xref: /linux/net/ipv4/tcp.c (revision d59239f8a4000e080e5fc606d6e709fad4028fb7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 
288 /* Track pending CMSGs. */
289 enum {
290 	TCP_CMSG_INQ = 1,
291 	TCP_CMSG_TS = 2
292 };
293 
294 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
295 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
296 
297 DEFINE_PER_CPU(u32, tcp_tw_isn);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
299 
300 long sysctl_tcp_mem[3] __read_mostly;
301 EXPORT_SYMBOL(sysctl_tcp_mem);
302 
303 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
304 EXPORT_SYMBOL(tcp_memory_allocated);
305 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
306 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
307 
308 #if IS_ENABLED(CONFIG_SMC)
309 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
310 EXPORT_SYMBOL(tcp_have_smc);
311 #endif
312 
313 /*
314  * Current number of TCP sockets.
315  */
316 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
317 EXPORT_SYMBOL(tcp_sockets_allocated);
318 
319 /*
320  * TCP splice context
321  */
322 struct tcp_splice_state {
323 	struct pipe_inode_info *pipe;
324 	size_t len;
325 	unsigned int flags;
326 };
327 
328 /*
329  * Pressure flag: try to collapse.
330  * Technical note: it is used by multiple contexts non atomically.
331  * All the __sk_mem_schedule() is of this nature: accounting
332  * is strict, actions are advisory and have some latency.
333  */
334 unsigned long tcp_memory_pressure __read_mostly;
335 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
336 
337 void tcp_enter_memory_pressure(struct sock *sk)
338 {
339 	unsigned long val;
340 
341 	if (READ_ONCE(tcp_memory_pressure))
342 		return;
343 	val = jiffies;
344 
345 	if (!val)
346 		val--;
347 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
348 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
349 }
350 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
351 
352 void tcp_leave_memory_pressure(struct sock *sk)
353 {
354 	unsigned long val;
355 
356 	if (!READ_ONCE(tcp_memory_pressure))
357 		return;
358 	val = xchg(&tcp_memory_pressure, 0);
359 	if (val)
360 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
361 			      jiffies_to_msecs(jiffies - val));
362 }
363 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
364 
365 /* Convert seconds to retransmits based on initial and max timeout */
366 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
367 {
368 	u8 res = 0;
369 
370 	if (seconds > 0) {
371 		int period = timeout;
372 
373 		res = 1;
374 		while (seconds > period && res < 255) {
375 			res++;
376 			timeout <<= 1;
377 			if (timeout > rto_max)
378 				timeout = rto_max;
379 			period += timeout;
380 		}
381 	}
382 	return res;
383 }
384 
385 /* Convert retransmits to seconds based on initial and max timeout */
386 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
387 {
388 	int period = 0;
389 
390 	if (retrans > 0) {
391 		period = timeout;
392 		while (--retrans) {
393 			timeout <<= 1;
394 			if (timeout > rto_max)
395 				timeout = rto_max;
396 			period += timeout;
397 		}
398 	}
399 	return period;
400 }
401 
402 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
403 {
404 	u32 rate = READ_ONCE(tp->rate_delivered);
405 	u32 intv = READ_ONCE(tp->rate_interval_us);
406 	u64 rate64 = 0;
407 
408 	if (rate && intv) {
409 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
410 		do_div(rate64, intv);
411 	}
412 	return rate64;
413 }
414 
415 /* Address-family independent initialization for a tcp_sock.
416  *
417  * NOTE: A lot of things set to zero explicitly by call to
418  *       sk_alloc() so need not be done here.
419  */
420 void tcp_init_sock(struct sock *sk)
421 {
422 	struct inet_connection_sock *icsk = inet_csk(sk);
423 	struct tcp_sock *tp = tcp_sk(sk);
424 	int rto_min_us;
425 
426 	tp->out_of_order_queue = RB_ROOT;
427 	sk->tcp_rtx_queue = RB_ROOT;
428 	tcp_init_xmit_timers(sk);
429 	INIT_LIST_HEAD(&tp->tsq_node);
430 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
431 
432 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
433 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
434 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
435 	icsk->icsk_delack_max = TCP_DELACK_MAX;
436 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
437 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
438 
439 	/* So many TCP implementations out there (incorrectly) count the
440 	 * initial SYN frame in their delayed-ACK and congestion control
441 	 * algorithms that we must have the following bandaid to talk
442 	 * efficiently to them.  -DaveM
443 	 */
444 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
445 
446 	/* There's a bubble in the pipe until at least the first ACK. */
447 	tp->app_limited = ~0U;
448 	tp->rate_app_limited = 1;
449 
450 	/* See draft-stevens-tcpca-spec-01 for discussion of the
451 	 * initialization of these values.
452 	 */
453 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
454 	tp->snd_cwnd_clamp = ~0;
455 	tp->mss_cache = TCP_MSS_DEFAULT;
456 
457 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
458 	tcp_assign_congestion_control(sk);
459 
460 	tp->tsoffset = 0;
461 	tp->rack.reo_wnd_steps = 1;
462 
463 	sk->sk_write_space = sk_stream_write_space;
464 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
465 
466 	icsk->icsk_sync_mss = tcp_sync_mss;
467 
468 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
469 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
470 	tcp_scaling_ratio_init(sk);
471 
472 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
473 	sk_sockets_allocated_inc(sk);
474 }
475 EXPORT_SYMBOL(tcp_init_sock);
476 
477 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
478 {
479 	struct sk_buff *skb = tcp_write_queue_tail(sk);
480 
481 	if (tsflags && skb) {
482 		struct skb_shared_info *shinfo = skb_shinfo(skb);
483 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
484 
485 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
486 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
487 			tcb->txstamp_ack = 1;
488 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
489 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
490 	}
491 }
492 
493 static bool tcp_stream_is_readable(struct sock *sk, int target)
494 {
495 	if (tcp_epollin_ready(sk, target))
496 		return true;
497 	return sk_is_readable(sk);
498 }
499 
500 /*
501  *	Wait for a TCP event.
502  *
503  *	Note that we don't need to lock the socket, as the upper poll layers
504  *	take care of normal races (between the test and the event) and we don't
505  *	go look at any of the socket buffers directly.
506  */
507 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
508 {
509 	__poll_t mask;
510 	struct sock *sk = sock->sk;
511 	const struct tcp_sock *tp = tcp_sk(sk);
512 	u8 shutdown;
513 	int state;
514 
515 	sock_poll_wait(file, sock, wait);
516 
517 	state = inet_sk_state_load(sk);
518 	if (state == TCP_LISTEN)
519 		return inet_csk_listen_poll(sk);
520 
521 	/* Socket is not locked. We are protected from async events
522 	 * by poll logic and correct handling of state changes
523 	 * made by other threads is impossible in any case.
524 	 */
525 
526 	mask = 0;
527 
528 	/*
529 	 * EPOLLHUP is certainly not done right. But poll() doesn't
530 	 * have a notion of HUP in just one direction, and for a
531 	 * socket the read side is more interesting.
532 	 *
533 	 * Some poll() documentation says that EPOLLHUP is incompatible
534 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
535 	 * all. But careful, it tends to be safer to return too many
536 	 * bits than too few, and you can easily break real applications
537 	 * if you don't tell them that something has hung up!
538 	 *
539 	 * Check-me.
540 	 *
541 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
542 	 * our fs/select.c). It means that after we received EOF,
543 	 * poll always returns immediately, making impossible poll() on write()
544 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
545 	 * if and only if shutdown has been made in both directions.
546 	 * Actually, it is interesting to look how Solaris and DUX
547 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
548 	 * then we could set it on SND_SHUTDOWN. BTW examples given
549 	 * in Stevens' books assume exactly this behaviour, it explains
550 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
551 	 *
552 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
553 	 * blocking on fresh not-connected or disconnected socket. --ANK
554 	 */
555 	shutdown = READ_ONCE(sk->sk_shutdown);
556 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
557 		mask |= EPOLLHUP;
558 	if (shutdown & RCV_SHUTDOWN)
559 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
560 
561 	/* Connected or passive Fast Open socket? */
562 	if (state != TCP_SYN_SENT &&
563 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
564 		int target = sock_rcvlowat(sk, 0, INT_MAX);
565 		u16 urg_data = READ_ONCE(tp->urg_data);
566 
567 		if (unlikely(urg_data) &&
568 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
569 		    !sock_flag(sk, SOCK_URGINLINE))
570 			target++;
571 
572 		if (tcp_stream_is_readable(sk, target))
573 			mask |= EPOLLIN | EPOLLRDNORM;
574 
575 		if (!(shutdown & SEND_SHUTDOWN)) {
576 			if (__sk_stream_is_writeable(sk, 1)) {
577 				mask |= EPOLLOUT | EPOLLWRNORM;
578 			} else {  /* send SIGIO later */
579 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
580 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
581 
582 				/* Race breaker. If space is freed after
583 				 * wspace test but before the flags are set,
584 				 * IO signal will be lost. Memory barrier
585 				 * pairs with the input side.
586 				 */
587 				smp_mb__after_atomic();
588 				if (__sk_stream_is_writeable(sk, 1))
589 					mask |= EPOLLOUT | EPOLLWRNORM;
590 			}
591 		} else
592 			mask |= EPOLLOUT | EPOLLWRNORM;
593 
594 		if (urg_data & TCP_URG_VALID)
595 			mask |= EPOLLPRI;
596 	} else if (state == TCP_SYN_SENT &&
597 		   inet_test_bit(DEFER_CONNECT, sk)) {
598 		/* Active TCP fastopen socket with defer_connect
599 		 * Return EPOLLOUT so application can call write()
600 		 * in order for kernel to generate SYN+data
601 		 */
602 		mask |= EPOLLOUT | EPOLLWRNORM;
603 	}
604 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
605 	smp_rmb();
606 	if (READ_ONCE(sk->sk_err) ||
607 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
608 		mask |= EPOLLERR;
609 
610 	return mask;
611 }
612 EXPORT_SYMBOL(tcp_poll);
613 
614 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
615 {
616 	struct tcp_sock *tp = tcp_sk(sk);
617 	int answ;
618 	bool slow;
619 
620 	switch (cmd) {
621 	case SIOCINQ:
622 		if (sk->sk_state == TCP_LISTEN)
623 			return -EINVAL;
624 
625 		slow = lock_sock_fast(sk);
626 		answ = tcp_inq(sk);
627 		unlock_sock_fast(sk, slow);
628 		break;
629 	case SIOCATMARK:
630 		answ = READ_ONCE(tp->urg_data) &&
631 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
632 		break;
633 	case SIOCOUTQ:
634 		if (sk->sk_state == TCP_LISTEN)
635 			return -EINVAL;
636 
637 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
638 			answ = 0;
639 		else
640 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
641 		break;
642 	case SIOCOUTQNSD:
643 		if (sk->sk_state == TCP_LISTEN)
644 			return -EINVAL;
645 
646 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
647 			answ = 0;
648 		else
649 			answ = READ_ONCE(tp->write_seq) -
650 			       READ_ONCE(tp->snd_nxt);
651 		break;
652 	default:
653 		return -ENOIOCTLCMD;
654 	}
655 
656 	*karg = answ;
657 	return 0;
658 }
659 EXPORT_SYMBOL(tcp_ioctl);
660 
661 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
662 {
663 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
664 	tp->pushed_seq = tp->write_seq;
665 }
666 
667 static inline bool forced_push(const struct tcp_sock *tp)
668 {
669 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
670 }
671 
672 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
673 {
674 	struct tcp_sock *tp = tcp_sk(sk);
675 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
676 
677 	tcb->seq     = tcb->end_seq = tp->write_seq;
678 	tcb->tcp_flags = TCPHDR_ACK;
679 	__skb_header_release(skb);
680 	tcp_add_write_queue_tail(sk, skb);
681 	sk_wmem_queued_add(sk, skb->truesize);
682 	sk_mem_charge(sk, skb->truesize);
683 	if (tp->nonagle & TCP_NAGLE_PUSH)
684 		tp->nonagle &= ~TCP_NAGLE_PUSH;
685 
686 	tcp_slow_start_after_idle_check(sk);
687 }
688 
689 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
690 {
691 	if (flags & MSG_OOB)
692 		tp->snd_up = tp->write_seq;
693 }
694 
695 /* If a not yet filled skb is pushed, do not send it if
696  * we have data packets in Qdisc or NIC queues :
697  * Because TX completion will happen shortly, it gives a chance
698  * to coalesce future sendmsg() payload into this skb, without
699  * need for a timer, and with no latency trade off.
700  * As packets containing data payload have a bigger truesize
701  * than pure acks (dataless) packets, the last checks prevent
702  * autocorking if we only have an ACK in Qdisc/NIC queues,
703  * or if TX completion was delayed after we processed ACK packet.
704  */
705 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
706 				int size_goal)
707 {
708 	return skb->len < size_goal &&
709 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
710 	       !tcp_rtx_queue_empty(sk) &&
711 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
712 	       tcp_skb_can_collapse_to(skb);
713 }
714 
715 void tcp_push(struct sock *sk, int flags, int mss_now,
716 	      int nonagle, int size_goal)
717 {
718 	struct tcp_sock *tp = tcp_sk(sk);
719 	struct sk_buff *skb;
720 
721 	skb = tcp_write_queue_tail(sk);
722 	if (!skb)
723 		return;
724 	if (!(flags & MSG_MORE) || forced_push(tp))
725 		tcp_mark_push(tp, skb);
726 
727 	tcp_mark_urg(tp, flags);
728 
729 	if (tcp_should_autocork(sk, skb, size_goal)) {
730 
731 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
732 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
733 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
734 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
735 			smp_mb__after_atomic();
736 		}
737 		/* It is possible TX completion already happened
738 		 * before we set TSQ_THROTTLED.
739 		 */
740 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
741 			return;
742 	}
743 
744 	if (flags & MSG_MORE)
745 		nonagle = TCP_NAGLE_CORK;
746 
747 	__tcp_push_pending_frames(sk, mss_now, nonagle);
748 }
749 
750 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
751 				unsigned int offset, size_t len)
752 {
753 	struct tcp_splice_state *tss = rd_desc->arg.data;
754 	int ret;
755 
756 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
757 			      min(rd_desc->count, len), tss->flags);
758 	if (ret > 0)
759 		rd_desc->count -= ret;
760 	return ret;
761 }
762 
763 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
764 {
765 	/* Store TCP splice context information in read_descriptor_t. */
766 	read_descriptor_t rd_desc = {
767 		.arg.data = tss,
768 		.count	  = tss->len,
769 	};
770 
771 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
772 }
773 
774 /**
775  *  tcp_splice_read - splice data from TCP socket to a pipe
776  * @sock:	socket to splice from
777  * @ppos:	position (not valid)
778  * @pipe:	pipe to splice to
779  * @len:	number of bytes to splice
780  * @flags:	splice modifier flags
781  *
782  * Description:
783  *    Will read pages from given socket and fill them into a pipe.
784  *
785  **/
786 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
787 			struct pipe_inode_info *pipe, size_t len,
788 			unsigned int flags)
789 {
790 	struct sock *sk = sock->sk;
791 	struct tcp_splice_state tss = {
792 		.pipe = pipe,
793 		.len = len,
794 		.flags = flags,
795 	};
796 	long timeo;
797 	ssize_t spliced;
798 	int ret;
799 
800 	sock_rps_record_flow(sk);
801 	/*
802 	 * We can't seek on a socket input
803 	 */
804 	if (unlikely(*ppos))
805 		return -ESPIPE;
806 
807 	ret = spliced = 0;
808 
809 	lock_sock(sk);
810 
811 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
812 	while (tss.len) {
813 		ret = __tcp_splice_read(sk, &tss);
814 		if (ret < 0)
815 			break;
816 		else if (!ret) {
817 			if (spliced)
818 				break;
819 			if (sock_flag(sk, SOCK_DONE))
820 				break;
821 			if (sk->sk_err) {
822 				ret = sock_error(sk);
823 				break;
824 			}
825 			if (sk->sk_shutdown & RCV_SHUTDOWN)
826 				break;
827 			if (sk->sk_state == TCP_CLOSE) {
828 				/*
829 				 * This occurs when user tries to read
830 				 * from never connected socket.
831 				 */
832 				ret = -ENOTCONN;
833 				break;
834 			}
835 			if (!timeo) {
836 				ret = -EAGAIN;
837 				break;
838 			}
839 			/* if __tcp_splice_read() got nothing while we have
840 			 * an skb in receive queue, we do not want to loop.
841 			 * This might happen with URG data.
842 			 */
843 			if (!skb_queue_empty(&sk->sk_receive_queue))
844 				break;
845 			ret = sk_wait_data(sk, &timeo, NULL);
846 			if (ret < 0)
847 				break;
848 			if (signal_pending(current)) {
849 				ret = sock_intr_errno(timeo);
850 				break;
851 			}
852 			continue;
853 		}
854 		tss.len -= ret;
855 		spliced += ret;
856 
857 		if (!tss.len || !timeo)
858 			break;
859 		release_sock(sk);
860 		lock_sock(sk);
861 
862 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
863 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
864 		    signal_pending(current))
865 			break;
866 	}
867 
868 	release_sock(sk);
869 
870 	if (spliced)
871 		return spliced;
872 
873 	return ret;
874 }
875 EXPORT_SYMBOL(tcp_splice_read);
876 
877 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
878 				     bool force_schedule)
879 {
880 	struct sk_buff *skb;
881 
882 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
883 	if (likely(skb)) {
884 		bool mem_scheduled;
885 
886 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
887 		if (force_schedule) {
888 			mem_scheduled = true;
889 			sk_forced_mem_schedule(sk, skb->truesize);
890 		} else {
891 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
892 		}
893 		if (likely(mem_scheduled)) {
894 			skb_reserve(skb, MAX_TCP_HEADER);
895 			skb->ip_summed = CHECKSUM_PARTIAL;
896 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
897 			return skb;
898 		}
899 		__kfree_skb(skb);
900 	} else {
901 		sk->sk_prot->enter_memory_pressure(sk);
902 		sk_stream_moderate_sndbuf(sk);
903 	}
904 	return NULL;
905 }
906 
907 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
908 				       int large_allowed)
909 {
910 	struct tcp_sock *tp = tcp_sk(sk);
911 	u32 new_size_goal, size_goal;
912 
913 	if (!large_allowed)
914 		return mss_now;
915 
916 	/* Note : tcp_tso_autosize() will eventually split this later */
917 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
918 
919 	/* We try hard to avoid divides here */
920 	size_goal = tp->gso_segs * mss_now;
921 	if (unlikely(new_size_goal < size_goal ||
922 		     new_size_goal >= size_goal + mss_now)) {
923 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
924 				     sk->sk_gso_max_segs);
925 		size_goal = tp->gso_segs * mss_now;
926 	}
927 
928 	return max(size_goal, mss_now);
929 }
930 
931 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
932 {
933 	int mss_now;
934 
935 	mss_now = tcp_current_mss(sk);
936 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
937 
938 	return mss_now;
939 }
940 
941 /* In some cases, sendmsg() could have added an skb to the write queue,
942  * but failed adding payload on it. We need to remove it to consume less
943  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
944  * epoll() users. Another reason is that tcp_write_xmit() does not like
945  * finding an empty skb in the write queue.
946  */
947 void tcp_remove_empty_skb(struct sock *sk)
948 {
949 	struct sk_buff *skb = tcp_write_queue_tail(sk);
950 
951 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
952 		tcp_unlink_write_queue(skb, sk);
953 		if (tcp_write_queue_empty(sk))
954 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
955 		tcp_wmem_free_skb(sk, skb);
956 	}
957 }
958 
959 /* skb changing from pure zc to mixed, must charge zc */
960 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
961 {
962 	if (unlikely(skb_zcopy_pure(skb))) {
963 		u32 extra = skb->truesize -
964 			    SKB_TRUESIZE(skb_end_offset(skb));
965 
966 		if (!sk_wmem_schedule(sk, extra))
967 			return -ENOMEM;
968 
969 		sk_mem_charge(sk, extra);
970 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
971 	}
972 	return 0;
973 }
974 
975 
976 int tcp_wmem_schedule(struct sock *sk, int copy)
977 {
978 	int left;
979 
980 	if (likely(sk_wmem_schedule(sk, copy)))
981 		return copy;
982 
983 	/* We could be in trouble if we have nothing queued.
984 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
985 	 * to guarantee some progress.
986 	 */
987 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
988 	if (left > 0)
989 		sk_forced_mem_schedule(sk, min(left, copy));
990 	return min(copy, sk->sk_forward_alloc);
991 }
992 
993 void tcp_free_fastopen_req(struct tcp_sock *tp)
994 {
995 	if (tp->fastopen_req) {
996 		kfree(tp->fastopen_req);
997 		tp->fastopen_req = NULL;
998 	}
999 }
1000 
1001 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1002 			 size_t size, struct ubuf_info *uarg)
1003 {
1004 	struct tcp_sock *tp = tcp_sk(sk);
1005 	struct inet_sock *inet = inet_sk(sk);
1006 	struct sockaddr *uaddr = msg->msg_name;
1007 	int err, flags;
1008 
1009 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1010 	      TFO_CLIENT_ENABLE) ||
1011 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1012 	     uaddr->sa_family == AF_UNSPEC))
1013 		return -EOPNOTSUPP;
1014 	if (tp->fastopen_req)
1015 		return -EALREADY; /* Another Fast Open is in progress */
1016 
1017 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1018 				   sk->sk_allocation);
1019 	if (unlikely(!tp->fastopen_req))
1020 		return -ENOBUFS;
1021 	tp->fastopen_req->data = msg;
1022 	tp->fastopen_req->size = size;
1023 	tp->fastopen_req->uarg = uarg;
1024 
1025 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1026 		err = tcp_connect(sk);
1027 		/* Same failure procedure as in tcp_v4/6_connect */
1028 		if (err) {
1029 			tcp_set_state(sk, TCP_CLOSE);
1030 			inet->inet_dport = 0;
1031 			sk->sk_route_caps = 0;
1032 		}
1033 	}
1034 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1035 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1036 				    msg->msg_namelen, flags, 1);
1037 	/* fastopen_req could already be freed in __inet_stream_connect
1038 	 * if the connection times out or gets rst
1039 	 */
1040 	if (tp->fastopen_req) {
1041 		*copied = tp->fastopen_req->copied;
1042 		tcp_free_fastopen_req(tp);
1043 		inet_clear_bit(DEFER_CONNECT, sk);
1044 	}
1045 	return err;
1046 }
1047 
1048 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1049 {
1050 	struct tcp_sock *tp = tcp_sk(sk);
1051 	struct ubuf_info *uarg = NULL;
1052 	struct sk_buff *skb;
1053 	struct sockcm_cookie sockc;
1054 	int flags, err, copied = 0;
1055 	int mss_now = 0, size_goal, copied_syn = 0;
1056 	int process_backlog = 0;
1057 	int zc = 0;
1058 	long timeo;
1059 
1060 	flags = msg->msg_flags;
1061 
1062 	if ((flags & MSG_ZEROCOPY) && size) {
1063 		if (msg->msg_ubuf) {
1064 			uarg = msg->msg_ubuf;
1065 			if (sk->sk_route_caps & NETIF_F_SG)
1066 				zc = MSG_ZEROCOPY;
1067 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1068 			skb = tcp_write_queue_tail(sk);
1069 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1070 			if (!uarg) {
1071 				err = -ENOBUFS;
1072 				goto out_err;
1073 			}
1074 			if (sk->sk_route_caps & NETIF_F_SG)
1075 				zc = MSG_ZEROCOPY;
1076 			else
1077 				uarg_to_msgzc(uarg)->zerocopy = 0;
1078 		}
1079 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1080 		if (sk->sk_route_caps & NETIF_F_SG)
1081 			zc = MSG_SPLICE_PAGES;
1082 	}
1083 
1084 	if (unlikely(flags & MSG_FASTOPEN ||
1085 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1086 	    !tp->repair) {
1087 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1088 		if (err == -EINPROGRESS && copied_syn > 0)
1089 			goto out;
1090 		else if (err)
1091 			goto out_err;
1092 	}
1093 
1094 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1095 
1096 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1097 
1098 	/* Wait for a connection to finish. One exception is TCP Fast Open
1099 	 * (passive side) where data is allowed to be sent before a connection
1100 	 * is fully established.
1101 	 */
1102 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1103 	    !tcp_passive_fastopen(sk)) {
1104 		err = sk_stream_wait_connect(sk, &timeo);
1105 		if (err != 0)
1106 			goto do_error;
1107 	}
1108 
1109 	if (unlikely(tp->repair)) {
1110 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1111 			copied = tcp_send_rcvq(sk, msg, size);
1112 			goto out_nopush;
1113 		}
1114 
1115 		err = -EINVAL;
1116 		if (tp->repair_queue == TCP_NO_QUEUE)
1117 			goto out_err;
1118 
1119 		/* 'common' sending to sendq */
1120 	}
1121 
1122 	sockcm_init(&sockc, sk);
1123 	if (msg->msg_controllen) {
1124 		err = sock_cmsg_send(sk, msg, &sockc);
1125 		if (unlikely(err)) {
1126 			err = -EINVAL;
1127 			goto out_err;
1128 		}
1129 	}
1130 
1131 	/* This should be in poll */
1132 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1133 
1134 	/* Ok commence sending. */
1135 	copied = 0;
1136 
1137 restart:
1138 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1139 
1140 	err = -EPIPE;
1141 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1142 		goto do_error;
1143 
1144 	while (msg_data_left(msg)) {
1145 		ssize_t copy = 0;
1146 
1147 		skb = tcp_write_queue_tail(sk);
1148 		if (skb)
1149 			copy = size_goal - skb->len;
1150 
1151 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1152 			bool first_skb;
1153 
1154 new_segment:
1155 			if (!sk_stream_memory_free(sk))
1156 				goto wait_for_space;
1157 
1158 			if (unlikely(process_backlog >= 16)) {
1159 				process_backlog = 0;
1160 				if (sk_flush_backlog(sk))
1161 					goto restart;
1162 			}
1163 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1164 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1165 						   first_skb);
1166 			if (!skb)
1167 				goto wait_for_space;
1168 
1169 			process_backlog++;
1170 
1171 #ifdef CONFIG_SKB_DECRYPTED
1172 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1173 #endif
1174 			tcp_skb_entail(sk, skb);
1175 			copy = size_goal;
1176 
1177 			/* All packets are restored as if they have
1178 			 * already been sent. skb_mstamp_ns isn't set to
1179 			 * avoid wrong rtt estimation.
1180 			 */
1181 			if (tp->repair)
1182 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1183 		}
1184 
1185 		/* Try to append data to the end of skb. */
1186 		if (copy > msg_data_left(msg))
1187 			copy = msg_data_left(msg);
1188 
1189 		if (zc == 0) {
1190 			bool merge = true;
1191 			int i = skb_shinfo(skb)->nr_frags;
1192 			struct page_frag *pfrag = sk_page_frag(sk);
1193 
1194 			if (!sk_page_frag_refill(sk, pfrag))
1195 				goto wait_for_space;
1196 
1197 			if (!skb_can_coalesce(skb, i, pfrag->page,
1198 					      pfrag->offset)) {
1199 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1200 					tcp_mark_push(tp, skb);
1201 					goto new_segment;
1202 				}
1203 				merge = false;
1204 			}
1205 
1206 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1207 
1208 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1209 				if (tcp_downgrade_zcopy_pure(sk, skb))
1210 					goto wait_for_space;
1211 				skb_zcopy_downgrade_managed(skb);
1212 			}
1213 
1214 			copy = tcp_wmem_schedule(sk, copy);
1215 			if (!copy)
1216 				goto wait_for_space;
1217 
1218 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1219 						       pfrag->page,
1220 						       pfrag->offset,
1221 						       copy);
1222 			if (err)
1223 				goto do_error;
1224 
1225 			/* Update the skb. */
1226 			if (merge) {
1227 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1228 			} else {
1229 				skb_fill_page_desc(skb, i, pfrag->page,
1230 						   pfrag->offset, copy);
1231 				page_ref_inc(pfrag->page);
1232 			}
1233 			pfrag->offset += copy;
1234 		} else if (zc == MSG_ZEROCOPY)  {
1235 			/* First append to a fragless skb builds initial
1236 			 * pure zerocopy skb
1237 			 */
1238 			if (!skb->len)
1239 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1240 
1241 			if (!skb_zcopy_pure(skb)) {
1242 				copy = tcp_wmem_schedule(sk, copy);
1243 				if (!copy)
1244 					goto wait_for_space;
1245 			}
1246 
1247 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1248 			if (err == -EMSGSIZE || err == -EEXIST) {
1249 				tcp_mark_push(tp, skb);
1250 				goto new_segment;
1251 			}
1252 			if (err < 0)
1253 				goto do_error;
1254 			copy = err;
1255 		} else if (zc == MSG_SPLICE_PAGES) {
1256 			/* Splice in data if we can; copy if we can't. */
1257 			if (tcp_downgrade_zcopy_pure(sk, skb))
1258 				goto wait_for_space;
1259 			copy = tcp_wmem_schedule(sk, copy);
1260 			if (!copy)
1261 				goto wait_for_space;
1262 
1263 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1264 						   sk->sk_allocation);
1265 			if (err < 0) {
1266 				if (err == -EMSGSIZE) {
1267 					tcp_mark_push(tp, skb);
1268 					goto new_segment;
1269 				}
1270 				goto do_error;
1271 			}
1272 			copy = err;
1273 
1274 			if (!(flags & MSG_NO_SHARED_FRAGS))
1275 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1276 
1277 			sk_wmem_queued_add(sk, copy);
1278 			sk_mem_charge(sk, copy);
1279 		}
1280 
1281 		if (!copied)
1282 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1283 
1284 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1285 		TCP_SKB_CB(skb)->end_seq += copy;
1286 		tcp_skb_pcount_set(skb, 0);
1287 
1288 		copied += copy;
1289 		if (!msg_data_left(msg)) {
1290 			if (unlikely(flags & MSG_EOR))
1291 				TCP_SKB_CB(skb)->eor = 1;
1292 			goto out;
1293 		}
1294 
1295 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1296 			continue;
1297 
1298 		if (forced_push(tp)) {
1299 			tcp_mark_push(tp, skb);
1300 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1301 		} else if (skb == tcp_send_head(sk))
1302 			tcp_push_one(sk, mss_now);
1303 		continue;
1304 
1305 wait_for_space:
1306 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1307 		tcp_remove_empty_skb(sk);
1308 		if (copied)
1309 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1310 				 TCP_NAGLE_PUSH, size_goal);
1311 
1312 		err = sk_stream_wait_memory(sk, &timeo);
1313 		if (err != 0)
1314 			goto do_error;
1315 
1316 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1317 	}
1318 
1319 out:
1320 	if (copied) {
1321 		tcp_tx_timestamp(sk, sockc.tsflags);
1322 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1323 	}
1324 out_nopush:
1325 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1326 	if (uarg && !msg->msg_ubuf)
1327 		net_zcopy_put(uarg);
1328 	return copied + copied_syn;
1329 
1330 do_error:
1331 	tcp_remove_empty_skb(sk);
1332 
1333 	if (copied + copied_syn)
1334 		goto out;
1335 out_err:
1336 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1337 	if (uarg && !msg->msg_ubuf)
1338 		net_zcopy_put_abort(uarg, true);
1339 	err = sk_stream_error(sk, flags, err);
1340 	/* make sure we wake any epoll edge trigger waiter */
1341 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1342 		sk->sk_write_space(sk);
1343 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1344 	}
1345 	return err;
1346 }
1347 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1348 
1349 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1350 {
1351 	int ret;
1352 
1353 	lock_sock(sk);
1354 	ret = tcp_sendmsg_locked(sk, msg, size);
1355 	release_sock(sk);
1356 
1357 	return ret;
1358 }
1359 EXPORT_SYMBOL(tcp_sendmsg);
1360 
1361 void tcp_splice_eof(struct socket *sock)
1362 {
1363 	struct sock *sk = sock->sk;
1364 	struct tcp_sock *tp = tcp_sk(sk);
1365 	int mss_now, size_goal;
1366 
1367 	if (!tcp_write_queue_tail(sk))
1368 		return;
1369 
1370 	lock_sock(sk);
1371 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1372 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1373 	release_sock(sk);
1374 }
1375 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1376 
1377 /*
1378  *	Handle reading urgent data. BSD has very simple semantics for
1379  *	this, no blocking and very strange errors 8)
1380  */
1381 
1382 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1383 {
1384 	struct tcp_sock *tp = tcp_sk(sk);
1385 
1386 	/* No URG data to read. */
1387 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1388 	    tp->urg_data == TCP_URG_READ)
1389 		return -EINVAL;	/* Yes this is right ! */
1390 
1391 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1392 		return -ENOTCONN;
1393 
1394 	if (tp->urg_data & TCP_URG_VALID) {
1395 		int err = 0;
1396 		char c = tp->urg_data;
1397 
1398 		if (!(flags & MSG_PEEK))
1399 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1400 
1401 		/* Read urgent data. */
1402 		msg->msg_flags |= MSG_OOB;
1403 
1404 		if (len > 0) {
1405 			if (!(flags & MSG_TRUNC))
1406 				err = memcpy_to_msg(msg, &c, 1);
1407 			len = 1;
1408 		} else
1409 			msg->msg_flags |= MSG_TRUNC;
1410 
1411 		return err ? -EFAULT : len;
1412 	}
1413 
1414 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1415 		return 0;
1416 
1417 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1418 	 * the available implementations agree in this case:
1419 	 * this call should never block, independent of the
1420 	 * blocking state of the socket.
1421 	 * Mike <pall@rz.uni-karlsruhe.de>
1422 	 */
1423 	return -EAGAIN;
1424 }
1425 
1426 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1427 {
1428 	struct sk_buff *skb;
1429 	int copied = 0, err = 0;
1430 
1431 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1432 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1433 		if (err)
1434 			return err;
1435 		copied += skb->len;
1436 	}
1437 
1438 	skb_queue_walk(&sk->sk_write_queue, skb) {
1439 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1440 		if (err)
1441 			break;
1442 
1443 		copied += skb->len;
1444 	}
1445 
1446 	return err ?: copied;
1447 }
1448 
1449 /* Clean up the receive buffer for full frames taken by the user,
1450  * then send an ACK if necessary.  COPIED is the number of bytes
1451  * tcp_recvmsg has given to the user so far, it speeds up the
1452  * calculation of whether or not we must ACK for the sake of
1453  * a window update.
1454  */
1455 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1456 {
1457 	struct tcp_sock *tp = tcp_sk(sk);
1458 	bool time_to_ack = false;
1459 
1460 	if (inet_csk_ack_scheduled(sk)) {
1461 		const struct inet_connection_sock *icsk = inet_csk(sk);
1462 
1463 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1464 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1465 		    /*
1466 		     * If this read emptied read buffer, we send ACK, if
1467 		     * connection is not bidirectional, user drained
1468 		     * receive buffer and there was a small segment
1469 		     * in queue.
1470 		     */
1471 		    (copied > 0 &&
1472 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1473 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1474 		       !inet_csk_in_pingpong_mode(sk))) &&
1475 		      !atomic_read(&sk->sk_rmem_alloc)))
1476 			time_to_ack = true;
1477 	}
1478 
1479 	/* We send an ACK if we can now advertise a non-zero window
1480 	 * which has been raised "significantly".
1481 	 *
1482 	 * Even if window raised up to infinity, do not send window open ACK
1483 	 * in states, where we will not receive more. It is useless.
1484 	 */
1485 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1486 		__u32 rcv_window_now = tcp_receive_window(tp);
1487 
1488 		/* Optimize, __tcp_select_window() is not cheap. */
1489 		if (2*rcv_window_now <= tp->window_clamp) {
1490 			__u32 new_window = __tcp_select_window(sk);
1491 
1492 			/* Send ACK now, if this read freed lots of space
1493 			 * in our buffer. Certainly, new_window is new window.
1494 			 * We can advertise it now, if it is not less than current one.
1495 			 * "Lots" means "at least twice" here.
1496 			 */
1497 			if (new_window && new_window >= 2 * rcv_window_now)
1498 				time_to_ack = true;
1499 		}
1500 	}
1501 	if (time_to_ack)
1502 		tcp_send_ack(sk);
1503 }
1504 
1505 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1506 {
1507 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1508 	struct tcp_sock *tp = tcp_sk(sk);
1509 
1510 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1511 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1512 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1513 	__tcp_cleanup_rbuf(sk, copied);
1514 }
1515 
1516 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1517 {
1518 	__skb_unlink(skb, &sk->sk_receive_queue);
1519 	if (likely(skb->destructor == sock_rfree)) {
1520 		sock_rfree(skb);
1521 		skb->destructor = NULL;
1522 		skb->sk = NULL;
1523 		return skb_attempt_defer_free(skb);
1524 	}
1525 	__kfree_skb(skb);
1526 }
1527 
1528 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1529 {
1530 	struct sk_buff *skb;
1531 	u32 offset;
1532 
1533 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1534 		offset = seq - TCP_SKB_CB(skb)->seq;
1535 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1536 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1537 			offset--;
1538 		}
1539 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1540 			*off = offset;
1541 			return skb;
1542 		}
1543 		/* This looks weird, but this can happen if TCP collapsing
1544 		 * splitted a fat GRO packet, while we released socket lock
1545 		 * in skb_splice_bits()
1546 		 */
1547 		tcp_eat_recv_skb(sk, skb);
1548 	}
1549 	return NULL;
1550 }
1551 EXPORT_SYMBOL(tcp_recv_skb);
1552 
1553 /*
1554  * This routine provides an alternative to tcp_recvmsg() for routines
1555  * that would like to handle copying from skbuffs directly in 'sendfile'
1556  * fashion.
1557  * Note:
1558  *	- It is assumed that the socket was locked by the caller.
1559  *	- The routine does not block.
1560  *	- At present, there is no support for reading OOB data
1561  *	  or for 'peeking' the socket using this routine
1562  *	  (although both would be easy to implement).
1563  */
1564 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1565 		  sk_read_actor_t recv_actor)
1566 {
1567 	struct sk_buff *skb;
1568 	struct tcp_sock *tp = tcp_sk(sk);
1569 	u32 seq = tp->copied_seq;
1570 	u32 offset;
1571 	int copied = 0;
1572 
1573 	if (sk->sk_state == TCP_LISTEN)
1574 		return -ENOTCONN;
1575 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1576 		if (offset < skb->len) {
1577 			int used;
1578 			size_t len;
1579 
1580 			len = skb->len - offset;
1581 			/* Stop reading if we hit a patch of urgent data */
1582 			if (unlikely(tp->urg_data)) {
1583 				u32 urg_offset = tp->urg_seq - seq;
1584 				if (urg_offset < len)
1585 					len = urg_offset;
1586 				if (!len)
1587 					break;
1588 			}
1589 			used = recv_actor(desc, skb, offset, len);
1590 			if (used <= 0) {
1591 				if (!copied)
1592 					copied = used;
1593 				break;
1594 			}
1595 			if (WARN_ON_ONCE(used > len))
1596 				used = len;
1597 			seq += used;
1598 			copied += used;
1599 			offset += used;
1600 
1601 			/* If recv_actor drops the lock (e.g. TCP splice
1602 			 * receive) the skb pointer might be invalid when
1603 			 * getting here: tcp_collapse might have deleted it
1604 			 * while aggregating skbs from the socket queue.
1605 			 */
1606 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1607 			if (!skb)
1608 				break;
1609 			/* TCP coalescing might have appended data to the skb.
1610 			 * Try to splice more frags
1611 			 */
1612 			if (offset + 1 != skb->len)
1613 				continue;
1614 		}
1615 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1616 			tcp_eat_recv_skb(sk, skb);
1617 			++seq;
1618 			break;
1619 		}
1620 		tcp_eat_recv_skb(sk, skb);
1621 		if (!desc->count)
1622 			break;
1623 		WRITE_ONCE(tp->copied_seq, seq);
1624 	}
1625 	WRITE_ONCE(tp->copied_seq, seq);
1626 
1627 	tcp_rcv_space_adjust(sk);
1628 
1629 	/* Clean up data we have read: This will do ACK frames. */
1630 	if (copied > 0) {
1631 		tcp_recv_skb(sk, seq, &offset);
1632 		tcp_cleanup_rbuf(sk, copied);
1633 	}
1634 	return copied;
1635 }
1636 EXPORT_SYMBOL(tcp_read_sock);
1637 
1638 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1639 {
1640 	struct sk_buff *skb;
1641 	int copied = 0;
1642 
1643 	if (sk->sk_state == TCP_LISTEN)
1644 		return -ENOTCONN;
1645 
1646 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1647 		u8 tcp_flags;
1648 		int used;
1649 
1650 		__skb_unlink(skb, &sk->sk_receive_queue);
1651 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1652 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1653 		used = recv_actor(sk, skb);
1654 		if (used < 0) {
1655 			if (!copied)
1656 				copied = used;
1657 			break;
1658 		}
1659 		copied += used;
1660 
1661 		if (tcp_flags & TCPHDR_FIN)
1662 			break;
1663 	}
1664 	return copied;
1665 }
1666 EXPORT_SYMBOL(tcp_read_skb);
1667 
1668 void tcp_read_done(struct sock *sk, size_t len)
1669 {
1670 	struct tcp_sock *tp = tcp_sk(sk);
1671 	u32 seq = tp->copied_seq;
1672 	struct sk_buff *skb;
1673 	size_t left;
1674 	u32 offset;
1675 
1676 	if (sk->sk_state == TCP_LISTEN)
1677 		return;
1678 
1679 	left = len;
1680 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1681 		int used;
1682 
1683 		used = min_t(size_t, skb->len - offset, left);
1684 		seq += used;
1685 		left -= used;
1686 
1687 		if (skb->len > offset + used)
1688 			break;
1689 
1690 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1691 			tcp_eat_recv_skb(sk, skb);
1692 			++seq;
1693 			break;
1694 		}
1695 		tcp_eat_recv_skb(sk, skb);
1696 	}
1697 	WRITE_ONCE(tp->copied_seq, seq);
1698 
1699 	tcp_rcv_space_adjust(sk);
1700 
1701 	/* Clean up data we have read: This will do ACK frames. */
1702 	if (left != len)
1703 		tcp_cleanup_rbuf(sk, len - left);
1704 }
1705 EXPORT_SYMBOL(tcp_read_done);
1706 
1707 int tcp_peek_len(struct socket *sock)
1708 {
1709 	return tcp_inq(sock->sk);
1710 }
1711 EXPORT_SYMBOL(tcp_peek_len);
1712 
1713 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1714 int tcp_set_rcvlowat(struct sock *sk, int val)
1715 {
1716 	int space, cap;
1717 
1718 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719 		cap = sk->sk_rcvbuf >> 1;
1720 	else
1721 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1722 	val = min(val, cap);
1723 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1724 
1725 	/* Check if we need to signal EPOLLIN right now */
1726 	tcp_data_ready(sk);
1727 
1728 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1729 		return 0;
1730 
1731 	space = tcp_space_from_win(sk, val);
1732 	if (space > sk->sk_rcvbuf) {
1733 		WRITE_ONCE(sk->sk_rcvbuf, space);
1734 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1735 	}
1736 	return 0;
1737 }
1738 EXPORT_SYMBOL(tcp_set_rcvlowat);
1739 
1740 void tcp_update_recv_tstamps(struct sk_buff *skb,
1741 			     struct scm_timestamping_internal *tss)
1742 {
1743 	if (skb->tstamp)
1744 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1745 	else
1746 		tss->ts[0] = (struct timespec64) {0};
1747 
1748 	if (skb_hwtstamps(skb)->hwtstamp)
1749 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1750 	else
1751 		tss->ts[2] = (struct timespec64) {0};
1752 }
1753 
1754 #ifdef CONFIG_MMU
1755 static const struct vm_operations_struct tcp_vm_ops = {
1756 };
1757 
1758 int tcp_mmap(struct file *file, struct socket *sock,
1759 	     struct vm_area_struct *vma)
1760 {
1761 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1762 		return -EPERM;
1763 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1764 
1765 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1766 	vm_flags_set(vma, VM_MIXEDMAP);
1767 
1768 	vma->vm_ops = &tcp_vm_ops;
1769 	return 0;
1770 }
1771 EXPORT_SYMBOL(tcp_mmap);
1772 
1773 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1774 				       u32 *offset_frag)
1775 {
1776 	skb_frag_t *frag;
1777 
1778 	if (unlikely(offset_skb >= skb->len))
1779 		return NULL;
1780 
1781 	offset_skb -= skb_headlen(skb);
1782 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1783 		return NULL;
1784 
1785 	frag = skb_shinfo(skb)->frags;
1786 	while (offset_skb) {
1787 		if (skb_frag_size(frag) > offset_skb) {
1788 			*offset_frag = offset_skb;
1789 			return frag;
1790 		}
1791 		offset_skb -= skb_frag_size(frag);
1792 		++frag;
1793 	}
1794 	*offset_frag = 0;
1795 	return frag;
1796 }
1797 
1798 static bool can_map_frag(const skb_frag_t *frag)
1799 {
1800 	struct page *page;
1801 
1802 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1803 		return false;
1804 
1805 	page = skb_frag_page(frag);
1806 
1807 	if (PageCompound(page) || page->mapping)
1808 		return false;
1809 
1810 	return true;
1811 }
1812 
1813 static int find_next_mappable_frag(const skb_frag_t *frag,
1814 				   int remaining_in_skb)
1815 {
1816 	int offset = 0;
1817 
1818 	if (likely(can_map_frag(frag)))
1819 		return 0;
1820 
1821 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1822 		offset += skb_frag_size(frag);
1823 		++frag;
1824 	}
1825 	return offset;
1826 }
1827 
1828 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1829 					  struct tcp_zerocopy_receive *zc,
1830 					  struct sk_buff *skb, u32 offset)
1831 {
1832 	u32 frag_offset, partial_frag_remainder = 0;
1833 	int mappable_offset;
1834 	skb_frag_t *frag;
1835 
1836 	/* worst case: skip to next skb. try to improve on this case below */
1837 	zc->recv_skip_hint = skb->len - offset;
1838 
1839 	/* Find the frag containing this offset (and how far into that frag) */
1840 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1841 	if (!frag)
1842 		return;
1843 
1844 	if (frag_offset) {
1845 		struct skb_shared_info *info = skb_shinfo(skb);
1846 
1847 		/* We read part of the last frag, must recvmsg() rest of skb. */
1848 		if (frag == &info->frags[info->nr_frags - 1])
1849 			return;
1850 
1851 		/* Else, we must at least read the remainder in this frag. */
1852 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1853 		zc->recv_skip_hint -= partial_frag_remainder;
1854 		++frag;
1855 	}
1856 
1857 	/* partial_frag_remainder: If part way through a frag, must read rest.
1858 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1859 	 * in partial_frag_remainder.
1860 	 */
1861 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1862 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1863 }
1864 
1865 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1866 			      int flags, struct scm_timestamping_internal *tss,
1867 			      int *cmsg_flags);
1868 static int receive_fallback_to_copy(struct sock *sk,
1869 				    struct tcp_zerocopy_receive *zc, int inq,
1870 				    struct scm_timestamping_internal *tss)
1871 {
1872 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1873 	struct msghdr msg = {};
1874 	int err;
1875 
1876 	zc->length = 0;
1877 	zc->recv_skip_hint = 0;
1878 
1879 	if (copy_address != zc->copybuf_address)
1880 		return -EINVAL;
1881 
1882 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1883 			  &msg.msg_iter);
1884 	if (err)
1885 		return err;
1886 
1887 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1888 				 tss, &zc->msg_flags);
1889 	if (err < 0)
1890 		return err;
1891 
1892 	zc->copybuf_len = err;
1893 	if (likely(zc->copybuf_len)) {
1894 		struct sk_buff *skb;
1895 		u32 offset;
1896 
1897 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1898 		if (skb)
1899 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1900 	}
1901 	return 0;
1902 }
1903 
1904 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1905 				   struct sk_buff *skb, u32 copylen,
1906 				   u32 *offset, u32 *seq)
1907 {
1908 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1909 	struct msghdr msg = {};
1910 	int err;
1911 
1912 	if (copy_address != zc->copybuf_address)
1913 		return -EINVAL;
1914 
1915 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1916 			  &msg.msg_iter);
1917 	if (err)
1918 		return err;
1919 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1920 	if (err)
1921 		return err;
1922 	zc->recv_skip_hint -= copylen;
1923 	*offset += copylen;
1924 	*seq += copylen;
1925 	return (__s32)copylen;
1926 }
1927 
1928 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1929 				  struct sock *sk,
1930 				  struct sk_buff *skb,
1931 				  u32 *seq,
1932 				  s32 copybuf_len,
1933 				  struct scm_timestamping_internal *tss)
1934 {
1935 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1936 
1937 	if (!copylen)
1938 		return 0;
1939 	/* skb is null if inq < PAGE_SIZE. */
1940 	if (skb) {
1941 		offset = *seq - TCP_SKB_CB(skb)->seq;
1942 	} else {
1943 		skb = tcp_recv_skb(sk, *seq, &offset);
1944 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1945 			tcp_update_recv_tstamps(skb, tss);
1946 			zc->msg_flags |= TCP_CMSG_TS;
1947 		}
1948 	}
1949 
1950 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1951 						  seq);
1952 	return zc->copybuf_len < 0 ? 0 : copylen;
1953 }
1954 
1955 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1956 					      struct page **pending_pages,
1957 					      unsigned long pages_remaining,
1958 					      unsigned long *address,
1959 					      u32 *length,
1960 					      u32 *seq,
1961 					      struct tcp_zerocopy_receive *zc,
1962 					      u32 total_bytes_to_map,
1963 					      int err)
1964 {
1965 	/* At least one page did not map. Try zapping if we skipped earlier. */
1966 	if (err == -EBUSY &&
1967 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1968 		u32 maybe_zap_len;
1969 
1970 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1971 				*length + /* Mapped or pending */
1972 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1973 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1974 		err = 0;
1975 	}
1976 
1977 	if (!err) {
1978 		unsigned long leftover_pages = pages_remaining;
1979 		int bytes_mapped;
1980 
1981 		/* We called zap_page_range_single, try to reinsert. */
1982 		err = vm_insert_pages(vma, *address,
1983 				      pending_pages,
1984 				      &pages_remaining);
1985 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1986 		*seq += bytes_mapped;
1987 		*address += bytes_mapped;
1988 	}
1989 	if (err) {
1990 		/* Either we were unable to zap, OR we zapped, retried an
1991 		 * insert, and still had an issue. Either ways, pages_remaining
1992 		 * is the number of pages we were unable to map, and we unroll
1993 		 * some state we speculatively touched before.
1994 		 */
1995 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1996 
1997 		*length -= bytes_not_mapped;
1998 		zc->recv_skip_hint += bytes_not_mapped;
1999 	}
2000 	return err;
2001 }
2002 
2003 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2004 					struct page **pages,
2005 					unsigned int pages_to_map,
2006 					unsigned long *address,
2007 					u32 *length,
2008 					u32 *seq,
2009 					struct tcp_zerocopy_receive *zc,
2010 					u32 total_bytes_to_map)
2011 {
2012 	unsigned long pages_remaining = pages_to_map;
2013 	unsigned int pages_mapped;
2014 	unsigned int bytes_mapped;
2015 	int err;
2016 
2017 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2018 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2019 	bytes_mapped = PAGE_SIZE * pages_mapped;
2020 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2021 	 * mapping (some but not all of the pages).
2022 	 */
2023 	*seq += bytes_mapped;
2024 	*address += bytes_mapped;
2025 
2026 	if (likely(!err))
2027 		return 0;
2028 
2029 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2030 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2031 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2032 		err);
2033 }
2034 
2035 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2036 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2037 				      struct tcp_zerocopy_receive *zc,
2038 				      struct scm_timestamping_internal *tss)
2039 {
2040 	unsigned long msg_control_addr;
2041 	struct msghdr cmsg_dummy;
2042 
2043 	msg_control_addr = (unsigned long)zc->msg_control;
2044 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2045 	cmsg_dummy.msg_controllen =
2046 		(__kernel_size_t)zc->msg_controllen;
2047 	cmsg_dummy.msg_flags = in_compat_syscall()
2048 		? MSG_CMSG_COMPAT : 0;
2049 	cmsg_dummy.msg_control_is_user = true;
2050 	zc->msg_flags = 0;
2051 	if (zc->msg_control == msg_control_addr &&
2052 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2053 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2054 		zc->msg_control = (__u64)
2055 			((uintptr_t)cmsg_dummy.msg_control_user);
2056 		zc->msg_controllen =
2057 			(__u64)cmsg_dummy.msg_controllen;
2058 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2059 	}
2060 }
2061 
2062 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2063 					   unsigned long address,
2064 					   bool *mmap_locked)
2065 {
2066 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2067 
2068 	if (vma) {
2069 		if (vma->vm_ops != &tcp_vm_ops) {
2070 			vma_end_read(vma);
2071 			return NULL;
2072 		}
2073 		*mmap_locked = false;
2074 		return vma;
2075 	}
2076 
2077 	mmap_read_lock(mm);
2078 	vma = vma_lookup(mm, address);
2079 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2080 		mmap_read_unlock(mm);
2081 		return NULL;
2082 	}
2083 	*mmap_locked = true;
2084 	return vma;
2085 }
2086 
2087 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2088 static int tcp_zerocopy_receive(struct sock *sk,
2089 				struct tcp_zerocopy_receive *zc,
2090 				struct scm_timestamping_internal *tss)
2091 {
2092 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2093 	unsigned long address = (unsigned long)zc->address;
2094 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2095 	s32 copybuf_len = zc->copybuf_len;
2096 	struct tcp_sock *tp = tcp_sk(sk);
2097 	const skb_frag_t *frags = NULL;
2098 	unsigned int pages_to_map = 0;
2099 	struct vm_area_struct *vma;
2100 	struct sk_buff *skb = NULL;
2101 	u32 seq = tp->copied_seq;
2102 	u32 total_bytes_to_map;
2103 	int inq = tcp_inq(sk);
2104 	bool mmap_locked;
2105 	int ret;
2106 
2107 	zc->copybuf_len = 0;
2108 	zc->msg_flags = 0;
2109 
2110 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2111 		return -EINVAL;
2112 
2113 	if (sk->sk_state == TCP_LISTEN)
2114 		return -ENOTCONN;
2115 
2116 	sock_rps_record_flow(sk);
2117 
2118 	if (inq && inq <= copybuf_len)
2119 		return receive_fallback_to_copy(sk, zc, inq, tss);
2120 
2121 	if (inq < PAGE_SIZE) {
2122 		zc->length = 0;
2123 		zc->recv_skip_hint = inq;
2124 		if (!inq && sock_flag(sk, SOCK_DONE))
2125 			return -EIO;
2126 		return 0;
2127 	}
2128 
2129 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2130 	if (!vma)
2131 		return -EINVAL;
2132 
2133 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2134 	avail_len = min_t(u32, vma_len, inq);
2135 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2136 	if (total_bytes_to_map) {
2137 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2138 			zap_page_range_single(vma, address, total_bytes_to_map,
2139 					      NULL);
2140 		zc->length = total_bytes_to_map;
2141 		zc->recv_skip_hint = 0;
2142 	} else {
2143 		zc->length = avail_len;
2144 		zc->recv_skip_hint = avail_len;
2145 	}
2146 	ret = 0;
2147 	while (length + PAGE_SIZE <= zc->length) {
2148 		int mappable_offset;
2149 		struct page *page;
2150 
2151 		if (zc->recv_skip_hint < PAGE_SIZE) {
2152 			u32 offset_frag;
2153 
2154 			if (skb) {
2155 				if (zc->recv_skip_hint > 0)
2156 					break;
2157 				skb = skb->next;
2158 				offset = seq - TCP_SKB_CB(skb)->seq;
2159 			} else {
2160 				skb = tcp_recv_skb(sk, seq, &offset);
2161 			}
2162 
2163 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2164 				tcp_update_recv_tstamps(skb, tss);
2165 				zc->msg_flags |= TCP_CMSG_TS;
2166 			}
2167 			zc->recv_skip_hint = skb->len - offset;
2168 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2169 			if (!frags || offset_frag)
2170 				break;
2171 		}
2172 
2173 		mappable_offset = find_next_mappable_frag(frags,
2174 							  zc->recv_skip_hint);
2175 		if (mappable_offset) {
2176 			zc->recv_skip_hint = mappable_offset;
2177 			break;
2178 		}
2179 		page = skb_frag_page(frags);
2180 		prefetchw(page);
2181 		pages[pages_to_map++] = page;
2182 		length += PAGE_SIZE;
2183 		zc->recv_skip_hint -= PAGE_SIZE;
2184 		frags++;
2185 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2186 		    zc->recv_skip_hint < PAGE_SIZE) {
2187 			/* Either full batch, or we're about to go to next skb
2188 			 * (and we cannot unroll failed ops across skbs).
2189 			 */
2190 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2191 							   pages_to_map,
2192 							   &address, &length,
2193 							   &seq, zc,
2194 							   total_bytes_to_map);
2195 			if (ret)
2196 				goto out;
2197 			pages_to_map = 0;
2198 		}
2199 	}
2200 	if (pages_to_map) {
2201 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2202 						   &address, &length, &seq,
2203 						   zc, total_bytes_to_map);
2204 	}
2205 out:
2206 	if (mmap_locked)
2207 		mmap_read_unlock(current->mm);
2208 	else
2209 		vma_end_read(vma);
2210 	/* Try to copy straggler data. */
2211 	if (!ret)
2212 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2213 
2214 	if (length + copylen) {
2215 		WRITE_ONCE(tp->copied_seq, seq);
2216 		tcp_rcv_space_adjust(sk);
2217 
2218 		/* Clean up data we have read: This will do ACK frames. */
2219 		tcp_recv_skb(sk, seq, &offset);
2220 		tcp_cleanup_rbuf(sk, length + copylen);
2221 		ret = 0;
2222 		if (length == zc->length)
2223 			zc->recv_skip_hint = 0;
2224 	} else {
2225 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2226 			ret = -EIO;
2227 	}
2228 	zc->length = length;
2229 	return ret;
2230 }
2231 #endif
2232 
2233 /* Similar to __sock_recv_timestamp, but does not require an skb */
2234 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2235 			struct scm_timestamping_internal *tss)
2236 {
2237 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2238 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2239 	bool has_timestamping = false;
2240 
2241 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2242 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2243 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2244 				if (new_tstamp) {
2245 					struct __kernel_timespec kts = {
2246 						.tv_sec = tss->ts[0].tv_sec,
2247 						.tv_nsec = tss->ts[0].tv_nsec,
2248 					};
2249 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2250 						 sizeof(kts), &kts);
2251 				} else {
2252 					struct __kernel_old_timespec ts_old = {
2253 						.tv_sec = tss->ts[0].tv_sec,
2254 						.tv_nsec = tss->ts[0].tv_nsec,
2255 					};
2256 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2257 						 sizeof(ts_old), &ts_old);
2258 				}
2259 			} else {
2260 				if (new_tstamp) {
2261 					struct __kernel_sock_timeval stv = {
2262 						.tv_sec = tss->ts[0].tv_sec,
2263 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2264 					};
2265 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2266 						 sizeof(stv), &stv);
2267 				} else {
2268 					struct __kernel_old_timeval tv = {
2269 						.tv_sec = tss->ts[0].tv_sec,
2270 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2271 					};
2272 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2273 						 sizeof(tv), &tv);
2274 				}
2275 			}
2276 		}
2277 
2278 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2279 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2280 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2281 			has_timestamping = true;
2282 		else
2283 			tss->ts[0] = (struct timespec64) {0};
2284 	}
2285 
2286 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2287 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2288 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2289 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2290 			has_timestamping = true;
2291 		else
2292 			tss->ts[2] = (struct timespec64) {0};
2293 	}
2294 
2295 	if (has_timestamping) {
2296 		tss->ts[1] = (struct timespec64) {0};
2297 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2298 			put_cmsg_scm_timestamping64(msg, tss);
2299 		else
2300 			put_cmsg_scm_timestamping(msg, tss);
2301 	}
2302 }
2303 
2304 static int tcp_inq_hint(struct sock *sk)
2305 {
2306 	const struct tcp_sock *tp = tcp_sk(sk);
2307 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2308 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2309 	int inq;
2310 
2311 	inq = rcv_nxt - copied_seq;
2312 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2313 		lock_sock(sk);
2314 		inq = tp->rcv_nxt - tp->copied_seq;
2315 		release_sock(sk);
2316 	}
2317 	/* After receiving a FIN, tell the user-space to continue reading
2318 	 * by returning a non-zero inq.
2319 	 */
2320 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2321 		inq = 1;
2322 	return inq;
2323 }
2324 
2325 /*
2326  *	This routine copies from a sock struct into the user buffer.
2327  *
2328  *	Technical note: in 2.3 we work on _locked_ socket, so that
2329  *	tricks with *seq access order and skb->users are not required.
2330  *	Probably, code can be easily improved even more.
2331  */
2332 
2333 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2334 			      int flags, struct scm_timestamping_internal *tss,
2335 			      int *cmsg_flags)
2336 {
2337 	struct tcp_sock *tp = tcp_sk(sk);
2338 	int copied = 0;
2339 	u32 peek_seq;
2340 	u32 *seq;
2341 	unsigned long used;
2342 	int err;
2343 	int target;		/* Read at least this many bytes */
2344 	long timeo;
2345 	struct sk_buff *skb, *last;
2346 	u32 peek_offset = 0;
2347 	u32 urg_hole = 0;
2348 
2349 	err = -ENOTCONN;
2350 	if (sk->sk_state == TCP_LISTEN)
2351 		goto out;
2352 
2353 	if (tp->recvmsg_inq) {
2354 		*cmsg_flags = TCP_CMSG_INQ;
2355 		msg->msg_get_inq = 1;
2356 	}
2357 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2358 
2359 	/* Urgent data needs to be handled specially. */
2360 	if (flags & MSG_OOB)
2361 		goto recv_urg;
2362 
2363 	if (unlikely(tp->repair)) {
2364 		err = -EPERM;
2365 		if (!(flags & MSG_PEEK))
2366 			goto out;
2367 
2368 		if (tp->repair_queue == TCP_SEND_QUEUE)
2369 			goto recv_sndq;
2370 
2371 		err = -EINVAL;
2372 		if (tp->repair_queue == TCP_NO_QUEUE)
2373 			goto out;
2374 
2375 		/* 'common' recv queue MSG_PEEK-ing */
2376 	}
2377 
2378 	seq = &tp->copied_seq;
2379 	if (flags & MSG_PEEK) {
2380 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2381 		peek_seq = tp->copied_seq + peek_offset;
2382 		seq = &peek_seq;
2383 	}
2384 
2385 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2386 
2387 	do {
2388 		u32 offset;
2389 
2390 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2391 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2392 			if (copied)
2393 				break;
2394 			if (signal_pending(current)) {
2395 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2396 				break;
2397 			}
2398 		}
2399 
2400 		/* Next get a buffer. */
2401 
2402 		last = skb_peek_tail(&sk->sk_receive_queue);
2403 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2404 			last = skb;
2405 			/* Now that we have two receive queues this
2406 			 * shouldn't happen.
2407 			 */
2408 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2409 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2410 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2411 				 flags))
2412 				break;
2413 
2414 			offset = *seq - TCP_SKB_CB(skb)->seq;
2415 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2416 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2417 				offset--;
2418 			}
2419 			if (offset < skb->len)
2420 				goto found_ok_skb;
2421 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2422 				goto found_fin_ok;
2423 			WARN(!(flags & MSG_PEEK),
2424 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2425 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2426 		}
2427 
2428 		/* Well, if we have backlog, try to process it now yet. */
2429 
2430 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2431 			break;
2432 
2433 		if (copied) {
2434 			if (!timeo ||
2435 			    sk->sk_err ||
2436 			    sk->sk_state == TCP_CLOSE ||
2437 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2438 			    signal_pending(current))
2439 				break;
2440 		} else {
2441 			if (sock_flag(sk, SOCK_DONE))
2442 				break;
2443 
2444 			if (sk->sk_err) {
2445 				copied = sock_error(sk);
2446 				break;
2447 			}
2448 
2449 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2450 				break;
2451 
2452 			if (sk->sk_state == TCP_CLOSE) {
2453 				/* This occurs when user tries to read
2454 				 * from never connected socket.
2455 				 */
2456 				copied = -ENOTCONN;
2457 				break;
2458 			}
2459 
2460 			if (!timeo) {
2461 				copied = -EAGAIN;
2462 				break;
2463 			}
2464 
2465 			if (signal_pending(current)) {
2466 				copied = sock_intr_errno(timeo);
2467 				break;
2468 			}
2469 		}
2470 
2471 		if (copied >= target) {
2472 			/* Do not sleep, just process backlog. */
2473 			__sk_flush_backlog(sk);
2474 		} else {
2475 			tcp_cleanup_rbuf(sk, copied);
2476 			err = sk_wait_data(sk, &timeo, last);
2477 			if (err < 0) {
2478 				err = copied ? : err;
2479 				goto out;
2480 			}
2481 		}
2482 
2483 		if ((flags & MSG_PEEK) &&
2484 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2485 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2486 					    current->comm,
2487 					    task_pid_nr(current));
2488 			peek_seq = tp->copied_seq + peek_offset;
2489 		}
2490 		continue;
2491 
2492 found_ok_skb:
2493 		/* Ok so how much can we use? */
2494 		used = skb->len - offset;
2495 		if (len < used)
2496 			used = len;
2497 
2498 		/* Do we have urgent data here? */
2499 		if (unlikely(tp->urg_data)) {
2500 			u32 urg_offset = tp->urg_seq - *seq;
2501 			if (urg_offset < used) {
2502 				if (!urg_offset) {
2503 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2504 						WRITE_ONCE(*seq, *seq + 1);
2505 						urg_hole++;
2506 						offset++;
2507 						used--;
2508 						if (!used)
2509 							goto skip_copy;
2510 					}
2511 				} else
2512 					used = urg_offset;
2513 			}
2514 		}
2515 
2516 		if (!(flags & MSG_TRUNC)) {
2517 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2518 			if (err) {
2519 				/* Exception. Bailout! */
2520 				if (!copied)
2521 					copied = -EFAULT;
2522 				break;
2523 			}
2524 		}
2525 
2526 		WRITE_ONCE(*seq, *seq + used);
2527 		copied += used;
2528 		len -= used;
2529 		if (flags & MSG_PEEK)
2530 			sk_peek_offset_fwd(sk, used);
2531 		else
2532 			sk_peek_offset_bwd(sk, used);
2533 		tcp_rcv_space_adjust(sk);
2534 
2535 skip_copy:
2536 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2537 			WRITE_ONCE(tp->urg_data, 0);
2538 			tcp_fast_path_check(sk);
2539 		}
2540 
2541 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2542 			tcp_update_recv_tstamps(skb, tss);
2543 			*cmsg_flags |= TCP_CMSG_TS;
2544 		}
2545 
2546 		if (used + offset < skb->len)
2547 			continue;
2548 
2549 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2550 			goto found_fin_ok;
2551 		if (!(flags & MSG_PEEK))
2552 			tcp_eat_recv_skb(sk, skb);
2553 		continue;
2554 
2555 found_fin_ok:
2556 		/* Process the FIN. */
2557 		WRITE_ONCE(*seq, *seq + 1);
2558 		if (!(flags & MSG_PEEK))
2559 			tcp_eat_recv_skb(sk, skb);
2560 		break;
2561 	} while (len > 0);
2562 
2563 	/* According to UNIX98, msg_name/msg_namelen are ignored
2564 	 * on connected socket. I was just happy when found this 8) --ANK
2565 	 */
2566 
2567 	/* Clean up data we have read: This will do ACK frames. */
2568 	tcp_cleanup_rbuf(sk, copied);
2569 	return copied;
2570 
2571 out:
2572 	return err;
2573 
2574 recv_urg:
2575 	err = tcp_recv_urg(sk, msg, len, flags);
2576 	goto out;
2577 
2578 recv_sndq:
2579 	err = tcp_peek_sndq(sk, msg, len);
2580 	goto out;
2581 }
2582 
2583 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2584 		int *addr_len)
2585 {
2586 	int cmsg_flags = 0, ret;
2587 	struct scm_timestamping_internal tss;
2588 
2589 	if (unlikely(flags & MSG_ERRQUEUE))
2590 		return inet_recv_error(sk, msg, len, addr_len);
2591 
2592 	if (sk_can_busy_loop(sk) &&
2593 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2594 	    sk->sk_state == TCP_ESTABLISHED)
2595 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2596 
2597 	lock_sock(sk);
2598 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2599 	release_sock(sk);
2600 
2601 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2602 		if (cmsg_flags & TCP_CMSG_TS)
2603 			tcp_recv_timestamp(msg, sk, &tss);
2604 		if (msg->msg_get_inq) {
2605 			msg->msg_inq = tcp_inq_hint(sk);
2606 			if (cmsg_flags & TCP_CMSG_INQ)
2607 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2608 					 sizeof(msg->msg_inq), &msg->msg_inq);
2609 		}
2610 	}
2611 	return ret;
2612 }
2613 EXPORT_SYMBOL(tcp_recvmsg);
2614 
2615 void tcp_set_state(struct sock *sk, int state)
2616 {
2617 	int oldstate = sk->sk_state;
2618 
2619 	/* We defined a new enum for TCP states that are exported in BPF
2620 	 * so as not force the internal TCP states to be frozen. The
2621 	 * following checks will detect if an internal state value ever
2622 	 * differs from the BPF value. If this ever happens, then we will
2623 	 * need to remap the internal value to the BPF value before calling
2624 	 * tcp_call_bpf_2arg.
2625 	 */
2626 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2627 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2628 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2629 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2630 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2631 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2632 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2633 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2634 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2635 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2636 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2637 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2638 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2639 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2640 
2641 	/* bpf uapi header bpf.h defines an anonymous enum with values
2642 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2643 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2644 	 * But clang built vmlinux does not have this enum in DWARF
2645 	 * since clang removes the above code before generating IR/debuginfo.
2646 	 * Let us explicitly emit the type debuginfo to ensure the
2647 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2648 	 * regardless of which compiler is used.
2649 	 */
2650 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2651 
2652 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2653 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2654 
2655 	switch (state) {
2656 	case TCP_ESTABLISHED:
2657 		if (oldstate != TCP_ESTABLISHED)
2658 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2659 		break;
2660 	case TCP_CLOSE_WAIT:
2661 		if (oldstate == TCP_SYN_RECV)
2662 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2663 		break;
2664 
2665 	case TCP_CLOSE:
2666 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2667 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2668 
2669 		sk->sk_prot->unhash(sk);
2670 		if (inet_csk(sk)->icsk_bind_hash &&
2671 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2672 			inet_put_port(sk);
2673 		fallthrough;
2674 	default:
2675 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2676 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2677 	}
2678 
2679 	/* Change state AFTER socket is unhashed to avoid closed
2680 	 * socket sitting in hash tables.
2681 	 */
2682 	inet_sk_state_store(sk, state);
2683 }
2684 EXPORT_SYMBOL_GPL(tcp_set_state);
2685 
2686 /*
2687  *	State processing on a close. This implements the state shift for
2688  *	sending our FIN frame. Note that we only send a FIN for some
2689  *	states. A shutdown() may have already sent the FIN, or we may be
2690  *	closed.
2691  */
2692 
2693 static const unsigned char new_state[16] = {
2694   /* current state:        new state:      action:	*/
2695   [0 /* (Invalid) */]	= TCP_CLOSE,
2696   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2697   [TCP_SYN_SENT]	= TCP_CLOSE,
2698   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2699   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2700   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2701   [TCP_TIME_WAIT]	= TCP_CLOSE,
2702   [TCP_CLOSE]		= TCP_CLOSE,
2703   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2704   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2705   [TCP_LISTEN]		= TCP_CLOSE,
2706   [TCP_CLOSING]		= TCP_CLOSING,
2707   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2708 };
2709 
2710 static int tcp_close_state(struct sock *sk)
2711 {
2712 	int next = (int)new_state[sk->sk_state];
2713 	int ns = next & TCP_STATE_MASK;
2714 
2715 	tcp_set_state(sk, ns);
2716 
2717 	return next & TCP_ACTION_FIN;
2718 }
2719 
2720 /*
2721  *	Shutdown the sending side of a connection. Much like close except
2722  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2723  */
2724 
2725 void tcp_shutdown(struct sock *sk, int how)
2726 {
2727 	/*	We need to grab some memory, and put together a FIN,
2728 	 *	and then put it into the queue to be sent.
2729 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2730 	 */
2731 	if (!(how & SEND_SHUTDOWN))
2732 		return;
2733 
2734 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2735 	if ((1 << sk->sk_state) &
2736 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2737 	     TCPF_CLOSE_WAIT)) {
2738 		/* Clear out any half completed packets.  FIN if needed. */
2739 		if (tcp_close_state(sk))
2740 			tcp_send_fin(sk);
2741 	}
2742 }
2743 EXPORT_SYMBOL(tcp_shutdown);
2744 
2745 int tcp_orphan_count_sum(void)
2746 {
2747 	int i, total = 0;
2748 
2749 	for_each_possible_cpu(i)
2750 		total += per_cpu(tcp_orphan_count, i);
2751 
2752 	return max(total, 0);
2753 }
2754 
2755 static int tcp_orphan_cache;
2756 static struct timer_list tcp_orphan_timer;
2757 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2758 
2759 static void tcp_orphan_update(struct timer_list *unused)
2760 {
2761 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2762 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2763 }
2764 
2765 static bool tcp_too_many_orphans(int shift)
2766 {
2767 	return READ_ONCE(tcp_orphan_cache) << shift >
2768 		READ_ONCE(sysctl_tcp_max_orphans);
2769 }
2770 
2771 static bool tcp_out_of_memory(const struct sock *sk)
2772 {
2773 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
2774 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
2775 		return true;
2776 	return false;
2777 }
2778 
2779 bool tcp_check_oom(const struct sock *sk, int shift)
2780 {
2781 	bool too_many_orphans, out_of_socket_memory;
2782 
2783 	too_many_orphans = tcp_too_many_orphans(shift);
2784 	out_of_socket_memory = tcp_out_of_memory(sk);
2785 
2786 	if (too_many_orphans)
2787 		net_info_ratelimited("too many orphaned sockets\n");
2788 	if (out_of_socket_memory)
2789 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2790 	return too_many_orphans || out_of_socket_memory;
2791 }
2792 
2793 void __tcp_close(struct sock *sk, long timeout)
2794 {
2795 	struct sk_buff *skb;
2796 	int data_was_unread = 0;
2797 	int state;
2798 
2799 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2800 
2801 	if (sk->sk_state == TCP_LISTEN) {
2802 		tcp_set_state(sk, TCP_CLOSE);
2803 
2804 		/* Special case. */
2805 		inet_csk_listen_stop(sk);
2806 
2807 		goto adjudge_to_death;
2808 	}
2809 
2810 	/*  We need to flush the recv. buffs.  We do this only on the
2811 	 *  descriptor close, not protocol-sourced closes, because the
2812 	 *  reader process may not have drained the data yet!
2813 	 */
2814 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2815 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2816 
2817 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2818 			len--;
2819 		data_was_unread += len;
2820 		__kfree_skb(skb);
2821 	}
2822 
2823 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2824 	if (sk->sk_state == TCP_CLOSE)
2825 		goto adjudge_to_death;
2826 
2827 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2828 	 * data was lost. To witness the awful effects of the old behavior of
2829 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2830 	 * GET in an FTP client, suspend the process, wait for the client to
2831 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2832 	 * Note: timeout is always zero in such a case.
2833 	 */
2834 	if (unlikely(tcp_sk(sk)->repair)) {
2835 		sk->sk_prot->disconnect(sk, 0);
2836 	} else if (data_was_unread) {
2837 		/* Unread data was tossed, zap the connection. */
2838 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2839 		tcp_set_state(sk, TCP_CLOSE);
2840 		tcp_send_active_reset(sk, sk->sk_allocation,
2841 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
2842 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2843 		/* Check zero linger _after_ checking for unread data. */
2844 		sk->sk_prot->disconnect(sk, 0);
2845 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2846 	} else if (tcp_close_state(sk)) {
2847 		/* We FIN if the application ate all the data before
2848 		 * zapping the connection.
2849 		 */
2850 
2851 		/* RED-PEN. Formally speaking, we have broken TCP state
2852 		 * machine. State transitions:
2853 		 *
2854 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2855 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2856 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2857 		 *
2858 		 * are legal only when FIN has been sent (i.e. in window),
2859 		 * rather than queued out of window. Purists blame.
2860 		 *
2861 		 * F.e. "RFC state" is ESTABLISHED,
2862 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2863 		 *
2864 		 * The visible declinations are that sometimes
2865 		 * we enter time-wait state, when it is not required really
2866 		 * (harmless), do not send active resets, when they are
2867 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2868 		 * they look as CLOSING or LAST_ACK for Linux)
2869 		 * Probably, I missed some more holelets.
2870 		 * 						--ANK
2871 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2872 		 * in a single packet! (May consider it later but will
2873 		 * probably need API support or TCP_CORK SYN-ACK until
2874 		 * data is written and socket is closed.)
2875 		 */
2876 		tcp_send_fin(sk);
2877 	}
2878 
2879 	sk_stream_wait_close(sk, timeout);
2880 
2881 adjudge_to_death:
2882 	state = sk->sk_state;
2883 	sock_hold(sk);
2884 	sock_orphan(sk);
2885 
2886 	local_bh_disable();
2887 	bh_lock_sock(sk);
2888 	/* remove backlog if any, without releasing ownership. */
2889 	__release_sock(sk);
2890 
2891 	this_cpu_inc(tcp_orphan_count);
2892 
2893 	/* Have we already been destroyed by a softirq or backlog? */
2894 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2895 		goto out;
2896 
2897 	/*	This is a (useful) BSD violating of the RFC. There is a
2898 	 *	problem with TCP as specified in that the other end could
2899 	 *	keep a socket open forever with no application left this end.
2900 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2901 	 *	our end. If they send after that then tough - BUT: long enough
2902 	 *	that we won't make the old 4*rto = almost no time - whoops
2903 	 *	reset mistake.
2904 	 *
2905 	 *	Nope, it was not mistake. It is really desired behaviour
2906 	 *	f.e. on http servers, when such sockets are useless, but
2907 	 *	consume significant resources. Let's do it with special
2908 	 *	linger2	option.					--ANK
2909 	 */
2910 
2911 	if (sk->sk_state == TCP_FIN_WAIT2) {
2912 		struct tcp_sock *tp = tcp_sk(sk);
2913 		if (READ_ONCE(tp->linger2) < 0) {
2914 			tcp_set_state(sk, TCP_CLOSE);
2915 			tcp_send_active_reset(sk, GFP_ATOMIC,
2916 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
2917 			__NET_INC_STATS(sock_net(sk),
2918 					LINUX_MIB_TCPABORTONLINGER);
2919 		} else {
2920 			const int tmo = tcp_fin_time(sk);
2921 
2922 			if (tmo > TCP_TIMEWAIT_LEN) {
2923 				inet_csk_reset_keepalive_timer(sk,
2924 						tmo - TCP_TIMEWAIT_LEN);
2925 			} else {
2926 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2927 				goto out;
2928 			}
2929 		}
2930 	}
2931 	if (sk->sk_state != TCP_CLOSE) {
2932 		if (tcp_check_oom(sk, 0)) {
2933 			tcp_set_state(sk, TCP_CLOSE);
2934 			tcp_send_active_reset(sk, GFP_ATOMIC,
2935 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
2936 			__NET_INC_STATS(sock_net(sk),
2937 					LINUX_MIB_TCPABORTONMEMORY);
2938 		} else if (!check_net(sock_net(sk))) {
2939 			/* Not possible to send reset; just close */
2940 			tcp_set_state(sk, TCP_CLOSE);
2941 		}
2942 	}
2943 
2944 	if (sk->sk_state == TCP_CLOSE) {
2945 		struct request_sock *req;
2946 
2947 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2948 						lockdep_sock_is_held(sk));
2949 		/* We could get here with a non-NULL req if the socket is
2950 		 * aborted (e.g., closed with unread data) before 3WHS
2951 		 * finishes.
2952 		 */
2953 		if (req)
2954 			reqsk_fastopen_remove(sk, req, false);
2955 		inet_csk_destroy_sock(sk);
2956 	}
2957 	/* Otherwise, socket is reprieved until protocol close. */
2958 
2959 out:
2960 	bh_unlock_sock(sk);
2961 	local_bh_enable();
2962 }
2963 
2964 void tcp_close(struct sock *sk, long timeout)
2965 {
2966 	lock_sock(sk);
2967 	__tcp_close(sk, timeout);
2968 	release_sock(sk);
2969 	if (!sk->sk_net_refcnt)
2970 		inet_csk_clear_xmit_timers_sync(sk);
2971 	sock_put(sk);
2972 }
2973 EXPORT_SYMBOL(tcp_close);
2974 
2975 /* These states need RST on ABORT according to RFC793 */
2976 
2977 static inline bool tcp_need_reset(int state)
2978 {
2979 	return (1 << state) &
2980 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2981 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2982 }
2983 
2984 static void tcp_rtx_queue_purge(struct sock *sk)
2985 {
2986 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2987 
2988 	tcp_sk(sk)->highest_sack = NULL;
2989 	while (p) {
2990 		struct sk_buff *skb = rb_to_skb(p);
2991 
2992 		p = rb_next(p);
2993 		/* Since we are deleting whole queue, no need to
2994 		 * list_del(&skb->tcp_tsorted_anchor)
2995 		 */
2996 		tcp_rtx_queue_unlink(skb, sk);
2997 		tcp_wmem_free_skb(sk, skb);
2998 	}
2999 }
3000 
3001 void tcp_write_queue_purge(struct sock *sk)
3002 {
3003 	struct sk_buff *skb;
3004 
3005 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3006 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3007 		tcp_skb_tsorted_anchor_cleanup(skb);
3008 		tcp_wmem_free_skb(sk, skb);
3009 	}
3010 	tcp_rtx_queue_purge(sk);
3011 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3012 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3013 	tcp_sk(sk)->packets_out = 0;
3014 	inet_csk(sk)->icsk_backoff = 0;
3015 }
3016 
3017 int tcp_disconnect(struct sock *sk, int flags)
3018 {
3019 	struct inet_sock *inet = inet_sk(sk);
3020 	struct inet_connection_sock *icsk = inet_csk(sk);
3021 	struct tcp_sock *tp = tcp_sk(sk);
3022 	int old_state = sk->sk_state;
3023 	u32 seq;
3024 
3025 	if (old_state != TCP_CLOSE)
3026 		tcp_set_state(sk, TCP_CLOSE);
3027 
3028 	/* ABORT function of RFC793 */
3029 	if (old_state == TCP_LISTEN) {
3030 		inet_csk_listen_stop(sk);
3031 	} else if (unlikely(tp->repair)) {
3032 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3033 	} else if (tcp_need_reset(old_state)) {
3034 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3035 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3036 	} else if (tp->snd_nxt != tp->write_seq &&
3037 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3038 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3039 		 * states
3040 		 */
3041 		tcp_send_active_reset(sk, gfp_any(),
3042 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3043 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3044 	} else if (old_state == TCP_SYN_SENT)
3045 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3046 
3047 	tcp_clear_xmit_timers(sk);
3048 	__skb_queue_purge(&sk->sk_receive_queue);
3049 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3050 	WRITE_ONCE(tp->urg_data, 0);
3051 	sk_set_peek_off(sk, -1);
3052 	tcp_write_queue_purge(sk);
3053 	tcp_fastopen_active_disable_ofo_check(sk);
3054 	skb_rbtree_purge(&tp->out_of_order_queue);
3055 
3056 	inet->inet_dport = 0;
3057 
3058 	inet_bhash2_reset_saddr(sk);
3059 
3060 	WRITE_ONCE(sk->sk_shutdown, 0);
3061 	sock_reset_flag(sk, SOCK_DONE);
3062 	tp->srtt_us = 0;
3063 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3064 	tp->rcv_rtt_last_tsecr = 0;
3065 
3066 	seq = tp->write_seq + tp->max_window + 2;
3067 	if (!seq)
3068 		seq = 1;
3069 	WRITE_ONCE(tp->write_seq, seq);
3070 
3071 	icsk->icsk_backoff = 0;
3072 	icsk->icsk_probes_out = 0;
3073 	icsk->icsk_probes_tstamp = 0;
3074 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3075 	icsk->icsk_rto_min = TCP_RTO_MIN;
3076 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3077 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3078 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3079 	tp->snd_cwnd_cnt = 0;
3080 	tp->is_cwnd_limited = 0;
3081 	tp->max_packets_out = 0;
3082 	tp->window_clamp = 0;
3083 	tp->delivered = 0;
3084 	tp->delivered_ce = 0;
3085 	if (icsk->icsk_ca_ops->release)
3086 		icsk->icsk_ca_ops->release(sk);
3087 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3088 	icsk->icsk_ca_initialized = 0;
3089 	tcp_set_ca_state(sk, TCP_CA_Open);
3090 	tp->is_sack_reneg = 0;
3091 	tcp_clear_retrans(tp);
3092 	tp->total_retrans = 0;
3093 	inet_csk_delack_init(sk);
3094 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3095 	 * issue in __tcp_select_window()
3096 	 */
3097 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3098 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3099 	__sk_dst_reset(sk);
3100 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3101 	tcp_saved_syn_free(tp);
3102 	tp->compressed_ack = 0;
3103 	tp->segs_in = 0;
3104 	tp->segs_out = 0;
3105 	tp->bytes_sent = 0;
3106 	tp->bytes_acked = 0;
3107 	tp->bytes_received = 0;
3108 	tp->bytes_retrans = 0;
3109 	tp->data_segs_in = 0;
3110 	tp->data_segs_out = 0;
3111 	tp->duplicate_sack[0].start_seq = 0;
3112 	tp->duplicate_sack[0].end_seq = 0;
3113 	tp->dsack_dups = 0;
3114 	tp->reord_seen = 0;
3115 	tp->retrans_out = 0;
3116 	tp->sacked_out = 0;
3117 	tp->tlp_high_seq = 0;
3118 	tp->last_oow_ack_time = 0;
3119 	tp->plb_rehash = 0;
3120 	/* There's a bubble in the pipe until at least the first ACK. */
3121 	tp->app_limited = ~0U;
3122 	tp->rate_app_limited = 1;
3123 	tp->rack.mstamp = 0;
3124 	tp->rack.advanced = 0;
3125 	tp->rack.reo_wnd_steps = 1;
3126 	tp->rack.last_delivered = 0;
3127 	tp->rack.reo_wnd_persist = 0;
3128 	tp->rack.dsack_seen = 0;
3129 	tp->syn_data_acked = 0;
3130 	tp->rx_opt.saw_tstamp = 0;
3131 	tp->rx_opt.dsack = 0;
3132 	tp->rx_opt.num_sacks = 0;
3133 	tp->rcv_ooopack = 0;
3134 
3135 
3136 	/* Clean up fastopen related fields */
3137 	tcp_free_fastopen_req(tp);
3138 	inet_clear_bit(DEFER_CONNECT, sk);
3139 	tp->fastopen_client_fail = 0;
3140 
3141 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3142 
3143 	if (sk->sk_frag.page) {
3144 		put_page(sk->sk_frag.page);
3145 		sk->sk_frag.page = NULL;
3146 		sk->sk_frag.offset = 0;
3147 	}
3148 	sk_error_report(sk);
3149 	return 0;
3150 }
3151 EXPORT_SYMBOL(tcp_disconnect);
3152 
3153 static inline bool tcp_can_repair_sock(const struct sock *sk)
3154 {
3155 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3156 		(sk->sk_state != TCP_LISTEN);
3157 }
3158 
3159 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3160 {
3161 	struct tcp_repair_window opt;
3162 
3163 	if (!tp->repair)
3164 		return -EPERM;
3165 
3166 	if (len != sizeof(opt))
3167 		return -EINVAL;
3168 
3169 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3170 		return -EFAULT;
3171 
3172 	if (opt.max_window < opt.snd_wnd)
3173 		return -EINVAL;
3174 
3175 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3176 		return -EINVAL;
3177 
3178 	if (after(opt.rcv_wup, tp->rcv_nxt))
3179 		return -EINVAL;
3180 
3181 	tp->snd_wl1	= opt.snd_wl1;
3182 	tp->snd_wnd	= opt.snd_wnd;
3183 	tp->max_window	= opt.max_window;
3184 
3185 	tp->rcv_wnd	= opt.rcv_wnd;
3186 	tp->rcv_wup	= opt.rcv_wup;
3187 
3188 	return 0;
3189 }
3190 
3191 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3192 		unsigned int len)
3193 {
3194 	struct tcp_sock *tp = tcp_sk(sk);
3195 	struct tcp_repair_opt opt;
3196 	size_t offset = 0;
3197 
3198 	while (len >= sizeof(opt)) {
3199 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3200 			return -EFAULT;
3201 
3202 		offset += sizeof(opt);
3203 		len -= sizeof(opt);
3204 
3205 		switch (opt.opt_code) {
3206 		case TCPOPT_MSS:
3207 			tp->rx_opt.mss_clamp = opt.opt_val;
3208 			tcp_mtup_init(sk);
3209 			break;
3210 		case TCPOPT_WINDOW:
3211 			{
3212 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3213 				u16 rcv_wscale = opt.opt_val >> 16;
3214 
3215 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3216 					return -EFBIG;
3217 
3218 				tp->rx_opt.snd_wscale = snd_wscale;
3219 				tp->rx_opt.rcv_wscale = rcv_wscale;
3220 				tp->rx_opt.wscale_ok = 1;
3221 			}
3222 			break;
3223 		case TCPOPT_SACK_PERM:
3224 			if (opt.opt_val != 0)
3225 				return -EINVAL;
3226 
3227 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3228 			break;
3229 		case TCPOPT_TIMESTAMP:
3230 			if (opt.opt_val != 0)
3231 				return -EINVAL;
3232 
3233 			tp->rx_opt.tstamp_ok = 1;
3234 			break;
3235 		}
3236 	}
3237 
3238 	return 0;
3239 }
3240 
3241 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3242 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3243 
3244 static void tcp_enable_tx_delay(void)
3245 {
3246 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3247 		static int __tcp_tx_delay_enabled = 0;
3248 
3249 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3250 			static_branch_enable(&tcp_tx_delay_enabled);
3251 			pr_info("TCP_TX_DELAY enabled\n");
3252 		}
3253 	}
3254 }
3255 
3256 /* When set indicates to always queue non-full frames.  Later the user clears
3257  * this option and we transmit any pending partial frames in the queue.  This is
3258  * meant to be used alongside sendfile() to get properly filled frames when the
3259  * user (for example) must write out headers with a write() call first and then
3260  * use sendfile to send out the data parts.
3261  *
3262  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3263  * TCP_NODELAY.
3264  */
3265 void __tcp_sock_set_cork(struct sock *sk, bool on)
3266 {
3267 	struct tcp_sock *tp = tcp_sk(sk);
3268 
3269 	if (on) {
3270 		tp->nonagle |= TCP_NAGLE_CORK;
3271 	} else {
3272 		tp->nonagle &= ~TCP_NAGLE_CORK;
3273 		if (tp->nonagle & TCP_NAGLE_OFF)
3274 			tp->nonagle |= TCP_NAGLE_PUSH;
3275 		tcp_push_pending_frames(sk);
3276 	}
3277 }
3278 
3279 void tcp_sock_set_cork(struct sock *sk, bool on)
3280 {
3281 	lock_sock(sk);
3282 	__tcp_sock_set_cork(sk, on);
3283 	release_sock(sk);
3284 }
3285 EXPORT_SYMBOL(tcp_sock_set_cork);
3286 
3287 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3288  * remembered, but it is not activated until cork is cleared.
3289  *
3290  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3291  * even TCP_CORK for currently queued segments.
3292  */
3293 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3294 {
3295 	if (on) {
3296 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3297 		tcp_push_pending_frames(sk);
3298 	} else {
3299 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3300 	}
3301 }
3302 
3303 void tcp_sock_set_nodelay(struct sock *sk)
3304 {
3305 	lock_sock(sk);
3306 	__tcp_sock_set_nodelay(sk, true);
3307 	release_sock(sk);
3308 }
3309 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3310 
3311 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3312 {
3313 	if (!val) {
3314 		inet_csk_enter_pingpong_mode(sk);
3315 		return;
3316 	}
3317 
3318 	inet_csk_exit_pingpong_mode(sk);
3319 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3320 	    inet_csk_ack_scheduled(sk)) {
3321 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3322 		tcp_cleanup_rbuf(sk, 1);
3323 		if (!(val & 1))
3324 			inet_csk_enter_pingpong_mode(sk);
3325 	}
3326 }
3327 
3328 void tcp_sock_set_quickack(struct sock *sk, int val)
3329 {
3330 	lock_sock(sk);
3331 	__tcp_sock_set_quickack(sk, val);
3332 	release_sock(sk);
3333 }
3334 EXPORT_SYMBOL(tcp_sock_set_quickack);
3335 
3336 int tcp_sock_set_syncnt(struct sock *sk, int val)
3337 {
3338 	if (val < 1 || val > MAX_TCP_SYNCNT)
3339 		return -EINVAL;
3340 
3341 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3342 	return 0;
3343 }
3344 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3345 
3346 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3347 {
3348 	/* Cap the max time in ms TCP will retry or probe the window
3349 	 * before giving up and aborting (ETIMEDOUT) a connection.
3350 	 */
3351 	if (val < 0)
3352 		return -EINVAL;
3353 
3354 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3355 	return 0;
3356 }
3357 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3358 
3359 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3360 {
3361 	struct tcp_sock *tp = tcp_sk(sk);
3362 
3363 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3364 		return -EINVAL;
3365 
3366 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3367 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3368 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3369 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3370 		u32 elapsed = keepalive_time_elapsed(tp);
3371 
3372 		if (tp->keepalive_time > elapsed)
3373 			elapsed = tp->keepalive_time - elapsed;
3374 		else
3375 			elapsed = 0;
3376 		inet_csk_reset_keepalive_timer(sk, elapsed);
3377 	}
3378 
3379 	return 0;
3380 }
3381 
3382 int tcp_sock_set_keepidle(struct sock *sk, int val)
3383 {
3384 	int err;
3385 
3386 	lock_sock(sk);
3387 	err = tcp_sock_set_keepidle_locked(sk, val);
3388 	release_sock(sk);
3389 	return err;
3390 }
3391 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3392 
3393 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3394 {
3395 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3396 		return -EINVAL;
3397 
3398 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3399 	return 0;
3400 }
3401 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3402 
3403 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3404 {
3405 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3406 		return -EINVAL;
3407 
3408 	/* Paired with READ_ONCE() in keepalive_probes() */
3409 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3410 	return 0;
3411 }
3412 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3413 
3414 int tcp_set_window_clamp(struct sock *sk, int val)
3415 {
3416 	struct tcp_sock *tp = tcp_sk(sk);
3417 
3418 	if (!val) {
3419 		if (sk->sk_state != TCP_CLOSE)
3420 			return -EINVAL;
3421 		WRITE_ONCE(tp->window_clamp, 0);
3422 	} else {
3423 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3424 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3425 						SOCK_MIN_RCVBUF / 2 : val;
3426 
3427 		if (new_window_clamp == old_window_clamp)
3428 			return 0;
3429 
3430 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3431 		if (new_window_clamp < old_window_clamp) {
3432 			/* need to apply the reserved mem provisioning only
3433 			 * when shrinking the window clamp
3434 			 */
3435 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3436 
3437 		} else {
3438 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3439 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3440 					       tp->rcv_ssthresh);
3441 		}
3442 	}
3443 	return 0;
3444 }
3445 
3446 /*
3447  *	Socket option code for TCP.
3448  */
3449 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3450 		      sockptr_t optval, unsigned int optlen)
3451 {
3452 	struct tcp_sock *tp = tcp_sk(sk);
3453 	struct inet_connection_sock *icsk = inet_csk(sk);
3454 	struct net *net = sock_net(sk);
3455 	int val;
3456 	int err = 0;
3457 
3458 	/* These are data/string values, all the others are ints */
3459 	switch (optname) {
3460 	case TCP_CONGESTION: {
3461 		char name[TCP_CA_NAME_MAX];
3462 
3463 		if (optlen < 1)
3464 			return -EINVAL;
3465 
3466 		val = strncpy_from_sockptr(name, optval,
3467 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3468 		if (val < 0)
3469 			return -EFAULT;
3470 		name[val] = 0;
3471 
3472 		sockopt_lock_sock(sk);
3473 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3474 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3475 								    CAP_NET_ADMIN));
3476 		sockopt_release_sock(sk);
3477 		return err;
3478 	}
3479 	case TCP_ULP: {
3480 		char name[TCP_ULP_NAME_MAX];
3481 
3482 		if (optlen < 1)
3483 			return -EINVAL;
3484 
3485 		val = strncpy_from_sockptr(name, optval,
3486 					min_t(long, TCP_ULP_NAME_MAX - 1,
3487 					      optlen));
3488 		if (val < 0)
3489 			return -EFAULT;
3490 		name[val] = 0;
3491 
3492 		sockopt_lock_sock(sk);
3493 		err = tcp_set_ulp(sk, name);
3494 		sockopt_release_sock(sk);
3495 		return err;
3496 	}
3497 	case TCP_FASTOPEN_KEY: {
3498 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3499 		__u8 *backup_key = NULL;
3500 
3501 		/* Allow a backup key as well to facilitate key rotation
3502 		 * First key is the active one.
3503 		 */
3504 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3505 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3506 			return -EINVAL;
3507 
3508 		if (copy_from_sockptr(key, optval, optlen))
3509 			return -EFAULT;
3510 
3511 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3512 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3513 
3514 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3515 	}
3516 	default:
3517 		/* fallthru */
3518 		break;
3519 	}
3520 
3521 	if (optlen < sizeof(int))
3522 		return -EINVAL;
3523 
3524 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3525 		return -EFAULT;
3526 
3527 	/* Handle options that can be set without locking the socket. */
3528 	switch (optname) {
3529 	case TCP_SYNCNT:
3530 		return tcp_sock_set_syncnt(sk, val);
3531 	case TCP_USER_TIMEOUT:
3532 		return tcp_sock_set_user_timeout(sk, val);
3533 	case TCP_KEEPINTVL:
3534 		return tcp_sock_set_keepintvl(sk, val);
3535 	case TCP_KEEPCNT:
3536 		return tcp_sock_set_keepcnt(sk, val);
3537 	case TCP_LINGER2:
3538 		if (val < 0)
3539 			WRITE_ONCE(tp->linger2, -1);
3540 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3541 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3542 		else
3543 			WRITE_ONCE(tp->linger2, val * HZ);
3544 		return 0;
3545 	case TCP_DEFER_ACCEPT:
3546 		/* Translate value in seconds to number of retransmits */
3547 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3548 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3549 					   TCP_RTO_MAX / HZ));
3550 		return 0;
3551 	}
3552 
3553 	sockopt_lock_sock(sk);
3554 
3555 	switch (optname) {
3556 	case TCP_MAXSEG:
3557 		/* Values greater than interface MTU won't take effect. However
3558 		 * at the point when this call is done we typically don't yet
3559 		 * know which interface is going to be used
3560 		 */
3561 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3562 			err = -EINVAL;
3563 			break;
3564 		}
3565 		tp->rx_opt.user_mss = val;
3566 		break;
3567 
3568 	case TCP_NODELAY:
3569 		__tcp_sock_set_nodelay(sk, val);
3570 		break;
3571 
3572 	case TCP_THIN_LINEAR_TIMEOUTS:
3573 		if (val < 0 || val > 1)
3574 			err = -EINVAL;
3575 		else
3576 			tp->thin_lto = val;
3577 		break;
3578 
3579 	case TCP_THIN_DUPACK:
3580 		if (val < 0 || val > 1)
3581 			err = -EINVAL;
3582 		break;
3583 
3584 	case TCP_REPAIR:
3585 		if (!tcp_can_repair_sock(sk))
3586 			err = -EPERM;
3587 		else if (val == TCP_REPAIR_ON) {
3588 			tp->repair = 1;
3589 			sk->sk_reuse = SK_FORCE_REUSE;
3590 			tp->repair_queue = TCP_NO_QUEUE;
3591 		} else if (val == TCP_REPAIR_OFF) {
3592 			tp->repair = 0;
3593 			sk->sk_reuse = SK_NO_REUSE;
3594 			tcp_send_window_probe(sk);
3595 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3596 			tp->repair = 0;
3597 			sk->sk_reuse = SK_NO_REUSE;
3598 		} else
3599 			err = -EINVAL;
3600 
3601 		break;
3602 
3603 	case TCP_REPAIR_QUEUE:
3604 		if (!tp->repair)
3605 			err = -EPERM;
3606 		else if ((unsigned int)val < TCP_QUEUES_NR)
3607 			tp->repair_queue = val;
3608 		else
3609 			err = -EINVAL;
3610 		break;
3611 
3612 	case TCP_QUEUE_SEQ:
3613 		if (sk->sk_state != TCP_CLOSE) {
3614 			err = -EPERM;
3615 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3616 			if (!tcp_rtx_queue_empty(sk))
3617 				err = -EPERM;
3618 			else
3619 				WRITE_ONCE(tp->write_seq, val);
3620 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3621 			if (tp->rcv_nxt != tp->copied_seq) {
3622 				err = -EPERM;
3623 			} else {
3624 				WRITE_ONCE(tp->rcv_nxt, val);
3625 				WRITE_ONCE(tp->copied_seq, val);
3626 			}
3627 		} else {
3628 			err = -EINVAL;
3629 		}
3630 		break;
3631 
3632 	case TCP_REPAIR_OPTIONS:
3633 		if (!tp->repair)
3634 			err = -EINVAL;
3635 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3636 			err = tcp_repair_options_est(sk, optval, optlen);
3637 		else
3638 			err = -EPERM;
3639 		break;
3640 
3641 	case TCP_CORK:
3642 		__tcp_sock_set_cork(sk, val);
3643 		break;
3644 
3645 	case TCP_KEEPIDLE:
3646 		err = tcp_sock_set_keepidle_locked(sk, val);
3647 		break;
3648 	case TCP_SAVE_SYN:
3649 		/* 0: disable, 1: enable, 2: start from ether_header */
3650 		if (val < 0 || val > 2)
3651 			err = -EINVAL;
3652 		else
3653 			tp->save_syn = val;
3654 		break;
3655 
3656 	case TCP_WINDOW_CLAMP:
3657 		err = tcp_set_window_clamp(sk, val);
3658 		break;
3659 
3660 	case TCP_QUICKACK:
3661 		__tcp_sock_set_quickack(sk, val);
3662 		break;
3663 
3664 	case TCP_AO_REPAIR:
3665 		if (!tcp_can_repair_sock(sk)) {
3666 			err = -EPERM;
3667 			break;
3668 		}
3669 		err = tcp_ao_set_repair(sk, optval, optlen);
3670 		break;
3671 #ifdef CONFIG_TCP_AO
3672 	case TCP_AO_ADD_KEY:
3673 	case TCP_AO_DEL_KEY:
3674 	case TCP_AO_INFO: {
3675 		/* If this is the first TCP-AO setsockopt() on the socket,
3676 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3677 		 * in any state.
3678 		 */
3679 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3680 			goto ao_parse;
3681 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3682 					      lockdep_sock_is_held(sk)))
3683 			goto ao_parse;
3684 		if (tp->repair)
3685 			goto ao_parse;
3686 		err = -EISCONN;
3687 		break;
3688 ao_parse:
3689 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3690 		break;
3691 	}
3692 #endif
3693 #ifdef CONFIG_TCP_MD5SIG
3694 	case TCP_MD5SIG:
3695 	case TCP_MD5SIG_EXT:
3696 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3697 		break;
3698 #endif
3699 	case TCP_FASTOPEN:
3700 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3701 		    TCPF_LISTEN))) {
3702 			tcp_fastopen_init_key_once(net);
3703 
3704 			fastopen_queue_tune(sk, val);
3705 		} else {
3706 			err = -EINVAL;
3707 		}
3708 		break;
3709 	case TCP_FASTOPEN_CONNECT:
3710 		if (val > 1 || val < 0) {
3711 			err = -EINVAL;
3712 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3713 			   TFO_CLIENT_ENABLE) {
3714 			if (sk->sk_state == TCP_CLOSE)
3715 				tp->fastopen_connect = val;
3716 			else
3717 				err = -EINVAL;
3718 		} else {
3719 			err = -EOPNOTSUPP;
3720 		}
3721 		break;
3722 	case TCP_FASTOPEN_NO_COOKIE:
3723 		if (val > 1 || val < 0)
3724 			err = -EINVAL;
3725 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3726 			err = -EINVAL;
3727 		else
3728 			tp->fastopen_no_cookie = val;
3729 		break;
3730 	case TCP_TIMESTAMP:
3731 		if (!tp->repair) {
3732 			err = -EPERM;
3733 			break;
3734 		}
3735 		/* val is an opaque field,
3736 		 * and low order bit contains usec_ts enable bit.
3737 		 * Its a best effort, and we do not care if user makes an error.
3738 		 */
3739 		tp->tcp_usec_ts = val & 1;
3740 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3741 		break;
3742 	case TCP_REPAIR_WINDOW:
3743 		err = tcp_repair_set_window(tp, optval, optlen);
3744 		break;
3745 	case TCP_NOTSENT_LOWAT:
3746 		WRITE_ONCE(tp->notsent_lowat, val);
3747 		sk->sk_write_space(sk);
3748 		break;
3749 	case TCP_INQ:
3750 		if (val > 1 || val < 0)
3751 			err = -EINVAL;
3752 		else
3753 			tp->recvmsg_inq = val;
3754 		break;
3755 	case TCP_TX_DELAY:
3756 		if (val)
3757 			tcp_enable_tx_delay();
3758 		WRITE_ONCE(tp->tcp_tx_delay, val);
3759 		break;
3760 	default:
3761 		err = -ENOPROTOOPT;
3762 		break;
3763 	}
3764 
3765 	sockopt_release_sock(sk);
3766 	return err;
3767 }
3768 
3769 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3770 		   unsigned int optlen)
3771 {
3772 	const struct inet_connection_sock *icsk = inet_csk(sk);
3773 
3774 	if (level != SOL_TCP)
3775 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3776 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3777 								optval, optlen);
3778 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3779 }
3780 EXPORT_SYMBOL(tcp_setsockopt);
3781 
3782 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3783 				      struct tcp_info *info)
3784 {
3785 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3786 	enum tcp_chrono i;
3787 
3788 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3789 		stats[i] = tp->chrono_stat[i - 1];
3790 		if (i == tp->chrono_type)
3791 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3792 		stats[i] *= USEC_PER_SEC / HZ;
3793 		total += stats[i];
3794 	}
3795 
3796 	info->tcpi_busy_time = total;
3797 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3798 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3799 }
3800 
3801 /* Return information about state of tcp endpoint in API format. */
3802 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3803 {
3804 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3805 	const struct inet_connection_sock *icsk = inet_csk(sk);
3806 	unsigned long rate;
3807 	u32 now;
3808 	u64 rate64;
3809 	bool slow;
3810 
3811 	memset(info, 0, sizeof(*info));
3812 	if (sk->sk_type != SOCK_STREAM)
3813 		return;
3814 
3815 	info->tcpi_state = inet_sk_state_load(sk);
3816 
3817 	/* Report meaningful fields for all TCP states, including listeners */
3818 	rate = READ_ONCE(sk->sk_pacing_rate);
3819 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3820 	info->tcpi_pacing_rate = rate64;
3821 
3822 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3823 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3824 	info->tcpi_max_pacing_rate = rate64;
3825 
3826 	info->tcpi_reordering = tp->reordering;
3827 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3828 
3829 	if (info->tcpi_state == TCP_LISTEN) {
3830 		/* listeners aliased fields :
3831 		 * tcpi_unacked -> Number of children ready for accept()
3832 		 * tcpi_sacked  -> max backlog
3833 		 */
3834 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3835 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3836 		return;
3837 	}
3838 
3839 	slow = lock_sock_fast(sk);
3840 
3841 	info->tcpi_ca_state = icsk->icsk_ca_state;
3842 	info->tcpi_retransmits = icsk->icsk_retransmits;
3843 	info->tcpi_probes = icsk->icsk_probes_out;
3844 	info->tcpi_backoff = icsk->icsk_backoff;
3845 
3846 	if (tp->rx_opt.tstamp_ok)
3847 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3848 	if (tcp_is_sack(tp))
3849 		info->tcpi_options |= TCPI_OPT_SACK;
3850 	if (tp->rx_opt.wscale_ok) {
3851 		info->tcpi_options |= TCPI_OPT_WSCALE;
3852 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3853 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3854 	}
3855 
3856 	if (tp->ecn_flags & TCP_ECN_OK)
3857 		info->tcpi_options |= TCPI_OPT_ECN;
3858 	if (tp->ecn_flags & TCP_ECN_SEEN)
3859 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3860 	if (tp->syn_data_acked)
3861 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3862 	if (tp->tcp_usec_ts)
3863 		info->tcpi_options |= TCPI_OPT_USEC_TS;
3864 
3865 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3866 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3867 						tcp_delack_max(sk)));
3868 	info->tcpi_snd_mss = tp->mss_cache;
3869 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3870 
3871 	info->tcpi_unacked = tp->packets_out;
3872 	info->tcpi_sacked = tp->sacked_out;
3873 
3874 	info->tcpi_lost = tp->lost_out;
3875 	info->tcpi_retrans = tp->retrans_out;
3876 
3877 	now = tcp_jiffies32;
3878 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3879 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3880 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3881 
3882 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3883 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3884 	info->tcpi_rtt = tp->srtt_us >> 3;
3885 	info->tcpi_rttvar = tp->mdev_us >> 2;
3886 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3887 	info->tcpi_advmss = tp->advmss;
3888 
3889 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3890 	info->tcpi_rcv_space = tp->rcvq_space.space;
3891 
3892 	info->tcpi_total_retrans = tp->total_retrans;
3893 
3894 	info->tcpi_bytes_acked = tp->bytes_acked;
3895 	info->tcpi_bytes_received = tp->bytes_received;
3896 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3897 	tcp_get_info_chrono_stats(tp, info);
3898 
3899 	info->tcpi_segs_out = tp->segs_out;
3900 
3901 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3902 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3903 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3904 
3905 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3906 	info->tcpi_data_segs_out = tp->data_segs_out;
3907 
3908 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3909 	rate64 = tcp_compute_delivery_rate(tp);
3910 	if (rate64)
3911 		info->tcpi_delivery_rate = rate64;
3912 	info->tcpi_delivered = tp->delivered;
3913 	info->tcpi_delivered_ce = tp->delivered_ce;
3914 	info->tcpi_bytes_sent = tp->bytes_sent;
3915 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3916 	info->tcpi_dsack_dups = tp->dsack_dups;
3917 	info->tcpi_reord_seen = tp->reord_seen;
3918 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3919 	info->tcpi_snd_wnd = tp->snd_wnd;
3920 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3921 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3922 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3923 
3924 	info->tcpi_total_rto = tp->total_rto;
3925 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3926 	info->tcpi_total_rto_time = tp->total_rto_time;
3927 	if (tp->rto_stamp)
3928 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3929 
3930 	unlock_sock_fast(sk, slow);
3931 }
3932 EXPORT_SYMBOL_GPL(tcp_get_info);
3933 
3934 static size_t tcp_opt_stats_get_size(void)
3935 {
3936 	return
3937 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3938 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3939 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3940 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3941 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3942 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3943 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3944 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3945 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3946 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3947 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3948 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3949 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3950 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3951 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3952 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3953 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3954 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3955 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3956 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3957 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3958 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3959 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3960 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3961 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3962 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3963 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3964 		0;
3965 }
3966 
3967 /* Returns TTL or hop limit of an incoming packet from skb. */
3968 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3969 {
3970 	if (skb->protocol == htons(ETH_P_IP))
3971 		return ip_hdr(skb)->ttl;
3972 	else if (skb->protocol == htons(ETH_P_IPV6))
3973 		return ipv6_hdr(skb)->hop_limit;
3974 	else
3975 		return 0;
3976 }
3977 
3978 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3979 					       const struct sk_buff *orig_skb,
3980 					       const struct sk_buff *ack_skb)
3981 {
3982 	const struct tcp_sock *tp = tcp_sk(sk);
3983 	struct sk_buff *stats;
3984 	struct tcp_info info;
3985 	unsigned long rate;
3986 	u64 rate64;
3987 
3988 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3989 	if (!stats)
3990 		return NULL;
3991 
3992 	tcp_get_info_chrono_stats(tp, &info);
3993 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3994 			  info.tcpi_busy_time, TCP_NLA_PAD);
3995 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3996 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3997 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3998 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3999 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4000 			  tp->data_segs_out, TCP_NLA_PAD);
4001 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4002 			  tp->total_retrans, TCP_NLA_PAD);
4003 
4004 	rate = READ_ONCE(sk->sk_pacing_rate);
4005 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4006 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4007 
4008 	rate64 = tcp_compute_delivery_rate(tp);
4009 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4010 
4011 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4012 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4013 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4014 
4015 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4016 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4017 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4018 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4019 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4020 
4021 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4022 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4023 
4024 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4025 			  TCP_NLA_PAD);
4026 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4027 			  TCP_NLA_PAD);
4028 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4029 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4030 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4031 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4032 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4033 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4034 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4035 			  TCP_NLA_PAD);
4036 	if (ack_skb)
4037 		nla_put_u8(stats, TCP_NLA_TTL,
4038 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4039 
4040 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4041 	return stats;
4042 }
4043 
4044 int do_tcp_getsockopt(struct sock *sk, int level,
4045 		      int optname, sockptr_t optval, sockptr_t optlen)
4046 {
4047 	struct inet_connection_sock *icsk = inet_csk(sk);
4048 	struct tcp_sock *tp = tcp_sk(sk);
4049 	struct net *net = sock_net(sk);
4050 	int val, len;
4051 
4052 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4053 		return -EFAULT;
4054 
4055 	if (len < 0)
4056 		return -EINVAL;
4057 
4058 	len = min_t(unsigned int, len, sizeof(int));
4059 
4060 	switch (optname) {
4061 	case TCP_MAXSEG:
4062 		val = tp->mss_cache;
4063 		if (tp->rx_opt.user_mss &&
4064 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4065 			val = tp->rx_opt.user_mss;
4066 		if (tp->repair)
4067 			val = tp->rx_opt.mss_clamp;
4068 		break;
4069 	case TCP_NODELAY:
4070 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4071 		break;
4072 	case TCP_CORK:
4073 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4074 		break;
4075 	case TCP_KEEPIDLE:
4076 		val = keepalive_time_when(tp) / HZ;
4077 		break;
4078 	case TCP_KEEPINTVL:
4079 		val = keepalive_intvl_when(tp) / HZ;
4080 		break;
4081 	case TCP_KEEPCNT:
4082 		val = keepalive_probes(tp);
4083 		break;
4084 	case TCP_SYNCNT:
4085 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4086 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4087 		break;
4088 	case TCP_LINGER2:
4089 		val = READ_ONCE(tp->linger2);
4090 		if (val >= 0)
4091 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4092 		break;
4093 	case TCP_DEFER_ACCEPT:
4094 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4095 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4096 				      TCP_RTO_MAX / HZ);
4097 		break;
4098 	case TCP_WINDOW_CLAMP:
4099 		val = READ_ONCE(tp->window_clamp);
4100 		break;
4101 	case TCP_INFO: {
4102 		struct tcp_info info;
4103 
4104 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4105 			return -EFAULT;
4106 
4107 		tcp_get_info(sk, &info);
4108 
4109 		len = min_t(unsigned int, len, sizeof(info));
4110 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4111 			return -EFAULT;
4112 		if (copy_to_sockptr(optval, &info, len))
4113 			return -EFAULT;
4114 		return 0;
4115 	}
4116 	case TCP_CC_INFO: {
4117 		const struct tcp_congestion_ops *ca_ops;
4118 		union tcp_cc_info info;
4119 		size_t sz = 0;
4120 		int attr;
4121 
4122 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4123 			return -EFAULT;
4124 
4125 		ca_ops = icsk->icsk_ca_ops;
4126 		if (ca_ops && ca_ops->get_info)
4127 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4128 
4129 		len = min_t(unsigned int, len, sz);
4130 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4131 			return -EFAULT;
4132 		if (copy_to_sockptr(optval, &info, len))
4133 			return -EFAULT;
4134 		return 0;
4135 	}
4136 	case TCP_QUICKACK:
4137 		val = !inet_csk_in_pingpong_mode(sk);
4138 		break;
4139 
4140 	case TCP_CONGESTION:
4141 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4142 			return -EFAULT;
4143 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4144 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4145 			return -EFAULT;
4146 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4147 			return -EFAULT;
4148 		return 0;
4149 
4150 	case TCP_ULP:
4151 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4152 			return -EFAULT;
4153 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4154 		if (!icsk->icsk_ulp_ops) {
4155 			len = 0;
4156 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4157 				return -EFAULT;
4158 			return 0;
4159 		}
4160 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4161 			return -EFAULT;
4162 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4163 			return -EFAULT;
4164 		return 0;
4165 
4166 	case TCP_FASTOPEN_KEY: {
4167 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4168 		unsigned int key_len;
4169 
4170 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4171 			return -EFAULT;
4172 
4173 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4174 				TCP_FASTOPEN_KEY_LENGTH;
4175 		len = min_t(unsigned int, len, key_len);
4176 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4177 			return -EFAULT;
4178 		if (copy_to_sockptr(optval, key, len))
4179 			return -EFAULT;
4180 		return 0;
4181 	}
4182 	case TCP_THIN_LINEAR_TIMEOUTS:
4183 		val = tp->thin_lto;
4184 		break;
4185 
4186 	case TCP_THIN_DUPACK:
4187 		val = 0;
4188 		break;
4189 
4190 	case TCP_REPAIR:
4191 		val = tp->repair;
4192 		break;
4193 
4194 	case TCP_REPAIR_QUEUE:
4195 		if (tp->repair)
4196 			val = tp->repair_queue;
4197 		else
4198 			return -EINVAL;
4199 		break;
4200 
4201 	case TCP_REPAIR_WINDOW: {
4202 		struct tcp_repair_window opt;
4203 
4204 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4205 			return -EFAULT;
4206 
4207 		if (len != sizeof(opt))
4208 			return -EINVAL;
4209 
4210 		if (!tp->repair)
4211 			return -EPERM;
4212 
4213 		opt.snd_wl1	= tp->snd_wl1;
4214 		opt.snd_wnd	= tp->snd_wnd;
4215 		opt.max_window	= tp->max_window;
4216 		opt.rcv_wnd	= tp->rcv_wnd;
4217 		opt.rcv_wup	= tp->rcv_wup;
4218 
4219 		if (copy_to_sockptr(optval, &opt, len))
4220 			return -EFAULT;
4221 		return 0;
4222 	}
4223 	case TCP_QUEUE_SEQ:
4224 		if (tp->repair_queue == TCP_SEND_QUEUE)
4225 			val = tp->write_seq;
4226 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4227 			val = tp->rcv_nxt;
4228 		else
4229 			return -EINVAL;
4230 		break;
4231 
4232 	case TCP_USER_TIMEOUT:
4233 		val = READ_ONCE(icsk->icsk_user_timeout);
4234 		break;
4235 
4236 	case TCP_FASTOPEN:
4237 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4238 		break;
4239 
4240 	case TCP_FASTOPEN_CONNECT:
4241 		val = tp->fastopen_connect;
4242 		break;
4243 
4244 	case TCP_FASTOPEN_NO_COOKIE:
4245 		val = tp->fastopen_no_cookie;
4246 		break;
4247 
4248 	case TCP_TX_DELAY:
4249 		val = READ_ONCE(tp->tcp_tx_delay);
4250 		break;
4251 
4252 	case TCP_TIMESTAMP:
4253 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4254 		if (tp->tcp_usec_ts)
4255 			val |= 1;
4256 		else
4257 			val &= ~1;
4258 		break;
4259 	case TCP_NOTSENT_LOWAT:
4260 		val = READ_ONCE(tp->notsent_lowat);
4261 		break;
4262 	case TCP_INQ:
4263 		val = tp->recvmsg_inq;
4264 		break;
4265 	case TCP_SAVE_SYN:
4266 		val = tp->save_syn;
4267 		break;
4268 	case TCP_SAVED_SYN: {
4269 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4270 			return -EFAULT;
4271 
4272 		sockopt_lock_sock(sk);
4273 		if (tp->saved_syn) {
4274 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4275 				len = tcp_saved_syn_len(tp->saved_syn);
4276 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4277 					sockopt_release_sock(sk);
4278 					return -EFAULT;
4279 				}
4280 				sockopt_release_sock(sk);
4281 				return -EINVAL;
4282 			}
4283 			len = tcp_saved_syn_len(tp->saved_syn);
4284 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4285 				sockopt_release_sock(sk);
4286 				return -EFAULT;
4287 			}
4288 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4289 				sockopt_release_sock(sk);
4290 				return -EFAULT;
4291 			}
4292 			tcp_saved_syn_free(tp);
4293 			sockopt_release_sock(sk);
4294 		} else {
4295 			sockopt_release_sock(sk);
4296 			len = 0;
4297 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4298 				return -EFAULT;
4299 		}
4300 		return 0;
4301 	}
4302 #ifdef CONFIG_MMU
4303 	case TCP_ZEROCOPY_RECEIVE: {
4304 		struct scm_timestamping_internal tss;
4305 		struct tcp_zerocopy_receive zc = {};
4306 		int err;
4307 
4308 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4309 			return -EFAULT;
4310 		if (len < 0 ||
4311 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4312 			return -EINVAL;
4313 		if (unlikely(len > sizeof(zc))) {
4314 			err = check_zeroed_sockptr(optval, sizeof(zc),
4315 						   len - sizeof(zc));
4316 			if (err < 1)
4317 				return err == 0 ? -EINVAL : err;
4318 			len = sizeof(zc);
4319 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4320 				return -EFAULT;
4321 		}
4322 		if (copy_from_sockptr(&zc, optval, len))
4323 			return -EFAULT;
4324 		if (zc.reserved)
4325 			return -EINVAL;
4326 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4327 			return -EINVAL;
4328 		sockopt_lock_sock(sk);
4329 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4330 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4331 							  &zc, &len, err);
4332 		sockopt_release_sock(sk);
4333 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4334 			goto zerocopy_rcv_cmsg;
4335 		switch (len) {
4336 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4337 			goto zerocopy_rcv_cmsg;
4338 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4339 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4340 		case offsetofend(struct tcp_zerocopy_receive, flags):
4341 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4342 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4343 		case offsetofend(struct tcp_zerocopy_receive, err):
4344 			goto zerocopy_rcv_sk_err;
4345 		case offsetofend(struct tcp_zerocopy_receive, inq):
4346 			goto zerocopy_rcv_inq;
4347 		case offsetofend(struct tcp_zerocopy_receive, length):
4348 		default:
4349 			goto zerocopy_rcv_out;
4350 		}
4351 zerocopy_rcv_cmsg:
4352 		if (zc.msg_flags & TCP_CMSG_TS)
4353 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4354 		else
4355 			zc.msg_flags = 0;
4356 zerocopy_rcv_sk_err:
4357 		if (!err)
4358 			zc.err = sock_error(sk);
4359 zerocopy_rcv_inq:
4360 		zc.inq = tcp_inq_hint(sk);
4361 zerocopy_rcv_out:
4362 		if (!err && copy_to_sockptr(optval, &zc, len))
4363 			err = -EFAULT;
4364 		return err;
4365 	}
4366 #endif
4367 	case TCP_AO_REPAIR:
4368 		if (!tcp_can_repair_sock(sk))
4369 			return -EPERM;
4370 		return tcp_ao_get_repair(sk, optval, optlen);
4371 	case TCP_AO_GET_KEYS:
4372 	case TCP_AO_INFO: {
4373 		int err;
4374 
4375 		sockopt_lock_sock(sk);
4376 		if (optname == TCP_AO_GET_KEYS)
4377 			err = tcp_ao_get_mkts(sk, optval, optlen);
4378 		else
4379 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4380 		sockopt_release_sock(sk);
4381 
4382 		return err;
4383 	}
4384 	case TCP_IS_MPTCP:
4385 		val = 0;
4386 		break;
4387 	default:
4388 		return -ENOPROTOOPT;
4389 	}
4390 
4391 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4392 		return -EFAULT;
4393 	if (copy_to_sockptr(optval, &val, len))
4394 		return -EFAULT;
4395 	return 0;
4396 }
4397 
4398 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4399 {
4400 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4401 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4402 	 */
4403 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4404 		return true;
4405 
4406 	return false;
4407 }
4408 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4409 
4410 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4411 		   int __user *optlen)
4412 {
4413 	struct inet_connection_sock *icsk = inet_csk(sk);
4414 
4415 	if (level != SOL_TCP)
4416 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4417 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4418 								optval, optlen);
4419 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4420 				 USER_SOCKPTR(optlen));
4421 }
4422 EXPORT_SYMBOL(tcp_getsockopt);
4423 
4424 #ifdef CONFIG_TCP_MD5SIG
4425 int tcp_md5_sigpool_id = -1;
4426 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4427 
4428 int tcp_md5_alloc_sigpool(void)
4429 {
4430 	size_t scratch_size;
4431 	int ret;
4432 
4433 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4434 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4435 	if (ret >= 0) {
4436 		/* As long as any md5 sigpool was allocated, the return
4437 		 * id would stay the same. Re-write the id only for the case
4438 		 * when previously all MD5 keys were deleted and this call
4439 		 * allocates the first MD5 key, which may return a different
4440 		 * sigpool id than was used previously.
4441 		 */
4442 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4443 		return 0;
4444 	}
4445 	return ret;
4446 }
4447 
4448 void tcp_md5_release_sigpool(void)
4449 {
4450 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4451 }
4452 
4453 void tcp_md5_add_sigpool(void)
4454 {
4455 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4456 }
4457 
4458 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4459 		     const struct tcp_md5sig_key *key)
4460 {
4461 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4462 	struct scatterlist sg;
4463 
4464 	sg_init_one(&sg, key->key, keylen);
4465 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4466 
4467 	/* We use data_race() because tcp_md5_do_add() might change
4468 	 * key->key under us
4469 	 */
4470 	return data_race(crypto_ahash_update(hp->req));
4471 }
4472 EXPORT_SYMBOL(tcp_md5_hash_key);
4473 
4474 /* Called with rcu_read_lock() */
4475 static enum skb_drop_reason
4476 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4477 		     const void *saddr, const void *daddr,
4478 		     int family, int l3index, const __u8 *hash_location)
4479 {
4480 	/* This gets called for each TCP segment that has TCP-MD5 option.
4481 	 * We have 3 drop cases:
4482 	 * o No MD5 hash and one expected.
4483 	 * o MD5 hash and we're not expecting one.
4484 	 * o MD5 hash and its wrong.
4485 	 */
4486 	const struct tcp_sock *tp = tcp_sk(sk);
4487 	struct tcp_md5sig_key *key;
4488 	u8 newhash[16];
4489 	int genhash;
4490 
4491 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4492 
4493 	if (!key && hash_location) {
4494 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4495 		trace_tcp_hash_md5_unexpected(sk, skb);
4496 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4497 	}
4498 
4499 	/* Check the signature.
4500 	 * To support dual stack listeners, we need to handle
4501 	 * IPv4-mapped case.
4502 	 */
4503 	if (family == AF_INET)
4504 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4505 	else
4506 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4507 							 NULL, skb);
4508 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4509 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4510 		trace_tcp_hash_md5_mismatch(sk, skb);
4511 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4512 	}
4513 	return SKB_NOT_DROPPED_YET;
4514 }
4515 #else
4516 static inline enum skb_drop_reason
4517 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4518 		     const void *saddr, const void *daddr,
4519 		     int family, int l3index, const __u8 *hash_location)
4520 {
4521 	return SKB_NOT_DROPPED_YET;
4522 }
4523 
4524 #endif
4525 
4526 /* Called with rcu_read_lock() */
4527 enum skb_drop_reason
4528 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4529 		 const struct sk_buff *skb,
4530 		 const void *saddr, const void *daddr,
4531 		 int family, int dif, int sdif)
4532 {
4533 	const struct tcphdr *th = tcp_hdr(skb);
4534 	const struct tcp_ao_hdr *aoh;
4535 	const __u8 *md5_location;
4536 	int l3index;
4537 
4538 	/* Invalid option or two times meet any of auth options */
4539 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4540 		trace_tcp_hash_bad_header(sk, skb);
4541 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4542 	}
4543 
4544 	if (req) {
4545 		if (tcp_rsk_used_ao(req) != !!aoh) {
4546 			u8 keyid, rnext, maclen;
4547 
4548 			if (aoh) {
4549 				keyid = aoh->keyid;
4550 				rnext = aoh->rnext_keyid;
4551 				maclen = tcp_ao_hdr_maclen(aoh);
4552 			} else {
4553 				keyid = rnext = maclen = 0;
4554 			}
4555 
4556 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4557 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4558 			return SKB_DROP_REASON_TCP_AOFAILURE;
4559 		}
4560 	}
4561 
4562 	/* sdif set, means packet ingressed via a device
4563 	 * in an L3 domain and dif is set to the l3mdev
4564 	 */
4565 	l3index = sdif ? dif : 0;
4566 
4567 	/* Fast path: unsigned segments */
4568 	if (likely(!md5_location && !aoh)) {
4569 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4570 		 * for the remote peer. On TCP-AO established connection
4571 		 * the last key is impossible to remove, so there's
4572 		 * always at least one current_key.
4573 		 */
4574 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4575 			trace_tcp_hash_ao_required(sk, skb);
4576 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4577 		}
4578 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4579 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4580 			trace_tcp_hash_md5_required(sk, skb);
4581 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4582 		}
4583 		return SKB_NOT_DROPPED_YET;
4584 	}
4585 
4586 	if (aoh)
4587 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4588 
4589 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4590 				    l3index, md5_location);
4591 }
4592 EXPORT_SYMBOL_GPL(tcp_inbound_hash);
4593 
4594 void tcp_done(struct sock *sk)
4595 {
4596 	struct request_sock *req;
4597 
4598 	/* We might be called with a new socket, after
4599 	 * inet_csk_prepare_forced_close() has been called
4600 	 * so we can not use lockdep_sock_is_held(sk)
4601 	 */
4602 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4603 
4604 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4605 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4606 
4607 	tcp_set_state(sk, TCP_CLOSE);
4608 	tcp_clear_xmit_timers(sk);
4609 	if (req)
4610 		reqsk_fastopen_remove(sk, req, false);
4611 
4612 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4613 
4614 	if (!sock_flag(sk, SOCK_DEAD))
4615 		sk->sk_state_change(sk);
4616 	else
4617 		inet_csk_destroy_sock(sk);
4618 }
4619 EXPORT_SYMBOL_GPL(tcp_done);
4620 
4621 int tcp_abort(struct sock *sk, int err)
4622 {
4623 	int state = inet_sk_state_load(sk);
4624 
4625 	if (state == TCP_NEW_SYN_RECV) {
4626 		struct request_sock *req = inet_reqsk(sk);
4627 
4628 		local_bh_disable();
4629 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4630 		local_bh_enable();
4631 		return 0;
4632 	}
4633 	if (state == TCP_TIME_WAIT) {
4634 		struct inet_timewait_sock *tw = inet_twsk(sk);
4635 
4636 		refcount_inc(&tw->tw_refcnt);
4637 		local_bh_disable();
4638 		inet_twsk_deschedule_put(tw);
4639 		local_bh_enable();
4640 		return 0;
4641 	}
4642 
4643 	/* BPF context ensures sock locking. */
4644 	if (!has_current_bpf_ctx())
4645 		/* Don't race with userspace socket closes such as tcp_close. */
4646 		lock_sock(sk);
4647 
4648 	/* Avoid closing the same socket twice. */
4649 	if (sk->sk_state == TCP_CLOSE) {
4650 		if (!has_current_bpf_ctx())
4651 			release_sock(sk);
4652 		return -ENOENT;
4653 	}
4654 
4655 	if (sk->sk_state == TCP_LISTEN) {
4656 		tcp_set_state(sk, TCP_CLOSE);
4657 		inet_csk_listen_stop(sk);
4658 	}
4659 
4660 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4661 	local_bh_disable();
4662 	bh_lock_sock(sk);
4663 
4664 	if (tcp_need_reset(sk->sk_state))
4665 		tcp_send_active_reset(sk, GFP_ATOMIC,
4666 				      SK_RST_REASON_TCP_STATE);
4667 	tcp_done_with_error(sk, err);
4668 
4669 	bh_unlock_sock(sk);
4670 	local_bh_enable();
4671 	if (!has_current_bpf_ctx())
4672 		release_sock(sk);
4673 	return 0;
4674 }
4675 EXPORT_SYMBOL_GPL(tcp_abort);
4676 
4677 extern struct tcp_congestion_ops tcp_reno;
4678 
4679 static __initdata unsigned long thash_entries;
4680 static int __init set_thash_entries(char *str)
4681 {
4682 	ssize_t ret;
4683 
4684 	if (!str)
4685 		return 0;
4686 
4687 	ret = kstrtoul(str, 0, &thash_entries);
4688 	if (ret)
4689 		return 0;
4690 
4691 	return 1;
4692 }
4693 __setup("thash_entries=", set_thash_entries);
4694 
4695 static void __init tcp_init_mem(void)
4696 {
4697 	unsigned long limit = nr_free_buffer_pages() / 16;
4698 
4699 	limit = max(limit, 128UL);
4700 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4701 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4702 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4703 }
4704 
4705 static void __init tcp_struct_check(void)
4706 {
4707 	/* TX read-mostly hotpath cache lines */
4708 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4709 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4710 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4711 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4712 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4713 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4714 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4715 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4716 
4717 	/* TXRX read-mostly hotpath cache lines */
4718 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4719 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4720 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4721 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4722 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4723 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4724 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4725 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4726 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4727 
4728 	/* RX read-mostly hotpath cache lines */
4729 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4730 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4731 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4732 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4733 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4734 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4735 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4736 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4737 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4738 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4739 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4740 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4741 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4742 
4743 	/* TX read-write hotpath cache lines */
4744 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4745 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4746 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4747 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4748 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4749 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4750 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4751 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4752 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4753 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4754 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4755 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4756 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4757 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4758 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4759 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
4760 
4761 	/* TXRX read-write hotpath cache lines */
4762 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
4763 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
4764 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
4765 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4766 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4767 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4768 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4769 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4770 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4771 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4772 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4773 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4774 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4775 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4776 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4777 
4778 	/* 32bit arches with 8byte alignment on u64 fields might need padding
4779 	 * before tcp_clock_cache.
4780 	 */
4781 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
4782 
4783 	/* RX read-write hotpath cache lines */
4784 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4785 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4786 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4787 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4788 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4789 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4790 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4791 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4792 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4793 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4794 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4795 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4796 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4797 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4798 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4799 }
4800 
4801 void __init tcp_init(void)
4802 {
4803 	int max_rshare, max_wshare, cnt;
4804 	unsigned long limit;
4805 	unsigned int i;
4806 
4807 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4808 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4809 		     sizeof_field(struct sk_buff, cb));
4810 
4811 	tcp_struct_check();
4812 
4813 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4814 
4815 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4816 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4817 
4818 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4819 			    thash_entries, 21,  /* one slot per 2 MB*/
4820 			    0, 64 * 1024);
4821 	tcp_hashinfo.bind_bucket_cachep =
4822 		kmem_cache_create("tcp_bind_bucket",
4823 				  sizeof(struct inet_bind_bucket), 0,
4824 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4825 				  SLAB_ACCOUNT,
4826 				  NULL);
4827 	tcp_hashinfo.bind2_bucket_cachep =
4828 		kmem_cache_create("tcp_bind2_bucket",
4829 				  sizeof(struct inet_bind2_bucket), 0,
4830 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4831 				  SLAB_ACCOUNT,
4832 				  NULL);
4833 
4834 	/* Size and allocate the main established and bind bucket
4835 	 * hash tables.
4836 	 *
4837 	 * The methodology is similar to that of the buffer cache.
4838 	 */
4839 	tcp_hashinfo.ehash =
4840 		alloc_large_system_hash("TCP established",
4841 					sizeof(struct inet_ehash_bucket),
4842 					thash_entries,
4843 					17, /* one slot per 128 KB of memory */
4844 					0,
4845 					NULL,
4846 					&tcp_hashinfo.ehash_mask,
4847 					0,
4848 					thash_entries ? 0 : 512 * 1024);
4849 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4850 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4851 
4852 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4853 		panic("TCP: failed to alloc ehash_locks");
4854 	tcp_hashinfo.bhash =
4855 		alloc_large_system_hash("TCP bind",
4856 					2 * sizeof(struct inet_bind_hashbucket),
4857 					tcp_hashinfo.ehash_mask + 1,
4858 					17, /* one slot per 128 KB of memory */
4859 					0,
4860 					&tcp_hashinfo.bhash_size,
4861 					NULL,
4862 					0,
4863 					64 * 1024);
4864 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4865 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4866 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4867 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4868 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4869 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4870 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4871 	}
4872 
4873 	tcp_hashinfo.pernet = false;
4874 
4875 	cnt = tcp_hashinfo.ehash_mask + 1;
4876 	sysctl_tcp_max_orphans = cnt / 2;
4877 
4878 	tcp_init_mem();
4879 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4880 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4881 	max_wshare = min(4UL*1024*1024, limit);
4882 	max_rshare = min(6UL*1024*1024, limit);
4883 
4884 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4885 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4886 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4887 
4888 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4889 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4890 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4891 
4892 	pr_info("Hash tables configured (established %u bind %u)\n",
4893 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4894 
4895 	tcp_v4_init();
4896 	tcp_metrics_init();
4897 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4898 	tcp_tasklet_init();
4899 	mptcp_init();
4900 }
4901