1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #include <linux/kernel.h> 249 #include <linux/module.h> 250 #include <linux/types.h> 251 #include <linux/fcntl.h> 252 #include <linux/poll.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/bootmem.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/crypto.h> 267 268 #include <net/icmp.h> 269 #include <net/tcp.h> 270 #include <net/xfrm.h> 271 #include <net/ip.h> 272 #include <net/netdma.h> 273 #include <net/sock.h> 274 275 #include <asm/uaccess.h> 276 #include <asm/ioctls.h> 277 278 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 279 280 struct percpu_counter tcp_orphan_count; 281 EXPORT_SYMBOL_GPL(tcp_orphan_count); 282 283 int sysctl_tcp_mem[3] __read_mostly; 284 int sysctl_tcp_wmem[3] __read_mostly; 285 int sysctl_tcp_rmem[3] __read_mostly; 286 287 EXPORT_SYMBOL(sysctl_tcp_mem); 288 EXPORT_SYMBOL(sysctl_tcp_rmem); 289 EXPORT_SYMBOL(sysctl_tcp_wmem); 290 291 atomic_t tcp_memory_allocated; /* Current allocated memory. */ 292 EXPORT_SYMBOL(tcp_memory_allocated); 293 294 /* 295 * Current number of TCP sockets. 296 */ 297 struct percpu_counter tcp_sockets_allocated; 298 EXPORT_SYMBOL(tcp_sockets_allocated); 299 300 /* 301 * TCP splice context 302 */ 303 struct tcp_splice_state { 304 struct pipe_inode_info *pipe; 305 size_t len; 306 unsigned int flags; 307 }; 308 309 /* 310 * Pressure flag: try to collapse. 311 * Technical note: it is used by multiple contexts non atomically. 312 * All the __sk_mem_schedule() is of this nature: accounting 313 * is strict, actions are advisory and have some latency. 314 */ 315 int tcp_memory_pressure __read_mostly; 316 317 EXPORT_SYMBOL(tcp_memory_pressure); 318 319 void tcp_enter_memory_pressure(struct sock *sk) 320 { 321 if (!tcp_memory_pressure) { 322 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 323 tcp_memory_pressure = 1; 324 } 325 } 326 327 EXPORT_SYMBOL(tcp_enter_memory_pressure); 328 329 /* Convert seconds to retransmits based on initial and max timeout */ 330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 331 { 332 u8 res = 0; 333 334 if (seconds > 0) { 335 int period = timeout; 336 337 res = 1; 338 while (seconds > period && res < 255) { 339 res++; 340 timeout <<= 1; 341 if (timeout > rto_max) 342 timeout = rto_max; 343 period += timeout; 344 } 345 } 346 return res; 347 } 348 349 /* Convert retransmits to seconds based on initial and max timeout */ 350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 351 { 352 int period = 0; 353 354 if (retrans > 0) { 355 period = timeout; 356 while (--retrans) { 357 timeout <<= 1; 358 if (timeout > rto_max) 359 timeout = rto_max; 360 period += timeout; 361 } 362 } 363 return period; 364 } 365 366 /* 367 * Wait for a TCP event. 368 * 369 * Note that we don't need to lock the socket, as the upper poll layers 370 * take care of normal races (between the test and the event) and we don't 371 * go look at any of the socket buffers directly. 372 */ 373 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 374 { 375 unsigned int mask; 376 struct sock *sk = sock->sk; 377 struct tcp_sock *tp = tcp_sk(sk); 378 379 sock_poll_wait(file, sk->sk_sleep, wait); 380 if (sk->sk_state == TCP_LISTEN) 381 return inet_csk_listen_poll(sk); 382 383 /* Socket is not locked. We are protected from async events 384 * by poll logic and correct handling of state changes 385 * made by other threads is impossible in any case. 386 */ 387 388 mask = 0; 389 if (sk->sk_err) 390 mask = POLLERR; 391 392 /* 393 * POLLHUP is certainly not done right. But poll() doesn't 394 * have a notion of HUP in just one direction, and for a 395 * socket the read side is more interesting. 396 * 397 * Some poll() documentation says that POLLHUP is incompatible 398 * with the POLLOUT/POLLWR flags, so somebody should check this 399 * all. But careful, it tends to be safer to return too many 400 * bits than too few, and you can easily break real applications 401 * if you don't tell them that something has hung up! 402 * 403 * Check-me. 404 * 405 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 406 * our fs/select.c). It means that after we received EOF, 407 * poll always returns immediately, making impossible poll() on write() 408 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 409 * if and only if shutdown has been made in both directions. 410 * Actually, it is interesting to look how Solaris and DUX 411 * solve this dilemma. I would prefer, if POLLHUP were maskable, 412 * then we could set it on SND_SHUTDOWN. BTW examples given 413 * in Stevens' books assume exactly this behaviour, it explains 414 * why POLLHUP is incompatible with POLLOUT. --ANK 415 * 416 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 417 * blocking on fresh not-connected or disconnected socket. --ANK 418 */ 419 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 420 mask |= POLLHUP; 421 if (sk->sk_shutdown & RCV_SHUTDOWN) 422 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 423 424 /* Connected? */ 425 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 426 int target = sock_rcvlowat(sk, 0, INT_MAX); 427 428 if (tp->urg_seq == tp->copied_seq && 429 !sock_flag(sk, SOCK_URGINLINE) && 430 tp->urg_data) 431 target--; 432 433 /* Potential race condition. If read of tp below will 434 * escape above sk->sk_state, we can be illegally awaken 435 * in SYN_* states. */ 436 if (tp->rcv_nxt - tp->copied_seq >= target) 437 mask |= POLLIN | POLLRDNORM; 438 439 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 440 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 441 mask |= POLLOUT | POLLWRNORM; 442 } else { /* send SIGIO later */ 443 set_bit(SOCK_ASYNC_NOSPACE, 444 &sk->sk_socket->flags); 445 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 446 447 /* Race breaker. If space is freed after 448 * wspace test but before the flags are set, 449 * IO signal will be lost. 450 */ 451 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 452 mask |= POLLOUT | POLLWRNORM; 453 } 454 } 455 456 if (tp->urg_data & TCP_URG_VALID) 457 mask |= POLLPRI; 458 } 459 return mask; 460 } 461 462 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 463 { 464 struct tcp_sock *tp = tcp_sk(sk); 465 int answ; 466 467 switch (cmd) { 468 case SIOCINQ: 469 if (sk->sk_state == TCP_LISTEN) 470 return -EINVAL; 471 472 lock_sock(sk); 473 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 474 answ = 0; 475 else if (sock_flag(sk, SOCK_URGINLINE) || 476 !tp->urg_data || 477 before(tp->urg_seq, tp->copied_seq) || 478 !before(tp->urg_seq, tp->rcv_nxt)) { 479 struct sk_buff *skb; 480 481 answ = tp->rcv_nxt - tp->copied_seq; 482 483 /* Subtract 1, if FIN is in queue. */ 484 skb = skb_peek_tail(&sk->sk_receive_queue); 485 if (answ && skb) 486 answ -= tcp_hdr(skb)->fin; 487 } else 488 answ = tp->urg_seq - tp->copied_seq; 489 release_sock(sk); 490 break; 491 case SIOCATMARK: 492 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 493 break; 494 case SIOCOUTQ: 495 if (sk->sk_state == TCP_LISTEN) 496 return -EINVAL; 497 498 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 499 answ = 0; 500 else 501 answ = tp->write_seq - tp->snd_una; 502 break; 503 default: 504 return -ENOIOCTLCMD; 505 } 506 507 return put_user(answ, (int __user *)arg); 508 } 509 510 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 511 { 512 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 513 tp->pushed_seq = tp->write_seq; 514 } 515 516 static inline int forced_push(struct tcp_sock *tp) 517 { 518 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 519 } 520 521 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 522 { 523 struct tcp_sock *tp = tcp_sk(sk); 524 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 525 526 skb->csum = 0; 527 tcb->seq = tcb->end_seq = tp->write_seq; 528 tcb->flags = TCPCB_FLAG_ACK; 529 tcb->sacked = 0; 530 skb_header_release(skb); 531 tcp_add_write_queue_tail(sk, skb); 532 sk->sk_wmem_queued += skb->truesize; 533 sk_mem_charge(sk, skb->truesize); 534 if (tp->nonagle & TCP_NAGLE_PUSH) 535 tp->nonagle &= ~TCP_NAGLE_PUSH; 536 } 537 538 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags, 539 struct sk_buff *skb) 540 { 541 if (flags & MSG_OOB) 542 tp->snd_up = tp->write_seq; 543 } 544 545 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 546 int nonagle) 547 { 548 struct tcp_sock *tp = tcp_sk(sk); 549 550 if (tcp_send_head(sk)) { 551 struct sk_buff *skb = tcp_write_queue_tail(sk); 552 if (!(flags & MSG_MORE) || forced_push(tp)) 553 tcp_mark_push(tp, skb); 554 tcp_mark_urg(tp, flags, skb); 555 __tcp_push_pending_frames(sk, mss_now, 556 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 557 } 558 } 559 560 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 561 unsigned int offset, size_t len) 562 { 563 struct tcp_splice_state *tss = rd_desc->arg.data; 564 int ret; 565 566 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 567 tss->flags); 568 if (ret > 0) 569 rd_desc->count -= ret; 570 return ret; 571 } 572 573 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 574 { 575 /* Store TCP splice context information in read_descriptor_t. */ 576 read_descriptor_t rd_desc = { 577 .arg.data = tss, 578 .count = tss->len, 579 }; 580 581 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 582 } 583 584 /** 585 * tcp_splice_read - splice data from TCP socket to a pipe 586 * @sock: socket to splice from 587 * @ppos: position (not valid) 588 * @pipe: pipe to splice to 589 * @len: number of bytes to splice 590 * @flags: splice modifier flags 591 * 592 * Description: 593 * Will read pages from given socket and fill them into a pipe. 594 * 595 **/ 596 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 597 struct pipe_inode_info *pipe, size_t len, 598 unsigned int flags) 599 { 600 struct sock *sk = sock->sk; 601 struct tcp_splice_state tss = { 602 .pipe = pipe, 603 .len = len, 604 .flags = flags, 605 }; 606 long timeo; 607 ssize_t spliced; 608 int ret; 609 610 /* 611 * We can't seek on a socket input 612 */ 613 if (unlikely(*ppos)) 614 return -ESPIPE; 615 616 ret = spliced = 0; 617 618 lock_sock(sk); 619 620 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 621 while (tss.len) { 622 ret = __tcp_splice_read(sk, &tss); 623 if (ret < 0) 624 break; 625 else if (!ret) { 626 if (spliced) 627 break; 628 if (sock_flag(sk, SOCK_DONE)) 629 break; 630 if (sk->sk_err) { 631 ret = sock_error(sk); 632 break; 633 } 634 if (sk->sk_shutdown & RCV_SHUTDOWN) 635 break; 636 if (sk->sk_state == TCP_CLOSE) { 637 /* 638 * This occurs when user tries to read 639 * from never connected socket. 640 */ 641 if (!sock_flag(sk, SOCK_DONE)) 642 ret = -ENOTCONN; 643 break; 644 } 645 if (!timeo) { 646 ret = -EAGAIN; 647 break; 648 } 649 sk_wait_data(sk, &timeo); 650 if (signal_pending(current)) { 651 ret = sock_intr_errno(timeo); 652 break; 653 } 654 continue; 655 } 656 tss.len -= ret; 657 spliced += ret; 658 659 if (!timeo) 660 break; 661 release_sock(sk); 662 lock_sock(sk); 663 664 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 665 (sk->sk_shutdown & RCV_SHUTDOWN) || 666 signal_pending(current)) 667 break; 668 } 669 670 release_sock(sk); 671 672 if (spliced) 673 return spliced; 674 675 return ret; 676 } 677 678 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 679 { 680 struct sk_buff *skb; 681 682 /* The TCP header must be at least 32-bit aligned. */ 683 size = ALIGN(size, 4); 684 685 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 686 if (skb) { 687 if (sk_wmem_schedule(sk, skb->truesize)) { 688 /* 689 * Make sure that we have exactly size bytes 690 * available to the caller, no more, no less. 691 */ 692 skb_reserve(skb, skb_tailroom(skb) - size); 693 return skb; 694 } 695 __kfree_skb(skb); 696 } else { 697 sk->sk_prot->enter_memory_pressure(sk); 698 sk_stream_moderate_sndbuf(sk); 699 } 700 return NULL; 701 } 702 703 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 704 int large_allowed) 705 { 706 struct tcp_sock *tp = tcp_sk(sk); 707 u32 xmit_size_goal, old_size_goal; 708 709 xmit_size_goal = mss_now; 710 711 if (large_allowed && sk_can_gso(sk)) { 712 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 713 inet_csk(sk)->icsk_af_ops->net_header_len - 714 inet_csk(sk)->icsk_ext_hdr_len - 715 tp->tcp_header_len); 716 717 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 718 719 /* We try hard to avoid divides here */ 720 old_size_goal = tp->xmit_size_goal_segs * mss_now; 721 722 if (likely(old_size_goal <= xmit_size_goal && 723 old_size_goal + mss_now > xmit_size_goal)) { 724 xmit_size_goal = old_size_goal; 725 } else { 726 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 727 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 728 } 729 } 730 731 return max(xmit_size_goal, mss_now); 732 } 733 734 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 735 { 736 int mss_now; 737 738 mss_now = tcp_current_mss(sk); 739 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 740 741 return mss_now; 742 } 743 744 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 745 size_t psize, int flags) 746 { 747 struct tcp_sock *tp = tcp_sk(sk); 748 int mss_now, size_goal; 749 int err; 750 ssize_t copied; 751 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 752 753 /* Wait for a connection to finish. */ 754 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 755 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 756 goto out_err; 757 758 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 759 760 mss_now = tcp_send_mss(sk, &size_goal, flags); 761 copied = 0; 762 763 err = -EPIPE; 764 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 765 goto out_err; 766 767 while (psize > 0) { 768 struct sk_buff *skb = tcp_write_queue_tail(sk); 769 struct page *page = pages[poffset / PAGE_SIZE]; 770 int copy, i, can_coalesce; 771 int offset = poffset % PAGE_SIZE; 772 int size = min_t(size_t, psize, PAGE_SIZE - offset); 773 774 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 775 new_segment: 776 if (!sk_stream_memory_free(sk)) 777 goto wait_for_sndbuf; 778 779 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 780 if (!skb) 781 goto wait_for_memory; 782 783 skb_entail(sk, skb); 784 copy = size_goal; 785 } 786 787 if (copy > size) 788 copy = size; 789 790 i = skb_shinfo(skb)->nr_frags; 791 can_coalesce = skb_can_coalesce(skb, i, page, offset); 792 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 793 tcp_mark_push(tp, skb); 794 goto new_segment; 795 } 796 if (!sk_wmem_schedule(sk, copy)) 797 goto wait_for_memory; 798 799 if (can_coalesce) { 800 skb_shinfo(skb)->frags[i - 1].size += copy; 801 } else { 802 get_page(page); 803 skb_fill_page_desc(skb, i, page, offset, copy); 804 } 805 806 skb->len += copy; 807 skb->data_len += copy; 808 skb->truesize += copy; 809 sk->sk_wmem_queued += copy; 810 sk_mem_charge(sk, copy); 811 skb->ip_summed = CHECKSUM_PARTIAL; 812 tp->write_seq += copy; 813 TCP_SKB_CB(skb)->end_seq += copy; 814 skb_shinfo(skb)->gso_segs = 0; 815 816 if (!copied) 817 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 818 819 copied += copy; 820 poffset += copy; 821 if (!(psize -= copy)) 822 goto out; 823 824 if (skb->len < size_goal || (flags & MSG_OOB)) 825 continue; 826 827 if (forced_push(tp)) { 828 tcp_mark_push(tp, skb); 829 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 830 } else if (skb == tcp_send_head(sk)) 831 tcp_push_one(sk, mss_now); 832 continue; 833 834 wait_for_sndbuf: 835 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 836 wait_for_memory: 837 if (copied) 838 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 839 840 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 841 goto do_error; 842 843 mss_now = tcp_send_mss(sk, &size_goal, flags); 844 } 845 846 out: 847 if (copied) 848 tcp_push(sk, flags, mss_now, tp->nonagle); 849 return copied; 850 851 do_error: 852 if (copied) 853 goto out; 854 out_err: 855 return sk_stream_error(sk, flags, err); 856 } 857 858 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset, 859 size_t size, int flags) 860 { 861 ssize_t res; 862 struct sock *sk = sock->sk; 863 864 if (!(sk->sk_route_caps & NETIF_F_SG) || 865 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 866 return sock_no_sendpage(sock, page, offset, size, flags); 867 868 lock_sock(sk); 869 TCP_CHECK_TIMER(sk); 870 res = do_tcp_sendpages(sk, &page, offset, size, flags); 871 TCP_CHECK_TIMER(sk); 872 release_sock(sk); 873 return res; 874 } 875 876 #define TCP_PAGE(sk) (sk->sk_sndmsg_page) 877 #define TCP_OFF(sk) (sk->sk_sndmsg_off) 878 879 static inline int select_size(struct sock *sk) 880 { 881 struct tcp_sock *tp = tcp_sk(sk); 882 int tmp = tp->mss_cache; 883 884 if (sk->sk_route_caps & NETIF_F_SG) { 885 if (sk_can_gso(sk)) 886 tmp = 0; 887 else { 888 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 889 890 if (tmp >= pgbreak && 891 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 892 tmp = pgbreak; 893 } 894 } 895 896 return tmp; 897 } 898 899 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, 900 size_t size) 901 { 902 struct sock *sk = sock->sk; 903 struct iovec *iov; 904 struct tcp_sock *tp = tcp_sk(sk); 905 struct sk_buff *skb; 906 int iovlen, flags; 907 int mss_now, size_goal; 908 int err, copied; 909 long timeo; 910 911 lock_sock(sk); 912 TCP_CHECK_TIMER(sk); 913 914 flags = msg->msg_flags; 915 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 916 917 /* Wait for a connection to finish. */ 918 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 919 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 920 goto out_err; 921 922 /* This should be in poll */ 923 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 924 925 mss_now = tcp_send_mss(sk, &size_goal, flags); 926 927 /* Ok commence sending. */ 928 iovlen = msg->msg_iovlen; 929 iov = msg->msg_iov; 930 copied = 0; 931 932 err = -EPIPE; 933 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 934 goto out_err; 935 936 while (--iovlen >= 0) { 937 int seglen = iov->iov_len; 938 unsigned char __user *from = iov->iov_base; 939 940 iov++; 941 942 while (seglen > 0) { 943 int copy = 0; 944 int max = size_goal; 945 946 skb = tcp_write_queue_tail(sk); 947 if (tcp_send_head(sk)) { 948 if (skb->ip_summed == CHECKSUM_NONE) 949 max = mss_now; 950 copy = max - skb->len; 951 } 952 953 if (copy <= 0) { 954 new_segment: 955 /* Allocate new segment. If the interface is SG, 956 * allocate skb fitting to single page. 957 */ 958 if (!sk_stream_memory_free(sk)) 959 goto wait_for_sndbuf; 960 961 skb = sk_stream_alloc_skb(sk, select_size(sk), 962 sk->sk_allocation); 963 if (!skb) 964 goto wait_for_memory; 965 966 /* 967 * Check whether we can use HW checksum. 968 */ 969 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 970 skb->ip_summed = CHECKSUM_PARTIAL; 971 972 skb_entail(sk, skb); 973 copy = size_goal; 974 max = size_goal; 975 } 976 977 /* Try to append data to the end of skb. */ 978 if (copy > seglen) 979 copy = seglen; 980 981 /* Where to copy to? */ 982 if (skb_tailroom(skb) > 0) { 983 /* We have some space in skb head. Superb! */ 984 if (copy > skb_tailroom(skb)) 985 copy = skb_tailroom(skb); 986 if ((err = skb_add_data(skb, from, copy)) != 0) 987 goto do_fault; 988 } else { 989 int merge = 0; 990 int i = skb_shinfo(skb)->nr_frags; 991 struct page *page = TCP_PAGE(sk); 992 int off = TCP_OFF(sk); 993 994 if (skb_can_coalesce(skb, i, page, off) && 995 off != PAGE_SIZE) { 996 /* We can extend the last page 997 * fragment. */ 998 merge = 1; 999 } else if (i == MAX_SKB_FRAGS || 1000 (!i && 1001 !(sk->sk_route_caps & NETIF_F_SG))) { 1002 /* Need to add new fragment and cannot 1003 * do this because interface is non-SG, 1004 * or because all the page slots are 1005 * busy. */ 1006 tcp_mark_push(tp, skb); 1007 goto new_segment; 1008 } else if (page) { 1009 if (off == PAGE_SIZE) { 1010 put_page(page); 1011 TCP_PAGE(sk) = page = NULL; 1012 off = 0; 1013 } 1014 } else 1015 off = 0; 1016 1017 if (copy > PAGE_SIZE - off) 1018 copy = PAGE_SIZE - off; 1019 1020 if (!sk_wmem_schedule(sk, copy)) 1021 goto wait_for_memory; 1022 1023 if (!page) { 1024 /* Allocate new cache page. */ 1025 if (!(page = sk_stream_alloc_page(sk))) 1026 goto wait_for_memory; 1027 } 1028 1029 /* Time to copy data. We are close to 1030 * the end! */ 1031 err = skb_copy_to_page(sk, from, skb, page, 1032 off, copy); 1033 if (err) { 1034 /* If this page was new, give it to the 1035 * socket so it does not get leaked. 1036 */ 1037 if (!TCP_PAGE(sk)) { 1038 TCP_PAGE(sk) = page; 1039 TCP_OFF(sk) = 0; 1040 } 1041 goto do_error; 1042 } 1043 1044 /* Update the skb. */ 1045 if (merge) { 1046 skb_shinfo(skb)->frags[i - 1].size += 1047 copy; 1048 } else { 1049 skb_fill_page_desc(skb, i, page, off, copy); 1050 if (TCP_PAGE(sk)) { 1051 get_page(page); 1052 } else if (off + copy < PAGE_SIZE) { 1053 get_page(page); 1054 TCP_PAGE(sk) = page; 1055 } 1056 } 1057 1058 TCP_OFF(sk) = off + copy; 1059 } 1060 1061 if (!copied) 1062 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 1063 1064 tp->write_seq += copy; 1065 TCP_SKB_CB(skb)->end_seq += copy; 1066 skb_shinfo(skb)->gso_segs = 0; 1067 1068 from += copy; 1069 copied += copy; 1070 if ((seglen -= copy) == 0 && iovlen == 0) 1071 goto out; 1072 1073 if (skb->len < max || (flags & MSG_OOB)) 1074 continue; 1075 1076 if (forced_push(tp)) { 1077 tcp_mark_push(tp, skb); 1078 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1079 } else if (skb == tcp_send_head(sk)) 1080 tcp_push_one(sk, mss_now); 1081 continue; 1082 1083 wait_for_sndbuf: 1084 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1085 wait_for_memory: 1086 if (copied) 1087 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1088 1089 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1090 goto do_error; 1091 1092 mss_now = tcp_send_mss(sk, &size_goal, flags); 1093 } 1094 } 1095 1096 out: 1097 if (copied) 1098 tcp_push(sk, flags, mss_now, tp->nonagle); 1099 TCP_CHECK_TIMER(sk); 1100 release_sock(sk); 1101 return copied; 1102 1103 do_fault: 1104 if (!skb->len) { 1105 tcp_unlink_write_queue(skb, sk); 1106 /* It is the one place in all of TCP, except connection 1107 * reset, where we can be unlinking the send_head. 1108 */ 1109 tcp_check_send_head(sk, skb); 1110 sk_wmem_free_skb(sk, skb); 1111 } 1112 1113 do_error: 1114 if (copied) 1115 goto out; 1116 out_err: 1117 err = sk_stream_error(sk, flags, err); 1118 TCP_CHECK_TIMER(sk); 1119 release_sock(sk); 1120 return err; 1121 } 1122 1123 /* 1124 * Handle reading urgent data. BSD has very simple semantics for 1125 * this, no blocking and very strange errors 8) 1126 */ 1127 1128 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1129 { 1130 struct tcp_sock *tp = tcp_sk(sk); 1131 1132 /* No URG data to read. */ 1133 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1134 tp->urg_data == TCP_URG_READ) 1135 return -EINVAL; /* Yes this is right ! */ 1136 1137 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1138 return -ENOTCONN; 1139 1140 if (tp->urg_data & TCP_URG_VALID) { 1141 int err = 0; 1142 char c = tp->urg_data; 1143 1144 if (!(flags & MSG_PEEK)) 1145 tp->urg_data = TCP_URG_READ; 1146 1147 /* Read urgent data. */ 1148 msg->msg_flags |= MSG_OOB; 1149 1150 if (len > 0) { 1151 if (!(flags & MSG_TRUNC)) 1152 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1153 len = 1; 1154 } else 1155 msg->msg_flags |= MSG_TRUNC; 1156 1157 return err ? -EFAULT : len; 1158 } 1159 1160 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1161 return 0; 1162 1163 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1164 * the available implementations agree in this case: 1165 * this call should never block, independent of the 1166 * blocking state of the socket. 1167 * Mike <pall@rz.uni-karlsruhe.de> 1168 */ 1169 return -EAGAIN; 1170 } 1171 1172 /* Clean up the receive buffer for full frames taken by the user, 1173 * then send an ACK if necessary. COPIED is the number of bytes 1174 * tcp_recvmsg has given to the user so far, it speeds up the 1175 * calculation of whether or not we must ACK for the sake of 1176 * a window update. 1177 */ 1178 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1179 { 1180 struct tcp_sock *tp = tcp_sk(sk); 1181 int time_to_ack = 0; 1182 1183 #if TCP_DEBUG 1184 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1185 1186 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1187 KERN_INFO "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1188 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1189 #endif 1190 1191 if (inet_csk_ack_scheduled(sk)) { 1192 const struct inet_connection_sock *icsk = inet_csk(sk); 1193 /* Delayed ACKs frequently hit locked sockets during bulk 1194 * receive. */ 1195 if (icsk->icsk_ack.blocked || 1196 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1197 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1198 /* 1199 * If this read emptied read buffer, we send ACK, if 1200 * connection is not bidirectional, user drained 1201 * receive buffer and there was a small segment 1202 * in queue. 1203 */ 1204 (copied > 0 && 1205 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1206 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1207 !icsk->icsk_ack.pingpong)) && 1208 !atomic_read(&sk->sk_rmem_alloc))) 1209 time_to_ack = 1; 1210 } 1211 1212 /* We send an ACK if we can now advertise a non-zero window 1213 * which has been raised "significantly". 1214 * 1215 * Even if window raised up to infinity, do not send window open ACK 1216 * in states, where we will not receive more. It is useless. 1217 */ 1218 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1219 __u32 rcv_window_now = tcp_receive_window(tp); 1220 1221 /* Optimize, __tcp_select_window() is not cheap. */ 1222 if (2*rcv_window_now <= tp->window_clamp) { 1223 __u32 new_window = __tcp_select_window(sk); 1224 1225 /* Send ACK now, if this read freed lots of space 1226 * in our buffer. Certainly, new_window is new window. 1227 * We can advertise it now, if it is not less than current one. 1228 * "Lots" means "at least twice" here. 1229 */ 1230 if (new_window && new_window >= 2 * rcv_window_now) 1231 time_to_ack = 1; 1232 } 1233 } 1234 if (time_to_ack) 1235 tcp_send_ack(sk); 1236 } 1237 1238 static void tcp_prequeue_process(struct sock *sk) 1239 { 1240 struct sk_buff *skb; 1241 struct tcp_sock *tp = tcp_sk(sk); 1242 1243 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1244 1245 /* RX process wants to run with disabled BHs, though it is not 1246 * necessary */ 1247 local_bh_disable(); 1248 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1249 sk_backlog_rcv(sk, skb); 1250 local_bh_enable(); 1251 1252 /* Clear memory counter. */ 1253 tp->ucopy.memory = 0; 1254 } 1255 1256 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1257 { 1258 struct sk_buff *skb; 1259 u32 offset; 1260 1261 skb_queue_walk(&sk->sk_receive_queue, skb) { 1262 offset = seq - TCP_SKB_CB(skb)->seq; 1263 if (tcp_hdr(skb)->syn) 1264 offset--; 1265 if (offset < skb->len || tcp_hdr(skb)->fin) { 1266 *off = offset; 1267 return skb; 1268 } 1269 } 1270 return NULL; 1271 } 1272 1273 /* 1274 * This routine provides an alternative to tcp_recvmsg() for routines 1275 * that would like to handle copying from skbuffs directly in 'sendfile' 1276 * fashion. 1277 * Note: 1278 * - It is assumed that the socket was locked by the caller. 1279 * - The routine does not block. 1280 * - At present, there is no support for reading OOB data 1281 * or for 'peeking' the socket using this routine 1282 * (although both would be easy to implement). 1283 */ 1284 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1285 sk_read_actor_t recv_actor) 1286 { 1287 struct sk_buff *skb; 1288 struct tcp_sock *tp = tcp_sk(sk); 1289 u32 seq = tp->copied_seq; 1290 u32 offset; 1291 int copied = 0; 1292 1293 if (sk->sk_state == TCP_LISTEN) 1294 return -ENOTCONN; 1295 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1296 if (offset < skb->len) { 1297 int used; 1298 size_t len; 1299 1300 len = skb->len - offset; 1301 /* Stop reading if we hit a patch of urgent data */ 1302 if (tp->urg_data) { 1303 u32 urg_offset = tp->urg_seq - seq; 1304 if (urg_offset < len) 1305 len = urg_offset; 1306 if (!len) 1307 break; 1308 } 1309 used = recv_actor(desc, skb, offset, len); 1310 if (used < 0) { 1311 if (!copied) 1312 copied = used; 1313 break; 1314 } else if (used <= len) { 1315 seq += used; 1316 copied += used; 1317 offset += used; 1318 } 1319 /* 1320 * If recv_actor drops the lock (e.g. TCP splice 1321 * receive) the skb pointer might be invalid when 1322 * getting here: tcp_collapse might have deleted it 1323 * while aggregating skbs from the socket queue. 1324 */ 1325 skb = tcp_recv_skb(sk, seq-1, &offset); 1326 if (!skb || (offset+1 != skb->len)) 1327 break; 1328 } 1329 if (tcp_hdr(skb)->fin) { 1330 sk_eat_skb(sk, skb, 0); 1331 ++seq; 1332 break; 1333 } 1334 sk_eat_skb(sk, skb, 0); 1335 if (!desc->count) 1336 break; 1337 } 1338 tp->copied_seq = seq; 1339 1340 tcp_rcv_space_adjust(sk); 1341 1342 /* Clean up data we have read: This will do ACK frames. */ 1343 if (copied > 0) 1344 tcp_cleanup_rbuf(sk, copied); 1345 return copied; 1346 } 1347 1348 /* 1349 * This routine copies from a sock struct into the user buffer. 1350 * 1351 * Technical note: in 2.3 we work on _locked_ socket, so that 1352 * tricks with *seq access order and skb->users are not required. 1353 * Probably, code can be easily improved even more. 1354 */ 1355 1356 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1357 size_t len, int nonblock, int flags, int *addr_len) 1358 { 1359 struct tcp_sock *tp = tcp_sk(sk); 1360 int copied = 0; 1361 u32 peek_seq; 1362 u32 *seq; 1363 unsigned long used; 1364 int err; 1365 int target; /* Read at least this many bytes */ 1366 long timeo; 1367 struct task_struct *user_recv = NULL; 1368 int copied_early = 0; 1369 struct sk_buff *skb; 1370 u32 urg_hole = 0; 1371 1372 lock_sock(sk); 1373 1374 TCP_CHECK_TIMER(sk); 1375 1376 err = -ENOTCONN; 1377 if (sk->sk_state == TCP_LISTEN) 1378 goto out; 1379 1380 timeo = sock_rcvtimeo(sk, nonblock); 1381 1382 /* Urgent data needs to be handled specially. */ 1383 if (flags & MSG_OOB) 1384 goto recv_urg; 1385 1386 seq = &tp->copied_seq; 1387 if (flags & MSG_PEEK) { 1388 peek_seq = tp->copied_seq; 1389 seq = &peek_seq; 1390 } 1391 1392 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1393 1394 #ifdef CONFIG_NET_DMA 1395 tp->ucopy.dma_chan = NULL; 1396 preempt_disable(); 1397 skb = skb_peek_tail(&sk->sk_receive_queue); 1398 { 1399 int available = 0; 1400 1401 if (skb) 1402 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1403 if ((available < target) && 1404 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1405 !sysctl_tcp_low_latency && 1406 dma_find_channel(DMA_MEMCPY)) { 1407 preempt_enable_no_resched(); 1408 tp->ucopy.pinned_list = 1409 dma_pin_iovec_pages(msg->msg_iov, len); 1410 } else { 1411 preempt_enable_no_resched(); 1412 } 1413 } 1414 #endif 1415 1416 do { 1417 u32 offset; 1418 1419 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1420 if (tp->urg_data && tp->urg_seq == *seq) { 1421 if (copied) 1422 break; 1423 if (signal_pending(current)) { 1424 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1425 break; 1426 } 1427 } 1428 1429 /* Next get a buffer. */ 1430 1431 skb_queue_walk(&sk->sk_receive_queue, skb) { 1432 /* Now that we have two receive queues this 1433 * shouldn't happen. 1434 */ 1435 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1436 KERN_INFO "recvmsg bug: copied %X " 1437 "seq %X rcvnxt %X fl %X\n", *seq, 1438 TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1439 flags)) 1440 break; 1441 1442 offset = *seq - TCP_SKB_CB(skb)->seq; 1443 if (tcp_hdr(skb)->syn) 1444 offset--; 1445 if (offset < skb->len) 1446 goto found_ok_skb; 1447 if (tcp_hdr(skb)->fin) 1448 goto found_fin_ok; 1449 WARN(!(flags & MSG_PEEK), KERN_INFO "recvmsg bug 2: " 1450 "copied %X seq %X rcvnxt %X fl %X\n", 1451 *seq, TCP_SKB_CB(skb)->seq, 1452 tp->rcv_nxt, flags); 1453 } 1454 1455 /* Well, if we have backlog, try to process it now yet. */ 1456 1457 if (copied >= target && !sk->sk_backlog.tail) 1458 break; 1459 1460 if (copied) { 1461 if (sk->sk_err || 1462 sk->sk_state == TCP_CLOSE || 1463 (sk->sk_shutdown & RCV_SHUTDOWN) || 1464 !timeo || 1465 signal_pending(current)) 1466 break; 1467 } else { 1468 if (sock_flag(sk, SOCK_DONE)) 1469 break; 1470 1471 if (sk->sk_err) { 1472 copied = sock_error(sk); 1473 break; 1474 } 1475 1476 if (sk->sk_shutdown & RCV_SHUTDOWN) 1477 break; 1478 1479 if (sk->sk_state == TCP_CLOSE) { 1480 if (!sock_flag(sk, SOCK_DONE)) { 1481 /* This occurs when user tries to read 1482 * from never connected socket. 1483 */ 1484 copied = -ENOTCONN; 1485 break; 1486 } 1487 break; 1488 } 1489 1490 if (!timeo) { 1491 copied = -EAGAIN; 1492 break; 1493 } 1494 1495 if (signal_pending(current)) { 1496 copied = sock_intr_errno(timeo); 1497 break; 1498 } 1499 } 1500 1501 tcp_cleanup_rbuf(sk, copied); 1502 1503 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1504 /* Install new reader */ 1505 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1506 user_recv = current; 1507 tp->ucopy.task = user_recv; 1508 tp->ucopy.iov = msg->msg_iov; 1509 } 1510 1511 tp->ucopy.len = len; 1512 1513 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1514 !(flags & (MSG_PEEK | MSG_TRUNC))); 1515 1516 /* Ugly... If prequeue is not empty, we have to 1517 * process it before releasing socket, otherwise 1518 * order will be broken at second iteration. 1519 * More elegant solution is required!!! 1520 * 1521 * Look: we have the following (pseudo)queues: 1522 * 1523 * 1. packets in flight 1524 * 2. backlog 1525 * 3. prequeue 1526 * 4. receive_queue 1527 * 1528 * Each queue can be processed only if the next ones 1529 * are empty. At this point we have empty receive_queue. 1530 * But prequeue _can_ be not empty after 2nd iteration, 1531 * when we jumped to start of loop because backlog 1532 * processing added something to receive_queue. 1533 * We cannot release_sock(), because backlog contains 1534 * packets arrived _after_ prequeued ones. 1535 * 1536 * Shortly, algorithm is clear --- to process all 1537 * the queues in order. We could make it more directly, 1538 * requeueing packets from backlog to prequeue, if 1539 * is not empty. It is more elegant, but eats cycles, 1540 * unfortunately. 1541 */ 1542 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1543 goto do_prequeue; 1544 1545 /* __ Set realtime policy in scheduler __ */ 1546 } 1547 1548 if (copied >= target) { 1549 /* Do not sleep, just process backlog. */ 1550 release_sock(sk); 1551 lock_sock(sk); 1552 } else 1553 sk_wait_data(sk, &timeo); 1554 1555 #ifdef CONFIG_NET_DMA 1556 tp->ucopy.wakeup = 0; 1557 #endif 1558 1559 if (user_recv) { 1560 int chunk; 1561 1562 /* __ Restore normal policy in scheduler __ */ 1563 1564 if ((chunk = len - tp->ucopy.len) != 0) { 1565 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1566 len -= chunk; 1567 copied += chunk; 1568 } 1569 1570 if (tp->rcv_nxt == tp->copied_seq && 1571 !skb_queue_empty(&tp->ucopy.prequeue)) { 1572 do_prequeue: 1573 tcp_prequeue_process(sk); 1574 1575 if ((chunk = len - tp->ucopy.len) != 0) { 1576 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1577 len -= chunk; 1578 copied += chunk; 1579 } 1580 } 1581 } 1582 if ((flags & MSG_PEEK) && 1583 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1584 if (net_ratelimit()) 1585 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", 1586 current->comm, task_pid_nr(current)); 1587 peek_seq = tp->copied_seq; 1588 } 1589 continue; 1590 1591 found_ok_skb: 1592 /* Ok so how much can we use? */ 1593 used = skb->len - offset; 1594 if (len < used) 1595 used = len; 1596 1597 /* Do we have urgent data here? */ 1598 if (tp->urg_data) { 1599 u32 urg_offset = tp->urg_seq - *seq; 1600 if (urg_offset < used) { 1601 if (!urg_offset) { 1602 if (!sock_flag(sk, SOCK_URGINLINE)) { 1603 ++*seq; 1604 urg_hole++; 1605 offset++; 1606 used--; 1607 if (!used) 1608 goto skip_copy; 1609 } 1610 } else 1611 used = urg_offset; 1612 } 1613 } 1614 1615 if (!(flags & MSG_TRUNC)) { 1616 #ifdef CONFIG_NET_DMA 1617 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1618 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 1619 1620 if (tp->ucopy.dma_chan) { 1621 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1622 tp->ucopy.dma_chan, skb, offset, 1623 msg->msg_iov, used, 1624 tp->ucopy.pinned_list); 1625 1626 if (tp->ucopy.dma_cookie < 0) { 1627 1628 printk(KERN_ALERT "dma_cookie < 0\n"); 1629 1630 /* Exception. Bailout! */ 1631 if (!copied) 1632 copied = -EFAULT; 1633 break; 1634 } 1635 if ((offset + used) == skb->len) 1636 copied_early = 1; 1637 1638 } else 1639 #endif 1640 { 1641 err = skb_copy_datagram_iovec(skb, offset, 1642 msg->msg_iov, used); 1643 if (err) { 1644 /* Exception. Bailout! */ 1645 if (!copied) 1646 copied = -EFAULT; 1647 break; 1648 } 1649 } 1650 } 1651 1652 *seq += used; 1653 copied += used; 1654 len -= used; 1655 1656 tcp_rcv_space_adjust(sk); 1657 1658 skip_copy: 1659 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1660 tp->urg_data = 0; 1661 tcp_fast_path_check(sk); 1662 } 1663 if (used + offset < skb->len) 1664 continue; 1665 1666 if (tcp_hdr(skb)->fin) 1667 goto found_fin_ok; 1668 if (!(flags & MSG_PEEK)) { 1669 sk_eat_skb(sk, skb, copied_early); 1670 copied_early = 0; 1671 } 1672 continue; 1673 1674 found_fin_ok: 1675 /* Process the FIN. */ 1676 ++*seq; 1677 if (!(flags & MSG_PEEK)) { 1678 sk_eat_skb(sk, skb, copied_early); 1679 copied_early = 0; 1680 } 1681 break; 1682 } while (len > 0); 1683 1684 if (user_recv) { 1685 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1686 int chunk; 1687 1688 tp->ucopy.len = copied > 0 ? len : 0; 1689 1690 tcp_prequeue_process(sk); 1691 1692 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1693 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1694 len -= chunk; 1695 copied += chunk; 1696 } 1697 } 1698 1699 tp->ucopy.task = NULL; 1700 tp->ucopy.len = 0; 1701 } 1702 1703 #ifdef CONFIG_NET_DMA 1704 if (tp->ucopy.dma_chan) { 1705 dma_cookie_t done, used; 1706 1707 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1708 1709 while (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1710 tp->ucopy.dma_cookie, &done, 1711 &used) == DMA_IN_PROGRESS) { 1712 /* do partial cleanup of sk_async_wait_queue */ 1713 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1714 (dma_async_is_complete(skb->dma_cookie, done, 1715 used) == DMA_SUCCESS)) { 1716 __skb_dequeue(&sk->sk_async_wait_queue); 1717 kfree_skb(skb); 1718 } 1719 } 1720 1721 /* Safe to free early-copied skbs now */ 1722 __skb_queue_purge(&sk->sk_async_wait_queue); 1723 tp->ucopy.dma_chan = NULL; 1724 } 1725 if (tp->ucopy.pinned_list) { 1726 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1727 tp->ucopy.pinned_list = NULL; 1728 } 1729 #endif 1730 1731 /* According to UNIX98, msg_name/msg_namelen are ignored 1732 * on connected socket. I was just happy when found this 8) --ANK 1733 */ 1734 1735 /* Clean up data we have read: This will do ACK frames. */ 1736 tcp_cleanup_rbuf(sk, copied); 1737 1738 TCP_CHECK_TIMER(sk); 1739 release_sock(sk); 1740 return copied; 1741 1742 out: 1743 TCP_CHECK_TIMER(sk); 1744 release_sock(sk); 1745 return err; 1746 1747 recv_urg: 1748 err = tcp_recv_urg(sk, msg, len, flags); 1749 goto out; 1750 } 1751 1752 void tcp_set_state(struct sock *sk, int state) 1753 { 1754 int oldstate = sk->sk_state; 1755 1756 switch (state) { 1757 case TCP_ESTABLISHED: 1758 if (oldstate != TCP_ESTABLISHED) 1759 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1760 break; 1761 1762 case TCP_CLOSE: 1763 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1764 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1765 1766 sk->sk_prot->unhash(sk); 1767 if (inet_csk(sk)->icsk_bind_hash && 1768 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1769 inet_put_port(sk); 1770 /* fall through */ 1771 default: 1772 if (oldstate == TCP_ESTABLISHED) 1773 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1774 } 1775 1776 /* Change state AFTER socket is unhashed to avoid closed 1777 * socket sitting in hash tables. 1778 */ 1779 sk->sk_state = state; 1780 1781 #ifdef STATE_TRACE 1782 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1783 #endif 1784 } 1785 EXPORT_SYMBOL_GPL(tcp_set_state); 1786 1787 /* 1788 * State processing on a close. This implements the state shift for 1789 * sending our FIN frame. Note that we only send a FIN for some 1790 * states. A shutdown() may have already sent the FIN, or we may be 1791 * closed. 1792 */ 1793 1794 static const unsigned char new_state[16] = { 1795 /* current state: new state: action: */ 1796 /* (Invalid) */ TCP_CLOSE, 1797 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1798 /* TCP_SYN_SENT */ TCP_CLOSE, 1799 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1800 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1801 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1802 /* TCP_TIME_WAIT */ TCP_CLOSE, 1803 /* TCP_CLOSE */ TCP_CLOSE, 1804 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1805 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1806 /* TCP_LISTEN */ TCP_CLOSE, 1807 /* TCP_CLOSING */ TCP_CLOSING, 1808 }; 1809 1810 static int tcp_close_state(struct sock *sk) 1811 { 1812 int next = (int)new_state[sk->sk_state]; 1813 int ns = next & TCP_STATE_MASK; 1814 1815 tcp_set_state(sk, ns); 1816 1817 return next & TCP_ACTION_FIN; 1818 } 1819 1820 /* 1821 * Shutdown the sending side of a connection. Much like close except 1822 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1823 */ 1824 1825 void tcp_shutdown(struct sock *sk, int how) 1826 { 1827 /* We need to grab some memory, and put together a FIN, 1828 * and then put it into the queue to be sent. 1829 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1830 */ 1831 if (!(how & SEND_SHUTDOWN)) 1832 return; 1833 1834 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1835 if ((1 << sk->sk_state) & 1836 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1837 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1838 /* Clear out any half completed packets. FIN if needed. */ 1839 if (tcp_close_state(sk)) 1840 tcp_send_fin(sk); 1841 } 1842 } 1843 1844 void tcp_close(struct sock *sk, long timeout) 1845 { 1846 struct sk_buff *skb; 1847 int data_was_unread = 0; 1848 int state; 1849 1850 lock_sock(sk); 1851 sk->sk_shutdown = SHUTDOWN_MASK; 1852 1853 if (sk->sk_state == TCP_LISTEN) { 1854 tcp_set_state(sk, TCP_CLOSE); 1855 1856 /* Special case. */ 1857 inet_csk_listen_stop(sk); 1858 1859 goto adjudge_to_death; 1860 } 1861 1862 /* We need to flush the recv. buffs. We do this only on the 1863 * descriptor close, not protocol-sourced closes, because the 1864 * reader process may not have drained the data yet! 1865 */ 1866 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 1867 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 1868 tcp_hdr(skb)->fin; 1869 data_was_unread += len; 1870 __kfree_skb(skb); 1871 } 1872 1873 sk_mem_reclaim(sk); 1874 1875 /* As outlined in RFC 2525, section 2.17, we send a RST here because 1876 * data was lost. To witness the awful effects of the old behavior of 1877 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 1878 * GET in an FTP client, suspend the process, wait for the client to 1879 * advertise a zero window, then kill -9 the FTP client, wheee... 1880 * Note: timeout is always zero in such a case. 1881 */ 1882 if (data_was_unread) { 1883 /* Unread data was tossed, zap the connection. */ 1884 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 1885 tcp_set_state(sk, TCP_CLOSE); 1886 tcp_send_active_reset(sk, sk->sk_allocation); 1887 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1888 /* Check zero linger _after_ checking for unread data. */ 1889 sk->sk_prot->disconnect(sk, 0); 1890 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 1891 } else if (tcp_close_state(sk)) { 1892 /* We FIN if the application ate all the data before 1893 * zapping the connection. 1894 */ 1895 1896 /* RED-PEN. Formally speaking, we have broken TCP state 1897 * machine. State transitions: 1898 * 1899 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 1900 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 1901 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 1902 * 1903 * are legal only when FIN has been sent (i.e. in window), 1904 * rather than queued out of window. Purists blame. 1905 * 1906 * F.e. "RFC state" is ESTABLISHED, 1907 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 1908 * 1909 * The visible declinations are that sometimes 1910 * we enter time-wait state, when it is not required really 1911 * (harmless), do not send active resets, when they are 1912 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 1913 * they look as CLOSING or LAST_ACK for Linux) 1914 * Probably, I missed some more holelets. 1915 * --ANK 1916 */ 1917 tcp_send_fin(sk); 1918 } 1919 1920 sk_stream_wait_close(sk, timeout); 1921 1922 adjudge_to_death: 1923 state = sk->sk_state; 1924 sock_hold(sk); 1925 sock_orphan(sk); 1926 1927 /* It is the last release_sock in its life. It will remove backlog. */ 1928 release_sock(sk); 1929 1930 1931 /* Now socket is owned by kernel and we acquire BH lock 1932 to finish close. No need to check for user refs. 1933 */ 1934 local_bh_disable(); 1935 bh_lock_sock(sk); 1936 WARN_ON(sock_owned_by_user(sk)); 1937 1938 percpu_counter_inc(sk->sk_prot->orphan_count); 1939 1940 /* Have we already been destroyed by a softirq or backlog? */ 1941 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 1942 goto out; 1943 1944 /* This is a (useful) BSD violating of the RFC. There is a 1945 * problem with TCP as specified in that the other end could 1946 * keep a socket open forever with no application left this end. 1947 * We use a 3 minute timeout (about the same as BSD) then kill 1948 * our end. If they send after that then tough - BUT: long enough 1949 * that we won't make the old 4*rto = almost no time - whoops 1950 * reset mistake. 1951 * 1952 * Nope, it was not mistake. It is really desired behaviour 1953 * f.e. on http servers, when such sockets are useless, but 1954 * consume significant resources. Let's do it with special 1955 * linger2 option. --ANK 1956 */ 1957 1958 if (sk->sk_state == TCP_FIN_WAIT2) { 1959 struct tcp_sock *tp = tcp_sk(sk); 1960 if (tp->linger2 < 0) { 1961 tcp_set_state(sk, TCP_CLOSE); 1962 tcp_send_active_reset(sk, GFP_ATOMIC); 1963 NET_INC_STATS_BH(sock_net(sk), 1964 LINUX_MIB_TCPABORTONLINGER); 1965 } else { 1966 const int tmo = tcp_fin_time(sk); 1967 1968 if (tmo > TCP_TIMEWAIT_LEN) { 1969 inet_csk_reset_keepalive_timer(sk, 1970 tmo - TCP_TIMEWAIT_LEN); 1971 } else { 1972 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 1973 goto out; 1974 } 1975 } 1976 } 1977 if (sk->sk_state != TCP_CLOSE) { 1978 int orphan_count = percpu_counter_read_positive( 1979 sk->sk_prot->orphan_count); 1980 1981 sk_mem_reclaim(sk); 1982 if (tcp_too_many_orphans(sk, orphan_count)) { 1983 if (net_ratelimit()) 1984 printk(KERN_INFO "TCP: too many of orphaned " 1985 "sockets\n"); 1986 tcp_set_state(sk, TCP_CLOSE); 1987 tcp_send_active_reset(sk, GFP_ATOMIC); 1988 NET_INC_STATS_BH(sock_net(sk), 1989 LINUX_MIB_TCPABORTONMEMORY); 1990 } 1991 } 1992 1993 if (sk->sk_state == TCP_CLOSE) 1994 inet_csk_destroy_sock(sk); 1995 /* Otherwise, socket is reprieved until protocol close. */ 1996 1997 out: 1998 bh_unlock_sock(sk); 1999 local_bh_enable(); 2000 sock_put(sk); 2001 } 2002 2003 /* These states need RST on ABORT according to RFC793 */ 2004 2005 static inline int tcp_need_reset(int state) 2006 { 2007 return (1 << state) & 2008 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2009 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2010 } 2011 2012 int tcp_disconnect(struct sock *sk, int flags) 2013 { 2014 struct inet_sock *inet = inet_sk(sk); 2015 struct inet_connection_sock *icsk = inet_csk(sk); 2016 struct tcp_sock *tp = tcp_sk(sk); 2017 int err = 0; 2018 int old_state = sk->sk_state; 2019 2020 if (old_state != TCP_CLOSE) 2021 tcp_set_state(sk, TCP_CLOSE); 2022 2023 /* ABORT function of RFC793 */ 2024 if (old_state == TCP_LISTEN) { 2025 inet_csk_listen_stop(sk); 2026 } else if (tcp_need_reset(old_state) || 2027 (tp->snd_nxt != tp->write_seq && 2028 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2029 /* The last check adjusts for discrepancy of Linux wrt. RFC 2030 * states 2031 */ 2032 tcp_send_active_reset(sk, gfp_any()); 2033 sk->sk_err = ECONNRESET; 2034 } else if (old_state == TCP_SYN_SENT) 2035 sk->sk_err = ECONNRESET; 2036 2037 tcp_clear_xmit_timers(sk); 2038 __skb_queue_purge(&sk->sk_receive_queue); 2039 tcp_write_queue_purge(sk); 2040 __skb_queue_purge(&tp->out_of_order_queue); 2041 #ifdef CONFIG_NET_DMA 2042 __skb_queue_purge(&sk->sk_async_wait_queue); 2043 #endif 2044 2045 inet->dport = 0; 2046 2047 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2048 inet_reset_saddr(sk); 2049 2050 sk->sk_shutdown = 0; 2051 sock_reset_flag(sk, SOCK_DONE); 2052 tp->srtt = 0; 2053 if ((tp->write_seq += tp->max_window + 2) == 0) 2054 tp->write_seq = 1; 2055 icsk->icsk_backoff = 0; 2056 tp->snd_cwnd = 2; 2057 icsk->icsk_probes_out = 0; 2058 tp->packets_out = 0; 2059 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2060 tp->snd_cwnd_cnt = 0; 2061 tp->bytes_acked = 0; 2062 tcp_set_ca_state(sk, TCP_CA_Open); 2063 tcp_clear_retrans(tp); 2064 inet_csk_delack_init(sk); 2065 tcp_init_send_head(sk); 2066 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2067 __sk_dst_reset(sk); 2068 2069 WARN_ON(inet->num && !icsk->icsk_bind_hash); 2070 2071 sk->sk_error_report(sk); 2072 return err; 2073 } 2074 2075 /* 2076 * Socket option code for TCP. 2077 */ 2078 static int do_tcp_setsockopt(struct sock *sk, int level, 2079 int optname, char __user *optval, unsigned int optlen) 2080 { 2081 struct tcp_sock *tp = tcp_sk(sk); 2082 struct inet_connection_sock *icsk = inet_csk(sk); 2083 int val; 2084 int err = 0; 2085 2086 /* This is a string value all the others are int's */ 2087 if (optname == TCP_CONGESTION) { 2088 char name[TCP_CA_NAME_MAX]; 2089 2090 if (optlen < 1) 2091 return -EINVAL; 2092 2093 val = strncpy_from_user(name, optval, 2094 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2095 if (val < 0) 2096 return -EFAULT; 2097 name[val] = 0; 2098 2099 lock_sock(sk); 2100 err = tcp_set_congestion_control(sk, name); 2101 release_sock(sk); 2102 return err; 2103 } 2104 2105 if (optlen < sizeof(int)) 2106 return -EINVAL; 2107 2108 if (get_user(val, (int __user *)optval)) 2109 return -EFAULT; 2110 2111 lock_sock(sk); 2112 2113 switch (optname) { 2114 case TCP_MAXSEG: 2115 /* Values greater than interface MTU won't take effect. However 2116 * at the point when this call is done we typically don't yet 2117 * know which interface is going to be used */ 2118 if (val < 8 || val > MAX_TCP_WINDOW) { 2119 err = -EINVAL; 2120 break; 2121 } 2122 tp->rx_opt.user_mss = val; 2123 break; 2124 2125 case TCP_NODELAY: 2126 if (val) { 2127 /* TCP_NODELAY is weaker than TCP_CORK, so that 2128 * this option on corked socket is remembered, but 2129 * it is not activated until cork is cleared. 2130 * 2131 * However, when TCP_NODELAY is set we make 2132 * an explicit push, which overrides even TCP_CORK 2133 * for currently queued segments. 2134 */ 2135 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2136 tcp_push_pending_frames(sk); 2137 } else { 2138 tp->nonagle &= ~TCP_NAGLE_OFF; 2139 } 2140 break; 2141 2142 case TCP_CORK: 2143 /* When set indicates to always queue non-full frames. 2144 * Later the user clears this option and we transmit 2145 * any pending partial frames in the queue. This is 2146 * meant to be used alongside sendfile() to get properly 2147 * filled frames when the user (for example) must write 2148 * out headers with a write() call first and then use 2149 * sendfile to send out the data parts. 2150 * 2151 * TCP_CORK can be set together with TCP_NODELAY and it is 2152 * stronger than TCP_NODELAY. 2153 */ 2154 if (val) { 2155 tp->nonagle |= TCP_NAGLE_CORK; 2156 } else { 2157 tp->nonagle &= ~TCP_NAGLE_CORK; 2158 if (tp->nonagle&TCP_NAGLE_OFF) 2159 tp->nonagle |= TCP_NAGLE_PUSH; 2160 tcp_push_pending_frames(sk); 2161 } 2162 break; 2163 2164 case TCP_KEEPIDLE: 2165 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2166 err = -EINVAL; 2167 else { 2168 tp->keepalive_time = val * HZ; 2169 if (sock_flag(sk, SOCK_KEEPOPEN) && 2170 !((1 << sk->sk_state) & 2171 (TCPF_CLOSE | TCPF_LISTEN))) { 2172 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp; 2173 if (tp->keepalive_time > elapsed) 2174 elapsed = tp->keepalive_time - elapsed; 2175 else 2176 elapsed = 0; 2177 inet_csk_reset_keepalive_timer(sk, elapsed); 2178 } 2179 } 2180 break; 2181 case TCP_KEEPINTVL: 2182 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2183 err = -EINVAL; 2184 else 2185 tp->keepalive_intvl = val * HZ; 2186 break; 2187 case TCP_KEEPCNT: 2188 if (val < 1 || val > MAX_TCP_KEEPCNT) 2189 err = -EINVAL; 2190 else 2191 tp->keepalive_probes = val; 2192 break; 2193 case TCP_SYNCNT: 2194 if (val < 1 || val > MAX_TCP_SYNCNT) 2195 err = -EINVAL; 2196 else 2197 icsk->icsk_syn_retries = val; 2198 break; 2199 2200 case TCP_LINGER2: 2201 if (val < 0) 2202 tp->linger2 = -1; 2203 else if (val > sysctl_tcp_fin_timeout / HZ) 2204 tp->linger2 = 0; 2205 else 2206 tp->linger2 = val * HZ; 2207 break; 2208 2209 case TCP_DEFER_ACCEPT: 2210 /* Translate value in seconds to number of retransmits */ 2211 icsk->icsk_accept_queue.rskq_defer_accept = 2212 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2213 TCP_RTO_MAX / HZ); 2214 break; 2215 2216 case TCP_WINDOW_CLAMP: 2217 if (!val) { 2218 if (sk->sk_state != TCP_CLOSE) { 2219 err = -EINVAL; 2220 break; 2221 } 2222 tp->window_clamp = 0; 2223 } else 2224 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2225 SOCK_MIN_RCVBUF / 2 : val; 2226 break; 2227 2228 case TCP_QUICKACK: 2229 if (!val) { 2230 icsk->icsk_ack.pingpong = 1; 2231 } else { 2232 icsk->icsk_ack.pingpong = 0; 2233 if ((1 << sk->sk_state) & 2234 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2235 inet_csk_ack_scheduled(sk)) { 2236 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2237 tcp_cleanup_rbuf(sk, 1); 2238 if (!(val & 1)) 2239 icsk->icsk_ack.pingpong = 1; 2240 } 2241 } 2242 break; 2243 2244 #ifdef CONFIG_TCP_MD5SIG 2245 case TCP_MD5SIG: 2246 /* Read the IP->Key mappings from userspace */ 2247 err = tp->af_specific->md5_parse(sk, optval, optlen); 2248 break; 2249 #endif 2250 2251 default: 2252 err = -ENOPROTOOPT; 2253 break; 2254 } 2255 2256 release_sock(sk); 2257 return err; 2258 } 2259 2260 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2261 unsigned int optlen) 2262 { 2263 struct inet_connection_sock *icsk = inet_csk(sk); 2264 2265 if (level != SOL_TCP) 2266 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2267 optval, optlen); 2268 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2269 } 2270 2271 #ifdef CONFIG_COMPAT 2272 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2273 char __user *optval, unsigned int optlen) 2274 { 2275 if (level != SOL_TCP) 2276 return inet_csk_compat_setsockopt(sk, level, optname, 2277 optval, optlen); 2278 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2279 } 2280 2281 EXPORT_SYMBOL(compat_tcp_setsockopt); 2282 #endif 2283 2284 /* Return information about state of tcp endpoint in API format. */ 2285 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2286 { 2287 struct tcp_sock *tp = tcp_sk(sk); 2288 const struct inet_connection_sock *icsk = inet_csk(sk); 2289 u32 now = tcp_time_stamp; 2290 2291 memset(info, 0, sizeof(*info)); 2292 2293 info->tcpi_state = sk->sk_state; 2294 info->tcpi_ca_state = icsk->icsk_ca_state; 2295 info->tcpi_retransmits = icsk->icsk_retransmits; 2296 info->tcpi_probes = icsk->icsk_probes_out; 2297 info->tcpi_backoff = icsk->icsk_backoff; 2298 2299 if (tp->rx_opt.tstamp_ok) 2300 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2301 if (tcp_is_sack(tp)) 2302 info->tcpi_options |= TCPI_OPT_SACK; 2303 if (tp->rx_opt.wscale_ok) { 2304 info->tcpi_options |= TCPI_OPT_WSCALE; 2305 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2306 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2307 } 2308 2309 if (tp->ecn_flags&TCP_ECN_OK) 2310 info->tcpi_options |= TCPI_OPT_ECN; 2311 2312 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2313 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2314 info->tcpi_snd_mss = tp->mss_cache; 2315 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2316 2317 if (sk->sk_state == TCP_LISTEN) { 2318 info->tcpi_unacked = sk->sk_ack_backlog; 2319 info->tcpi_sacked = sk->sk_max_ack_backlog; 2320 } else { 2321 info->tcpi_unacked = tp->packets_out; 2322 info->tcpi_sacked = tp->sacked_out; 2323 } 2324 info->tcpi_lost = tp->lost_out; 2325 info->tcpi_retrans = tp->retrans_out; 2326 info->tcpi_fackets = tp->fackets_out; 2327 2328 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2329 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2330 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2331 2332 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2333 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2334 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2335 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2336 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2337 info->tcpi_snd_cwnd = tp->snd_cwnd; 2338 info->tcpi_advmss = tp->advmss; 2339 info->tcpi_reordering = tp->reordering; 2340 2341 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2342 info->tcpi_rcv_space = tp->rcvq_space.space; 2343 2344 info->tcpi_total_retrans = tp->total_retrans; 2345 } 2346 2347 EXPORT_SYMBOL_GPL(tcp_get_info); 2348 2349 static int do_tcp_getsockopt(struct sock *sk, int level, 2350 int optname, char __user *optval, int __user *optlen) 2351 { 2352 struct inet_connection_sock *icsk = inet_csk(sk); 2353 struct tcp_sock *tp = tcp_sk(sk); 2354 int val, len; 2355 2356 if (get_user(len, optlen)) 2357 return -EFAULT; 2358 2359 len = min_t(unsigned int, len, sizeof(int)); 2360 2361 if (len < 0) 2362 return -EINVAL; 2363 2364 switch (optname) { 2365 case TCP_MAXSEG: 2366 val = tp->mss_cache; 2367 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2368 val = tp->rx_opt.user_mss; 2369 break; 2370 case TCP_NODELAY: 2371 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2372 break; 2373 case TCP_CORK: 2374 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2375 break; 2376 case TCP_KEEPIDLE: 2377 val = keepalive_time_when(tp) / HZ; 2378 break; 2379 case TCP_KEEPINTVL: 2380 val = keepalive_intvl_when(tp) / HZ; 2381 break; 2382 case TCP_KEEPCNT: 2383 val = keepalive_probes(tp); 2384 break; 2385 case TCP_SYNCNT: 2386 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2387 break; 2388 case TCP_LINGER2: 2389 val = tp->linger2; 2390 if (val >= 0) 2391 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2392 break; 2393 case TCP_DEFER_ACCEPT: 2394 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2395 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2396 break; 2397 case TCP_WINDOW_CLAMP: 2398 val = tp->window_clamp; 2399 break; 2400 case TCP_INFO: { 2401 struct tcp_info info; 2402 2403 if (get_user(len, optlen)) 2404 return -EFAULT; 2405 2406 tcp_get_info(sk, &info); 2407 2408 len = min_t(unsigned int, len, sizeof(info)); 2409 if (put_user(len, optlen)) 2410 return -EFAULT; 2411 if (copy_to_user(optval, &info, len)) 2412 return -EFAULT; 2413 return 0; 2414 } 2415 case TCP_QUICKACK: 2416 val = !icsk->icsk_ack.pingpong; 2417 break; 2418 2419 case TCP_CONGESTION: 2420 if (get_user(len, optlen)) 2421 return -EFAULT; 2422 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2423 if (put_user(len, optlen)) 2424 return -EFAULT; 2425 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2426 return -EFAULT; 2427 return 0; 2428 default: 2429 return -ENOPROTOOPT; 2430 } 2431 2432 if (put_user(len, optlen)) 2433 return -EFAULT; 2434 if (copy_to_user(optval, &val, len)) 2435 return -EFAULT; 2436 return 0; 2437 } 2438 2439 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2440 int __user *optlen) 2441 { 2442 struct inet_connection_sock *icsk = inet_csk(sk); 2443 2444 if (level != SOL_TCP) 2445 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2446 optval, optlen); 2447 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2448 } 2449 2450 #ifdef CONFIG_COMPAT 2451 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2452 char __user *optval, int __user *optlen) 2453 { 2454 if (level != SOL_TCP) 2455 return inet_csk_compat_getsockopt(sk, level, optname, 2456 optval, optlen); 2457 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2458 } 2459 2460 EXPORT_SYMBOL(compat_tcp_getsockopt); 2461 #endif 2462 2463 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features) 2464 { 2465 struct sk_buff *segs = ERR_PTR(-EINVAL); 2466 struct tcphdr *th; 2467 unsigned thlen; 2468 unsigned int seq; 2469 __be32 delta; 2470 unsigned int oldlen; 2471 unsigned int mss; 2472 2473 if (!pskb_may_pull(skb, sizeof(*th))) 2474 goto out; 2475 2476 th = tcp_hdr(skb); 2477 thlen = th->doff * 4; 2478 if (thlen < sizeof(*th)) 2479 goto out; 2480 2481 if (!pskb_may_pull(skb, thlen)) 2482 goto out; 2483 2484 oldlen = (u16)~skb->len; 2485 __skb_pull(skb, thlen); 2486 2487 mss = skb_shinfo(skb)->gso_size; 2488 if (unlikely(skb->len <= mss)) 2489 goto out; 2490 2491 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2492 /* Packet is from an untrusted source, reset gso_segs. */ 2493 int type = skb_shinfo(skb)->gso_type; 2494 2495 if (unlikely(type & 2496 ~(SKB_GSO_TCPV4 | 2497 SKB_GSO_DODGY | 2498 SKB_GSO_TCP_ECN | 2499 SKB_GSO_TCPV6 | 2500 0) || 2501 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2502 goto out; 2503 2504 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2505 2506 segs = NULL; 2507 goto out; 2508 } 2509 2510 segs = skb_segment(skb, features); 2511 if (IS_ERR(segs)) 2512 goto out; 2513 2514 delta = htonl(oldlen + (thlen + mss)); 2515 2516 skb = segs; 2517 th = tcp_hdr(skb); 2518 seq = ntohl(th->seq); 2519 2520 do { 2521 th->fin = th->psh = 0; 2522 2523 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2524 (__force u32)delta)); 2525 if (skb->ip_summed != CHECKSUM_PARTIAL) 2526 th->check = 2527 csum_fold(csum_partial(skb_transport_header(skb), 2528 thlen, skb->csum)); 2529 2530 seq += mss; 2531 skb = skb->next; 2532 th = tcp_hdr(skb); 2533 2534 th->seq = htonl(seq); 2535 th->cwr = 0; 2536 } while (skb->next); 2537 2538 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2539 skb->data_len); 2540 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2541 (__force u32)delta)); 2542 if (skb->ip_summed != CHECKSUM_PARTIAL) 2543 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2544 thlen, skb->csum)); 2545 2546 out: 2547 return segs; 2548 } 2549 EXPORT_SYMBOL(tcp_tso_segment); 2550 2551 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2552 { 2553 struct sk_buff **pp = NULL; 2554 struct sk_buff *p; 2555 struct tcphdr *th; 2556 struct tcphdr *th2; 2557 unsigned int len; 2558 unsigned int thlen; 2559 unsigned int flags; 2560 unsigned int mss = 1; 2561 unsigned int hlen; 2562 unsigned int off; 2563 int flush = 1; 2564 int i; 2565 2566 off = skb_gro_offset(skb); 2567 hlen = off + sizeof(*th); 2568 th = skb_gro_header_fast(skb, off); 2569 if (skb_gro_header_hard(skb, hlen)) { 2570 th = skb_gro_header_slow(skb, hlen, off); 2571 if (unlikely(!th)) 2572 goto out; 2573 } 2574 2575 thlen = th->doff * 4; 2576 if (thlen < sizeof(*th)) 2577 goto out; 2578 2579 hlen = off + thlen; 2580 if (skb_gro_header_hard(skb, hlen)) { 2581 th = skb_gro_header_slow(skb, hlen, off); 2582 if (unlikely(!th)) 2583 goto out; 2584 } 2585 2586 skb_gro_pull(skb, thlen); 2587 2588 len = skb_gro_len(skb); 2589 flags = tcp_flag_word(th); 2590 2591 for (; (p = *head); head = &p->next) { 2592 if (!NAPI_GRO_CB(p)->same_flow) 2593 continue; 2594 2595 th2 = tcp_hdr(p); 2596 2597 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 2598 NAPI_GRO_CB(p)->same_flow = 0; 2599 continue; 2600 } 2601 2602 goto found; 2603 } 2604 2605 goto out_check_final; 2606 2607 found: 2608 flush = NAPI_GRO_CB(p)->flush; 2609 flush |= flags & TCP_FLAG_CWR; 2610 flush |= (flags ^ tcp_flag_word(th2)) & 2611 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH); 2612 flush |= th->ack_seq ^ th2->ack_seq; 2613 for (i = sizeof(*th); i < thlen; i += 4) 2614 flush |= *(u32 *)((u8 *)th + i) ^ 2615 *(u32 *)((u8 *)th2 + i); 2616 2617 mss = skb_shinfo(p)->gso_size; 2618 2619 flush |= (len - 1) >= mss; 2620 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 2621 2622 if (flush || skb_gro_receive(head, skb)) { 2623 mss = 1; 2624 goto out_check_final; 2625 } 2626 2627 p = *head; 2628 th2 = tcp_hdr(p); 2629 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 2630 2631 out_check_final: 2632 flush = len < mss; 2633 flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST | 2634 TCP_FLAG_SYN | TCP_FLAG_FIN); 2635 2636 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 2637 pp = head; 2638 2639 out: 2640 NAPI_GRO_CB(skb)->flush |= flush; 2641 2642 return pp; 2643 } 2644 EXPORT_SYMBOL(tcp_gro_receive); 2645 2646 int tcp_gro_complete(struct sk_buff *skb) 2647 { 2648 struct tcphdr *th = tcp_hdr(skb); 2649 2650 skb->csum_start = skb_transport_header(skb) - skb->head; 2651 skb->csum_offset = offsetof(struct tcphdr, check); 2652 skb->ip_summed = CHECKSUM_PARTIAL; 2653 2654 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 2655 2656 if (th->cwr) 2657 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 2658 2659 return 0; 2660 } 2661 EXPORT_SYMBOL(tcp_gro_complete); 2662 2663 #ifdef CONFIG_TCP_MD5SIG 2664 static unsigned long tcp_md5sig_users; 2665 static struct tcp_md5sig_pool **tcp_md5sig_pool; 2666 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 2667 2668 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool) 2669 { 2670 int cpu; 2671 for_each_possible_cpu(cpu) { 2672 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu); 2673 if (p) { 2674 if (p->md5_desc.tfm) 2675 crypto_free_hash(p->md5_desc.tfm); 2676 kfree(p); 2677 p = NULL; 2678 } 2679 } 2680 free_percpu(pool); 2681 } 2682 2683 void tcp_free_md5sig_pool(void) 2684 { 2685 struct tcp_md5sig_pool **pool = NULL; 2686 2687 spin_lock_bh(&tcp_md5sig_pool_lock); 2688 if (--tcp_md5sig_users == 0) { 2689 pool = tcp_md5sig_pool; 2690 tcp_md5sig_pool = NULL; 2691 } 2692 spin_unlock_bh(&tcp_md5sig_pool_lock); 2693 if (pool) 2694 __tcp_free_md5sig_pool(pool); 2695 } 2696 2697 EXPORT_SYMBOL(tcp_free_md5sig_pool); 2698 2699 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(struct sock *sk) 2700 { 2701 int cpu; 2702 struct tcp_md5sig_pool **pool; 2703 2704 pool = alloc_percpu(struct tcp_md5sig_pool *); 2705 if (!pool) 2706 return NULL; 2707 2708 for_each_possible_cpu(cpu) { 2709 struct tcp_md5sig_pool *p; 2710 struct crypto_hash *hash; 2711 2712 p = kzalloc(sizeof(*p), sk->sk_allocation); 2713 if (!p) 2714 goto out_free; 2715 *per_cpu_ptr(pool, cpu) = p; 2716 2717 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2718 if (!hash || IS_ERR(hash)) 2719 goto out_free; 2720 2721 p->md5_desc.tfm = hash; 2722 } 2723 return pool; 2724 out_free: 2725 __tcp_free_md5sig_pool(pool); 2726 return NULL; 2727 } 2728 2729 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(struct sock *sk) 2730 { 2731 struct tcp_md5sig_pool **pool; 2732 int alloc = 0; 2733 2734 retry: 2735 spin_lock_bh(&tcp_md5sig_pool_lock); 2736 pool = tcp_md5sig_pool; 2737 if (tcp_md5sig_users++ == 0) { 2738 alloc = 1; 2739 spin_unlock_bh(&tcp_md5sig_pool_lock); 2740 } else if (!pool) { 2741 tcp_md5sig_users--; 2742 spin_unlock_bh(&tcp_md5sig_pool_lock); 2743 cpu_relax(); 2744 goto retry; 2745 } else 2746 spin_unlock_bh(&tcp_md5sig_pool_lock); 2747 2748 if (alloc) { 2749 /* we cannot hold spinlock here because this may sleep. */ 2750 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool(sk); 2751 spin_lock_bh(&tcp_md5sig_pool_lock); 2752 if (!p) { 2753 tcp_md5sig_users--; 2754 spin_unlock_bh(&tcp_md5sig_pool_lock); 2755 return NULL; 2756 } 2757 pool = tcp_md5sig_pool; 2758 if (pool) { 2759 /* oops, it has already been assigned. */ 2760 spin_unlock_bh(&tcp_md5sig_pool_lock); 2761 __tcp_free_md5sig_pool(p); 2762 } else { 2763 tcp_md5sig_pool = pool = p; 2764 spin_unlock_bh(&tcp_md5sig_pool_lock); 2765 } 2766 } 2767 return pool; 2768 } 2769 2770 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2771 2772 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu) 2773 { 2774 struct tcp_md5sig_pool **p; 2775 spin_lock_bh(&tcp_md5sig_pool_lock); 2776 p = tcp_md5sig_pool; 2777 if (p) 2778 tcp_md5sig_users++; 2779 spin_unlock_bh(&tcp_md5sig_pool_lock); 2780 return (p ? *per_cpu_ptr(p, cpu) : NULL); 2781 } 2782 2783 EXPORT_SYMBOL(__tcp_get_md5sig_pool); 2784 2785 void __tcp_put_md5sig_pool(void) 2786 { 2787 tcp_free_md5sig_pool(); 2788 } 2789 2790 EXPORT_SYMBOL(__tcp_put_md5sig_pool); 2791 2792 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2793 struct tcphdr *th) 2794 { 2795 struct scatterlist sg; 2796 int err; 2797 2798 __sum16 old_checksum = th->check; 2799 th->check = 0; 2800 /* options aren't included in the hash */ 2801 sg_init_one(&sg, th, sizeof(struct tcphdr)); 2802 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr)); 2803 th->check = old_checksum; 2804 return err; 2805 } 2806 2807 EXPORT_SYMBOL(tcp_md5_hash_header); 2808 2809 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 2810 struct sk_buff *skb, unsigned header_len) 2811 { 2812 struct scatterlist sg; 2813 const struct tcphdr *tp = tcp_hdr(skb); 2814 struct hash_desc *desc = &hp->md5_desc; 2815 unsigned i; 2816 const unsigned head_data_len = skb_headlen(skb) > header_len ? 2817 skb_headlen(skb) - header_len : 0; 2818 const struct skb_shared_info *shi = skb_shinfo(skb); 2819 2820 sg_init_table(&sg, 1); 2821 2822 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 2823 if (crypto_hash_update(desc, &sg, head_data_len)) 2824 return 1; 2825 2826 for (i = 0; i < shi->nr_frags; ++i) { 2827 const struct skb_frag_struct *f = &shi->frags[i]; 2828 sg_set_page(&sg, f->page, f->size, f->page_offset); 2829 if (crypto_hash_update(desc, &sg, f->size)) 2830 return 1; 2831 } 2832 2833 return 0; 2834 } 2835 2836 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 2837 2838 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key) 2839 { 2840 struct scatterlist sg; 2841 2842 sg_init_one(&sg, key->key, key->keylen); 2843 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 2844 } 2845 2846 EXPORT_SYMBOL(tcp_md5_hash_key); 2847 2848 #endif 2849 2850 void tcp_done(struct sock *sk) 2851 { 2852 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 2853 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 2854 2855 tcp_set_state(sk, TCP_CLOSE); 2856 tcp_clear_xmit_timers(sk); 2857 2858 sk->sk_shutdown = SHUTDOWN_MASK; 2859 2860 if (!sock_flag(sk, SOCK_DEAD)) 2861 sk->sk_state_change(sk); 2862 else 2863 inet_csk_destroy_sock(sk); 2864 } 2865 EXPORT_SYMBOL_GPL(tcp_done); 2866 2867 extern struct tcp_congestion_ops tcp_reno; 2868 2869 static __initdata unsigned long thash_entries; 2870 static int __init set_thash_entries(char *str) 2871 { 2872 if (!str) 2873 return 0; 2874 thash_entries = simple_strtoul(str, &str, 0); 2875 return 1; 2876 } 2877 __setup("thash_entries=", set_thash_entries); 2878 2879 void __init tcp_init(void) 2880 { 2881 struct sk_buff *skb = NULL; 2882 unsigned long nr_pages, limit; 2883 int order, i, max_share; 2884 2885 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 2886 2887 percpu_counter_init(&tcp_sockets_allocated, 0); 2888 percpu_counter_init(&tcp_orphan_count, 0); 2889 tcp_hashinfo.bind_bucket_cachep = 2890 kmem_cache_create("tcp_bind_bucket", 2891 sizeof(struct inet_bind_bucket), 0, 2892 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2893 2894 /* Size and allocate the main established and bind bucket 2895 * hash tables. 2896 * 2897 * The methodology is similar to that of the buffer cache. 2898 */ 2899 tcp_hashinfo.ehash = 2900 alloc_large_system_hash("TCP established", 2901 sizeof(struct inet_ehash_bucket), 2902 thash_entries, 2903 (totalram_pages >= 128 * 1024) ? 2904 13 : 15, 2905 0, 2906 &tcp_hashinfo.ehash_size, 2907 NULL, 2908 thash_entries ? 0 : 512 * 1024); 2909 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size; 2910 for (i = 0; i < tcp_hashinfo.ehash_size; i++) { 2911 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 2912 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 2913 } 2914 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 2915 panic("TCP: failed to alloc ehash_locks"); 2916 tcp_hashinfo.bhash = 2917 alloc_large_system_hash("TCP bind", 2918 sizeof(struct inet_bind_hashbucket), 2919 tcp_hashinfo.ehash_size, 2920 (totalram_pages >= 128 * 1024) ? 2921 13 : 15, 2922 0, 2923 &tcp_hashinfo.bhash_size, 2924 NULL, 2925 64 * 1024); 2926 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size; 2927 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 2928 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 2929 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 2930 } 2931 2932 /* Try to be a bit smarter and adjust defaults depending 2933 * on available memory. 2934 */ 2935 for (order = 0; ((1 << order) << PAGE_SHIFT) < 2936 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket)); 2937 order++) 2938 ; 2939 if (order >= 4) { 2940 tcp_death_row.sysctl_max_tw_buckets = 180000; 2941 sysctl_tcp_max_orphans = 4096 << (order - 4); 2942 sysctl_max_syn_backlog = 1024; 2943 } else if (order < 3) { 2944 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order); 2945 sysctl_tcp_max_orphans >>= (3 - order); 2946 sysctl_max_syn_backlog = 128; 2947 } 2948 2949 /* Set the pressure threshold to be a fraction of global memory that 2950 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of 2951 * memory, with a floor of 128 pages. 2952 */ 2953 nr_pages = totalram_pages - totalhigh_pages; 2954 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT); 2955 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11); 2956 limit = max(limit, 128UL); 2957 sysctl_tcp_mem[0] = limit / 4 * 3; 2958 sysctl_tcp_mem[1] = limit; 2959 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 2960 2961 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 2962 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7); 2963 max_share = min(4UL*1024*1024, limit); 2964 2965 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 2966 sysctl_tcp_wmem[1] = 16*1024; 2967 sysctl_tcp_wmem[2] = max(64*1024, max_share); 2968 2969 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 2970 sysctl_tcp_rmem[1] = 87380; 2971 sysctl_tcp_rmem[2] = max(87380, max_share); 2972 2973 printk(KERN_INFO "TCP: Hash tables configured " 2974 "(established %d bind %d)\n", 2975 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size); 2976 2977 tcp_register_congestion_control(&tcp_reno); 2978 } 2979 2980 EXPORT_SYMBOL(tcp_close); 2981 EXPORT_SYMBOL(tcp_disconnect); 2982 EXPORT_SYMBOL(tcp_getsockopt); 2983 EXPORT_SYMBOL(tcp_ioctl); 2984 EXPORT_SYMBOL(tcp_poll); 2985 EXPORT_SYMBOL(tcp_read_sock); 2986 EXPORT_SYMBOL(tcp_recvmsg); 2987 EXPORT_SYMBOL(tcp_sendmsg); 2988 EXPORT_SYMBOL(tcp_splice_read); 2989 EXPORT_SYMBOL(tcp_sendpage); 2990 EXPORT_SYMBOL(tcp_setsockopt); 2991 EXPORT_SYMBOL(tcp_shutdown); 2992