1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 #if IS_ENABLED(CONFIG_SMC) 299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300 EXPORT_SYMBOL(tcp_have_smc); 301 #endif 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 unsigned long val; 330 331 if (READ_ONCE(tcp_memory_pressure)) 332 return; 333 val = jiffies; 334 335 if (!val) 336 val--; 337 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 339 } 340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 341 342 void tcp_leave_memory_pressure(struct sock *sk) 343 { 344 unsigned long val; 345 346 if (!READ_ONCE(tcp_memory_pressure)) 347 return; 348 val = xchg(&tcp_memory_pressure, 0); 349 if (val) 350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 351 jiffies_to_msecs(jiffies - val)); 352 } 353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 354 355 /* Convert seconds to retransmits based on initial and max timeout */ 356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 357 { 358 u8 res = 0; 359 360 if (seconds > 0) { 361 int period = timeout; 362 363 res = 1; 364 while (seconds > period && res < 255) { 365 res++; 366 timeout <<= 1; 367 if (timeout > rto_max) 368 timeout = rto_max; 369 period += timeout; 370 } 371 } 372 return res; 373 } 374 375 /* Convert retransmits to seconds based on initial and max timeout */ 376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 377 { 378 int period = 0; 379 380 if (retrans > 0) { 381 period = timeout; 382 while (--retrans) { 383 timeout <<= 1; 384 if (timeout > rto_max) 385 timeout = rto_max; 386 period += timeout; 387 } 388 } 389 return period; 390 } 391 392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 393 { 394 u32 rate = READ_ONCE(tp->rate_delivered); 395 u32 intv = READ_ONCE(tp->rate_interval_us); 396 u64 rate64 = 0; 397 398 if (rate && intv) { 399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 400 do_div(rate64, intv); 401 } 402 return rate64; 403 } 404 405 /* Address-family independent initialization for a tcp_sock. 406 * 407 * NOTE: A lot of things set to zero explicitly by call to 408 * sk_alloc() so need not be done here. 409 */ 410 void tcp_init_sock(struct sock *sk) 411 { 412 struct inet_connection_sock *icsk = inet_csk(sk); 413 struct tcp_sock *tp = tcp_sk(sk); 414 415 tp->out_of_order_queue = RB_ROOT; 416 sk->tcp_rtx_queue = RB_ROOT; 417 tcp_init_xmit_timers(sk); 418 INIT_LIST_HEAD(&tp->tsq_node); 419 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 420 421 icsk->icsk_rto = TCP_TIMEOUT_INIT; 422 icsk->icsk_rto_min = TCP_RTO_MIN; 423 icsk->icsk_delack_max = TCP_DELACK_MAX; 424 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 425 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 426 427 /* So many TCP implementations out there (incorrectly) count the 428 * initial SYN frame in their delayed-ACK and congestion control 429 * algorithms that we must have the following bandaid to talk 430 * efficiently to them. -DaveM 431 */ 432 tp->snd_cwnd = TCP_INIT_CWND; 433 434 /* There's a bubble in the pipe until at least the first ACK. */ 435 tp->app_limited = ~0U; 436 437 /* See draft-stevens-tcpca-spec-01 for discussion of the 438 * initialization of these values. 439 */ 440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 441 tp->snd_cwnd_clamp = ~0; 442 tp->mss_cache = TCP_MSS_DEFAULT; 443 444 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 445 tcp_assign_congestion_control(sk); 446 447 tp->tsoffset = 0; 448 tp->rack.reo_wnd_steps = 1; 449 450 sk->sk_write_space = sk_stream_write_space; 451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 452 453 icsk->icsk_sync_mss = tcp_sync_mss; 454 455 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 456 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 457 458 sk_sockets_allocated_inc(sk); 459 } 460 EXPORT_SYMBOL(tcp_init_sock); 461 462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 463 { 464 struct sk_buff *skb = tcp_write_queue_tail(sk); 465 466 if (tsflags && skb) { 467 struct skb_shared_info *shinfo = skb_shinfo(skb); 468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 469 470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 471 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 472 tcb->txstamp_ack = 1; 473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 475 } 476 } 477 478 static bool tcp_stream_is_readable(struct sock *sk, int target) 479 { 480 if (tcp_epollin_ready(sk, target)) 481 return true; 482 return sk_is_readable(sk); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ 492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 u16 urg_data = READ_ONCE(tp->urg_data); 549 550 if (unlikely(urg_data) && 551 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 552 !sock_flag(sk, SOCK_URGINLINE)) 553 target++; 554 555 if (tcp_stream_is_readable(sk, target)) 556 mask |= EPOLLIN | EPOLLRDNORM; 557 558 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 559 if (__sk_stream_is_writeable(sk, 1)) { 560 mask |= EPOLLOUT | EPOLLWRNORM; 561 } else { /* send SIGIO later */ 562 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 563 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 564 565 /* Race breaker. If space is freed after 566 * wspace test but before the flags are set, 567 * IO signal will be lost. Memory barrier 568 * pairs with the input side. 569 */ 570 smp_mb__after_atomic(); 571 if (__sk_stream_is_writeable(sk, 1)) 572 mask |= EPOLLOUT | EPOLLWRNORM; 573 } 574 } else 575 mask |= EPOLLOUT | EPOLLWRNORM; 576 577 if (urg_data & TCP_URG_VALID) 578 mask |= EPOLLPRI; 579 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 580 /* Active TCP fastopen socket with defer_connect 581 * Return EPOLLOUT so application can call write() 582 * in order for kernel to generate SYN+data 583 */ 584 mask |= EPOLLOUT | EPOLLWRNORM; 585 } 586 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 587 smp_rmb(); 588 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 589 mask |= EPOLLERR; 590 591 return mask; 592 } 593 EXPORT_SYMBOL(tcp_poll); 594 595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 int answ; 599 bool slow; 600 601 switch (cmd) { 602 case SIOCINQ: 603 if (sk->sk_state == TCP_LISTEN) 604 return -EINVAL; 605 606 slow = lock_sock_fast(sk); 607 answ = tcp_inq(sk); 608 unlock_sock_fast(sk, slow); 609 break; 610 case SIOCATMARK: 611 answ = READ_ONCE(tp->urg_data) && 612 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 613 break; 614 case SIOCOUTQ: 615 if (sk->sk_state == TCP_LISTEN) 616 return -EINVAL; 617 618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 619 answ = 0; 620 else 621 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 622 break; 623 case SIOCOUTQNSD: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - 631 READ_ONCE(tp->snd_nxt); 632 break; 633 default: 634 return -ENOIOCTLCMD; 635 } 636 637 return put_user(answ, (int __user *)arg); 638 } 639 EXPORT_SYMBOL(tcp_ioctl); 640 641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 642 { 643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 644 tp->pushed_seq = tp->write_seq; 645 } 646 647 static inline bool forced_push(const struct tcp_sock *tp) 648 { 649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 650 } 651 652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 656 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 __skb_header_release(skb); 660 tcp_add_write_queue_tail(sk, skb); 661 sk_wmem_queued_add(sk, skb->truesize); 662 sk_mem_charge(sk, skb->truesize); 663 if (tp->nonagle & TCP_NAGLE_PUSH) 664 tp->nonagle &= ~TCP_NAGLE_PUSH; 665 666 tcp_slow_start_after_idle_check(sk); 667 } 668 669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 670 { 671 if (flags & MSG_OOB) 672 tp->snd_up = tp->write_seq; 673 } 674 675 /* If a not yet filled skb is pushed, do not send it if 676 * we have data packets in Qdisc or NIC queues : 677 * Because TX completion will happen shortly, it gives a chance 678 * to coalesce future sendmsg() payload into this skb, without 679 * need for a timer, and with no latency trade off. 680 * As packets containing data payload have a bigger truesize 681 * than pure acks (dataless) packets, the last checks prevent 682 * autocorking if we only have an ACK in Qdisc/NIC queues, 683 * or if TX completion was delayed after we processed ACK packet. 684 */ 685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 686 int size_goal) 687 { 688 return skb->len < size_goal && 689 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 690 !tcp_rtx_queue_empty(sk) && 691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 692 } 693 694 void tcp_push(struct sock *sk, int flags, int mss_now, 695 int nonagle, int size_goal) 696 { 697 struct tcp_sock *tp = tcp_sk(sk); 698 struct sk_buff *skb; 699 700 skb = tcp_write_queue_tail(sk); 701 if (!skb) 702 return; 703 if (!(flags & MSG_MORE) || forced_push(tp)) 704 tcp_mark_push(tp, skb); 705 706 tcp_mark_urg(tp, flags); 707 708 if (tcp_should_autocork(sk, skb, size_goal)) { 709 710 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 711 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 713 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 714 } 715 /* It is possible TX completion already happened 716 * before we set TSQ_THROTTLED. 717 */ 718 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 719 return; 720 } 721 722 if (flags & MSG_MORE) 723 nonagle = TCP_NAGLE_CORK; 724 725 __tcp_push_pending_frames(sk, mss_now, nonagle); 726 } 727 728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 729 unsigned int offset, size_t len) 730 { 731 struct tcp_splice_state *tss = rd_desc->arg.data; 732 int ret; 733 734 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 735 min(rd_desc->count, len), tss->flags); 736 if (ret > 0) 737 rd_desc->count -= ret; 738 return ret; 739 } 740 741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 742 { 743 /* Store TCP splice context information in read_descriptor_t. */ 744 read_descriptor_t rd_desc = { 745 .arg.data = tss, 746 .count = tss->len, 747 }; 748 749 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 750 } 751 752 /** 753 * tcp_splice_read - splice data from TCP socket to a pipe 754 * @sock: socket to splice from 755 * @ppos: position (not valid) 756 * @pipe: pipe to splice to 757 * @len: number of bytes to splice 758 * @flags: splice modifier flags 759 * 760 * Description: 761 * Will read pages from given socket and fill them into a pipe. 762 * 763 **/ 764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 765 struct pipe_inode_info *pipe, size_t len, 766 unsigned int flags) 767 { 768 struct sock *sk = sock->sk; 769 struct tcp_splice_state tss = { 770 .pipe = pipe, 771 .len = len, 772 .flags = flags, 773 }; 774 long timeo; 775 ssize_t spliced; 776 int ret; 777 778 sock_rps_record_flow(sk); 779 /* 780 * We can't seek on a socket input 781 */ 782 if (unlikely(*ppos)) 783 return -ESPIPE; 784 785 ret = spliced = 0; 786 787 lock_sock(sk); 788 789 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 790 while (tss.len) { 791 ret = __tcp_splice_read(sk, &tss); 792 if (ret < 0) 793 break; 794 else if (!ret) { 795 if (spliced) 796 break; 797 if (sock_flag(sk, SOCK_DONE)) 798 break; 799 if (sk->sk_err) { 800 ret = sock_error(sk); 801 break; 802 } 803 if (sk->sk_shutdown & RCV_SHUTDOWN) 804 break; 805 if (sk->sk_state == TCP_CLOSE) { 806 /* 807 * This occurs when user tries to read 808 * from never connected socket. 809 */ 810 ret = -ENOTCONN; 811 break; 812 } 813 if (!timeo) { 814 ret = -EAGAIN; 815 break; 816 } 817 /* if __tcp_splice_read() got nothing while we have 818 * an skb in receive queue, we do not want to loop. 819 * This might happen with URG data. 820 */ 821 if (!skb_queue_empty(&sk->sk_receive_queue)) 822 break; 823 sk_wait_data(sk, &timeo, NULL); 824 if (signal_pending(current)) { 825 ret = sock_intr_errno(timeo); 826 break; 827 } 828 continue; 829 } 830 tss.len -= ret; 831 spliced += ret; 832 833 if (!timeo) 834 break; 835 release_sock(sk); 836 lock_sock(sk); 837 838 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 839 (sk->sk_shutdown & RCV_SHUTDOWN) || 840 signal_pending(current)) 841 break; 842 } 843 844 release_sock(sk); 845 846 if (spliced) 847 return spliced; 848 849 return ret; 850 } 851 EXPORT_SYMBOL(tcp_splice_read); 852 853 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 854 bool force_schedule) 855 { 856 struct sk_buff *skb; 857 858 if (unlikely(tcp_under_memory_pressure(sk))) 859 sk_mem_reclaim_partial(sk); 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 897 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 898 899 /* We try hard to avoid divides here */ 900 size_goal = tp->gso_segs * mss_now; 901 if (unlikely(new_size_goal < size_goal || 902 new_size_goal >= size_goal + mss_now)) { 903 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 904 sk->sk_gso_max_segs); 905 size_goal = tp->gso_segs * mss_now; 906 } 907 908 return max(size_goal, mss_now); 909 } 910 911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 912 { 913 int mss_now; 914 915 mss_now = tcp_current_mss(sk); 916 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 917 918 return mss_now; 919 } 920 921 /* In some cases, both sendpage() and sendmsg() could have added 922 * an skb to the write queue, but failed adding payload on it. 923 * We need to remove it to consume less memory, but more 924 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 925 * users. 926 */ 927 void tcp_remove_empty_skb(struct sock *sk) 928 { 929 struct sk_buff *skb = tcp_write_queue_tail(sk); 930 931 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 932 tcp_unlink_write_queue(skb, sk); 933 if (tcp_write_queue_empty(sk)) 934 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 935 tcp_wmem_free_skb(sk, skb); 936 } 937 } 938 939 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 940 struct page *page, int offset, size_t *size) 941 { 942 struct sk_buff *skb = tcp_write_queue_tail(sk); 943 struct tcp_sock *tp = tcp_sk(sk); 944 bool can_coalesce; 945 int copy, i; 946 947 if (!skb || (copy = size_goal - skb->len) <= 0 || 948 !tcp_skb_can_collapse_to(skb)) { 949 new_segment: 950 if (!sk_stream_memory_free(sk)) 951 return NULL; 952 953 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 954 tcp_rtx_and_write_queues_empty(sk)); 955 if (!skb) 956 return NULL; 957 958 #ifdef CONFIG_TLS_DEVICE 959 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 960 #endif 961 tcp_skb_entail(sk, skb); 962 copy = size_goal; 963 } 964 965 if (copy > *size) 966 copy = *size; 967 968 i = skb_shinfo(skb)->nr_frags; 969 can_coalesce = skb_can_coalesce(skb, i, page, offset); 970 if (!can_coalesce && i >= sysctl_max_skb_frags) { 971 tcp_mark_push(tp, skb); 972 goto new_segment; 973 } 974 if (!sk_wmem_schedule(sk, copy)) 975 return NULL; 976 977 if (can_coalesce) { 978 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 979 } else { 980 get_page(page); 981 skb_fill_page_desc(skb, i, page, offset, copy); 982 } 983 984 if (!(flags & MSG_NO_SHARED_FRAGS)) 985 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 986 987 skb->len += copy; 988 skb->data_len += copy; 989 skb->truesize += copy; 990 sk_wmem_queued_add(sk, copy); 991 sk_mem_charge(sk, copy); 992 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 993 TCP_SKB_CB(skb)->end_seq += copy; 994 tcp_skb_pcount_set(skb, 0); 995 996 *size = copy; 997 return skb; 998 } 999 1000 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1001 size_t size, int flags) 1002 { 1003 struct tcp_sock *tp = tcp_sk(sk); 1004 int mss_now, size_goal; 1005 int err; 1006 ssize_t copied; 1007 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1008 1009 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1010 WARN_ONCE(!sendpage_ok(page), 1011 "page must not be a Slab one and have page_count > 0")) 1012 return -EINVAL; 1013 1014 /* Wait for a connection to finish. One exception is TCP Fast Open 1015 * (passive side) where data is allowed to be sent before a connection 1016 * is fully established. 1017 */ 1018 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1019 !tcp_passive_fastopen(sk)) { 1020 err = sk_stream_wait_connect(sk, &timeo); 1021 if (err != 0) 1022 goto out_err; 1023 } 1024 1025 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1026 1027 mss_now = tcp_send_mss(sk, &size_goal, flags); 1028 copied = 0; 1029 1030 err = -EPIPE; 1031 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1032 goto out_err; 1033 1034 while (size > 0) { 1035 struct sk_buff *skb; 1036 size_t copy = size; 1037 1038 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1039 if (!skb) 1040 goto wait_for_space; 1041 1042 if (!copied) 1043 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1044 1045 copied += copy; 1046 offset += copy; 1047 size -= copy; 1048 if (!size) 1049 goto out; 1050 1051 if (skb->len < size_goal || (flags & MSG_OOB)) 1052 continue; 1053 1054 if (forced_push(tp)) { 1055 tcp_mark_push(tp, skb); 1056 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1057 } else if (skb == tcp_send_head(sk)) 1058 tcp_push_one(sk, mss_now); 1059 continue; 1060 1061 wait_for_space: 1062 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1063 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1064 TCP_NAGLE_PUSH, size_goal); 1065 1066 err = sk_stream_wait_memory(sk, &timeo); 1067 if (err != 0) 1068 goto do_error; 1069 1070 mss_now = tcp_send_mss(sk, &size_goal, flags); 1071 } 1072 1073 out: 1074 if (copied) { 1075 tcp_tx_timestamp(sk, sk->sk_tsflags); 1076 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1077 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1078 } 1079 return copied; 1080 1081 do_error: 1082 tcp_remove_empty_skb(sk); 1083 if (copied) 1084 goto out; 1085 out_err: 1086 /* make sure we wake any epoll edge trigger waiter */ 1087 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1088 sk->sk_write_space(sk); 1089 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1090 } 1091 return sk_stream_error(sk, flags, err); 1092 } 1093 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1094 1095 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1096 size_t size, int flags) 1097 { 1098 if (!(sk->sk_route_caps & NETIF_F_SG)) 1099 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1100 1101 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1102 1103 return do_tcp_sendpages(sk, page, offset, size, flags); 1104 } 1105 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1106 1107 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1108 size_t size, int flags) 1109 { 1110 int ret; 1111 1112 lock_sock(sk); 1113 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1114 release_sock(sk); 1115 1116 return ret; 1117 } 1118 EXPORT_SYMBOL(tcp_sendpage); 1119 1120 void tcp_free_fastopen_req(struct tcp_sock *tp) 1121 { 1122 if (tp->fastopen_req) { 1123 kfree(tp->fastopen_req); 1124 tp->fastopen_req = NULL; 1125 } 1126 } 1127 1128 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1129 int *copied, size_t size, 1130 struct ubuf_info *uarg) 1131 { 1132 struct tcp_sock *tp = tcp_sk(sk); 1133 struct inet_sock *inet = inet_sk(sk); 1134 struct sockaddr *uaddr = msg->msg_name; 1135 int err, flags; 1136 1137 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1138 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1139 uaddr->sa_family == AF_UNSPEC)) 1140 return -EOPNOTSUPP; 1141 if (tp->fastopen_req) 1142 return -EALREADY; /* Another Fast Open is in progress */ 1143 1144 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1145 sk->sk_allocation); 1146 if (unlikely(!tp->fastopen_req)) 1147 return -ENOBUFS; 1148 tp->fastopen_req->data = msg; 1149 tp->fastopen_req->size = size; 1150 tp->fastopen_req->uarg = uarg; 1151 1152 if (inet->defer_connect) { 1153 err = tcp_connect(sk); 1154 /* Same failure procedure as in tcp_v4/6_connect */ 1155 if (err) { 1156 tcp_set_state(sk, TCP_CLOSE); 1157 inet->inet_dport = 0; 1158 sk->sk_route_caps = 0; 1159 } 1160 } 1161 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1162 err = __inet_stream_connect(sk->sk_socket, uaddr, 1163 msg->msg_namelen, flags, 1); 1164 /* fastopen_req could already be freed in __inet_stream_connect 1165 * if the connection times out or gets rst 1166 */ 1167 if (tp->fastopen_req) { 1168 *copied = tp->fastopen_req->copied; 1169 tcp_free_fastopen_req(tp); 1170 inet->defer_connect = 0; 1171 } 1172 return err; 1173 } 1174 1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1176 { 1177 struct tcp_sock *tp = tcp_sk(sk); 1178 struct ubuf_info *uarg = NULL; 1179 struct sk_buff *skb; 1180 struct sockcm_cookie sockc; 1181 int flags, err, copied = 0; 1182 int mss_now = 0, size_goal, copied_syn = 0; 1183 int process_backlog = 0; 1184 bool zc = false; 1185 long timeo; 1186 1187 flags = msg->msg_flags; 1188 1189 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1190 skb = tcp_write_queue_tail(sk); 1191 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1192 if (!uarg) { 1193 err = -ENOBUFS; 1194 goto out_err; 1195 } 1196 1197 zc = sk->sk_route_caps & NETIF_F_SG; 1198 if (!zc) 1199 uarg->zerocopy = 0; 1200 } 1201 1202 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1203 !tp->repair) { 1204 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1205 if (err == -EINPROGRESS && copied_syn > 0) 1206 goto out; 1207 else if (err) 1208 goto out_err; 1209 } 1210 1211 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1212 1213 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1214 1215 /* Wait for a connection to finish. One exception is TCP Fast Open 1216 * (passive side) where data is allowed to be sent before a connection 1217 * is fully established. 1218 */ 1219 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1220 !tcp_passive_fastopen(sk)) { 1221 err = sk_stream_wait_connect(sk, &timeo); 1222 if (err != 0) 1223 goto do_error; 1224 } 1225 1226 if (unlikely(tp->repair)) { 1227 if (tp->repair_queue == TCP_RECV_QUEUE) { 1228 copied = tcp_send_rcvq(sk, msg, size); 1229 goto out_nopush; 1230 } 1231 1232 err = -EINVAL; 1233 if (tp->repair_queue == TCP_NO_QUEUE) 1234 goto out_err; 1235 1236 /* 'common' sending to sendq */ 1237 } 1238 1239 sockcm_init(&sockc, sk); 1240 if (msg->msg_controllen) { 1241 err = sock_cmsg_send(sk, msg, &sockc); 1242 if (unlikely(err)) { 1243 err = -EINVAL; 1244 goto out_err; 1245 } 1246 } 1247 1248 /* This should be in poll */ 1249 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1250 1251 /* Ok commence sending. */ 1252 copied = 0; 1253 1254 restart: 1255 mss_now = tcp_send_mss(sk, &size_goal, flags); 1256 1257 err = -EPIPE; 1258 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1259 goto do_error; 1260 1261 while (msg_data_left(msg)) { 1262 int copy = 0; 1263 1264 skb = tcp_write_queue_tail(sk); 1265 if (skb) 1266 copy = size_goal - skb->len; 1267 1268 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1269 bool first_skb; 1270 1271 new_segment: 1272 if (!sk_stream_memory_free(sk)) 1273 goto wait_for_space; 1274 1275 if (unlikely(process_backlog >= 16)) { 1276 process_backlog = 0; 1277 if (sk_flush_backlog(sk)) 1278 goto restart; 1279 } 1280 first_skb = tcp_rtx_and_write_queues_empty(sk); 1281 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1282 first_skb); 1283 if (!skb) 1284 goto wait_for_space; 1285 1286 process_backlog++; 1287 1288 tcp_skb_entail(sk, skb); 1289 copy = size_goal; 1290 1291 /* All packets are restored as if they have 1292 * already been sent. skb_mstamp_ns isn't set to 1293 * avoid wrong rtt estimation. 1294 */ 1295 if (tp->repair) 1296 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1297 } 1298 1299 /* Try to append data to the end of skb. */ 1300 if (copy > msg_data_left(msg)) 1301 copy = msg_data_left(msg); 1302 1303 if (!zc) { 1304 bool merge = true; 1305 int i = skb_shinfo(skb)->nr_frags; 1306 struct page_frag *pfrag = sk_page_frag(sk); 1307 1308 if (!sk_page_frag_refill(sk, pfrag)) 1309 goto wait_for_space; 1310 1311 if (!skb_can_coalesce(skb, i, pfrag->page, 1312 pfrag->offset)) { 1313 if (i >= sysctl_max_skb_frags) { 1314 tcp_mark_push(tp, skb); 1315 goto new_segment; 1316 } 1317 merge = false; 1318 } 1319 1320 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1321 1322 /* skb changing from pure zc to mixed, must charge zc */ 1323 if (unlikely(skb_zcopy_pure(skb))) { 1324 if (!sk_wmem_schedule(sk, skb->data_len)) 1325 goto wait_for_space; 1326 1327 sk_mem_charge(sk, skb->data_len); 1328 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 1329 } 1330 1331 if (!sk_wmem_schedule(sk, copy)) 1332 goto wait_for_space; 1333 1334 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1335 pfrag->page, 1336 pfrag->offset, 1337 copy); 1338 if (err) 1339 goto do_error; 1340 1341 /* Update the skb. */ 1342 if (merge) { 1343 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1344 } else { 1345 skb_fill_page_desc(skb, i, pfrag->page, 1346 pfrag->offset, copy); 1347 page_ref_inc(pfrag->page); 1348 } 1349 pfrag->offset += copy; 1350 } else { 1351 /* First append to a fragless skb builds initial 1352 * pure zerocopy skb 1353 */ 1354 if (!skb->len) 1355 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1356 1357 if (!skb_zcopy_pure(skb)) { 1358 if (!sk_wmem_schedule(sk, copy)) 1359 goto wait_for_space; 1360 } 1361 1362 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1363 if (err == -EMSGSIZE || err == -EEXIST) { 1364 tcp_mark_push(tp, skb); 1365 goto new_segment; 1366 } 1367 if (err < 0) 1368 goto do_error; 1369 copy = err; 1370 } 1371 1372 if (!copied) 1373 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1374 1375 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1376 TCP_SKB_CB(skb)->end_seq += copy; 1377 tcp_skb_pcount_set(skb, 0); 1378 1379 copied += copy; 1380 if (!msg_data_left(msg)) { 1381 if (unlikely(flags & MSG_EOR)) 1382 TCP_SKB_CB(skb)->eor = 1; 1383 goto out; 1384 } 1385 1386 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1387 continue; 1388 1389 if (forced_push(tp)) { 1390 tcp_mark_push(tp, skb); 1391 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1392 } else if (skb == tcp_send_head(sk)) 1393 tcp_push_one(sk, mss_now); 1394 continue; 1395 1396 wait_for_space: 1397 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1398 if (copied) 1399 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1400 TCP_NAGLE_PUSH, size_goal); 1401 1402 err = sk_stream_wait_memory(sk, &timeo); 1403 if (err != 0) 1404 goto do_error; 1405 1406 mss_now = tcp_send_mss(sk, &size_goal, flags); 1407 } 1408 1409 out: 1410 if (copied) { 1411 tcp_tx_timestamp(sk, sockc.tsflags); 1412 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1413 } 1414 out_nopush: 1415 net_zcopy_put(uarg); 1416 return copied + copied_syn; 1417 1418 do_error: 1419 tcp_remove_empty_skb(sk); 1420 1421 if (copied + copied_syn) 1422 goto out; 1423 out_err: 1424 net_zcopy_put_abort(uarg, true); 1425 err = sk_stream_error(sk, flags, err); 1426 /* make sure we wake any epoll edge trigger waiter */ 1427 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1428 sk->sk_write_space(sk); 1429 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1430 } 1431 return err; 1432 } 1433 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1434 1435 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1436 { 1437 int ret; 1438 1439 lock_sock(sk); 1440 ret = tcp_sendmsg_locked(sk, msg, size); 1441 release_sock(sk); 1442 1443 return ret; 1444 } 1445 EXPORT_SYMBOL(tcp_sendmsg); 1446 1447 /* 1448 * Handle reading urgent data. BSD has very simple semantics for 1449 * this, no blocking and very strange errors 8) 1450 */ 1451 1452 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1453 { 1454 struct tcp_sock *tp = tcp_sk(sk); 1455 1456 /* No URG data to read. */ 1457 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1458 tp->urg_data == TCP_URG_READ) 1459 return -EINVAL; /* Yes this is right ! */ 1460 1461 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1462 return -ENOTCONN; 1463 1464 if (tp->urg_data & TCP_URG_VALID) { 1465 int err = 0; 1466 char c = tp->urg_data; 1467 1468 if (!(flags & MSG_PEEK)) 1469 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1470 1471 /* Read urgent data. */ 1472 msg->msg_flags |= MSG_OOB; 1473 1474 if (len > 0) { 1475 if (!(flags & MSG_TRUNC)) 1476 err = memcpy_to_msg(msg, &c, 1); 1477 len = 1; 1478 } else 1479 msg->msg_flags |= MSG_TRUNC; 1480 1481 return err ? -EFAULT : len; 1482 } 1483 1484 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1485 return 0; 1486 1487 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1488 * the available implementations agree in this case: 1489 * this call should never block, independent of the 1490 * blocking state of the socket. 1491 * Mike <pall@rz.uni-karlsruhe.de> 1492 */ 1493 return -EAGAIN; 1494 } 1495 1496 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1497 { 1498 struct sk_buff *skb; 1499 int copied = 0, err = 0; 1500 1501 /* XXX -- need to support SO_PEEK_OFF */ 1502 1503 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1504 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1505 if (err) 1506 return err; 1507 copied += skb->len; 1508 } 1509 1510 skb_queue_walk(&sk->sk_write_queue, skb) { 1511 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1512 if (err) 1513 break; 1514 1515 copied += skb->len; 1516 } 1517 1518 return err ?: copied; 1519 } 1520 1521 /* Clean up the receive buffer for full frames taken by the user, 1522 * then send an ACK if necessary. COPIED is the number of bytes 1523 * tcp_recvmsg has given to the user so far, it speeds up the 1524 * calculation of whether or not we must ACK for the sake of 1525 * a window update. 1526 */ 1527 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1528 { 1529 struct tcp_sock *tp = tcp_sk(sk); 1530 bool time_to_ack = false; 1531 1532 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1533 1534 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1535 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1536 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1537 1538 if (inet_csk_ack_scheduled(sk)) { 1539 const struct inet_connection_sock *icsk = inet_csk(sk); 1540 1541 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1542 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1543 /* 1544 * If this read emptied read buffer, we send ACK, if 1545 * connection is not bidirectional, user drained 1546 * receive buffer and there was a small segment 1547 * in queue. 1548 */ 1549 (copied > 0 && 1550 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1551 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1552 !inet_csk_in_pingpong_mode(sk))) && 1553 !atomic_read(&sk->sk_rmem_alloc))) 1554 time_to_ack = true; 1555 } 1556 1557 /* We send an ACK if we can now advertise a non-zero window 1558 * which has been raised "significantly". 1559 * 1560 * Even if window raised up to infinity, do not send window open ACK 1561 * in states, where we will not receive more. It is useless. 1562 */ 1563 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1564 __u32 rcv_window_now = tcp_receive_window(tp); 1565 1566 /* Optimize, __tcp_select_window() is not cheap. */ 1567 if (2*rcv_window_now <= tp->window_clamp) { 1568 __u32 new_window = __tcp_select_window(sk); 1569 1570 /* Send ACK now, if this read freed lots of space 1571 * in our buffer. Certainly, new_window is new window. 1572 * We can advertise it now, if it is not less than current one. 1573 * "Lots" means "at least twice" here. 1574 */ 1575 if (new_window && new_window >= 2 * rcv_window_now) 1576 time_to_ack = true; 1577 } 1578 } 1579 if (time_to_ack) 1580 tcp_send_ack(sk); 1581 } 1582 1583 void __sk_defer_free_flush(struct sock *sk) 1584 { 1585 struct llist_node *head; 1586 struct sk_buff *skb, *n; 1587 1588 head = llist_del_all(&sk->defer_list); 1589 llist_for_each_entry_safe(skb, n, head, ll_node) { 1590 prefetch(n); 1591 skb_mark_not_on_list(skb); 1592 __kfree_skb(skb); 1593 } 1594 } 1595 EXPORT_SYMBOL(__sk_defer_free_flush); 1596 1597 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1598 { 1599 __skb_unlink(skb, &sk->sk_receive_queue); 1600 if (likely(skb->destructor == sock_rfree)) { 1601 sock_rfree(skb); 1602 skb->destructor = NULL; 1603 skb->sk = NULL; 1604 if (!skb_queue_empty(&sk->sk_receive_queue) || 1605 !llist_empty(&sk->defer_list)) { 1606 llist_add(&skb->ll_node, &sk->defer_list); 1607 return; 1608 } 1609 } 1610 __kfree_skb(skb); 1611 } 1612 1613 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1614 { 1615 struct sk_buff *skb; 1616 u32 offset; 1617 1618 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1619 offset = seq - TCP_SKB_CB(skb)->seq; 1620 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1621 pr_err_once("%s: found a SYN, please report !\n", __func__); 1622 offset--; 1623 } 1624 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1625 *off = offset; 1626 return skb; 1627 } 1628 /* This looks weird, but this can happen if TCP collapsing 1629 * splitted a fat GRO packet, while we released socket lock 1630 * in skb_splice_bits() 1631 */ 1632 tcp_eat_recv_skb(sk, skb); 1633 } 1634 return NULL; 1635 } 1636 1637 /* 1638 * This routine provides an alternative to tcp_recvmsg() for routines 1639 * that would like to handle copying from skbuffs directly in 'sendfile' 1640 * fashion. 1641 * Note: 1642 * - It is assumed that the socket was locked by the caller. 1643 * - The routine does not block. 1644 * - At present, there is no support for reading OOB data 1645 * or for 'peeking' the socket using this routine 1646 * (although both would be easy to implement). 1647 */ 1648 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1649 sk_read_actor_t recv_actor) 1650 { 1651 struct sk_buff *skb; 1652 struct tcp_sock *tp = tcp_sk(sk); 1653 u32 seq = tp->copied_seq; 1654 u32 offset; 1655 int copied = 0; 1656 1657 if (sk->sk_state == TCP_LISTEN) 1658 return -ENOTCONN; 1659 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1660 if (offset < skb->len) { 1661 int used; 1662 size_t len; 1663 1664 len = skb->len - offset; 1665 /* Stop reading if we hit a patch of urgent data */ 1666 if (unlikely(tp->urg_data)) { 1667 u32 urg_offset = tp->urg_seq - seq; 1668 if (urg_offset < len) 1669 len = urg_offset; 1670 if (!len) 1671 break; 1672 } 1673 used = recv_actor(desc, skb, offset, len); 1674 if (used <= 0) { 1675 if (!copied) 1676 copied = used; 1677 break; 1678 } else if (used <= len) { 1679 seq += used; 1680 copied += used; 1681 offset += used; 1682 } 1683 /* If recv_actor drops the lock (e.g. TCP splice 1684 * receive) the skb pointer might be invalid when 1685 * getting here: tcp_collapse might have deleted it 1686 * while aggregating skbs from the socket queue. 1687 */ 1688 skb = tcp_recv_skb(sk, seq - 1, &offset); 1689 if (!skb) 1690 break; 1691 /* TCP coalescing might have appended data to the skb. 1692 * Try to splice more frags 1693 */ 1694 if (offset + 1 != skb->len) 1695 continue; 1696 } 1697 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1698 tcp_eat_recv_skb(sk, skb); 1699 ++seq; 1700 break; 1701 } 1702 tcp_eat_recv_skb(sk, skb); 1703 if (!desc->count) 1704 break; 1705 WRITE_ONCE(tp->copied_seq, seq); 1706 } 1707 WRITE_ONCE(tp->copied_seq, seq); 1708 1709 tcp_rcv_space_adjust(sk); 1710 1711 /* Clean up data we have read: This will do ACK frames. */ 1712 if (copied > 0) { 1713 tcp_recv_skb(sk, seq, &offset); 1714 tcp_cleanup_rbuf(sk, copied); 1715 } 1716 return copied; 1717 } 1718 EXPORT_SYMBOL(tcp_read_sock); 1719 1720 int tcp_peek_len(struct socket *sock) 1721 { 1722 return tcp_inq(sock->sk); 1723 } 1724 EXPORT_SYMBOL(tcp_peek_len); 1725 1726 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1727 int tcp_set_rcvlowat(struct sock *sk, int val) 1728 { 1729 int cap; 1730 1731 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1732 cap = sk->sk_rcvbuf >> 1; 1733 else 1734 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1735 val = min(val, cap); 1736 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1737 1738 /* Check if we need to signal EPOLLIN right now */ 1739 tcp_data_ready(sk); 1740 1741 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1742 return 0; 1743 1744 val <<= 1; 1745 if (val > sk->sk_rcvbuf) { 1746 WRITE_ONCE(sk->sk_rcvbuf, val); 1747 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1748 } 1749 return 0; 1750 } 1751 EXPORT_SYMBOL(tcp_set_rcvlowat); 1752 1753 void tcp_update_recv_tstamps(struct sk_buff *skb, 1754 struct scm_timestamping_internal *tss) 1755 { 1756 if (skb->tstamp) 1757 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1758 else 1759 tss->ts[0] = (struct timespec64) {0}; 1760 1761 if (skb_hwtstamps(skb)->hwtstamp) 1762 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1763 else 1764 tss->ts[2] = (struct timespec64) {0}; 1765 } 1766 1767 #ifdef CONFIG_MMU 1768 static const struct vm_operations_struct tcp_vm_ops = { 1769 }; 1770 1771 int tcp_mmap(struct file *file, struct socket *sock, 1772 struct vm_area_struct *vma) 1773 { 1774 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1775 return -EPERM; 1776 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1777 1778 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1779 vma->vm_flags |= VM_MIXEDMAP; 1780 1781 vma->vm_ops = &tcp_vm_ops; 1782 return 0; 1783 } 1784 EXPORT_SYMBOL(tcp_mmap); 1785 1786 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1787 u32 *offset_frag) 1788 { 1789 skb_frag_t *frag; 1790 1791 if (unlikely(offset_skb >= skb->len)) 1792 return NULL; 1793 1794 offset_skb -= skb_headlen(skb); 1795 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1796 return NULL; 1797 1798 frag = skb_shinfo(skb)->frags; 1799 while (offset_skb) { 1800 if (skb_frag_size(frag) > offset_skb) { 1801 *offset_frag = offset_skb; 1802 return frag; 1803 } 1804 offset_skb -= skb_frag_size(frag); 1805 ++frag; 1806 } 1807 *offset_frag = 0; 1808 return frag; 1809 } 1810 1811 static bool can_map_frag(const skb_frag_t *frag) 1812 { 1813 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1814 } 1815 1816 static int find_next_mappable_frag(const skb_frag_t *frag, 1817 int remaining_in_skb) 1818 { 1819 int offset = 0; 1820 1821 if (likely(can_map_frag(frag))) 1822 return 0; 1823 1824 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1825 offset += skb_frag_size(frag); 1826 ++frag; 1827 } 1828 return offset; 1829 } 1830 1831 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1832 struct tcp_zerocopy_receive *zc, 1833 struct sk_buff *skb, u32 offset) 1834 { 1835 u32 frag_offset, partial_frag_remainder = 0; 1836 int mappable_offset; 1837 skb_frag_t *frag; 1838 1839 /* worst case: skip to next skb. try to improve on this case below */ 1840 zc->recv_skip_hint = skb->len - offset; 1841 1842 /* Find the frag containing this offset (and how far into that frag) */ 1843 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1844 if (!frag) 1845 return; 1846 1847 if (frag_offset) { 1848 struct skb_shared_info *info = skb_shinfo(skb); 1849 1850 /* We read part of the last frag, must recvmsg() rest of skb. */ 1851 if (frag == &info->frags[info->nr_frags - 1]) 1852 return; 1853 1854 /* Else, we must at least read the remainder in this frag. */ 1855 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1856 zc->recv_skip_hint -= partial_frag_remainder; 1857 ++frag; 1858 } 1859 1860 /* partial_frag_remainder: If part way through a frag, must read rest. 1861 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1862 * in partial_frag_remainder. 1863 */ 1864 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1865 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1866 } 1867 1868 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1869 int nonblock, int flags, 1870 struct scm_timestamping_internal *tss, 1871 int *cmsg_flags); 1872 static int receive_fallback_to_copy(struct sock *sk, 1873 struct tcp_zerocopy_receive *zc, int inq, 1874 struct scm_timestamping_internal *tss) 1875 { 1876 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1877 struct msghdr msg = {}; 1878 struct iovec iov; 1879 int err; 1880 1881 zc->length = 0; 1882 zc->recv_skip_hint = 0; 1883 1884 if (copy_address != zc->copybuf_address) 1885 return -EINVAL; 1886 1887 err = import_single_range(READ, (void __user *)copy_address, 1888 inq, &iov, &msg.msg_iter); 1889 if (err) 1890 return err; 1891 1892 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1893 tss, &zc->msg_flags); 1894 if (err < 0) 1895 return err; 1896 1897 zc->copybuf_len = err; 1898 if (likely(zc->copybuf_len)) { 1899 struct sk_buff *skb; 1900 u32 offset; 1901 1902 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1903 if (skb) 1904 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1905 } 1906 return 0; 1907 } 1908 1909 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1910 struct sk_buff *skb, u32 copylen, 1911 u32 *offset, u32 *seq) 1912 { 1913 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1914 struct msghdr msg = {}; 1915 struct iovec iov; 1916 int err; 1917 1918 if (copy_address != zc->copybuf_address) 1919 return -EINVAL; 1920 1921 err = import_single_range(READ, (void __user *)copy_address, 1922 copylen, &iov, &msg.msg_iter); 1923 if (err) 1924 return err; 1925 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1926 if (err) 1927 return err; 1928 zc->recv_skip_hint -= copylen; 1929 *offset += copylen; 1930 *seq += copylen; 1931 return (__s32)copylen; 1932 } 1933 1934 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1935 struct sock *sk, 1936 struct sk_buff *skb, 1937 u32 *seq, 1938 s32 copybuf_len, 1939 struct scm_timestamping_internal *tss) 1940 { 1941 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1942 1943 if (!copylen) 1944 return 0; 1945 /* skb is null if inq < PAGE_SIZE. */ 1946 if (skb) { 1947 offset = *seq - TCP_SKB_CB(skb)->seq; 1948 } else { 1949 skb = tcp_recv_skb(sk, *seq, &offset); 1950 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1951 tcp_update_recv_tstamps(skb, tss); 1952 zc->msg_flags |= TCP_CMSG_TS; 1953 } 1954 } 1955 1956 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1957 seq); 1958 return zc->copybuf_len < 0 ? 0 : copylen; 1959 } 1960 1961 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1962 struct page **pending_pages, 1963 unsigned long pages_remaining, 1964 unsigned long *address, 1965 u32 *length, 1966 u32 *seq, 1967 struct tcp_zerocopy_receive *zc, 1968 u32 total_bytes_to_map, 1969 int err) 1970 { 1971 /* At least one page did not map. Try zapping if we skipped earlier. */ 1972 if (err == -EBUSY && 1973 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1974 u32 maybe_zap_len; 1975 1976 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1977 *length + /* Mapped or pending */ 1978 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1979 zap_page_range(vma, *address, maybe_zap_len); 1980 err = 0; 1981 } 1982 1983 if (!err) { 1984 unsigned long leftover_pages = pages_remaining; 1985 int bytes_mapped; 1986 1987 /* We called zap_page_range, try to reinsert. */ 1988 err = vm_insert_pages(vma, *address, 1989 pending_pages, 1990 &pages_remaining); 1991 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1992 *seq += bytes_mapped; 1993 *address += bytes_mapped; 1994 } 1995 if (err) { 1996 /* Either we were unable to zap, OR we zapped, retried an 1997 * insert, and still had an issue. Either ways, pages_remaining 1998 * is the number of pages we were unable to map, and we unroll 1999 * some state we speculatively touched before. 2000 */ 2001 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2002 2003 *length -= bytes_not_mapped; 2004 zc->recv_skip_hint += bytes_not_mapped; 2005 } 2006 return err; 2007 } 2008 2009 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2010 struct page **pages, 2011 unsigned int pages_to_map, 2012 unsigned long *address, 2013 u32 *length, 2014 u32 *seq, 2015 struct tcp_zerocopy_receive *zc, 2016 u32 total_bytes_to_map) 2017 { 2018 unsigned long pages_remaining = pages_to_map; 2019 unsigned int pages_mapped; 2020 unsigned int bytes_mapped; 2021 int err; 2022 2023 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2024 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2025 bytes_mapped = PAGE_SIZE * pages_mapped; 2026 /* Even if vm_insert_pages fails, it may have partially succeeded in 2027 * mapping (some but not all of the pages). 2028 */ 2029 *seq += bytes_mapped; 2030 *address += bytes_mapped; 2031 2032 if (likely(!err)) 2033 return 0; 2034 2035 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2036 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2037 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2038 err); 2039 } 2040 2041 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2042 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2043 struct tcp_zerocopy_receive *zc, 2044 struct scm_timestamping_internal *tss) 2045 { 2046 unsigned long msg_control_addr; 2047 struct msghdr cmsg_dummy; 2048 2049 msg_control_addr = (unsigned long)zc->msg_control; 2050 cmsg_dummy.msg_control = (void *)msg_control_addr; 2051 cmsg_dummy.msg_controllen = 2052 (__kernel_size_t)zc->msg_controllen; 2053 cmsg_dummy.msg_flags = in_compat_syscall() 2054 ? MSG_CMSG_COMPAT : 0; 2055 cmsg_dummy.msg_control_is_user = true; 2056 zc->msg_flags = 0; 2057 if (zc->msg_control == msg_control_addr && 2058 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2059 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2060 zc->msg_control = (__u64) 2061 ((uintptr_t)cmsg_dummy.msg_control); 2062 zc->msg_controllen = 2063 (__u64)cmsg_dummy.msg_controllen; 2064 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2065 } 2066 } 2067 2068 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2069 static int tcp_zerocopy_receive(struct sock *sk, 2070 struct tcp_zerocopy_receive *zc, 2071 struct scm_timestamping_internal *tss) 2072 { 2073 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2074 unsigned long address = (unsigned long)zc->address; 2075 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2076 s32 copybuf_len = zc->copybuf_len; 2077 struct tcp_sock *tp = tcp_sk(sk); 2078 const skb_frag_t *frags = NULL; 2079 unsigned int pages_to_map = 0; 2080 struct vm_area_struct *vma; 2081 struct sk_buff *skb = NULL; 2082 u32 seq = tp->copied_seq; 2083 u32 total_bytes_to_map; 2084 int inq = tcp_inq(sk); 2085 int ret; 2086 2087 zc->copybuf_len = 0; 2088 zc->msg_flags = 0; 2089 2090 if (address & (PAGE_SIZE - 1) || address != zc->address) 2091 return -EINVAL; 2092 2093 if (sk->sk_state == TCP_LISTEN) 2094 return -ENOTCONN; 2095 2096 sock_rps_record_flow(sk); 2097 2098 if (inq && inq <= copybuf_len) 2099 return receive_fallback_to_copy(sk, zc, inq, tss); 2100 2101 if (inq < PAGE_SIZE) { 2102 zc->length = 0; 2103 zc->recv_skip_hint = inq; 2104 if (!inq && sock_flag(sk, SOCK_DONE)) 2105 return -EIO; 2106 return 0; 2107 } 2108 2109 mmap_read_lock(current->mm); 2110 2111 vma = vma_lookup(current->mm, address); 2112 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2113 mmap_read_unlock(current->mm); 2114 return -EINVAL; 2115 } 2116 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2117 avail_len = min_t(u32, vma_len, inq); 2118 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2119 if (total_bytes_to_map) { 2120 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2121 zap_page_range(vma, address, total_bytes_to_map); 2122 zc->length = total_bytes_to_map; 2123 zc->recv_skip_hint = 0; 2124 } else { 2125 zc->length = avail_len; 2126 zc->recv_skip_hint = avail_len; 2127 } 2128 ret = 0; 2129 while (length + PAGE_SIZE <= zc->length) { 2130 int mappable_offset; 2131 struct page *page; 2132 2133 if (zc->recv_skip_hint < PAGE_SIZE) { 2134 u32 offset_frag; 2135 2136 if (skb) { 2137 if (zc->recv_skip_hint > 0) 2138 break; 2139 skb = skb->next; 2140 offset = seq - TCP_SKB_CB(skb)->seq; 2141 } else { 2142 skb = tcp_recv_skb(sk, seq, &offset); 2143 } 2144 2145 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2146 tcp_update_recv_tstamps(skb, tss); 2147 zc->msg_flags |= TCP_CMSG_TS; 2148 } 2149 zc->recv_skip_hint = skb->len - offset; 2150 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2151 if (!frags || offset_frag) 2152 break; 2153 } 2154 2155 mappable_offset = find_next_mappable_frag(frags, 2156 zc->recv_skip_hint); 2157 if (mappable_offset) { 2158 zc->recv_skip_hint = mappable_offset; 2159 break; 2160 } 2161 page = skb_frag_page(frags); 2162 prefetchw(page); 2163 pages[pages_to_map++] = page; 2164 length += PAGE_SIZE; 2165 zc->recv_skip_hint -= PAGE_SIZE; 2166 frags++; 2167 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2168 zc->recv_skip_hint < PAGE_SIZE) { 2169 /* Either full batch, or we're about to go to next skb 2170 * (and we cannot unroll failed ops across skbs). 2171 */ 2172 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2173 pages_to_map, 2174 &address, &length, 2175 &seq, zc, 2176 total_bytes_to_map); 2177 if (ret) 2178 goto out; 2179 pages_to_map = 0; 2180 } 2181 } 2182 if (pages_to_map) { 2183 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2184 &address, &length, &seq, 2185 zc, total_bytes_to_map); 2186 } 2187 out: 2188 mmap_read_unlock(current->mm); 2189 /* Try to copy straggler data. */ 2190 if (!ret) 2191 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2192 2193 if (length + copylen) { 2194 WRITE_ONCE(tp->copied_seq, seq); 2195 tcp_rcv_space_adjust(sk); 2196 2197 /* Clean up data we have read: This will do ACK frames. */ 2198 tcp_recv_skb(sk, seq, &offset); 2199 tcp_cleanup_rbuf(sk, length + copylen); 2200 ret = 0; 2201 if (length == zc->length) 2202 zc->recv_skip_hint = 0; 2203 } else { 2204 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2205 ret = -EIO; 2206 } 2207 zc->length = length; 2208 return ret; 2209 } 2210 #endif 2211 2212 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2213 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2214 struct scm_timestamping_internal *tss) 2215 { 2216 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2217 bool has_timestamping = false; 2218 2219 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2220 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2221 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2222 if (new_tstamp) { 2223 struct __kernel_timespec kts = { 2224 .tv_sec = tss->ts[0].tv_sec, 2225 .tv_nsec = tss->ts[0].tv_nsec, 2226 }; 2227 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2228 sizeof(kts), &kts); 2229 } else { 2230 struct __kernel_old_timespec ts_old = { 2231 .tv_sec = tss->ts[0].tv_sec, 2232 .tv_nsec = tss->ts[0].tv_nsec, 2233 }; 2234 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2235 sizeof(ts_old), &ts_old); 2236 } 2237 } else { 2238 if (new_tstamp) { 2239 struct __kernel_sock_timeval stv = { 2240 .tv_sec = tss->ts[0].tv_sec, 2241 .tv_usec = tss->ts[0].tv_nsec / 1000, 2242 }; 2243 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2244 sizeof(stv), &stv); 2245 } else { 2246 struct __kernel_old_timeval tv = { 2247 .tv_sec = tss->ts[0].tv_sec, 2248 .tv_usec = tss->ts[0].tv_nsec / 1000, 2249 }; 2250 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2251 sizeof(tv), &tv); 2252 } 2253 } 2254 } 2255 2256 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2257 has_timestamping = true; 2258 else 2259 tss->ts[0] = (struct timespec64) {0}; 2260 } 2261 2262 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2263 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2264 has_timestamping = true; 2265 else 2266 tss->ts[2] = (struct timespec64) {0}; 2267 } 2268 2269 if (has_timestamping) { 2270 tss->ts[1] = (struct timespec64) {0}; 2271 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2272 put_cmsg_scm_timestamping64(msg, tss); 2273 else 2274 put_cmsg_scm_timestamping(msg, tss); 2275 } 2276 } 2277 2278 static int tcp_inq_hint(struct sock *sk) 2279 { 2280 const struct tcp_sock *tp = tcp_sk(sk); 2281 u32 copied_seq = READ_ONCE(tp->copied_seq); 2282 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2283 int inq; 2284 2285 inq = rcv_nxt - copied_seq; 2286 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2287 lock_sock(sk); 2288 inq = tp->rcv_nxt - tp->copied_seq; 2289 release_sock(sk); 2290 } 2291 /* After receiving a FIN, tell the user-space to continue reading 2292 * by returning a non-zero inq. 2293 */ 2294 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2295 inq = 1; 2296 return inq; 2297 } 2298 2299 /* 2300 * This routine copies from a sock struct into the user buffer. 2301 * 2302 * Technical note: in 2.3 we work on _locked_ socket, so that 2303 * tricks with *seq access order and skb->users are not required. 2304 * Probably, code can be easily improved even more. 2305 */ 2306 2307 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2308 int nonblock, int flags, 2309 struct scm_timestamping_internal *tss, 2310 int *cmsg_flags) 2311 { 2312 struct tcp_sock *tp = tcp_sk(sk); 2313 int copied = 0; 2314 u32 peek_seq; 2315 u32 *seq; 2316 unsigned long used; 2317 int err; 2318 int target; /* Read at least this many bytes */ 2319 long timeo; 2320 struct sk_buff *skb, *last; 2321 u32 urg_hole = 0; 2322 2323 err = -ENOTCONN; 2324 if (sk->sk_state == TCP_LISTEN) 2325 goto out; 2326 2327 if (tp->recvmsg_inq) 2328 *cmsg_flags = TCP_CMSG_INQ; 2329 timeo = sock_rcvtimeo(sk, nonblock); 2330 2331 /* Urgent data needs to be handled specially. */ 2332 if (flags & MSG_OOB) 2333 goto recv_urg; 2334 2335 if (unlikely(tp->repair)) { 2336 err = -EPERM; 2337 if (!(flags & MSG_PEEK)) 2338 goto out; 2339 2340 if (tp->repair_queue == TCP_SEND_QUEUE) 2341 goto recv_sndq; 2342 2343 err = -EINVAL; 2344 if (tp->repair_queue == TCP_NO_QUEUE) 2345 goto out; 2346 2347 /* 'common' recv queue MSG_PEEK-ing */ 2348 } 2349 2350 seq = &tp->copied_seq; 2351 if (flags & MSG_PEEK) { 2352 peek_seq = tp->copied_seq; 2353 seq = &peek_seq; 2354 } 2355 2356 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2357 2358 do { 2359 u32 offset; 2360 2361 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2362 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2363 if (copied) 2364 break; 2365 if (signal_pending(current)) { 2366 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2367 break; 2368 } 2369 } 2370 2371 /* Next get a buffer. */ 2372 2373 last = skb_peek_tail(&sk->sk_receive_queue); 2374 skb_queue_walk(&sk->sk_receive_queue, skb) { 2375 last = skb; 2376 /* Now that we have two receive queues this 2377 * shouldn't happen. 2378 */ 2379 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2380 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2381 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2382 flags)) 2383 break; 2384 2385 offset = *seq - TCP_SKB_CB(skb)->seq; 2386 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2387 pr_err_once("%s: found a SYN, please report !\n", __func__); 2388 offset--; 2389 } 2390 if (offset < skb->len) 2391 goto found_ok_skb; 2392 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2393 goto found_fin_ok; 2394 WARN(!(flags & MSG_PEEK), 2395 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2396 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2397 } 2398 2399 /* Well, if we have backlog, try to process it now yet. */ 2400 2401 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2402 break; 2403 2404 if (copied) { 2405 if (!timeo || 2406 sk->sk_err || 2407 sk->sk_state == TCP_CLOSE || 2408 (sk->sk_shutdown & RCV_SHUTDOWN) || 2409 signal_pending(current)) 2410 break; 2411 } else { 2412 if (sock_flag(sk, SOCK_DONE)) 2413 break; 2414 2415 if (sk->sk_err) { 2416 copied = sock_error(sk); 2417 break; 2418 } 2419 2420 if (sk->sk_shutdown & RCV_SHUTDOWN) 2421 break; 2422 2423 if (sk->sk_state == TCP_CLOSE) { 2424 /* This occurs when user tries to read 2425 * from never connected socket. 2426 */ 2427 copied = -ENOTCONN; 2428 break; 2429 } 2430 2431 if (!timeo) { 2432 copied = -EAGAIN; 2433 break; 2434 } 2435 2436 if (signal_pending(current)) { 2437 copied = sock_intr_errno(timeo); 2438 break; 2439 } 2440 } 2441 2442 if (copied >= target) { 2443 /* Do not sleep, just process backlog. */ 2444 __sk_flush_backlog(sk); 2445 } else { 2446 tcp_cleanup_rbuf(sk, copied); 2447 sk_defer_free_flush(sk); 2448 sk_wait_data(sk, &timeo, last); 2449 } 2450 2451 if ((flags & MSG_PEEK) && 2452 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2453 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2454 current->comm, 2455 task_pid_nr(current)); 2456 peek_seq = tp->copied_seq; 2457 } 2458 continue; 2459 2460 found_ok_skb: 2461 /* Ok so how much can we use? */ 2462 used = skb->len - offset; 2463 if (len < used) 2464 used = len; 2465 2466 /* Do we have urgent data here? */ 2467 if (unlikely(tp->urg_data)) { 2468 u32 urg_offset = tp->urg_seq - *seq; 2469 if (urg_offset < used) { 2470 if (!urg_offset) { 2471 if (!sock_flag(sk, SOCK_URGINLINE)) { 2472 WRITE_ONCE(*seq, *seq + 1); 2473 urg_hole++; 2474 offset++; 2475 used--; 2476 if (!used) 2477 goto skip_copy; 2478 } 2479 } else 2480 used = urg_offset; 2481 } 2482 } 2483 2484 if (!(flags & MSG_TRUNC)) { 2485 err = skb_copy_datagram_msg(skb, offset, msg, used); 2486 if (err) { 2487 /* Exception. Bailout! */ 2488 if (!copied) 2489 copied = -EFAULT; 2490 break; 2491 } 2492 } 2493 2494 WRITE_ONCE(*seq, *seq + used); 2495 copied += used; 2496 len -= used; 2497 2498 tcp_rcv_space_adjust(sk); 2499 2500 skip_copy: 2501 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2502 WRITE_ONCE(tp->urg_data, 0); 2503 tcp_fast_path_check(sk); 2504 } 2505 2506 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2507 tcp_update_recv_tstamps(skb, tss); 2508 *cmsg_flags |= TCP_CMSG_TS; 2509 } 2510 2511 if (used + offset < skb->len) 2512 continue; 2513 2514 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2515 goto found_fin_ok; 2516 if (!(flags & MSG_PEEK)) 2517 tcp_eat_recv_skb(sk, skb); 2518 continue; 2519 2520 found_fin_ok: 2521 /* Process the FIN. */ 2522 WRITE_ONCE(*seq, *seq + 1); 2523 if (!(flags & MSG_PEEK)) 2524 tcp_eat_recv_skb(sk, skb); 2525 break; 2526 } while (len > 0); 2527 2528 /* According to UNIX98, msg_name/msg_namelen are ignored 2529 * on connected socket. I was just happy when found this 8) --ANK 2530 */ 2531 2532 /* Clean up data we have read: This will do ACK frames. */ 2533 tcp_cleanup_rbuf(sk, copied); 2534 return copied; 2535 2536 out: 2537 return err; 2538 2539 recv_urg: 2540 err = tcp_recv_urg(sk, msg, len, flags); 2541 goto out; 2542 2543 recv_sndq: 2544 err = tcp_peek_sndq(sk, msg, len); 2545 goto out; 2546 } 2547 2548 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2549 int flags, int *addr_len) 2550 { 2551 int cmsg_flags = 0, ret, inq; 2552 struct scm_timestamping_internal tss; 2553 2554 if (unlikely(flags & MSG_ERRQUEUE)) 2555 return inet_recv_error(sk, msg, len, addr_len); 2556 2557 if (sk_can_busy_loop(sk) && 2558 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2559 sk->sk_state == TCP_ESTABLISHED) 2560 sk_busy_loop(sk, nonblock); 2561 2562 lock_sock(sk); 2563 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2564 &cmsg_flags); 2565 release_sock(sk); 2566 sk_defer_free_flush(sk); 2567 2568 if (cmsg_flags && ret >= 0) { 2569 if (cmsg_flags & TCP_CMSG_TS) 2570 tcp_recv_timestamp(msg, sk, &tss); 2571 if (cmsg_flags & TCP_CMSG_INQ) { 2572 inq = tcp_inq_hint(sk); 2573 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2574 } 2575 } 2576 return ret; 2577 } 2578 EXPORT_SYMBOL(tcp_recvmsg); 2579 2580 void tcp_set_state(struct sock *sk, int state) 2581 { 2582 int oldstate = sk->sk_state; 2583 2584 /* We defined a new enum for TCP states that are exported in BPF 2585 * so as not force the internal TCP states to be frozen. The 2586 * following checks will detect if an internal state value ever 2587 * differs from the BPF value. If this ever happens, then we will 2588 * need to remap the internal value to the BPF value before calling 2589 * tcp_call_bpf_2arg. 2590 */ 2591 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2592 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2593 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2594 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2595 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2596 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2597 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2598 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2599 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2600 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2601 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2602 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2603 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2604 2605 /* bpf uapi header bpf.h defines an anonymous enum with values 2606 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2607 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2608 * But clang built vmlinux does not have this enum in DWARF 2609 * since clang removes the above code before generating IR/debuginfo. 2610 * Let us explicitly emit the type debuginfo to ensure the 2611 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2612 * regardless of which compiler is used. 2613 */ 2614 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2615 2616 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2617 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2618 2619 switch (state) { 2620 case TCP_ESTABLISHED: 2621 if (oldstate != TCP_ESTABLISHED) 2622 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2623 break; 2624 2625 case TCP_CLOSE: 2626 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2627 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2628 2629 sk->sk_prot->unhash(sk); 2630 if (inet_csk(sk)->icsk_bind_hash && 2631 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2632 inet_put_port(sk); 2633 fallthrough; 2634 default: 2635 if (oldstate == TCP_ESTABLISHED) 2636 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2637 } 2638 2639 /* Change state AFTER socket is unhashed to avoid closed 2640 * socket sitting in hash tables. 2641 */ 2642 inet_sk_state_store(sk, state); 2643 } 2644 EXPORT_SYMBOL_GPL(tcp_set_state); 2645 2646 /* 2647 * State processing on a close. This implements the state shift for 2648 * sending our FIN frame. Note that we only send a FIN for some 2649 * states. A shutdown() may have already sent the FIN, or we may be 2650 * closed. 2651 */ 2652 2653 static const unsigned char new_state[16] = { 2654 /* current state: new state: action: */ 2655 [0 /* (Invalid) */] = TCP_CLOSE, 2656 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2657 [TCP_SYN_SENT] = TCP_CLOSE, 2658 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2659 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2660 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2661 [TCP_TIME_WAIT] = TCP_CLOSE, 2662 [TCP_CLOSE] = TCP_CLOSE, 2663 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2664 [TCP_LAST_ACK] = TCP_LAST_ACK, 2665 [TCP_LISTEN] = TCP_CLOSE, 2666 [TCP_CLOSING] = TCP_CLOSING, 2667 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2668 }; 2669 2670 static int tcp_close_state(struct sock *sk) 2671 { 2672 int next = (int)new_state[sk->sk_state]; 2673 int ns = next & TCP_STATE_MASK; 2674 2675 tcp_set_state(sk, ns); 2676 2677 return next & TCP_ACTION_FIN; 2678 } 2679 2680 /* 2681 * Shutdown the sending side of a connection. Much like close except 2682 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2683 */ 2684 2685 void tcp_shutdown(struct sock *sk, int how) 2686 { 2687 /* We need to grab some memory, and put together a FIN, 2688 * and then put it into the queue to be sent. 2689 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2690 */ 2691 if (!(how & SEND_SHUTDOWN)) 2692 return; 2693 2694 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2695 if ((1 << sk->sk_state) & 2696 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2697 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2698 /* Clear out any half completed packets. FIN if needed. */ 2699 if (tcp_close_state(sk)) 2700 tcp_send_fin(sk); 2701 } 2702 } 2703 EXPORT_SYMBOL(tcp_shutdown); 2704 2705 int tcp_orphan_count_sum(void) 2706 { 2707 int i, total = 0; 2708 2709 for_each_possible_cpu(i) 2710 total += per_cpu(tcp_orphan_count, i); 2711 2712 return max(total, 0); 2713 } 2714 2715 static int tcp_orphan_cache; 2716 static struct timer_list tcp_orphan_timer; 2717 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2718 2719 static void tcp_orphan_update(struct timer_list *unused) 2720 { 2721 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2722 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2723 } 2724 2725 static bool tcp_too_many_orphans(int shift) 2726 { 2727 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2728 } 2729 2730 bool tcp_check_oom(struct sock *sk, int shift) 2731 { 2732 bool too_many_orphans, out_of_socket_memory; 2733 2734 too_many_orphans = tcp_too_many_orphans(shift); 2735 out_of_socket_memory = tcp_out_of_memory(sk); 2736 2737 if (too_many_orphans) 2738 net_info_ratelimited("too many orphaned sockets\n"); 2739 if (out_of_socket_memory) 2740 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2741 return too_many_orphans || out_of_socket_memory; 2742 } 2743 2744 void __tcp_close(struct sock *sk, long timeout) 2745 { 2746 struct sk_buff *skb; 2747 int data_was_unread = 0; 2748 int state; 2749 2750 sk->sk_shutdown = SHUTDOWN_MASK; 2751 2752 if (sk->sk_state == TCP_LISTEN) { 2753 tcp_set_state(sk, TCP_CLOSE); 2754 2755 /* Special case. */ 2756 inet_csk_listen_stop(sk); 2757 2758 goto adjudge_to_death; 2759 } 2760 2761 /* We need to flush the recv. buffs. We do this only on the 2762 * descriptor close, not protocol-sourced closes, because the 2763 * reader process may not have drained the data yet! 2764 */ 2765 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2766 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2767 2768 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2769 len--; 2770 data_was_unread += len; 2771 __kfree_skb(skb); 2772 } 2773 2774 sk_mem_reclaim(sk); 2775 2776 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2777 if (sk->sk_state == TCP_CLOSE) 2778 goto adjudge_to_death; 2779 2780 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2781 * data was lost. To witness the awful effects of the old behavior of 2782 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2783 * GET in an FTP client, suspend the process, wait for the client to 2784 * advertise a zero window, then kill -9 the FTP client, wheee... 2785 * Note: timeout is always zero in such a case. 2786 */ 2787 if (unlikely(tcp_sk(sk)->repair)) { 2788 sk->sk_prot->disconnect(sk, 0); 2789 } else if (data_was_unread) { 2790 /* Unread data was tossed, zap the connection. */ 2791 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2792 tcp_set_state(sk, TCP_CLOSE); 2793 tcp_send_active_reset(sk, sk->sk_allocation); 2794 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2795 /* Check zero linger _after_ checking for unread data. */ 2796 sk->sk_prot->disconnect(sk, 0); 2797 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2798 } else if (tcp_close_state(sk)) { 2799 /* We FIN if the application ate all the data before 2800 * zapping the connection. 2801 */ 2802 2803 /* RED-PEN. Formally speaking, we have broken TCP state 2804 * machine. State transitions: 2805 * 2806 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2807 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2808 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2809 * 2810 * are legal only when FIN has been sent (i.e. in window), 2811 * rather than queued out of window. Purists blame. 2812 * 2813 * F.e. "RFC state" is ESTABLISHED, 2814 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2815 * 2816 * The visible declinations are that sometimes 2817 * we enter time-wait state, when it is not required really 2818 * (harmless), do not send active resets, when they are 2819 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2820 * they look as CLOSING or LAST_ACK for Linux) 2821 * Probably, I missed some more holelets. 2822 * --ANK 2823 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2824 * in a single packet! (May consider it later but will 2825 * probably need API support or TCP_CORK SYN-ACK until 2826 * data is written and socket is closed.) 2827 */ 2828 tcp_send_fin(sk); 2829 } 2830 2831 sk_stream_wait_close(sk, timeout); 2832 2833 adjudge_to_death: 2834 state = sk->sk_state; 2835 sock_hold(sk); 2836 sock_orphan(sk); 2837 2838 local_bh_disable(); 2839 bh_lock_sock(sk); 2840 /* remove backlog if any, without releasing ownership. */ 2841 __release_sock(sk); 2842 2843 this_cpu_inc(tcp_orphan_count); 2844 2845 /* Have we already been destroyed by a softirq or backlog? */ 2846 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2847 goto out; 2848 2849 /* This is a (useful) BSD violating of the RFC. There is a 2850 * problem with TCP as specified in that the other end could 2851 * keep a socket open forever with no application left this end. 2852 * We use a 1 minute timeout (about the same as BSD) then kill 2853 * our end. If they send after that then tough - BUT: long enough 2854 * that we won't make the old 4*rto = almost no time - whoops 2855 * reset mistake. 2856 * 2857 * Nope, it was not mistake. It is really desired behaviour 2858 * f.e. on http servers, when such sockets are useless, but 2859 * consume significant resources. Let's do it with special 2860 * linger2 option. --ANK 2861 */ 2862 2863 if (sk->sk_state == TCP_FIN_WAIT2) { 2864 struct tcp_sock *tp = tcp_sk(sk); 2865 if (tp->linger2 < 0) { 2866 tcp_set_state(sk, TCP_CLOSE); 2867 tcp_send_active_reset(sk, GFP_ATOMIC); 2868 __NET_INC_STATS(sock_net(sk), 2869 LINUX_MIB_TCPABORTONLINGER); 2870 } else { 2871 const int tmo = tcp_fin_time(sk); 2872 2873 if (tmo > TCP_TIMEWAIT_LEN) { 2874 inet_csk_reset_keepalive_timer(sk, 2875 tmo - TCP_TIMEWAIT_LEN); 2876 } else { 2877 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2878 goto out; 2879 } 2880 } 2881 } 2882 if (sk->sk_state != TCP_CLOSE) { 2883 sk_mem_reclaim(sk); 2884 if (tcp_check_oom(sk, 0)) { 2885 tcp_set_state(sk, TCP_CLOSE); 2886 tcp_send_active_reset(sk, GFP_ATOMIC); 2887 __NET_INC_STATS(sock_net(sk), 2888 LINUX_MIB_TCPABORTONMEMORY); 2889 } else if (!check_net(sock_net(sk))) { 2890 /* Not possible to send reset; just close */ 2891 tcp_set_state(sk, TCP_CLOSE); 2892 } 2893 } 2894 2895 if (sk->sk_state == TCP_CLOSE) { 2896 struct request_sock *req; 2897 2898 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2899 lockdep_sock_is_held(sk)); 2900 /* We could get here with a non-NULL req if the socket is 2901 * aborted (e.g., closed with unread data) before 3WHS 2902 * finishes. 2903 */ 2904 if (req) 2905 reqsk_fastopen_remove(sk, req, false); 2906 inet_csk_destroy_sock(sk); 2907 } 2908 /* Otherwise, socket is reprieved until protocol close. */ 2909 2910 out: 2911 bh_unlock_sock(sk); 2912 local_bh_enable(); 2913 } 2914 2915 void tcp_close(struct sock *sk, long timeout) 2916 { 2917 lock_sock(sk); 2918 __tcp_close(sk, timeout); 2919 release_sock(sk); 2920 sock_put(sk); 2921 } 2922 EXPORT_SYMBOL(tcp_close); 2923 2924 /* These states need RST on ABORT according to RFC793 */ 2925 2926 static inline bool tcp_need_reset(int state) 2927 { 2928 return (1 << state) & 2929 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2930 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2931 } 2932 2933 static void tcp_rtx_queue_purge(struct sock *sk) 2934 { 2935 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2936 2937 tcp_sk(sk)->highest_sack = NULL; 2938 while (p) { 2939 struct sk_buff *skb = rb_to_skb(p); 2940 2941 p = rb_next(p); 2942 /* Since we are deleting whole queue, no need to 2943 * list_del(&skb->tcp_tsorted_anchor) 2944 */ 2945 tcp_rtx_queue_unlink(skb, sk); 2946 tcp_wmem_free_skb(sk, skb); 2947 } 2948 } 2949 2950 void tcp_write_queue_purge(struct sock *sk) 2951 { 2952 struct sk_buff *skb; 2953 2954 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2955 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2956 tcp_skb_tsorted_anchor_cleanup(skb); 2957 tcp_wmem_free_skb(sk, skb); 2958 } 2959 tcp_rtx_queue_purge(sk); 2960 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2961 sk_mem_reclaim(sk); 2962 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2963 tcp_sk(sk)->packets_out = 0; 2964 inet_csk(sk)->icsk_backoff = 0; 2965 } 2966 2967 int tcp_disconnect(struct sock *sk, int flags) 2968 { 2969 struct inet_sock *inet = inet_sk(sk); 2970 struct inet_connection_sock *icsk = inet_csk(sk); 2971 struct tcp_sock *tp = tcp_sk(sk); 2972 int old_state = sk->sk_state; 2973 u32 seq; 2974 2975 if (old_state != TCP_CLOSE) 2976 tcp_set_state(sk, TCP_CLOSE); 2977 2978 /* ABORT function of RFC793 */ 2979 if (old_state == TCP_LISTEN) { 2980 inet_csk_listen_stop(sk); 2981 } else if (unlikely(tp->repair)) { 2982 sk->sk_err = ECONNABORTED; 2983 } else if (tcp_need_reset(old_state) || 2984 (tp->snd_nxt != tp->write_seq && 2985 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2986 /* The last check adjusts for discrepancy of Linux wrt. RFC 2987 * states 2988 */ 2989 tcp_send_active_reset(sk, gfp_any()); 2990 sk->sk_err = ECONNRESET; 2991 } else if (old_state == TCP_SYN_SENT) 2992 sk->sk_err = ECONNRESET; 2993 2994 tcp_clear_xmit_timers(sk); 2995 __skb_queue_purge(&sk->sk_receive_queue); 2996 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2997 WRITE_ONCE(tp->urg_data, 0); 2998 tcp_write_queue_purge(sk); 2999 tcp_fastopen_active_disable_ofo_check(sk); 3000 skb_rbtree_purge(&tp->out_of_order_queue); 3001 3002 inet->inet_dport = 0; 3003 3004 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3005 inet_reset_saddr(sk); 3006 3007 sk->sk_shutdown = 0; 3008 sock_reset_flag(sk, SOCK_DONE); 3009 tp->srtt_us = 0; 3010 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3011 tp->rcv_rtt_last_tsecr = 0; 3012 3013 seq = tp->write_seq + tp->max_window + 2; 3014 if (!seq) 3015 seq = 1; 3016 WRITE_ONCE(tp->write_seq, seq); 3017 3018 icsk->icsk_backoff = 0; 3019 icsk->icsk_probes_out = 0; 3020 icsk->icsk_probes_tstamp = 0; 3021 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3022 icsk->icsk_rto_min = TCP_RTO_MIN; 3023 icsk->icsk_delack_max = TCP_DELACK_MAX; 3024 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3025 tp->snd_cwnd = TCP_INIT_CWND; 3026 tp->snd_cwnd_cnt = 0; 3027 tp->window_clamp = 0; 3028 tp->delivered = 0; 3029 tp->delivered_ce = 0; 3030 if (icsk->icsk_ca_ops->release) 3031 icsk->icsk_ca_ops->release(sk); 3032 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3033 icsk->icsk_ca_initialized = 0; 3034 tcp_set_ca_state(sk, TCP_CA_Open); 3035 tp->is_sack_reneg = 0; 3036 tcp_clear_retrans(tp); 3037 tp->total_retrans = 0; 3038 inet_csk_delack_init(sk); 3039 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3040 * issue in __tcp_select_window() 3041 */ 3042 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3043 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3044 __sk_dst_reset(sk); 3045 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3046 tcp_saved_syn_free(tp); 3047 tp->compressed_ack = 0; 3048 tp->segs_in = 0; 3049 tp->segs_out = 0; 3050 tp->bytes_sent = 0; 3051 tp->bytes_acked = 0; 3052 tp->bytes_received = 0; 3053 tp->bytes_retrans = 0; 3054 tp->data_segs_in = 0; 3055 tp->data_segs_out = 0; 3056 tp->duplicate_sack[0].start_seq = 0; 3057 tp->duplicate_sack[0].end_seq = 0; 3058 tp->dsack_dups = 0; 3059 tp->reord_seen = 0; 3060 tp->retrans_out = 0; 3061 tp->sacked_out = 0; 3062 tp->tlp_high_seq = 0; 3063 tp->last_oow_ack_time = 0; 3064 /* There's a bubble in the pipe until at least the first ACK. */ 3065 tp->app_limited = ~0U; 3066 tp->rack.mstamp = 0; 3067 tp->rack.advanced = 0; 3068 tp->rack.reo_wnd_steps = 1; 3069 tp->rack.last_delivered = 0; 3070 tp->rack.reo_wnd_persist = 0; 3071 tp->rack.dsack_seen = 0; 3072 tp->syn_data_acked = 0; 3073 tp->rx_opt.saw_tstamp = 0; 3074 tp->rx_opt.dsack = 0; 3075 tp->rx_opt.num_sacks = 0; 3076 tp->rcv_ooopack = 0; 3077 3078 3079 /* Clean up fastopen related fields */ 3080 tcp_free_fastopen_req(tp); 3081 inet->defer_connect = 0; 3082 tp->fastopen_client_fail = 0; 3083 3084 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3085 3086 if (sk->sk_frag.page) { 3087 put_page(sk->sk_frag.page); 3088 sk->sk_frag.page = NULL; 3089 sk->sk_frag.offset = 0; 3090 } 3091 sk_defer_free_flush(sk); 3092 sk_error_report(sk); 3093 return 0; 3094 } 3095 EXPORT_SYMBOL(tcp_disconnect); 3096 3097 static inline bool tcp_can_repair_sock(const struct sock *sk) 3098 { 3099 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3100 (sk->sk_state != TCP_LISTEN); 3101 } 3102 3103 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3104 { 3105 struct tcp_repair_window opt; 3106 3107 if (!tp->repair) 3108 return -EPERM; 3109 3110 if (len != sizeof(opt)) 3111 return -EINVAL; 3112 3113 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3114 return -EFAULT; 3115 3116 if (opt.max_window < opt.snd_wnd) 3117 return -EINVAL; 3118 3119 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3120 return -EINVAL; 3121 3122 if (after(opt.rcv_wup, tp->rcv_nxt)) 3123 return -EINVAL; 3124 3125 tp->snd_wl1 = opt.snd_wl1; 3126 tp->snd_wnd = opt.snd_wnd; 3127 tp->max_window = opt.max_window; 3128 3129 tp->rcv_wnd = opt.rcv_wnd; 3130 tp->rcv_wup = opt.rcv_wup; 3131 3132 return 0; 3133 } 3134 3135 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3136 unsigned int len) 3137 { 3138 struct tcp_sock *tp = tcp_sk(sk); 3139 struct tcp_repair_opt opt; 3140 size_t offset = 0; 3141 3142 while (len >= sizeof(opt)) { 3143 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3144 return -EFAULT; 3145 3146 offset += sizeof(opt); 3147 len -= sizeof(opt); 3148 3149 switch (opt.opt_code) { 3150 case TCPOPT_MSS: 3151 tp->rx_opt.mss_clamp = opt.opt_val; 3152 tcp_mtup_init(sk); 3153 break; 3154 case TCPOPT_WINDOW: 3155 { 3156 u16 snd_wscale = opt.opt_val & 0xFFFF; 3157 u16 rcv_wscale = opt.opt_val >> 16; 3158 3159 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3160 return -EFBIG; 3161 3162 tp->rx_opt.snd_wscale = snd_wscale; 3163 tp->rx_opt.rcv_wscale = rcv_wscale; 3164 tp->rx_opt.wscale_ok = 1; 3165 } 3166 break; 3167 case TCPOPT_SACK_PERM: 3168 if (opt.opt_val != 0) 3169 return -EINVAL; 3170 3171 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3172 break; 3173 case TCPOPT_TIMESTAMP: 3174 if (opt.opt_val != 0) 3175 return -EINVAL; 3176 3177 tp->rx_opt.tstamp_ok = 1; 3178 break; 3179 } 3180 } 3181 3182 return 0; 3183 } 3184 3185 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3186 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3187 3188 static void tcp_enable_tx_delay(void) 3189 { 3190 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3191 static int __tcp_tx_delay_enabled = 0; 3192 3193 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3194 static_branch_enable(&tcp_tx_delay_enabled); 3195 pr_info("TCP_TX_DELAY enabled\n"); 3196 } 3197 } 3198 } 3199 3200 /* When set indicates to always queue non-full frames. Later the user clears 3201 * this option and we transmit any pending partial frames in the queue. This is 3202 * meant to be used alongside sendfile() to get properly filled frames when the 3203 * user (for example) must write out headers with a write() call first and then 3204 * use sendfile to send out the data parts. 3205 * 3206 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3207 * TCP_NODELAY. 3208 */ 3209 void __tcp_sock_set_cork(struct sock *sk, bool on) 3210 { 3211 struct tcp_sock *tp = tcp_sk(sk); 3212 3213 if (on) { 3214 tp->nonagle |= TCP_NAGLE_CORK; 3215 } else { 3216 tp->nonagle &= ~TCP_NAGLE_CORK; 3217 if (tp->nonagle & TCP_NAGLE_OFF) 3218 tp->nonagle |= TCP_NAGLE_PUSH; 3219 tcp_push_pending_frames(sk); 3220 } 3221 } 3222 3223 void tcp_sock_set_cork(struct sock *sk, bool on) 3224 { 3225 lock_sock(sk); 3226 __tcp_sock_set_cork(sk, on); 3227 release_sock(sk); 3228 } 3229 EXPORT_SYMBOL(tcp_sock_set_cork); 3230 3231 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3232 * remembered, but it is not activated until cork is cleared. 3233 * 3234 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3235 * even TCP_CORK for currently queued segments. 3236 */ 3237 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3238 { 3239 if (on) { 3240 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3241 tcp_push_pending_frames(sk); 3242 } else { 3243 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3244 } 3245 } 3246 3247 void tcp_sock_set_nodelay(struct sock *sk) 3248 { 3249 lock_sock(sk); 3250 __tcp_sock_set_nodelay(sk, true); 3251 release_sock(sk); 3252 } 3253 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3254 3255 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3256 { 3257 if (!val) { 3258 inet_csk_enter_pingpong_mode(sk); 3259 return; 3260 } 3261 3262 inet_csk_exit_pingpong_mode(sk); 3263 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3264 inet_csk_ack_scheduled(sk)) { 3265 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3266 tcp_cleanup_rbuf(sk, 1); 3267 if (!(val & 1)) 3268 inet_csk_enter_pingpong_mode(sk); 3269 } 3270 } 3271 3272 void tcp_sock_set_quickack(struct sock *sk, int val) 3273 { 3274 lock_sock(sk); 3275 __tcp_sock_set_quickack(sk, val); 3276 release_sock(sk); 3277 } 3278 EXPORT_SYMBOL(tcp_sock_set_quickack); 3279 3280 int tcp_sock_set_syncnt(struct sock *sk, int val) 3281 { 3282 if (val < 1 || val > MAX_TCP_SYNCNT) 3283 return -EINVAL; 3284 3285 lock_sock(sk); 3286 inet_csk(sk)->icsk_syn_retries = val; 3287 release_sock(sk); 3288 return 0; 3289 } 3290 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3291 3292 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3293 { 3294 lock_sock(sk); 3295 inet_csk(sk)->icsk_user_timeout = val; 3296 release_sock(sk); 3297 } 3298 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3299 3300 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3301 { 3302 struct tcp_sock *tp = tcp_sk(sk); 3303 3304 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3305 return -EINVAL; 3306 3307 tp->keepalive_time = val * HZ; 3308 if (sock_flag(sk, SOCK_KEEPOPEN) && 3309 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3310 u32 elapsed = keepalive_time_elapsed(tp); 3311 3312 if (tp->keepalive_time > elapsed) 3313 elapsed = tp->keepalive_time - elapsed; 3314 else 3315 elapsed = 0; 3316 inet_csk_reset_keepalive_timer(sk, elapsed); 3317 } 3318 3319 return 0; 3320 } 3321 3322 int tcp_sock_set_keepidle(struct sock *sk, int val) 3323 { 3324 int err; 3325 3326 lock_sock(sk); 3327 err = tcp_sock_set_keepidle_locked(sk, val); 3328 release_sock(sk); 3329 return err; 3330 } 3331 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3332 3333 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3334 { 3335 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3336 return -EINVAL; 3337 3338 lock_sock(sk); 3339 tcp_sk(sk)->keepalive_intvl = val * HZ; 3340 release_sock(sk); 3341 return 0; 3342 } 3343 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3344 3345 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3346 { 3347 if (val < 1 || val > MAX_TCP_KEEPCNT) 3348 return -EINVAL; 3349 3350 lock_sock(sk); 3351 tcp_sk(sk)->keepalive_probes = val; 3352 release_sock(sk); 3353 return 0; 3354 } 3355 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3356 3357 int tcp_set_window_clamp(struct sock *sk, int val) 3358 { 3359 struct tcp_sock *tp = tcp_sk(sk); 3360 3361 if (!val) { 3362 if (sk->sk_state != TCP_CLOSE) 3363 return -EINVAL; 3364 tp->window_clamp = 0; 3365 } else { 3366 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3367 SOCK_MIN_RCVBUF / 2 : val; 3368 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3369 } 3370 return 0; 3371 } 3372 3373 /* 3374 * Socket option code for TCP. 3375 */ 3376 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3377 sockptr_t optval, unsigned int optlen) 3378 { 3379 struct tcp_sock *tp = tcp_sk(sk); 3380 struct inet_connection_sock *icsk = inet_csk(sk); 3381 struct net *net = sock_net(sk); 3382 int val; 3383 int err = 0; 3384 3385 /* These are data/string values, all the others are ints */ 3386 switch (optname) { 3387 case TCP_CONGESTION: { 3388 char name[TCP_CA_NAME_MAX]; 3389 3390 if (optlen < 1) 3391 return -EINVAL; 3392 3393 val = strncpy_from_sockptr(name, optval, 3394 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3395 if (val < 0) 3396 return -EFAULT; 3397 name[val] = 0; 3398 3399 lock_sock(sk); 3400 err = tcp_set_congestion_control(sk, name, true, 3401 ns_capable(sock_net(sk)->user_ns, 3402 CAP_NET_ADMIN)); 3403 release_sock(sk); 3404 return err; 3405 } 3406 case TCP_ULP: { 3407 char name[TCP_ULP_NAME_MAX]; 3408 3409 if (optlen < 1) 3410 return -EINVAL; 3411 3412 val = strncpy_from_sockptr(name, optval, 3413 min_t(long, TCP_ULP_NAME_MAX - 1, 3414 optlen)); 3415 if (val < 0) 3416 return -EFAULT; 3417 name[val] = 0; 3418 3419 lock_sock(sk); 3420 err = tcp_set_ulp(sk, name); 3421 release_sock(sk); 3422 return err; 3423 } 3424 case TCP_FASTOPEN_KEY: { 3425 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3426 __u8 *backup_key = NULL; 3427 3428 /* Allow a backup key as well to facilitate key rotation 3429 * First key is the active one. 3430 */ 3431 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3432 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3433 return -EINVAL; 3434 3435 if (copy_from_sockptr(key, optval, optlen)) 3436 return -EFAULT; 3437 3438 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3439 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3440 3441 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3442 } 3443 default: 3444 /* fallthru */ 3445 break; 3446 } 3447 3448 if (optlen < sizeof(int)) 3449 return -EINVAL; 3450 3451 if (copy_from_sockptr(&val, optval, sizeof(val))) 3452 return -EFAULT; 3453 3454 lock_sock(sk); 3455 3456 switch (optname) { 3457 case TCP_MAXSEG: 3458 /* Values greater than interface MTU won't take effect. However 3459 * at the point when this call is done we typically don't yet 3460 * know which interface is going to be used 3461 */ 3462 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3463 err = -EINVAL; 3464 break; 3465 } 3466 tp->rx_opt.user_mss = val; 3467 break; 3468 3469 case TCP_NODELAY: 3470 __tcp_sock_set_nodelay(sk, val); 3471 break; 3472 3473 case TCP_THIN_LINEAR_TIMEOUTS: 3474 if (val < 0 || val > 1) 3475 err = -EINVAL; 3476 else 3477 tp->thin_lto = val; 3478 break; 3479 3480 case TCP_THIN_DUPACK: 3481 if (val < 0 || val > 1) 3482 err = -EINVAL; 3483 break; 3484 3485 case TCP_REPAIR: 3486 if (!tcp_can_repair_sock(sk)) 3487 err = -EPERM; 3488 else if (val == TCP_REPAIR_ON) { 3489 tp->repair = 1; 3490 sk->sk_reuse = SK_FORCE_REUSE; 3491 tp->repair_queue = TCP_NO_QUEUE; 3492 } else if (val == TCP_REPAIR_OFF) { 3493 tp->repair = 0; 3494 sk->sk_reuse = SK_NO_REUSE; 3495 tcp_send_window_probe(sk); 3496 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3497 tp->repair = 0; 3498 sk->sk_reuse = SK_NO_REUSE; 3499 } else 3500 err = -EINVAL; 3501 3502 break; 3503 3504 case TCP_REPAIR_QUEUE: 3505 if (!tp->repair) 3506 err = -EPERM; 3507 else if ((unsigned int)val < TCP_QUEUES_NR) 3508 tp->repair_queue = val; 3509 else 3510 err = -EINVAL; 3511 break; 3512 3513 case TCP_QUEUE_SEQ: 3514 if (sk->sk_state != TCP_CLOSE) { 3515 err = -EPERM; 3516 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3517 if (!tcp_rtx_queue_empty(sk)) 3518 err = -EPERM; 3519 else 3520 WRITE_ONCE(tp->write_seq, val); 3521 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3522 if (tp->rcv_nxt != tp->copied_seq) { 3523 err = -EPERM; 3524 } else { 3525 WRITE_ONCE(tp->rcv_nxt, val); 3526 WRITE_ONCE(tp->copied_seq, val); 3527 } 3528 } else { 3529 err = -EINVAL; 3530 } 3531 break; 3532 3533 case TCP_REPAIR_OPTIONS: 3534 if (!tp->repair) 3535 err = -EINVAL; 3536 else if (sk->sk_state == TCP_ESTABLISHED) 3537 err = tcp_repair_options_est(sk, optval, optlen); 3538 else 3539 err = -EPERM; 3540 break; 3541 3542 case TCP_CORK: 3543 __tcp_sock_set_cork(sk, val); 3544 break; 3545 3546 case TCP_KEEPIDLE: 3547 err = tcp_sock_set_keepidle_locked(sk, val); 3548 break; 3549 case TCP_KEEPINTVL: 3550 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3551 err = -EINVAL; 3552 else 3553 tp->keepalive_intvl = val * HZ; 3554 break; 3555 case TCP_KEEPCNT: 3556 if (val < 1 || val > MAX_TCP_KEEPCNT) 3557 err = -EINVAL; 3558 else 3559 tp->keepalive_probes = val; 3560 break; 3561 case TCP_SYNCNT: 3562 if (val < 1 || val > MAX_TCP_SYNCNT) 3563 err = -EINVAL; 3564 else 3565 icsk->icsk_syn_retries = val; 3566 break; 3567 3568 case TCP_SAVE_SYN: 3569 /* 0: disable, 1: enable, 2: start from ether_header */ 3570 if (val < 0 || val > 2) 3571 err = -EINVAL; 3572 else 3573 tp->save_syn = val; 3574 break; 3575 3576 case TCP_LINGER2: 3577 if (val < 0) 3578 tp->linger2 = -1; 3579 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3580 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3581 else 3582 tp->linger2 = val * HZ; 3583 break; 3584 3585 case TCP_DEFER_ACCEPT: 3586 /* Translate value in seconds to number of retransmits */ 3587 icsk->icsk_accept_queue.rskq_defer_accept = 3588 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3589 TCP_RTO_MAX / HZ); 3590 break; 3591 3592 case TCP_WINDOW_CLAMP: 3593 err = tcp_set_window_clamp(sk, val); 3594 break; 3595 3596 case TCP_QUICKACK: 3597 __tcp_sock_set_quickack(sk, val); 3598 break; 3599 3600 #ifdef CONFIG_TCP_MD5SIG 3601 case TCP_MD5SIG: 3602 case TCP_MD5SIG_EXT: 3603 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3604 break; 3605 #endif 3606 case TCP_USER_TIMEOUT: 3607 /* Cap the max time in ms TCP will retry or probe the window 3608 * before giving up and aborting (ETIMEDOUT) a connection. 3609 */ 3610 if (val < 0) 3611 err = -EINVAL; 3612 else 3613 icsk->icsk_user_timeout = val; 3614 break; 3615 3616 case TCP_FASTOPEN: 3617 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3618 TCPF_LISTEN))) { 3619 tcp_fastopen_init_key_once(net); 3620 3621 fastopen_queue_tune(sk, val); 3622 } else { 3623 err = -EINVAL; 3624 } 3625 break; 3626 case TCP_FASTOPEN_CONNECT: 3627 if (val > 1 || val < 0) { 3628 err = -EINVAL; 3629 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3630 if (sk->sk_state == TCP_CLOSE) 3631 tp->fastopen_connect = val; 3632 else 3633 err = -EINVAL; 3634 } else { 3635 err = -EOPNOTSUPP; 3636 } 3637 break; 3638 case TCP_FASTOPEN_NO_COOKIE: 3639 if (val > 1 || val < 0) 3640 err = -EINVAL; 3641 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3642 err = -EINVAL; 3643 else 3644 tp->fastopen_no_cookie = val; 3645 break; 3646 case TCP_TIMESTAMP: 3647 if (!tp->repair) 3648 err = -EPERM; 3649 else 3650 tp->tsoffset = val - tcp_time_stamp_raw(); 3651 break; 3652 case TCP_REPAIR_WINDOW: 3653 err = tcp_repair_set_window(tp, optval, optlen); 3654 break; 3655 case TCP_NOTSENT_LOWAT: 3656 tp->notsent_lowat = val; 3657 sk->sk_write_space(sk); 3658 break; 3659 case TCP_INQ: 3660 if (val > 1 || val < 0) 3661 err = -EINVAL; 3662 else 3663 tp->recvmsg_inq = val; 3664 break; 3665 case TCP_TX_DELAY: 3666 if (val) 3667 tcp_enable_tx_delay(); 3668 tp->tcp_tx_delay = val; 3669 break; 3670 default: 3671 err = -ENOPROTOOPT; 3672 break; 3673 } 3674 3675 release_sock(sk); 3676 return err; 3677 } 3678 3679 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3680 unsigned int optlen) 3681 { 3682 const struct inet_connection_sock *icsk = inet_csk(sk); 3683 3684 if (level != SOL_TCP) 3685 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3686 optval, optlen); 3687 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3688 } 3689 EXPORT_SYMBOL(tcp_setsockopt); 3690 3691 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3692 struct tcp_info *info) 3693 { 3694 u64 stats[__TCP_CHRONO_MAX], total = 0; 3695 enum tcp_chrono i; 3696 3697 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3698 stats[i] = tp->chrono_stat[i - 1]; 3699 if (i == tp->chrono_type) 3700 stats[i] += tcp_jiffies32 - tp->chrono_start; 3701 stats[i] *= USEC_PER_SEC / HZ; 3702 total += stats[i]; 3703 } 3704 3705 info->tcpi_busy_time = total; 3706 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3707 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3708 } 3709 3710 /* Return information about state of tcp endpoint in API format. */ 3711 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3712 { 3713 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3714 const struct inet_connection_sock *icsk = inet_csk(sk); 3715 unsigned long rate; 3716 u32 now; 3717 u64 rate64; 3718 bool slow; 3719 3720 memset(info, 0, sizeof(*info)); 3721 if (sk->sk_type != SOCK_STREAM) 3722 return; 3723 3724 info->tcpi_state = inet_sk_state_load(sk); 3725 3726 /* Report meaningful fields for all TCP states, including listeners */ 3727 rate = READ_ONCE(sk->sk_pacing_rate); 3728 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3729 info->tcpi_pacing_rate = rate64; 3730 3731 rate = READ_ONCE(sk->sk_max_pacing_rate); 3732 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3733 info->tcpi_max_pacing_rate = rate64; 3734 3735 info->tcpi_reordering = tp->reordering; 3736 info->tcpi_snd_cwnd = tp->snd_cwnd; 3737 3738 if (info->tcpi_state == TCP_LISTEN) { 3739 /* listeners aliased fields : 3740 * tcpi_unacked -> Number of children ready for accept() 3741 * tcpi_sacked -> max backlog 3742 */ 3743 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3744 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3745 return; 3746 } 3747 3748 slow = lock_sock_fast(sk); 3749 3750 info->tcpi_ca_state = icsk->icsk_ca_state; 3751 info->tcpi_retransmits = icsk->icsk_retransmits; 3752 info->tcpi_probes = icsk->icsk_probes_out; 3753 info->tcpi_backoff = icsk->icsk_backoff; 3754 3755 if (tp->rx_opt.tstamp_ok) 3756 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3757 if (tcp_is_sack(tp)) 3758 info->tcpi_options |= TCPI_OPT_SACK; 3759 if (tp->rx_opt.wscale_ok) { 3760 info->tcpi_options |= TCPI_OPT_WSCALE; 3761 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3762 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3763 } 3764 3765 if (tp->ecn_flags & TCP_ECN_OK) 3766 info->tcpi_options |= TCPI_OPT_ECN; 3767 if (tp->ecn_flags & TCP_ECN_SEEN) 3768 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3769 if (tp->syn_data_acked) 3770 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3771 3772 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3773 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3774 info->tcpi_snd_mss = tp->mss_cache; 3775 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3776 3777 info->tcpi_unacked = tp->packets_out; 3778 info->tcpi_sacked = tp->sacked_out; 3779 3780 info->tcpi_lost = tp->lost_out; 3781 info->tcpi_retrans = tp->retrans_out; 3782 3783 now = tcp_jiffies32; 3784 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3785 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3786 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3787 3788 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3789 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3790 info->tcpi_rtt = tp->srtt_us >> 3; 3791 info->tcpi_rttvar = tp->mdev_us >> 2; 3792 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3793 info->tcpi_advmss = tp->advmss; 3794 3795 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3796 info->tcpi_rcv_space = tp->rcvq_space.space; 3797 3798 info->tcpi_total_retrans = tp->total_retrans; 3799 3800 info->tcpi_bytes_acked = tp->bytes_acked; 3801 info->tcpi_bytes_received = tp->bytes_received; 3802 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3803 tcp_get_info_chrono_stats(tp, info); 3804 3805 info->tcpi_segs_out = tp->segs_out; 3806 3807 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3808 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3809 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3810 3811 info->tcpi_min_rtt = tcp_min_rtt(tp); 3812 info->tcpi_data_segs_out = tp->data_segs_out; 3813 3814 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3815 rate64 = tcp_compute_delivery_rate(tp); 3816 if (rate64) 3817 info->tcpi_delivery_rate = rate64; 3818 info->tcpi_delivered = tp->delivered; 3819 info->tcpi_delivered_ce = tp->delivered_ce; 3820 info->tcpi_bytes_sent = tp->bytes_sent; 3821 info->tcpi_bytes_retrans = tp->bytes_retrans; 3822 info->tcpi_dsack_dups = tp->dsack_dups; 3823 info->tcpi_reord_seen = tp->reord_seen; 3824 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3825 info->tcpi_snd_wnd = tp->snd_wnd; 3826 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3827 unlock_sock_fast(sk, slow); 3828 } 3829 EXPORT_SYMBOL_GPL(tcp_get_info); 3830 3831 static size_t tcp_opt_stats_get_size(void) 3832 { 3833 return 3834 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3835 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3836 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3837 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3838 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3839 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3840 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3841 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3842 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3843 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3844 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3845 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3846 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3847 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3848 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3849 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3850 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3851 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3852 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3853 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3854 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3855 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3856 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3857 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3858 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3859 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3860 0; 3861 } 3862 3863 /* Returns TTL or hop limit of an incoming packet from skb. */ 3864 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3865 { 3866 if (skb->protocol == htons(ETH_P_IP)) 3867 return ip_hdr(skb)->ttl; 3868 else if (skb->protocol == htons(ETH_P_IPV6)) 3869 return ipv6_hdr(skb)->hop_limit; 3870 else 3871 return 0; 3872 } 3873 3874 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3875 const struct sk_buff *orig_skb, 3876 const struct sk_buff *ack_skb) 3877 { 3878 const struct tcp_sock *tp = tcp_sk(sk); 3879 struct sk_buff *stats; 3880 struct tcp_info info; 3881 unsigned long rate; 3882 u64 rate64; 3883 3884 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3885 if (!stats) 3886 return NULL; 3887 3888 tcp_get_info_chrono_stats(tp, &info); 3889 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3890 info.tcpi_busy_time, TCP_NLA_PAD); 3891 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3892 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3893 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3894 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3895 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3896 tp->data_segs_out, TCP_NLA_PAD); 3897 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3898 tp->total_retrans, TCP_NLA_PAD); 3899 3900 rate = READ_ONCE(sk->sk_pacing_rate); 3901 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3902 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3903 3904 rate64 = tcp_compute_delivery_rate(tp); 3905 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3906 3907 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3908 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3909 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3910 3911 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3912 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3913 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3914 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3915 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3916 3917 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3918 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3919 3920 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3921 TCP_NLA_PAD); 3922 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3923 TCP_NLA_PAD); 3924 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3925 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3926 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3927 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3928 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3929 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3930 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3931 TCP_NLA_PAD); 3932 if (ack_skb) 3933 nla_put_u8(stats, TCP_NLA_TTL, 3934 tcp_skb_ttl_or_hop_limit(ack_skb)); 3935 3936 return stats; 3937 } 3938 3939 static int do_tcp_getsockopt(struct sock *sk, int level, 3940 int optname, char __user *optval, int __user *optlen) 3941 { 3942 struct inet_connection_sock *icsk = inet_csk(sk); 3943 struct tcp_sock *tp = tcp_sk(sk); 3944 struct net *net = sock_net(sk); 3945 int val, len; 3946 3947 if (get_user(len, optlen)) 3948 return -EFAULT; 3949 3950 len = min_t(unsigned int, len, sizeof(int)); 3951 3952 if (len < 0) 3953 return -EINVAL; 3954 3955 switch (optname) { 3956 case TCP_MAXSEG: 3957 val = tp->mss_cache; 3958 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3959 val = tp->rx_opt.user_mss; 3960 if (tp->repair) 3961 val = tp->rx_opt.mss_clamp; 3962 break; 3963 case TCP_NODELAY: 3964 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3965 break; 3966 case TCP_CORK: 3967 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3968 break; 3969 case TCP_KEEPIDLE: 3970 val = keepalive_time_when(tp) / HZ; 3971 break; 3972 case TCP_KEEPINTVL: 3973 val = keepalive_intvl_when(tp) / HZ; 3974 break; 3975 case TCP_KEEPCNT: 3976 val = keepalive_probes(tp); 3977 break; 3978 case TCP_SYNCNT: 3979 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3980 break; 3981 case TCP_LINGER2: 3982 val = tp->linger2; 3983 if (val >= 0) 3984 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3985 break; 3986 case TCP_DEFER_ACCEPT: 3987 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3988 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3989 break; 3990 case TCP_WINDOW_CLAMP: 3991 val = tp->window_clamp; 3992 break; 3993 case TCP_INFO: { 3994 struct tcp_info info; 3995 3996 if (get_user(len, optlen)) 3997 return -EFAULT; 3998 3999 tcp_get_info(sk, &info); 4000 4001 len = min_t(unsigned int, len, sizeof(info)); 4002 if (put_user(len, optlen)) 4003 return -EFAULT; 4004 if (copy_to_user(optval, &info, len)) 4005 return -EFAULT; 4006 return 0; 4007 } 4008 case TCP_CC_INFO: { 4009 const struct tcp_congestion_ops *ca_ops; 4010 union tcp_cc_info info; 4011 size_t sz = 0; 4012 int attr; 4013 4014 if (get_user(len, optlen)) 4015 return -EFAULT; 4016 4017 ca_ops = icsk->icsk_ca_ops; 4018 if (ca_ops && ca_ops->get_info) 4019 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4020 4021 len = min_t(unsigned int, len, sz); 4022 if (put_user(len, optlen)) 4023 return -EFAULT; 4024 if (copy_to_user(optval, &info, len)) 4025 return -EFAULT; 4026 return 0; 4027 } 4028 case TCP_QUICKACK: 4029 val = !inet_csk_in_pingpong_mode(sk); 4030 break; 4031 4032 case TCP_CONGESTION: 4033 if (get_user(len, optlen)) 4034 return -EFAULT; 4035 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4036 if (put_user(len, optlen)) 4037 return -EFAULT; 4038 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4039 return -EFAULT; 4040 return 0; 4041 4042 case TCP_ULP: 4043 if (get_user(len, optlen)) 4044 return -EFAULT; 4045 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4046 if (!icsk->icsk_ulp_ops) { 4047 if (put_user(0, optlen)) 4048 return -EFAULT; 4049 return 0; 4050 } 4051 if (put_user(len, optlen)) 4052 return -EFAULT; 4053 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4054 return -EFAULT; 4055 return 0; 4056 4057 case TCP_FASTOPEN_KEY: { 4058 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4059 unsigned int key_len; 4060 4061 if (get_user(len, optlen)) 4062 return -EFAULT; 4063 4064 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4065 TCP_FASTOPEN_KEY_LENGTH; 4066 len = min_t(unsigned int, len, key_len); 4067 if (put_user(len, optlen)) 4068 return -EFAULT; 4069 if (copy_to_user(optval, key, len)) 4070 return -EFAULT; 4071 return 0; 4072 } 4073 case TCP_THIN_LINEAR_TIMEOUTS: 4074 val = tp->thin_lto; 4075 break; 4076 4077 case TCP_THIN_DUPACK: 4078 val = 0; 4079 break; 4080 4081 case TCP_REPAIR: 4082 val = tp->repair; 4083 break; 4084 4085 case TCP_REPAIR_QUEUE: 4086 if (tp->repair) 4087 val = tp->repair_queue; 4088 else 4089 return -EINVAL; 4090 break; 4091 4092 case TCP_REPAIR_WINDOW: { 4093 struct tcp_repair_window opt; 4094 4095 if (get_user(len, optlen)) 4096 return -EFAULT; 4097 4098 if (len != sizeof(opt)) 4099 return -EINVAL; 4100 4101 if (!tp->repair) 4102 return -EPERM; 4103 4104 opt.snd_wl1 = tp->snd_wl1; 4105 opt.snd_wnd = tp->snd_wnd; 4106 opt.max_window = tp->max_window; 4107 opt.rcv_wnd = tp->rcv_wnd; 4108 opt.rcv_wup = tp->rcv_wup; 4109 4110 if (copy_to_user(optval, &opt, len)) 4111 return -EFAULT; 4112 return 0; 4113 } 4114 case TCP_QUEUE_SEQ: 4115 if (tp->repair_queue == TCP_SEND_QUEUE) 4116 val = tp->write_seq; 4117 else if (tp->repair_queue == TCP_RECV_QUEUE) 4118 val = tp->rcv_nxt; 4119 else 4120 return -EINVAL; 4121 break; 4122 4123 case TCP_USER_TIMEOUT: 4124 val = icsk->icsk_user_timeout; 4125 break; 4126 4127 case TCP_FASTOPEN: 4128 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4129 break; 4130 4131 case TCP_FASTOPEN_CONNECT: 4132 val = tp->fastopen_connect; 4133 break; 4134 4135 case TCP_FASTOPEN_NO_COOKIE: 4136 val = tp->fastopen_no_cookie; 4137 break; 4138 4139 case TCP_TX_DELAY: 4140 val = tp->tcp_tx_delay; 4141 break; 4142 4143 case TCP_TIMESTAMP: 4144 val = tcp_time_stamp_raw() + tp->tsoffset; 4145 break; 4146 case TCP_NOTSENT_LOWAT: 4147 val = tp->notsent_lowat; 4148 break; 4149 case TCP_INQ: 4150 val = tp->recvmsg_inq; 4151 break; 4152 case TCP_SAVE_SYN: 4153 val = tp->save_syn; 4154 break; 4155 case TCP_SAVED_SYN: { 4156 if (get_user(len, optlen)) 4157 return -EFAULT; 4158 4159 lock_sock(sk); 4160 if (tp->saved_syn) { 4161 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4162 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4163 optlen)) { 4164 release_sock(sk); 4165 return -EFAULT; 4166 } 4167 release_sock(sk); 4168 return -EINVAL; 4169 } 4170 len = tcp_saved_syn_len(tp->saved_syn); 4171 if (put_user(len, optlen)) { 4172 release_sock(sk); 4173 return -EFAULT; 4174 } 4175 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4176 release_sock(sk); 4177 return -EFAULT; 4178 } 4179 tcp_saved_syn_free(tp); 4180 release_sock(sk); 4181 } else { 4182 release_sock(sk); 4183 len = 0; 4184 if (put_user(len, optlen)) 4185 return -EFAULT; 4186 } 4187 return 0; 4188 } 4189 #ifdef CONFIG_MMU 4190 case TCP_ZEROCOPY_RECEIVE: { 4191 struct scm_timestamping_internal tss; 4192 struct tcp_zerocopy_receive zc = {}; 4193 int err; 4194 4195 if (get_user(len, optlen)) 4196 return -EFAULT; 4197 if (len < 0 || 4198 len < offsetofend(struct tcp_zerocopy_receive, length)) 4199 return -EINVAL; 4200 if (unlikely(len > sizeof(zc))) { 4201 err = check_zeroed_user(optval + sizeof(zc), 4202 len - sizeof(zc)); 4203 if (err < 1) 4204 return err == 0 ? -EINVAL : err; 4205 len = sizeof(zc); 4206 if (put_user(len, optlen)) 4207 return -EFAULT; 4208 } 4209 if (copy_from_user(&zc, optval, len)) 4210 return -EFAULT; 4211 if (zc.reserved) 4212 return -EINVAL; 4213 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4214 return -EINVAL; 4215 lock_sock(sk); 4216 err = tcp_zerocopy_receive(sk, &zc, &tss); 4217 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4218 &zc, &len, err); 4219 release_sock(sk); 4220 sk_defer_free_flush(sk); 4221 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4222 goto zerocopy_rcv_cmsg; 4223 switch (len) { 4224 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4225 goto zerocopy_rcv_cmsg; 4226 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4227 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4228 case offsetofend(struct tcp_zerocopy_receive, flags): 4229 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4230 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4231 case offsetofend(struct tcp_zerocopy_receive, err): 4232 goto zerocopy_rcv_sk_err; 4233 case offsetofend(struct tcp_zerocopy_receive, inq): 4234 goto zerocopy_rcv_inq; 4235 case offsetofend(struct tcp_zerocopy_receive, length): 4236 default: 4237 goto zerocopy_rcv_out; 4238 } 4239 zerocopy_rcv_cmsg: 4240 if (zc.msg_flags & TCP_CMSG_TS) 4241 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4242 else 4243 zc.msg_flags = 0; 4244 zerocopy_rcv_sk_err: 4245 if (!err) 4246 zc.err = sock_error(sk); 4247 zerocopy_rcv_inq: 4248 zc.inq = tcp_inq_hint(sk); 4249 zerocopy_rcv_out: 4250 if (!err && copy_to_user(optval, &zc, len)) 4251 err = -EFAULT; 4252 return err; 4253 } 4254 #endif 4255 default: 4256 return -ENOPROTOOPT; 4257 } 4258 4259 if (put_user(len, optlen)) 4260 return -EFAULT; 4261 if (copy_to_user(optval, &val, len)) 4262 return -EFAULT; 4263 return 0; 4264 } 4265 4266 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4267 { 4268 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4269 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4270 */ 4271 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4272 return true; 4273 4274 return false; 4275 } 4276 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4277 4278 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4279 int __user *optlen) 4280 { 4281 struct inet_connection_sock *icsk = inet_csk(sk); 4282 4283 if (level != SOL_TCP) 4284 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4285 optval, optlen); 4286 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4287 } 4288 EXPORT_SYMBOL(tcp_getsockopt); 4289 4290 #ifdef CONFIG_TCP_MD5SIG 4291 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4292 static DEFINE_MUTEX(tcp_md5sig_mutex); 4293 static bool tcp_md5sig_pool_populated = false; 4294 4295 static void __tcp_alloc_md5sig_pool(void) 4296 { 4297 struct crypto_ahash *hash; 4298 int cpu; 4299 4300 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4301 if (IS_ERR(hash)) 4302 return; 4303 4304 for_each_possible_cpu(cpu) { 4305 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4306 struct ahash_request *req; 4307 4308 if (!scratch) { 4309 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4310 sizeof(struct tcphdr), 4311 GFP_KERNEL, 4312 cpu_to_node(cpu)); 4313 if (!scratch) 4314 return; 4315 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4316 } 4317 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4318 continue; 4319 4320 req = ahash_request_alloc(hash, GFP_KERNEL); 4321 if (!req) 4322 return; 4323 4324 ahash_request_set_callback(req, 0, NULL, NULL); 4325 4326 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4327 } 4328 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4329 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4330 */ 4331 smp_wmb(); 4332 tcp_md5sig_pool_populated = true; 4333 } 4334 4335 bool tcp_alloc_md5sig_pool(void) 4336 { 4337 if (unlikely(!tcp_md5sig_pool_populated)) { 4338 mutex_lock(&tcp_md5sig_mutex); 4339 4340 if (!tcp_md5sig_pool_populated) { 4341 __tcp_alloc_md5sig_pool(); 4342 if (tcp_md5sig_pool_populated) 4343 static_branch_inc(&tcp_md5_needed); 4344 } 4345 4346 mutex_unlock(&tcp_md5sig_mutex); 4347 } 4348 return tcp_md5sig_pool_populated; 4349 } 4350 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4351 4352 4353 /** 4354 * tcp_get_md5sig_pool - get md5sig_pool for this user 4355 * 4356 * We use percpu structure, so if we succeed, we exit with preemption 4357 * and BH disabled, to make sure another thread or softirq handling 4358 * wont try to get same context. 4359 */ 4360 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4361 { 4362 local_bh_disable(); 4363 4364 if (tcp_md5sig_pool_populated) { 4365 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4366 smp_rmb(); 4367 return this_cpu_ptr(&tcp_md5sig_pool); 4368 } 4369 local_bh_enable(); 4370 return NULL; 4371 } 4372 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4373 4374 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4375 const struct sk_buff *skb, unsigned int header_len) 4376 { 4377 struct scatterlist sg; 4378 const struct tcphdr *tp = tcp_hdr(skb); 4379 struct ahash_request *req = hp->md5_req; 4380 unsigned int i; 4381 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4382 skb_headlen(skb) - header_len : 0; 4383 const struct skb_shared_info *shi = skb_shinfo(skb); 4384 struct sk_buff *frag_iter; 4385 4386 sg_init_table(&sg, 1); 4387 4388 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4389 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4390 if (crypto_ahash_update(req)) 4391 return 1; 4392 4393 for (i = 0; i < shi->nr_frags; ++i) { 4394 const skb_frag_t *f = &shi->frags[i]; 4395 unsigned int offset = skb_frag_off(f); 4396 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4397 4398 sg_set_page(&sg, page, skb_frag_size(f), 4399 offset_in_page(offset)); 4400 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4401 if (crypto_ahash_update(req)) 4402 return 1; 4403 } 4404 4405 skb_walk_frags(skb, frag_iter) 4406 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4407 return 1; 4408 4409 return 0; 4410 } 4411 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4412 4413 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4414 { 4415 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4416 struct scatterlist sg; 4417 4418 sg_init_one(&sg, key->key, keylen); 4419 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4420 4421 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4422 return data_race(crypto_ahash_update(hp->md5_req)); 4423 } 4424 EXPORT_SYMBOL(tcp_md5_hash_key); 4425 4426 #endif 4427 4428 void tcp_done(struct sock *sk) 4429 { 4430 struct request_sock *req; 4431 4432 /* We might be called with a new socket, after 4433 * inet_csk_prepare_forced_close() has been called 4434 * so we can not use lockdep_sock_is_held(sk) 4435 */ 4436 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4437 4438 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4439 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4440 4441 tcp_set_state(sk, TCP_CLOSE); 4442 tcp_clear_xmit_timers(sk); 4443 if (req) 4444 reqsk_fastopen_remove(sk, req, false); 4445 4446 sk->sk_shutdown = SHUTDOWN_MASK; 4447 4448 if (!sock_flag(sk, SOCK_DEAD)) 4449 sk->sk_state_change(sk); 4450 else 4451 inet_csk_destroy_sock(sk); 4452 } 4453 EXPORT_SYMBOL_GPL(tcp_done); 4454 4455 int tcp_abort(struct sock *sk, int err) 4456 { 4457 if (!sk_fullsock(sk)) { 4458 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4459 struct request_sock *req = inet_reqsk(sk); 4460 4461 local_bh_disable(); 4462 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4463 local_bh_enable(); 4464 return 0; 4465 } 4466 return -EOPNOTSUPP; 4467 } 4468 4469 /* Don't race with userspace socket closes such as tcp_close. */ 4470 lock_sock(sk); 4471 4472 if (sk->sk_state == TCP_LISTEN) { 4473 tcp_set_state(sk, TCP_CLOSE); 4474 inet_csk_listen_stop(sk); 4475 } 4476 4477 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4478 local_bh_disable(); 4479 bh_lock_sock(sk); 4480 4481 if (!sock_flag(sk, SOCK_DEAD)) { 4482 sk->sk_err = err; 4483 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4484 smp_wmb(); 4485 sk_error_report(sk); 4486 if (tcp_need_reset(sk->sk_state)) 4487 tcp_send_active_reset(sk, GFP_ATOMIC); 4488 tcp_done(sk); 4489 } 4490 4491 bh_unlock_sock(sk); 4492 local_bh_enable(); 4493 tcp_write_queue_purge(sk); 4494 release_sock(sk); 4495 return 0; 4496 } 4497 EXPORT_SYMBOL_GPL(tcp_abort); 4498 4499 extern struct tcp_congestion_ops tcp_reno; 4500 4501 static __initdata unsigned long thash_entries; 4502 static int __init set_thash_entries(char *str) 4503 { 4504 ssize_t ret; 4505 4506 if (!str) 4507 return 0; 4508 4509 ret = kstrtoul(str, 0, &thash_entries); 4510 if (ret) 4511 return 0; 4512 4513 return 1; 4514 } 4515 __setup("thash_entries=", set_thash_entries); 4516 4517 static void __init tcp_init_mem(void) 4518 { 4519 unsigned long limit = nr_free_buffer_pages() / 16; 4520 4521 limit = max(limit, 128UL); 4522 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4523 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4524 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4525 } 4526 4527 void __init tcp_init(void) 4528 { 4529 int max_rshare, max_wshare, cnt; 4530 unsigned long limit; 4531 unsigned int i; 4532 4533 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4534 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4535 sizeof_field(struct sk_buff, cb)); 4536 4537 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4538 4539 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4540 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4541 4542 inet_hashinfo_init(&tcp_hashinfo); 4543 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4544 thash_entries, 21, /* one slot per 2 MB*/ 4545 0, 64 * 1024); 4546 tcp_hashinfo.bind_bucket_cachep = 4547 kmem_cache_create("tcp_bind_bucket", 4548 sizeof(struct inet_bind_bucket), 0, 4549 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4550 SLAB_ACCOUNT, 4551 NULL); 4552 4553 /* Size and allocate the main established and bind bucket 4554 * hash tables. 4555 * 4556 * The methodology is similar to that of the buffer cache. 4557 */ 4558 tcp_hashinfo.ehash = 4559 alloc_large_system_hash("TCP established", 4560 sizeof(struct inet_ehash_bucket), 4561 thash_entries, 4562 17, /* one slot per 128 KB of memory */ 4563 0, 4564 NULL, 4565 &tcp_hashinfo.ehash_mask, 4566 0, 4567 thash_entries ? 0 : 512 * 1024); 4568 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4569 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4570 4571 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4572 panic("TCP: failed to alloc ehash_locks"); 4573 tcp_hashinfo.bhash = 4574 alloc_large_system_hash("TCP bind", 4575 sizeof(struct inet_bind_hashbucket), 4576 tcp_hashinfo.ehash_mask + 1, 4577 17, /* one slot per 128 KB of memory */ 4578 0, 4579 &tcp_hashinfo.bhash_size, 4580 NULL, 4581 0, 4582 64 * 1024); 4583 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4584 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4585 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4586 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4587 } 4588 4589 4590 cnt = tcp_hashinfo.ehash_mask + 1; 4591 sysctl_tcp_max_orphans = cnt / 2; 4592 4593 tcp_init_mem(); 4594 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4595 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4596 max_wshare = min(4UL*1024*1024, limit); 4597 max_rshare = min(6UL*1024*1024, limit); 4598 4599 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4600 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4601 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4602 4603 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4604 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4605 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4606 4607 pr_info("Hash tables configured (established %u bind %u)\n", 4608 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4609 4610 tcp_v4_init(); 4611 tcp_metrics_init(); 4612 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4613 tcp_tasklet_init(); 4614 mptcp_init(); 4615 } 4616