struct tcp_sock *tp = tcp_sk(sk); 3387 struct net *net = sock_net(sk); 3388 int val, len; 3389 3390 if (get_user(len, optlen)) 3391 return -EFAULT; 3392 3393 len = min_t(unsigned int, len, sizeof(int)); 3394 3395 if (len < 0) 3396 return -EINVAL; 3397 3398 switch (optname) { 3399 case TCP_MAXSEG: 3400 val = tp->mss_cache; 3401 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3402 val = tp->rx_opt.user_mss; 3403 if (tp->repair) 3404 val = tp->rx_opt.mss_clamp; 3405 break; 3406 case TCP_NODELAY: 3407 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3408 break; 3409 case TCP_CORK: 3410 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3411 break; 3412 case TCP_KEEPIDLE: 3413 val = keepalive_time_when(tp) / HZ; 3414 break; 3415 case TCP_KEEPINTVL: 3416 val = keepalive_intvl_when(tp) / HZ; 3417 break; 3418 case TCP_KEEPCNT: 3419 val = keepalive_probes(tp); 3420 break; 3421 case TCP_SYNCNT: 3422 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3423 break; 3424 case TCP_LINGER2: 3425 val = tp->linger2; 3426 if (val >= 0) 3427 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3428 break; 3429 case TCP_DEFER_ACCEPT: 3430 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3431 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3432 break; 3433 case TCP_WINDOW_CLAMP: 3434 val = tp->window_clamp; 3435 break; 3436 case TCP_INFO: { 3437 struct tcp_info info; 3438 3439 if (get_user(len, optlen)) 3440 return -EFAULT; 3441 3442 tcp_get_info(sk, &info); 3443 3444 len = min_t(unsigned int, len, sizeof(info)); 3445 if (put_user(len, optlen)) 3446 return -EFAULT; 3447 if (copy_to_user(optval, &info, len)) 3448 return -EFAULT; 3449 return 0; 3450 } 3451 case TCP_CC_INFO: { 3452 const struct tcp_congestion_ops *ca_ops; 3453 union tcp_cc_info info; 3454 size_t sz = 0; 3455 int attr; 3456 3457 if (get_user(len, optlen)) 3458 return -EFAULT; 3459 3460 ca_ops = icsk->icsk_ca_ops; 3461 if (ca_ops && ca_ops->get_info) 3462 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3463 3464 len = min_t(unsigned int, len, sz); 3465 if (put_user(len, optlen)) 3466 return -EFAULT; 3467 if (copy_to_user(optval, &info, len)) 3468 return -EFAULT; 3469 return 0; 3470 } 3471 case TCP_QUICKACK: 3472 val = !inet_csk_in_pingpong_mode(sk); 3473 break; 3474 3475 case TCP_CONGESTION: 3476 if (get_user(len, optlen)) 3477 return -EFAULT; 3478 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3479 if (put_user(len, optlen)) 3480 return -EFAULT; 3481 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3482 return -EFAULT; 3483 return 0; 3484 3485 case TCP_ULP: 3486 if (get_user(len, optlen)) 3487 return -EFAULT; 3488 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3489 if (!icsk->icsk_ulp_ops) { 3490 if (put_user(0, optlen)) 3491 return -EFAULT; 3492 return 0; 3493 } 3494 if (put_user(len, optlen)) 3495 return -EFAULT; 3496 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3497 return -EFAULT; 3498 return 0; 3499 3500 case TCP_FASTOPEN_KEY: { 3501 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3502 struct tcp_fastopen_context *ctx; 3503 unsigned int key_len = 0; 3504 3505 if (get_user(len, optlen)) 3506 return -EFAULT; 3507 3508 rcu_read_lock(); 3509 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3510 if (ctx) { 3511 key_len = tcp_fastopen_context_len(ctx) * 3512 TCP_FASTOPEN_KEY_LENGTH; 3513 memcpy(&key[0], &ctx->key[0], key_len); 3514 } 3515 rcu_read_unlock(); 3516 3517 len = min_t(unsigned int, len, key_len); 3518 if (put_user(len, optlen)) 3519 return -EFAULT; 3520 if (copy_to_user(optval, key, len)) 3521 return -EFAULT; 3522 return 0; 3523 } 3524 case TCP_THIN_LINEAR_TIMEOUTS: 3525 val = tp->thin_lto; 3526 break; 3527 3528 case TCP_THIN_DUPACK: 3529 val = 0; 3530 break; 3531 3532 case TCP_REPAIR: 3533 val = tp->repair; 3534 break; 3535 3536 case TCP_REPAIR_QUEUE: 3537 if (tp->repair) 3538 val = tp->repair_queue; 3539 else 3540 return -EINVAL; 3541 break; 3542 3543 case TCP_REPAIR_WINDOW: { 3544 struct tcp_repair_window opt; 3545 3546 if (get_user(len, optlen)) 3547 return -EFAULT; 3548 3549 if (len != sizeof(opt)) 3550 return -EINVAL; 3551 3552 if (!tp->repair) 3553 return -EPERM; 3554 3555 opt.snd_wl1 = tp->snd_wl1; 3556 opt.snd_wnd = tp->snd_wnd; 3557 opt.max_window = tp->max_window; 3558 opt.rcv_wnd = tp->rcv_wnd; 3559 opt.rcv_wup = tp->rcv_wup; 3560 3561 if (copy_to_user(optval, &opt, len)) 3562 return -EFAULT; 3563 return 0; 3564 } 3565 case TCP_QUEUE_SEQ: 3566 if (tp->repair_queue == TCP_SEND_QUEUE) 3567 val = tp->write_seq; 3568 else if (tp->repair_queue == TCP_RECV_QUEUE) 3569 val = tp->rcv_nxt; 3570 else 3571 return -EINVAL; 3572 break; 3573 3574 case TCP_USER_TIMEOUT: 3575 val = icsk->icsk_user_timeout; 3576 break; 3577 3578 case TCP_FASTOPEN: 3579 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3580 break; 3581 3582 case TCP_FASTOPEN_CONNECT: 3583 val = tp->fastopen_connect; 3584 break; 3585 3586 case TCP_FASTOPEN_NO_COOKIE: 3587 val = tp->fastopen_no_cookie; 3588 break; 3589 3590 case TCP_TX_DELAY: 3591 val = tp->tcp_tx_delay; 3592 break; 3593 3594 case TCP_TIMESTAMP: 3595 val = tcp_time_stamp_raw() + tp->tsoffset; 3596 break; 3597 case TCP_NOTSENT_LOWAT: 3598 val = tp->notsent_lowat; 3599 break; 3600 case TCP_INQ: 3601 val = tp->recvmsg_inq; 3602 break; 3603 case TCP_SAVE_SYN: 3604 val = tp->save_syn; 3605 break; 3606 case TCP_SAVED_SYN: { 3607 if (get_user(len, optlen)) 3608 return -EFAULT; 3609 3610 lock_sock(sk); 3611 if (tp->saved_syn) { 3612 if (len < tp->saved_syn[0]) { 3613 if (put_user(tp->saved_syn[0], optlen)) { 3614 release_sock(sk); 3615 return -EFAULT; 3616 } 3617 release_sock(sk); 3618 return -EINVAL; 3619 } 3620 len = tp->saved_syn[0]; 3621 if (put_user(len, optlen)) { 3622 release_sock(sk); 3623 return -EFAULT; 3624 } 3625 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3626 release_sock(sk); 3627 return -EFAULT; 3628 } 3629 tcp_saved_syn_free(tp); 3630 release_sock(sk); 3631 } else { 3632 release_sock(sk); 3633 len = 0; 3634 if (put_user(len, optlen)) 3635 return -EFAULT; 3636 } 3637 return 0; 3638 } 3639 #ifdef CONFIG_MMU 3640 case TCP_ZEROCOPY_RECEIVE: { 3641 struct tcp_zerocopy_receive zc; 3642 int err; 3643 3644 if (get_user(len, optlen)) 3645 return -EFAULT; 3646 if (len != sizeof(zc)) 3647 return -EINVAL; 3648 if (copy_from_user(&zc, optval, len)) 3649 return -EFAULT; 3650 lock_sock(sk); 3651 err = tcp_zerocopy_receive(sk, &zc); 3652 release_sock(sk); 3653 if (!err && copy_to_user(optval, &zc, len)) 3654 err = -EFAULT; 3655 return err; 3656 } 3657 #endif 3658 default: 3659 return -ENOPROTOOPT; 3660 } 3661 3662 if (put_user(len, optlen)) 3663 return -EFAULT; 3664 if (copy_to_user(optval, &val, len)) 3665 return -EFAULT; 3666 return 0; 3667 } 3668 3669 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3670 int __user *optlen) 3671 { 3672 struct inet_connection_sock *icsk = inet_csk(sk); 3673 3674 if (level != SOL_TCP) 3675 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3676 optval, optlen); 3677 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3678 } 3679 EXPORT_SYMBOL(tcp_getsockopt); 3680 3681 #ifdef CONFIG_COMPAT 3682 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3683 char __user *optval, int __user *optlen) 3684 { 3685 if (level != SOL_TCP) 3686 return inet_csk_compat_getsockopt(sk, level, optname, 3687 optval, optlen); 3688 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3689 } 3690 EXPORT_SYMBOL(compat_tcp_getsockopt); 3691 #endif 3692 3693 #ifdef CONFIG_TCP_MD5SIG 3694 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3695 static DEFINE_MUTEX(tcp_md5sig_mutex); 3696 static bool tcp_md5sig_pool_populated = false; 3697 3698 static void __tcp_alloc_md5sig_pool(void) 3699 { 3700 struct crypto_ahash *hash; 3701 int cpu; 3702 3703 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3704 if (IS_ERR(hash)) 3705 return; 3706 3707 for_each_possible_cpu(cpu) { 3708 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3709 struct ahash_request *req; 3710 3711 if (!scratch) { 3712 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3713 sizeof(struct tcphdr), 3714 GFP_KERNEL, 3715 cpu_to_node(cpu)); 3716 if (!scratch) 3717 return; 3718 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3719 } 3720 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3721 continue; 3722 3723 req = ahash_request_alloc(hash, GFP_KERNEL); 3724 if (!req) 3725 return; 3726 3727 ahash_request_set_callback(req, 0, NULL, NULL); 3728 3729 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3730 } 3731 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3732 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3733 */ 3734 smp_wmb(); 3735 tcp_md5sig_pool_populated = true; 3736 } 3737 3738 bool tcp_alloc_md5sig_pool(void) 3739 { 3740 if (unlikely(!tcp_md5sig_pool_populated)) { 3741 mutex_lock(&tcp_md5sig_mutex); 3742 3743 if (!tcp_md5sig_pool_populated) { 3744 __tcp_alloc_md5sig_pool(); 3745 if (tcp_md5sig_pool_populated) 3746 static_branch_inc(&tcp_md5_needed); 3747 } 3748 3749 mutex_unlock(&tcp_md5sig_mutex); 3750 } 3751 return tcp_md5sig_pool_populated; 3752 } 3753 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3754 3755 3756 /** 3757 * tcp_get_md5sig_pool - get md5sig_pool for this user 3758 * 3759 * We use percpu structure, so if we succeed, we exit with preemption 3760 * and BH disabled, to make sure another thread or softirq handling 3761 * wont try to get same context. 3762 */ 3763 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3764 { 3765 local_bh_disable(); 3766 3767 if (tcp_md5sig_pool_populated) { 3768 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3769 smp_rmb(); 3770 return this_cpu_ptr(&tcp_md5sig_pool); 3771 } 3772 local_bh_enable(); 3773 return NULL; 3774 } 3775 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3776 3777 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3778 const struct sk_buff *skb, unsigned int header_len) 3779 { 3780 struct scatterlist sg; 3781 const struct tcphdr *tp = tcp_hdr(skb); 3782 struct ahash_request *req = hp->md5_req; 3783 unsigned int i; 3784 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3785 skb_headlen(skb) - header_len : 0; 3786 const struct skb_shared_info *shi = skb_shinfo(skb); 3787 struct sk_buff *frag_iter; 3788 3789 sg_init_table(&sg, 1); 3790 3791 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3792 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3793 if (crypto_ahash_update(req)) 3794 return 1; 3795 3796 for (i = 0; i < shi->nr_frags; ++i) { 3797 const struct skb_frag_struct *f = &shi->frags[i]; 3798 unsigned int offset = f->page_offset; 3799 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3800 3801 sg_set_page(&sg, page, skb_frag_size(f), 3802 offset_in_page(offset)); 3803 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3804 if (crypto_ahash_update(req)) 3805 return 1; 3806 } 3807 3808 skb_walk_frags(skb, frag_iter) 3809 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3810 return 1; 3811 3812 return 0; 3813 } 3814 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3815 3816 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3817 { 3818 struct scatterlist sg; 3819 3820 sg_init_one(&sg, key->key, key->keylen); 3821 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3822 return crypto_ahash_update(hp->md5_req); 3823 } 3824 EXPORT_SYMBOL(tcp_md5_hash_key); 3825 3826 #endif 3827 3828 void tcp_done(struct sock *sk) 3829 { 3830 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3831 3832 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3833 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3834 3835 tcp_set_state(sk, TCP_CLOSE); 3836 tcp_clear_xmit_timers(sk); 3837 if (req) 3838 reqsk_fastopen_remove(sk, req, false); 3839 3840 sk->sk_shutdown = SHUTDOWN_MASK; 3841 3842 if (!sock_flag(sk, SOCK_DEAD)) 3843 sk->sk_state_change(sk); 3844 else 3845 inet_csk_destroy_sock(sk); 3846 } 3847 EXPORT_SYMBOL_GPL(tcp_done); 3848 3849 int tcp_abort(struct sock *sk, int err) 3850 { 3851 if (!sk_fullsock(sk)) { 3852 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3853 struct request_sock *req = inet_reqsk(sk); 3854 3855 local_bh_disable(); 3856 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3857 local_bh_enable(); 3858 return 0; 3859 } 3860 return -EOPNOTSUPP; 3861 } 3862 3863 /* Don't race with userspace socket closes such as tcp_close. */ 3864 lock_sock(sk); 3865 3866 if (sk->sk_state == TCP_LISTEN) { 3867 tcp_set_state(sk, TCP_CLOSE); 3868 inet_csk_listen_stop(sk); 3869 } 3870 3871 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3872 local_bh_disable(); 3873 bh_lock_sock(sk); 3874 3875 if (!sock_flag(sk, SOCK_DEAD)) { 3876 sk->sk_err = err; 3877 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3878 smp_wmb(); 3879 sk->sk_error_report(sk); 3880 if (tcp_need_reset(sk->sk_state)) 3881 tcp_send_active_reset(sk, GFP_ATOMIC); 3882 tcp_done(sk); 3883 } 3884 3885 bh_unlock_sock(sk); 3886 local_bh_enable(); 3887 tcp_write_queue_purge(sk); 3888 release_sock(sk); 3889 return 0; 3890 } 3891 EXPORT_SYMBOL_GPL(tcp_abort); 3892 3893 extern struct tcp_congestion_ops tcp_reno; 3894 3895 static __initdata unsigned long thash_entries; 3896 static int __init set_thash_entries(char *str) 3897 { 3898 ssize_t ret; 3899 3900 if (!str) 3901 return 0; 3902 3903 ret = kstrtoul(str, 0, &thash_entries); 3904 if (ret) 3905 return 0; 3906 3907 return 1; 3908 } 3909 __setup("thash_entries=", set_thash_entries); 3910 3911 static void __init tcp_init_mem(void) 3912 { 3913 unsigned long limit = nr_free_buffer_pages() / 16; 3914 3915 limit = max(limit, 128UL); 3916 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3917 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3918 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3919 } 3920 3921 void __init tcp_init(void) 3922 { 3923 int max_rshare, max_wshare, cnt; 3924 unsigned long limit; 3925 unsigned int i; 3926 3927 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 3928 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3929 FIELD_SIZEOF(struct sk_buff, cb)); 3930 3931 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3932 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3933 inet_hashinfo_init(&tcp_hashinfo); 3934 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3935 thash_entries, 21, /* one slot per 2 MB*/ 3936 0, 64 * 1024); 3937 tcp_hashinfo.bind_bucket_cachep = 3938 kmem_cache_create("tcp_bind_bucket", 3939 sizeof(struct inet_bind_bucket), 0, 3940 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3941 3942 /* Size and allocate the main established and bind bucket 3943 * hash tables. 3944 * 3945 * The methodology is similar to that of the buffer cache. 3946 */ 3947 tcp_hashinfo.ehash = 3948 alloc_large_system_hash("TCP established", 3949 sizeof(struct inet_ehash_bucket), 3950 thash_entries, 3951 17, /* one slot per 128 KB of memory */ 3952 0, 3953 NULL, 3954 &tcp_hashinfo.ehash_mask, 3955 0, 3956 thash_entries ? 0 : 512 * 1024); 3957 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3958 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3959 3960 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3961 panic("TCP: failed to alloc ehash_locks"); 3962 tcp_hashinfo.bhash = 3963 alloc_large_system_hash("TCP bind", 3964 sizeof(struct inet_bind_hashbucket), 3965 tcp_hashinfo.ehash_mask + 1, 3966 17, /* one slot per 128 KB of memory */ 3967 0, 3968 &tcp_hashinfo.bhash_size, 3969 NULL, 3970 0, 3971 64 * 1024); 3972 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3973 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3974 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3975 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3976 } 3977 3978 3979 cnt = tcp_hashinfo.ehash_mask + 1; 3980 sysctl_tcp_max_orphans = cnt / 2; 3981 3982 tcp_init_mem(); 3983 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3984 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3985 max_wshare = min(4UL*1024*1024, limit); 3986 max_rshare = min(6UL*1024*1024, limit); 3987 3988 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3989 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3990 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3991 3992 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3993 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 3994 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 3995 3996 pr_info("Hash tables configured (established %u bind %u)\n", 3997 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3998 3999 tcp_v4_init(); 4000 tcp_metrics_init(); 4001 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4002 tcp_tasklet_init(); 4003 } 4004