xref: /linux/net/ipv4/tcp.c (revision d003d772e64df08af04ee63609d47169ee82ae0e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/memblock.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274 
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281 
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285 
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
291 
292 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294 
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
299 
300 /*
301  * Current number of TCP sockets.
302  */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305 
306 /*
307  * TCP splice context
308  */
309 struct tcp_splice_state {
310 	struct pipe_inode_info *pipe;
311 	size_t len;
312 	unsigned int flags;
313 };
314 
315 /*
316  * Pressure flag: try to collapse.
317  * Technical note: it is used by multiple contexts non atomically.
318  * All the __sk_mem_schedule() is of this nature: accounting
319  * is strict, actions are advisory and have some latency.
320  */
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323 
324 void tcp_enter_memory_pressure(struct sock *sk)
325 {
326 	unsigned long val;
327 
328 	if (tcp_memory_pressure)
329 		return;
330 	val = jiffies;
331 
332 	if (!val)
333 		val--;
334 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336 }
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338 
339 void tcp_leave_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (!tcp_memory_pressure)
344 		return;
345 	val = xchg(&tcp_memory_pressure, 0);
346 	if (val)
347 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 			      jiffies_to_msecs(jiffies - val));
349 }
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351 
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354 {
355 	u8 res = 0;
356 
357 	if (seconds > 0) {
358 		int period = timeout;
359 
360 		res = 1;
361 		while (seconds > period && res < 255) {
362 			res++;
363 			timeout <<= 1;
364 			if (timeout > rto_max)
365 				timeout = rto_max;
366 			period += timeout;
367 		}
368 	}
369 	return res;
370 }
371 
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374 {
375 	int period = 0;
376 
377 	if (retrans > 0) {
378 		period = timeout;
379 		while (--retrans) {
380 			timeout <<= 1;
381 			if (timeout > rto_max)
382 				timeout = rto_max;
383 			period += timeout;
384 		}
385 	}
386 	return period;
387 }
388 
389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390 {
391 	u32 rate = READ_ONCE(tp->rate_delivered);
392 	u32 intv = READ_ONCE(tp->rate_interval_us);
393 	u64 rate64 = 0;
394 
395 	if (rate && intv) {
396 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 		do_div(rate64, intv);
398 	}
399 	return rate64;
400 }
401 
402 /* Address-family independent initialization for a tcp_sock.
403  *
404  * NOTE: A lot of things set to zero explicitly by call to
405  *       sk_alloc() so need not be done here.
406  */
407 void tcp_init_sock(struct sock *sk)
408 {
409 	struct inet_connection_sock *icsk = inet_csk(sk);
410 	struct tcp_sock *tp = tcp_sk(sk);
411 
412 	tp->out_of_order_queue = RB_ROOT;
413 	sk->tcp_rtx_queue = RB_ROOT;
414 	tcp_init_xmit_timers(sk);
415 	INIT_LIST_HEAD(&tp->tsq_node);
416 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417 
418 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421 
422 	/* So many TCP implementations out there (incorrectly) count the
423 	 * initial SYN frame in their delayed-ACK and congestion control
424 	 * algorithms that we must have the following bandaid to talk
425 	 * efficiently to them.  -DaveM
426 	 */
427 	tp->snd_cwnd = TCP_INIT_CWND;
428 
429 	/* There's a bubble in the pipe until at least the first ACK. */
430 	tp->app_limited = ~0U;
431 
432 	/* See draft-stevens-tcpca-spec-01 for discussion of the
433 	 * initialization of these values.
434 	 */
435 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 	tp->snd_cwnd_clamp = ~0;
437 	tp->mss_cache = TCP_MSS_DEFAULT;
438 
439 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 	tcp_assign_congestion_control(sk);
441 
442 	tp->tsoffset = 0;
443 	tp->rack.reo_wnd_steps = 1;
444 
445 	sk->sk_state = TCP_CLOSE;
446 
447 	sk->sk_write_space = sk_stream_write_space;
448 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449 
450 	icsk->icsk_sync_mss = tcp_sync_mss;
451 
452 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454 
455 	sk_sockets_allocated_inc(sk);
456 	sk->sk_route_forced_caps = NETIF_F_GSO;
457 }
458 EXPORT_SYMBOL(tcp_init_sock);
459 
460 void tcp_init_transfer(struct sock *sk, int bpf_op)
461 {
462 	struct inet_connection_sock *icsk = inet_csk(sk);
463 
464 	tcp_mtup_init(sk);
465 	icsk->icsk_af_ops->rebuild_header(sk);
466 	tcp_init_metrics(sk);
467 	tcp_call_bpf(sk, bpf_op, 0, NULL);
468 	tcp_init_congestion_control(sk);
469 	tcp_init_buffer_space(sk);
470 }
471 
472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473 {
474 	struct sk_buff *skb = tcp_write_queue_tail(sk);
475 
476 	if (tsflags && skb) {
477 		struct skb_shared_info *shinfo = skb_shinfo(skb);
478 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479 
480 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 			tcb->txstamp_ack = 1;
483 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 	}
486 }
487 
488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 					  int target, struct sock *sk)
490 {
491 	return (tp->rcv_nxt - tp->copied_seq >= target) ||
492 		(sk->sk_prot->stream_memory_read ?
493 		sk->sk_prot->stream_memory_read(sk) : false);
494 }
495 
496 /*
497  *	Wait for a TCP event.
498  *
499  *	Note that we don't need to lock the socket, as the upper poll layers
500  *	take care of normal races (between the test and the event) and we don't
501  *	go look at any of the socket buffers directly.
502  */
503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504 {
505 	__poll_t mask;
506 	struct sock *sk = sock->sk;
507 	const struct tcp_sock *tp = tcp_sk(sk);
508 	int state;
509 
510 	sock_poll_wait(file, sock, wait);
511 
512 	state = inet_sk_state_load(sk);
513 	if (state == TCP_LISTEN)
514 		return inet_csk_listen_poll(sk);
515 
516 	/* Socket is not locked. We are protected from async events
517 	 * by poll logic and correct handling of state changes
518 	 * made by other threads is impossible in any case.
519 	 */
520 
521 	mask = 0;
522 
523 	/*
524 	 * EPOLLHUP is certainly not done right. But poll() doesn't
525 	 * have a notion of HUP in just one direction, and for a
526 	 * socket the read side is more interesting.
527 	 *
528 	 * Some poll() documentation says that EPOLLHUP is incompatible
529 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 	 * all. But careful, it tends to be safer to return too many
531 	 * bits than too few, and you can easily break real applications
532 	 * if you don't tell them that something has hung up!
533 	 *
534 	 * Check-me.
535 	 *
536 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 	 * our fs/select.c). It means that after we received EOF,
538 	 * poll always returns immediately, making impossible poll() on write()
539 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 	 * if and only if shutdown has been made in both directions.
541 	 * Actually, it is interesting to look how Solaris and DUX
542 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 	 * then we could set it on SND_SHUTDOWN. BTW examples given
544 	 * in Stevens' books assume exactly this behaviour, it explains
545 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
546 	 *
547 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 	 * blocking on fresh not-connected or disconnected socket. --ANK
549 	 */
550 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 		mask |= EPOLLHUP;
552 	if (sk->sk_shutdown & RCV_SHUTDOWN)
553 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554 
555 	/* Connected or passive Fast Open socket? */
556 	if (state != TCP_SYN_SENT &&
557 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
558 		int target = sock_rcvlowat(sk, 0, INT_MAX);
559 
560 		if (tp->urg_seq == tp->copied_seq &&
561 		    !sock_flag(sk, SOCK_URGINLINE) &&
562 		    tp->urg_data)
563 			target++;
564 
565 		if (tcp_stream_is_readable(tp, target, sk))
566 			mask |= EPOLLIN | EPOLLRDNORM;
567 
568 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 			if (sk_stream_is_writeable(sk)) {
570 				mask |= EPOLLOUT | EPOLLWRNORM;
571 			} else {  /* send SIGIO later */
572 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574 
575 				/* Race breaker. If space is freed after
576 				 * wspace test but before the flags are set,
577 				 * IO signal will be lost. Memory barrier
578 				 * pairs with the input side.
579 				 */
580 				smp_mb__after_atomic();
581 				if (sk_stream_is_writeable(sk))
582 					mask |= EPOLLOUT | EPOLLWRNORM;
583 			}
584 		} else
585 			mask |= EPOLLOUT | EPOLLWRNORM;
586 
587 		if (tp->urg_data & TCP_URG_VALID)
588 			mask |= EPOLLPRI;
589 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 		/* Active TCP fastopen socket with defer_connect
591 		 * Return EPOLLOUT so application can call write()
592 		 * in order for kernel to generate SYN+data
593 		 */
594 		mask |= EPOLLOUT | EPOLLWRNORM;
595 	}
596 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
597 	smp_rmb();
598 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
599 		mask |= EPOLLERR;
600 
601 	return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604 
605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	int answ;
609 	bool slow;
610 
611 	switch (cmd) {
612 	case SIOCINQ:
613 		if (sk->sk_state == TCP_LISTEN)
614 			return -EINVAL;
615 
616 		slow = lock_sock_fast(sk);
617 		answ = tcp_inq(sk);
618 		unlock_sock_fast(sk, slow);
619 		break;
620 	case SIOCATMARK:
621 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
622 		break;
623 	case SIOCOUTQ:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = tp->write_seq - tp->snd_una;
631 		break;
632 	case SIOCOUTQNSD:
633 		if (sk->sk_state == TCP_LISTEN)
634 			return -EINVAL;
635 
636 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 			answ = 0;
638 		else
639 			answ = tp->write_seq - tp->snd_nxt;
640 		break;
641 	default:
642 		return -ENOIOCTLCMD;
643 	}
644 
645 	return put_user(answ, (int __user *)arg);
646 }
647 EXPORT_SYMBOL(tcp_ioctl);
648 
649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650 {
651 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 	tp->pushed_seq = tp->write_seq;
653 }
654 
655 static inline bool forced_push(const struct tcp_sock *tp)
656 {
657 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658 }
659 
660 static void skb_entail(struct sock *sk, struct sk_buff *skb)
661 {
662 	struct tcp_sock *tp = tcp_sk(sk);
663 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664 
665 	skb->csum    = 0;
666 	tcb->seq     = tcb->end_seq = tp->write_seq;
667 	tcb->tcp_flags = TCPHDR_ACK;
668 	tcb->sacked  = 0;
669 	__skb_header_release(skb);
670 	tcp_add_write_queue_tail(sk, skb);
671 	sk->sk_wmem_queued += skb->truesize;
672 	sk_mem_charge(sk, skb->truesize);
673 	if (tp->nonagle & TCP_NAGLE_PUSH)
674 		tp->nonagle &= ~TCP_NAGLE_PUSH;
675 
676 	tcp_slow_start_after_idle_check(sk);
677 }
678 
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 	if (flags & MSG_OOB)
682 		tp->snd_up = tp->write_seq;
683 }
684 
685 /* If a not yet filled skb is pushed, do not send it if
686  * we have data packets in Qdisc or NIC queues :
687  * Because TX completion will happen shortly, it gives a chance
688  * to coalesce future sendmsg() payload into this skb, without
689  * need for a timer, and with no latency trade off.
690  * As packets containing data payload have a bigger truesize
691  * than pure acks (dataless) packets, the last checks prevent
692  * autocorking if we only have an ACK in Qdisc/NIC queues,
693  * or if TX completion was delayed after we processed ACK packet.
694  */
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 				int size_goal)
697 {
698 	return skb->len < size_goal &&
699 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
700 	       !tcp_rtx_queue_empty(sk) &&
701 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
702 }
703 
704 static void tcp_push(struct sock *sk, int flags, int mss_now,
705 		     int nonagle, int size_goal)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	struct sk_buff *skb;
709 
710 	skb = tcp_write_queue_tail(sk);
711 	if (!skb)
712 		return;
713 	if (!(flags & MSG_MORE) || forced_push(tp))
714 		tcp_mark_push(tp, skb);
715 
716 	tcp_mark_urg(tp, flags);
717 
718 	if (tcp_should_autocork(sk, skb, size_goal)) {
719 
720 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
721 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
724 		}
725 		/* It is possible TX completion already happened
726 		 * before we set TSQ_THROTTLED.
727 		 */
728 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 			return;
730 	}
731 
732 	if (flags & MSG_MORE)
733 		nonagle = TCP_NAGLE_CORK;
734 
735 	__tcp_push_pending_frames(sk, mss_now, nonagle);
736 }
737 
738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 				unsigned int offset, size_t len)
740 {
741 	struct tcp_splice_state *tss = rd_desc->arg.data;
742 	int ret;
743 
744 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 			      min(rd_desc->count, len), tss->flags);
746 	if (ret > 0)
747 		rd_desc->count -= ret;
748 	return ret;
749 }
750 
751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
752 {
753 	/* Store TCP splice context information in read_descriptor_t. */
754 	read_descriptor_t rd_desc = {
755 		.arg.data = tss,
756 		.count	  = tss->len,
757 	};
758 
759 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
760 }
761 
762 /**
763  *  tcp_splice_read - splice data from TCP socket to a pipe
764  * @sock:	socket to splice from
765  * @ppos:	position (not valid)
766  * @pipe:	pipe to splice to
767  * @len:	number of bytes to splice
768  * @flags:	splice modifier flags
769  *
770  * Description:
771  *    Will read pages from given socket and fill them into a pipe.
772  *
773  **/
774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 			struct pipe_inode_info *pipe, size_t len,
776 			unsigned int flags)
777 {
778 	struct sock *sk = sock->sk;
779 	struct tcp_splice_state tss = {
780 		.pipe = pipe,
781 		.len = len,
782 		.flags = flags,
783 	};
784 	long timeo;
785 	ssize_t spliced;
786 	int ret;
787 
788 	sock_rps_record_flow(sk);
789 	/*
790 	 * We can't seek on a socket input
791 	 */
792 	if (unlikely(*ppos))
793 		return -ESPIPE;
794 
795 	ret = spliced = 0;
796 
797 	lock_sock(sk);
798 
799 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 	while (tss.len) {
801 		ret = __tcp_splice_read(sk, &tss);
802 		if (ret < 0)
803 			break;
804 		else if (!ret) {
805 			if (spliced)
806 				break;
807 			if (sock_flag(sk, SOCK_DONE))
808 				break;
809 			if (sk->sk_err) {
810 				ret = sock_error(sk);
811 				break;
812 			}
813 			if (sk->sk_shutdown & RCV_SHUTDOWN)
814 				break;
815 			if (sk->sk_state == TCP_CLOSE) {
816 				/*
817 				 * This occurs when user tries to read
818 				 * from never connected socket.
819 				 */
820 				ret = -ENOTCONN;
821 				break;
822 			}
823 			if (!timeo) {
824 				ret = -EAGAIN;
825 				break;
826 			}
827 			/* if __tcp_splice_read() got nothing while we have
828 			 * an skb in receive queue, we do not want to loop.
829 			 * This might happen with URG data.
830 			 */
831 			if (!skb_queue_empty(&sk->sk_receive_queue))
832 				break;
833 			sk_wait_data(sk, &timeo, NULL);
834 			if (signal_pending(current)) {
835 				ret = sock_intr_errno(timeo);
836 				break;
837 			}
838 			continue;
839 		}
840 		tss.len -= ret;
841 		spliced += ret;
842 
843 		if (!timeo)
844 			break;
845 		release_sock(sk);
846 		lock_sock(sk);
847 
848 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
849 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
850 		    signal_pending(current))
851 			break;
852 	}
853 
854 	release_sock(sk);
855 
856 	if (spliced)
857 		return spliced;
858 
859 	return ret;
860 }
861 EXPORT_SYMBOL(tcp_splice_read);
862 
863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
864 				    bool force_schedule)
865 {
866 	struct sk_buff *skb;
867 
868 	/* The TCP header must be at least 32-bit aligned.  */
869 	size = ALIGN(size, 4);
870 
871 	if (unlikely(tcp_under_memory_pressure(sk)))
872 		sk_mem_reclaim_partial(sk);
873 
874 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
875 	if (likely(skb)) {
876 		bool mem_scheduled;
877 
878 		if (force_schedule) {
879 			mem_scheduled = true;
880 			sk_forced_mem_schedule(sk, skb->truesize);
881 		} else {
882 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
883 		}
884 		if (likely(mem_scheduled)) {
885 			skb_reserve(skb, sk->sk_prot->max_header);
886 			/*
887 			 * Make sure that we have exactly size bytes
888 			 * available to the caller, no more, no less.
889 			 */
890 			skb->reserved_tailroom = skb->end - skb->tail - size;
891 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
892 			return skb;
893 		}
894 		__kfree_skb(skb);
895 	} else {
896 		sk->sk_prot->enter_memory_pressure(sk);
897 		sk_stream_moderate_sndbuf(sk);
898 	}
899 	return NULL;
900 }
901 
902 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
903 				       int large_allowed)
904 {
905 	struct tcp_sock *tp = tcp_sk(sk);
906 	u32 new_size_goal, size_goal;
907 
908 	if (!large_allowed)
909 		return mss_now;
910 
911 	/* Note : tcp_tso_autosize() will eventually split this later */
912 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
913 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
914 
915 	/* We try hard to avoid divides here */
916 	size_goal = tp->gso_segs * mss_now;
917 	if (unlikely(new_size_goal < size_goal ||
918 		     new_size_goal >= size_goal + mss_now)) {
919 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
920 				     sk->sk_gso_max_segs);
921 		size_goal = tp->gso_segs * mss_now;
922 	}
923 
924 	return max(size_goal, mss_now);
925 }
926 
927 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
928 {
929 	int mss_now;
930 
931 	mss_now = tcp_current_mss(sk);
932 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
933 
934 	return mss_now;
935 }
936 
937 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
938 			 size_t size, int flags)
939 {
940 	struct tcp_sock *tp = tcp_sk(sk);
941 	int mss_now, size_goal;
942 	int err;
943 	ssize_t copied;
944 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
945 
946 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
947 	    WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
948 		return -EINVAL;
949 
950 	/* Wait for a connection to finish. One exception is TCP Fast Open
951 	 * (passive side) where data is allowed to be sent before a connection
952 	 * is fully established.
953 	 */
954 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
955 	    !tcp_passive_fastopen(sk)) {
956 		err = sk_stream_wait_connect(sk, &timeo);
957 		if (err != 0)
958 			goto out_err;
959 	}
960 
961 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
962 
963 	mss_now = tcp_send_mss(sk, &size_goal, flags);
964 	copied = 0;
965 
966 	err = -EPIPE;
967 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
968 		goto out_err;
969 
970 	while (size > 0) {
971 		struct sk_buff *skb = tcp_write_queue_tail(sk);
972 		int copy, i;
973 		bool can_coalesce;
974 
975 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
976 		    !tcp_skb_can_collapse_to(skb)) {
977 new_segment:
978 			if (!sk_stream_memory_free(sk))
979 				goto wait_for_sndbuf;
980 
981 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
982 					tcp_rtx_and_write_queues_empty(sk));
983 			if (!skb)
984 				goto wait_for_memory;
985 
986 			skb_entail(sk, skb);
987 			copy = size_goal;
988 		}
989 
990 		if (copy > size)
991 			copy = size;
992 
993 		i = skb_shinfo(skb)->nr_frags;
994 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
995 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
996 			tcp_mark_push(tp, skb);
997 			goto new_segment;
998 		}
999 		if (!sk_wmem_schedule(sk, copy))
1000 			goto wait_for_memory;
1001 
1002 		if (can_coalesce) {
1003 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1004 		} else {
1005 			get_page(page);
1006 			skb_fill_page_desc(skb, i, page, offset, copy);
1007 		}
1008 
1009 		if (!(flags & MSG_NO_SHARED_FRAGS))
1010 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1011 
1012 		skb->len += copy;
1013 		skb->data_len += copy;
1014 		skb->truesize += copy;
1015 		sk->sk_wmem_queued += copy;
1016 		sk_mem_charge(sk, copy);
1017 		skb->ip_summed = CHECKSUM_PARTIAL;
1018 		tp->write_seq += copy;
1019 		TCP_SKB_CB(skb)->end_seq += copy;
1020 		tcp_skb_pcount_set(skb, 0);
1021 
1022 		if (!copied)
1023 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1024 
1025 		copied += copy;
1026 		offset += copy;
1027 		size -= copy;
1028 		if (!size)
1029 			goto out;
1030 
1031 		if (skb->len < size_goal || (flags & MSG_OOB))
1032 			continue;
1033 
1034 		if (forced_push(tp)) {
1035 			tcp_mark_push(tp, skb);
1036 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1037 		} else if (skb == tcp_send_head(sk))
1038 			tcp_push_one(sk, mss_now);
1039 		continue;
1040 
1041 wait_for_sndbuf:
1042 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1043 wait_for_memory:
1044 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1045 			 TCP_NAGLE_PUSH, size_goal);
1046 
1047 		err = sk_stream_wait_memory(sk, &timeo);
1048 		if (err != 0)
1049 			goto do_error;
1050 
1051 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1052 	}
1053 
1054 out:
1055 	if (copied) {
1056 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1057 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1058 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1059 	}
1060 	return copied;
1061 
1062 do_error:
1063 	if (copied)
1064 		goto out;
1065 out_err:
1066 	/* make sure we wake any epoll edge trigger waiter */
1067 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1068 		     err == -EAGAIN)) {
1069 		sk->sk_write_space(sk);
1070 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1071 	}
1072 	return sk_stream_error(sk, flags, err);
1073 }
1074 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1075 
1076 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1077 			size_t size, int flags)
1078 {
1079 	if (!(sk->sk_route_caps & NETIF_F_SG))
1080 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1081 
1082 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1083 
1084 	return do_tcp_sendpages(sk, page, offset, size, flags);
1085 }
1086 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1087 
1088 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1089 		 size_t size, int flags)
1090 {
1091 	int ret;
1092 
1093 	lock_sock(sk);
1094 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1095 	release_sock(sk);
1096 
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(tcp_sendpage);
1100 
1101 /* Do not bother using a page frag for very small frames.
1102  * But use this heuristic only for the first skb in write queue.
1103  *
1104  * Having no payload in skb->head allows better SACK shifting
1105  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1106  * write queue has less skbs.
1107  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1108  * This also speeds up tso_fragment(), since it wont fallback
1109  * to tcp_fragment().
1110  */
1111 static int linear_payload_sz(bool first_skb)
1112 {
1113 	if (first_skb)
1114 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1115 	return 0;
1116 }
1117 
1118 static int select_size(bool first_skb, bool zc)
1119 {
1120 	if (zc)
1121 		return 0;
1122 	return linear_payload_sz(first_skb);
1123 }
1124 
1125 void tcp_free_fastopen_req(struct tcp_sock *tp)
1126 {
1127 	if (tp->fastopen_req) {
1128 		kfree(tp->fastopen_req);
1129 		tp->fastopen_req = NULL;
1130 	}
1131 }
1132 
1133 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1134 				int *copied, size_t size,
1135 				struct ubuf_info *uarg)
1136 {
1137 	struct tcp_sock *tp = tcp_sk(sk);
1138 	struct inet_sock *inet = inet_sk(sk);
1139 	struct sockaddr *uaddr = msg->msg_name;
1140 	int err, flags;
1141 
1142 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1143 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1144 	     uaddr->sa_family == AF_UNSPEC))
1145 		return -EOPNOTSUPP;
1146 	if (tp->fastopen_req)
1147 		return -EALREADY; /* Another Fast Open is in progress */
1148 
1149 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1150 				   sk->sk_allocation);
1151 	if (unlikely(!tp->fastopen_req))
1152 		return -ENOBUFS;
1153 	tp->fastopen_req->data = msg;
1154 	tp->fastopen_req->size = size;
1155 	tp->fastopen_req->uarg = uarg;
1156 
1157 	if (inet->defer_connect) {
1158 		err = tcp_connect(sk);
1159 		/* Same failure procedure as in tcp_v4/6_connect */
1160 		if (err) {
1161 			tcp_set_state(sk, TCP_CLOSE);
1162 			inet->inet_dport = 0;
1163 			sk->sk_route_caps = 0;
1164 		}
1165 	}
1166 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1167 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1168 				    msg->msg_namelen, flags, 1);
1169 	/* fastopen_req could already be freed in __inet_stream_connect
1170 	 * if the connection times out or gets rst
1171 	 */
1172 	if (tp->fastopen_req) {
1173 		*copied = tp->fastopen_req->copied;
1174 		tcp_free_fastopen_req(tp);
1175 		inet->defer_connect = 0;
1176 	}
1177 	return err;
1178 }
1179 
1180 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1181 {
1182 	struct tcp_sock *tp = tcp_sk(sk);
1183 	struct ubuf_info *uarg = NULL;
1184 	struct sk_buff *skb;
1185 	struct sockcm_cookie sockc;
1186 	int flags, err, copied = 0;
1187 	int mss_now = 0, size_goal, copied_syn = 0;
1188 	bool process_backlog = false;
1189 	bool zc = false;
1190 	long timeo;
1191 
1192 	flags = msg->msg_flags;
1193 
1194 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1195 		skb = tcp_write_queue_tail(sk);
1196 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1197 		if (!uarg) {
1198 			err = -ENOBUFS;
1199 			goto out_err;
1200 		}
1201 
1202 		zc = sk->sk_route_caps & NETIF_F_SG;
1203 		if (!zc)
1204 			uarg->zerocopy = 0;
1205 	}
1206 
1207 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1208 	    !tp->repair) {
1209 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1210 		if (err == -EINPROGRESS && copied_syn > 0)
1211 			goto out;
1212 		else if (err)
1213 			goto out_err;
1214 	}
1215 
1216 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1217 
1218 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1219 
1220 	/* Wait for a connection to finish. One exception is TCP Fast Open
1221 	 * (passive side) where data is allowed to be sent before a connection
1222 	 * is fully established.
1223 	 */
1224 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1225 	    !tcp_passive_fastopen(sk)) {
1226 		err = sk_stream_wait_connect(sk, &timeo);
1227 		if (err != 0)
1228 			goto do_error;
1229 	}
1230 
1231 	if (unlikely(tp->repair)) {
1232 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1233 			copied = tcp_send_rcvq(sk, msg, size);
1234 			goto out_nopush;
1235 		}
1236 
1237 		err = -EINVAL;
1238 		if (tp->repair_queue == TCP_NO_QUEUE)
1239 			goto out_err;
1240 
1241 		/* 'common' sending to sendq */
1242 	}
1243 
1244 	sockcm_init(&sockc, sk);
1245 	if (msg->msg_controllen) {
1246 		err = sock_cmsg_send(sk, msg, &sockc);
1247 		if (unlikely(err)) {
1248 			err = -EINVAL;
1249 			goto out_err;
1250 		}
1251 	}
1252 
1253 	/* This should be in poll */
1254 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1255 
1256 	/* Ok commence sending. */
1257 	copied = 0;
1258 
1259 restart:
1260 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1261 
1262 	err = -EPIPE;
1263 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1264 		goto do_error;
1265 
1266 	while (msg_data_left(msg)) {
1267 		int copy = 0;
1268 
1269 		skb = tcp_write_queue_tail(sk);
1270 		if (skb)
1271 			copy = size_goal - skb->len;
1272 
1273 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1274 			bool first_skb;
1275 			int linear;
1276 
1277 new_segment:
1278 			if (!sk_stream_memory_free(sk))
1279 				goto wait_for_sndbuf;
1280 
1281 			if (process_backlog && sk_flush_backlog(sk)) {
1282 				process_backlog = false;
1283 				goto restart;
1284 			}
1285 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1286 			linear = select_size(first_skb, zc);
1287 			skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1288 						  first_skb);
1289 			if (!skb)
1290 				goto wait_for_memory;
1291 
1292 			process_backlog = true;
1293 			skb->ip_summed = CHECKSUM_PARTIAL;
1294 
1295 			skb_entail(sk, skb);
1296 			copy = size_goal;
1297 
1298 			/* All packets are restored as if they have
1299 			 * already been sent. skb_mstamp_ns isn't set to
1300 			 * avoid wrong rtt estimation.
1301 			 */
1302 			if (tp->repair)
1303 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1304 		}
1305 
1306 		/* Try to append data to the end of skb. */
1307 		if (copy > msg_data_left(msg))
1308 			copy = msg_data_left(msg);
1309 
1310 		/* Where to copy to? */
1311 		if (skb_availroom(skb) > 0 && !zc) {
1312 			/* We have some space in skb head. Superb! */
1313 			copy = min_t(int, copy, skb_availroom(skb));
1314 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1315 			if (err)
1316 				goto do_fault;
1317 		} else if (!zc) {
1318 			bool merge = true;
1319 			int i = skb_shinfo(skb)->nr_frags;
1320 			struct page_frag *pfrag = sk_page_frag(sk);
1321 
1322 			if (!sk_page_frag_refill(sk, pfrag))
1323 				goto wait_for_memory;
1324 
1325 			if (!skb_can_coalesce(skb, i, pfrag->page,
1326 					      pfrag->offset)) {
1327 				if (i >= sysctl_max_skb_frags) {
1328 					tcp_mark_push(tp, skb);
1329 					goto new_segment;
1330 				}
1331 				merge = false;
1332 			}
1333 
1334 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1335 
1336 			if (!sk_wmem_schedule(sk, copy))
1337 				goto wait_for_memory;
1338 
1339 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1340 						       pfrag->page,
1341 						       pfrag->offset,
1342 						       copy);
1343 			if (err)
1344 				goto do_error;
1345 
1346 			/* Update the skb. */
1347 			if (merge) {
1348 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1349 			} else {
1350 				skb_fill_page_desc(skb, i, pfrag->page,
1351 						   pfrag->offset, copy);
1352 				page_ref_inc(pfrag->page);
1353 			}
1354 			pfrag->offset += copy;
1355 		} else {
1356 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1357 			if (err == -EMSGSIZE || err == -EEXIST) {
1358 				tcp_mark_push(tp, skb);
1359 				goto new_segment;
1360 			}
1361 			if (err < 0)
1362 				goto do_error;
1363 			copy = err;
1364 		}
1365 
1366 		if (!copied)
1367 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1368 
1369 		tp->write_seq += copy;
1370 		TCP_SKB_CB(skb)->end_seq += copy;
1371 		tcp_skb_pcount_set(skb, 0);
1372 
1373 		copied += copy;
1374 		if (!msg_data_left(msg)) {
1375 			if (unlikely(flags & MSG_EOR))
1376 				TCP_SKB_CB(skb)->eor = 1;
1377 			goto out;
1378 		}
1379 
1380 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1381 			continue;
1382 
1383 		if (forced_push(tp)) {
1384 			tcp_mark_push(tp, skb);
1385 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1386 		} else if (skb == tcp_send_head(sk))
1387 			tcp_push_one(sk, mss_now);
1388 		continue;
1389 
1390 wait_for_sndbuf:
1391 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1392 wait_for_memory:
1393 		if (copied)
1394 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1395 				 TCP_NAGLE_PUSH, size_goal);
1396 
1397 		err = sk_stream_wait_memory(sk, &timeo);
1398 		if (err != 0)
1399 			goto do_error;
1400 
1401 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1402 	}
1403 
1404 out:
1405 	if (copied) {
1406 		tcp_tx_timestamp(sk, sockc.tsflags);
1407 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1408 	}
1409 out_nopush:
1410 	sock_zerocopy_put(uarg);
1411 	return copied + copied_syn;
1412 
1413 do_fault:
1414 	if (!skb->len) {
1415 		tcp_unlink_write_queue(skb, sk);
1416 		/* It is the one place in all of TCP, except connection
1417 		 * reset, where we can be unlinking the send_head.
1418 		 */
1419 		if (tcp_write_queue_empty(sk))
1420 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1421 		sk_wmem_free_skb(sk, skb);
1422 	}
1423 
1424 do_error:
1425 	if (copied + copied_syn)
1426 		goto out;
1427 out_err:
1428 	sock_zerocopy_put_abort(uarg, true);
1429 	err = sk_stream_error(sk, flags, err);
1430 	/* make sure we wake any epoll edge trigger waiter */
1431 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1432 		     err == -EAGAIN)) {
1433 		sk->sk_write_space(sk);
1434 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1435 	}
1436 	return err;
1437 }
1438 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1439 
1440 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1441 {
1442 	int ret;
1443 
1444 	lock_sock(sk);
1445 	ret = tcp_sendmsg_locked(sk, msg, size);
1446 	release_sock(sk);
1447 
1448 	return ret;
1449 }
1450 EXPORT_SYMBOL(tcp_sendmsg);
1451 
1452 /*
1453  *	Handle reading urgent data. BSD has very simple semantics for
1454  *	this, no blocking and very strange errors 8)
1455  */
1456 
1457 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1458 {
1459 	struct tcp_sock *tp = tcp_sk(sk);
1460 
1461 	/* No URG data to read. */
1462 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1463 	    tp->urg_data == TCP_URG_READ)
1464 		return -EINVAL;	/* Yes this is right ! */
1465 
1466 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1467 		return -ENOTCONN;
1468 
1469 	if (tp->urg_data & TCP_URG_VALID) {
1470 		int err = 0;
1471 		char c = tp->urg_data;
1472 
1473 		if (!(flags & MSG_PEEK))
1474 			tp->urg_data = TCP_URG_READ;
1475 
1476 		/* Read urgent data. */
1477 		msg->msg_flags |= MSG_OOB;
1478 
1479 		if (len > 0) {
1480 			if (!(flags & MSG_TRUNC))
1481 				err = memcpy_to_msg(msg, &c, 1);
1482 			len = 1;
1483 		} else
1484 			msg->msg_flags |= MSG_TRUNC;
1485 
1486 		return err ? -EFAULT : len;
1487 	}
1488 
1489 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1490 		return 0;
1491 
1492 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1493 	 * the available implementations agree in this case:
1494 	 * this call should never block, independent of the
1495 	 * blocking state of the socket.
1496 	 * Mike <pall@rz.uni-karlsruhe.de>
1497 	 */
1498 	return -EAGAIN;
1499 }
1500 
1501 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1502 {
1503 	struct sk_buff *skb;
1504 	int copied = 0, err = 0;
1505 
1506 	/* XXX -- need to support SO_PEEK_OFF */
1507 
1508 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1509 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1510 		if (err)
1511 			return err;
1512 		copied += skb->len;
1513 	}
1514 
1515 	skb_queue_walk(&sk->sk_write_queue, skb) {
1516 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1517 		if (err)
1518 			break;
1519 
1520 		copied += skb->len;
1521 	}
1522 
1523 	return err ?: copied;
1524 }
1525 
1526 /* Clean up the receive buffer for full frames taken by the user,
1527  * then send an ACK if necessary.  COPIED is the number of bytes
1528  * tcp_recvmsg has given to the user so far, it speeds up the
1529  * calculation of whether or not we must ACK for the sake of
1530  * a window update.
1531  */
1532 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1533 {
1534 	struct tcp_sock *tp = tcp_sk(sk);
1535 	bool time_to_ack = false;
1536 
1537 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1538 
1539 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1540 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1541 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1542 
1543 	if (inet_csk_ack_scheduled(sk)) {
1544 		const struct inet_connection_sock *icsk = inet_csk(sk);
1545 		   /* Delayed ACKs frequently hit locked sockets during bulk
1546 		    * receive. */
1547 		if (icsk->icsk_ack.blocked ||
1548 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1549 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1550 		    /*
1551 		     * If this read emptied read buffer, we send ACK, if
1552 		     * connection is not bidirectional, user drained
1553 		     * receive buffer and there was a small segment
1554 		     * in queue.
1555 		     */
1556 		    (copied > 0 &&
1557 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1558 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1559 		       !inet_csk_in_pingpong_mode(sk))) &&
1560 		      !atomic_read(&sk->sk_rmem_alloc)))
1561 			time_to_ack = true;
1562 	}
1563 
1564 	/* We send an ACK if we can now advertise a non-zero window
1565 	 * which has been raised "significantly".
1566 	 *
1567 	 * Even if window raised up to infinity, do not send window open ACK
1568 	 * in states, where we will not receive more. It is useless.
1569 	 */
1570 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1571 		__u32 rcv_window_now = tcp_receive_window(tp);
1572 
1573 		/* Optimize, __tcp_select_window() is not cheap. */
1574 		if (2*rcv_window_now <= tp->window_clamp) {
1575 			__u32 new_window = __tcp_select_window(sk);
1576 
1577 			/* Send ACK now, if this read freed lots of space
1578 			 * in our buffer. Certainly, new_window is new window.
1579 			 * We can advertise it now, if it is not less than current one.
1580 			 * "Lots" means "at least twice" here.
1581 			 */
1582 			if (new_window && new_window >= 2 * rcv_window_now)
1583 				time_to_ack = true;
1584 		}
1585 	}
1586 	if (time_to_ack)
1587 		tcp_send_ack(sk);
1588 }
1589 
1590 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1591 {
1592 	struct sk_buff *skb;
1593 	u32 offset;
1594 
1595 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1596 		offset = seq - TCP_SKB_CB(skb)->seq;
1597 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1598 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1599 			offset--;
1600 		}
1601 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1602 			*off = offset;
1603 			return skb;
1604 		}
1605 		/* This looks weird, but this can happen if TCP collapsing
1606 		 * splitted a fat GRO packet, while we released socket lock
1607 		 * in skb_splice_bits()
1608 		 */
1609 		sk_eat_skb(sk, skb);
1610 	}
1611 	return NULL;
1612 }
1613 
1614 /*
1615  * This routine provides an alternative to tcp_recvmsg() for routines
1616  * that would like to handle copying from skbuffs directly in 'sendfile'
1617  * fashion.
1618  * Note:
1619  *	- It is assumed that the socket was locked by the caller.
1620  *	- The routine does not block.
1621  *	- At present, there is no support for reading OOB data
1622  *	  or for 'peeking' the socket using this routine
1623  *	  (although both would be easy to implement).
1624  */
1625 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1626 		  sk_read_actor_t recv_actor)
1627 {
1628 	struct sk_buff *skb;
1629 	struct tcp_sock *tp = tcp_sk(sk);
1630 	u32 seq = tp->copied_seq;
1631 	u32 offset;
1632 	int copied = 0;
1633 
1634 	if (sk->sk_state == TCP_LISTEN)
1635 		return -ENOTCONN;
1636 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1637 		if (offset < skb->len) {
1638 			int used;
1639 			size_t len;
1640 
1641 			len = skb->len - offset;
1642 			/* Stop reading if we hit a patch of urgent data */
1643 			if (tp->urg_data) {
1644 				u32 urg_offset = tp->urg_seq - seq;
1645 				if (urg_offset < len)
1646 					len = urg_offset;
1647 				if (!len)
1648 					break;
1649 			}
1650 			used = recv_actor(desc, skb, offset, len);
1651 			if (used <= 0) {
1652 				if (!copied)
1653 					copied = used;
1654 				break;
1655 			} else if (used <= len) {
1656 				seq += used;
1657 				copied += used;
1658 				offset += used;
1659 			}
1660 			/* If recv_actor drops the lock (e.g. TCP splice
1661 			 * receive) the skb pointer might be invalid when
1662 			 * getting here: tcp_collapse might have deleted it
1663 			 * while aggregating skbs from the socket queue.
1664 			 */
1665 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1666 			if (!skb)
1667 				break;
1668 			/* TCP coalescing might have appended data to the skb.
1669 			 * Try to splice more frags
1670 			 */
1671 			if (offset + 1 != skb->len)
1672 				continue;
1673 		}
1674 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1675 			sk_eat_skb(sk, skb);
1676 			++seq;
1677 			break;
1678 		}
1679 		sk_eat_skb(sk, skb);
1680 		if (!desc->count)
1681 			break;
1682 		tp->copied_seq = seq;
1683 	}
1684 	tp->copied_seq = seq;
1685 
1686 	tcp_rcv_space_adjust(sk);
1687 
1688 	/* Clean up data we have read: This will do ACK frames. */
1689 	if (copied > 0) {
1690 		tcp_recv_skb(sk, seq, &offset);
1691 		tcp_cleanup_rbuf(sk, copied);
1692 	}
1693 	return copied;
1694 }
1695 EXPORT_SYMBOL(tcp_read_sock);
1696 
1697 int tcp_peek_len(struct socket *sock)
1698 {
1699 	return tcp_inq(sock->sk);
1700 }
1701 EXPORT_SYMBOL(tcp_peek_len);
1702 
1703 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1704 int tcp_set_rcvlowat(struct sock *sk, int val)
1705 {
1706 	int cap;
1707 
1708 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1709 		cap = sk->sk_rcvbuf >> 1;
1710 	else
1711 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1712 	val = min(val, cap);
1713 	sk->sk_rcvlowat = val ? : 1;
1714 
1715 	/* Check if we need to signal EPOLLIN right now */
1716 	tcp_data_ready(sk);
1717 
1718 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719 		return 0;
1720 
1721 	val <<= 1;
1722 	if (val > sk->sk_rcvbuf) {
1723 		sk->sk_rcvbuf = val;
1724 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1725 	}
1726 	return 0;
1727 }
1728 EXPORT_SYMBOL(tcp_set_rcvlowat);
1729 
1730 #ifdef CONFIG_MMU
1731 static const struct vm_operations_struct tcp_vm_ops = {
1732 };
1733 
1734 int tcp_mmap(struct file *file, struct socket *sock,
1735 	     struct vm_area_struct *vma)
1736 {
1737 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1738 		return -EPERM;
1739 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1740 
1741 	/* Instruct vm_insert_page() to not down_read(mmap_sem) */
1742 	vma->vm_flags |= VM_MIXEDMAP;
1743 
1744 	vma->vm_ops = &tcp_vm_ops;
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL(tcp_mmap);
1748 
1749 static int tcp_zerocopy_receive(struct sock *sk,
1750 				struct tcp_zerocopy_receive *zc)
1751 {
1752 	unsigned long address = (unsigned long)zc->address;
1753 	const skb_frag_t *frags = NULL;
1754 	u32 length = 0, seq, offset;
1755 	struct vm_area_struct *vma;
1756 	struct sk_buff *skb = NULL;
1757 	struct tcp_sock *tp;
1758 	int inq;
1759 	int ret;
1760 
1761 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1762 		return -EINVAL;
1763 
1764 	if (sk->sk_state == TCP_LISTEN)
1765 		return -ENOTCONN;
1766 
1767 	sock_rps_record_flow(sk);
1768 
1769 	down_read(&current->mm->mmap_sem);
1770 
1771 	ret = -EINVAL;
1772 	vma = find_vma(current->mm, address);
1773 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1774 		goto out;
1775 	zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1776 
1777 	tp = tcp_sk(sk);
1778 	seq = tp->copied_seq;
1779 	inq = tcp_inq(sk);
1780 	zc->length = min_t(u32, zc->length, inq);
1781 	zc->length &= ~(PAGE_SIZE - 1);
1782 	if (zc->length) {
1783 		zap_page_range(vma, address, zc->length);
1784 		zc->recv_skip_hint = 0;
1785 	} else {
1786 		zc->recv_skip_hint = inq;
1787 	}
1788 	ret = 0;
1789 	while (length + PAGE_SIZE <= zc->length) {
1790 		if (zc->recv_skip_hint < PAGE_SIZE) {
1791 			if (skb) {
1792 				skb = skb->next;
1793 				offset = seq - TCP_SKB_CB(skb)->seq;
1794 			} else {
1795 				skb = tcp_recv_skb(sk, seq, &offset);
1796 			}
1797 
1798 			zc->recv_skip_hint = skb->len - offset;
1799 			offset -= skb_headlen(skb);
1800 			if ((int)offset < 0 || skb_has_frag_list(skb))
1801 				break;
1802 			frags = skb_shinfo(skb)->frags;
1803 			while (offset) {
1804 				if (frags->size > offset)
1805 					goto out;
1806 				offset -= frags->size;
1807 				frags++;
1808 			}
1809 		}
1810 		if (frags->size != PAGE_SIZE || frags->page_offset) {
1811 			int remaining = zc->recv_skip_hint;
1812 
1813 			while (remaining && (frags->size != PAGE_SIZE ||
1814 					     frags->page_offset)) {
1815 				remaining -= frags->size;
1816 				frags++;
1817 			}
1818 			zc->recv_skip_hint -= remaining;
1819 			break;
1820 		}
1821 		ret = vm_insert_page(vma, address + length,
1822 				     skb_frag_page(frags));
1823 		if (ret)
1824 			break;
1825 		length += PAGE_SIZE;
1826 		seq += PAGE_SIZE;
1827 		zc->recv_skip_hint -= PAGE_SIZE;
1828 		frags++;
1829 	}
1830 out:
1831 	up_read(&current->mm->mmap_sem);
1832 	if (length) {
1833 		tp->copied_seq = seq;
1834 		tcp_rcv_space_adjust(sk);
1835 
1836 		/* Clean up data we have read: This will do ACK frames. */
1837 		tcp_recv_skb(sk, seq, &offset);
1838 		tcp_cleanup_rbuf(sk, length);
1839 		ret = 0;
1840 		if (length == zc->length)
1841 			zc->recv_skip_hint = 0;
1842 	} else {
1843 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1844 			ret = -EIO;
1845 	}
1846 	zc->length = length;
1847 	return ret;
1848 }
1849 #endif
1850 
1851 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1852 				    struct scm_timestamping_internal *tss)
1853 {
1854 	if (skb->tstamp)
1855 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1856 	else
1857 		tss->ts[0] = (struct timespec64) {0};
1858 
1859 	if (skb_hwtstamps(skb)->hwtstamp)
1860 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1861 	else
1862 		tss->ts[2] = (struct timespec64) {0};
1863 }
1864 
1865 /* Similar to __sock_recv_timestamp, but does not require an skb */
1866 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1867 			       struct scm_timestamping_internal *tss)
1868 {
1869 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1870 	bool has_timestamping = false;
1871 
1872 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1873 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1874 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1875 				if (new_tstamp) {
1876 					struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec};
1877 
1878 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1879 						 sizeof(kts), &kts);
1880 				} else {
1881 					struct timespec ts_old = timespec64_to_timespec(tss->ts[0]);
1882 
1883 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1884 						 sizeof(ts_old), &ts_old);
1885 				}
1886 			} else {
1887 				if (new_tstamp) {
1888 					struct __kernel_sock_timeval stv;
1889 
1890 					stv.tv_sec = tss->ts[0].tv_sec;
1891 					stv.tv_usec = tss->ts[0].tv_nsec / 1000;
1892 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1893 						 sizeof(stv), &stv);
1894 				} else {
1895 					struct __kernel_old_timeval tv;
1896 
1897 					tv.tv_sec = tss->ts[0].tv_sec;
1898 					tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1899 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1900 						 sizeof(tv), &tv);
1901 				}
1902 			}
1903 		}
1904 
1905 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1906 			has_timestamping = true;
1907 		else
1908 			tss->ts[0] = (struct timespec64) {0};
1909 	}
1910 
1911 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1912 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1913 			has_timestamping = true;
1914 		else
1915 			tss->ts[2] = (struct timespec64) {0};
1916 	}
1917 
1918 	if (has_timestamping) {
1919 		tss->ts[1] = (struct timespec64) {0};
1920 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
1921 			put_cmsg_scm_timestamping64(msg, tss);
1922 		else
1923 			put_cmsg_scm_timestamping(msg, tss);
1924 	}
1925 }
1926 
1927 static int tcp_inq_hint(struct sock *sk)
1928 {
1929 	const struct tcp_sock *tp = tcp_sk(sk);
1930 	u32 copied_seq = READ_ONCE(tp->copied_seq);
1931 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1932 	int inq;
1933 
1934 	inq = rcv_nxt - copied_seq;
1935 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1936 		lock_sock(sk);
1937 		inq = tp->rcv_nxt - tp->copied_seq;
1938 		release_sock(sk);
1939 	}
1940 	/* After receiving a FIN, tell the user-space to continue reading
1941 	 * by returning a non-zero inq.
1942 	 */
1943 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
1944 		inq = 1;
1945 	return inq;
1946 }
1947 
1948 /*
1949  *	This routine copies from a sock struct into the user buffer.
1950  *
1951  *	Technical note: in 2.3 we work on _locked_ socket, so that
1952  *	tricks with *seq access order and skb->users are not required.
1953  *	Probably, code can be easily improved even more.
1954  */
1955 
1956 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1957 		int flags, int *addr_len)
1958 {
1959 	struct tcp_sock *tp = tcp_sk(sk);
1960 	int copied = 0;
1961 	u32 peek_seq;
1962 	u32 *seq;
1963 	unsigned long used;
1964 	int err, inq;
1965 	int target;		/* Read at least this many bytes */
1966 	long timeo;
1967 	struct sk_buff *skb, *last;
1968 	u32 urg_hole = 0;
1969 	struct scm_timestamping_internal tss;
1970 	bool has_tss = false;
1971 	bool has_cmsg;
1972 
1973 	if (unlikely(flags & MSG_ERRQUEUE))
1974 		return inet_recv_error(sk, msg, len, addr_len);
1975 
1976 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1977 	    (sk->sk_state == TCP_ESTABLISHED))
1978 		sk_busy_loop(sk, nonblock);
1979 
1980 	lock_sock(sk);
1981 
1982 	err = -ENOTCONN;
1983 	if (sk->sk_state == TCP_LISTEN)
1984 		goto out;
1985 
1986 	has_cmsg = tp->recvmsg_inq;
1987 	timeo = sock_rcvtimeo(sk, nonblock);
1988 
1989 	/* Urgent data needs to be handled specially. */
1990 	if (flags & MSG_OOB)
1991 		goto recv_urg;
1992 
1993 	if (unlikely(tp->repair)) {
1994 		err = -EPERM;
1995 		if (!(flags & MSG_PEEK))
1996 			goto out;
1997 
1998 		if (tp->repair_queue == TCP_SEND_QUEUE)
1999 			goto recv_sndq;
2000 
2001 		err = -EINVAL;
2002 		if (tp->repair_queue == TCP_NO_QUEUE)
2003 			goto out;
2004 
2005 		/* 'common' recv queue MSG_PEEK-ing */
2006 	}
2007 
2008 	seq = &tp->copied_seq;
2009 	if (flags & MSG_PEEK) {
2010 		peek_seq = tp->copied_seq;
2011 		seq = &peek_seq;
2012 	}
2013 
2014 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2015 
2016 	do {
2017 		u32 offset;
2018 
2019 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2020 		if (tp->urg_data && tp->urg_seq == *seq) {
2021 			if (copied)
2022 				break;
2023 			if (signal_pending(current)) {
2024 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2025 				break;
2026 			}
2027 		}
2028 
2029 		/* Next get a buffer. */
2030 
2031 		last = skb_peek_tail(&sk->sk_receive_queue);
2032 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2033 			last = skb;
2034 			/* Now that we have two receive queues this
2035 			 * shouldn't happen.
2036 			 */
2037 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2038 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2039 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2040 				 flags))
2041 				break;
2042 
2043 			offset = *seq - TCP_SKB_CB(skb)->seq;
2044 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2045 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2046 				offset--;
2047 			}
2048 			if (offset < skb->len)
2049 				goto found_ok_skb;
2050 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2051 				goto found_fin_ok;
2052 			WARN(!(flags & MSG_PEEK),
2053 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2054 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2055 		}
2056 
2057 		/* Well, if we have backlog, try to process it now yet. */
2058 
2059 		if (copied >= target && !sk->sk_backlog.tail)
2060 			break;
2061 
2062 		if (copied) {
2063 			if (sk->sk_err ||
2064 			    sk->sk_state == TCP_CLOSE ||
2065 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2066 			    !timeo ||
2067 			    signal_pending(current))
2068 				break;
2069 		} else {
2070 			if (sock_flag(sk, SOCK_DONE))
2071 				break;
2072 
2073 			if (sk->sk_err) {
2074 				copied = sock_error(sk);
2075 				break;
2076 			}
2077 
2078 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2079 				break;
2080 
2081 			if (sk->sk_state == TCP_CLOSE) {
2082 				/* This occurs when user tries to read
2083 				 * from never connected socket.
2084 				 */
2085 				copied = -ENOTCONN;
2086 				break;
2087 			}
2088 
2089 			if (!timeo) {
2090 				copied = -EAGAIN;
2091 				break;
2092 			}
2093 
2094 			if (signal_pending(current)) {
2095 				copied = sock_intr_errno(timeo);
2096 				break;
2097 			}
2098 		}
2099 
2100 		tcp_cleanup_rbuf(sk, copied);
2101 
2102 		if (copied >= target) {
2103 			/* Do not sleep, just process backlog. */
2104 			release_sock(sk);
2105 			lock_sock(sk);
2106 		} else {
2107 			sk_wait_data(sk, &timeo, last);
2108 		}
2109 
2110 		if ((flags & MSG_PEEK) &&
2111 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2112 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2113 					    current->comm,
2114 					    task_pid_nr(current));
2115 			peek_seq = tp->copied_seq;
2116 		}
2117 		continue;
2118 
2119 found_ok_skb:
2120 		/* Ok so how much can we use? */
2121 		used = skb->len - offset;
2122 		if (len < used)
2123 			used = len;
2124 
2125 		/* Do we have urgent data here? */
2126 		if (tp->urg_data) {
2127 			u32 urg_offset = tp->urg_seq - *seq;
2128 			if (urg_offset < used) {
2129 				if (!urg_offset) {
2130 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2131 						++*seq;
2132 						urg_hole++;
2133 						offset++;
2134 						used--;
2135 						if (!used)
2136 							goto skip_copy;
2137 					}
2138 				} else
2139 					used = urg_offset;
2140 			}
2141 		}
2142 
2143 		if (!(flags & MSG_TRUNC)) {
2144 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2145 			if (err) {
2146 				/* Exception. Bailout! */
2147 				if (!copied)
2148 					copied = -EFAULT;
2149 				break;
2150 			}
2151 		}
2152 
2153 		*seq += used;
2154 		copied += used;
2155 		len -= used;
2156 
2157 		tcp_rcv_space_adjust(sk);
2158 
2159 skip_copy:
2160 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2161 			tp->urg_data = 0;
2162 			tcp_fast_path_check(sk);
2163 		}
2164 		if (used + offset < skb->len)
2165 			continue;
2166 
2167 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2168 			tcp_update_recv_tstamps(skb, &tss);
2169 			has_tss = true;
2170 			has_cmsg = true;
2171 		}
2172 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2173 			goto found_fin_ok;
2174 		if (!(flags & MSG_PEEK))
2175 			sk_eat_skb(sk, skb);
2176 		continue;
2177 
2178 found_fin_ok:
2179 		/* Process the FIN. */
2180 		++*seq;
2181 		if (!(flags & MSG_PEEK))
2182 			sk_eat_skb(sk, skb);
2183 		break;
2184 	} while (len > 0);
2185 
2186 	/* According to UNIX98, msg_name/msg_namelen are ignored
2187 	 * on connected socket. I was just happy when found this 8) --ANK
2188 	 */
2189 
2190 	/* Clean up data we have read: This will do ACK frames. */
2191 	tcp_cleanup_rbuf(sk, copied);
2192 
2193 	release_sock(sk);
2194 
2195 	if (has_cmsg) {
2196 		if (has_tss)
2197 			tcp_recv_timestamp(msg, sk, &tss);
2198 		if (tp->recvmsg_inq) {
2199 			inq = tcp_inq_hint(sk);
2200 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2201 		}
2202 	}
2203 
2204 	return copied;
2205 
2206 out:
2207 	release_sock(sk);
2208 	return err;
2209 
2210 recv_urg:
2211 	err = tcp_recv_urg(sk, msg, len, flags);
2212 	goto out;
2213 
2214 recv_sndq:
2215 	err = tcp_peek_sndq(sk, msg, len);
2216 	goto out;
2217 }
2218 EXPORT_SYMBOL(tcp_recvmsg);
2219 
2220 void tcp_set_state(struct sock *sk, int state)
2221 {
2222 	int oldstate = sk->sk_state;
2223 
2224 	/* We defined a new enum for TCP states that are exported in BPF
2225 	 * so as not force the internal TCP states to be frozen. The
2226 	 * following checks will detect if an internal state value ever
2227 	 * differs from the BPF value. If this ever happens, then we will
2228 	 * need to remap the internal value to the BPF value before calling
2229 	 * tcp_call_bpf_2arg.
2230 	 */
2231 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2232 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2233 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2234 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2235 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2236 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2237 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2238 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2239 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2240 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2241 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2242 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2243 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2244 
2245 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2246 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2247 
2248 	switch (state) {
2249 	case TCP_ESTABLISHED:
2250 		if (oldstate != TCP_ESTABLISHED)
2251 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2252 		break;
2253 
2254 	case TCP_CLOSE:
2255 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2256 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2257 
2258 		sk->sk_prot->unhash(sk);
2259 		if (inet_csk(sk)->icsk_bind_hash &&
2260 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2261 			inet_put_port(sk);
2262 		/* fall through */
2263 	default:
2264 		if (oldstate == TCP_ESTABLISHED)
2265 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2266 	}
2267 
2268 	/* Change state AFTER socket is unhashed to avoid closed
2269 	 * socket sitting in hash tables.
2270 	 */
2271 	inet_sk_state_store(sk, state);
2272 }
2273 EXPORT_SYMBOL_GPL(tcp_set_state);
2274 
2275 /*
2276  *	State processing on a close. This implements the state shift for
2277  *	sending our FIN frame. Note that we only send a FIN for some
2278  *	states. A shutdown() may have already sent the FIN, or we may be
2279  *	closed.
2280  */
2281 
2282 static const unsigned char new_state[16] = {
2283   /* current state:        new state:      action:	*/
2284   [0 /* (Invalid) */]	= TCP_CLOSE,
2285   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2286   [TCP_SYN_SENT]	= TCP_CLOSE,
2287   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2288   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2289   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2290   [TCP_TIME_WAIT]	= TCP_CLOSE,
2291   [TCP_CLOSE]		= TCP_CLOSE,
2292   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2293   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2294   [TCP_LISTEN]		= TCP_CLOSE,
2295   [TCP_CLOSING]		= TCP_CLOSING,
2296   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2297 };
2298 
2299 static int tcp_close_state(struct sock *sk)
2300 {
2301 	int next = (int)new_state[sk->sk_state];
2302 	int ns = next & TCP_STATE_MASK;
2303 
2304 	tcp_set_state(sk, ns);
2305 
2306 	return next & TCP_ACTION_FIN;
2307 }
2308 
2309 /*
2310  *	Shutdown the sending side of a connection. Much like close except
2311  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2312  */
2313 
2314 void tcp_shutdown(struct sock *sk, int how)
2315 {
2316 	/*	We need to grab some memory, and put together a FIN,
2317 	 *	and then put it into the queue to be sent.
2318 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2319 	 */
2320 	if (!(how & SEND_SHUTDOWN))
2321 		return;
2322 
2323 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2324 	if ((1 << sk->sk_state) &
2325 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2326 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2327 		/* Clear out any half completed packets.  FIN if needed. */
2328 		if (tcp_close_state(sk))
2329 			tcp_send_fin(sk);
2330 	}
2331 }
2332 EXPORT_SYMBOL(tcp_shutdown);
2333 
2334 bool tcp_check_oom(struct sock *sk, int shift)
2335 {
2336 	bool too_many_orphans, out_of_socket_memory;
2337 
2338 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2339 	out_of_socket_memory = tcp_out_of_memory(sk);
2340 
2341 	if (too_many_orphans)
2342 		net_info_ratelimited("too many orphaned sockets\n");
2343 	if (out_of_socket_memory)
2344 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2345 	return too_many_orphans || out_of_socket_memory;
2346 }
2347 
2348 void tcp_close(struct sock *sk, long timeout)
2349 {
2350 	struct sk_buff *skb;
2351 	int data_was_unread = 0;
2352 	int state;
2353 
2354 	lock_sock(sk);
2355 	sk->sk_shutdown = SHUTDOWN_MASK;
2356 
2357 	if (sk->sk_state == TCP_LISTEN) {
2358 		tcp_set_state(sk, TCP_CLOSE);
2359 
2360 		/* Special case. */
2361 		inet_csk_listen_stop(sk);
2362 
2363 		goto adjudge_to_death;
2364 	}
2365 
2366 	/*  We need to flush the recv. buffs.  We do this only on the
2367 	 *  descriptor close, not protocol-sourced closes, because the
2368 	 *  reader process may not have drained the data yet!
2369 	 */
2370 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2371 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2372 
2373 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2374 			len--;
2375 		data_was_unread += len;
2376 		__kfree_skb(skb);
2377 	}
2378 
2379 	sk_mem_reclaim(sk);
2380 
2381 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2382 	if (sk->sk_state == TCP_CLOSE)
2383 		goto adjudge_to_death;
2384 
2385 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2386 	 * data was lost. To witness the awful effects of the old behavior of
2387 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2388 	 * GET in an FTP client, suspend the process, wait for the client to
2389 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2390 	 * Note: timeout is always zero in such a case.
2391 	 */
2392 	if (unlikely(tcp_sk(sk)->repair)) {
2393 		sk->sk_prot->disconnect(sk, 0);
2394 	} else if (data_was_unread) {
2395 		/* Unread data was tossed, zap the connection. */
2396 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2397 		tcp_set_state(sk, TCP_CLOSE);
2398 		tcp_send_active_reset(sk, sk->sk_allocation);
2399 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2400 		/* Check zero linger _after_ checking for unread data. */
2401 		sk->sk_prot->disconnect(sk, 0);
2402 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2403 	} else if (tcp_close_state(sk)) {
2404 		/* We FIN if the application ate all the data before
2405 		 * zapping the connection.
2406 		 */
2407 
2408 		/* RED-PEN. Formally speaking, we have broken TCP state
2409 		 * machine. State transitions:
2410 		 *
2411 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2412 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2413 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2414 		 *
2415 		 * are legal only when FIN has been sent (i.e. in window),
2416 		 * rather than queued out of window. Purists blame.
2417 		 *
2418 		 * F.e. "RFC state" is ESTABLISHED,
2419 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2420 		 *
2421 		 * The visible declinations are that sometimes
2422 		 * we enter time-wait state, when it is not required really
2423 		 * (harmless), do not send active resets, when they are
2424 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2425 		 * they look as CLOSING or LAST_ACK for Linux)
2426 		 * Probably, I missed some more holelets.
2427 		 * 						--ANK
2428 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2429 		 * in a single packet! (May consider it later but will
2430 		 * probably need API support or TCP_CORK SYN-ACK until
2431 		 * data is written and socket is closed.)
2432 		 */
2433 		tcp_send_fin(sk);
2434 	}
2435 
2436 	sk_stream_wait_close(sk, timeout);
2437 
2438 adjudge_to_death:
2439 	state = sk->sk_state;
2440 	sock_hold(sk);
2441 	sock_orphan(sk);
2442 
2443 	local_bh_disable();
2444 	bh_lock_sock(sk);
2445 	/* remove backlog if any, without releasing ownership. */
2446 	__release_sock(sk);
2447 
2448 	percpu_counter_inc(sk->sk_prot->orphan_count);
2449 
2450 	/* Have we already been destroyed by a softirq or backlog? */
2451 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2452 		goto out;
2453 
2454 	/*	This is a (useful) BSD violating of the RFC. There is a
2455 	 *	problem with TCP as specified in that the other end could
2456 	 *	keep a socket open forever with no application left this end.
2457 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2458 	 *	our end. If they send after that then tough - BUT: long enough
2459 	 *	that we won't make the old 4*rto = almost no time - whoops
2460 	 *	reset mistake.
2461 	 *
2462 	 *	Nope, it was not mistake. It is really desired behaviour
2463 	 *	f.e. on http servers, when such sockets are useless, but
2464 	 *	consume significant resources. Let's do it with special
2465 	 *	linger2	option.					--ANK
2466 	 */
2467 
2468 	if (sk->sk_state == TCP_FIN_WAIT2) {
2469 		struct tcp_sock *tp = tcp_sk(sk);
2470 		if (tp->linger2 < 0) {
2471 			tcp_set_state(sk, TCP_CLOSE);
2472 			tcp_send_active_reset(sk, GFP_ATOMIC);
2473 			__NET_INC_STATS(sock_net(sk),
2474 					LINUX_MIB_TCPABORTONLINGER);
2475 		} else {
2476 			const int tmo = tcp_fin_time(sk);
2477 
2478 			if (tmo > TCP_TIMEWAIT_LEN) {
2479 				inet_csk_reset_keepalive_timer(sk,
2480 						tmo - TCP_TIMEWAIT_LEN);
2481 			} else {
2482 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2483 				goto out;
2484 			}
2485 		}
2486 	}
2487 	if (sk->sk_state != TCP_CLOSE) {
2488 		sk_mem_reclaim(sk);
2489 		if (tcp_check_oom(sk, 0)) {
2490 			tcp_set_state(sk, TCP_CLOSE);
2491 			tcp_send_active_reset(sk, GFP_ATOMIC);
2492 			__NET_INC_STATS(sock_net(sk),
2493 					LINUX_MIB_TCPABORTONMEMORY);
2494 		} else if (!check_net(sock_net(sk))) {
2495 			/* Not possible to send reset; just close */
2496 			tcp_set_state(sk, TCP_CLOSE);
2497 		}
2498 	}
2499 
2500 	if (sk->sk_state == TCP_CLOSE) {
2501 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2502 		/* We could get here with a non-NULL req if the socket is
2503 		 * aborted (e.g., closed with unread data) before 3WHS
2504 		 * finishes.
2505 		 */
2506 		if (req)
2507 			reqsk_fastopen_remove(sk, req, false);
2508 		inet_csk_destroy_sock(sk);
2509 	}
2510 	/* Otherwise, socket is reprieved until protocol close. */
2511 
2512 out:
2513 	bh_unlock_sock(sk);
2514 	local_bh_enable();
2515 	release_sock(sk);
2516 	sock_put(sk);
2517 }
2518 EXPORT_SYMBOL(tcp_close);
2519 
2520 /* These states need RST on ABORT according to RFC793 */
2521 
2522 static inline bool tcp_need_reset(int state)
2523 {
2524 	return (1 << state) &
2525 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2526 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2527 }
2528 
2529 static void tcp_rtx_queue_purge(struct sock *sk)
2530 {
2531 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2532 
2533 	while (p) {
2534 		struct sk_buff *skb = rb_to_skb(p);
2535 
2536 		p = rb_next(p);
2537 		/* Since we are deleting whole queue, no need to
2538 		 * list_del(&skb->tcp_tsorted_anchor)
2539 		 */
2540 		tcp_rtx_queue_unlink(skb, sk);
2541 		sk_wmem_free_skb(sk, skb);
2542 	}
2543 }
2544 
2545 void tcp_write_queue_purge(struct sock *sk)
2546 {
2547 	struct sk_buff *skb;
2548 
2549 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2550 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2551 		tcp_skb_tsorted_anchor_cleanup(skb);
2552 		sk_wmem_free_skb(sk, skb);
2553 	}
2554 	tcp_rtx_queue_purge(sk);
2555 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2556 	sk_mem_reclaim(sk);
2557 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2558 	tcp_sk(sk)->packets_out = 0;
2559 	inet_csk(sk)->icsk_backoff = 0;
2560 }
2561 
2562 int tcp_disconnect(struct sock *sk, int flags)
2563 {
2564 	struct inet_sock *inet = inet_sk(sk);
2565 	struct inet_connection_sock *icsk = inet_csk(sk);
2566 	struct tcp_sock *tp = tcp_sk(sk);
2567 	int old_state = sk->sk_state;
2568 
2569 	if (old_state != TCP_CLOSE)
2570 		tcp_set_state(sk, TCP_CLOSE);
2571 
2572 	/* ABORT function of RFC793 */
2573 	if (old_state == TCP_LISTEN) {
2574 		inet_csk_listen_stop(sk);
2575 	} else if (unlikely(tp->repair)) {
2576 		sk->sk_err = ECONNABORTED;
2577 	} else if (tcp_need_reset(old_state) ||
2578 		   (tp->snd_nxt != tp->write_seq &&
2579 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2580 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2581 		 * states
2582 		 */
2583 		tcp_send_active_reset(sk, gfp_any());
2584 		sk->sk_err = ECONNRESET;
2585 	} else if (old_state == TCP_SYN_SENT)
2586 		sk->sk_err = ECONNRESET;
2587 
2588 	tcp_clear_xmit_timers(sk);
2589 	__skb_queue_purge(&sk->sk_receive_queue);
2590 	tp->copied_seq = tp->rcv_nxt;
2591 	tp->urg_data = 0;
2592 	tcp_write_queue_purge(sk);
2593 	tcp_fastopen_active_disable_ofo_check(sk);
2594 	skb_rbtree_purge(&tp->out_of_order_queue);
2595 
2596 	inet->inet_dport = 0;
2597 
2598 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2599 		inet_reset_saddr(sk);
2600 
2601 	sk->sk_shutdown = 0;
2602 	sock_reset_flag(sk, SOCK_DONE);
2603 	tp->srtt_us = 0;
2604 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2605 	tp->rcv_rtt_last_tsecr = 0;
2606 	tp->write_seq += tp->max_window + 2;
2607 	if (tp->write_seq == 0)
2608 		tp->write_seq = 1;
2609 	icsk->icsk_backoff = 0;
2610 	tp->snd_cwnd = 2;
2611 	icsk->icsk_probes_out = 0;
2612 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2613 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2614 	tp->snd_cwnd = TCP_INIT_CWND;
2615 	tp->snd_cwnd_cnt = 0;
2616 	tp->window_clamp = 0;
2617 	tp->delivered_ce = 0;
2618 	tcp_set_ca_state(sk, TCP_CA_Open);
2619 	tp->is_sack_reneg = 0;
2620 	tcp_clear_retrans(tp);
2621 	inet_csk_delack_init(sk);
2622 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2623 	 * issue in __tcp_select_window()
2624 	 */
2625 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2626 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2627 	__sk_dst_reset(sk);
2628 	dst_release(sk->sk_rx_dst);
2629 	sk->sk_rx_dst = NULL;
2630 	tcp_saved_syn_free(tp);
2631 	tp->compressed_ack = 0;
2632 	tp->bytes_sent = 0;
2633 	tp->bytes_retrans = 0;
2634 	tp->duplicate_sack[0].start_seq = 0;
2635 	tp->duplicate_sack[0].end_seq = 0;
2636 	tp->dsack_dups = 0;
2637 	tp->reord_seen = 0;
2638 	tp->retrans_out = 0;
2639 	tp->sacked_out = 0;
2640 	tp->tlp_high_seq = 0;
2641 	tp->last_oow_ack_time = 0;
2642 	/* There's a bubble in the pipe until at least the first ACK. */
2643 	tp->app_limited = ~0U;
2644 	tp->rack.mstamp = 0;
2645 	tp->rack.advanced = 0;
2646 	tp->rack.reo_wnd_steps = 1;
2647 	tp->rack.last_delivered = 0;
2648 	tp->rack.reo_wnd_persist = 0;
2649 	tp->rack.dsack_seen = 0;
2650 	tp->syn_data_acked = 0;
2651 	tp->rx_opt.saw_tstamp = 0;
2652 	tp->rx_opt.dsack = 0;
2653 	tp->rx_opt.num_sacks = 0;
2654 
2655 
2656 	/* Clean up fastopen related fields */
2657 	tcp_free_fastopen_req(tp);
2658 	inet->defer_connect = 0;
2659 
2660 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2661 
2662 	if (sk->sk_frag.page) {
2663 		put_page(sk->sk_frag.page);
2664 		sk->sk_frag.page = NULL;
2665 		sk->sk_frag.offset = 0;
2666 	}
2667 
2668 	sk->sk_error_report(sk);
2669 	return 0;
2670 }
2671 EXPORT_SYMBOL(tcp_disconnect);
2672 
2673 static inline bool tcp_can_repair_sock(const struct sock *sk)
2674 {
2675 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2676 		(sk->sk_state != TCP_LISTEN);
2677 }
2678 
2679 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2680 {
2681 	struct tcp_repair_window opt;
2682 
2683 	if (!tp->repair)
2684 		return -EPERM;
2685 
2686 	if (len != sizeof(opt))
2687 		return -EINVAL;
2688 
2689 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2690 		return -EFAULT;
2691 
2692 	if (opt.max_window < opt.snd_wnd)
2693 		return -EINVAL;
2694 
2695 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2696 		return -EINVAL;
2697 
2698 	if (after(opt.rcv_wup, tp->rcv_nxt))
2699 		return -EINVAL;
2700 
2701 	tp->snd_wl1	= opt.snd_wl1;
2702 	tp->snd_wnd	= opt.snd_wnd;
2703 	tp->max_window	= opt.max_window;
2704 
2705 	tp->rcv_wnd	= opt.rcv_wnd;
2706 	tp->rcv_wup	= opt.rcv_wup;
2707 
2708 	return 0;
2709 }
2710 
2711 static int tcp_repair_options_est(struct sock *sk,
2712 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2713 {
2714 	struct tcp_sock *tp = tcp_sk(sk);
2715 	struct tcp_repair_opt opt;
2716 
2717 	while (len >= sizeof(opt)) {
2718 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2719 			return -EFAULT;
2720 
2721 		optbuf++;
2722 		len -= sizeof(opt);
2723 
2724 		switch (opt.opt_code) {
2725 		case TCPOPT_MSS:
2726 			tp->rx_opt.mss_clamp = opt.opt_val;
2727 			tcp_mtup_init(sk);
2728 			break;
2729 		case TCPOPT_WINDOW:
2730 			{
2731 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2732 				u16 rcv_wscale = opt.opt_val >> 16;
2733 
2734 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2735 					return -EFBIG;
2736 
2737 				tp->rx_opt.snd_wscale = snd_wscale;
2738 				tp->rx_opt.rcv_wscale = rcv_wscale;
2739 				tp->rx_opt.wscale_ok = 1;
2740 			}
2741 			break;
2742 		case TCPOPT_SACK_PERM:
2743 			if (opt.opt_val != 0)
2744 				return -EINVAL;
2745 
2746 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2747 			break;
2748 		case TCPOPT_TIMESTAMP:
2749 			if (opt.opt_val != 0)
2750 				return -EINVAL;
2751 
2752 			tp->rx_opt.tstamp_ok = 1;
2753 			break;
2754 		}
2755 	}
2756 
2757 	return 0;
2758 }
2759 
2760 /*
2761  *	Socket option code for TCP.
2762  */
2763 static int do_tcp_setsockopt(struct sock *sk, int level,
2764 		int optname, char __user *optval, unsigned int optlen)
2765 {
2766 	struct tcp_sock *tp = tcp_sk(sk);
2767 	struct inet_connection_sock *icsk = inet_csk(sk);
2768 	struct net *net = sock_net(sk);
2769 	int val;
2770 	int err = 0;
2771 
2772 	/* These are data/string values, all the others are ints */
2773 	switch (optname) {
2774 	case TCP_CONGESTION: {
2775 		char name[TCP_CA_NAME_MAX];
2776 
2777 		if (optlen < 1)
2778 			return -EINVAL;
2779 
2780 		val = strncpy_from_user(name, optval,
2781 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2782 		if (val < 0)
2783 			return -EFAULT;
2784 		name[val] = 0;
2785 
2786 		lock_sock(sk);
2787 		err = tcp_set_congestion_control(sk, name, true, true);
2788 		release_sock(sk);
2789 		return err;
2790 	}
2791 	case TCP_ULP: {
2792 		char name[TCP_ULP_NAME_MAX];
2793 
2794 		if (optlen < 1)
2795 			return -EINVAL;
2796 
2797 		val = strncpy_from_user(name, optval,
2798 					min_t(long, TCP_ULP_NAME_MAX - 1,
2799 					      optlen));
2800 		if (val < 0)
2801 			return -EFAULT;
2802 		name[val] = 0;
2803 
2804 		lock_sock(sk);
2805 		err = tcp_set_ulp(sk, name);
2806 		release_sock(sk);
2807 		return err;
2808 	}
2809 	case TCP_FASTOPEN_KEY: {
2810 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
2811 
2812 		if (optlen != sizeof(key))
2813 			return -EINVAL;
2814 
2815 		if (copy_from_user(key, optval, optlen))
2816 			return -EFAULT;
2817 
2818 		return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2819 	}
2820 	default:
2821 		/* fallthru */
2822 		break;
2823 	}
2824 
2825 	if (optlen < sizeof(int))
2826 		return -EINVAL;
2827 
2828 	if (get_user(val, (int __user *)optval))
2829 		return -EFAULT;
2830 
2831 	lock_sock(sk);
2832 
2833 	switch (optname) {
2834 	case TCP_MAXSEG:
2835 		/* Values greater than interface MTU won't take effect. However
2836 		 * at the point when this call is done we typically don't yet
2837 		 * know which interface is going to be used
2838 		 */
2839 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2840 			err = -EINVAL;
2841 			break;
2842 		}
2843 		tp->rx_opt.user_mss = val;
2844 		break;
2845 
2846 	case TCP_NODELAY:
2847 		if (val) {
2848 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2849 			 * this option on corked socket is remembered, but
2850 			 * it is not activated until cork is cleared.
2851 			 *
2852 			 * However, when TCP_NODELAY is set we make
2853 			 * an explicit push, which overrides even TCP_CORK
2854 			 * for currently queued segments.
2855 			 */
2856 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2857 			tcp_push_pending_frames(sk);
2858 		} else {
2859 			tp->nonagle &= ~TCP_NAGLE_OFF;
2860 		}
2861 		break;
2862 
2863 	case TCP_THIN_LINEAR_TIMEOUTS:
2864 		if (val < 0 || val > 1)
2865 			err = -EINVAL;
2866 		else
2867 			tp->thin_lto = val;
2868 		break;
2869 
2870 	case TCP_THIN_DUPACK:
2871 		if (val < 0 || val > 1)
2872 			err = -EINVAL;
2873 		break;
2874 
2875 	case TCP_REPAIR:
2876 		if (!tcp_can_repair_sock(sk))
2877 			err = -EPERM;
2878 		else if (val == TCP_REPAIR_ON) {
2879 			tp->repair = 1;
2880 			sk->sk_reuse = SK_FORCE_REUSE;
2881 			tp->repair_queue = TCP_NO_QUEUE;
2882 		} else if (val == TCP_REPAIR_OFF) {
2883 			tp->repair = 0;
2884 			sk->sk_reuse = SK_NO_REUSE;
2885 			tcp_send_window_probe(sk);
2886 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
2887 			tp->repair = 0;
2888 			sk->sk_reuse = SK_NO_REUSE;
2889 		} else
2890 			err = -EINVAL;
2891 
2892 		break;
2893 
2894 	case TCP_REPAIR_QUEUE:
2895 		if (!tp->repair)
2896 			err = -EPERM;
2897 		else if ((unsigned int)val < TCP_QUEUES_NR)
2898 			tp->repair_queue = val;
2899 		else
2900 			err = -EINVAL;
2901 		break;
2902 
2903 	case TCP_QUEUE_SEQ:
2904 		if (sk->sk_state != TCP_CLOSE)
2905 			err = -EPERM;
2906 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2907 			tp->write_seq = val;
2908 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2909 			tp->rcv_nxt = val;
2910 		else
2911 			err = -EINVAL;
2912 		break;
2913 
2914 	case TCP_REPAIR_OPTIONS:
2915 		if (!tp->repair)
2916 			err = -EINVAL;
2917 		else if (sk->sk_state == TCP_ESTABLISHED)
2918 			err = tcp_repair_options_est(sk,
2919 					(struct tcp_repair_opt __user *)optval,
2920 					optlen);
2921 		else
2922 			err = -EPERM;
2923 		break;
2924 
2925 	case TCP_CORK:
2926 		/* When set indicates to always queue non-full frames.
2927 		 * Later the user clears this option and we transmit
2928 		 * any pending partial frames in the queue.  This is
2929 		 * meant to be used alongside sendfile() to get properly
2930 		 * filled frames when the user (for example) must write
2931 		 * out headers with a write() call first and then use
2932 		 * sendfile to send out the data parts.
2933 		 *
2934 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2935 		 * stronger than TCP_NODELAY.
2936 		 */
2937 		if (val) {
2938 			tp->nonagle |= TCP_NAGLE_CORK;
2939 		} else {
2940 			tp->nonagle &= ~TCP_NAGLE_CORK;
2941 			if (tp->nonagle&TCP_NAGLE_OFF)
2942 				tp->nonagle |= TCP_NAGLE_PUSH;
2943 			tcp_push_pending_frames(sk);
2944 		}
2945 		break;
2946 
2947 	case TCP_KEEPIDLE:
2948 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2949 			err = -EINVAL;
2950 		else {
2951 			tp->keepalive_time = val * HZ;
2952 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2953 			    !((1 << sk->sk_state) &
2954 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2955 				u32 elapsed = keepalive_time_elapsed(tp);
2956 				if (tp->keepalive_time > elapsed)
2957 					elapsed = tp->keepalive_time - elapsed;
2958 				else
2959 					elapsed = 0;
2960 				inet_csk_reset_keepalive_timer(sk, elapsed);
2961 			}
2962 		}
2963 		break;
2964 	case TCP_KEEPINTVL:
2965 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2966 			err = -EINVAL;
2967 		else
2968 			tp->keepalive_intvl = val * HZ;
2969 		break;
2970 	case TCP_KEEPCNT:
2971 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2972 			err = -EINVAL;
2973 		else
2974 			tp->keepalive_probes = val;
2975 		break;
2976 	case TCP_SYNCNT:
2977 		if (val < 1 || val > MAX_TCP_SYNCNT)
2978 			err = -EINVAL;
2979 		else
2980 			icsk->icsk_syn_retries = val;
2981 		break;
2982 
2983 	case TCP_SAVE_SYN:
2984 		if (val < 0 || val > 1)
2985 			err = -EINVAL;
2986 		else
2987 			tp->save_syn = val;
2988 		break;
2989 
2990 	case TCP_LINGER2:
2991 		if (val < 0)
2992 			tp->linger2 = -1;
2993 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2994 			tp->linger2 = 0;
2995 		else
2996 			tp->linger2 = val * HZ;
2997 		break;
2998 
2999 	case TCP_DEFER_ACCEPT:
3000 		/* Translate value in seconds to number of retransmits */
3001 		icsk->icsk_accept_queue.rskq_defer_accept =
3002 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3003 					TCP_RTO_MAX / HZ);
3004 		break;
3005 
3006 	case TCP_WINDOW_CLAMP:
3007 		if (!val) {
3008 			if (sk->sk_state != TCP_CLOSE) {
3009 				err = -EINVAL;
3010 				break;
3011 			}
3012 			tp->window_clamp = 0;
3013 		} else
3014 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3015 						SOCK_MIN_RCVBUF / 2 : val;
3016 		break;
3017 
3018 	case TCP_QUICKACK:
3019 		if (!val) {
3020 			inet_csk_enter_pingpong_mode(sk);
3021 		} else {
3022 			inet_csk_exit_pingpong_mode(sk);
3023 			if ((1 << sk->sk_state) &
3024 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3025 			    inet_csk_ack_scheduled(sk)) {
3026 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3027 				tcp_cleanup_rbuf(sk, 1);
3028 				if (!(val & 1))
3029 					inet_csk_enter_pingpong_mode(sk);
3030 			}
3031 		}
3032 		break;
3033 
3034 #ifdef CONFIG_TCP_MD5SIG
3035 	case TCP_MD5SIG:
3036 	case TCP_MD5SIG_EXT:
3037 		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3038 			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3039 		else
3040 			err = -EINVAL;
3041 		break;
3042 #endif
3043 	case TCP_USER_TIMEOUT:
3044 		/* Cap the max time in ms TCP will retry or probe the window
3045 		 * before giving up and aborting (ETIMEDOUT) a connection.
3046 		 */
3047 		if (val < 0)
3048 			err = -EINVAL;
3049 		else
3050 			icsk->icsk_user_timeout = val;
3051 		break;
3052 
3053 	case TCP_FASTOPEN:
3054 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3055 		    TCPF_LISTEN))) {
3056 			tcp_fastopen_init_key_once(net);
3057 
3058 			fastopen_queue_tune(sk, val);
3059 		} else {
3060 			err = -EINVAL;
3061 		}
3062 		break;
3063 	case TCP_FASTOPEN_CONNECT:
3064 		if (val > 1 || val < 0) {
3065 			err = -EINVAL;
3066 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3067 			if (sk->sk_state == TCP_CLOSE)
3068 				tp->fastopen_connect = val;
3069 			else
3070 				err = -EINVAL;
3071 		} else {
3072 			err = -EOPNOTSUPP;
3073 		}
3074 		break;
3075 	case TCP_FASTOPEN_NO_COOKIE:
3076 		if (val > 1 || val < 0)
3077 			err = -EINVAL;
3078 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3079 			err = -EINVAL;
3080 		else
3081 			tp->fastopen_no_cookie = val;
3082 		break;
3083 	case TCP_TIMESTAMP:
3084 		if (!tp->repair)
3085 			err = -EPERM;
3086 		else
3087 			tp->tsoffset = val - tcp_time_stamp_raw();
3088 		break;
3089 	case TCP_REPAIR_WINDOW:
3090 		err = tcp_repair_set_window(tp, optval, optlen);
3091 		break;
3092 	case TCP_NOTSENT_LOWAT:
3093 		tp->notsent_lowat = val;
3094 		sk->sk_write_space(sk);
3095 		break;
3096 	case TCP_INQ:
3097 		if (val > 1 || val < 0)
3098 			err = -EINVAL;
3099 		else
3100 			tp->recvmsg_inq = val;
3101 		break;
3102 	default:
3103 		err = -ENOPROTOOPT;
3104 		break;
3105 	}
3106 
3107 	release_sock(sk);
3108 	return err;
3109 }
3110 
3111 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3112 		   unsigned int optlen)
3113 {
3114 	const struct inet_connection_sock *icsk = inet_csk(sk);
3115 
3116 	if (level != SOL_TCP)
3117 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3118 						     optval, optlen);
3119 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3120 }
3121 EXPORT_SYMBOL(tcp_setsockopt);
3122 
3123 #ifdef CONFIG_COMPAT
3124 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3125 			  char __user *optval, unsigned int optlen)
3126 {
3127 	if (level != SOL_TCP)
3128 		return inet_csk_compat_setsockopt(sk, level, optname,
3129 						  optval, optlen);
3130 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3131 }
3132 EXPORT_SYMBOL(compat_tcp_setsockopt);
3133 #endif
3134 
3135 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3136 				      struct tcp_info *info)
3137 {
3138 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3139 	enum tcp_chrono i;
3140 
3141 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3142 		stats[i] = tp->chrono_stat[i - 1];
3143 		if (i == tp->chrono_type)
3144 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3145 		stats[i] *= USEC_PER_SEC / HZ;
3146 		total += stats[i];
3147 	}
3148 
3149 	info->tcpi_busy_time = total;
3150 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3151 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3152 }
3153 
3154 /* Return information about state of tcp endpoint in API format. */
3155 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3156 {
3157 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3158 	const struct inet_connection_sock *icsk = inet_csk(sk);
3159 	unsigned long rate;
3160 	u32 now;
3161 	u64 rate64;
3162 	bool slow;
3163 
3164 	memset(info, 0, sizeof(*info));
3165 	if (sk->sk_type != SOCK_STREAM)
3166 		return;
3167 
3168 	info->tcpi_state = inet_sk_state_load(sk);
3169 
3170 	/* Report meaningful fields for all TCP states, including listeners */
3171 	rate = READ_ONCE(sk->sk_pacing_rate);
3172 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3173 	info->tcpi_pacing_rate = rate64;
3174 
3175 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3176 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3177 	info->tcpi_max_pacing_rate = rate64;
3178 
3179 	info->tcpi_reordering = tp->reordering;
3180 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3181 
3182 	if (info->tcpi_state == TCP_LISTEN) {
3183 		/* listeners aliased fields :
3184 		 * tcpi_unacked -> Number of children ready for accept()
3185 		 * tcpi_sacked  -> max backlog
3186 		 */
3187 		info->tcpi_unacked = sk->sk_ack_backlog;
3188 		info->tcpi_sacked = sk->sk_max_ack_backlog;
3189 		return;
3190 	}
3191 
3192 	slow = lock_sock_fast(sk);
3193 
3194 	info->tcpi_ca_state = icsk->icsk_ca_state;
3195 	info->tcpi_retransmits = icsk->icsk_retransmits;
3196 	info->tcpi_probes = icsk->icsk_probes_out;
3197 	info->tcpi_backoff = icsk->icsk_backoff;
3198 
3199 	if (tp->rx_opt.tstamp_ok)
3200 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3201 	if (tcp_is_sack(tp))
3202 		info->tcpi_options |= TCPI_OPT_SACK;
3203 	if (tp->rx_opt.wscale_ok) {
3204 		info->tcpi_options |= TCPI_OPT_WSCALE;
3205 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3206 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3207 	}
3208 
3209 	if (tp->ecn_flags & TCP_ECN_OK)
3210 		info->tcpi_options |= TCPI_OPT_ECN;
3211 	if (tp->ecn_flags & TCP_ECN_SEEN)
3212 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3213 	if (tp->syn_data_acked)
3214 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3215 
3216 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3217 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3218 	info->tcpi_snd_mss = tp->mss_cache;
3219 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3220 
3221 	info->tcpi_unacked = tp->packets_out;
3222 	info->tcpi_sacked = tp->sacked_out;
3223 
3224 	info->tcpi_lost = tp->lost_out;
3225 	info->tcpi_retrans = tp->retrans_out;
3226 
3227 	now = tcp_jiffies32;
3228 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3229 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3230 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3231 
3232 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3233 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3234 	info->tcpi_rtt = tp->srtt_us >> 3;
3235 	info->tcpi_rttvar = tp->mdev_us >> 2;
3236 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3237 	info->tcpi_advmss = tp->advmss;
3238 
3239 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3240 	info->tcpi_rcv_space = tp->rcvq_space.space;
3241 
3242 	info->tcpi_total_retrans = tp->total_retrans;
3243 
3244 	info->tcpi_bytes_acked = tp->bytes_acked;
3245 	info->tcpi_bytes_received = tp->bytes_received;
3246 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3247 	tcp_get_info_chrono_stats(tp, info);
3248 
3249 	info->tcpi_segs_out = tp->segs_out;
3250 	info->tcpi_segs_in = tp->segs_in;
3251 
3252 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3253 	info->tcpi_data_segs_in = tp->data_segs_in;
3254 	info->tcpi_data_segs_out = tp->data_segs_out;
3255 
3256 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3257 	rate64 = tcp_compute_delivery_rate(tp);
3258 	if (rate64)
3259 		info->tcpi_delivery_rate = rate64;
3260 	info->tcpi_delivered = tp->delivered;
3261 	info->tcpi_delivered_ce = tp->delivered_ce;
3262 	info->tcpi_bytes_sent = tp->bytes_sent;
3263 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3264 	info->tcpi_dsack_dups = tp->dsack_dups;
3265 	info->tcpi_reord_seen = tp->reord_seen;
3266 	unlock_sock_fast(sk, slow);
3267 }
3268 EXPORT_SYMBOL_GPL(tcp_get_info);
3269 
3270 static size_t tcp_opt_stats_get_size(void)
3271 {
3272 	return
3273 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3274 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3275 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3276 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3277 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3278 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3279 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3280 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3281 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3282 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3283 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3284 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3285 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3286 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3287 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3288 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3289 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3290 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3291 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3292 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3293 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3294 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3295 		0;
3296 }
3297 
3298 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3299 {
3300 	const struct tcp_sock *tp = tcp_sk(sk);
3301 	struct sk_buff *stats;
3302 	struct tcp_info info;
3303 	unsigned long rate;
3304 	u64 rate64;
3305 
3306 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3307 	if (!stats)
3308 		return NULL;
3309 
3310 	tcp_get_info_chrono_stats(tp, &info);
3311 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3312 			  info.tcpi_busy_time, TCP_NLA_PAD);
3313 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3314 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3315 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3316 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3317 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3318 			  tp->data_segs_out, TCP_NLA_PAD);
3319 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3320 			  tp->total_retrans, TCP_NLA_PAD);
3321 
3322 	rate = READ_ONCE(sk->sk_pacing_rate);
3323 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3324 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3325 
3326 	rate64 = tcp_compute_delivery_rate(tp);
3327 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3328 
3329 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3330 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3331 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3332 
3333 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3334 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3335 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3336 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3337 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3338 
3339 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3340 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3341 
3342 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3343 			  TCP_NLA_PAD);
3344 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3345 			  TCP_NLA_PAD);
3346 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3347 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3348 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3349 
3350 	return stats;
3351 }
3352 
3353 static int do_tcp_getsockopt(struct sock *sk, int level,
3354 		int optname, char __user *optval, int __user *optlen)
3355 {
3356 	struct inet_connection_sock *icsk = inet_csk(sk);
3357 	struct tcp_sock *tp = tcp_sk(sk);
3358 	struct net *net = sock_net(sk);
3359 	int val, len;
3360 
3361 	if (get_user(len, optlen))
3362 		return -EFAULT;
3363 
3364 	len = min_t(unsigned int, len, sizeof(int));
3365 
3366 	if (len < 0)
3367 		return -EINVAL;
3368 
3369 	switch (optname) {
3370 	case TCP_MAXSEG:
3371 		val = tp->mss_cache;
3372 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3373 			val = tp->rx_opt.user_mss;
3374 		if (tp->repair)
3375 			val = tp->rx_opt.mss_clamp;
3376 		break;
3377 	case TCP_NODELAY:
3378 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3379 		break;
3380 	case TCP_CORK:
3381 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3382 		break;
3383 	case TCP_KEEPIDLE:
3384 		val = keepalive_time_when(tp) / HZ;
3385 		break;
3386 	case TCP_KEEPINTVL:
3387 		val = keepalive_intvl_when(tp) / HZ;
3388 		break;
3389 	case TCP_KEEPCNT:
3390 		val = keepalive_probes(tp);
3391 		break;
3392 	case TCP_SYNCNT:
3393 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3394 		break;
3395 	case TCP_LINGER2:
3396 		val = tp->linger2;
3397 		if (val >= 0)
3398 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3399 		break;
3400 	case TCP_DEFER_ACCEPT:
3401 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3402 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3403 		break;
3404 	case TCP_WINDOW_CLAMP:
3405 		val = tp->window_clamp;
3406 		break;
3407 	case TCP_INFO: {
3408 		struct tcp_info info;
3409 
3410 		if (get_user(len, optlen))
3411 			return -EFAULT;
3412 
3413 		tcp_get_info(sk, &info);
3414 
3415 		len = min_t(unsigned int, len, sizeof(info));
3416 		if (put_user(len, optlen))
3417 			return -EFAULT;
3418 		if (copy_to_user(optval, &info, len))
3419 			return -EFAULT;
3420 		return 0;
3421 	}
3422 	case TCP_CC_INFO: {
3423 		const struct tcp_congestion_ops *ca_ops;
3424 		union tcp_cc_info info;
3425 		size_t sz = 0;
3426 		int attr;
3427 
3428 		if (get_user(len, optlen))
3429 			return -EFAULT;
3430 
3431 		ca_ops = icsk->icsk_ca_ops;
3432 		if (ca_ops && ca_ops->get_info)
3433 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3434 
3435 		len = min_t(unsigned int, len, sz);
3436 		if (put_user(len, optlen))
3437 			return -EFAULT;
3438 		if (copy_to_user(optval, &info, len))
3439 			return -EFAULT;
3440 		return 0;
3441 	}
3442 	case TCP_QUICKACK:
3443 		val = !inet_csk_in_pingpong_mode(sk);
3444 		break;
3445 
3446 	case TCP_CONGESTION:
3447 		if (get_user(len, optlen))
3448 			return -EFAULT;
3449 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3450 		if (put_user(len, optlen))
3451 			return -EFAULT;
3452 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3453 			return -EFAULT;
3454 		return 0;
3455 
3456 	case TCP_ULP:
3457 		if (get_user(len, optlen))
3458 			return -EFAULT;
3459 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3460 		if (!icsk->icsk_ulp_ops) {
3461 			if (put_user(0, optlen))
3462 				return -EFAULT;
3463 			return 0;
3464 		}
3465 		if (put_user(len, optlen))
3466 			return -EFAULT;
3467 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3468 			return -EFAULT;
3469 		return 0;
3470 
3471 	case TCP_FASTOPEN_KEY: {
3472 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
3473 		struct tcp_fastopen_context *ctx;
3474 
3475 		if (get_user(len, optlen))
3476 			return -EFAULT;
3477 
3478 		rcu_read_lock();
3479 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3480 		if (ctx)
3481 			memcpy(key, ctx->key, sizeof(key));
3482 		else
3483 			len = 0;
3484 		rcu_read_unlock();
3485 
3486 		len = min_t(unsigned int, len, sizeof(key));
3487 		if (put_user(len, optlen))
3488 			return -EFAULT;
3489 		if (copy_to_user(optval, key, len))
3490 			return -EFAULT;
3491 		return 0;
3492 	}
3493 	case TCP_THIN_LINEAR_TIMEOUTS:
3494 		val = tp->thin_lto;
3495 		break;
3496 
3497 	case TCP_THIN_DUPACK:
3498 		val = 0;
3499 		break;
3500 
3501 	case TCP_REPAIR:
3502 		val = tp->repair;
3503 		break;
3504 
3505 	case TCP_REPAIR_QUEUE:
3506 		if (tp->repair)
3507 			val = tp->repair_queue;
3508 		else
3509 			return -EINVAL;
3510 		break;
3511 
3512 	case TCP_REPAIR_WINDOW: {
3513 		struct tcp_repair_window opt;
3514 
3515 		if (get_user(len, optlen))
3516 			return -EFAULT;
3517 
3518 		if (len != sizeof(opt))
3519 			return -EINVAL;
3520 
3521 		if (!tp->repair)
3522 			return -EPERM;
3523 
3524 		opt.snd_wl1	= tp->snd_wl1;
3525 		opt.snd_wnd	= tp->snd_wnd;
3526 		opt.max_window	= tp->max_window;
3527 		opt.rcv_wnd	= tp->rcv_wnd;
3528 		opt.rcv_wup	= tp->rcv_wup;
3529 
3530 		if (copy_to_user(optval, &opt, len))
3531 			return -EFAULT;
3532 		return 0;
3533 	}
3534 	case TCP_QUEUE_SEQ:
3535 		if (tp->repair_queue == TCP_SEND_QUEUE)
3536 			val = tp->write_seq;
3537 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3538 			val = tp->rcv_nxt;
3539 		else
3540 			return -EINVAL;
3541 		break;
3542 
3543 	case TCP_USER_TIMEOUT:
3544 		val = icsk->icsk_user_timeout;
3545 		break;
3546 
3547 	case TCP_FASTOPEN:
3548 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3549 		break;
3550 
3551 	case TCP_FASTOPEN_CONNECT:
3552 		val = tp->fastopen_connect;
3553 		break;
3554 
3555 	case TCP_FASTOPEN_NO_COOKIE:
3556 		val = tp->fastopen_no_cookie;
3557 		break;
3558 
3559 	case TCP_TIMESTAMP:
3560 		val = tcp_time_stamp_raw() + tp->tsoffset;
3561 		break;
3562 	case TCP_NOTSENT_LOWAT:
3563 		val = tp->notsent_lowat;
3564 		break;
3565 	case TCP_INQ:
3566 		val = tp->recvmsg_inq;
3567 		break;
3568 	case TCP_SAVE_SYN:
3569 		val = tp->save_syn;
3570 		break;
3571 	case TCP_SAVED_SYN: {
3572 		if (get_user(len, optlen))
3573 			return -EFAULT;
3574 
3575 		lock_sock(sk);
3576 		if (tp->saved_syn) {
3577 			if (len < tp->saved_syn[0]) {
3578 				if (put_user(tp->saved_syn[0], optlen)) {
3579 					release_sock(sk);
3580 					return -EFAULT;
3581 				}
3582 				release_sock(sk);
3583 				return -EINVAL;
3584 			}
3585 			len = tp->saved_syn[0];
3586 			if (put_user(len, optlen)) {
3587 				release_sock(sk);
3588 				return -EFAULT;
3589 			}
3590 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3591 				release_sock(sk);
3592 				return -EFAULT;
3593 			}
3594 			tcp_saved_syn_free(tp);
3595 			release_sock(sk);
3596 		} else {
3597 			release_sock(sk);
3598 			len = 0;
3599 			if (put_user(len, optlen))
3600 				return -EFAULT;
3601 		}
3602 		return 0;
3603 	}
3604 #ifdef CONFIG_MMU
3605 	case TCP_ZEROCOPY_RECEIVE: {
3606 		struct tcp_zerocopy_receive zc;
3607 		int err;
3608 
3609 		if (get_user(len, optlen))
3610 			return -EFAULT;
3611 		if (len != sizeof(zc))
3612 			return -EINVAL;
3613 		if (copy_from_user(&zc, optval, len))
3614 			return -EFAULT;
3615 		lock_sock(sk);
3616 		err = tcp_zerocopy_receive(sk, &zc);
3617 		release_sock(sk);
3618 		if (!err && copy_to_user(optval, &zc, len))
3619 			err = -EFAULT;
3620 		return err;
3621 	}
3622 #endif
3623 	default:
3624 		return -ENOPROTOOPT;
3625 	}
3626 
3627 	if (put_user(len, optlen))
3628 		return -EFAULT;
3629 	if (copy_to_user(optval, &val, len))
3630 		return -EFAULT;
3631 	return 0;
3632 }
3633 
3634 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3635 		   int __user *optlen)
3636 {
3637 	struct inet_connection_sock *icsk = inet_csk(sk);
3638 
3639 	if (level != SOL_TCP)
3640 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3641 						     optval, optlen);
3642 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3643 }
3644 EXPORT_SYMBOL(tcp_getsockopt);
3645 
3646 #ifdef CONFIG_COMPAT
3647 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3648 			  char __user *optval, int __user *optlen)
3649 {
3650 	if (level != SOL_TCP)
3651 		return inet_csk_compat_getsockopt(sk, level, optname,
3652 						  optval, optlen);
3653 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3654 }
3655 EXPORT_SYMBOL(compat_tcp_getsockopt);
3656 #endif
3657 
3658 #ifdef CONFIG_TCP_MD5SIG
3659 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3660 static DEFINE_MUTEX(tcp_md5sig_mutex);
3661 static bool tcp_md5sig_pool_populated = false;
3662 
3663 static void __tcp_alloc_md5sig_pool(void)
3664 {
3665 	struct crypto_ahash *hash;
3666 	int cpu;
3667 
3668 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3669 	if (IS_ERR(hash))
3670 		return;
3671 
3672 	for_each_possible_cpu(cpu) {
3673 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3674 		struct ahash_request *req;
3675 
3676 		if (!scratch) {
3677 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3678 					       sizeof(struct tcphdr),
3679 					       GFP_KERNEL,
3680 					       cpu_to_node(cpu));
3681 			if (!scratch)
3682 				return;
3683 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3684 		}
3685 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3686 			continue;
3687 
3688 		req = ahash_request_alloc(hash, GFP_KERNEL);
3689 		if (!req)
3690 			return;
3691 
3692 		ahash_request_set_callback(req, 0, NULL, NULL);
3693 
3694 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3695 	}
3696 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3697 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3698 	 */
3699 	smp_wmb();
3700 	tcp_md5sig_pool_populated = true;
3701 }
3702 
3703 bool tcp_alloc_md5sig_pool(void)
3704 {
3705 	if (unlikely(!tcp_md5sig_pool_populated)) {
3706 		mutex_lock(&tcp_md5sig_mutex);
3707 
3708 		if (!tcp_md5sig_pool_populated) {
3709 			__tcp_alloc_md5sig_pool();
3710 			if (tcp_md5sig_pool_populated)
3711 				static_branch_inc(&tcp_md5_needed);
3712 		}
3713 
3714 		mutex_unlock(&tcp_md5sig_mutex);
3715 	}
3716 	return tcp_md5sig_pool_populated;
3717 }
3718 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3719 
3720 
3721 /**
3722  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3723  *
3724  *	We use percpu structure, so if we succeed, we exit with preemption
3725  *	and BH disabled, to make sure another thread or softirq handling
3726  *	wont try to get same context.
3727  */
3728 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3729 {
3730 	local_bh_disable();
3731 
3732 	if (tcp_md5sig_pool_populated) {
3733 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3734 		smp_rmb();
3735 		return this_cpu_ptr(&tcp_md5sig_pool);
3736 	}
3737 	local_bh_enable();
3738 	return NULL;
3739 }
3740 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3741 
3742 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3743 			  const struct sk_buff *skb, unsigned int header_len)
3744 {
3745 	struct scatterlist sg;
3746 	const struct tcphdr *tp = tcp_hdr(skb);
3747 	struct ahash_request *req = hp->md5_req;
3748 	unsigned int i;
3749 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3750 					   skb_headlen(skb) - header_len : 0;
3751 	const struct skb_shared_info *shi = skb_shinfo(skb);
3752 	struct sk_buff *frag_iter;
3753 
3754 	sg_init_table(&sg, 1);
3755 
3756 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3757 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3758 	if (crypto_ahash_update(req))
3759 		return 1;
3760 
3761 	for (i = 0; i < shi->nr_frags; ++i) {
3762 		const struct skb_frag_struct *f = &shi->frags[i];
3763 		unsigned int offset = f->page_offset;
3764 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3765 
3766 		sg_set_page(&sg, page, skb_frag_size(f),
3767 			    offset_in_page(offset));
3768 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3769 		if (crypto_ahash_update(req))
3770 			return 1;
3771 	}
3772 
3773 	skb_walk_frags(skb, frag_iter)
3774 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3775 			return 1;
3776 
3777 	return 0;
3778 }
3779 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3780 
3781 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3782 {
3783 	struct scatterlist sg;
3784 
3785 	sg_init_one(&sg, key->key, key->keylen);
3786 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3787 	return crypto_ahash_update(hp->md5_req);
3788 }
3789 EXPORT_SYMBOL(tcp_md5_hash_key);
3790 
3791 #endif
3792 
3793 void tcp_done(struct sock *sk)
3794 {
3795 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3796 
3797 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3798 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3799 
3800 	tcp_set_state(sk, TCP_CLOSE);
3801 	tcp_clear_xmit_timers(sk);
3802 	if (req)
3803 		reqsk_fastopen_remove(sk, req, false);
3804 
3805 	sk->sk_shutdown = SHUTDOWN_MASK;
3806 
3807 	if (!sock_flag(sk, SOCK_DEAD))
3808 		sk->sk_state_change(sk);
3809 	else
3810 		inet_csk_destroy_sock(sk);
3811 }
3812 EXPORT_SYMBOL_GPL(tcp_done);
3813 
3814 int tcp_abort(struct sock *sk, int err)
3815 {
3816 	if (!sk_fullsock(sk)) {
3817 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3818 			struct request_sock *req = inet_reqsk(sk);
3819 
3820 			local_bh_disable();
3821 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3822 			local_bh_enable();
3823 			return 0;
3824 		}
3825 		return -EOPNOTSUPP;
3826 	}
3827 
3828 	/* Don't race with userspace socket closes such as tcp_close. */
3829 	lock_sock(sk);
3830 
3831 	if (sk->sk_state == TCP_LISTEN) {
3832 		tcp_set_state(sk, TCP_CLOSE);
3833 		inet_csk_listen_stop(sk);
3834 	}
3835 
3836 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3837 	local_bh_disable();
3838 	bh_lock_sock(sk);
3839 
3840 	if (!sock_flag(sk, SOCK_DEAD)) {
3841 		sk->sk_err = err;
3842 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3843 		smp_wmb();
3844 		sk->sk_error_report(sk);
3845 		if (tcp_need_reset(sk->sk_state))
3846 			tcp_send_active_reset(sk, GFP_ATOMIC);
3847 		tcp_done(sk);
3848 	}
3849 
3850 	bh_unlock_sock(sk);
3851 	local_bh_enable();
3852 	tcp_write_queue_purge(sk);
3853 	release_sock(sk);
3854 	return 0;
3855 }
3856 EXPORT_SYMBOL_GPL(tcp_abort);
3857 
3858 extern struct tcp_congestion_ops tcp_reno;
3859 
3860 static __initdata unsigned long thash_entries;
3861 static int __init set_thash_entries(char *str)
3862 {
3863 	ssize_t ret;
3864 
3865 	if (!str)
3866 		return 0;
3867 
3868 	ret = kstrtoul(str, 0, &thash_entries);
3869 	if (ret)
3870 		return 0;
3871 
3872 	return 1;
3873 }
3874 __setup("thash_entries=", set_thash_entries);
3875 
3876 static void __init tcp_init_mem(void)
3877 {
3878 	unsigned long limit = nr_free_buffer_pages() / 16;
3879 
3880 	limit = max(limit, 128UL);
3881 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3882 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3883 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3884 }
3885 
3886 void __init tcp_init(void)
3887 {
3888 	int max_rshare, max_wshare, cnt;
3889 	unsigned long limit;
3890 	unsigned int i;
3891 
3892 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3893 		     FIELD_SIZEOF(struct sk_buff, cb));
3894 
3895 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3896 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3897 	inet_hashinfo_init(&tcp_hashinfo);
3898 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3899 			    thash_entries, 21,  /* one slot per 2 MB*/
3900 			    0, 64 * 1024);
3901 	tcp_hashinfo.bind_bucket_cachep =
3902 		kmem_cache_create("tcp_bind_bucket",
3903 				  sizeof(struct inet_bind_bucket), 0,
3904 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3905 
3906 	/* Size and allocate the main established and bind bucket
3907 	 * hash tables.
3908 	 *
3909 	 * The methodology is similar to that of the buffer cache.
3910 	 */
3911 	tcp_hashinfo.ehash =
3912 		alloc_large_system_hash("TCP established",
3913 					sizeof(struct inet_ehash_bucket),
3914 					thash_entries,
3915 					17, /* one slot per 128 KB of memory */
3916 					0,
3917 					NULL,
3918 					&tcp_hashinfo.ehash_mask,
3919 					0,
3920 					thash_entries ? 0 : 512 * 1024);
3921 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3922 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3923 
3924 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3925 		panic("TCP: failed to alloc ehash_locks");
3926 	tcp_hashinfo.bhash =
3927 		alloc_large_system_hash("TCP bind",
3928 					sizeof(struct inet_bind_hashbucket),
3929 					tcp_hashinfo.ehash_mask + 1,
3930 					17, /* one slot per 128 KB of memory */
3931 					0,
3932 					&tcp_hashinfo.bhash_size,
3933 					NULL,
3934 					0,
3935 					64 * 1024);
3936 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3937 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3938 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3939 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3940 	}
3941 
3942 
3943 	cnt = tcp_hashinfo.ehash_mask + 1;
3944 	sysctl_tcp_max_orphans = cnt / 2;
3945 
3946 	tcp_init_mem();
3947 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3948 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3949 	max_wshare = min(4UL*1024*1024, limit);
3950 	max_rshare = min(6UL*1024*1024, limit);
3951 
3952 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3953 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3954 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3955 
3956 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3957 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
3958 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
3959 
3960 	pr_info("Hash tables configured (established %u bind %u)\n",
3961 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3962 
3963 	tcp_v4_init();
3964 	tcp_metrics_init();
3965 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3966 	tcp_tasklet_init();
3967 }
3968