1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 #if IS_ENABLED(CONFIG_SMC) 299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300 EXPORT_SYMBOL(tcp_have_smc); 301 #endif 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 unsigned long val; 330 331 if (READ_ONCE(tcp_memory_pressure)) 332 return; 333 val = jiffies; 334 335 if (!val) 336 val--; 337 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 339 } 340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 341 342 void tcp_leave_memory_pressure(struct sock *sk) 343 { 344 unsigned long val; 345 346 if (!READ_ONCE(tcp_memory_pressure)) 347 return; 348 val = xchg(&tcp_memory_pressure, 0); 349 if (val) 350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 351 jiffies_to_msecs(jiffies - val)); 352 } 353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 354 355 /* Convert seconds to retransmits based on initial and max timeout */ 356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 357 { 358 u8 res = 0; 359 360 if (seconds > 0) { 361 int period = timeout; 362 363 res = 1; 364 while (seconds > period && res < 255) { 365 res++; 366 timeout <<= 1; 367 if (timeout > rto_max) 368 timeout = rto_max; 369 period += timeout; 370 } 371 } 372 return res; 373 } 374 375 /* Convert retransmits to seconds based on initial and max timeout */ 376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 377 { 378 int period = 0; 379 380 if (retrans > 0) { 381 period = timeout; 382 while (--retrans) { 383 timeout <<= 1; 384 if (timeout > rto_max) 385 timeout = rto_max; 386 period += timeout; 387 } 388 } 389 return period; 390 } 391 392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 393 { 394 u32 rate = READ_ONCE(tp->rate_delivered); 395 u32 intv = READ_ONCE(tp->rate_interval_us); 396 u64 rate64 = 0; 397 398 if (rate && intv) { 399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 400 do_div(rate64, intv); 401 } 402 return rate64; 403 } 404 405 /* Address-family independent initialization for a tcp_sock. 406 * 407 * NOTE: A lot of things set to zero explicitly by call to 408 * sk_alloc() so need not be done here. 409 */ 410 void tcp_init_sock(struct sock *sk) 411 { 412 struct inet_connection_sock *icsk = inet_csk(sk); 413 struct tcp_sock *tp = tcp_sk(sk); 414 415 tp->out_of_order_queue = RB_ROOT; 416 sk->tcp_rtx_queue = RB_ROOT; 417 tcp_init_xmit_timers(sk); 418 INIT_LIST_HEAD(&tp->tsq_node); 419 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 420 421 icsk->icsk_rto = TCP_TIMEOUT_INIT; 422 icsk->icsk_rto_min = TCP_RTO_MIN; 423 icsk->icsk_delack_max = TCP_DELACK_MAX; 424 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 425 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 426 427 /* So many TCP implementations out there (incorrectly) count the 428 * initial SYN frame in their delayed-ACK and congestion control 429 * algorithms that we must have the following bandaid to talk 430 * efficiently to them. -DaveM 431 */ 432 tp->snd_cwnd = TCP_INIT_CWND; 433 434 /* There's a bubble in the pipe until at least the first ACK. */ 435 tp->app_limited = ~0U; 436 437 /* See draft-stevens-tcpca-spec-01 for discussion of the 438 * initialization of these values. 439 */ 440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 441 tp->snd_cwnd_clamp = ~0; 442 tp->mss_cache = TCP_MSS_DEFAULT; 443 444 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 445 tcp_assign_congestion_control(sk); 446 447 tp->tsoffset = 0; 448 tp->rack.reo_wnd_steps = 1; 449 450 sk->sk_write_space = sk_stream_write_space; 451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 452 453 icsk->icsk_sync_mss = tcp_sync_mss; 454 455 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 456 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 457 458 sk_sockets_allocated_inc(sk); 459 sk->sk_route_forced_caps = NETIF_F_GSO; 460 } 461 EXPORT_SYMBOL(tcp_init_sock); 462 463 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 464 { 465 struct sk_buff *skb = tcp_write_queue_tail(sk); 466 467 if (tsflags && skb) { 468 struct skb_shared_info *shinfo = skb_shinfo(skb); 469 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 470 471 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 472 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 473 tcb->txstamp_ack = 1; 474 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 475 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 476 } 477 } 478 479 static bool tcp_stream_is_readable(struct sock *sk, int target) 480 { 481 if (tcp_epollin_ready(sk, target)) 482 return true; 483 return sk_is_readable(sk); 484 } 485 486 /* 487 * Wait for a TCP event. 488 * 489 * Note that we don't need to lock the socket, as the upper poll layers 490 * take care of normal races (between the test and the event) and we don't 491 * go look at any of the socket buffers directly. 492 */ 493 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 494 { 495 __poll_t mask; 496 struct sock *sk = sock->sk; 497 const struct tcp_sock *tp = tcp_sk(sk); 498 int state; 499 500 sock_poll_wait(file, sock, wait); 501 502 state = inet_sk_state_load(sk); 503 if (state == TCP_LISTEN) 504 return inet_csk_listen_poll(sk); 505 506 /* Socket is not locked. We are protected from async events 507 * by poll logic and correct handling of state changes 508 * made by other threads is impossible in any case. 509 */ 510 511 mask = 0; 512 513 /* 514 * EPOLLHUP is certainly not done right. But poll() doesn't 515 * have a notion of HUP in just one direction, and for a 516 * socket the read side is more interesting. 517 * 518 * Some poll() documentation says that EPOLLHUP is incompatible 519 * with the EPOLLOUT/POLLWR flags, so somebody should check this 520 * all. But careful, it tends to be safer to return too many 521 * bits than too few, and you can easily break real applications 522 * if you don't tell them that something has hung up! 523 * 524 * Check-me. 525 * 526 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 527 * our fs/select.c). It means that after we received EOF, 528 * poll always returns immediately, making impossible poll() on write() 529 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 530 * if and only if shutdown has been made in both directions. 531 * Actually, it is interesting to look how Solaris and DUX 532 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 533 * then we could set it on SND_SHUTDOWN. BTW examples given 534 * in Stevens' books assume exactly this behaviour, it explains 535 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 536 * 537 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 538 * blocking on fresh not-connected or disconnected socket. --ANK 539 */ 540 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 541 mask |= EPOLLHUP; 542 if (sk->sk_shutdown & RCV_SHUTDOWN) 543 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 544 545 /* Connected or passive Fast Open socket? */ 546 if (state != TCP_SYN_SENT && 547 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 548 int target = sock_rcvlowat(sk, 0, INT_MAX); 549 550 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 551 !sock_flag(sk, SOCK_URGINLINE) && 552 tp->urg_data) 553 target++; 554 555 if (tcp_stream_is_readable(sk, target)) 556 mask |= EPOLLIN | EPOLLRDNORM; 557 558 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 559 if (__sk_stream_is_writeable(sk, 1)) { 560 mask |= EPOLLOUT | EPOLLWRNORM; 561 } else { /* send SIGIO later */ 562 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 563 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 564 565 /* Race breaker. If space is freed after 566 * wspace test but before the flags are set, 567 * IO signal will be lost. Memory barrier 568 * pairs with the input side. 569 */ 570 smp_mb__after_atomic(); 571 if (__sk_stream_is_writeable(sk, 1)) 572 mask |= EPOLLOUT | EPOLLWRNORM; 573 } 574 } else 575 mask |= EPOLLOUT | EPOLLWRNORM; 576 577 if (tp->urg_data & TCP_URG_VALID) 578 mask |= EPOLLPRI; 579 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 580 /* Active TCP fastopen socket with defer_connect 581 * Return EPOLLOUT so application can call write() 582 * in order for kernel to generate SYN+data 583 */ 584 mask |= EPOLLOUT | EPOLLWRNORM; 585 } 586 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 587 smp_rmb(); 588 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 589 mask |= EPOLLERR; 590 591 return mask; 592 } 593 EXPORT_SYMBOL(tcp_poll); 594 595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 int answ; 599 bool slow; 600 601 switch (cmd) { 602 case SIOCINQ: 603 if (sk->sk_state == TCP_LISTEN) 604 return -EINVAL; 605 606 slow = lock_sock_fast(sk); 607 answ = tcp_inq(sk); 608 unlock_sock_fast(sk, slow); 609 break; 610 case SIOCATMARK: 611 answ = tp->urg_data && 612 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 613 break; 614 case SIOCOUTQ: 615 if (sk->sk_state == TCP_LISTEN) 616 return -EINVAL; 617 618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 619 answ = 0; 620 else 621 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 622 break; 623 case SIOCOUTQNSD: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - 631 READ_ONCE(tp->snd_nxt); 632 break; 633 default: 634 return -ENOIOCTLCMD; 635 } 636 637 return put_user(answ, (int __user *)arg); 638 } 639 EXPORT_SYMBOL(tcp_ioctl); 640 641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 642 { 643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 644 tp->pushed_seq = tp->write_seq; 645 } 646 647 static inline bool forced_push(const struct tcp_sock *tp) 648 { 649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 650 } 651 652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 656 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 __skb_header_release(skb); 660 tcp_add_write_queue_tail(sk, skb); 661 sk_wmem_queued_add(sk, skb->truesize); 662 sk_mem_charge(sk, skb->truesize); 663 if (tp->nonagle & TCP_NAGLE_PUSH) 664 tp->nonagle &= ~TCP_NAGLE_PUSH; 665 666 tcp_slow_start_after_idle_check(sk); 667 } 668 669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 670 { 671 if (flags & MSG_OOB) 672 tp->snd_up = tp->write_seq; 673 } 674 675 /* If a not yet filled skb is pushed, do not send it if 676 * we have data packets in Qdisc or NIC queues : 677 * Because TX completion will happen shortly, it gives a chance 678 * to coalesce future sendmsg() payload into this skb, without 679 * need for a timer, and with no latency trade off. 680 * As packets containing data payload have a bigger truesize 681 * than pure acks (dataless) packets, the last checks prevent 682 * autocorking if we only have an ACK in Qdisc/NIC queues, 683 * or if TX completion was delayed after we processed ACK packet. 684 */ 685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 686 int size_goal) 687 { 688 return skb->len < size_goal && 689 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 690 !tcp_rtx_queue_empty(sk) && 691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 692 } 693 694 void tcp_push(struct sock *sk, int flags, int mss_now, 695 int nonagle, int size_goal) 696 { 697 struct tcp_sock *tp = tcp_sk(sk); 698 struct sk_buff *skb; 699 700 skb = tcp_write_queue_tail(sk); 701 if (!skb) 702 return; 703 if (!(flags & MSG_MORE) || forced_push(tp)) 704 tcp_mark_push(tp, skb); 705 706 tcp_mark_urg(tp, flags); 707 708 if (tcp_should_autocork(sk, skb, size_goal)) { 709 710 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 711 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 713 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 714 } 715 /* It is possible TX completion already happened 716 * before we set TSQ_THROTTLED. 717 */ 718 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 719 return; 720 } 721 722 if (flags & MSG_MORE) 723 nonagle = TCP_NAGLE_CORK; 724 725 __tcp_push_pending_frames(sk, mss_now, nonagle); 726 } 727 728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 729 unsigned int offset, size_t len) 730 { 731 struct tcp_splice_state *tss = rd_desc->arg.data; 732 int ret; 733 734 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 735 min(rd_desc->count, len), tss->flags); 736 if (ret > 0) 737 rd_desc->count -= ret; 738 return ret; 739 } 740 741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 742 { 743 /* Store TCP splice context information in read_descriptor_t. */ 744 read_descriptor_t rd_desc = { 745 .arg.data = tss, 746 .count = tss->len, 747 }; 748 749 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 750 } 751 752 /** 753 * tcp_splice_read - splice data from TCP socket to a pipe 754 * @sock: socket to splice from 755 * @ppos: position (not valid) 756 * @pipe: pipe to splice to 757 * @len: number of bytes to splice 758 * @flags: splice modifier flags 759 * 760 * Description: 761 * Will read pages from given socket and fill them into a pipe. 762 * 763 **/ 764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 765 struct pipe_inode_info *pipe, size_t len, 766 unsigned int flags) 767 { 768 struct sock *sk = sock->sk; 769 struct tcp_splice_state tss = { 770 .pipe = pipe, 771 .len = len, 772 .flags = flags, 773 }; 774 long timeo; 775 ssize_t spliced; 776 int ret; 777 778 sock_rps_record_flow(sk); 779 /* 780 * We can't seek on a socket input 781 */ 782 if (unlikely(*ppos)) 783 return -ESPIPE; 784 785 ret = spliced = 0; 786 787 lock_sock(sk); 788 789 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 790 while (tss.len) { 791 ret = __tcp_splice_read(sk, &tss); 792 if (ret < 0) 793 break; 794 else if (!ret) { 795 if (spliced) 796 break; 797 if (sock_flag(sk, SOCK_DONE)) 798 break; 799 if (sk->sk_err) { 800 ret = sock_error(sk); 801 break; 802 } 803 if (sk->sk_shutdown & RCV_SHUTDOWN) 804 break; 805 if (sk->sk_state == TCP_CLOSE) { 806 /* 807 * This occurs when user tries to read 808 * from never connected socket. 809 */ 810 ret = -ENOTCONN; 811 break; 812 } 813 if (!timeo) { 814 ret = -EAGAIN; 815 break; 816 } 817 /* if __tcp_splice_read() got nothing while we have 818 * an skb in receive queue, we do not want to loop. 819 * This might happen with URG data. 820 */ 821 if (!skb_queue_empty(&sk->sk_receive_queue)) 822 break; 823 sk_wait_data(sk, &timeo, NULL); 824 if (signal_pending(current)) { 825 ret = sock_intr_errno(timeo); 826 break; 827 } 828 continue; 829 } 830 tss.len -= ret; 831 spliced += ret; 832 833 if (!timeo) 834 break; 835 release_sock(sk); 836 lock_sock(sk); 837 838 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 839 (sk->sk_shutdown & RCV_SHUTDOWN) || 840 signal_pending(current)) 841 break; 842 } 843 844 release_sock(sk); 845 846 if (spliced) 847 return spliced; 848 849 return ret; 850 } 851 EXPORT_SYMBOL(tcp_splice_read); 852 853 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 854 bool force_schedule) 855 { 856 struct sk_buff *skb; 857 858 if (unlikely(tcp_under_memory_pressure(sk))) 859 sk_mem_reclaim_partial(sk); 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 if (force_schedule) { 866 mem_scheduled = true; 867 sk_forced_mem_schedule(sk, skb->truesize); 868 } else { 869 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 870 } 871 if (likely(mem_scheduled)) { 872 skb_reserve(skb, MAX_TCP_HEADER); 873 skb->ip_summed = CHECKSUM_PARTIAL; 874 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 875 return skb; 876 } 877 __kfree_skb(skb); 878 } else { 879 sk->sk_prot->enter_memory_pressure(sk); 880 sk_stream_moderate_sndbuf(sk); 881 } 882 return NULL; 883 } 884 885 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 886 int large_allowed) 887 { 888 struct tcp_sock *tp = tcp_sk(sk); 889 u32 new_size_goal, size_goal; 890 891 if (!large_allowed) 892 return mss_now; 893 894 /* Note : tcp_tso_autosize() will eventually split this later */ 895 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 896 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 897 898 /* We try hard to avoid divides here */ 899 size_goal = tp->gso_segs * mss_now; 900 if (unlikely(new_size_goal < size_goal || 901 new_size_goal >= size_goal + mss_now)) { 902 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 903 sk->sk_gso_max_segs); 904 size_goal = tp->gso_segs * mss_now; 905 } 906 907 return max(size_goal, mss_now); 908 } 909 910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 911 { 912 int mss_now; 913 914 mss_now = tcp_current_mss(sk); 915 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 916 917 return mss_now; 918 } 919 920 /* In some cases, both sendpage() and sendmsg() could have added 921 * an skb to the write queue, but failed adding payload on it. 922 * We need to remove it to consume less memory, but more 923 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 924 * users. 925 */ 926 void tcp_remove_empty_skb(struct sock *sk) 927 { 928 struct sk_buff *skb = tcp_write_queue_tail(sk); 929 930 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 931 tcp_unlink_write_queue(skb, sk); 932 if (tcp_write_queue_empty(sk)) 933 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 934 tcp_wmem_free_skb(sk, skb); 935 } 936 } 937 938 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 939 struct page *page, int offset, size_t *size) 940 { 941 struct sk_buff *skb = tcp_write_queue_tail(sk); 942 struct tcp_sock *tp = tcp_sk(sk); 943 bool can_coalesce; 944 int copy, i; 945 946 if (!skb || (copy = size_goal - skb->len) <= 0 || 947 !tcp_skb_can_collapse_to(skb)) { 948 new_segment: 949 if (!sk_stream_memory_free(sk)) 950 return NULL; 951 952 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 953 tcp_rtx_and_write_queues_empty(sk)); 954 if (!skb) 955 return NULL; 956 957 #ifdef CONFIG_TLS_DEVICE 958 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 959 #endif 960 tcp_skb_entail(sk, skb); 961 copy = size_goal; 962 } 963 964 if (copy > *size) 965 copy = *size; 966 967 i = skb_shinfo(skb)->nr_frags; 968 can_coalesce = skb_can_coalesce(skb, i, page, offset); 969 if (!can_coalesce && i >= sysctl_max_skb_frags) { 970 tcp_mark_push(tp, skb); 971 goto new_segment; 972 } 973 if (!sk_wmem_schedule(sk, copy)) 974 return NULL; 975 976 if (can_coalesce) { 977 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 978 } else { 979 get_page(page); 980 skb_fill_page_desc(skb, i, page, offset, copy); 981 } 982 983 if (!(flags & MSG_NO_SHARED_FRAGS)) 984 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 985 986 skb->len += copy; 987 skb->data_len += copy; 988 skb->truesize += copy; 989 sk_wmem_queued_add(sk, copy); 990 sk_mem_charge(sk, copy); 991 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 992 TCP_SKB_CB(skb)->end_seq += copy; 993 tcp_skb_pcount_set(skb, 0); 994 995 *size = copy; 996 return skb; 997 } 998 999 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1000 size_t size, int flags) 1001 { 1002 struct tcp_sock *tp = tcp_sk(sk); 1003 int mss_now, size_goal; 1004 int err; 1005 ssize_t copied; 1006 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1007 1008 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1009 WARN_ONCE(!sendpage_ok(page), 1010 "page must not be a Slab one and have page_count > 0")) 1011 return -EINVAL; 1012 1013 /* Wait for a connection to finish. One exception is TCP Fast Open 1014 * (passive side) where data is allowed to be sent before a connection 1015 * is fully established. 1016 */ 1017 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1018 !tcp_passive_fastopen(sk)) { 1019 err = sk_stream_wait_connect(sk, &timeo); 1020 if (err != 0) 1021 goto out_err; 1022 } 1023 1024 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1025 1026 mss_now = tcp_send_mss(sk, &size_goal, flags); 1027 copied = 0; 1028 1029 err = -EPIPE; 1030 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1031 goto out_err; 1032 1033 while (size > 0) { 1034 struct sk_buff *skb; 1035 size_t copy = size; 1036 1037 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1038 if (!skb) 1039 goto wait_for_space; 1040 1041 if (!copied) 1042 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1043 1044 copied += copy; 1045 offset += copy; 1046 size -= copy; 1047 if (!size) 1048 goto out; 1049 1050 if (skb->len < size_goal || (flags & MSG_OOB)) 1051 continue; 1052 1053 if (forced_push(tp)) { 1054 tcp_mark_push(tp, skb); 1055 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1056 } else if (skb == tcp_send_head(sk)) 1057 tcp_push_one(sk, mss_now); 1058 continue; 1059 1060 wait_for_space: 1061 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1062 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1063 TCP_NAGLE_PUSH, size_goal); 1064 1065 err = sk_stream_wait_memory(sk, &timeo); 1066 if (err != 0) 1067 goto do_error; 1068 1069 mss_now = tcp_send_mss(sk, &size_goal, flags); 1070 } 1071 1072 out: 1073 if (copied) { 1074 tcp_tx_timestamp(sk, sk->sk_tsflags); 1075 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1076 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1077 } 1078 return copied; 1079 1080 do_error: 1081 tcp_remove_empty_skb(sk); 1082 if (copied) 1083 goto out; 1084 out_err: 1085 /* make sure we wake any epoll edge trigger waiter */ 1086 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1087 sk->sk_write_space(sk); 1088 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1089 } 1090 return sk_stream_error(sk, flags, err); 1091 } 1092 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1093 1094 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1095 size_t size, int flags) 1096 { 1097 if (!(sk->sk_route_caps & NETIF_F_SG)) 1098 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1099 1100 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1101 1102 return do_tcp_sendpages(sk, page, offset, size, flags); 1103 } 1104 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1105 1106 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1107 size_t size, int flags) 1108 { 1109 int ret; 1110 1111 lock_sock(sk); 1112 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1113 release_sock(sk); 1114 1115 return ret; 1116 } 1117 EXPORT_SYMBOL(tcp_sendpage); 1118 1119 void tcp_free_fastopen_req(struct tcp_sock *tp) 1120 { 1121 if (tp->fastopen_req) { 1122 kfree(tp->fastopen_req); 1123 tp->fastopen_req = NULL; 1124 } 1125 } 1126 1127 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1128 int *copied, size_t size, 1129 struct ubuf_info *uarg) 1130 { 1131 struct tcp_sock *tp = tcp_sk(sk); 1132 struct inet_sock *inet = inet_sk(sk); 1133 struct sockaddr *uaddr = msg->msg_name; 1134 int err, flags; 1135 1136 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1137 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1138 uaddr->sa_family == AF_UNSPEC)) 1139 return -EOPNOTSUPP; 1140 if (tp->fastopen_req) 1141 return -EALREADY; /* Another Fast Open is in progress */ 1142 1143 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1144 sk->sk_allocation); 1145 if (unlikely(!tp->fastopen_req)) 1146 return -ENOBUFS; 1147 tp->fastopen_req->data = msg; 1148 tp->fastopen_req->size = size; 1149 tp->fastopen_req->uarg = uarg; 1150 1151 if (inet->defer_connect) { 1152 err = tcp_connect(sk); 1153 /* Same failure procedure as in tcp_v4/6_connect */ 1154 if (err) { 1155 tcp_set_state(sk, TCP_CLOSE); 1156 inet->inet_dport = 0; 1157 sk->sk_route_caps = 0; 1158 } 1159 } 1160 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1161 err = __inet_stream_connect(sk->sk_socket, uaddr, 1162 msg->msg_namelen, flags, 1); 1163 /* fastopen_req could already be freed in __inet_stream_connect 1164 * if the connection times out or gets rst 1165 */ 1166 if (tp->fastopen_req) { 1167 *copied = tp->fastopen_req->copied; 1168 tcp_free_fastopen_req(tp); 1169 inet->defer_connect = 0; 1170 } 1171 return err; 1172 } 1173 1174 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1175 { 1176 struct tcp_sock *tp = tcp_sk(sk); 1177 struct ubuf_info *uarg = NULL; 1178 struct sk_buff *skb; 1179 struct sockcm_cookie sockc; 1180 int flags, err, copied = 0; 1181 int mss_now = 0, size_goal, copied_syn = 0; 1182 int process_backlog = 0; 1183 bool zc = false; 1184 long timeo; 1185 1186 flags = msg->msg_flags; 1187 1188 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1189 skb = tcp_write_queue_tail(sk); 1190 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1191 if (!uarg) { 1192 err = -ENOBUFS; 1193 goto out_err; 1194 } 1195 1196 zc = sk->sk_route_caps & NETIF_F_SG; 1197 if (!zc) 1198 uarg->zerocopy = 0; 1199 } 1200 1201 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1202 !tp->repair) { 1203 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1204 if (err == -EINPROGRESS && copied_syn > 0) 1205 goto out; 1206 else if (err) 1207 goto out_err; 1208 } 1209 1210 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1211 1212 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1213 1214 /* Wait for a connection to finish. One exception is TCP Fast Open 1215 * (passive side) where data is allowed to be sent before a connection 1216 * is fully established. 1217 */ 1218 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1219 !tcp_passive_fastopen(sk)) { 1220 err = sk_stream_wait_connect(sk, &timeo); 1221 if (err != 0) 1222 goto do_error; 1223 } 1224 1225 if (unlikely(tp->repair)) { 1226 if (tp->repair_queue == TCP_RECV_QUEUE) { 1227 copied = tcp_send_rcvq(sk, msg, size); 1228 goto out_nopush; 1229 } 1230 1231 err = -EINVAL; 1232 if (tp->repair_queue == TCP_NO_QUEUE) 1233 goto out_err; 1234 1235 /* 'common' sending to sendq */ 1236 } 1237 1238 sockcm_init(&sockc, sk); 1239 if (msg->msg_controllen) { 1240 err = sock_cmsg_send(sk, msg, &sockc); 1241 if (unlikely(err)) { 1242 err = -EINVAL; 1243 goto out_err; 1244 } 1245 } 1246 1247 /* This should be in poll */ 1248 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1249 1250 /* Ok commence sending. */ 1251 copied = 0; 1252 1253 restart: 1254 mss_now = tcp_send_mss(sk, &size_goal, flags); 1255 1256 err = -EPIPE; 1257 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1258 goto do_error; 1259 1260 while (msg_data_left(msg)) { 1261 int copy = 0; 1262 1263 skb = tcp_write_queue_tail(sk); 1264 if (skb) 1265 copy = size_goal - skb->len; 1266 1267 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1268 bool first_skb; 1269 1270 new_segment: 1271 if (!sk_stream_memory_free(sk)) 1272 goto wait_for_space; 1273 1274 if (unlikely(process_backlog >= 16)) { 1275 process_backlog = 0; 1276 if (sk_flush_backlog(sk)) 1277 goto restart; 1278 } 1279 first_skb = tcp_rtx_and_write_queues_empty(sk); 1280 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1281 first_skb); 1282 if (!skb) 1283 goto wait_for_space; 1284 1285 process_backlog++; 1286 1287 tcp_skb_entail(sk, skb); 1288 copy = size_goal; 1289 1290 /* All packets are restored as if they have 1291 * already been sent. skb_mstamp_ns isn't set to 1292 * avoid wrong rtt estimation. 1293 */ 1294 if (tp->repair) 1295 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1296 } 1297 1298 /* Try to append data to the end of skb. */ 1299 if (copy > msg_data_left(msg)) 1300 copy = msg_data_left(msg); 1301 1302 if (!zc) { 1303 bool merge = true; 1304 int i = skb_shinfo(skb)->nr_frags; 1305 struct page_frag *pfrag = sk_page_frag(sk); 1306 1307 if (!sk_page_frag_refill(sk, pfrag)) 1308 goto wait_for_space; 1309 1310 if (!skb_can_coalesce(skb, i, pfrag->page, 1311 pfrag->offset)) { 1312 if (i >= sysctl_max_skb_frags) { 1313 tcp_mark_push(tp, skb); 1314 goto new_segment; 1315 } 1316 merge = false; 1317 } 1318 1319 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1320 1321 if (!sk_wmem_schedule(sk, copy)) 1322 goto wait_for_space; 1323 1324 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1325 pfrag->page, 1326 pfrag->offset, 1327 copy); 1328 if (err) 1329 goto do_error; 1330 1331 /* Update the skb. */ 1332 if (merge) { 1333 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1334 } else { 1335 skb_fill_page_desc(skb, i, pfrag->page, 1336 pfrag->offset, copy); 1337 page_ref_inc(pfrag->page); 1338 } 1339 pfrag->offset += copy; 1340 } else { 1341 if (!sk_wmem_schedule(sk, copy)) 1342 goto wait_for_space; 1343 1344 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1345 if (err == -EMSGSIZE || err == -EEXIST) { 1346 tcp_mark_push(tp, skb); 1347 goto new_segment; 1348 } 1349 if (err < 0) 1350 goto do_error; 1351 copy = err; 1352 } 1353 1354 if (!copied) 1355 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1356 1357 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1358 TCP_SKB_CB(skb)->end_seq += copy; 1359 tcp_skb_pcount_set(skb, 0); 1360 1361 copied += copy; 1362 if (!msg_data_left(msg)) { 1363 if (unlikely(flags & MSG_EOR)) 1364 TCP_SKB_CB(skb)->eor = 1; 1365 goto out; 1366 } 1367 1368 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1369 continue; 1370 1371 if (forced_push(tp)) { 1372 tcp_mark_push(tp, skb); 1373 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1374 } else if (skb == tcp_send_head(sk)) 1375 tcp_push_one(sk, mss_now); 1376 continue; 1377 1378 wait_for_space: 1379 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1380 if (copied) 1381 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1382 TCP_NAGLE_PUSH, size_goal); 1383 1384 err = sk_stream_wait_memory(sk, &timeo); 1385 if (err != 0) 1386 goto do_error; 1387 1388 mss_now = tcp_send_mss(sk, &size_goal, flags); 1389 } 1390 1391 out: 1392 if (copied) { 1393 tcp_tx_timestamp(sk, sockc.tsflags); 1394 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1395 } 1396 out_nopush: 1397 net_zcopy_put(uarg); 1398 return copied + copied_syn; 1399 1400 do_error: 1401 tcp_remove_empty_skb(sk); 1402 1403 if (copied + copied_syn) 1404 goto out; 1405 out_err: 1406 net_zcopy_put_abort(uarg, true); 1407 err = sk_stream_error(sk, flags, err); 1408 /* make sure we wake any epoll edge trigger waiter */ 1409 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1410 sk->sk_write_space(sk); 1411 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1412 } 1413 return err; 1414 } 1415 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1416 1417 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1418 { 1419 int ret; 1420 1421 lock_sock(sk); 1422 ret = tcp_sendmsg_locked(sk, msg, size); 1423 release_sock(sk); 1424 1425 return ret; 1426 } 1427 EXPORT_SYMBOL(tcp_sendmsg); 1428 1429 /* 1430 * Handle reading urgent data. BSD has very simple semantics for 1431 * this, no blocking and very strange errors 8) 1432 */ 1433 1434 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1435 { 1436 struct tcp_sock *tp = tcp_sk(sk); 1437 1438 /* No URG data to read. */ 1439 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1440 tp->urg_data == TCP_URG_READ) 1441 return -EINVAL; /* Yes this is right ! */ 1442 1443 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1444 return -ENOTCONN; 1445 1446 if (tp->urg_data & TCP_URG_VALID) { 1447 int err = 0; 1448 char c = tp->urg_data; 1449 1450 if (!(flags & MSG_PEEK)) 1451 tp->urg_data = TCP_URG_READ; 1452 1453 /* Read urgent data. */ 1454 msg->msg_flags |= MSG_OOB; 1455 1456 if (len > 0) { 1457 if (!(flags & MSG_TRUNC)) 1458 err = memcpy_to_msg(msg, &c, 1); 1459 len = 1; 1460 } else 1461 msg->msg_flags |= MSG_TRUNC; 1462 1463 return err ? -EFAULT : len; 1464 } 1465 1466 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1467 return 0; 1468 1469 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1470 * the available implementations agree in this case: 1471 * this call should never block, independent of the 1472 * blocking state of the socket. 1473 * Mike <pall@rz.uni-karlsruhe.de> 1474 */ 1475 return -EAGAIN; 1476 } 1477 1478 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1479 { 1480 struct sk_buff *skb; 1481 int copied = 0, err = 0; 1482 1483 /* XXX -- need to support SO_PEEK_OFF */ 1484 1485 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1486 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1487 if (err) 1488 return err; 1489 copied += skb->len; 1490 } 1491 1492 skb_queue_walk(&sk->sk_write_queue, skb) { 1493 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1494 if (err) 1495 break; 1496 1497 copied += skb->len; 1498 } 1499 1500 return err ?: copied; 1501 } 1502 1503 /* Clean up the receive buffer for full frames taken by the user, 1504 * then send an ACK if necessary. COPIED is the number of bytes 1505 * tcp_recvmsg has given to the user so far, it speeds up the 1506 * calculation of whether or not we must ACK for the sake of 1507 * a window update. 1508 */ 1509 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1510 { 1511 struct tcp_sock *tp = tcp_sk(sk); 1512 bool time_to_ack = false; 1513 1514 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1515 1516 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1517 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1518 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1519 1520 if (inet_csk_ack_scheduled(sk)) { 1521 const struct inet_connection_sock *icsk = inet_csk(sk); 1522 1523 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1524 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1525 /* 1526 * If this read emptied read buffer, we send ACK, if 1527 * connection is not bidirectional, user drained 1528 * receive buffer and there was a small segment 1529 * in queue. 1530 */ 1531 (copied > 0 && 1532 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1533 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1534 !inet_csk_in_pingpong_mode(sk))) && 1535 !atomic_read(&sk->sk_rmem_alloc))) 1536 time_to_ack = true; 1537 } 1538 1539 /* We send an ACK if we can now advertise a non-zero window 1540 * which has been raised "significantly". 1541 * 1542 * Even if window raised up to infinity, do not send window open ACK 1543 * in states, where we will not receive more. It is useless. 1544 */ 1545 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1546 __u32 rcv_window_now = tcp_receive_window(tp); 1547 1548 /* Optimize, __tcp_select_window() is not cheap. */ 1549 if (2*rcv_window_now <= tp->window_clamp) { 1550 __u32 new_window = __tcp_select_window(sk); 1551 1552 /* Send ACK now, if this read freed lots of space 1553 * in our buffer. Certainly, new_window is new window. 1554 * We can advertise it now, if it is not less than current one. 1555 * "Lots" means "at least twice" here. 1556 */ 1557 if (new_window && new_window >= 2 * rcv_window_now) 1558 time_to_ack = true; 1559 } 1560 } 1561 if (time_to_ack) 1562 tcp_send_ack(sk); 1563 } 1564 1565 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1566 { 1567 struct sk_buff *skb; 1568 u32 offset; 1569 1570 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1571 offset = seq - TCP_SKB_CB(skb)->seq; 1572 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1573 pr_err_once("%s: found a SYN, please report !\n", __func__); 1574 offset--; 1575 } 1576 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1577 *off = offset; 1578 return skb; 1579 } 1580 /* This looks weird, but this can happen if TCP collapsing 1581 * splitted a fat GRO packet, while we released socket lock 1582 * in skb_splice_bits() 1583 */ 1584 sk_eat_skb(sk, skb); 1585 } 1586 return NULL; 1587 } 1588 1589 /* 1590 * This routine provides an alternative to tcp_recvmsg() for routines 1591 * that would like to handle copying from skbuffs directly in 'sendfile' 1592 * fashion. 1593 * Note: 1594 * - It is assumed that the socket was locked by the caller. 1595 * - The routine does not block. 1596 * - At present, there is no support for reading OOB data 1597 * or for 'peeking' the socket using this routine 1598 * (although both would be easy to implement). 1599 */ 1600 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1601 sk_read_actor_t recv_actor) 1602 { 1603 struct sk_buff *skb; 1604 struct tcp_sock *tp = tcp_sk(sk); 1605 u32 seq = tp->copied_seq; 1606 u32 offset; 1607 int copied = 0; 1608 1609 if (sk->sk_state == TCP_LISTEN) 1610 return -ENOTCONN; 1611 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1612 if (offset < skb->len) { 1613 int used; 1614 size_t len; 1615 1616 len = skb->len - offset; 1617 /* Stop reading if we hit a patch of urgent data */ 1618 if (tp->urg_data) { 1619 u32 urg_offset = tp->urg_seq - seq; 1620 if (urg_offset < len) 1621 len = urg_offset; 1622 if (!len) 1623 break; 1624 } 1625 used = recv_actor(desc, skb, offset, len); 1626 if (used <= 0) { 1627 if (!copied) 1628 copied = used; 1629 break; 1630 } else if (used <= len) { 1631 seq += used; 1632 copied += used; 1633 offset += used; 1634 } 1635 /* If recv_actor drops the lock (e.g. TCP splice 1636 * receive) the skb pointer might be invalid when 1637 * getting here: tcp_collapse might have deleted it 1638 * while aggregating skbs from the socket queue. 1639 */ 1640 skb = tcp_recv_skb(sk, seq - 1, &offset); 1641 if (!skb) 1642 break; 1643 /* TCP coalescing might have appended data to the skb. 1644 * Try to splice more frags 1645 */ 1646 if (offset + 1 != skb->len) 1647 continue; 1648 } 1649 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1650 sk_eat_skb(sk, skb); 1651 ++seq; 1652 break; 1653 } 1654 sk_eat_skb(sk, skb); 1655 if (!desc->count) 1656 break; 1657 WRITE_ONCE(tp->copied_seq, seq); 1658 } 1659 WRITE_ONCE(tp->copied_seq, seq); 1660 1661 tcp_rcv_space_adjust(sk); 1662 1663 /* Clean up data we have read: This will do ACK frames. */ 1664 if (copied > 0) { 1665 tcp_recv_skb(sk, seq, &offset); 1666 tcp_cleanup_rbuf(sk, copied); 1667 } 1668 return copied; 1669 } 1670 EXPORT_SYMBOL(tcp_read_sock); 1671 1672 int tcp_peek_len(struct socket *sock) 1673 { 1674 return tcp_inq(sock->sk); 1675 } 1676 EXPORT_SYMBOL(tcp_peek_len); 1677 1678 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1679 int tcp_set_rcvlowat(struct sock *sk, int val) 1680 { 1681 int cap; 1682 1683 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1684 cap = sk->sk_rcvbuf >> 1; 1685 else 1686 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1687 val = min(val, cap); 1688 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1689 1690 /* Check if we need to signal EPOLLIN right now */ 1691 tcp_data_ready(sk); 1692 1693 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1694 return 0; 1695 1696 val <<= 1; 1697 if (val > sk->sk_rcvbuf) { 1698 WRITE_ONCE(sk->sk_rcvbuf, val); 1699 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1700 } 1701 return 0; 1702 } 1703 EXPORT_SYMBOL(tcp_set_rcvlowat); 1704 1705 void tcp_update_recv_tstamps(struct sk_buff *skb, 1706 struct scm_timestamping_internal *tss) 1707 { 1708 if (skb->tstamp) 1709 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1710 else 1711 tss->ts[0] = (struct timespec64) {0}; 1712 1713 if (skb_hwtstamps(skb)->hwtstamp) 1714 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1715 else 1716 tss->ts[2] = (struct timespec64) {0}; 1717 } 1718 1719 #ifdef CONFIG_MMU 1720 static const struct vm_operations_struct tcp_vm_ops = { 1721 }; 1722 1723 int tcp_mmap(struct file *file, struct socket *sock, 1724 struct vm_area_struct *vma) 1725 { 1726 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1727 return -EPERM; 1728 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1729 1730 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1731 vma->vm_flags |= VM_MIXEDMAP; 1732 1733 vma->vm_ops = &tcp_vm_ops; 1734 return 0; 1735 } 1736 EXPORT_SYMBOL(tcp_mmap); 1737 1738 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1739 u32 *offset_frag) 1740 { 1741 skb_frag_t *frag; 1742 1743 offset_skb -= skb_headlen(skb); 1744 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1745 return NULL; 1746 1747 frag = skb_shinfo(skb)->frags; 1748 while (offset_skb) { 1749 if (skb_frag_size(frag) > offset_skb) { 1750 *offset_frag = offset_skb; 1751 return frag; 1752 } 1753 offset_skb -= skb_frag_size(frag); 1754 ++frag; 1755 } 1756 *offset_frag = 0; 1757 return frag; 1758 } 1759 1760 static bool can_map_frag(const skb_frag_t *frag) 1761 { 1762 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1763 } 1764 1765 static int find_next_mappable_frag(const skb_frag_t *frag, 1766 int remaining_in_skb) 1767 { 1768 int offset = 0; 1769 1770 if (likely(can_map_frag(frag))) 1771 return 0; 1772 1773 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1774 offset += skb_frag_size(frag); 1775 ++frag; 1776 } 1777 return offset; 1778 } 1779 1780 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1781 struct tcp_zerocopy_receive *zc, 1782 struct sk_buff *skb, u32 offset) 1783 { 1784 u32 frag_offset, partial_frag_remainder = 0; 1785 int mappable_offset; 1786 skb_frag_t *frag; 1787 1788 /* worst case: skip to next skb. try to improve on this case below */ 1789 zc->recv_skip_hint = skb->len - offset; 1790 1791 /* Find the frag containing this offset (and how far into that frag) */ 1792 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1793 if (!frag) 1794 return; 1795 1796 if (frag_offset) { 1797 struct skb_shared_info *info = skb_shinfo(skb); 1798 1799 /* We read part of the last frag, must recvmsg() rest of skb. */ 1800 if (frag == &info->frags[info->nr_frags - 1]) 1801 return; 1802 1803 /* Else, we must at least read the remainder in this frag. */ 1804 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1805 zc->recv_skip_hint -= partial_frag_remainder; 1806 ++frag; 1807 } 1808 1809 /* partial_frag_remainder: If part way through a frag, must read rest. 1810 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1811 * in partial_frag_remainder. 1812 */ 1813 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1814 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1815 } 1816 1817 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1818 int nonblock, int flags, 1819 struct scm_timestamping_internal *tss, 1820 int *cmsg_flags); 1821 static int receive_fallback_to_copy(struct sock *sk, 1822 struct tcp_zerocopy_receive *zc, int inq, 1823 struct scm_timestamping_internal *tss) 1824 { 1825 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1826 struct msghdr msg = {}; 1827 struct iovec iov; 1828 int err; 1829 1830 zc->length = 0; 1831 zc->recv_skip_hint = 0; 1832 1833 if (copy_address != zc->copybuf_address) 1834 return -EINVAL; 1835 1836 err = import_single_range(READ, (void __user *)copy_address, 1837 inq, &iov, &msg.msg_iter); 1838 if (err) 1839 return err; 1840 1841 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1842 tss, &zc->msg_flags); 1843 if (err < 0) 1844 return err; 1845 1846 zc->copybuf_len = err; 1847 if (likely(zc->copybuf_len)) { 1848 struct sk_buff *skb; 1849 u32 offset; 1850 1851 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1852 if (skb) 1853 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1854 } 1855 return 0; 1856 } 1857 1858 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1859 struct sk_buff *skb, u32 copylen, 1860 u32 *offset, u32 *seq) 1861 { 1862 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1863 struct msghdr msg = {}; 1864 struct iovec iov; 1865 int err; 1866 1867 if (copy_address != zc->copybuf_address) 1868 return -EINVAL; 1869 1870 err = import_single_range(READ, (void __user *)copy_address, 1871 copylen, &iov, &msg.msg_iter); 1872 if (err) 1873 return err; 1874 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1875 if (err) 1876 return err; 1877 zc->recv_skip_hint -= copylen; 1878 *offset += copylen; 1879 *seq += copylen; 1880 return (__s32)copylen; 1881 } 1882 1883 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1884 struct sock *sk, 1885 struct sk_buff *skb, 1886 u32 *seq, 1887 s32 copybuf_len, 1888 struct scm_timestamping_internal *tss) 1889 { 1890 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1891 1892 if (!copylen) 1893 return 0; 1894 /* skb is null if inq < PAGE_SIZE. */ 1895 if (skb) { 1896 offset = *seq - TCP_SKB_CB(skb)->seq; 1897 } else { 1898 skb = tcp_recv_skb(sk, *seq, &offset); 1899 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1900 tcp_update_recv_tstamps(skb, tss); 1901 zc->msg_flags |= TCP_CMSG_TS; 1902 } 1903 } 1904 1905 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1906 seq); 1907 return zc->copybuf_len < 0 ? 0 : copylen; 1908 } 1909 1910 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1911 struct page **pending_pages, 1912 unsigned long pages_remaining, 1913 unsigned long *address, 1914 u32 *length, 1915 u32 *seq, 1916 struct tcp_zerocopy_receive *zc, 1917 u32 total_bytes_to_map, 1918 int err) 1919 { 1920 /* At least one page did not map. Try zapping if we skipped earlier. */ 1921 if (err == -EBUSY && 1922 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1923 u32 maybe_zap_len; 1924 1925 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1926 *length + /* Mapped or pending */ 1927 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1928 zap_page_range(vma, *address, maybe_zap_len); 1929 err = 0; 1930 } 1931 1932 if (!err) { 1933 unsigned long leftover_pages = pages_remaining; 1934 int bytes_mapped; 1935 1936 /* We called zap_page_range, try to reinsert. */ 1937 err = vm_insert_pages(vma, *address, 1938 pending_pages, 1939 &pages_remaining); 1940 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1941 *seq += bytes_mapped; 1942 *address += bytes_mapped; 1943 } 1944 if (err) { 1945 /* Either we were unable to zap, OR we zapped, retried an 1946 * insert, and still had an issue. Either ways, pages_remaining 1947 * is the number of pages we were unable to map, and we unroll 1948 * some state we speculatively touched before. 1949 */ 1950 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1951 1952 *length -= bytes_not_mapped; 1953 zc->recv_skip_hint += bytes_not_mapped; 1954 } 1955 return err; 1956 } 1957 1958 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1959 struct page **pages, 1960 unsigned int pages_to_map, 1961 unsigned long *address, 1962 u32 *length, 1963 u32 *seq, 1964 struct tcp_zerocopy_receive *zc, 1965 u32 total_bytes_to_map) 1966 { 1967 unsigned long pages_remaining = pages_to_map; 1968 unsigned int pages_mapped; 1969 unsigned int bytes_mapped; 1970 int err; 1971 1972 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1973 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1974 bytes_mapped = PAGE_SIZE * pages_mapped; 1975 /* Even if vm_insert_pages fails, it may have partially succeeded in 1976 * mapping (some but not all of the pages). 1977 */ 1978 *seq += bytes_mapped; 1979 *address += bytes_mapped; 1980 1981 if (likely(!err)) 1982 return 0; 1983 1984 /* Error: maybe zap and retry + rollback state for failed inserts. */ 1985 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 1986 pages_remaining, address, length, seq, zc, total_bytes_to_map, 1987 err); 1988 } 1989 1990 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 1991 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 1992 struct tcp_zerocopy_receive *zc, 1993 struct scm_timestamping_internal *tss) 1994 { 1995 unsigned long msg_control_addr; 1996 struct msghdr cmsg_dummy; 1997 1998 msg_control_addr = (unsigned long)zc->msg_control; 1999 cmsg_dummy.msg_control = (void *)msg_control_addr; 2000 cmsg_dummy.msg_controllen = 2001 (__kernel_size_t)zc->msg_controllen; 2002 cmsg_dummy.msg_flags = in_compat_syscall() 2003 ? MSG_CMSG_COMPAT : 0; 2004 cmsg_dummy.msg_control_is_user = true; 2005 zc->msg_flags = 0; 2006 if (zc->msg_control == msg_control_addr && 2007 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2008 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2009 zc->msg_control = (__u64) 2010 ((uintptr_t)cmsg_dummy.msg_control); 2011 zc->msg_controllen = 2012 (__u64)cmsg_dummy.msg_controllen; 2013 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2014 } 2015 } 2016 2017 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2018 static int tcp_zerocopy_receive(struct sock *sk, 2019 struct tcp_zerocopy_receive *zc, 2020 struct scm_timestamping_internal *tss) 2021 { 2022 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2023 unsigned long address = (unsigned long)zc->address; 2024 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2025 s32 copybuf_len = zc->copybuf_len; 2026 struct tcp_sock *tp = tcp_sk(sk); 2027 const skb_frag_t *frags = NULL; 2028 unsigned int pages_to_map = 0; 2029 struct vm_area_struct *vma; 2030 struct sk_buff *skb = NULL; 2031 u32 seq = tp->copied_seq; 2032 u32 total_bytes_to_map; 2033 int inq = tcp_inq(sk); 2034 int ret; 2035 2036 zc->copybuf_len = 0; 2037 zc->msg_flags = 0; 2038 2039 if (address & (PAGE_SIZE - 1) || address != zc->address) 2040 return -EINVAL; 2041 2042 if (sk->sk_state == TCP_LISTEN) 2043 return -ENOTCONN; 2044 2045 sock_rps_record_flow(sk); 2046 2047 if (inq && inq <= copybuf_len) 2048 return receive_fallback_to_copy(sk, zc, inq, tss); 2049 2050 if (inq < PAGE_SIZE) { 2051 zc->length = 0; 2052 zc->recv_skip_hint = inq; 2053 if (!inq && sock_flag(sk, SOCK_DONE)) 2054 return -EIO; 2055 return 0; 2056 } 2057 2058 mmap_read_lock(current->mm); 2059 2060 vma = vma_lookup(current->mm, address); 2061 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2062 mmap_read_unlock(current->mm); 2063 return -EINVAL; 2064 } 2065 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2066 avail_len = min_t(u32, vma_len, inq); 2067 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2068 if (total_bytes_to_map) { 2069 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2070 zap_page_range(vma, address, total_bytes_to_map); 2071 zc->length = total_bytes_to_map; 2072 zc->recv_skip_hint = 0; 2073 } else { 2074 zc->length = avail_len; 2075 zc->recv_skip_hint = avail_len; 2076 } 2077 ret = 0; 2078 while (length + PAGE_SIZE <= zc->length) { 2079 int mappable_offset; 2080 struct page *page; 2081 2082 if (zc->recv_skip_hint < PAGE_SIZE) { 2083 u32 offset_frag; 2084 2085 if (skb) { 2086 if (zc->recv_skip_hint > 0) 2087 break; 2088 skb = skb->next; 2089 offset = seq - TCP_SKB_CB(skb)->seq; 2090 } else { 2091 skb = tcp_recv_skb(sk, seq, &offset); 2092 } 2093 2094 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2095 tcp_update_recv_tstamps(skb, tss); 2096 zc->msg_flags |= TCP_CMSG_TS; 2097 } 2098 zc->recv_skip_hint = skb->len - offset; 2099 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2100 if (!frags || offset_frag) 2101 break; 2102 } 2103 2104 mappable_offset = find_next_mappable_frag(frags, 2105 zc->recv_skip_hint); 2106 if (mappable_offset) { 2107 zc->recv_skip_hint = mappable_offset; 2108 break; 2109 } 2110 page = skb_frag_page(frags); 2111 prefetchw(page); 2112 pages[pages_to_map++] = page; 2113 length += PAGE_SIZE; 2114 zc->recv_skip_hint -= PAGE_SIZE; 2115 frags++; 2116 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2117 zc->recv_skip_hint < PAGE_SIZE) { 2118 /* Either full batch, or we're about to go to next skb 2119 * (and we cannot unroll failed ops across skbs). 2120 */ 2121 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2122 pages_to_map, 2123 &address, &length, 2124 &seq, zc, 2125 total_bytes_to_map); 2126 if (ret) 2127 goto out; 2128 pages_to_map = 0; 2129 } 2130 } 2131 if (pages_to_map) { 2132 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2133 &address, &length, &seq, 2134 zc, total_bytes_to_map); 2135 } 2136 out: 2137 mmap_read_unlock(current->mm); 2138 /* Try to copy straggler data. */ 2139 if (!ret) 2140 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2141 2142 if (length + copylen) { 2143 WRITE_ONCE(tp->copied_seq, seq); 2144 tcp_rcv_space_adjust(sk); 2145 2146 /* Clean up data we have read: This will do ACK frames. */ 2147 tcp_recv_skb(sk, seq, &offset); 2148 tcp_cleanup_rbuf(sk, length + copylen); 2149 ret = 0; 2150 if (length == zc->length) 2151 zc->recv_skip_hint = 0; 2152 } else { 2153 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2154 ret = -EIO; 2155 } 2156 zc->length = length; 2157 return ret; 2158 } 2159 #endif 2160 2161 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2162 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2163 struct scm_timestamping_internal *tss) 2164 { 2165 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2166 bool has_timestamping = false; 2167 2168 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2169 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2170 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2171 if (new_tstamp) { 2172 struct __kernel_timespec kts = { 2173 .tv_sec = tss->ts[0].tv_sec, 2174 .tv_nsec = tss->ts[0].tv_nsec, 2175 }; 2176 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2177 sizeof(kts), &kts); 2178 } else { 2179 struct __kernel_old_timespec ts_old = { 2180 .tv_sec = tss->ts[0].tv_sec, 2181 .tv_nsec = tss->ts[0].tv_nsec, 2182 }; 2183 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2184 sizeof(ts_old), &ts_old); 2185 } 2186 } else { 2187 if (new_tstamp) { 2188 struct __kernel_sock_timeval stv = { 2189 .tv_sec = tss->ts[0].tv_sec, 2190 .tv_usec = tss->ts[0].tv_nsec / 1000, 2191 }; 2192 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2193 sizeof(stv), &stv); 2194 } else { 2195 struct __kernel_old_timeval tv = { 2196 .tv_sec = tss->ts[0].tv_sec, 2197 .tv_usec = tss->ts[0].tv_nsec / 1000, 2198 }; 2199 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2200 sizeof(tv), &tv); 2201 } 2202 } 2203 } 2204 2205 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2206 has_timestamping = true; 2207 else 2208 tss->ts[0] = (struct timespec64) {0}; 2209 } 2210 2211 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2212 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2213 has_timestamping = true; 2214 else 2215 tss->ts[2] = (struct timespec64) {0}; 2216 } 2217 2218 if (has_timestamping) { 2219 tss->ts[1] = (struct timespec64) {0}; 2220 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2221 put_cmsg_scm_timestamping64(msg, tss); 2222 else 2223 put_cmsg_scm_timestamping(msg, tss); 2224 } 2225 } 2226 2227 static int tcp_inq_hint(struct sock *sk) 2228 { 2229 const struct tcp_sock *tp = tcp_sk(sk); 2230 u32 copied_seq = READ_ONCE(tp->copied_seq); 2231 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2232 int inq; 2233 2234 inq = rcv_nxt - copied_seq; 2235 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2236 lock_sock(sk); 2237 inq = tp->rcv_nxt - tp->copied_seq; 2238 release_sock(sk); 2239 } 2240 /* After receiving a FIN, tell the user-space to continue reading 2241 * by returning a non-zero inq. 2242 */ 2243 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2244 inq = 1; 2245 return inq; 2246 } 2247 2248 /* 2249 * This routine copies from a sock struct into the user buffer. 2250 * 2251 * Technical note: in 2.3 we work on _locked_ socket, so that 2252 * tricks with *seq access order and skb->users are not required. 2253 * Probably, code can be easily improved even more. 2254 */ 2255 2256 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2257 int nonblock, int flags, 2258 struct scm_timestamping_internal *tss, 2259 int *cmsg_flags) 2260 { 2261 struct tcp_sock *tp = tcp_sk(sk); 2262 int copied = 0; 2263 u32 peek_seq; 2264 u32 *seq; 2265 unsigned long used; 2266 int err; 2267 int target; /* Read at least this many bytes */ 2268 long timeo; 2269 struct sk_buff *skb, *last; 2270 u32 urg_hole = 0; 2271 2272 err = -ENOTCONN; 2273 if (sk->sk_state == TCP_LISTEN) 2274 goto out; 2275 2276 if (tp->recvmsg_inq) 2277 *cmsg_flags = TCP_CMSG_INQ; 2278 timeo = sock_rcvtimeo(sk, nonblock); 2279 2280 /* Urgent data needs to be handled specially. */ 2281 if (flags & MSG_OOB) 2282 goto recv_urg; 2283 2284 if (unlikely(tp->repair)) { 2285 err = -EPERM; 2286 if (!(flags & MSG_PEEK)) 2287 goto out; 2288 2289 if (tp->repair_queue == TCP_SEND_QUEUE) 2290 goto recv_sndq; 2291 2292 err = -EINVAL; 2293 if (tp->repair_queue == TCP_NO_QUEUE) 2294 goto out; 2295 2296 /* 'common' recv queue MSG_PEEK-ing */ 2297 } 2298 2299 seq = &tp->copied_seq; 2300 if (flags & MSG_PEEK) { 2301 peek_seq = tp->copied_seq; 2302 seq = &peek_seq; 2303 } 2304 2305 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2306 2307 do { 2308 u32 offset; 2309 2310 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2311 if (tp->urg_data && tp->urg_seq == *seq) { 2312 if (copied) 2313 break; 2314 if (signal_pending(current)) { 2315 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2316 break; 2317 } 2318 } 2319 2320 /* Next get a buffer. */ 2321 2322 last = skb_peek_tail(&sk->sk_receive_queue); 2323 skb_queue_walk(&sk->sk_receive_queue, skb) { 2324 last = skb; 2325 /* Now that we have two receive queues this 2326 * shouldn't happen. 2327 */ 2328 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2329 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2330 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2331 flags)) 2332 break; 2333 2334 offset = *seq - TCP_SKB_CB(skb)->seq; 2335 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2336 pr_err_once("%s: found a SYN, please report !\n", __func__); 2337 offset--; 2338 } 2339 if (offset < skb->len) 2340 goto found_ok_skb; 2341 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2342 goto found_fin_ok; 2343 WARN(!(flags & MSG_PEEK), 2344 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2345 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2346 } 2347 2348 /* Well, if we have backlog, try to process it now yet. */ 2349 2350 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2351 break; 2352 2353 if (copied) { 2354 if (sk->sk_err || 2355 sk->sk_state == TCP_CLOSE || 2356 (sk->sk_shutdown & RCV_SHUTDOWN) || 2357 !timeo || 2358 signal_pending(current)) 2359 break; 2360 } else { 2361 if (sock_flag(sk, SOCK_DONE)) 2362 break; 2363 2364 if (sk->sk_err) { 2365 copied = sock_error(sk); 2366 break; 2367 } 2368 2369 if (sk->sk_shutdown & RCV_SHUTDOWN) 2370 break; 2371 2372 if (sk->sk_state == TCP_CLOSE) { 2373 /* This occurs when user tries to read 2374 * from never connected socket. 2375 */ 2376 copied = -ENOTCONN; 2377 break; 2378 } 2379 2380 if (!timeo) { 2381 copied = -EAGAIN; 2382 break; 2383 } 2384 2385 if (signal_pending(current)) { 2386 copied = sock_intr_errno(timeo); 2387 break; 2388 } 2389 } 2390 2391 tcp_cleanup_rbuf(sk, copied); 2392 2393 if (copied >= target) { 2394 /* Do not sleep, just process backlog. */ 2395 release_sock(sk); 2396 lock_sock(sk); 2397 } else { 2398 sk_wait_data(sk, &timeo, last); 2399 } 2400 2401 if ((flags & MSG_PEEK) && 2402 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2403 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2404 current->comm, 2405 task_pid_nr(current)); 2406 peek_seq = tp->copied_seq; 2407 } 2408 continue; 2409 2410 found_ok_skb: 2411 /* Ok so how much can we use? */ 2412 used = skb->len - offset; 2413 if (len < used) 2414 used = len; 2415 2416 /* Do we have urgent data here? */ 2417 if (tp->urg_data) { 2418 u32 urg_offset = tp->urg_seq - *seq; 2419 if (urg_offset < used) { 2420 if (!urg_offset) { 2421 if (!sock_flag(sk, SOCK_URGINLINE)) { 2422 WRITE_ONCE(*seq, *seq + 1); 2423 urg_hole++; 2424 offset++; 2425 used--; 2426 if (!used) 2427 goto skip_copy; 2428 } 2429 } else 2430 used = urg_offset; 2431 } 2432 } 2433 2434 if (!(flags & MSG_TRUNC)) { 2435 err = skb_copy_datagram_msg(skb, offset, msg, used); 2436 if (err) { 2437 /* Exception. Bailout! */ 2438 if (!copied) 2439 copied = -EFAULT; 2440 break; 2441 } 2442 } 2443 2444 WRITE_ONCE(*seq, *seq + used); 2445 copied += used; 2446 len -= used; 2447 2448 tcp_rcv_space_adjust(sk); 2449 2450 skip_copy: 2451 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2452 tp->urg_data = 0; 2453 tcp_fast_path_check(sk); 2454 } 2455 2456 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2457 tcp_update_recv_tstamps(skb, tss); 2458 *cmsg_flags |= TCP_CMSG_TS; 2459 } 2460 2461 if (used + offset < skb->len) 2462 continue; 2463 2464 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2465 goto found_fin_ok; 2466 if (!(flags & MSG_PEEK)) 2467 sk_eat_skb(sk, skb); 2468 continue; 2469 2470 found_fin_ok: 2471 /* Process the FIN. */ 2472 WRITE_ONCE(*seq, *seq + 1); 2473 if (!(flags & MSG_PEEK)) 2474 sk_eat_skb(sk, skb); 2475 break; 2476 } while (len > 0); 2477 2478 /* According to UNIX98, msg_name/msg_namelen are ignored 2479 * on connected socket. I was just happy when found this 8) --ANK 2480 */ 2481 2482 /* Clean up data we have read: This will do ACK frames. */ 2483 tcp_cleanup_rbuf(sk, copied); 2484 return copied; 2485 2486 out: 2487 return err; 2488 2489 recv_urg: 2490 err = tcp_recv_urg(sk, msg, len, flags); 2491 goto out; 2492 2493 recv_sndq: 2494 err = tcp_peek_sndq(sk, msg, len); 2495 goto out; 2496 } 2497 2498 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2499 int flags, int *addr_len) 2500 { 2501 int cmsg_flags = 0, ret, inq; 2502 struct scm_timestamping_internal tss; 2503 2504 if (unlikely(flags & MSG_ERRQUEUE)) 2505 return inet_recv_error(sk, msg, len, addr_len); 2506 2507 if (sk_can_busy_loop(sk) && 2508 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2509 sk->sk_state == TCP_ESTABLISHED) 2510 sk_busy_loop(sk, nonblock); 2511 2512 lock_sock(sk); 2513 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2514 &cmsg_flags); 2515 release_sock(sk); 2516 2517 if (cmsg_flags && ret >= 0) { 2518 if (cmsg_flags & TCP_CMSG_TS) 2519 tcp_recv_timestamp(msg, sk, &tss); 2520 if (cmsg_flags & TCP_CMSG_INQ) { 2521 inq = tcp_inq_hint(sk); 2522 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2523 } 2524 } 2525 return ret; 2526 } 2527 EXPORT_SYMBOL(tcp_recvmsg); 2528 2529 void tcp_set_state(struct sock *sk, int state) 2530 { 2531 int oldstate = sk->sk_state; 2532 2533 /* We defined a new enum for TCP states that are exported in BPF 2534 * so as not force the internal TCP states to be frozen. The 2535 * following checks will detect if an internal state value ever 2536 * differs from the BPF value. If this ever happens, then we will 2537 * need to remap the internal value to the BPF value before calling 2538 * tcp_call_bpf_2arg. 2539 */ 2540 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2541 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2542 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2543 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2544 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2545 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2546 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2547 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2548 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2549 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2550 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2551 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2552 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2553 2554 /* bpf uapi header bpf.h defines an anonymous enum with values 2555 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2556 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2557 * But clang built vmlinux does not have this enum in DWARF 2558 * since clang removes the above code before generating IR/debuginfo. 2559 * Let us explicitly emit the type debuginfo to ensure the 2560 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2561 * regardless of which compiler is used. 2562 */ 2563 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2564 2565 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2566 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2567 2568 switch (state) { 2569 case TCP_ESTABLISHED: 2570 if (oldstate != TCP_ESTABLISHED) 2571 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2572 break; 2573 2574 case TCP_CLOSE: 2575 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2576 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2577 2578 sk->sk_prot->unhash(sk); 2579 if (inet_csk(sk)->icsk_bind_hash && 2580 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2581 inet_put_port(sk); 2582 fallthrough; 2583 default: 2584 if (oldstate == TCP_ESTABLISHED) 2585 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2586 } 2587 2588 /* Change state AFTER socket is unhashed to avoid closed 2589 * socket sitting in hash tables. 2590 */ 2591 inet_sk_state_store(sk, state); 2592 } 2593 EXPORT_SYMBOL_GPL(tcp_set_state); 2594 2595 /* 2596 * State processing on a close. This implements the state shift for 2597 * sending our FIN frame. Note that we only send a FIN for some 2598 * states. A shutdown() may have already sent the FIN, or we may be 2599 * closed. 2600 */ 2601 2602 static const unsigned char new_state[16] = { 2603 /* current state: new state: action: */ 2604 [0 /* (Invalid) */] = TCP_CLOSE, 2605 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2606 [TCP_SYN_SENT] = TCP_CLOSE, 2607 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2608 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2609 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2610 [TCP_TIME_WAIT] = TCP_CLOSE, 2611 [TCP_CLOSE] = TCP_CLOSE, 2612 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2613 [TCP_LAST_ACK] = TCP_LAST_ACK, 2614 [TCP_LISTEN] = TCP_CLOSE, 2615 [TCP_CLOSING] = TCP_CLOSING, 2616 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2617 }; 2618 2619 static int tcp_close_state(struct sock *sk) 2620 { 2621 int next = (int)new_state[sk->sk_state]; 2622 int ns = next & TCP_STATE_MASK; 2623 2624 tcp_set_state(sk, ns); 2625 2626 return next & TCP_ACTION_FIN; 2627 } 2628 2629 /* 2630 * Shutdown the sending side of a connection. Much like close except 2631 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2632 */ 2633 2634 void tcp_shutdown(struct sock *sk, int how) 2635 { 2636 /* We need to grab some memory, and put together a FIN, 2637 * and then put it into the queue to be sent. 2638 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2639 */ 2640 if (!(how & SEND_SHUTDOWN)) 2641 return; 2642 2643 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2644 if ((1 << sk->sk_state) & 2645 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2646 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2647 /* Clear out any half completed packets. FIN if needed. */ 2648 if (tcp_close_state(sk)) 2649 tcp_send_fin(sk); 2650 } 2651 } 2652 EXPORT_SYMBOL(tcp_shutdown); 2653 2654 int tcp_orphan_count_sum(void) 2655 { 2656 int i, total = 0; 2657 2658 for_each_possible_cpu(i) 2659 total += per_cpu(tcp_orphan_count, i); 2660 2661 return max(total, 0); 2662 } 2663 2664 static int tcp_orphan_cache; 2665 static struct timer_list tcp_orphan_timer; 2666 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2667 2668 static void tcp_orphan_update(struct timer_list *unused) 2669 { 2670 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2671 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2672 } 2673 2674 static bool tcp_too_many_orphans(int shift) 2675 { 2676 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2677 } 2678 2679 bool tcp_check_oom(struct sock *sk, int shift) 2680 { 2681 bool too_many_orphans, out_of_socket_memory; 2682 2683 too_many_orphans = tcp_too_many_orphans(shift); 2684 out_of_socket_memory = tcp_out_of_memory(sk); 2685 2686 if (too_many_orphans) 2687 net_info_ratelimited("too many orphaned sockets\n"); 2688 if (out_of_socket_memory) 2689 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2690 return too_many_orphans || out_of_socket_memory; 2691 } 2692 2693 void __tcp_close(struct sock *sk, long timeout) 2694 { 2695 struct sk_buff *skb; 2696 int data_was_unread = 0; 2697 int state; 2698 2699 sk->sk_shutdown = SHUTDOWN_MASK; 2700 2701 if (sk->sk_state == TCP_LISTEN) { 2702 tcp_set_state(sk, TCP_CLOSE); 2703 2704 /* Special case. */ 2705 inet_csk_listen_stop(sk); 2706 2707 goto adjudge_to_death; 2708 } 2709 2710 /* We need to flush the recv. buffs. We do this only on the 2711 * descriptor close, not protocol-sourced closes, because the 2712 * reader process may not have drained the data yet! 2713 */ 2714 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2715 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2716 2717 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2718 len--; 2719 data_was_unread += len; 2720 __kfree_skb(skb); 2721 } 2722 2723 sk_mem_reclaim(sk); 2724 2725 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2726 if (sk->sk_state == TCP_CLOSE) 2727 goto adjudge_to_death; 2728 2729 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2730 * data was lost. To witness the awful effects of the old behavior of 2731 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2732 * GET in an FTP client, suspend the process, wait for the client to 2733 * advertise a zero window, then kill -9 the FTP client, wheee... 2734 * Note: timeout is always zero in such a case. 2735 */ 2736 if (unlikely(tcp_sk(sk)->repair)) { 2737 sk->sk_prot->disconnect(sk, 0); 2738 } else if (data_was_unread) { 2739 /* Unread data was tossed, zap the connection. */ 2740 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2741 tcp_set_state(sk, TCP_CLOSE); 2742 tcp_send_active_reset(sk, sk->sk_allocation); 2743 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2744 /* Check zero linger _after_ checking for unread data. */ 2745 sk->sk_prot->disconnect(sk, 0); 2746 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2747 } else if (tcp_close_state(sk)) { 2748 /* We FIN if the application ate all the data before 2749 * zapping the connection. 2750 */ 2751 2752 /* RED-PEN. Formally speaking, we have broken TCP state 2753 * machine. State transitions: 2754 * 2755 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2756 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2757 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2758 * 2759 * are legal only when FIN has been sent (i.e. in window), 2760 * rather than queued out of window. Purists blame. 2761 * 2762 * F.e. "RFC state" is ESTABLISHED, 2763 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2764 * 2765 * The visible declinations are that sometimes 2766 * we enter time-wait state, when it is not required really 2767 * (harmless), do not send active resets, when they are 2768 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2769 * they look as CLOSING or LAST_ACK for Linux) 2770 * Probably, I missed some more holelets. 2771 * --ANK 2772 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2773 * in a single packet! (May consider it later but will 2774 * probably need API support or TCP_CORK SYN-ACK until 2775 * data is written and socket is closed.) 2776 */ 2777 tcp_send_fin(sk); 2778 } 2779 2780 sk_stream_wait_close(sk, timeout); 2781 2782 adjudge_to_death: 2783 state = sk->sk_state; 2784 sock_hold(sk); 2785 sock_orphan(sk); 2786 2787 local_bh_disable(); 2788 bh_lock_sock(sk); 2789 /* remove backlog if any, without releasing ownership. */ 2790 __release_sock(sk); 2791 2792 this_cpu_inc(tcp_orphan_count); 2793 2794 /* Have we already been destroyed by a softirq or backlog? */ 2795 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2796 goto out; 2797 2798 /* This is a (useful) BSD violating of the RFC. There is a 2799 * problem with TCP as specified in that the other end could 2800 * keep a socket open forever with no application left this end. 2801 * We use a 1 minute timeout (about the same as BSD) then kill 2802 * our end. If they send after that then tough - BUT: long enough 2803 * that we won't make the old 4*rto = almost no time - whoops 2804 * reset mistake. 2805 * 2806 * Nope, it was not mistake. It is really desired behaviour 2807 * f.e. on http servers, when such sockets are useless, but 2808 * consume significant resources. Let's do it with special 2809 * linger2 option. --ANK 2810 */ 2811 2812 if (sk->sk_state == TCP_FIN_WAIT2) { 2813 struct tcp_sock *tp = tcp_sk(sk); 2814 if (tp->linger2 < 0) { 2815 tcp_set_state(sk, TCP_CLOSE); 2816 tcp_send_active_reset(sk, GFP_ATOMIC); 2817 __NET_INC_STATS(sock_net(sk), 2818 LINUX_MIB_TCPABORTONLINGER); 2819 } else { 2820 const int tmo = tcp_fin_time(sk); 2821 2822 if (tmo > TCP_TIMEWAIT_LEN) { 2823 inet_csk_reset_keepalive_timer(sk, 2824 tmo - TCP_TIMEWAIT_LEN); 2825 } else { 2826 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2827 goto out; 2828 } 2829 } 2830 } 2831 if (sk->sk_state != TCP_CLOSE) { 2832 sk_mem_reclaim(sk); 2833 if (tcp_check_oom(sk, 0)) { 2834 tcp_set_state(sk, TCP_CLOSE); 2835 tcp_send_active_reset(sk, GFP_ATOMIC); 2836 __NET_INC_STATS(sock_net(sk), 2837 LINUX_MIB_TCPABORTONMEMORY); 2838 } else if (!check_net(sock_net(sk))) { 2839 /* Not possible to send reset; just close */ 2840 tcp_set_state(sk, TCP_CLOSE); 2841 } 2842 } 2843 2844 if (sk->sk_state == TCP_CLOSE) { 2845 struct request_sock *req; 2846 2847 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2848 lockdep_sock_is_held(sk)); 2849 /* We could get here with a non-NULL req if the socket is 2850 * aborted (e.g., closed with unread data) before 3WHS 2851 * finishes. 2852 */ 2853 if (req) 2854 reqsk_fastopen_remove(sk, req, false); 2855 inet_csk_destroy_sock(sk); 2856 } 2857 /* Otherwise, socket is reprieved until protocol close. */ 2858 2859 out: 2860 bh_unlock_sock(sk); 2861 local_bh_enable(); 2862 } 2863 2864 void tcp_close(struct sock *sk, long timeout) 2865 { 2866 lock_sock(sk); 2867 __tcp_close(sk, timeout); 2868 release_sock(sk); 2869 sock_put(sk); 2870 } 2871 EXPORT_SYMBOL(tcp_close); 2872 2873 /* These states need RST on ABORT according to RFC793 */ 2874 2875 static inline bool tcp_need_reset(int state) 2876 { 2877 return (1 << state) & 2878 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2879 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2880 } 2881 2882 static void tcp_rtx_queue_purge(struct sock *sk) 2883 { 2884 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2885 2886 tcp_sk(sk)->highest_sack = NULL; 2887 while (p) { 2888 struct sk_buff *skb = rb_to_skb(p); 2889 2890 p = rb_next(p); 2891 /* Since we are deleting whole queue, no need to 2892 * list_del(&skb->tcp_tsorted_anchor) 2893 */ 2894 tcp_rtx_queue_unlink(skb, sk); 2895 tcp_wmem_free_skb(sk, skb); 2896 } 2897 } 2898 2899 void tcp_write_queue_purge(struct sock *sk) 2900 { 2901 struct sk_buff *skb; 2902 2903 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2904 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2905 tcp_skb_tsorted_anchor_cleanup(skb); 2906 tcp_wmem_free_skb(sk, skb); 2907 } 2908 tcp_rtx_queue_purge(sk); 2909 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2910 sk_mem_reclaim(sk); 2911 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2912 tcp_sk(sk)->packets_out = 0; 2913 inet_csk(sk)->icsk_backoff = 0; 2914 } 2915 2916 int tcp_disconnect(struct sock *sk, int flags) 2917 { 2918 struct inet_sock *inet = inet_sk(sk); 2919 struct inet_connection_sock *icsk = inet_csk(sk); 2920 struct tcp_sock *tp = tcp_sk(sk); 2921 int old_state = sk->sk_state; 2922 u32 seq; 2923 2924 if (old_state != TCP_CLOSE) 2925 tcp_set_state(sk, TCP_CLOSE); 2926 2927 /* ABORT function of RFC793 */ 2928 if (old_state == TCP_LISTEN) { 2929 inet_csk_listen_stop(sk); 2930 } else if (unlikely(tp->repair)) { 2931 sk->sk_err = ECONNABORTED; 2932 } else if (tcp_need_reset(old_state) || 2933 (tp->snd_nxt != tp->write_seq && 2934 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2935 /* The last check adjusts for discrepancy of Linux wrt. RFC 2936 * states 2937 */ 2938 tcp_send_active_reset(sk, gfp_any()); 2939 sk->sk_err = ECONNRESET; 2940 } else if (old_state == TCP_SYN_SENT) 2941 sk->sk_err = ECONNRESET; 2942 2943 tcp_clear_xmit_timers(sk); 2944 __skb_queue_purge(&sk->sk_receive_queue); 2945 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2946 tp->urg_data = 0; 2947 tcp_write_queue_purge(sk); 2948 tcp_fastopen_active_disable_ofo_check(sk); 2949 skb_rbtree_purge(&tp->out_of_order_queue); 2950 2951 inet->inet_dport = 0; 2952 2953 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2954 inet_reset_saddr(sk); 2955 2956 sk->sk_shutdown = 0; 2957 sock_reset_flag(sk, SOCK_DONE); 2958 tp->srtt_us = 0; 2959 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2960 tp->rcv_rtt_last_tsecr = 0; 2961 2962 seq = tp->write_seq + tp->max_window + 2; 2963 if (!seq) 2964 seq = 1; 2965 WRITE_ONCE(tp->write_seq, seq); 2966 2967 icsk->icsk_backoff = 0; 2968 icsk->icsk_probes_out = 0; 2969 icsk->icsk_probes_tstamp = 0; 2970 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2971 icsk->icsk_rto_min = TCP_RTO_MIN; 2972 icsk->icsk_delack_max = TCP_DELACK_MAX; 2973 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2974 tp->snd_cwnd = TCP_INIT_CWND; 2975 tp->snd_cwnd_cnt = 0; 2976 tp->window_clamp = 0; 2977 tp->delivered = 0; 2978 tp->delivered_ce = 0; 2979 if (icsk->icsk_ca_ops->release) 2980 icsk->icsk_ca_ops->release(sk); 2981 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 2982 icsk->icsk_ca_initialized = 0; 2983 tcp_set_ca_state(sk, TCP_CA_Open); 2984 tp->is_sack_reneg = 0; 2985 tcp_clear_retrans(tp); 2986 tp->total_retrans = 0; 2987 inet_csk_delack_init(sk); 2988 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2989 * issue in __tcp_select_window() 2990 */ 2991 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2992 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2993 __sk_dst_reset(sk); 2994 dst_release(sk->sk_rx_dst); 2995 sk->sk_rx_dst = NULL; 2996 tcp_saved_syn_free(tp); 2997 tp->compressed_ack = 0; 2998 tp->segs_in = 0; 2999 tp->segs_out = 0; 3000 tp->bytes_sent = 0; 3001 tp->bytes_acked = 0; 3002 tp->bytes_received = 0; 3003 tp->bytes_retrans = 0; 3004 tp->data_segs_in = 0; 3005 tp->data_segs_out = 0; 3006 tp->duplicate_sack[0].start_seq = 0; 3007 tp->duplicate_sack[0].end_seq = 0; 3008 tp->dsack_dups = 0; 3009 tp->reord_seen = 0; 3010 tp->retrans_out = 0; 3011 tp->sacked_out = 0; 3012 tp->tlp_high_seq = 0; 3013 tp->last_oow_ack_time = 0; 3014 /* There's a bubble in the pipe until at least the first ACK. */ 3015 tp->app_limited = ~0U; 3016 tp->rack.mstamp = 0; 3017 tp->rack.advanced = 0; 3018 tp->rack.reo_wnd_steps = 1; 3019 tp->rack.last_delivered = 0; 3020 tp->rack.reo_wnd_persist = 0; 3021 tp->rack.dsack_seen = 0; 3022 tp->syn_data_acked = 0; 3023 tp->rx_opt.saw_tstamp = 0; 3024 tp->rx_opt.dsack = 0; 3025 tp->rx_opt.num_sacks = 0; 3026 tp->rcv_ooopack = 0; 3027 3028 3029 /* Clean up fastopen related fields */ 3030 tcp_free_fastopen_req(tp); 3031 inet->defer_connect = 0; 3032 tp->fastopen_client_fail = 0; 3033 3034 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3035 3036 if (sk->sk_frag.page) { 3037 put_page(sk->sk_frag.page); 3038 sk->sk_frag.page = NULL; 3039 sk->sk_frag.offset = 0; 3040 } 3041 3042 sk_error_report(sk); 3043 return 0; 3044 } 3045 EXPORT_SYMBOL(tcp_disconnect); 3046 3047 static inline bool tcp_can_repair_sock(const struct sock *sk) 3048 { 3049 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3050 (sk->sk_state != TCP_LISTEN); 3051 } 3052 3053 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3054 { 3055 struct tcp_repair_window opt; 3056 3057 if (!tp->repair) 3058 return -EPERM; 3059 3060 if (len != sizeof(opt)) 3061 return -EINVAL; 3062 3063 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3064 return -EFAULT; 3065 3066 if (opt.max_window < opt.snd_wnd) 3067 return -EINVAL; 3068 3069 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3070 return -EINVAL; 3071 3072 if (after(opt.rcv_wup, tp->rcv_nxt)) 3073 return -EINVAL; 3074 3075 tp->snd_wl1 = opt.snd_wl1; 3076 tp->snd_wnd = opt.snd_wnd; 3077 tp->max_window = opt.max_window; 3078 3079 tp->rcv_wnd = opt.rcv_wnd; 3080 tp->rcv_wup = opt.rcv_wup; 3081 3082 return 0; 3083 } 3084 3085 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3086 unsigned int len) 3087 { 3088 struct tcp_sock *tp = tcp_sk(sk); 3089 struct tcp_repair_opt opt; 3090 size_t offset = 0; 3091 3092 while (len >= sizeof(opt)) { 3093 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3094 return -EFAULT; 3095 3096 offset += sizeof(opt); 3097 len -= sizeof(opt); 3098 3099 switch (opt.opt_code) { 3100 case TCPOPT_MSS: 3101 tp->rx_opt.mss_clamp = opt.opt_val; 3102 tcp_mtup_init(sk); 3103 break; 3104 case TCPOPT_WINDOW: 3105 { 3106 u16 snd_wscale = opt.opt_val & 0xFFFF; 3107 u16 rcv_wscale = opt.opt_val >> 16; 3108 3109 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3110 return -EFBIG; 3111 3112 tp->rx_opt.snd_wscale = snd_wscale; 3113 tp->rx_opt.rcv_wscale = rcv_wscale; 3114 tp->rx_opt.wscale_ok = 1; 3115 } 3116 break; 3117 case TCPOPT_SACK_PERM: 3118 if (opt.opt_val != 0) 3119 return -EINVAL; 3120 3121 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3122 break; 3123 case TCPOPT_TIMESTAMP: 3124 if (opt.opt_val != 0) 3125 return -EINVAL; 3126 3127 tp->rx_opt.tstamp_ok = 1; 3128 break; 3129 } 3130 } 3131 3132 return 0; 3133 } 3134 3135 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3136 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3137 3138 static void tcp_enable_tx_delay(void) 3139 { 3140 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3141 static int __tcp_tx_delay_enabled = 0; 3142 3143 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3144 static_branch_enable(&tcp_tx_delay_enabled); 3145 pr_info("TCP_TX_DELAY enabled\n"); 3146 } 3147 } 3148 } 3149 3150 /* When set indicates to always queue non-full frames. Later the user clears 3151 * this option and we transmit any pending partial frames in the queue. This is 3152 * meant to be used alongside sendfile() to get properly filled frames when the 3153 * user (for example) must write out headers with a write() call first and then 3154 * use sendfile to send out the data parts. 3155 * 3156 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3157 * TCP_NODELAY. 3158 */ 3159 static void __tcp_sock_set_cork(struct sock *sk, bool on) 3160 { 3161 struct tcp_sock *tp = tcp_sk(sk); 3162 3163 if (on) { 3164 tp->nonagle |= TCP_NAGLE_CORK; 3165 } else { 3166 tp->nonagle &= ~TCP_NAGLE_CORK; 3167 if (tp->nonagle & TCP_NAGLE_OFF) 3168 tp->nonagle |= TCP_NAGLE_PUSH; 3169 tcp_push_pending_frames(sk); 3170 } 3171 } 3172 3173 void tcp_sock_set_cork(struct sock *sk, bool on) 3174 { 3175 lock_sock(sk); 3176 __tcp_sock_set_cork(sk, on); 3177 release_sock(sk); 3178 } 3179 EXPORT_SYMBOL(tcp_sock_set_cork); 3180 3181 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3182 * remembered, but it is not activated until cork is cleared. 3183 * 3184 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3185 * even TCP_CORK for currently queued segments. 3186 */ 3187 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3188 { 3189 if (on) { 3190 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3191 tcp_push_pending_frames(sk); 3192 } else { 3193 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3194 } 3195 } 3196 3197 void tcp_sock_set_nodelay(struct sock *sk) 3198 { 3199 lock_sock(sk); 3200 __tcp_sock_set_nodelay(sk, true); 3201 release_sock(sk); 3202 } 3203 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3204 3205 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3206 { 3207 if (!val) { 3208 inet_csk_enter_pingpong_mode(sk); 3209 return; 3210 } 3211 3212 inet_csk_exit_pingpong_mode(sk); 3213 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3214 inet_csk_ack_scheduled(sk)) { 3215 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3216 tcp_cleanup_rbuf(sk, 1); 3217 if (!(val & 1)) 3218 inet_csk_enter_pingpong_mode(sk); 3219 } 3220 } 3221 3222 void tcp_sock_set_quickack(struct sock *sk, int val) 3223 { 3224 lock_sock(sk); 3225 __tcp_sock_set_quickack(sk, val); 3226 release_sock(sk); 3227 } 3228 EXPORT_SYMBOL(tcp_sock_set_quickack); 3229 3230 int tcp_sock_set_syncnt(struct sock *sk, int val) 3231 { 3232 if (val < 1 || val > MAX_TCP_SYNCNT) 3233 return -EINVAL; 3234 3235 lock_sock(sk); 3236 inet_csk(sk)->icsk_syn_retries = val; 3237 release_sock(sk); 3238 return 0; 3239 } 3240 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3241 3242 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3243 { 3244 lock_sock(sk); 3245 inet_csk(sk)->icsk_user_timeout = val; 3246 release_sock(sk); 3247 } 3248 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3249 3250 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3251 { 3252 struct tcp_sock *tp = tcp_sk(sk); 3253 3254 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3255 return -EINVAL; 3256 3257 tp->keepalive_time = val * HZ; 3258 if (sock_flag(sk, SOCK_KEEPOPEN) && 3259 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3260 u32 elapsed = keepalive_time_elapsed(tp); 3261 3262 if (tp->keepalive_time > elapsed) 3263 elapsed = tp->keepalive_time - elapsed; 3264 else 3265 elapsed = 0; 3266 inet_csk_reset_keepalive_timer(sk, elapsed); 3267 } 3268 3269 return 0; 3270 } 3271 3272 int tcp_sock_set_keepidle(struct sock *sk, int val) 3273 { 3274 int err; 3275 3276 lock_sock(sk); 3277 err = tcp_sock_set_keepidle_locked(sk, val); 3278 release_sock(sk); 3279 return err; 3280 } 3281 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3282 3283 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3284 { 3285 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3286 return -EINVAL; 3287 3288 lock_sock(sk); 3289 tcp_sk(sk)->keepalive_intvl = val * HZ; 3290 release_sock(sk); 3291 return 0; 3292 } 3293 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3294 3295 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3296 { 3297 if (val < 1 || val > MAX_TCP_KEEPCNT) 3298 return -EINVAL; 3299 3300 lock_sock(sk); 3301 tcp_sk(sk)->keepalive_probes = val; 3302 release_sock(sk); 3303 return 0; 3304 } 3305 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3306 3307 int tcp_set_window_clamp(struct sock *sk, int val) 3308 { 3309 struct tcp_sock *tp = tcp_sk(sk); 3310 3311 if (!val) { 3312 if (sk->sk_state != TCP_CLOSE) 3313 return -EINVAL; 3314 tp->window_clamp = 0; 3315 } else { 3316 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3317 SOCK_MIN_RCVBUF / 2 : val; 3318 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3319 } 3320 return 0; 3321 } 3322 3323 /* 3324 * Socket option code for TCP. 3325 */ 3326 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3327 sockptr_t optval, unsigned int optlen) 3328 { 3329 struct tcp_sock *tp = tcp_sk(sk); 3330 struct inet_connection_sock *icsk = inet_csk(sk); 3331 struct net *net = sock_net(sk); 3332 int val; 3333 int err = 0; 3334 3335 /* These are data/string values, all the others are ints */ 3336 switch (optname) { 3337 case TCP_CONGESTION: { 3338 char name[TCP_CA_NAME_MAX]; 3339 3340 if (optlen < 1) 3341 return -EINVAL; 3342 3343 val = strncpy_from_sockptr(name, optval, 3344 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3345 if (val < 0) 3346 return -EFAULT; 3347 name[val] = 0; 3348 3349 lock_sock(sk); 3350 err = tcp_set_congestion_control(sk, name, true, 3351 ns_capable(sock_net(sk)->user_ns, 3352 CAP_NET_ADMIN)); 3353 release_sock(sk); 3354 return err; 3355 } 3356 case TCP_ULP: { 3357 char name[TCP_ULP_NAME_MAX]; 3358 3359 if (optlen < 1) 3360 return -EINVAL; 3361 3362 val = strncpy_from_sockptr(name, optval, 3363 min_t(long, TCP_ULP_NAME_MAX - 1, 3364 optlen)); 3365 if (val < 0) 3366 return -EFAULT; 3367 name[val] = 0; 3368 3369 lock_sock(sk); 3370 err = tcp_set_ulp(sk, name); 3371 release_sock(sk); 3372 return err; 3373 } 3374 case TCP_FASTOPEN_KEY: { 3375 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3376 __u8 *backup_key = NULL; 3377 3378 /* Allow a backup key as well to facilitate key rotation 3379 * First key is the active one. 3380 */ 3381 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3382 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3383 return -EINVAL; 3384 3385 if (copy_from_sockptr(key, optval, optlen)) 3386 return -EFAULT; 3387 3388 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3389 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3390 3391 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3392 } 3393 default: 3394 /* fallthru */ 3395 break; 3396 } 3397 3398 if (optlen < sizeof(int)) 3399 return -EINVAL; 3400 3401 if (copy_from_sockptr(&val, optval, sizeof(val))) 3402 return -EFAULT; 3403 3404 lock_sock(sk); 3405 3406 switch (optname) { 3407 case TCP_MAXSEG: 3408 /* Values greater than interface MTU won't take effect. However 3409 * at the point when this call is done we typically don't yet 3410 * know which interface is going to be used 3411 */ 3412 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3413 err = -EINVAL; 3414 break; 3415 } 3416 tp->rx_opt.user_mss = val; 3417 break; 3418 3419 case TCP_NODELAY: 3420 __tcp_sock_set_nodelay(sk, val); 3421 break; 3422 3423 case TCP_THIN_LINEAR_TIMEOUTS: 3424 if (val < 0 || val > 1) 3425 err = -EINVAL; 3426 else 3427 tp->thin_lto = val; 3428 break; 3429 3430 case TCP_THIN_DUPACK: 3431 if (val < 0 || val > 1) 3432 err = -EINVAL; 3433 break; 3434 3435 case TCP_REPAIR: 3436 if (!tcp_can_repair_sock(sk)) 3437 err = -EPERM; 3438 else if (val == TCP_REPAIR_ON) { 3439 tp->repair = 1; 3440 sk->sk_reuse = SK_FORCE_REUSE; 3441 tp->repair_queue = TCP_NO_QUEUE; 3442 } else if (val == TCP_REPAIR_OFF) { 3443 tp->repair = 0; 3444 sk->sk_reuse = SK_NO_REUSE; 3445 tcp_send_window_probe(sk); 3446 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3447 tp->repair = 0; 3448 sk->sk_reuse = SK_NO_REUSE; 3449 } else 3450 err = -EINVAL; 3451 3452 break; 3453 3454 case TCP_REPAIR_QUEUE: 3455 if (!tp->repair) 3456 err = -EPERM; 3457 else if ((unsigned int)val < TCP_QUEUES_NR) 3458 tp->repair_queue = val; 3459 else 3460 err = -EINVAL; 3461 break; 3462 3463 case TCP_QUEUE_SEQ: 3464 if (sk->sk_state != TCP_CLOSE) { 3465 err = -EPERM; 3466 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3467 if (!tcp_rtx_queue_empty(sk)) 3468 err = -EPERM; 3469 else 3470 WRITE_ONCE(tp->write_seq, val); 3471 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3472 if (tp->rcv_nxt != tp->copied_seq) { 3473 err = -EPERM; 3474 } else { 3475 WRITE_ONCE(tp->rcv_nxt, val); 3476 WRITE_ONCE(tp->copied_seq, val); 3477 } 3478 } else { 3479 err = -EINVAL; 3480 } 3481 break; 3482 3483 case TCP_REPAIR_OPTIONS: 3484 if (!tp->repair) 3485 err = -EINVAL; 3486 else if (sk->sk_state == TCP_ESTABLISHED) 3487 err = tcp_repair_options_est(sk, optval, optlen); 3488 else 3489 err = -EPERM; 3490 break; 3491 3492 case TCP_CORK: 3493 __tcp_sock_set_cork(sk, val); 3494 break; 3495 3496 case TCP_KEEPIDLE: 3497 err = tcp_sock_set_keepidle_locked(sk, val); 3498 break; 3499 case TCP_KEEPINTVL: 3500 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3501 err = -EINVAL; 3502 else 3503 tp->keepalive_intvl = val * HZ; 3504 break; 3505 case TCP_KEEPCNT: 3506 if (val < 1 || val > MAX_TCP_KEEPCNT) 3507 err = -EINVAL; 3508 else 3509 tp->keepalive_probes = val; 3510 break; 3511 case TCP_SYNCNT: 3512 if (val < 1 || val > MAX_TCP_SYNCNT) 3513 err = -EINVAL; 3514 else 3515 icsk->icsk_syn_retries = val; 3516 break; 3517 3518 case TCP_SAVE_SYN: 3519 /* 0: disable, 1: enable, 2: start from ether_header */ 3520 if (val < 0 || val > 2) 3521 err = -EINVAL; 3522 else 3523 tp->save_syn = val; 3524 break; 3525 3526 case TCP_LINGER2: 3527 if (val < 0) 3528 tp->linger2 = -1; 3529 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3530 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3531 else 3532 tp->linger2 = val * HZ; 3533 break; 3534 3535 case TCP_DEFER_ACCEPT: 3536 /* Translate value in seconds to number of retransmits */ 3537 icsk->icsk_accept_queue.rskq_defer_accept = 3538 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3539 TCP_RTO_MAX / HZ); 3540 break; 3541 3542 case TCP_WINDOW_CLAMP: 3543 err = tcp_set_window_clamp(sk, val); 3544 break; 3545 3546 case TCP_QUICKACK: 3547 __tcp_sock_set_quickack(sk, val); 3548 break; 3549 3550 #ifdef CONFIG_TCP_MD5SIG 3551 case TCP_MD5SIG: 3552 case TCP_MD5SIG_EXT: 3553 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3554 break; 3555 #endif 3556 case TCP_USER_TIMEOUT: 3557 /* Cap the max time in ms TCP will retry or probe the window 3558 * before giving up and aborting (ETIMEDOUT) a connection. 3559 */ 3560 if (val < 0) 3561 err = -EINVAL; 3562 else 3563 icsk->icsk_user_timeout = val; 3564 break; 3565 3566 case TCP_FASTOPEN: 3567 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3568 TCPF_LISTEN))) { 3569 tcp_fastopen_init_key_once(net); 3570 3571 fastopen_queue_tune(sk, val); 3572 } else { 3573 err = -EINVAL; 3574 } 3575 break; 3576 case TCP_FASTOPEN_CONNECT: 3577 if (val > 1 || val < 0) { 3578 err = -EINVAL; 3579 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3580 if (sk->sk_state == TCP_CLOSE) 3581 tp->fastopen_connect = val; 3582 else 3583 err = -EINVAL; 3584 } else { 3585 err = -EOPNOTSUPP; 3586 } 3587 break; 3588 case TCP_FASTOPEN_NO_COOKIE: 3589 if (val > 1 || val < 0) 3590 err = -EINVAL; 3591 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3592 err = -EINVAL; 3593 else 3594 tp->fastopen_no_cookie = val; 3595 break; 3596 case TCP_TIMESTAMP: 3597 if (!tp->repair) 3598 err = -EPERM; 3599 else 3600 tp->tsoffset = val - tcp_time_stamp_raw(); 3601 break; 3602 case TCP_REPAIR_WINDOW: 3603 err = tcp_repair_set_window(tp, optval, optlen); 3604 break; 3605 case TCP_NOTSENT_LOWAT: 3606 tp->notsent_lowat = val; 3607 sk->sk_write_space(sk); 3608 break; 3609 case TCP_INQ: 3610 if (val > 1 || val < 0) 3611 err = -EINVAL; 3612 else 3613 tp->recvmsg_inq = val; 3614 break; 3615 case TCP_TX_DELAY: 3616 if (val) 3617 tcp_enable_tx_delay(); 3618 tp->tcp_tx_delay = val; 3619 break; 3620 default: 3621 err = -ENOPROTOOPT; 3622 break; 3623 } 3624 3625 release_sock(sk); 3626 return err; 3627 } 3628 3629 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3630 unsigned int optlen) 3631 { 3632 const struct inet_connection_sock *icsk = inet_csk(sk); 3633 3634 if (level != SOL_TCP) 3635 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3636 optval, optlen); 3637 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3638 } 3639 EXPORT_SYMBOL(tcp_setsockopt); 3640 3641 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3642 struct tcp_info *info) 3643 { 3644 u64 stats[__TCP_CHRONO_MAX], total = 0; 3645 enum tcp_chrono i; 3646 3647 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3648 stats[i] = tp->chrono_stat[i - 1]; 3649 if (i == tp->chrono_type) 3650 stats[i] += tcp_jiffies32 - tp->chrono_start; 3651 stats[i] *= USEC_PER_SEC / HZ; 3652 total += stats[i]; 3653 } 3654 3655 info->tcpi_busy_time = total; 3656 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3657 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3658 } 3659 3660 /* Return information about state of tcp endpoint in API format. */ 3661 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3662 { 3663 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3664 const struct inet_connection_sock *icsk = inet_csk(sk); 3665 unsigned long rate; 3666 u32 now; 3667 u64 rate64; 3668 bool slow; 3669 3670 memset(info, 0, sizeof(*info)); 3671 if (sk->sk_type != SOCK_STREAM) 3672 return; 3673 3674 info->tcpi_state = inet_sk_state_load(sk); 3675 3676 /* Report meaningful fields for all TCP states, including listeners */ 3677 rate = READ_ONCE(sk->sk_pacing_rate); 3678 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3679 info->tcpi_pacing_rate = rate64; 3680 3681 rate = READ_ONCE(sk->sk_max_pacing_rate); 3682 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3683 info->tcpi_max_pacing_rate = rate64; 3684 3685 info->tcpi_reordering = tp->reordering; 3686 info->tcpi_snd_cwnd = tp->snd_cwnd; 3687 3688 if (info->tcpi_state == TCP_LISTEN) { 3689 /* listeners aliased fields : 3690 * tcpi_unacked -> Number of children ready for accept() 3691 * tcpi_sacked -> max backlog 3692 */ 3693 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3694 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3695 return; 3696 } 3697 3698 slow = lock_sock_fast(sk); 3699 3700 info->tcpi_ca_state = icsk->icsk_ca_state; 3701 info->tcpi_retransmits = icsk->icsk_retransmits; 3702 info->tcpi_probes = icsk->icsk_probes_out; 3703 info->tcpi_backoff = icsk->icsk_backoff; 3704 3705 if (tp->rx_opt.tstamp_ok) 3706 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3707 if (tcp_is_sack(tp)) 3708 info->tcpi_options |= TCPI_OPT_SACK; 3709 if (tp->rx_opt.wscale_ok) { 3710 info->tcpi_options |= TCPI_OPT_WSCALE; 3711 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3712 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3713 } 3714 3715 if (tp->ecn_flags & TCP_ECN_OK) 3716 info->tcpi_options |= TCPI_OPT_ECN; 3717 if (tp->ecn_flags & TCP_ECN_SEEN) 3718 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3719 if (tp->syn_data_acked) 3720 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3721 3722 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3723 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3724 info->tcpi_snd_mss = tp->mss_cache; 3725 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3726 3727 info->tcpi_unacked = tp->packets_out; 3728 info->tcpi_sacked = tp->sacked_out; 3729 3730 info->tcpi_lost = tp->lost_out; 3731 info->tcpi_retrans = tp->retrans_out; 3732 3733 now = tcp_jiffies32; 3734 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3735 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3736 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3737 3738 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3739 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3740 info->tcpi_rtt = tp->srtt_us >> 3; 3741 info->tcpi_rttvar = tp->mdev_us >> 2; 3742 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3743 info->tcpi_advmss = tp->advmss; 3744 3745 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3746 info->tcpi_rcv_space = tp->rcvq_space.space; 3747 3748 info->tcpi_total_retrans = tp->total_retrans; 3749 3750 info->tcpi_bytes_acked = tp->bytes_acked; 3751 info->tcpi_bytes_received = tp->bytes_received; 3752 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3753 tcp_get_info_chrono_stats(tp, info); 3754 3755 info->tcpi_segs_out = tp->segs_out; 3756 info->tcpi_segs_in = tp->segs_in; 3757 3758 info->tcpi_min_rtt = tcp_min_rtt(tp); 3759 info->tcpi_data_segs_in = tp->data_segs_in; 3760 info->tcpi_data_segs_out = tp->data_segs_out; 3761 3762 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3763 rate64 = tcp_compute_delivery_rate(tp); 3764 if (rate64) 3765 info->tcpi_delivery_rate = rate64; 3766 info->tcpi_delivered = tp->delivered; 3767 info->tcpi_delivered_ce = tp->delivered_ce; 3768 info->tcpi_bytes_sent = tp->bytes_sent; 3769 info->tcpi_bytes_retrans = tp->bytes_retrans; 3770 info->tcpi_dsack_dups = tp->dsack_dups; 3771 info->tcpi_reord_seen = tp->reord_seen; 3772 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3773 info->tcpi_snd_wnd = tp->snd_wnd; 3774 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3775 unlock_sock_fast(sk, slow); 3776 } 3777 EXPORT_SYMBOL_GPL(tcp_get_info); 3778 3779 static size_t tcp_opt_stats_get_size(void) 3780 { 3781 return 3782 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3783 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3784 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3785 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3786 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3787 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3788 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3789 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3790 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3791 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3792 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3793 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3794 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3795 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3796 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3797 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3798 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3799 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3800 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3801 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3802 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3803 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3804 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3805 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3806 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3807 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3808 0; 3809 } 3810 3811 /* Returns TTL or hop limit of an incoming packet from skb. */ 3812 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3813 { 3814 if (skb->protocol == htons(ETH_P_IP)) 3815 return ip_hdr(skb)->ttl; 3816 else if (skb->protocol == htons(ETH_P_IPV6)) 3817 return ipv6_hdr(skb)->hop_limit; 3818 else 3819 return 0; 3820 } 3821 3822 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3823 const struct sk_buff *orig_skb, 3824 const struct sk_buff *ack_skb) 3825 { 3826 const struct tcp_sock *tp = tcp_sk(sk); 3827 struct sk_buff *stats; 3828 struct tcp_info info; 3829 unsigned long rate; 3830 u64 rate64; 3831 3832 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3833 if (!stats) 3834 return NULL; 3835 3836 tcp_get_info_chrono_stats(tp, &info); 3837 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3838 info.tcpi_busy_time, TCP_NLA_PAD); 3839 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3840 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3841 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3842 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3843 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3844 tp->data_segs_out, TCP_NLA_PAD); 3845 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3846 tp->total_retrans, TCP_NLA_PAD); 3847 3848 rate = READ_ONCE(sk->sk_pacing_rate); 3849 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3850 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3851 3852 rate64 = tcp_compute_delivery_rate(tp); 3853 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3854 3855 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3856 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3857 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3858 3859 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3860 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3861 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3862 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3863 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3864 3865 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3866 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3867 3868 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3869 TCP_NLA_PAD); 3870 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3871 TCP_NLA_PAD); 3872 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3873 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3874 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3875 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3876 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3877 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3878 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3879 TCP_NLA_PAD); 3880 if (ack_skb) 3881 nla_put_u8(stats, TCP_NLA_TTL, 3882 tcp_skb_ttl_or_hop_limit(ack_skb)); 3883 3884 return stats; 3885 } 3886 3887 static int do_tcp_getsockopt(struct sock *sk, int level, 3888 int optname, char __user *optval, int __user *optlen) 3889 { 3890 struct inet_connection_sock *icsk = inet_csk(sk); 3891 struct tcp_sock *tp = tcp_sk(sk); 3892 struct net *net = sock_net(sk); 3893 int val, len; 3894 3895 if (get_user(len, optlen)) 3896 return -EFAULT; 3897 3898 len = min_t(unsigned int, len, sizeof(int)); 3899 3900 if (len < 0) 3901 return -EINVAL; 3902 3903 switch (optname) { 3904 case TCP_MAXSEG: 3905 val = tp->mss_cache; 3906 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3907 val = tp->rx_opt.user_mss; 3908 if (tp->repair) 3909 val = tp->rx_opt.mss_clamp; 3910 break; 3911 case TCP_NODELAY: 3912 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3913 break; 3914 case TCP_CORK: 3915 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3916 break; 3917 case TCP_KEEPIDLE: 3918 val = keepalive_time_when(tp) / HZ; 3919 break; 3920 case TCP_KEEPINTVL: 3921 val = keepalive_intvl_when(tp) / HZ; 3922 break; 3923 case TCP_KEEPCNT: 3924 val = keepalive_probes(tp); 3925 break; 3926 case TCP_SYNCNT: 3927 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3928 break; 3929 case TCP_LINGER2: 3930 val = tp->linger2; 3931 if (val >= 0) 3932 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3933 break; 3934 case TCP_DEFER_ACCEPT: 3935 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3936 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3937 break; 3938 case TCP_WINDOW_CLAMP: 3939 val = tp->window_clamp; 3940 break; 3941 case TCP_INFO: { 3942 struct tcp_info info; 3943 3944 if (get_user(len, optlen)) 3945 return -EFAULT; 3946 3947 tcp_get_info(sk, &info); 3948 3949 len = min_t(unsigned int, len, sizeof(info)); 3950 if (put_user(len, optlen)) 3951 return -EFAULT; 3952 if (copy_to_user(optval, &info, len)) 3953 return -EFAULT; 3954 return 0; 3955 } 3956 case TCP_CC_INFO: { 3957 const struct tcp_congestion_ops *ca_ops; 3958 union tcp_cc_info info; 3959 size_t sz = 0; 3960 int attr; 3961 3962 if (get_user(len, optlen)) 3963 return -EFAULT; 3964 3965 ca_ops = icsk->icsk_ca_ops; 3966 if (ca_ops && ca_ops->get_info) 3967 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3968 3969 len = min_t(unsigned int, len, sz); 3970 if (put_user(len, optlen)) 3971 return -EFAULT; 3972 if (copy_to_user(optval, &info, len)) 3973 return -EFAULT; 3974 return 0; 3975 } 3976 case TCP_QUICKACK: 3977 val = !inet_csk_in_pingpong_mode(sk); 3978 break; 3979 3980 case TCP_CONGESTION: 3981 if (get_user(len, optlen)) 3982 return -EFAULT; 3983 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3984 if (put_user(len, optlen)) 3985 return -EFAULT; 3986 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3987 return -EFAULT; 3988 return 0; 3989 3990 case TCP_ULP: 3991 if (get_user(len, optlen)) 3992 return -EFAULT; 3993 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3994 if (!icsk->icsk_ulp_ops) { 3995 if (put_user(0, optlen)) 3996 return -EFAULT; 3997 return 0; 3998 } 3999 if (put_user(len, optlen)) 4000 return -EFAULT; 4001 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4002 return -EFAULT; 4003 return 0; 4004 4005 case TCP_FASTOPEN_KEY: { 4006 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4007 unsigned int key_len; 4008 4009 if (get_user(len, optlen)) 4010 return -EFAULT; 4011 4012 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4013 TCP_FASTOPEN_KEY_LENGTH; 4014 len = min_t(unsigned int, len, key_len); 4015 if (put_user(len, optlen)) 4016 return -EFAULT; 4017 if (copy_to_user(optval, key, len)) 4018 return -EFAULT; 4019 return 0; 4020 } 4021 case TCP_THIN_LINEAR_TIMEOUTS: 4022 val = tp->thin_lto; 4023 break; 4024 4025 case TCP_THIN_DUPACK: 4026 val = 0; 4027 break; 4028 4029 case TCP_REPAIR: 4030 val = tp->repair; 4031 break; 4032 4033 case TCP_REPAIR_QUEUE: 4034 if (tp->repair) 4035 val = tp->repair_queue; 4036 else 4037 return -EINVAL; 4038 break; 4039 4040 case TCP_REPAIR_WINDOW: { 4041 struct tcp_repair_window opt; 4042 4043 if (get_user(len, optlen)) 4044 return -EFAULT; 4045 4046 if (len != sizeof(opt)) 4047 return -EINVAL; 4048 4049 if (!tp->repair) 4050 return -EPERM; 4051 4052 opt.snd_wl1 = tp->snd_wl1; 4053 opt.snd_wnd = tp->snd_wnd; 4054 opt.max_window = tp->max_window; 4055 opt.rcv_wnd = tp->rcv_wnd; 4056 opt.rcv_wup = tp->rcv_wup; 4057 4058 if (copy_to_user(optval, &opt, len)) 4059 return -EFAULT; 4060 return 0; 4061 } 4062 case TCP_QUEUE_SEQ: 4063 if (tp->repair_queue == TCP_SEND_QUEUE) 4064 val = tp->write_seq; 4065 else if (tp->repair_queue == TCP_RECV_QUEUE) 4066 val = tp->rcv_nxt; 4067 else 4068 return -EINVAL; 4069 break; 4070 4071 case TCP_USER_TIMEOUT: 4072 val = icsk->icsk_user_timeout; 4073 break; 4074 4075 case TCP_FASTOPEN: 4076 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4077 break; 4078 4079 case TCP_FASTOPEN_CONNECT: 4080 val = tp->fastopen_connect; 4081 break; 4082 4083 case TCP_FASTOPEN_NO_COOKIE: 4084 val = tp->fastopen_no_cookie; 4085 break; 4086 4087 case TCP_TX_DELAY: 4088 val = tp->tcp_tx_delay; 4089 break; 4090 4091 case TCP_TIMESTAMP: 4092 val = tcp_time_stamp_raw() + tp->tsoffset; 4093 break; 4094 case TCP_NOTSENT_LOWAT: 4095 val = tp->notsent_lowat; 4096 break; 4097 case TCP_INQ: 4098 val = tp->recvmsg_inq; 4099 break; 4100 case TCP_SAVE_SYN: 4101 val = tp->save_syn; 4102 break; 4103 case TCP_SAVED_SYN: { 4104 if (get_user(len, optlen)) 4105 return -EFAULT; 4106 4107 lock_sock(sk); 4108 if (tp->saved_syn) { 4109 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4110 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4111 optlen)) { 4112 release_sock(sk); 4113 return -EFAULT; 4114 } 4115 release_sock(sk); 4116 return -EINVAL; 4117 } 4118 len = tcp_saved_syn_len(tp->saved_syn); 4119 if (put_user(len, optlen)) { 4120 release_sock(sk); 4121 return -EFAULT; 4122 } 4123 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4124 release_sock(sk); 4125 return -EFAULT; 4126 } 4127 tcp_saved_syn_free(tp); 4128 release_sock(sk); 4129 } else { 4130 release_sock(sk); 4131 len = 0; 4132 if (put_user(len, optlen)) 4133 return -EFAULT; 4134 } 4135 return 0; 4136 } 4137 #ifdef CONFIG_MMU 4138 case TCP_ZEROCOPY_RECEIVE: { 4139 struct scm_timestamping_internal tss; 4140 struct tcp_zerocopy_receive zc = {}; 4141 int err; 4142 4143 if (get_user(len, optlen)) 4144 return -EFAULT; 4145 if (len < 0 || 4146 len < offsetofend(struct tcp_zerocopy_receive, length)) 4147 return -EINVAL; 4148 if (unlikely(len > sizeof(zc))) { 4149 err = check_zeroed_user(optval + sizeof(zc), 4150 len - sizeof(zc)); 4151 if (err < 1) 4152 return err == 0 ? -EINVAL : err; 4153 len = sizeof(zc); 4154 if (put_user(len, optlen)) 4155 return -EFAULT; 4156 } 4157 if (copy_from_user(&zc, optval, len)) 4158 return -EFAULT; 4159 if (zc.reserved) 4160 return -EINVAL; 4161 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4162 return -EINVAL; 4163 lock_sock(sk); 4164 err = tcp_zerocopy_receive(sk, &zc, &tss); 4165 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4166 &zc, &len, err); 4167 release_sock(sk); 4168 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4169 goto zerocopy_rcv_cmsg; 4170 switch (len) { 4171 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4172 goto zerocopy_rcv_cmsg; 4173 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4174 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4175 case offsetofend(struct tcp_zerocopy_receive, flags): 4176 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4177 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4178 case offsetofend(struct tcp_zerocopy_receive, err): 4179 goto zerocopy_rcv_sk_err; 4180 case offsetofend(struct tcp_zerocopy_receive, inq): 4181 goto zerocopy_rcv_inq; 4182 case offsetofend(struct tcp_zerocopy_receive, length): 4183 default: 4184 goto zerocopy_rcv_out; 4185 } 4186 zerocopy_rcv_cmsg: 4187 if (zc.msg_flags & TCP_CMSG_TS) 4188 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4189 else 4190 zc.msg_flags = 0; 4191 zerocopy_rcv_sk_err: 4192 if (!err) 4193 zc.err = sock_error(sk); 4194 zerocopy_rcv_inq: 4195 zc.inq = tcp_inq_hint(sk); 4196 zerocopy_rcv_out: 4197 if (!err && copy_to_user(optval, &zc, len)) 4198 err = -EFAULT; 4199 return err; 4200 } 4201 #endif 4202 default: 4203 return -ENOPROTOOPT; 4204 } 4205 4206 if (put_user(len, optlen)) 4207 return -EFAULT; 4208 if (copy_to_user(optval, &val, len)) 4209 return -EFAULT; 4210 return 0; 4211 } 4212 4213 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4214 { 4215 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4216 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4217 */ 4218 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4219 return true; 4220 4221 return false; 4222 } 4223 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4224 4225 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4226 int __user *optlen) 4227 { 4228 struct inet_connection_sock *icsk = inet_csk(sk); 4229 4230 if (level != SOL_TCP) 4231 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4232 optval, optlen); 4233 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4234 } 4235 EXPORT_SYMBOL(tcp_getsockopt); 4236 4237 #ifdef CONFIG_TCP_MD5SIG 4238 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4239 static DEFINE_MUTEX(tcp_md5sig_mutex); 4240 static bool tcp_md5sig_pool_populated = false; 4241 4242 static void __tcp_alloc_md5sig_pool(void) 4243 { 4244 struct crypto_ahash *hash; 4245 int cpu; 4246 4247 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4248 if (IS_ERR(hash)) 4249 return; 4250 4251 for_each_possible_cpu(cpu) { 4252 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4253 struct ahash_request *req; 4254 4255 if (!scratch) { 4256 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4257 sizeof(struct tcphdr), 4258 GFP_KERNEL, 4259 cpu_to_node(cpu)); 4260 if (!scratch) 4261 return; 4262 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4263 } 4264 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4265 continue; 4266 4267 req = ahash_request_alloc(hash, GFP_KERNEL); 4268 if (!req) 4269 return; 4270 4271 ahash_request_set_callback(req, 0, NULL, NULL); 4272 4273 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4274 } 4275 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4276 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4277 */ 4278 smp_wmb(); 4279 tcp_md5sig_pool_populated = true; 4280 } 4281 4282 bool tcp_alloc_md5sig_pool(void) 4283 { 4284 if (unlikely(!tcp_md5sig_pool_populated)) { 4285 mutex_lock(&tcp_md5sig_mutex); 4286 4287 if (!tcp_md5sig_pool_populated) { 4288 __tcp_alloc_md5sig_pool(); 4289 if (tcp_md5sig_pool_populated) 4290 static_branch_inc(&tcp_md5_needed); 4291 } 4292 4293 mutex_unlock(&tcp_md5sig_mutex); 4294 } 4295 return tcp_md5sig_pool_populated; 4296 } 4297 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4298 4299 4300 /** 4301 * tcp_get_md5sig_pool - get md5sig_pool for this user 4302 * 4303 * We use percpu structure, so if we succeed, we exit with preemption 4304 * and BH disabled, to make sure another thread or softirq handling 4305 * wont try to get same context. 4306 */ 4307 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4308 { 4309 local_bh_disable(); 4310 4311 if (tcp_md5sig_pool_populated) { 4312 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4313 smp_rmb(); 4314 return this_cpu_ptr(&tcp_md5sig_pool); 4315 } 4316 local_bh_enable(); 4317 return NULL; 4318 } 4319 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4320 4321 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4322 const struct sk_buff *skb, unsigned int header_len) 4323 { 4324 struct scatterlist sg; 4325 const struct tcphdr *tp = tcp_hdr(skb); 4326 struct ahash_request *req = hp->md5_req; 4327 unsigned int i; 4328 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4329 skb_headlen(skb) - header_len : 0; 4330 const struct skb_shared_info *shi = skb_shinfo(skb); 4331 struct sk_buff *frag_iter; 4332 4333 sg_init_table(&sg, 1); 4334 4335 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4336 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4337 if (crypto_ahash_update(req)) 4338 return 1; 4339 4340 for (i = 0; i < shi->nr_frags; ++i) { 4341 const skb_frag_t *f = &shi->frags[i]; 4342 unsigned int offset = skb_frag_off(f); 4343 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4344 4345 sg_set_page(&sg, page, skb_frag_size(f), 4346 offset_in_page(offset)); 4347 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4348 if (crypto_ahash_update(req)) 4349 return 1; 4350 } 4351 4352 skb_walk_frags(skb, frag_iter) 4353 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4354 return 1; 4355 4356 return 0; 4357 } 4358 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4359 4360 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4361 { 4362 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4363 struct scatterlist sg; 4364 4365 sg_init_one(&sg, key->key, keylen); 4366 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4367 4368 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4369 return data_race(crypto_ahash_update(hp->md5_req)); 4370 } 4371 EXPORT_SYMBOL(tcp_md5_hash_key); 4372 4373 #endif 4374 4375 void tcp_done(struct sock *sk) 4376 { 4377 struct request_sock *req; 4378 4379 /* We might be called with a new socket, after 4380 * inet_csk_prepare_forced_close() has been called 4381 * so we can not use lockdep_sock_is_held(sk) 4382 */ 4383 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4384 4385 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4386 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4387 4388 tcp_set_state(sk, TCP_CLOSE); 4389 tcp_clear_xmit_timers(sk); 4390 if (req) 4391 reqsk_fastopen_remove(sk, req, false); 4392 4393 sk->sk_shutdown = SHUTDOWN_MASK; 4394 4395 if (!sock_flag(sk, SOCK_DEAD)) 4396 sk->sk_state_change(sk); 4397 else 4398 inet_csk_destroy_sock(sk); 4399 } 4400 EXPORT_SYMBOL_GPL(tcp_done); 4401 4402 int tcp_abort(struct sock *sk, int err) 4403 { 4404 if (!sk_fullsock(sk)) { 4405 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4406 struct request_sock *req = inet_reqsk(sk); 4407 4408 local_bh_disable(); 4409 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4410 local_bh_enable(); 4411 return 0; 4412 } 4413 return -EOPNOTSUPP; 4414 } 4415 4416 /* Don't race with userspace socket closes such as tcp_close. */ 4417 lock_sock(sk); 4418 4419 if (sk->sk_state == TCP_LISTEN) { 4420 tcp_set_state(sk, TCP_CLOSE); 4421 inet_csk_listen_stop(sk); 4422 } 4423 4424 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4425 local_bh_disable(); 4426 bh_lock_sock(sk); 4427 4428 if (!sock_flag(sk, SOCK_DEAD)) { 4429 sk->sk_err = err; 4430 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4431 smp_wmb(); 4432 sk_error_report(sk); 4433 if (tcp_need_reset(sk->sk_state)) 4434 tcp_send_active_reset(sk, GFP_ATOMIC); 4435 tcp_done(sk); 4436 } 4437 4438 bh_unlock_sock(sk); 4439 local_bh_enable(); 4440 tcp_write_queue_purge(sk); 4441 release_sock(sk); 4442 return 0; 4443 } 4444 EXPORT_SYMBOL_GPL(tcp_abort); 4445 4446 extern struct tcp_congestion_ops tcp_reno; 4447 4448 static __initdata unsigned long thash_entries; 4449 static int __init set_thash_entries(char *str) 4450 { 4451 ssize_t ret; 4452 4453 if (!str) 4454 return 0; 4455 4456 ret = kstrtoul(str, 0, &thash_entries); 4457 if (ret) 4458 return 0; 4459 4460 return 1; 4461 } 4462 __setup("thash_entries=", set_thash_entries); 4463 4464 static void __init tcp_init_mem(void) 4465 { 4466 unsigned long limit = nr_free_buffer_pages() / 16; 4467 4468 limit = max(limit, 128UL); 4469 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4470 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4471 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4472 } 4473 4474 void __init tcp_init(void) 4475 { 4476 int max_rshare, max_wshare, cnt; 4477 unsigned long limit; 4478 unsigned int i; 4479 4480 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4481 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4482 sizeof_field(struct sk_buff, cb)); 4483 4484 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4485 4486 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4487 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4488 4489 inet_hashinfo_init(&tcp_hashinfo); 4490 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4491 thash_entries, 21, /* one slot per 2 MB*/ 4492 0, 64 * 1024); 4493 tcp_hashinfo.bind_bucket_cachep = 4494 kmem_cache_create("tcp_bind_bucket", 4495 sizeof(struct inet_bind_bucket), 0, 4496 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4497 SLAB_ACCOUNT, 4498 NULL); 4499 4500 /* Size and allocate the main established and bind bucket 4501 * hash tables. 4502 * 4503 * The methodology is similar to that of the buffer cache. 4504 */ 4505 tcp_hashinfo.ehash = 4506 alloc_large_system_hash("TCP established", 4507 sizeof(struct inet_ehash_bucket), 4508 thash_entries, 4509 17, /* one slot per 128 KB of memory */ 4510 0, 4511 NULL, 4512 &tcp_hashinfo.ehash_mask, 4513 0, 4514 thash_entries ? 0 : 512 * 1024); 4515 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4516 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4517 4518 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4519 panic("TCP: failed to alloc ehash_locks"); 4520 tcp_hashinfo.bhash = 4521 alloc_large_system_hash("TCP bind", 4522 sizeof(struct inet_bind_hashbucket), 4523 tcp_hashinfo.ehash_mask + 1, 4524 17, /* one slot per 128 KB of memory */ 4525 0, 4526 &tcp_hashinfo.bhash_size, 4527 NULL, 4528 0, 4529 64 * 1024); 4530 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4531 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4532 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4533 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4534 } 4535 4536 4537 cnt = tcp_hashinfo.ehash_mask + 1; 4538 sysctl_tcp_max_orphans = cnt / 2; 4539 4540 tcp_init_mem(); 4541 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4542 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4543 max_wshare = min(4UL*1024*1024, limit); 4544 max_rshare = min(6UL*1024*1024, limit); 4545 4546 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4547 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4548 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4549 4550 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4551 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4552 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4553 4554 pr_info("Hash tables configured (established %u bind %u)\n", 4555 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4556 4557 tcp_v4_init(); 4558 tcp_metrics_init(); 4559 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4560 tcp_tasklet_init(); 4561 mptcp_init(); 4562 } 4563