xref: /linux/net/ipv4/tcp.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 
288 int sysctl_tcp_autocorking __read_mostly = 1;
289 
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296 
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 
301 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303 
304 /*
305  * Current number of TCP sockets.
306  */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309 
310 /*
311  * TCP splice context
312  */
313 struct tcp_splice_state {
314 	struct pipe_inode_info *pipe;
315 	size_t len;
316 	unsigned int flags;
317 };
318 
319 /*
320  * Pressure flag: try to collapse.
321  * Technical note: it is used by multiple contexts non atomically.
322  * All the __sk_mem_schedule() is of this nature: accounting
323  * is strict, actions are advisory and have some latency.
324  */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327 
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 	if (!tcp_memory_pressure) {
331 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 		tcp_memory_pressure = 1;
333 	}
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336 
337 /* Convert seconds to retransmits based on initial and max timeout */
338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 	u8 res = 0;
341 
342 	if (seconds > 0) {
343 		int period = timeout;
344 
345 		res = 1;
346 		while (seconds > period && res < 255) {
347 			res++;
348 			timeout <<= 1;
349 			if (timeout > rto_max)
350 				timeout = rto_max;
351 			period += timeout;
352 		}
353 	}
354 	return res;
355 }
356 
357 /* Convert retransmits to seconds based on initial and max timeout */
358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 	int period = 0;
361 
362 	if (retrans > 0) {
363 		period = timeout;
364 		while (--retrans) {
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return period;
372 }
373 
374 /* Address-family independent initialization for a tcp_sock.
375  *
376  * NOTE: A lot of things set to zero explicitly by call to
377  *       sk_alloc() so need not be done here.
378  */
379 void tcp_init_sock(struct sock *sk)
380 {
381 	struct inet_connection_sock *icsk = inet_csk(sk);
382 	struct tcp_sock *tp = tcp_sk(sk);
383 
384 	__skb_queue_head_init(&tp->out_of_order_queue);
385 	tcp_init_xmit_timers(sk);
386 	tcp_prequeue_init(tp);
387 	INIT_LIST_HEAD(&tp->tsq_node);
388 
389 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391 
392 	/* So many TCP implementations out there (incorrectly) count the
393 	 * initial SYN frame in their delayed-ACK and congestion control
394 	 * algorithms that we must have the following bandaid to talk
395 	 * efficiently to them.  -DaveM
396 	 */
397 	tp->snd_cwnd = TCP_INIT_CWND;
398 
399 	/* See draft-stevens-tcpca-spec-01 for discussion of the
400 	 * initialization of these values.
401 	 */
402 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 	tp->snd_cwnd_clamp = ~0;
404 	tp->mss_cache = TCP_MSS_DEFAULT;
405 	u64_stats_init(&tp->syncp);
406 
407 	tp->reordering = sysctl_tcp_reordering;
408 	tcp_enable_early_retrans(tp);
409 	tcp_assign_congestion_control(sk);
410 
411 	tp->tsoffset = 0;
412 
413 	sk->sk_state = TCP_CLOSE;
414 
415 	sk->sk_write_space = sk_stream_write_space;
416 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417 
418 	icsk->icsk_sync_mss = tcp_sync_mss;
419 
420 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422 
423 	local_bh_disable();
424 	sock_update_memcg(sk);
425 	sk_sockets_allocated_inc(sk);
426 	local_bh_enable();
427 }
428 EXPORT_SYMBOL(tcp_init_sock);
429 
430 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
431 {
432 	if (sk->sk_tsflags) {
433 		struct skb_shared_info *shinfo = skb_shinfo(skb);
434 
435 		sock_tx_timestamp(sk, &shinfo->tx_flags);
436 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
437 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
438 	}
439 }
440 
441 /*
442  *	Wait for a TCP event.
443  *
444  *	Note that we don't need to lock the socket, as the upper poll layers
445  *	take care of normal races (between the test and the event) and we don't
446  *	go look at any of the socket buffers directly.
447  */
448 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
449 {
450 	unsigned int mask;
451 	struct sock *sk = sock->sk;
452 	const struct tcp_sock *tp = tcp_sk(sk);
453 
454 	sock_rps_record_flow(sk);
455 
456 	sock_poll_wait(file, sk_sleep(sk), wait);
457 	if (sk->sk_state == TCP_LISTEN)
458 		return inet_csk_listen_poll(sk);
459 
460 	/* Socket is not locked. We are protected from async events
461 	 * by poll logic and correct handling of state changes
462 	 * made by other threads is impossible in any case.
463 	 */
464 
465 	mask = 0;
466 
467 	/*
468 	 * POLLHUP is certainly not done right. But poll() doesn't
469 	 * have a notion of HUP in just one direction, and for a
470 	 * socket the read side is more interesting.
471 	 *
472 	 * Some poll() documentation says that POLLHUP is incompatible
473 	 * with the POLLOUT/POLLWR flags, so somebody should check this
474 	 * all. But careful, it tends to be safer to return too many
475 	 * bits than too few, and you can easily break real applications
476 	 * if you don't tell them that something has hung up!
477 	 *
478 	 * Check-me.
479 	 *
480 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
481 	 * our fs/select.c). It means that after we received EOF,
482 	 * poll always returns immediately, making impossible poll() on write()
483 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
484 	 * if and only if shutdown has been made in both directions.
485 	 * Actually, it is interesting to look how Solaris and DUX
486 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
487 	 * then we could set it on SND_SHUTDOWN. BTW examples given
488 	 * in Stevens' books assume exactly this behaviour, it explains
489 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
490 	 *
491 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
492 	 * blocking on fresh not-connected or disconnected socket. --ANK
493 	 */
494 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
495 		mask |= POLLHUP;
496 	if (sk->sk_shutdown & RCV_SHUTDOWN)
497 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
498 
499 	/* Connected or passive Fast Open socket? */
500 	if (sk->sk_state != TCP_SYN_SENT &&
501 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk)) {
502 		int target = sock_rcvlowat(sk, 0, INT_MAX);
503 
504 		if (tp->urg_seq == tp->copied_seq &&
505 		    !sock_flag(sk, SOCK_URGINLINE) &&
506 		    tp->urg_data)
507 			target++;
508 
509 		/* Potential race condition. If read of tp below will
510 		 * escape above sk->sk_state, we can be illegally awaken
511 		 * in SYN_* states. */
512 		if (tp->rcv_nxt - tp->copied_seq >= target)
513 			mask |= POLLIN | POLLRDNORM;
514 
515 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
516 			if (sk_stream_is_writeable(sk)) {
517 				mask |= POLLOUT | POLLWRNORM;
518 			} else {  /* send SIGIO later */
519 				set_bit(SOCK_ASYNC_NOSPACE,
520 					&sk->sk_socket->flags);
521 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
522 
523 				/* Race breaker. If space is freed after
524 				 * wspace test but before the flags are set,
525 				 * IO signal will be lost. Memory barrier
526 				 * pairs with the input side.
527 				 */
528 				smp_mb__after_atomic();
529 				if (sk_stream_is_writeable(sk))
530 					mask |= POLLOUT | POLLWRNORM;
531 			}
532 		} else
533 			mask |= POLLOUT | POLLWRNORM;
534 
535 		if (tp->urg_data & TCP_URG_VALID)
536 			mask |= POLLPRI;
537 	}
538 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
539 	smp_rmb();
540 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
541 		mask |= POLLERR;
542 
543 	return mask;
544 }
545 EXPORT_SYMBOL(tcp_poll);
546 
547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
548 {
549 	struct tcp_sock *tp = tcp_sk(sk);
550 	int answ;
551 	bool slow;
552 
553 	switch (cmd) {
554 	case SIOCINQ:
555 		if (sk->sk_state == TCP_LISTEN)
556 			return -EINVAL;
557 
558 		slow = lock_sock_fast(sk);
559 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
560 			answ = 0;
561 		else if (sock_flag(sk, SOCK_URGINLINE) ||
562 			 !tp->urg_data ||
563 			 before(tp->urg_seq, tp->copied_seq) ||
564 			 !before(tp->urg_seq, tp->rcv_nxt)) {
565 
566 			answ = tp->rcv_nxt - tp->copied_seq;
567 
568 			/* Subtract 1, if FIN was received */
569 			if (answ && sock_flag(sk, SOCK_DONE))
570 				answ--;
571 		} else
572 			answ = tp->urg_seq - tp->copied_seq;
573 		unlock_sock_fast(sk, slow);
574 		break;
575 	case SIOCATMARK:
576 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
577 		break;
578 	case SIOCOUTQ:
579 		if (sk->sk_state == TCP_LISTEN)
580 			return -EINVAL;
581 
582 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
583 			answ = 0;
584 		else
585 			answ = tp->write_seq - tp->snd_una;
586 		break;
587 	case SIOCOUTQNSD:
588 		if (sk->sk_state == TCP_LISTEN)
589 			return -EINVAL;
590 
591 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
592 			answ = 0;
593 		else
594 			answ = tp->write_seq - tp->snd_nxt;
595 		break;
596 	default:
597 		return -ENOIOCTLCMD;
598 	}
599 
600 	return put_user(answ, (int __user *)arg);
601 }
602 EXPORT_SYMBOL(tcp_ioctl);
603 
604 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
605 {
606 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
607 	tp->pushed_seq = tp->write_seq;
608 }
609 
610 static inline bool forced_push(const struct tcp_sock *tp)
611 {
612 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
613 }
614 
615 static void skb_entail(struct sock *sk, struct sk_buff *skb)
616 {
617 	struct tcp_sock *tp = tcp_sk(sk);
618 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
619 
620 	skb->csum    = 0;
621 	tcb->seq     = tcb->end_seq = tp->write_seq;
622 	tcb->tcp_flags = TCPHDR_ACK;
623 	tcb->sacked  = 0;
624 	__skb_header_release(skb);
625 	tcp_add_write_queue_tail(sk, skb);
626 	sk->sk_wmem_queued += skb->truesize;
627 	sk_mem_charge(sk, skb->truesize);
628 	if (tp->nonagle & TCP_NAGLE_PUSH)
629 		tp->nonagle &= ~TCP_NAGLE_PUSH;
630 
631 	tcp_slow_start_after_idle_check(sk);
632 }
633 
634 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
635 {
636 	if (flags & MSG_OOB)
637 		tp->snd_up = tp->write_seq;
638 }
639 
640 /* If a not yet filled skb is pushed, do not send it if
641  * we have data packets in Qdisc or NIC queues :
642  * Because TX completion will happen shortly, it gives a chance
643  * to coalesce future sendmsg() payload into this skb, without
644  * need for a timer, and with no latency trade off.
645  * As packets containing data payload have a bigger truesize
646  * than pure acks (dataless) packets, the last checks prevent
647  * autocorking if we only have an ACK in Qdisc/NIC queues,
648  * or if TX completion was delayed after we processed ACK packet.
649  */
650 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
651 				int size_goal)
652 {
653 	return skb->len < size_goal &&
654 	       sysctl_tcp_autocorking &&
655 	       skb != tcp_write_queue_head(sk) &&
656 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
657 }
658 
659 static void tcp_push(struct sock *sk, int flags, int mss_now,
660 		     int nonagle, int size_goal)
661 {
662 	struct tcp_sock *tp = tcp_sk(sk);
663 	struct sk_buff *skb;
664 
665 	if (!tcp_send_head(sk))
666 		return;
667 
668 	skb = tcp_write_queue_tail(sk);
669 	if (!(flags & MSG_MORE) || forced_push(tp))
670 		tcp_mark_push(tp, skb);
671 
672 	tcp_mark_urg(tp, flags);
673 
674 	if (tcp_should_autocork(sk, skb, size_goal)) {
675 
676 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
677 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
678 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
679 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
680 		}
681 		/* It is possible TX completion already happened
682 		 * before we set TSQ_THROTTLED.
683 		 */
684 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
685 			return;
686 	}
687 
688 	if (flags & MSG_MORE)
689 		nonagle = TCP_NAGLE_CORK;
690 
691 	__tcp_push_pending_frames(sk, mss_now, nonagle);
692 }
693 
694 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
695 				unsigned int offset, size_t len)
696 {
697 	struct tcp_splice_state *tss = rd_desc->arg.data;
698 	int ret;
699 
700 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
701 			      min(rd_desc->count, len), tss->flags,
702 			      skb_socket_splice);
703 	if (ret > 0)
704 		rd_desc->count -= ret;
705 	return ret;
706 }
707 
708 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
709 {
710 	/* Store TCP splice context information in read_descriptor_t. */
711 	read_descriptor_t rd_desc = {
712 		.arg.data = tss,
713 		.count	  = tss->len,
714 	};
715 
716 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
717 }
718 
719 /**
720  *  tcp_splice_read - splice data from TCP socket to a pipe
721  * @sock:	socket to splice from
722  * @ppos:	position (not valid)
723  * @pipe:	pipe to splice to
724  * @len:	number of bytes to splice
725  * @flags:	splice modifier flags
726  *
727  * Description:
728  *    Will read pages from given socket and fill them into a pipe.
729  *
730  **/
731 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
732 			struct pipe_inode_info *pipe, size_t len,
733 			unsigned int flags)
734 {
735 	struct sock *sk = sock->sk;
736 	struct tcp_splice_state tss = {
737 		.pipe = pipe,
738 		.len = len,
739 		.flags = flags,
740 	};
741 	long timeo;
742 	ssize_t spliced;
743 	int ret;
744 
745 	sock_rps_record_flow(sk);
746 	/*
747 	 * We can't seek on a socket input
748 	 */
749 	if (unlikely(*ppos))
750 		return -ESPIPE;
751 
752 	ret = spliced = 0;
753 
754 	lock_sock(sk);
755 
756 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
757 	while (tss.len) {
758 		ret = __tcp_splice_read(sk, &tss);
759 		if (ret < 0)
760 			break;
761 		else if (!ret) {
762 			if (spliced)
763 				break;
764 			if (sock_flag(sk, SOCK_DONE))
765 				break;
766 			if (sk->sk_err) {
767 				ret = sock_error(sk);
768 				break;
769 			}
770 			if (sk->sk_shutdown & RCV_SHUTDOWN)
771 				break;
772 			if (sk->sk_state == TCP_CLOSE) {
773 				/*
774 				 * This occurs when user tries to read
775 				 * from never connected socket.
776 				 */
777 				if (!sock_flag(sk, SOCK_DONE))
778 					ret = -ENOTCONN;
779 				break;
780 			}
781 			if (!timeo) {
782 				ret = -EAGAIN;
783 				break;
784 			}
785 			sk_wait_data(sk, &timeo, NULL);
786 			if (signal_pending(current)) {
787 				ret = sock_intr_errno(timeo);
788 				break;
789 			}
790 			continue;
791 		}
792 		tss.len -= ret;
793 		spliced += ret;
794 
795 		if (!timeo)
796 			break;
797 		release_sock(sk);
798 		lock_sock(sk);
799 
800 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
801 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
802 		    signal_pending(current))
803 			break;
804 	}
805 
806 	release_sock(sk);
807 
808 	if (spliced)
809 		return spliced;
810 
811 	return ret;
812 }
813 EXPORT_SYMBOL(tcp_splice_read);
814 
815 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
816 				    bool force_schedule)
817 {
818 	struct sk_buff *skb;
819 
820 	/* The TCP header must be at least 32-bit aligned.  */
821 	size = ALIGN(size, 4);
822 
823 	if (unlikely(tcp_under_memory_pressure(sk)))
824 		sk_mem_reclaim_partial(sk);
825 
826 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
827 	if (likely(skb)) {
828 		bool mem_scheduled;
829 
830 		if (force_schedule) {
831 			mem_scheduled = true;
832 			sk_forced_mem_schedule(sk, skb->truesize);
833 		} else {
834 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
835 		}
836 		if (likely(mem_scheduled)) {
837 			skb_reserve(skb, sk->sk_prot->max_header);
838 			/*
839 			 * Make sure that we have exactly size bytes
840 			 * available to the caller, no more, no less.
841 			 */
842 			skb->reserved_tailroom = skb->end - skb->tail - size;
843 			return skb;
844 		}
845 		__kfree_skb(skb);
846 	} else {
847 		sk->sk_prot->enter_memory_pressure(sk);
848 		sk_stream_moderate_sndbuf(sk);
849 	}
850 	return NULL;
851 }
852 
853 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
854 				       int large_allowed)
855 {
856 	struct tcp_sock *tp = tcp_sk(sk);
857 	u32 new_size_goal, size_goal;
858 
859 	if (!large_allowed || !sk_can_gso(sk))
860 		return mss_now;
861 
862 	/* Note : tcp_tso_autosize() will eventually split this later */
863 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
864 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
865 
866 	/* We try hard to avoid divides here */
867 	size_goal = tp->gso_segs * mss_now;
868 	if (unlikely(new_size_goal < size_goal ||
869 		     new_size_goal >= size_goal + mss_now)) {
870 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
871 				     sk->sk_gso_max_segs);
872 		size_goal = tp->gso_segs * mss_now;
873 	}
874 
875 	return max(size_goal, mss_now);
876 }
877 
878 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
879 {
880 	int mss_now;
881 
882 	mss_now = tcp_current_mss(sk);
883 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
884 
885 	return mss_now;
886 }
887 
888 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
889 				size_t size, int flags)
890 {
891 	struct tcp_sock *tp = tcp_sk(sk);
892 	int mss_now, size_goal;
893 	int err;
894 	ssize_t copied;
895 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
896 
897 	/* Wait for a connection to finish. One exception is TCP Fast Open
898 	 * (passive side) where data is allowed to be sent before a connection
899 	 * is fully established.
900 	 */
901 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
902 	    !tcp_passive_fastopen(sk)) {
903 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
904 			goto out_err;
905 	}
906 
907 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
908 
909 	mss_now = tcp_send_mss(sk, &size_goal, flags);
910 	copied = 0;
911 
912 	err = -EPIPE;
913 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
914 		goto out_err;
915 
916 	while (size > 0) {
917 		struct sk_buff *skb = tcp_write_queue_tail(sk);
918 		int copy, i;
919 		bool can_coalesce;
920 
921 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
922 new_segment:
923 			if (!sk_stream_memory_free(sk))
924 				goto wait_for_sndbuf;
925 
926 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
927 						  skb_queue_empty(&sk->sk_write_queue));
928 			if (!skb)
929 				goto wait_for_memory;
930 
931 			skb_entail(sk, skb);
932 			copy = size_goal;
933 		}
934 
935 		if (copy > size)
936 			copy = size;
937 
938 		i = skb_shinfo(skb)->nr_frags;
939 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
940 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
941 			tcp_mark_push(tp, skb);
942 			goto new_segment;
943 		}
944 		if (!sk_wmem_schedule(sk, copy))
945 			goto wait_for_memory;
946 
947 		if (can_coalesce) {
948 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
949 		} else {
950 			get_page(page);
951 			skb_fill_page_desc(skb, i, page, offset, copy);
952 		}
953 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
954 
955 		skb->len += copy;
956 		skb->data_len += copy;
957 		skb->truesize += copy;
958 		sk->sk_wmem_queued += copy;
959 		sk_mem_charge(sk, copy);
960 		skb->ip_summed = CHECKSUM_PARTIAL;
961 		tp->write_seq += copy;
962 		TCP_SKB_CB(skb)->end_seq += copy;
963 		tcp_skb_pcount_set(skb, 0);
964 
965 		if (!copied)
966 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
967 
968 		copied += copy;
969 		offset += copy;
970 		if (!(size -= copy)) {
971 			tcp_tx_timestamp(sk, skb);
972 			goto out;
973 		}
974 
975 		if (skb->len < size_goal || (flags & MSG_OOB))
976 			continue;
977 
978 		if (forced_push(tp)) {
979 			tcp_mark_push(tp, skb);
980 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
981 		} else if (skb == tcp_send_head(sk))
982 			tcp_push_one(sk, mss_now);
983 		continue;
984 
985 wait_for_sndbuf:
986 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
987 wait_for_memory:
988 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
989 			 TCP_NAGLE_PUSH, size_goal);
990 
991 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
992 			goto do_error;
993 
994 		mss_now = tcp_send_mss(sk, &size_goal, flags);
995 	}
996 
997 out:
998 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
999 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1000 	return copied;
1001 
1002 do_error:
1003 	if (copied)
1004 		goto out;
1005 out_err:
1006 	/* make sure we wake any epoll edge trigger waiter */
1007 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1008 		sk->sk_write_space(sk);
1009 	return sk_stream_error(sk, flags, err);
1010 }
1011 
1012 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1013 		 size_t size, int flags)
1014 {
1015 	ssize_t res;
1016 
1017 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1018 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1019 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1020 					flags);
1021 
1022 	lock_sock(sk);
1023 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1024 	release_sock(sk);
1025 	return res;
1026 }
1027 EXPORT_SYMBOL(tcp_sendpage);
1028 
1029 static inline int select_size(const struct sock *sk, bool sg)
1030 {
1031 	const struct tcp_sock *tp = tcp_sk(sk);
1032 	int tmp = tp->mss_cache;
1033 
1034 	if (sg) {
1035 		if (sk_can_gso(sk)) {
1036 			/* Small frames wont use a full page:
1037 			 * Payload will immediately follow tcp header.
1038 			 */
1039 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1040 		} else {
1041 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1042 
1043 			if (tmp >= pgbreak &&
1044 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1045 				tmp = pgbreak;
1046 		}
1047 	}
1048 
1049 	return tmp;
1050 }
1051 
1052 void tcp_free_fastopen_req(struct tcp_sock *tp)
1053 {
1054 	if (tp->fastopen_req) {
1055 		kfree(tp->fastopen_req);
1056 		tp->fastopen_req = NULL;
1057 	}
1058 }
1059 
1060 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1061 				int *copied, size_t size)
1062 {
1063 	struct tcp_sock *tp = tcp_sk(sk);
1064 	int err, flags;
1065 
1066 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1067 		return -EOPNOTSUPP;
1068 	if (tp->fastopen_req)
1069 		return -EALREADY; /* Another Fast Open is in progress */
1070 
1071 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1072 				   sk->sk_allocation);
1073 	if (unlikely(!tp->fastopen_req))
1074 		return -ENOBUFS;
1075 	tp->fastopen_req->data = msg;
1076 	tp->fastopen_req->size = size;
1077 
1078 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1079 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1080 				    msg->msg_namelen, flags);
1081 	*copied = tp->fastopen_req->copied;
1082 	tcp_free_fastopen_req(tp);
1083 	return err;
1084 }
1085 
1086 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1087 {
1088 	struct tcp_sock *tp = tcp_sk(sk);
1089 	struct sk_buff *skb;
1090 	int flags, err, copied = 0;
1091 	int mss_now = 0, size_goal, copied_syn = 0;
1092 	bool sg;
1093 	long timeo;
1094 
1095 	lock_sock(sk);
1096 
1097 	flags = msg->msg_flags;
1098 	if (flags & MSG_FASTOPEN) {
1099 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1100 		if (err == -EINPROGRESS && copied_syn > 0)
1101 			goto out;
1102 		else if (err)
1103 			goto out_err;
1104 	}
1105 
1106 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1107 
1108 	/* Wait for a connection to finish. One exception is TCP Fast Open
1109 	 * (passive side) where data is allowed to be sent before a connection
1110 	 * is fully established.
1111 	 */
1112 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1113 	    !tcp_passive_fastopen(sk)) {
1114 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1115 			goto do_error;
1116 	}
1117 
1118 	if (unlikely(tp->repair)) {
1119 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1120 			copied = tcp_send_rcvq(sk, msg, size);
1121 			goto out_nopush;
1122 		}
1123 
1124 		err = -EINVAL;
1125 		if (tp->repair_queue == TCP_NO_QUEUE)
1126 			goto out_err;
1127 
1128 		/* 'common' sending to sendq */
1129 	}
1130 
1131 	/* This should be in poll */
1132 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1133 
1134 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1135 
1136 	/* Ok commence sending. */
1137 	copied = 0;
1138 
1139 	err = -EPIPE;
1140 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1141 		goto out_err;
1142 
1143 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1144 
1145 	while (msg_data_left(msg)) {
1146 		int copy = 0;
1147 		int max = size_goal;
1148 
1149 		skb = tcp_write_queue_tail(sk);
1150 		if (tcp_send_head(sk)) {
1151 			if (skb->ip_summed == CHECKSUM_NONE)
1152 				max = mss_now;
1153 			copy = max - skb->len;
1154 		}
1155 
1156 		if (copy <= 0) {
1157 new_segment:
1158 			/* Allocate new segment. If the interface is SG,
1159 			 * allocate skb fitting to single page.
1160 			 */
1161 			if (!sk_stream_memory_free(sk))
1162 				goto wait_for_sndbuf;
1163 
1164 			skb = sk_stream_alloc_skb(sk,
1165 						  select_size(sk, sg),
1166 						  sk->sk_allocation,
1167 						  skb_queue_empty(&sk->sk_write_queue));
1168 			if (!skb)
1169 				goto wait_for_memory;
1170 
1171 			/*
1172 			 * Check whether we can use HW checksum.
1173 			 */
1174 			if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1175 				skb->ip_summed = CHECKSUM_PARTIAL;
1176 
1177 			skb_entail(sk, skb);
1178 			copy = size_goal;
1179 			max = size_goal;
1180 
1181 			/* All packets are restored as if they have
1182 			 * already been sent. skb_mstamp isn't set to
1183 			 * avoid wrong rtt estimation.
1184 			 */
1185 			if (tp->repair)
1186 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1187 		}
1188 
1189 		/* Try to append data to the end of skb. */
1190 		if (copy > msg_data_left(msg))
1191 			copy = msg_data_left(msg);
1192 
1193 		/* Where to copy to? */
1194 		if (skb_availroom(skb) > 0) {
1195 			/* We have some space in skb head. Superb! */
1196 			copy = min_t(int, copy, skb_availroom(skb));
1197 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1198 			if (err)
1199 				goto do_fault;
1200 		} else {
1201 			bool merge = true;
1202 			int i = skb_shinfo(skb)->nr_frags;
1203 			struct page_frag *pfrag = sk_page_frag(sk);
1204 
1205 			if (!sk_page_frag_refill(sk, pfrag))
1206 				goto wait_for_memory;
1207 
1208 			if (!skb_can_coalesce(skb, i, pfrag->page,
1209 					      pfrag->offset)) {
1210 				if (i == MAX_SKB_FRAGS || !sg) {
1211 					tcp_mark_push(tp, skb);
1212 					goto new_segment;
1213 				}
1214 				merge = false;
1215 			}
1216 
1217 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1218 
1219 			if (!sk_wmem_schedule(sk, copy))
1220 				goto wait_for_memory;
1221 
1222 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1223 						       pfrag->page,
1224 						       pfrag->offset,
1225 						       copy);
1226 			if (err)
1227 				goto do_error;
1228 
1229 			/* Update the skb. */
1230 			if (merge) {
1231 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1232 			} else {
1233 				skb_fill_page_desc(skb, i, pfrag->page,
1234 						   pfrag->offset, copy);
1235 				get_page(pfrag->page);
1236 			}
1237 			pfrag->offset += copy;
1238 		}
1239 
1240 		if (!copied)
1241 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1242 
1243 		tp->write_seq += copy;
1244 		TCP_SKB_CB(skb)->end_seq += copy;
1245 		tcp_skb_pcount_set(skb, 0);
1246 
1247 		copied += copy;
1248 		if (!msg_data_left(msg)) {
1249 			tcp_tx_timestamp(sk, skb);
1250 			goto out;
1251 		}
1252 
1253 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1254 			continue;
1255 
1256 		if (forced_push(tp)) {
1257 			tcp_mark_push(tp, skb);
1258 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1259 		} else if (skb == tcp_send_head(sk))
1260 			tcp_push_one(sk, mss_now);
1261 		continue;
1262 
1263 wait_for_sndbuf:
1264 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1265 wait_for_memory:
1266 		if (copied)
1267 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1268 				 TCP_NAGLE_PUSH, size_goal);
1269 
1270 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1271 			goto do_error;
1272 
1273 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1274 	}
1275 
1276 out:
1277 	if (copied)
1278 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1279 out_nopush:
1280 	release_sock(sk);
1281 	return copied + copied_syn;
1282 
1283 do_fault:
1284 	if (!skb->len) {
1285 		tcp_unlink_write_queue(skb, sk);
1286 		/* It is the one place in all of TCP, except connection
1287 		 * reset, where we can be unlinking the send_head.
1288 		 */
1289 		tcp_check_send_head(sk, skb);
1290 		sk_wmem_free_skb(sk, skb);
1291 	}
1292 
1293 do_error:
1294 	if (copied + copied_syn)
1295 		goto out;
1296 out_err:
1297 	err = sk_stream_error(sk, flags, err);
1298 	/* make sure we wake any epoll edge trigger waiter */
1299 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1300 		sk->sk_write_space(sk);
1301 	release_sock(sk);
1302 	return err;
1303 }
1304 EXPORT_SYMBOL(tcp_sendmsg);
1305 
1306 /*
1307  *	Handle reading urgent data. BSD has very simple semantics for
1308  *	this, no blocking and very strange errors 8)
1309  */
1310 
1311 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1312 {
1313 	struct tcp_sock *tp = tcp_sk(sk);
1314 
1315 	/* No URG data to read. */
1316 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1317 	    tp->urg_data == TCP_URG_READ)
1318 		return -EINVAL;	/* Yes this is right ! */
1319 
1320 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1321 		return -ENOTCONN;
1322 
1323 	if (tp->urg_data & TCP_URG_VALID) {
1324 		int err = 0;
1325 		char c = tp->urg_data;
1326 
1327 		if (!(flags & MSG_PEEK))
1328 			tp->urg_data = TCP_URG_READ;
1329 
1330 		/* Read urgent data. */
1331 		msg->msg_flags |= MSG_OOB;
1332 
1333 		if (len > 0) {
1334 			if (!(flags & MSG_TRUNC))
1335 				err = memcpy_to_msg(msg, &c, 1);
1336 			len = 1;
1337 		} else
1338 			msg->msg_flags |= MSG_TRUNC;
1339 
1340 		return err ? -EFAULT : len;
1341 	}
1342 
1343 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1344 		return 0;
1345 
1346 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1347 	 * the available implementations agree in this case:
1348 	 * this call should never block, independent of the
1349 	 * blocking state of the socket.
1350 	 * Mike <pall@rz.uni-karlsruhe.de>
1351 	 */
1352 	return -EAGAIN;
1353 }
1354 
1355 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1356 {
1357 	struct sk_buff *skb;
1358 	int copied = 0, err = 0;
1359 
1360 	/* XXX -- need to support SO_PEEK_OFF */
1361 
1362 	skb_queue_walk(&sk->sk_write_queue, skb) {
1363 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1364 		if (err)
1365 			break;
1366 
1367 		copied += skb->len;
1368 	}
1369 
1370 	return err ?: copied;
1371 }
1372 
1373 /* Clean up the receive buffer for full frames taken by the user,
1374  * then send an ACK if necessary.  COPIED is the number of bytes
1375  * tcp_recvmsg has given to the user so far, it speeds up the
1376  * calculation of whether or not we must ACK for the sake of
1377  * a window update.
1378  */
1379 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1380 {
1381 	struct tcp_sock *tp = tcp_sk(sk);
1382 	bool time_to_ack = false;
1383 
1384 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1385 
1386 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1387 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1388 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1389 
1390 	if (inet_csk_ack_scheduled(sk)) {
1391 		const struct inet_connection_sock *icsk = inet_csk(sk);
1392 		   /* Delayed ACKs frequently hit locked sockets during bulk
1393 		    * receive. */
1394 		if (icsk->icsk_ack.blocked ||
1395 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1396 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1397 		    /*
1398 		     * If this read emptied read buffer, we send ACK, if
1399 		     * connection is not bidirectional, user drained
1400 		     * receive buffer and there was a small segment
1401 		     * in queue.
1402 		     */
1403 		    (copied > 0 &&
1404 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1405 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1406 		       !icsk->icsk_ack.pingpong)) &&
1407 		      !atomic_read(&sk->sk_rmem_alloc)))
1408 			time_to_ack = true;
1409 	}
1410 
1411 	/* We send an ACK if we can now advertise a non-zero window
1412 	 * which has been raised "significantly".
1413 	 *
1414 	 * Even if window raised up to infinity, do not send window open ACK
1415 	 * in states, where we will not receive more. It is useless.
1416 	 */
1417 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1418 		__u32 rcv_window_now = tcp_receive_window(tp);
1419 
1420 		/* Optimize, __tcp_select_window() is not cheap. */
1421 		if (2*rcv_window_now <= tp->window_clamp) {
1422 			__u32 new_window = __tcp_select_window(sk);
1423 
1424 			/* Send ACK now, if this read freed lots of space
1425 			 * in our buffer. Certainly, new_window is new window.
1426 			 * We can advertise it now, if it is not less than current one.
1427 			 * "Lots" means "at least twice" here.
1428 			 */
1429 			if (new_window && new_window >= 2 * rcv_window_now)
1430 				time_to_ack = true;
1431 		}
1432 	}
1433 	if (time_to_ack)
1434 		tcp_send_ack(sk);
1435 }
1436 
1437 static void tcp_prequeue_process(struct sock *sk)
1438 {
1439 	struct sk_buff *skb;
1440 	struct tcp_sock *tp = tcp_sk(sk);
1441 
1442 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1443 
1444 	/* RX process wants to run with disabled BHs, though it is not
1445 	 * necessary */
1446 	local_bh_disable();
1447 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1448 		sk_backlog_rcv(sk, skb);
1449 	local_bh_enable();
1450 
1451 	/* Clear memory counter. */
1452 	tp->ucopy.memory = 0;
1453 }
1454 
1455 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1456 {
1457 	struct sk_buff *skb;
1458 	u32 offset;
1459 
1460 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1461 		offset = seq - TCP_SKB_CB(skb)->seq;
1462 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1463 			offset--;
1464 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1465 			*off = offset;
1466 			return skb;
1467 		}
1468 		/* This looks weird, but this can happen if TCP collapsing
1469 		 * splitted a fat GRO packet, while we released socket lock
1470 		 * in skb_splice_bits()
1471 		 */
1472 		sk_eat_skb(sk, skb);
1473 	}
1474 	return NULL;
1475 }
1476 
1477 /*
1478  * This routine provides an alternative to tcp_recvmsg() for routines
1479  * that would like to handle copying from skbuffs directly in 'sendfile'
1480  * fashion.
1481  * Note:
1482  *	- It is assumed that the socket was locked by the caller.
1483  *	- The routine does not block.
1484  *	- At present, there is no support for reading OOB data
1485  *	  or for 'peeking' the socket using this routine
1486  *	  (although both would be easy to implement).
1487  */
1488 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1489 		  sk_read_actor_t recv_actor)
1490 {
1491 	struct sk_buff *skb;
1492 	struct tcp_sock *tp = tcp_sk(sk);
1493 	u32 seq = tp->copied_seq;
1494 	u32 offset;
1495 	int copied = 0;
1496 
1497 	if (sk->sk_state == TCP_LISTEN)
1498 		return -ENOTCONN;
1499 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1500 		if (offset < skb->len) {
1501 			int used;
1502 			size_t len;
1503 
1504 			len = skb->len - offset;
1505 			/* Stop reading if we hit a patch of urgent data */
1506 			if (tp->urg_data) {
1507 				u32 urg_offset = tp->urg_seq - seq;
1508 				if (urg_offset < len)
1509 					len = urg_offset;
1510 				if (!len)
1511 					break;
1512 			}
1513 			used = recv_actor(desc, skb, offset, len);
1514 			if (used <= 0) {
1515 				if (!copied)
1516 					copied = used;
1517 				break;
1518 			} else if (used <= len) {
1519 				seq += used;
1520 				copied += used;
1521 				offset += used;
1522 			}
1523 			/* If recv_actor drops the lock (e.g. TCP splice
1524 			 * receive) the skb pointer might be invalid when
1525 			 * getting here: tcp_collapse might have deleted it
1526 			 * while aggregating skbs from the socket queue.
1527 			 */
1528 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1529 			if (!skb)
1530 				break;
1531 			/* TCP coalescing might have appended data to the skb.
1532 			 * Try to splice more frags
1533 			 */
1534 			if (offset + 1 != skb->len)
1535 				continue;
1536 		}
1537 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1538 			sk_eat_skb(sk, skb);
1539 			++seq;
1540 			break;
1541 		}
1542 		sk_eat_skb(sk, skb);
1543 		if (!desc->count)
1544 			break;
1545 		tp->copied_seq = seq;
1546 	}
1547 	tp->copied_seq = seq;
1548 
1549 	tcp_rcv_space_adjust(sk);
1550 
1551 	/* Clean up data we have read: This will do ACK frames. */
1552 	if (copied > 0) {
1553 		tcp_recv_skb(sk, seq, &offset);
1554 		tcp_cleanup_rbuf(sk, copied);
1555 	}
1556 	return copied;
1557 }
1558 EXPORT_SYMBOL(tcp_read_sock);
1559 
1560 /*
1561  *	This routine copies from a sock struct into the user buffer.
1562  *
1563  *	Technical note: in 2.3 we work on _locked_ socket, so that
1564  *	tricks with *seq access order and skb->users are not required.
1565  *	Probably, code can be easily improved even more.
1566  */
1567 
1568 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1569 		int flags, int *addr_len)
1570 {
1571 	struct tcp_sock *tp = tcp_sk(sk);
1572 	int copied = 0;
1573 	u32 peek_seq;
1574 	u32 *seq;
1575 	unsigned long used;
1576 	int err;
1577 	int target;		/* Read at least this many bytes */
1578 	long timeo;
1579 	struct task_struct *user_recv = NULL;
1580 	struct sk_buff *skb, *last;
1581 	u32 urg_hole = 0;
1582 
1583 	if (unlikely(flags & MSG_ERRQUEUE))
1584 		return inet_recv_error(sk, msg, len, addr_len);
1585 
1586 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1587 	    (sk->sk_state == TCP_ESTABLISHED))
1588 		sk_busy_loop(sk, nonblock);
1589 
1590 	lock_sock(sk);
1591 
1592 	err = -ENOTCONN;
1593 	if (sk->sk_state == TCP_LISTEN)
1594 		goto out;
1595 
1596 	timeo = sock_rcvtimeo(sk, nonblock);
1597 
1598 	/* Urgent data needs to be handled specially. */
1599 	if (flags & MSG_OOB)
1600 		goto recv_urg;
1601 
1602 	if (unlikely(tp->repair)) {
1603 		err = -EPERM;
1604 		if (!(flags & MSG_PEEK))
1605 			goto out;
1606 
1607 		if (tp->repair_queue == TCP_SEND_QUEUE)
1608 			goto recv_sndq;
1609 
1610 		err = -EINVAL;
1611 		if (tp->repair_queue == TCP_NO_QUEUE)
1612 			goto out;
1613 
1614 		/* 'common' recv queue MSG_PEEK-ing */
1615 	}
1616 
1617 	seq = &tp->copied_seq;
1618 	if (flags & MSG_PEEK) {
1619 		peek_seq = tp->copied_seq;
1620 		seq = &peek_seq;
1621 	}
1622 
1623 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1624 
1625 	do {
1626 		u32 offset;
1627 
1628 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1629 		if (tp->urg_data && tp->urg_seq == *seq) {
1630 			if (copied)
1631 				break;
1632 			if (signal_pending(current)) {
1633 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1634 				break;
1635 			}
1636 		}
1637 
1638 		/* Next get a buffer. */
1639 
1640 		last = skb_peek_tail(&sk->sk_receive_queue);
1641 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1642 			last = skb;
1643 			/* Now that we have two receive queues this
1644 			 * shouldn't happen.
1645 			 */
1646 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1647 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1648 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1649 				 flags))
1650 				break;
1651 
1652 			offset = *seq - TCP_SKB_CB(skb)->seq;
1653 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1654 				offset--;
1655 			if (offset < skb->len)
1656 				goto found_ok_skb;
1657 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1658 				goto found_fin_ok;
1659 			WARN(!(flags & MSG_PEEK),
1660 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1661 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1662 		}
1663 
1664 		/* Well, if we have backlog, try to process it now yet. */
1665 
1666 		if (copied >= target && !sk->sk_backlog.tail)
1667 			break;
1668 
1669 		if (copied) {
1670 			if (sk->sk_err ||
1671 			    sk->sk_state == TCP_CLOSE ||
1672 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1673 			    !timeo ||
1674 			    signal_pending(current))
1675 				break;
1676 		} else {
1677 			if (sock_flag(sk, SOCK_DONE))
1678 				break;
1679 
1680 			if (sk->sk_err) {
1681 				copied = sock_error(sk);
1682 				break;
1683 			}
1684 
1685 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1686 				break;
1687 
1688 			if (sk->sk_state == TCP_CLOSE) {
1689 				if (!sock_flag(sk, SOCK_DONE)) {
1690 					/* This occurs when user tries to read
1691 					 * from never connected socket.
1692 					 */
1693 					copied = -ENOTCONN;
1694 					break;
1695 				}
1696 				break;
1697 			}
1698 
1699 			if (!timeo) {
1700 				copied = -EAGAIN;
1701 				break;
1702 			}
1703 
1704 			if (signal_pending(current)) {
1705 				copied = sock_intr_errno(timeo);
1706 				break;
1707 			}
1708 		}
1709 
1710 		tcp_cleanup_rbuf(sk, copied);
1711 
1712 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1713 			/* Install new reader */
1714 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1715 				user_recv = current;
1716 				tp->ucopy.task = user_recv;
1717 				tp->ucopy.msg = msg;
1718 			}
1719 
1720 			tp->ucopy.len = len;
1721 
1722 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1723 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1724 
1725 			/* Ugly... If prequeue is not empty, we have to
1726 			 * process it before releasing socket, otherwise
1727 			 * order will be broken at second iteration.
1728 			 * More elegant solution is required!!!
1729 			 *
1730 			 * Look: we have the following (pseudo)queues:
1731 			 *
1732 			 * 1. packets in flight
1733 			 * 2. backlog
1734 			 * 3. prequeue
1735 			 * 4. receive_queue
1736 			 *
1737 			 * Each queue can be processed only if the next ones
1738 			 * are empty. At this point we have empty receive_queue.
1739 			 * But prequeue _can_ be not empty after 2nd iteration,
1740 			 * when we jumped to start of loop because backlog
1741 			 * processing added something to receive_queue.
1742 			 * We cannot release_sock(), because backlog contains
1743 			 * packets arrived _after_ prequeued ones.
1744 			 *
1745 			 * Shortly, algorithm is clear --- to process all
1746 			 * the queues in order. We could make it more directly,
1747 			 * requeueing packets from backlog to prequeue, if
1748 			 * is not empty. It is more elegant, but eats cycles,
1749 			 * unfortunately.
1750 			 */
1751 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1752 				goto do_prequeue;
1753 
1754 			/* __ Set realtime policy in scheduler __ */
1755 		}
1756 
1757 		if (copied >= target) {
1758 			/* Do not sleep, just process backlog. */
1759 			release_sock(sk);
1760 			lock_sock(sk);
1761 		} else {
1762 			sk_wait_data(sk, &timeo, last);
1763 		}
1764 
1765 		if (user_recv) {
1766 			int chunk;
1767 
1768 			/* __ Restore normal policy in scheduler __ */
1769 
1770 			if ((chunk = len - tp->ucopy.len) != 0) {
1771 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1772 				len -= chunk;
1773 				copied += chunk;
1774 			}
1775 
1776 			if (tp->rcv_nxt == tp->copied_seq &&
1777 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1778 do_prequeue:
1779 				tcp_prequeue_process(sk);
1780 
1781 				if ((chunk = len - tp->ucopy.len) != 0) {
1782 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1783 					len -= chunk;
1784 					copied += chunk;
1785 				}
1786 			}
1787 		}
1788 		if ((flags & MSG_PEEK) &&
1789 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1790 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1791 					    current->comm,
1792 					    task_pid_nr(current));
1793 			peek_seq = tp->copied_seq;
1794 		}
1795 		continue;
1796 
1797 	found_ok_skb:
1798 		/* Ok so how much can we use? */
1799 		used = skb->len - offset;
1800 		if (len < used)
1801 			used = len;
1802 
1803 		/* Do we have urgent data here? */
1804 		if (tp->urg_data) {
1805 			u32 urg_offset = tp->urg_seq - *seq;
1806 			if (urg_offset < used) {
1807 				if (!urg_offset) {
1808 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1809 						++*seq;
1810 						urg_hole++;
1811 						offset++;
1812 						used--;
1813 						if (!used)
1814 							goto skip_copy;
1815 					}
1816 				} else
1817 					used = urg_offset;
1818 			}
1819 		}
1820 
1821 		if (!(flags & MSG_TRUNC)) {
1822 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1823 			if (err) {
1824 				/* Exception. Bailout! */
1825 				if (!copied)
1826 					copied = -EFAULT;
1827 				break;
1828 			}
1829 		}
1830 
1831 		*seq += used;
1832 		copied += used;
1833 		len -= used;
1834 
1835 		tcp_rcv_space_adjust(sk);
1836 
1837 skip_copy:
1838 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1839 			tp->urg_data = 0;
1840 			tcp_fast_path_check(sk);
1841 		}
1842 		if (used + offset < skb->len)
1843 			continue;
1844 
1845 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1846 			goto found_fin_ok;
1847 		if (!(flags & MSG_PEEK))
1848 			sk_eat_skb(sk, skb);
1849 		continue;
1850 
1851 	found_fin_ok:
1852 		/* Process the FIN. */
1853 		++*seq;
1854 		if (!(flags & MSG_PEEK))
1855 			sk_eat_skb(sk, skb);
1856 		break;
1857 	} while (len > 0);
1858 
1859 	if (user_recv) {
1860 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1861 			int chunk;
1862 
1863 			tp->ucopy.len = copied > 0 ? len : 0;
1864 
1865 			tcp_prequeue_process(sk);
1866 
1867 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1868 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1869 				len -= chunk;
1870 				copied += chunk;
1871 			}
1872 		}
1873 
1874 		tp->ucopy.task = NULL;
1875 		tp->ucopy.len = 0;
1876 	}
1877 
1878 	/* According to UNIX98, msg_name/msg_namelen are ignored
1879 	 * on connected socket. I was just happy when found this 8) --ANK
1880 	 */
1881 
1882 	/* Clean up data we have read: This will do ACK frames. */
1883 	tcp_cleanup_rbuf(sk, copied);
1884 
1885 	release_sock(sk);
1886 	return copied;
1887 
1888 out:
1889 	release_sock(sk);
1890 	return err;
1891 
1892 recv_urg:
1893 	err = tcp_recv_urg(sk, msg, len, flags);
1894 	goto out;
1895 
1896 recv_sndq:
1897 	err = tcp_peek_sndq(sk, msg, len);
1898 	goto out;
1899 }
1900 EXPORT_SYMBOL(tcp_recvmsg);
1901 
1902 void tcp_set_state(struct sock *sk, int state)
1903 {
1904 	int oldstate = sk->sk_state;
1905 
1906 	switch (state) {
1907 	case TCP_ESTABLISHED:
1908 		if (oldstate != TCP_ESTABLISHED)
1909 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1910 		break;
1911 
1912 	case TCP_CLOSE:
1913 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1914 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1915 
1916 		sk->sk_prot->unhash(sk);
1917 		if (inet_csk(sk)->icsk_bind_hash &&
1918 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1919 			inet_put_port(sk);
1920 		/* fall through */
1921 	default:
1922 		if (oldstate == TCP_ESTABLISHED)
1923 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1924 	}
1925 
1926 	/* Change state AFTER socket is unhashed to avoid closed
1927 	 * socket sitting in hash tables.
1928 	 */
1929 	sk->sk_state = state;
1930 
1931 #ifdef STATE_TRACE
1932 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1933 #endif
1934 }
1935 EXPORT_SYMBOL_GPL(tcp_set_state);
1936 
1937 /*
1938  *	State processing on a close. This implements the state shift for
1939  *	sending our FIN frame. Note that we only send a FIN for some
1940  *	states. A shutdown() may have already sent the FIN, or we may be
1941  *	closed.
1942  */
1943 
1944 static const unsigned char new_state[16] = {
1945   /* current state:        new state:      action:	*/
1946   [0 /* (Invalid) */]	= TCP_CLOSE,
1947   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1948   [TCP_SYN_SENT]	= TCP_CLOSE,
1949   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1950   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1951   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1952   [TCP_TIME_WAIT]	= TCP_CLOSE,
1953   [TCP_CLOSE]		= TCP_CLOSE,
1954   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
1955   [TCP_LAST_ACK]	= TCP_LAST_ACK,
1956   [TCP_LISTEN]		= TCP_CLOSE,
1957   [TCP_CLOSING]		= TCP_CLOSING,
1958   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
1959 };
1960 
1961 static int tcp_close_state(struct sock *sk)
1962 {
1963 	int next = (int)new_state[sk->sk_state];
1964 	int ns = next & TCP_STATE_MASK;
1965 
1966 	tcp_set_state(sk, ns);
1967 
1968 	return next & TCP_ACTION_FIN;
1969 }
1970 
1971 /*
1972  *	Shutdown the sending side of a connection. Much like close except
1973  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1974  */
1975 
1976 void tcp_shutdown(struct sock *sk, int how)
1977 {
1978 	/*	We need to grab some memory, and put together a FIN,
1979 	 *	and then put it into the queue to be sent.
1980 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1981 	 */
1982 	if (!(how & SEND_SHUTDOWN))
1983 		return;
1984 
1985 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1986 	if ((1 << sk->sk_state) &
1987 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1988 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1989 		/* Clear out any half completed packets.  FIN if needed. */
1990 		if (tcp_close_state(sk))
1991 			tcp_send_fin(sk);
1992 	}
1993 }
1994 EXPORT_SYMBOL(tcp_shutdown);
1995 
1996 bool tcp_check_oom(struct sock *sk, int shift)
1997 {
1998 	bool too_many_orphans, out_of_socket_memory;
1999 
2000 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2001 	out_of_socket_memory = tcp_out_of_memory(sk);
2002 
2003 	if (too_many_orphans)
2004 		net_info_ratelimited("too many orphaned sockets\n");
2005 	if (out_of_socket_memory)
2006 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2007 	return too_many_orphans || out_of_socket_memory;
2008 }
2009 
2010 void tcp_close(struct sock *sk, long timeout)
2011 {
2012 	struct sk_buff *skb;
2013 	int data_was_unread = 0;
2014 	int state;
2015 
2016 	lock_sock(sk);
2017 	sk->sk_shutdown = SHUTDOWN_MASK;
2018 
2019 	if (sk->sk_state == TCP_LISTEN) {
2020 		tcp_set_state(sk, TCP_CLOSE);
2021 
2022 		/* Special case. */
2023 		inet_csk_listen_stop(sk);
2024 
2025 		goto adjudge_to_death;
2026 	}
2027 
2028 	/*  We need to flush the recv. buffs.  We do this only on the
2029 	 *  descriptor close, not protocol-sourced closes, because the
2030 	 *  reader process may not have drained the data yet!
2031 	 */
2032 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2033 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2034 
2035 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2036 			len--;
2037 		data_was_unread += len;
2038 		__kfree_skb(skb);
2039 	}
2040 
2041 	sk_mem_reclaim(sk);
2042 
2043 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2044 	if (sk->sk_state == TCP_CLOSE)
2045 		goto adjudge_to_death;
2046 
2047 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2048 	 * data was lost. To witness the awful effects of the old behavior of
2049 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2050 	 * GET in an FTP client, suspend the process, wait for the client to
2051 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2052 	 * Note: timeout is always zero in such a case.
2053 	 */
2054 	if (unlikely(tcp_sk(sk)->repair)) {
2055 		sk->sk_prot->disconnect(sk, 0);
2056 	} else if (data_was_unread) {
2057 		/* Unread data was tossed, zap the connection. */
2058 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2059 		tcp_set_state(sk, TCP_CLOSE);
2060 		tcp_send_active_reset(sk, sk->sk_allocation);
2061 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2062 		/* Check zero linger _after_ checking for unread data. */
2063 		sk->sk_prot->disconnect(sk, 0);
2064 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2065 	} else if (tcp_close_state(sk)) {
2066 		/* We FIN if the application ate all the data before
2067 		 * zapping the connection.
2068 		 */
2069 
2070 		/* RED-PEN. Formally speaking, we have broken TCP state
2071 		 * machine. State transitions:
2072 		 *
2073 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2074 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2075 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2076 		 *
2077 		 * are legal only when FIN has been sent (i.e. in window),
2078 		 * rather than queued out of window. Purists blame.
2079 		 *
2080 		 * F.e. "RFC state" is ESTABLISHED,
2081 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2082 		 *
2083 		 * The visible declinations are that sometimes
2084 		 * we enter time-wait state, when it is not required really
2085 		 * (harmless), do not send active resets, when they are
2086 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2087 		 * they look as CLOSING or LAST_ACK for Linux)
2088 		 * Probably, I missed some more holelets.
2089 		 * 						--ANK
2090 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2091 		 * in a single packet! (May consider it later but will
2092 		 * probably need API support or TCP_CORK SYN-ACK until
2093 		 * data is written and socket is closed.)
2094 		 */
2095 		tcp_send_fin(sk);
2096 	}
2097 
2098 	sk_stream_wait_close(sk, timeout);
2099 
2100 adjudge_to_death:
2101 	state = sk->sk_state;
2102 	sock_hold(sk);
2103 	sock_orphan(sk);
2104 
2105 	/* It is the last release_sock in its life. It will remove backlog. */
2106 	release_sock(sk);
2107 
2108 
2109 	/* Now socket is owned by kernel and we acquire BH lock
2110 	   to finish close. No need to check for user refs.
2111 	 */
2112 	local_bh_disable();
2113 	bh_lock_sock(sk);
2114 	WARN_ON(sock_owned_by_user(sk));
2115 
2116 	percpu_counter_inc(sk->sk_prot->orphan_count);
2117 
2118 	/* Have we already been destroyed by a softirq or backlog? */
2119 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2120 		goto out;
2121 
2122 	/*	This is a (useful) BSD violating of the RFC. There is a
2123 	 *	problem with TCP as specified in that the other end could
2124 	 *	keep a socket open forever with no application left this end.
2125 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2126 	 *	our end. If they send after that then tough - BUT: long enough
2127 	 *	that we won't make the old 4*rto = almost no time - whoops
2128 	 *	reset mistake.
2129 	 *
2130 	 *	Nope, it was not mistake. It is really desired behaviour
2131 	 *	f.e. on http servers, when such sockets are useless, but
2132 	 *	consume significant resources. Let's do it with special
2133 	 *	linger2	option.					--ANK
2134 	 */
2135 
2136 	if (sk->sk_state == TCP_FIN_WAIT2) {
2137 		struct tcp_sock *tp = tcp_sk(sk);
2138 		if (tp->linger2 < 0) {
2139 			tcp_set_state(sk, TCP_CLOSE);
2140 			tcp_send_active_reset(sk, GFP_ATOMIC);
2141 			NET_INC_STATS_BH(sock_net(sk),
2142 					LINUX_MIB_TCPABORTONLINGER);
2143 		} else {
2144 			const int tmo = tcp_fin_time(sk);
2145 
2146 			if (tmo > TCP_TIMEWAIT_LEN) {
2147 				inet_csk_reset_keepalive_timer(sk,
2148 						tmo - TCP_TIMEWAIT_LEN);
2149 			} else {
2150 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2151 				goto out;
2152 			}
2153 		}
2154 	}
2155 	if (sk->sk_state != TCP_CLOSE) {
2156 		sk_mem_reclaim(sk);
2157 		if (tcp_check_oom(sk, 0)) {
2158 			tcp_set_state(sk, TCP_CLOSE);
2159 			tcp_send_active_reset(sk, GFP_ATOMIC);
2160 			NET_INC_STATS_BH(sock_net(sk),
2161 					LINUX_MIB_TCPABORTONMEMORY);
2162 		}
2163 	}
2164 
2165 	if (sk->sk_state == TCP_CLOSE) {
2166 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2167 		/* We could get here with a non-NULL req if the socket is
2168 		 * aborted (e.g., closed with unread data) before 3WHS
2169 		 * finishes.
2170 		 */
2171 		if (req)
2172 			reqsk_fastopen_remove(sk, req, false);
2173 		inet_csk_destroy_sock(sk);
2174 	}
2175 	/* Otherwise, socket is reprieved until protocol close. */
2176 
2177 out:
2178 	bh_unlock_sock(sk);
2179 	local_bh_enable();
2180 	sock_put(sk);
2181 }
2182 EXPORT_SYMBOL(tcp_close);
2183 
2184 /* These states need RST on ABORT according to RFC793 */
2185 
2186 static inline bool tcp_need_reset(int state)
2187 {
2188 	return (1 << state) &
2189 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2190 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2191 }
2192 
2193 int tcp_disconnect(struct sock *sk, int flags)
2194 {
2195 	struct inet_sock *inet = inet_sk(sk);
2196 	struct inet_connection_sock *icsk = inet_csk(sk);
2197 	struct tcp_sock *tp = tcp_sk(sk);
2198 	int err = 0;
2199 	int old_state = sk->sk_state;
2200 
2201 	if (old_state != TCP_CLOSE)
2202 		tcp_set_state(sk, TCP_CLOSE);
2203 
2204 	/* ABORT function of RFC793 */
2205 	if (old_state == TCP_LISTEN) {
2206 		inet_csk_listen_stop(sk);
2207 	} else if (unlikely(tp->repair)) {
2208 		sk->sk_err = ECONNABORTED;
2209 	} else if (tcp_need_reset(old_state) ||
2210 		   (tp->snd_nxt != tp->write_seq &&
2211 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2212 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2213 		 * states
2214 		 */
2215 		tcp_send_active_reset(sk, gfp_any());
2216 		sk->sk_err = ECONNRESET;
2217 	} else if (old_state == TCP_SYN_SENT)
2218 		sk->sk_err = ECONNRESET;
2219 
2220 	tcp_clear_xmit_timers(sk);
2221 	__skb_queue_purge(&sk->sk_receive_queue);
2222 	tcp_write_queue_purge(sk);
2223 	__skb_queue_purge(&tp->out_of_order_queue);
2224 
2225 	inet->inet_dport = 0;
2226 
2227 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2228 		inet_reset_saddr(sk);
2229 
2230 	sk->sk_shutdown = 0;
2231 	sock_reset_flag(sk, SOCK_DONE);
2232 	tp->srtt_us = 0;
2233 	if ((tp->write_seq += tp->max_window + 2) == 0)
2234 		tp->write_seq = 1;
2235 	icsk->icsk_backoff = 0;
2236 	tp->snd_cwnd = 2;
2237 	icsk->icsk_probes_out = 0;
2238 	tp->packets_out = 0;
2239 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2240 	tp->snd_cwnd_cnt = 0;
2241 	tp->window_clamp = 0;
2242 	tcp_set_ca_state(sk, TCP_CA_Open);
2243 	tcp_clear_retrans(tp);
2244 	inet_csk_delack_init(sk);
2245 	tcp_init_send_head(sk);
2246 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2247 	__sk_dst_reset(sk);
2248 
2249 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2250 
2251 	sk->sk_error_report(sk);
2252 	return err;
2253 }
2254 EXPORT_SYMBOL(tcp_disconnect);
2255 
2256 void tcp_sock_destruct(struct sock *sk)
2257 {
2258 	inet_sock_destruct(sk);
2259 
2260 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2261 }
2262 
2263 static inline bool tcp_can_repair_sock(const struct sock *sk)
2264 {
2265 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2266 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2267 }
2268 
2269 static int tcp_repair_options_est(struct tcp_sock *tp,
2270 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2271 {
2272 	struct tcp_repair_opt opt;
2273 
2274 	while (len >= sizeof(opt)) {
2275 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2276 			return -EFAULT;
2277 
2278 		optbuf++;
2279 		len -= sizeof(opt);
2280 
2281 		switch (opt.opt_code) {
2282 		case TCPOPT_MSS:
2283 			tp->rx_opt.mss_clamp = opt.opt_val;
2284 			break;
2285 		case TCPOPT_WINDOW:
2286 			{
2287 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2288 				u16 rcv_wscale = opt.opt_val >> 16;
2289 
2290 				if (snd_wscale > 14 || rcv_wscale > 14)
2291 					return -EFBIG;
2292 
2293 				tp->rx_opt.snd_wscale = snd_wscale;
2294 				tp->rx_opt.rcv_wscale = rcv_wscale;
2295 				tp->rx_opt.wscale_ok = 1;
2296 			}
2297 			break;
2298 		case TCPOPT_SACK_PERM:
2299 			if (opt.opt_val != 0)
2300 				return -EINVAL;
2301 
2302 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2303 			if (sysctl_tcp_fack)
2304 				tcp_enable_fack(tp);
2305 			break;
2306 		case TCPOPT_TIMESTAMP:
2307 			if (opt.opt_val != 0)
2308 				return -EINVAL;
2309 
2310 			tp->rx_opt.tstamp_ok = 1;
2311 			break;
2312 		}
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 /*
2319  *	Socket option code for TCP.
2320  */
2321 static int do_tcp_setsockopt(struct sock *sk, int level,
2322 		int optname, char __user *optval, unsigned int optlen)
2323 {
2324 	struct tcp_sock *tp = tcp_sk(sk);
2325 	struct inet_connection_sock *icsk = inet_csk(sk);
2326 	int val;
2327 	int err = 0;
2328 
2329 	/* These are data/string values, all the others are ints */
2330 	switch (optname) {
2331 	case TCP_CONGESTION: {
2332 		char name[TCP_CA_NAME_MAX];
2333 
2334 		if (optlen < 1)
2335 			return -EINVAL;
2336 
2337 		val = strncpy_from_user(name, optval,
2338 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2339 		if (val < 0)
2340 			return -EFAULT;
2341 		name[val] = 0;
2342 
2343 		lock_sock(sk);
2344 		err = tcp_set_congestion_control(sk, name);
2345 		release_sock(sk);
2346 		return err;
2347 	}
2348 	default:
2349 		/* fallthru */
2350 		break;
2351 	}
2352 
2353 	if (optlen < sizeof(int))
2354 		return -EINVAL;
2355 
2356 	if (get_user(val, (int __user *)optval))
2357 		return -EFAULT;
2358 
2359 	lock_sock(sk);
2360 
2361 	switch (optname) {
2362 	case TCP_MAXSEG:
2363 		/* Values greater than interface MTU won't take effect. However
2364 		 * at the point when this call is done we typically don't yet
2365 		 * know which interface is going to be used */
2366 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2367 			err = -EINVAL;
2368 			break;
2369 		}
2370 		tp->rx_opt.user_mss = val;
2371 		break;
2372 
2373 	case TCP_NODELAY:
2374 		if (val) {
2375 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2376 			 * this option on corked socket is remembered, but
2377 			 * it is not activated until cork is cleared.
2378 			 *
2379 			 * However, when TCP_NODELAY is set we make
2380 			 * an explicit push, which overrides even TCP_CORK
2381 			 * for currently queued segments.
2382 			 */
2383 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2384 			tcp_push_pending_frames(sk);
2385 		} else {
2386 			tp->nonagle &= ~TCP_NAGLE_OFF;
2387 		}
2388 		break;
2389 
2390 	case TCP_THIN_LINEAR_TIMEOUTS:
2391 		if (val < 0 || val > 1)
2392 			err = -EINVAL;
2393 		else
2394 			tp->thin_lto = val;
2395 		break;
2396 
2397 	case TCP_THIN_DUPACK:
2398 		if (val < 0 || val > 1)
2399 			err = -EINVAL;
2400 		else {
2401 			tp->thin_dupack = val;
2402 			if (tp->thin_dupack)
2403 				tcp_disable_early_retrans(tp);
2404 		}
2405 		break;
2406 
2407 	case TCP_REPAIR:
2408 		if (!tcp_can_repair_sock(sk))
2409 			err = -EPERM;
2410 		else if (val == 1) {
2411 			tp->repair = 1;
2412 			sk->sk_reuse = SK_FORCE_REUSE;
2413 			tp->repair_queue = TCP_NO_QUEUE;
2414 		} else if (val == 0) {
2415 			tp->repair = 0;
2416 			sk->sk_reuse = SK_NO_REUSE;
2417 			tcp_send_window_probe(sk);
2418 		} else
2419 			err = -EINVAL;
2420 
2421 		break;
2422 
2423 	case TCP_REPAIR_QUEUE:
2424 		if (!tp->repair)
2425 			err = -EPERM;
2426 		else if (val < TCP_QUEUES_NR)
2427 			tp->repair_queue = val;
2428 		else
2429 			err = -EINVAL;
2430 		break;
2431 
2432 	case TCP_QUEUE_SEQ:
2433 		if (sk->sk_state != TCP_CLOSE)
2434 			err = -EPERM;
2435 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2436 			tp->write_seq = val;
2437 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2438 			tp->rcv_nxt = val;
2439 		else
2440 			err = -EINVAL;
2441 		break;
2442 
2443 	case TCP_REPAIR_OPTIONS:
2444 		if (!tp->repair)
2445 			err = -EINVAL;
2446 		else if (sk->sk_state == TCP_ESTABLISHED)
2447 			err = tcp_repair_options_est(tp,
2448 					(struct tcp_repair_opt __user *)optval,
2449 					optlen);
2450 		else
2451 			err = -EPERM;
2452 		break;
2453 
2454 	case TCP_CORK:
2455 		/* When set indicates to always queue non-full frames.
2456 		 * Later the user clears this option and we transmit
2457 		 * any pending partial frames in the queue.  This is
2458 		 * meant to be used alongside sendfile() to get properly
2459 		 * filled frames when the user (for example) must write
2460 		 * out headers with a write() call first and then use
2461 		 * sendfile to send out the data parts.
2462 		 *
2463 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2464 		 * stronger than TCP_NODELAY.
2465 		 */
2466 		if (val) {
2467 			tp->nonagle |= TCP_NAGLE_CORK;
2468 		} else {
2469 			tp->nonagle &= ~TCP_NAGLE_CORK;
2470 			if (tp->nonagle&TCP_NAGLE_OFF)
2471 				tp->nonagle |= TCP_NAGLE_PUSH;
2472 			tcp_push_pending_frames(sk);
2473 		}
2474 		break;
2475 
2476 	case TCP_KEEPIDLE:
2477 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2478 			err = -EINVAL;
2479 		else {
2480 			tp->keepalive_time = val * HZ;
2481 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2482 			    !((1 << sk->sk_state) &
2483 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2484 				u32 elapsed = keepalive_time_elapsed(tp);
2485 				if (tp->keepalive_time > elapsed)
2486 					elapsed = tp->keepalive_time - elapsed;
2487 				else
2488 					elapsed = 0;
2489 				inet_csk_reset_keepalive_timer(sk, elapsed);
2490 			}
2491 		}
2492 		break;
2493 	case TCP_KEEPINTVL:
2494 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2495 			err = -EINVAL;
2496 		else
2497 			tp->keepalive_intvl = val * HZ;
2498 		break;
2499 	case TCP_KEEPCNT:
2500 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2501 			err = -EINVAL;
2502 		else
2503 			tp->keepalive_probes = val;
2504 		break;
2505 	case TCP_SYNCNT:
2506 		if (val < 1 || val > MAX_TCP_SYNCNT)
2507 			err = -EINVAL;
2508 		else
2509 			icsk->icsk_syn_retries = val;
2510 		break;
2511 
2512 	case TCP_SAVE_SYN:
2513 		if (val < 0 || val > 1)
2514 			err = -EINVAL;
2515 		else
2516 			tp->save_syn = val;
2517 		break;
2518 
2519 	case TCP_LINGER2:
2520 		if (val < 0)
2521 			tp->linger2 = -1;
2522 		else if (val > sysctl_tcp_fin_timeout / HZ)
2523 			tp->linger2 = 0;
2524 		else
2525 			tp->linger2 = val * HZ;
2526 		break;
2527 
2528 	case TCP_DEFER_ACCEPT:
2529 		/* Translate value in seconds to number of retransmits */
2530 		icsk->icsk_accept_queue.rskq_defer_accept =
2531 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2532 					TCP_RTO_MAX / HZ);
2533 		break;
2534 
2535 	case TCP_WINDOW_CLAMP:
2536 		if (!val) {
2537 			if (sk->sk_state != TCP_CLOSE) {
2538 				err = -EINVAL;
2539 				break;
2540 			}
2541 			tp->window_clamp = 0;
2542 		} else
2543 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2544 						SOCK_MIN_RCVBUF / 2 : val;
2545 		break;
2546 
2547 	case TCP_QUICKACK:
2548 		if (!val) {
2549 			icsk->icsk_ack.pingpong = 1;
2550 		} else {
2551 			icsk->icsk_ack.pingpong = 0;
2552 			if ((1 << sk->sk_state) &
2553 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2554 			    inet_csk_ack_scheduled(sk)) {
2555 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2556 				tcp_cleanup_rbuf(sk, 1);
2557 				if (!(val & 1))
2558 					icsk->icsk_ack.pingpong = 1;
2559 			}
2560 		}
2561 		break;
2562 
2563 #ifdef CONFIG_TCP_MD5SIG
2564 	case TCP_MD5SIG:
2565 		/* Read the IP->Key mappings from userspace */
2566 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2567 		break;
2568 #endif
2569 	case TCP_USER_TIMEOUT:
2570 		/* Cap the max time in ms TCP will retry or probe the window
2571 		 * before giving up and aborting (ETIMEDOUT) a connection.
2572 		 */
2573 		if (val < 0)
2574 			err = -EINVAL;
2575 		else
2576 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2577 		break;
2578 
2579 	case TCP_FASTOPEN:
2580 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2581 		    TCPF_LISTEN))) {
2582 			tcp_fastopen_init_key_once(true);
2583 
2584 			err = fastopen_init_queue(sk, val);
2585 		} else {
2586 			err = -EINVAL;
2587 		}
2588 		break;
2589 	case TCP_TIMESTAMP:
2590 		if (!tp->repair)
2591 			err = -EPERM;
2592 		else
2593 			tp->tsoffset = val - tcp_time_stamp;
2594 		break;
2595 	case TCP_NOTSENT_LOWAT:
2596 		tp->notsent_lowat = val;
2597 		sk->sk_write_space(sk);
2598 		break;
2599 	default:
2600 		err = -ENOPROTOOPT;
2601 		break;
2602 	}
2603 
2604 	release_sock(sk);
2605 	return err;
2606 }
2607 
2608 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2609 		   unsigned int optlen)
2610 {
2611 	const struct inet_connection_sock *icsk = inet_csk(sk);
2612 
2613 	if (level != SOL_TCP)
2614 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2615 						     optval, optlen);
2616 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2617 }
2618 EXPORT_SYMBOL(tcp_setsockopt);
2619 
2620 #ifdef CONFIG_COMPAT
2621 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2622 			  char __user *optval, unsigned int optlen)
2623 {
2624 	if (level != SOL_TCP)
2625 		return inet_csk_compat_setsockopt(sk, level, optname,
2626 						  optval, optlen);
2627 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2628 }
2629 EXPORT_SYMBOL(compat_tcp_setsockopt);
2630 #endif
2631 
2632 /* Return information about state of tcp endpoint in API format. */
2633 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2634 {
2635 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2636 	const struct inet_connection_sock *icsk = inet_csk(sk);
2637 	u32 now = tcp_time_stamp;
2638 	unsigned int start;
2639 	u32 rate;
2640 
2641 	memset(info, 0, sizeof(*info));
2642 	if (sk->sk_type != SOCK_STREAM)
2643 		return;
2644 
2645 	info->tcpi_state = sk->sk_state;
2646 	info->tcpi_ca_state = icsk->icsk_ca_state;
2647 	info->tcpi_retransmits = icsk->icsk_retransmits;
2648 	info->tcpi_probes = icsk->icsk_probes_out;
2649 	info->tcpi_backoff = icsk->icsk_backoff;
2650 
2651 	if (tp->rx_opt.tstamp_ok)
2652 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2653 	if (tcp_is_sack(tp))
2654 		info->tcpi_options |= TCPI_OPT_SACK;
2655 	if (tp->rx_opt.wscale_ok) {
2656 		info->tcpi_options |= TCPI_OPT_WSCALE;
2657 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2658 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2659 	}
2660 
2661 	if (tp->ecn_flags & TCP_ECN_OK)
2662 		info->tcpi_options |= TCPI_OPT_ECN;
2663 	if (tp->ecn_flags & TCP_ECN_SEEN)
2664 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2665 	if (tp->syn_data_acked)
2666 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2667 
2668 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2669 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2670 	info->tcpi_snd_mss = tp->mss_cache;
2671 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2672 
2673 	if (sk->sk_state == TCP_LISTEN) {
2674 		info->tcpi_unacked = sk->sk_ack_backlog;
2675 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2676 	} else {
2677 		info->tcpi_unacked = tp->packets_out;
2678 		info->tcpi_sacked = tp->sacked_out;
2679 	}
2680 	info->tcpi_lost = tp->lost_out;
2681 	info->tcpi_retrans = tp->retrans_out;
2682 	info->tcpi_fackets = tp->fackets_out;
2683 
2684 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2685 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2686 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2687 
2688 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2689 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2690 	info->tcpi_rtt = tp->srtt_us >> 3;
2691 	info->tcpi_rttvar = tp->mdev_us >> 2;
2692 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2693 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2694 	info->tcpi_advmss = tp->advmss;
2695 	info->tcpi_reordering = tp->reordering;
2696 
2697 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2698 	info->tcpi_rcv_space = tp->rcvq_space.space;
2699 
2700 	info->tcpi_total_retrans = tp->total_retrans;
2701 
2702 	rate = READ_ONCE(sk->sk_pacing_rate);
2703 	info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL;
2704 
2705 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2706 	info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL;
2707 
2708 	do {
2709 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2710 		info->tcpi_bytes_acked = tp->bytes_acked;
2711 		info->tcpi_bytes_received = tp->bytes_received;
2712 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2713 	info->tcpi_segs_out = tp->segs_out;
2714 	info->tcpi_segs_in = tp->segs_in;
2715 }
2716 EXPORT_SYMBOL_GPL(tcp_get_info);
2717 
2718 static int do_tcp_getsockopt(struct sock *sk, int level,
2719 		int optname, char __user *optval, int __user *optlen)
2720 {
2721 	struct inet_connection_sock *icsk = inet_csk(sk);
2722 	struct tcp_sock *tp = tcp_sk(sk);
2723 	int val, len;
2724 
2725 	if (get_user(len, optlen))
2726 		return -EFAULT;
2727 
2728 	len = min_t(unsigned int, len, sizeof(int));
2729 
2730 	if (len < 0)
2731 		return -EINVAL;
2732 
2733 	switch (optname) {
2734 	case TCP_MAXSEG:
2735 		val = tp->mss_cache;
2736 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2737 			val = tp->rx_opt.user_mss;
2738 		if (tp->repair)
2739 			val = tp->rx_opt.mss_clamp;
2740 		break;
2741 	case TCP_NODELAY:
2742 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2743 		break;
2744 	case TCP_CORK:
2745 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2746 		break;
2747 	case TCP_KEEPIDLE:
2748 		val = keepalive_time_when(tp) / HZ;
2749 		break;
2750 	case TCP_KEEPINTVL:
2751 		val = keepalive_intvl_when(tp) / HZ;
2752 		break;
2753 	case TCP_KEEPCNT:
2754 		val = keepalive_probes(tp);
2755 		break;
2756 	case TCP_SYNCNT:
2757 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2758 		break;
2759 	case TCP_LINGER2:
2760 		val = tp->linger2;
2761 		if (val >= 0)
2762 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2763 		break;
2764 	case TCP_DEFER_ACCEPT:
2765 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2766 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2767 		break;
2768 	case TCP_WINDOW_CLAMP:
2769 		val = tp->window_clamp;
2770 		break;
2771 	case TCP_INFO: {
2772 		struct tcp_info info;
2773 
2774 		if (get_user(len, optlen))
2775 			return -EFAULT;
2776 
2777 		tcp_get_info(sk, &info);
2778 
2779 		len = min_t(unsigned int, len, sizeof(info));
2780 		if (put_user(len, optlen))
2781 			return -EFAULT;
2782 		if (copy_to_user(optval, &info, len))
2783 			return -EFAULT;
2784 		return 0;
2785 	}
2786 	case TCP_CC_INFO: {
2787 		const struct tcp_congestion_ops *ca_ops;
2788 		union tcp_cc_info info;
2789 		size_t sz = 0;
2790 		int attr;
2791 
2792 		if (get_user(len, optlen))
2793 			return -EFAULT;
2794 
2795 		ca_ops = icsk->icsk_ca_ops;
2796 		if (ca_ops && ca_ops->get_info)
2797 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2798 
2799 		len = min_t(unsigned int, len, sz);
2800 		if (put_user(len, optlen))
2801 			return -EFAULT;
2802 		if (copy_to_user(optval, &info, len))
2803 			return -EFAULT;
2804 		return 0;
2805 	}
2806 	case TCP_QUICKACK:
2807 		val = !icsk->icsk_ack.pingpong;
2808 		break;
2809 
2810 	case TCP_CONGESTION:
2811 		if (get_user(len, optlen))
2812 			return -EFAULT;
2813 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2814 		if (put_user(len, optlen))
2815 			return -EFAULT;
2816 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2817 			return -EFAULT;
2818 		return 0;
2819 
2820 	case TCP_THIN_LINEAR_TIMEOUTS:
2821 		val = tp->thin_lto;
2822 		break;
2823 	case TCP_THIN_DUPACK:
2824 		val = tp->thin_dupack;
2825 		break;
2826 
2827 	case TCP_REPAIR:
2828 		val = tp->repair;
2829 		break;
2830 
2831 	case TCP_REPAIR_QUEUE:
2832 		if (tp->repair)
2833 			val = tp->repair_queue;
2834 		else
2835 			return -EINVAL;
2836 		break;
2837 
2838 	case TCP_QUEUE_SEQ:
2839 		if (tp->repair_queue == TCP_SEND_QUEUE)
2840 			val = tp->write_seq;
2841 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2842 			val = tp->rcv_nxt;
2843 		else
2844 			return -EINVAL;
2845 		break;
2846 
2847 	case TCP_USER_TIMEOUT:
2848 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2849 		break;
2850 
2851 	case TCP_FASTOPEN:
2852 		if (icsk->icsk_accept_queue.fastopenq)
2853 			val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2854 		else
2855 			val = 0;
2856 		break;
2857 
2858 	case TCP_TIMESTAMP:
2859 		val = tcp_time_stamp + tp->tsoffset;
2860 		break;
2861 	case TCP_NOTSENT_LOWAT:
2862 		val = tp->notsent_lowat;
2863 		break;
2864 	case TCP_SAVE_SYN:
2865 		val = tp->save_syn;
2866 		break;
2867 	case TCP_SAVED_SYN: {
2868 		if (get_user(len, optlen))
2869 			return -EFAULT;
2870 
2871 		lock_sock(sk);
2872 		if (tp->saved_syn) {
2873 			if (len < tp->saved_syn[0]) {
2874 				if (put_user(tp->saved_syn[0], optlen)) {
2875 					release_sock(sk);
2876 					return -EFAULT;
2877 				}
2878 				release_sock(sk);
2879 				return -EINVAL;
2880 			}
2881 			len = tp->saved_syn[0];
2882 			if (put_user(len, optlen)) {
2883 				release_sock(sk);
2884 				return -EFAULT;
2885 			}
2886 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2887 				release_sock(sk);
2888 				return -EFAULT;
2889 			}
2890 			tcp_saved_syn_free(tp);
2891 			release_sock(sk);
2892 		} else {
2893 			release_sock(sk);
2894 			len = 0;
2895 			if (put_user(len, optlen))
2896 				return -EFAULT;
2897 		}
2898 		return 0;
2899 	}
2900 	default:
2901 		return -ENOPROTOOPT;
2902 	}
2903 
2904 	if (put_user(len, optlen))
2905 		return -EFAULT;
2906 	if (copy_to_user(optval, &val, len))
2907 		return -EFAULT;
2908 	return 0;
2909 }
2910 
2911 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2912 		   int __user *optlen)
2913 {
2914 	struct inet_connection_sock *icsk = inet_csk(sk);
2915 
2916 	if (level != SOL_TCP)
2917 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2918 						     optval, optlen);
2919 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2920 }
2921 EXPORT_SYMBOL(tcp_getsockopt);
2922 
2923 #ifdef CONFIG_COMPAT
2924 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2925 			  char __user *optval, int __user *optlen)
2926 {
2927 	if (level != SOL_TCP)
2928 		return inet_csk_compat_getsockopt(sk, level, optname,
2929 						  optval, optlen);
2930 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2931 }
2932 EXPORT_SYMBOL(compat_tcp_getsockopt);
2933 #endif
2934 
2935 #ifdef CONFIG_TCP_MD5SIG
2936 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2937 static DEFINE_MUTEX(tcp_md5sig_mutex);
2938 static bool tcp_md5sig_pool_populated = false;
2939 
2940 static void __tcp_alloc_md5sig_pool(void)
2941 {
2942 	int cpu;
2943 
2944 	for_each_possible_cpu(cpu) {
2945 		if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2946 			struct crypto_hash *hash;
2947 
2948 			hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2949 			if (IS_ERR_OR_NULL(hash))
2950 				return;
2951 			per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2952 		}
2953 	}
2954 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2955 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2956 	 */
2957 	smp_wmb();
2958 	tcp_md5sig_pool_populated = true;
2959 }
2960 
2961 bool tcp_alloc_md5sig_pool(void)
2962 {
2963 	if (unlikely(!tcp_md5sig_pool_populated)) {
2964 		mutex_lock(&tcp_md5sig_mutex);
2965 
2966 		if (!tcp_md5sig_pool_populated)
2967 			__tcp_alloc_md5sig_pool();
2968 
2969 		mutex_unlock(&tcp_md5sig_mutex);
2970 	}
2971 	return tcp_md5sig_pool_populated;
2972 }
2973 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2974 
2975 
2976 /**
2977  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2978  *
2979  *	We use percpu structure, so if we succeed, we exit with preemption
2980  *	and BH disabled, to make sure another thread or softirq handling
2981  *	wont try to get same context.
2982  */
2983 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2984 {
2985 	local_bh_disable();
2986 
2987 	if (tcp_md5sig_pool_populated) {
2988 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2989 		smp_rmb();
2990 		return this_cpu_ptr(&tcp_md5sig_pool);
2991 	}
2992 	local_bh_enable();
2993 	return NULL;
2994 }
2995 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2996 
2997 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2998 			const struct tcphdr *th)
2999 {
3000 	struct scatterlist sg;
3001 	struct tcphdr hdr;
3002 	int err;
3003 
3004 	/* We are not allowed to change tcphdr, make a local copy */
3005 	memcpy(&hdr, th, sizeof(hdr));
3006 	hdr.check = 0;
3007 
3008 	/* options aren't included in the hash */
3009 	sg_init_one(&sg, &hdr, sizeof(hdr));
3010 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3011 	return err;
3012 }
3013 EXPORT_SYMBOL(tcp_md5_hash_header);
3014 
3015 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3016 			  const struct sk_buff *skb, unsigned int header_len)
3017 {
3018 	struct scatterlist sg;
3019 	const struct tcphdr *tp = tcp_hdr(skb);
3020 	struct hash_desc *desc = &hp->md5_desc;
3021 	unsigned int i;
3022 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3023 					   skb_headlen(skb) - header_len : 0;
3024 	const struct skb_shared_info *shi = skb_shinfo(skb);
3025 	struct sk_buff *frag_iter;
3026 
3027 	sg_init_table(&sg, 1);
3028 
3029 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3030 	if (crypto_hash_update(desc, &sg, head_data_len))
3031 		return 1;
3032 
3033 	for (i = 0; i < shi->nr_frags; ++i) {
3034 		const struct skb_frag_struct *f = &shi->frags[i];
3035 		unsigned int offset = f->page_offset;
3036 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3037 
3038 		sg_set_page(&sg, page, skb_frag_size(f),
3039 			    offset_in_page(offset));
3040 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3041 			return 1;
3042 	}
3043 
3044 	skb_walk_frags(skb, frag_iter)
3045 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3046 			return 1;
3047 
3048 	return 0;
3049 }
3050 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3051 
3052 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3053 {
3054 	struct scatterlist sg;
3055 
3056 	sg_init_one(&sg, key->key, key->keylen);
3057 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3058 }
3059 EXPORT_SYMBOL(tcp_md5_hash_key);
3060 
3061 #endif
3062 
3063 void tcp_done(struct sock *sk)
3064 {
3065 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3066 
3067 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3068 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3069 
3070 	tcp_set_state(sk, TCP_CLOSE);
3071 	tcp_clear_xmit_timers(sk);
3072 	if (req)
3073 		reqsk_fastopen_remove(sk, req, false);
3074 
3075 	sk->sk_shutdown = SHUTDOWN_MASK;
3076 
3077 	if (!sock_flag(sk, SOCK_DEAD))
3078 		sk->sk_state_change(sk);
3079 	else
3080 		inet_csk_destroy_sock(sk);
3081 }
3082 EXPORT_SYMBOL_GPL(tcp_done);
3083 
3084 extern struct tcp_congestion_ops tcp_reno;
3085 
3086 static __initdata unsigned long thash_entries;
3087 static int __init set_thash_entries(char *str)
3088 {
3089 	ssize_t ret;
3090 
3091 	if (!str)
3092 		return 0;
3093 
3094 	ret = kstrtoul(str, 0, &thash_entries);
3095 	if (ret)
3096 		return 0;
3097 
3098 	return 1;
3099 }
3100 __setup("thash_entries=", set_thash_entries);
3101 
3102 static void __init tcp_init_mem(void)
3103 {
3104 	unsigned long limit = nr_free_buffer_pages() / 16;
3105 
3106 	limit = max(limit, 128UL);
3107 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3108 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3109 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3110 }
3111 
3112 void __init tcp_init(void)
3113 {
3114 	unsigned long limit;
3115 	int max_rshare, max_wshare, cnt;
3116 	unsigned int i;
3117 
3118 	sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3119 
3120 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3121 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3122 	tcp_hashinfo.bind_bucket_cachep =
3123 		kmem_cache_create("tcp_bind_bucket",
3124 				  sizeof(struct inet_bind_bucket), 0,
3125 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3126 
3127 	/* Size and allocate the main established and bind bucket
3128 	 * hash tables.
3129 	 *
3130 	 * The methodology is similar to that of the buffer cache.
3131 	 */
3132 	tcp_hashinfo.ehash =
3133 		alloc_large_system_hash("TCP established",
3134 					sizeof(struct inet_ehash_bucket),
3135 					thash_entries,
3136 					17, /* one slot per 128 KB of memory */
3137 					0,
3138 					NULL,
3139 					&tcp_hashinfo.ehash_mask,
3140 					0,
3141 					thash_entries ? 0 : 512 * 1024);
3142 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3143 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3144 
3145 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3146 		panic("TCP: failed to alloc ehash_locks");
3147 	tcp_hashinfo.bhash =
3148 		alloc_large_system_hash("TCP bind",
3149 					sizeof(struct inet_bind_hashbucket),
3150 					tcp_hashinfo.ehash_mask + 1,
3151 					17, /* one slot per 128 KB of memory */
3152 					0,
3153 					&tcp_hashinfo.bhash_size,
3154 					NULL,
3155 					0,
3156 					64 * 1024);
3157 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3158 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3159 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3160 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3161 	}
3162 
3163 
3164 	cnt = tcp_hashinfo.ehash_mask + 1;
3165 
3166 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3167 	sysctl_tcp_max_orphans = cnt / 2;
3168 	sysctl_max_syn_backlog = max(128, cnt / 256);
3169 
3170 	tcp_init_mem();
3171 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3172 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3173 	max_wshare = min(4UL*1024*1024, limit);
3174 	max_rshare = min(6UL*1024*1024, limit);
3175 
3176 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3177 	sysctl_tcp_wmem[1] = 16*1024;
3178 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3179 
3180 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3181 	sysctl_tcp_rmem[1] = 87380;
3182 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3183 
3184 	pr_info("Hash tables configured (established %u bind %u)\n",
3185 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3186 
3187 	tcp_metrics_init();
3188 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3189 	tcp_tasklet_init();
3190 }
3191