1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <trace/events/tcp.h> 286 #include <net/rps.h> 287 288 #include "../core/devmem.h" 289 290 /* Track pending CMSGs. */ 291 enum { 292 TCP_CMSG_INQ = 1, 293 TCP_CMSG_TS = 2 294 }; 295 296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 298 299 DEFINE_PER_CPU(u32, tcp_tw_isn); 300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 301 302 long sysctl_tcp_mem[3] __read_mostly; 303 EXPORT_SYMBOL(sysctl_tcp_mem); 304 305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 306 EXPORT_SYMBOL(tcp_memory_allocated); 307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 309 310 #if IS_ENABLED(CONFIG_SMC) 311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 312 EXPORT_SYMBOL(tcp_have_smc); 313 #endif 314 315 /* 316 * Current number of TCP sockets. 317 */ 318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 319 EXPORT_SYMBOL(tcp_sockets_allocated); 320 321 /* 322 * TCP splice context 323 */ 324 struct tcp_splice_state { 325 struct pipe_inode_info *pipe; 326 size_t len; 327 unsigned int flags; 328 }; 329 330 /* 331 * Pressure flag: try to collapse. 332 * Technical note: it is used by multiple contexts non atomically. 333 * All the __sk_mem_schedule() is of this nature: accounting 334 * is strict, actions are advisory and have some latency. 335 */ 336 unsigned long tcp_memory_pressure __read_mostly; 337 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 338 339 void tcp_enter_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (READ_ONCE(tcp_memory_pressure)) 344 return; 345 val = jiffies; 346 347 if (!val) 348 val--; 349 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 351 } 352 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 353 354 void tcp_leave_memory_pressure(struct sock *sk) 355 { 356 unsigned long val; 357 358 if (!READ_ONCE(tcp_memory_pressure)) 359 return; 360 val = xchg(&tcp_memory_pressure, 0); 361 if (val) 362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 363 jiffies_to_msecs(jiffies - val)); 364 } 365 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 366 367 /* Convert seconds to retransmits based on initial and max timeout */ 368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 369 { 370 u8 res = 0; 371 372 if (seconds > 0) { 373 int period = timeout; 374 375 res = 1; 376 while (seconds > period && res < 255) { 377 res++; 378 timeout <<= 1; 379 if (timeout > rto_max) 380 timeout = rto_max; 381 period += timeout; 382 } 383 } 384 return res; 385 } 386 387 /* Convert retransmits to seconds based on initial and max timeout */ 388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 389 { 390 int period = 0; 391 392 if (retrans > 0) { 393 period = timeout; 394 while (--retrans) { 395 timeout <<= 1; 396 if (timeout > rto_max) 397 timeout = rto_max; 398 period += timeout; 399 } 400 } 401 return period; 402 } 403 404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 405 { 406 u32 rate = READ_ONCE(tp->rate_delivered); 407 u32 intv = READ_ONCE(tp->rate_interval_us); 408 u64 rate64 = 0; 409 410 if (rate && intv) { 411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 412 do_div(rate64, intv); 413 } 414 return rate64; 415 } 416 417 /* Address-family independent initialization for a tcp_sock. 418 * 419 * NOTE: A lot of things set to zero explicitly by call to 420 * sk_alloc() so need not be done here. 421 */ 422 void tcp_init_sock(struct sock *sk) 423 { 424 struct inet_connection_sock *icsk = inet_csk(sk); 425 struct tcp_sock *tp = tcp_sk(sk); 426 int rto_min_us; 427 428 tp->out_of_order_queue = RB_ROOT; 429 sk->tcp_rtx_queue = RB_ROOT; 430 tcp_init_xmit_timers(sk); 431 INIT_LIST_HEAD(&tp->tsq_node); 432 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 433 434 icsk->icsk_rto = TCP_TIMEOUT_INIT; 435 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 436 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 437 icsk->icsk_delack_max = TCP_DELACK_MAX; 438 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 439 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 440 441 /* So many TCP implementations out there (incorrectly) count the 442 * initial SYN frame in their delayed-ACK and congestion control 443 * algorithms that we must have the following bandaid to talk 444 * efficiently to them. -DaveM 445 */ 446 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 447 448 /* There's a bubble in the pipe until at least the first ACK. */ 449 tp->app_limited = ~0U; 450 tp->rate_app_limited = 1; 451 452 /* See draft-stevens-tcpca-spec-01 for discussion of the 453 * initialization of these values. 454 */ 455 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 456 tp->snd_cwnd_clamp = ~0; 457 tp->mss_cache = TCP_MSS_DEFAULT; 458 459 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 460 tcp_assign_congestion_control(sk); 461 462 tp->tsoffset = 0; 463 tp->rack.reo_wnd_steps = 1; 464 465 sk->sk_write_space = sk_stream_write_space; 466 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 467 468 icsk->icsk_sync_mss = tcp_sync_mss; 469 470 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 471 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 472 tcp_scaling_ratio_init(sk); 473 474 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 475 sk_sockets_allocated_inc(sk); 476 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); 477 } 478 EXPORT_SYMBOL(tcp_init_sock); 479 480 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 481 { 482 struct sk_buff *skb = tcp_write_queue_tail(sk); 483 484 if (tsflags && skb) { 485 struct skb_shared_info *shinfo = skb_shinfo(skb); 486 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 487 488 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 489 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 490 tcb->txstamp_ack = 1; 491 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 492 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 493 } 494 } 495 496 static bool tcp_stream_is_readable(struct sock *sk, int target) 497 { 498 if (tcp_epollin_ready(sk, target)) 499 return true; 500 return sk_is_readable(sk); 501 } 502 503 /* 504 * Wait for a TCP event. 505 * 506 * Note that we don't need to lock the socket, as the upper poll layers 507 * take care of normal races (between the test and the event) and we don't 508 * go look at any of the socket buffers directly. 509 */ 510 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 511 { 512 __poll_t mask; 513 struct sock *sk = sock->sk; 514 const struct tcp_sock *tp = tcp_sk(sk); 515 u8 shutdown; 516 int state; 517 518 sock_poll_wait(file, sock, wait); 519 520 state = inet_sk_state_load(sk); 521 if (state == TCP_LISTEN) 522 return inet_csk_listen_poll(sk); 523 524 /* Socket is not locked. We are protected from async events 525 * by poll logic and correct handling of state changes 526 * made by other threads is impossible in any case. 527 */ 528 529 mask = 0; 530 531 /* 532 * EPOLLHUP is certainly not done right. But poll() doesn't 533 * have a notion of HUP in just one direction, and for a 534 * socket the read side is more interesting. 535 * 536 * Some poll() documentation says that EPOLLHUP is incompatible 537 * with the EPOLLOUT/POLLWR flags, so somebody should check this 538 * all. But careful, it tends to be safer to return too many 539 * bits than too few, and you can easily break real applications 540 * if you don't tell them that something has hung up! 541 * 542 * Check-me. 543 * 544 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 545 * our fs/select.c). It means that after we received EOF, 546 * poll always returns immediately, making impossible poll() on write() 547 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 548 * if and only if shutdown has been made in both directions. 549 * Actually, it is interesting to look how Solaris and DUX 550 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 551 * then we could set it on SND_SHUTDOWN. BTW examples given 552 * in Stevens' books assume exactly this behaviour, it explains 553 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 554 * 555 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 556 * blocking on fresh not-connected or disconnected socket. --ANK 557 */ 558 shutdown = READ_ONCE(sk->sk_shutdown); 559 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 560 mask |= EPOLLHUP; 561 if (shutdown & RCV_SHUTDOWN) 562 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 563 564 /* Connected or passive Fast Open socket? */ 565 if (state != TCP_SYN_SENT && 566 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 567 int target = sock_rcvlowat(sk, 0, INT_MAX); 568 u16 urg_data = READ_ONCE(tp->urg_data); 569 570 if (unlikely(urg_data) && 571 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 572 !sock_flag(sk, SOCK_URGINLINE)) 573 target++; 574 575 if (tcp_stream_is_readable(sk, target)) 576 mask |= EPOLLIN | EPOLLRDNORM; 577 578 if (!(shutdown & SEND_SHUTDOWN)) { 579 if (__sk_stream_is_writeable(sk, 1)) { 580 mask |= EPOLLOUT | EPOLLWRNORM; 581 } else { /* send SIGIO later */ 582 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 583 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 584 585 /* Race breaker. If space is freed after 586 * wspace test but before the flags are set, 587 * IO signal will be lost. Memory barrier 588 * pairs with the input side. 589 */ 590 smp_mb__after_atomic(); 591 if (__sk_stream_is_writeable(sk, 1)) 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 } else 595 mask |= EPOLLOUT | EPOLLWRNORM; 596 597 if (urg_data & TCP_URG_VALID) 598 mask |= EPOLLPRI; 599 } else if (state == TCP_SYN_SENT && 600 inet_test_bit(DEFER_CONNECT, sk)) { 601 /* Active TCP fastopen socket with defer_connect 602 * Return EPOLLOUT so application can call write() 603 * in order for kernel to generate SYN+data 604 */ 605 mask |= EPOLLOUT | EPOLLWRNORM; 606 } 607 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 608 smp_rmb(); 609 if (READ_ONCE(sk->sk_err) || 610 !skb_queue_empty_lockless(&sk->sk_error_queue)) 611 mask |= EPOLLERR; 612 613 return mask; 614 } 615 EXPORT_SYMBOL(tcp_poll); 616 617 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 618 { 619 struct tcp_sock *tp = tcp_sk(sk); 620 int answ; 621 bool slow; 622 623 switch (cmd) { 624 case SIOCINQ: 625 if (sk->sk_state == TCP_LISTEN) 626 return -EINVAL; 627 628 slow = lock_sock_fast(sk); 629 answ = tcp_inq(sk); 630 unlock_sock_fast(sk, slow); 631 break; 632 case SIOCATMARK: 633 answ = READ_ONCE(tp->urg_data) && 634 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 635 break; 636 case SIOCOUTQ: 637 if (sk->sk_state == TCP_LISTEN) 638 return -EINVAL; 639 640 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 641 answ = 0; 642 else 643 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 644 break; 645 case SIOCOUTQNSD: 646 if (sk->sk_state == TCP_LISTEN) 647 return -EINVAL; 648 649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 650 answ = 0; 651 else 652 answ = READ_ONCE(tp->write_seq) - 653 READ_ONCE(tp->snd_nxt); 654 break; 655 default: 656 return -ENOIOCTLCMD; 657 } 658 659 *karg = answ; 660 return 0; 661 } 662 EXPORT_SYMBOL(tcp_ioctl); 663 664 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 665 { 666 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 667 tp->pushed_seq = tp->write_seq; 668 } 669 670 static inline bool forced_push(const struct tcp_sock *tp) 671 { 672 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 673 } 674 675 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 676 { 677 struct tcp_sock *tp = tcp_sk(sk); 678 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 679 680 tcb->seq = tcb->end_seq = tp->write_seq; 681 tcb->tcp_flags = TCPHDR_ACK; 682 __skb_header_release(skb); 683 tcp_add_write_queue_tail(sk, skb); 684 sk_wmem_queued_add(sk, skb->truesize); 685 sk_mem_charge(sk, skb->truesize); 686 if (tp->nonagle & TCP_NAGLE_PUSH) 687 tp->nonagle &= ~TCP_NAGLE_PUSH; 688 689 tcp_slow_start_after_idle_check(sk); 690 } 691 692 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 693 { 694 if (flags & MSG_OOB) 695 tp->snd_up = tp->write_seq; 696 } 697 698 /* If a not yet filled skb is pushed, do not send it if 699 * we have data packets in Qdisc or NIC queues : 700 * Because TX completion will happen shortly, it gives a chance 701 * to coalesce future sendmsg() payload into this skb, without 702 * need for a timer, and with no latency trade off. 703 * As packets containing data payload have a bigger truesize 704 * than pure acks (dataless) packets, the last checks prevent 705 * autocorking if we only have an ACK in Qdisc/NIC queues, 706 * or if TX completion was delayed after we processed ACK packet. 707 */ 708 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 709 int size_goal) 710 { 711 return skb->len < size_goal && 712 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 713 !tcp_rtx_queue_empty(sk) && 714 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 715 tcp_skb_can_collapse_to(skb); 716 } 717 718 void tcp_push(struct sock *sk, int flags, int mss_now, 719 int nonagle, int size_goal) 720 { 721 struct tcp_sock *tp = tcp_sk(sk); 722 struct sk_buff *skb; 723 724 skb = tcp_write_queue_tail(sk); 725 if (!skb) 726 return; 727 if (!(flags & MSG_MORE) || forced_push(tp)) 728 tcp_mark_push(tp, skb); 729 730 tcp_mark_urg(tp, flags); 731 732 if (tcp_should_autocork(sk, skb, size_goal)) { 733 734 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 735 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 736 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 737 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 738 smp_mb__after_atomic(); 739 } 740 /* It is possible TX completion already happened 741 * before we set TSQ_THROTTLED. 742 */ 743 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 744 return; 745 } 746 747 if (flags & MSG_MORE) 748 nonagle = TCP_NAGLE_CORK; 749 750 __tcp_push_pending_frames(sk, mss_now, nonagle); 751 } 752 753 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 754 unsigned int offset, size_t len) 755 { 756 struct tcp_splice_state *tss = rd_desc->arg.data; 757 int ret; 758 759 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 760 min(rd_desc->count, len), tss->flags); 761 if (ret > 0) 762 rd_desc->count -= ret; 763 return ret; 764 } 765 766 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 767 { 768 /* Store TCP splice context information in read_descriptor_t. */ 769 read_descriptor_t rd_desc = { 770 .arg.data = tss, 771 .count = tss->len, 772 }; 773 774 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 775 } 776 777 /** 778 * tcp_splice_read - splice data from TCP socket to a pipe 779 * @sock: socket to splice from 780 * @ppos: position (not valid) 781 * @pipe: pipe to splice to 782 * @len: number of bytes to splice 783 * @flags: splice modifier flags 784 * 785 * Description: 786 * Will read pages from given socket and fill them into a pipe. 787 * 788 **/ 789 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 790 struct pipe_inode_info *pipe, size_t len, 791 unsigned int flags) 792 { 793 struct sock *sk = sock->sk; 794 struct tcp_splice_state tss = { 795 .pipe = pipe, 796 .len = len, 797 .flags = flags, 798 }; 799 long timeo; 800 ssize_t spliced; 801 int ret; 802 803 sock_rps_record_flow(sk); 804 /* 805 * We can't seek on a socket input 806 */ 807 if (unlikely(*ppos)) 808 return -ESPIPE; 809 810 ret = spliced = 0; 811 812 lock_sock(sk); 813 814 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 815 while (tss.len) { 816 ret = __tcp_splice_read(sk, &tss); 817 if (ret < 0) 818 break; 819 else if (!ret) { 820 if (spliced) 821 break; 822 if (sock_flag(sk, SOCK_DONE)) 823 break; 824 if (sk->sk_err) { 825 ret = sock_error(sk); 826 break; 827 } 828 if (sk->sk_shutdown & RCV_SHUTDOWN) 829 break; 830 if (sk->sk_state == TCP_CLOSE) { 831 /* 832 * This occurs when user tries to read 833 * from never connected socket. 834 */ 835 ret = -ENOTCONN; 836 break; 837 } 838 if (!timeo) { 839 ret = -EAGAIN; 840 break; 841 } 842 /* if __tcp_splice_read() got nothing while we have 843 * an skb in receive queue, we do not want to loop. 844 * This might happen with URG data. 845 */ 846 if (!skb_queue_empty(&sk->sk_receive_queue)) 847 break; 848 ret = sk_wait_data(sk, &timeo, NULL); 849 if (ret < 0) 850 break; 851 if (signal_pending(current)) { 852 ret = sock_intr_errno(timeo); 853 break; 854 } 855 continue; 856 } 857 tss.len -= ret; 858 spliced += ret; 859 860 if (!tss.len || !timeo) 861 break; 862 release_sock(sk); 863 lock_sock(sk); 864 865 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 866 (sk->sk_shutdown & RCV_SHUTDOWN) || 867 signal_pending(current)) 868 break; 869 } 870 871 release_sock(sk); 872 873 if (spliced) 874 return spliced; 875 876 return ret; 877 } 878 EXPORT_SYMBOL(tcp_splice_read); 879 880 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 881 bool force_schedule) 882 { 883 struct sk_buff *skb; 884 885 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 886 if (likely(skb)) { 887 bool mem_scheduled; 888 889 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 890 if (force_schedule) { 891 mem_scheduled = true; 892 sk_forced_mem_schedule(sk, skb->truesize); 893 } else { 894 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 895 } 896 if (likely(mem_scheduled)) { 897 skb_reserve(skb, MAX_TCP_HEADER); 898 skb->ip_summed = CHECKSUM_PARTIAL; 899 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 900 return skb; 901 } 902 __kfree_skb(skb); 903 } else { 904 sk->sk_prot->enter_memory_pressure(sk); 905 sk_stream_moderate_sndbuf(sk); 906 } 907 return NULL; 908 } 909 910 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 911 int large_allowed) 912 { 913 struct tcp_sock *tp = tcp_sk(sk); 914 u32 new_size_goal, size_goal; 915 916 if (!large_allowed) 917 return mss_now; 918 919 /* Note : tcp_tso_autosize() will eventually split this later */ 920 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 921 922 /* We try hard to avoid divides here */ 923 size_goal = tp->gso_segs * mss_now; 924 if (unlikely(new_size_goal < size_goal || 925 new_size_goal >= size_goal + mss_now)) { 926 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 927 sk->sk_gso_max_segs); 928 size_goal = tp->gso_segs * mss_now; 929 } 930 931 return max(size_goal, mss_now); 932 } 933 934 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 935 { 936 int mss_now; 937 938 mss_now = tcp_current_mss(sk); 939 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 940 941 return mss_now; 942 } 943 944 /* In some cases, sendmsg() could have added an skb to the write queue, 945 * but failed adding payload on it. We need to remove it to consume less 946 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 947 * epoll() users. Another reason is that tcp_write_xmit() does not like 948 * finding an empty skb in the write queue. 949 */ 950 void tcp_remove_empty_skb(struct sock *sk) 951 { 952 struct sk_buff *skb = tcp_write_queue_tail(sk); 953 954 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 955 tcp_unlink_write_queue(skb, sk); 956 if (tcp_write_queue_empty(sk)) 957 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 958 tcp_wmem_free_skb(sk, skb); 959 } 960 } 961 962 /* skb changing from pure zc to mixed, must charge zc */ 963 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 964 { 965 if (unlikely(skb_zcopy_pure(skb))) { 966 u32 extra = skb->truesize - 967 SKB_TRUESIZE(skb_end_offset(skb)); 968 969 if (!sk_wmem_schedule(sk, extra)) 970 return -ENOMEM; 971 972 sk_mem_charge(sk, extra); 973 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 974 } 975 return 0; 976 } 977 978 979 int tcp_wmem_schedule(struct sock *sk, int copy) 980 { 981 int left; 982 983 if (likely(sk_wmem_schedule(sk, copy))) 984 return copy; 985 986 /* We could be in trouble if we have nothing queued. 987 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 988 * to guarantee some progress. 989 */ 990 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 991 if (left > 0) 992 sk_forced_mem_schedule(sk, min(left, copy)); 993 return min(copy, sk->sk_forward_alloc); 994 } 995 996 void tcp_free_fastopen_req(struct tcp_sock *tp) 997 { 998 if (tp->fastopen_req) { 999 kfree(tp->fastopen_req); 1000 tp->fastopen_req = NULL; 1001 } 1002 } 1003 1004 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1005 size_t size, struct ubuf_info *uarg) 1006 { 1007 struct tcp_sock *tp = tcp_sk(sk); 1008 struct inet_sock *inet = inet_sk(sk); 1009 struct sockaddr *uaddr = msg->msg_name; 1010 int err, flags; 1011 1012 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1013 TFO_CLIENT_ENABLE) || 1014 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1015 uaddr->sa_family == AF_UNSPEC)) 1016 return -EOPNOTSUPP; 1017 if (tp->fastopen_req) 1018 return -EALREADY; /* Another Fast Open is in progress */ 1019 1020 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1021 sk->sk_allocation); 1022 if (unlikely(!tp->fastopen_req)) 1023 return -ENOBUFS; 1024 tp->fastopen_req->data = msg; 1025 tp->fastopen_req->size = size; 1026 tp->fastopen_req->uarg = uarg; 1027 1028 if (inet_test_bit(DEFER_CONNECT, sk)) { 1029 err = tcp_connect(sk); 1030 /* Same failure procedure as in tcp_v4/6_connect */ 1031 if (err) { 1032 tcp_set_state(sk, TCP_CLOSE); 1033 inet->inet_dport = 0; 1034 sk->sk_route_caps = 0; 1035 } 1036 } 1037 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1038 err = __inet_stream_connect(sk->sk_socket, uaddr, 1039 msg->msg_namelen, flags, 1); 1040 /* fastopen_req could already be freed in __inet_stream_connect 1041 * if the connection times out or gets rst 1042 */ 1043 if (tp->fastopen_req) { 1044 *copied = tp->fastopen_req->copied; 1045 tcp_free_fastopen_req(tp); 1046 inet_clear_bit(DEFER_CONNECT, sk); 1047 } 1048 return err; 1049 } 1050 1051 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1052 { 1053 struct tcp_sock *tp = tcp_sk(sk); 1054 struct ubuf_info *uarg = NULL; 1055 struct sk_buff *skb; 1056 struct sockcm_cookie sockc; 1057 int flags, err, copied = 0; 1058 int mss_now = 0, size_goal, copied_syn = 0; 1059 int process_backlog = 0; 1060 int zc = 0; 1061 long timeo; 1062 1063 flags = msg->msg_flags; 1064 1065 if ((flags & MSG_ZEROCOPY) && size) { 1066 if (msg->msg_ubuf) { 1067 uarg = msg->msg_ubuf; 1068 if (sk->sk_route_caps & NETIF_F_SG) 1069 zc = MSG_ZEROCOPY; 1070 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1071 skb = tcp_write_queue_tail(sk); 1072 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1073 if (!uarg) { 1074 err = -ENOBUFS; 1075 goto out_err; 1076 } 1077 if (sk->sk_route_caps & NETIF_F_SG) 1078 zc = MSG_ZEROCOPY; 1079 else 1080 uarg_to_msgzc(uarg)->zerocopy = 0; 1081 } 1082 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1083 if (sk->sk_route_caps & NETIF_F_SG) 1084 zc = MSG_SPLICE_PAGES; 1085 } 1086 1087 if (unlikely(flags & MSG_FASTOPEN || 1088 inet_test_bit(DEFER_CONNECT, sk)) && 1089 !tp->repair) { 1090 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1091 if (err == -EINPROGRESS && copied_syn > 0) 1092 goto out; 1093 else if (err) 1094 goto out_err; 1095 } 1096 1097 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1098 1099 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1100 1101 /* Wait for a connection to finish. One exception is TCP Fast Open 1102 * (passive side) where data is allowed to be sent before a connection 1103 * is fully established. 1104 */ 1105 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1106 !tcp_passive_fastopen(sk)) { 1107 err = sk_stream_wait_connect(sk, &timeo); 1108 if (err != 0) 1109 goto do_error; 1110 } 1111 1112 if (unlikely(tp->repair)) { 1113 if (tp->repair_queue == TCP_RECV_QUEUE) { 1114 copied = tcp_send_rcvq(sk, msg, size); 1115 goto out_nopush; 1116 } 1117 1118 err = -EINVAL; 1119 if (tp->repair_queue == TCP_NO_QUEUE) 1120 goto out_err; 1121 1122 /* 'common' sending to sendq */ 1123 } 1124 1125 sockcm_init(&sockc, sk); 1126 if (msg->msg_controllen) { 1127 err = sock_cmsg_send(sk, msg, &sockc); 1128 if (unlikely(err)) { 1129 err = -EINVAL; 1130 goto out_err; 1131 } 1132 } 1133 1134 /* This should be in poll */ 1135 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1136 1137 /* Ok commence sending. */ 1138 copied = 0; 1139 1140 restart: 1141 mss_now = tcp_send_mss(sk, &size_goal, flags); 1142 1143 err = -EPIPE; 1144 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1145 goto do_error; 1146 1147 while (msg_data_left(msg)) { 1148 ssize_t copy = 0; 1149 1150 skb = tcp_write_queue_tail(sk); 1151 if (skb) 1152 copy = size_goal - skb->len; 1153 1154 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1155 bool first_skb; 1156 1157 new_segment: 1158 if (!sk_stream_memory_free(sk)) 1159 goto wait_for_space; 1160 1161 if (unlikely(process_backlog >= 16)) { 1162 process_backlog = 0; 1163 if (sk_flush_backlog(sk)) 1164 goto restart; 1165 } 1166 first_skb = tcp_rtx_and_write_queues_empty(sk); 1167 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1168 first_skb); 1169 if (!skb) 1170 goto wait_for_space; 1171 1172 process_backlog++; 1173 1174 #ifdef CONFIG_SKB_DECRYPTED 1175 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1176 #endif 1177 tcp_skb_entail(sk, skb); 1178 copy = size_goal; 1179 1180 /* All packets are restored as if they have 1181 * already been sent. skb_mstamp_ns isn't set to 1182 * avoid wrong rtt estimation. 1183 */ 1184 if (tp->repair) 1185 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1186 } 1187 1188 /* Try to append data to the end of skb. */ 1189 if (copy > msg_data_left(msg)) 1190 copy = msg_data_left(msg); 1191 1192 if (zc == 0) { 1193 bool merge = true; 1194 int i = skb_shinfo(skb)->nr_frags; 1195 struct page_frag *pfrag = sk_page_frag(sk); 1196 1197 if (!sk_page_frag_refill(sk, pfrag)) 1198 goto wait_for_space; 1199 1200 if (!skb_can_coalesce(skb, i, pfrag->page, 1201 pfrag->offset)) { 1202 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1203 tcp_mark_push(tp, skb); 1204 goto new_segment; 1205 } 1206 merge = false; 1207 } 1208 1209 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1210 1211 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1212 if (tcp_downgrade_zcopy_pure(sk, skb)) 1213 goto wait_for_space; 1214 skb_zcopy_downgrade_managed(skb); 1215 } 1216 1217 copy = tcp_wmem_schedule(sk, copy); 1218 if (!copy) 1219 goto wait_for_space; 1220 1221 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1222 pfrag->page, 1223 pfrag->offset, 1224 copy); 1225 if (err) 1226 goto do_error; 1227 1228 /* Update the skb. */ 1229 if (merge) { 1230 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1231 } else { 1232 skb_fill_page_desc(skb, i, pfrag->page, 1233 pfrag->offset, copy); 1234 page_ref_inc(pfrag->page); 1235 } 1236 pfrag->offset += copy; 1237 } else if (zc == MSG_ZEROCOPY) { 1238 /* First append to a fragless skb builds initial 1239 * pure zerocopy skb 1240 */ 1241 if (!skb->len) 1242 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1243 1244 if (!skb_zcopy_pure(skb)) { 1245 copy = tcp_wmem_schedule(sk, copy); 1246 if (!copy) 1247 goto wait_for_space; 1248 } 1249 1250 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1251 if (err == -EMSGSIZE || err == -EEXIST) { 1252 tcp_mark_push(tp, skb); 1253 goto new_segment; 1254 } 1255 if (err < 0) 1256 goto do_error; 1257 copy = err; 1258 } else if (zc == MSG_SPLICE_PAGES) { 1259 /* Splice in data if we can; copy if we can't. */ 1260 if (tcp_downgrade_zcopy_pure(sk, skb)) 1261 goto wait_for_space; 1262 copy = tcp_wmem_schedule(sk, copy); 1263 if (!copy) 1264 goto wait_for_space; 1265 1266 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1267 sk->sk_allocation); 1268 if (err < 0) { 1269 if (err == -EMSGSIZE) { 1270 tcp_mark_push(tp, skb); 1271 goto new_segment; 1272 } 1273 goto do_error; 1274 } 1275 copy = err; 1276 1277 if (!(flags & MSG_NO_SHARED_FRAGS)) 1278 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1279 1280 sk_wmem_queued_add(sk, copy); 1281 sk_mem_charge(sk, copy); 1282 } 1283 1284 if (!copied) 1285 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1286 1287 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1288 TCP_SKB_CB(skb)->end_seq += copy; 1289 tcp_skb_pcount_set(skb, 0); 1290 1291 copied += copy; 1292 if (!msg_data_left(msg)) { 1293 if (unlikely(flags & MSG_EOR)) 1294 TCP_SKB_CB(skb)->eor = 1; 1295 goto out; 1296 } 1297 1298 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1299 continue; 1300 1301 if (forced_push(tp)) { 1302 tcp_mark_push(tp, skb); 1303 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1304 } else if (skb == tcp_send_head(sk)) 1305 tcp_push_one(sk, mss_now); 1306 continue; 1307 1308 wait_for_space: 1309 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1310 tcp_remove_empty_skb(sk); 1311 if (copied) 1312 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1313 TCP_NAGLE_PUSH, size_goal); 1314 1315 err = sk_stream_wait_memory(sk, &timeo); 1316 if (err != 0) 1317 goto do_error; 1318 1319 mss_now = tcp_send_mss(sk, &size_goal, flags); 1320 } 1321 1322 out: 1323 if (copied) { 1324 tcp_tx_timestamp(sk, sockc.tsflags); 1325 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1326 } 1327 out_nopush: 1328 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1329 if (uarg && !msg->msg_ubuf) 1330 net_zcopy_put(uarg); 1331 return copied + copied_syn; 1332 1333 do_error: 1334 tcp_remove_empty_skb(sk); 1335 1336 if (copied + copied_syn) 1337 goto out; 1338 out_err: 1339 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1340 if (uarg && !msg->msg_ubuf) 1341 net_zcopy_put_abort(uarg, true); 1342 err = sk_stream_error(sk, flags, err); 1343 /* make sure we wake any epoll edge trigger waiter */ 1344 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1345 sk->sk_write_space(sk); 1346 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1347 } 1348 return err; 1349 } 1350 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1351 1352 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1353 { 1354 int ret; 1355 1356 lock_sock(sk); 1357 ret = tcp_sendmsg_locked(sk, msg, size); 1358 release_sock(sk); 1359 1360 return ret; 1361 } 1362 EXPORT_SYMBOL(tcp_sendmsg); 1363 1364 void tcp_splice_eof(struct socket *sock) 1365 { 1366 struct sock *sk = sock->sk; 1367 struct tcp_sock *tp = tcp_sk(sk); 1368 int mss_now, size_goal; 1369 1370 if (!tcp_write_queue_tail(sk)) 1371 return; 1372 1373 lock_sock(sk); 1374 mss_now = tcp_send_mss(sk, &size_goal, 0); 1375 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1376 release_sock(sk); 1377 } 1378 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1379 1380 /* 1381 * Handle reading urgent data. BSD has very simple semantics for 1382 * this, no blocking and very strange errors 8) 1383 */ 1384 1385 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1386 { 1387 struct tcp_sock *tp = tcp_sk(sk); 1388 1389 /* No URG data to read. */ 1390 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1391 tp->urg_data == TCP_URG_READ) 1392 return -EINVAL; /* Yes this is right ! */ 1393 1394 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1395 return -ENOTCONN; 1396 1397 if (tp->urg_data & TCP_URG_VALID) { 1398 int err = 0; 1399 char c = tp->urg_data; 1400 1401 if (!(flags & MSG_PEEK)) 1402 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1403 1404 /* Read urgent data. */ 1405 msg->msg_flags |= MSG_OOB; 1406 1407 if (len > 0) { 1408 if (!(flags & MSG_TRUNC)) 1409 err = memcpy_to_msg(msg, &c, 1); 1410 len = 1; 1411 } else 1412 msg->msg_flags |= MSG_TRUNC; 1413 1414 return err ? -EFAULT : len; 1415 } 1416 1417 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1418 return 0; 1419 1420 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1421 * the available implementations agree in this case: 1422 * this call should never block, independent of the 1423 * blocking state of the socket. 1424 * Mike <pall@rz.uni-karlsruhe.de> 1425 */ 1426 return -EAGAIN; 1427 } 1428 1429 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1430 { 1431 struct sk_buff *skb; 1432 int copied = 0, err = 0; 1433 1434 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1435 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1436 if (err) 1437 return err; 1438 copied += skb->len; 1439 } 1440 1441 skb_queue_walk(&sk->sk_write_queue, skb) { 1442 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1443 if (err) 1444 break; 1445 1446 copied += skb->len; 1447 } 1448 1449 return err ?: copied; 1450 } 1451 1452 /* Clean up the receive buffer for full frames taken by the user, 1453 * then send an ACK if necessary. COPIED is the number of bytes 1454 * tcp_recvmsg has given to the user so far, it speeds up the 1455 * calculation of whether or not we must ACK for the sake of 1456 * a window update. 1457 */ 1458 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1459 { 1460 struct tcp_sock *tp = tcp_sk(sk); 1461 bool time_to_ack = false; 1462 1463 if (inet_csk_ack_scheduled(sk)) { 1464 const struct inet_connection_sock *icsk = inet_csk(sk); 1465 1466 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1467 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1468 /* 1469 * If this read emptied read buffer, we send ACK, if 1470 * connection is not bidirectional, user drained 1471 * receive buffer and there was a small segment 1472 * in queue. 1473 */ 1474 (copied > 0 && 1475 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1476 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1477 !inet_csk_in_pingpong_mode(sk))) && 1478 !atomic_read(&sk->sk_rmem_alloc))) 1479 time_to_ack = true; 1480 } 1481 1482 /* We send an ACK if we can now advertise a non-zero window 1483 * which has been raised "significantly". 1484 * 1485 * Even if window raised up to infinity, do not send window open ACK 1486 * in states, where we will not receive more. It is useless. 1487 */ 1488 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1489 __u32 rcv_window_now = tcp_receive_window(tp); 1490 1491 /* Optimize, __tcp_select_window() is not cheap. */ 1492 if (2*rcv_window_now <= tp->window_clamp) { 1493 __u32 new_window = __tcp_select_window(sk); 1494 1495 /* Send ACK now, if this read freed lots of space 1496 * in our buffer. Certainly, new_window is new window. 1497 * We can advertise it now, if it is not less than current one. 1498 * "Lots" means "at least twice" here. 1499 */ 1500 if (new_window && new_window >= 2 * rcv_window_now) 1501 time_to_ack = true; 1502 } 1503 } 1504 if (time_to_ack) 1505 tcp_send_ack(sk); 1506 } 1507 1508 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1509 { 1510 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1511 struct tcp_sock *tp = tcp_sk(sk); 1512 1513 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1514 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1515 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1516 __tcp_cleanup_rbuf(sk, copied); 1517 } 1518 1519 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1520 { 1521 __skb_unlink(skb, &sk->sk_receive_queue); 1522 if (likely(skb->destructor == sock_rfree)) { 1523 sock_rfree(skb); 1524 skb->destructor = NULL; 1525 skb->sk = NULL; 1526 return skb_attempt_defer_free(skb); 1527 } 1528 __kfree_skb(skb); 1529 } 1530 1531 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1532 { 1533 struct sk_buff *skb; 1534 u32 offset; 1535 1536 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1537 offset = seq - TCP_SKB_CB(skb)->seq; 1538 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1539 pr_err_once("%s: found a SYN, please report !\n", __func__); 1540 offset--; 1541 } 1542 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1543 *off = offset; 1544 return skb; 1545 } 1546 /* This looks weird, but this can happen if TCP collapsing 1547 * splitted a fat GRO packet, while we released socket lock 1548 * in skb_splice_bits() 1549 */ 1550 tcp_eat_recv_skb(sk, skb); 1551 } 1552 return NULL; 1553 } 1554 EXPORT_SYMBOL(tcp_recv_skb); 1555 1556 /* 1557 * This routine provides an alternative to tcp_recvmsg() for routines 1558 * that would like to handle copying from skbuffs directly in 'sendfile' 1559 * fashion. 1560 * Note: 1561 * - It is assumed that the socket was locked by the caller. 1562 * - The routine does not block. 1563 * - At present, there is no support for reading OOB data 1564 * or for 'peeking' the socket using this routine 1565 * (although both would be easy to implement). 1566 */ 1567 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1568 sk_read_actor_t recv_actor) 1569 { 1570 struct sk_buff *skb; 1571 struct tcp_sock *tp = tcp_sk(sk); 1572 u32 seq = tp->copied_seq; 1573 u32 offset; 1574 int copied = 0; 1575 1576 if (sk->sk_state == TCP_LISTEN) 1577 return -ENOTCONN; 1578 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1579 if (offset < skb->len) { 1580 int used; 1581 size_t len; 1582 1583 len = skb->len - offset; 1584 /* Stop reading if we hit a patch of urgent data */ 1585 if (unlikely(tp->urg_data)) { 1586 u32 urg_offset = tp->urg_seq - seq; 1587 if (urg_offset < len) 1588 len = urg_offset; 1589 if (!len) 1590 break; 1591 } 1592 used = recv_actor(desc, skb, offset, len); 1593 if (used <= 0) { 1594 if (!copied) 1595 copied = used; 1596 break; 1597 } 1598 if (WARN_ON_ONCE(used > len)) 1599 used = len; 1600 seq += used; 1601 copied += used; 1602 offset += used; 1603 1604 /* If recv_actor drops the lock (e.g. TCP splice 1605 * receive) the skb pointer might be invalid when 1606 * getting here: tcp_collapse might have deleted it 1607 * while aggregating skbs from the socket queue. 1608 */ 1609 skb = tcp_recv_skb(sk, seq - 1, &offset); 1610 if (!skb) 1611 break; 1612 /* TCP coalescing might have appended data to the skb. 1613 * Try to splice more frags 1614 */ 1615 if (offset + 1 != skb->len) 1616 continue; 1617 } 1618 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1619 tcp_eat_recv_skb(sk, skb); 1620 ++seq; 1621 break; 1622 } 1623 tcp_eat_recv_skb(sk, skb); 1624 if (!desc->count) 1625 break; 1626 WRITE_ONCE(tp->copied_seq, seq); 1627 } 1628 WRITE_ONCE(tp->copied_seq, seq); 1629 1630 tcp_rcv_space_adjust(sk); 1631 1632 /* Clean up data we have read: This will do ACK frames. */ 1633 if (copied > 0) { 1634 tcp_recv_skb(sk, seq, &offset); 1635 tcp_cleanup_rbuf(sk, copied); 1636 } 1637 return copied; 1638 } 1639 EXPORT_SYMBOL(tcp_read_sock); 1640 1641 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1642 { 1643 struct sk_buff *skb; 1644 int copied = 0; 1645 1646 if (sk->sk_state == TCP_LISTEN) 1647 return -ENOTCONN; 1648 1649 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1650 u8 tcp_flags; 1651 int used; 1652 1653 __skb_unlink(skb, &sk->sk_receive_queue); 1654 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1655 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1656 used = recv_actor(sk, skb); 1657 if (used < 0) { 1658 if (!copied) 1659 copied = used; 1660 break; 1661 } 1662 copied += used; 1663 1664 if (tcp_flags & TCPHDR_FIN) 1665 break; 1666 } 1667 return copied; 1668 } 1669 EXPORT_SYMBOL(tcp_read_skb); 1670 1671 void tcp_read_done(struct sock *sk, size_t len) 1672 { 1673 struct tcp_sock *tp = tcp_sk(sk); 1674 u32 seq = tp->copied_seq; 1675 struct sk_buff *skb; 1676 size_t left; 1677 u32 offset; 1678 1679 if (sk->sk_state == TCP_LISTEN) 1680 return; 1681 1682 left = len; 1683 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1684 int used; 1685 1686 used = min_t(size_t, skb->len - offset, left); 1687 seq += used; 1688 left -= used; 1689 1690 if (skb->len > offset + used) 1691 break; 1692 1693 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1694 tcp_eat_recv_skb(sk, skb); 1695 ++seq; 1696 break; 1697 } 1698 tcp_eat_recv_skb(sk, skb); 1699 } 1700 WRITE_ONCE(tp->copied_seq, seq); 1701 1702 tcp_rcv_space_adjust(sk); 1703 1704 /* Clean up data we have read: This will do ACK frames. */ 1705 if (left != len) 1706 tcp_cleanup_rbuf(sk, len - left); 1707 } 1708 EXPORT_SYMBOL(tcp_read_done); 1709 1710 int tcp_peek_len(struct socket *sock) 1711 { 1712 return tcp_inq(sock->sk); 1713 } 1714 EXPORT_SYMBOL(tcp_peek_len); 1715 1716 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1717 int tcp_set_rcvlowat(struct sock *sk, int val) 1718 { 1719 int space, cap; 1720 1721 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1722 cap = sk->sk_rcvbuf >> 1; 1723 else 1724 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1725 val = min(val, cap); 1726 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1727 1728 /* Check if we need to signal EPOLLIN right now */ 1729 tcp_data_ready(sk); 1730 1731 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1732 return 0; 1733 1734 space = tcp_space_from_win(sk, val); 1735 if (space > sk->sk_rcvbuf) { 1736 WRITE_ONCE(sk->sk_rcvbuf, space); 1737 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1738 } 1739 return 0; 1740 } 1741 EXPORT_SYMBOL(tcp_set_rcvlowat); 1742 1743 void tcp_update_recv_tstamps(struct sk_buff *skb, 1744 struct scm_timestamping_internal *tss) 1745 { 1746 if (skb->tstamp) 1747 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1748 else 1749 tss->ts[0] = (struct timespec64) {0}; 1750 1751 if (skb_hwtstamps(skb)->hwtstamp) 1752 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1753 else 1754 tss->ts[2] = (struct timespec64) {0}; 1755 } 1756 1757 #ifdef CONFIG_MMU 1758 static const struct vm_operations_struct tcp_vm_ops = { 1759 }; 1760 1761 int tcp_mmap(struct file *file, struct socket *sock, 1762 struct vm_area_struct *vma) 1763 { 1764 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1765 return -EPERM; 1766 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1767 1768 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1769 vm_flags_set(vma, VM_MIXEDMAP); 1770 1771 vma->vm_ops = &tcp_vm_ops; 1772 return 0; 1773 } 1774 EXPORT_SYMBOL(tcp_mmap); 1775 1776 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1777 u32 *offset_frag) 1778 { 1779 skb_frag_t *frag; 1780 1781 if (unlikely(offset_skb >= skb->len)) 1782 return NULL; 1783 1784 offset_skb -= skb_headlen(skb); 1785 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1786 return NULL; 1787 1788 frag = skb_shinfo(skb)->frags; 1789 while (offset_skb) { 1790 if (skb_frag_size(frag) > offset_skb) { 1791 *offset_frag = offset_skb; 1792 return frag; 1793 } 1794 offset_skb -= skb_frag_size(frag); 1795 ++frag; 1796 } 1797 *offset_frag = 0; 1798 return frag; 1799 } 1800 1801 static bool can_map_frag(const skb_frag_t *frag) 1802 { 1803 struct page *page; 1804 1805 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1806 return false; 1807 1808 page = skb_frag_page(frag); 1809 1810 if (PageCompound(page) || page->mapping) 1811 return false; 1812 1813 return true; 1814 } 1815 1816 static int find_next_mappable_frag(const skb_frag_t *frag, 1817 int remaining_in_skb) 1818 { 1819 int offset = 0; 1820 1821 if (likely(can_map_frag(frag))) 1822 return 0; 1823 1824 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1825 offset += skb_frag_size(frag); 1826 ++frag; 1827 } 1828 return offset; 1829 } 1830 1831 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1832 struct tcp_zerocopy_receive *zc, 1833 struct sk_buff *skb, u32 offset) 1834 { 1835 u32 frag_offset, partial_frag_remainder = 0; 1836 int mappable_offset; 1837 skb_frag_t *frag; 1838 1839 /* worst case: skip to next skb. try to improve on this case below */ 1840 zc->recv_skip_hint = skb->len - offset; 1841 1842 /* Find the frag containing this offset (and how far into that frag) */ 1843 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1844 if (!frag) 1845 return; 1846 1847 if (frag_offset) { 1848 struct skb_shared_info *info = skb_shinfo(skb); 1849 1850 /* We read part of the last frag, must recvmsg() rest of skb. */ 1851 if (frag == &info->frags[info->nr_frags - 1]) 1852 return; 1853 1854 /* Else, we must at least read the remainder in this frag. */ 1855 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1856 zc->recv_skip_hint -= partial_frag_remainder; 1857 ++frag; 1858 } 1859 1860 /* partial_frag_remainder: If part way through a frag, must read rest. 1861 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1862 * in partial_frag_remainder. 1863 */ 1864 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1865 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1866 } 1867 1868 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1869 int flags, struct scm_timestamping_internal *tss, 1870 int *cmsg_flags); 1871 static int receive_fallback_to_copy(struct sock *sk, 1872 struct tcp_zerocopy_receive *zc, int inq, 1873 struct scm_timestamping_internal *tss) 1874 { 1875 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1876 struct msghdr msg = {}; 1877 int err; 1878 1879 zc->length = 0; 1880 zc->recv_skip_hint = 0; 1881 1882 if (copy_address != zc->copybuf_address) 1883 return -EINVAL; 1884 1885 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1886 &msg.msg_iter); 1887 if (err) 1888 return err; 1889 1890 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1891 tss, &zc->msg_flags); 1892 if (err < 0) 1893 return err; 1894 1895 zc->copybuf_len = err; 1896 if (likely(zc->copybuf_len)) { 1897 struct sk_buff *skb; 1898 u32 offset; 1899 1900 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1901 if (skb) 1902 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1903 } 1904 return 0; 1905 } 1906 1907 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1908 struct sk_buff *skb, u32 copylen, 1909 u32 *offset, u32 *seq) 1910 { 1911 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1912 struct msghdr msg = {}; 1913 int err; 1914 1915 if (copy_address != zc->copybuf_address) 1916 return -EINVAL; 1917 1918 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1919 &msg.msg_iter); 1920 if (err) 1921 return err; 1922 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1923 if (err) 1924 return err; 1925 zc->recv_skip_hint -= copylen; 1926 *offset += copylen; 1927 *seq += copylen; 1928 return (__s32)copylen; 1929 } 1930 1931 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1932 struct sock *sk, 1933 struct sk_buff *skb, 1934 u32 *seq, 1935 s32 copybuf_len, 1936 struct scm_timestamping_internal *tss) 1937 { 1938 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1939 1940 if (!copylen) 1941 return 0; 1942 /* skb is null if inq < PAGE_SIZE. */ 1943 if (skb) { 1944 offset = *seq - TCP_SKB_CB(skb)->seq; 1945 } else { 1946 skb = tcp_recv_skb(sk, *seq, &offset); 1947 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1948 tcp_update_recv_tstamps(skb, tss); 1949 zc->msg_flags |= TCP_CMSG_TS; 1950 } 1951 } 1952 1953 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1954 seq); 1955 return zc->copybuf_len < 0 ? 0 : copylen; 1956 } 1957 1958 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1959 struct page **pending_pages, 1960 unsigned long pages_remaining, 1961 unsigned long *address, 1962 u32 *length, 1963 u32 *seq, 1964 struct tcp_zerocopy_receive *zc, 1965 u32 total_bytes_to_map, 1966 int err) 1967 { 1968 /* At least one page did not map. Try zapping if we skipped earlier. */ 1969 if (err == -EBUSY && 1970 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1971 u32 maybe_zap_len; 1972 1973 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1974 *length + /* Mapped or pending */ 1975 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1976 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1977 err = 0; 1978 } 1979 1980 if (!err) { 1981 unsigned long leftover_pages = pages_remaining; 1982 int bytes_mapped; 1983 1984 /* We called zap_page_range_single, try to reinsert. */ 1985 err = vm_insert_pages(vma, *address, 1986 pending_pages, 1987 &pages_remaining); 1988 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1989 *seq += bytes_mapped; 1990 *address += bytes_mapped; 1991 } 1992 if (err) { 1993 /* Either we were unable to zap, OR we zapped, retried an 1994 * insert, and still had an issue. Either ways, pages_remaining 1995 * is the number of pages we were unable to map, and we unroll 1996 * some state we speculatively touched before. 1997 */ 1998 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1999 2000 *length -= bytes_not_mapped; 2001 zc->recv_skip_hint += bytes_not_mapped; 2002 } 2003 return err; 2004 } 2005 2006 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2007 struct page **pages, 2008 unsigned int pages_to_map, 2009 unsigned long *address, 2010 u32 *length, 2011 u32 *seq, 2012 struct tcp_zerocopy_receive *zc, 2013 u32 total_bytes_to_map) 2014 { 2015 unsigned long pages_remaining = pages_to_map; 2016 unsigned int pages_mapped; 2017 unsigned int bytes_mapped; 2018 int err; 2019 2020 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2021 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2022 bytes_mapped = PAGE_SIZE * pages_mapped; 2023 /* Even if vm_insert_pages fails, it may have partially succeeded in 2024 * mapping (some but not all of the pages). 2025 */ 2026 *seq += bytes_mapped; 2027 *address += bytes_mapped; 2028 2029 if (likely(!err)) 2030 return 0; 2031 2032 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2033 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2034 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2035 err); 2036 } 2037 2038 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2039 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2040 struct tcp_zerocopy_receive *zc, 2041 struct scm_timestamping_internal *tss) 2042 { 2043 unsigned long msg_control_addr; 2044 struct msghdr cmsg_dummy; 2045 2046 msg_control_addr = (unsigned long)zc->msg_control; 2047 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2048 cmsg_dummy.msg_controllen = 2049 (__kernel_size_t)zc->msg_controllen; 2050 cmsg_dummy.msg_flags = in_compat_syscall() 2051 ? MSG_CMSG_COMPAT : 0; 2052 cmsg_dummy.msg_control_is_user = true; 2053 zc->msg_flags = 0; 2054 if (zc->msg_control == msg_control_addr && 2055 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2056 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2057 zc->msg_control = (__u64) 2058 ((uintptr_t)cmsg_dummy.msg_control_user); 2059 zc->msg_controllen = 2060 (__u64)cmsg_dummy.msg_controllen; 2061 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2062 } 2063 } 2064 2065 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2066 unsigned long address, 2067 bool *mmap_locked) 2068 { 2069 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2070 2071 if (vma) { 2072 if (vma->vm_ops != &tcp_vm_ops) { 2073 vma_end_read(vma); 2074 return NULL; 2075 } 2076 *mmap_locked = false; 2077 return vma; 2078 } 2079 2080 mmap_read_lock(mm); 2081 vma = vma_lookup(mm, address); 2082 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2083 mmap_read_unlock(mm); 2084 return NULL; 2085 } 2086 *mmap_locked = true; 2087 return vma; 2088 } 2089 2090 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2091 static int tcp_zerocopy_receive(struct sock *sk, 2092 struct tcp_zerocopy_receive *zc, 2093 struct scm_timestamping_internal *tss) 2094 { 2095 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2096 unsigned long address = (unsigned long)zc->address; 2097 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2098 s32 copybuf_len = zc->copybuf_len; 2099 struct tcp_sock *tp = tcp_sk(sk); 2100 const skb_frag_t *frags = NULL; 2101 unsigned int pages_to_map = 0; 2102 struct vm_area_struct *vma; 2103 struct sk_buff *skb = NULL; 2104 u32 seq = tp->copied_seq; 2105 u32 total_bytes_to_map; 2106 int inq = tcp_inq(sk); 2107 bool mmap_locked; 2108 int ret; 2109 2110 zc->copybuf_len = 0; 2111 zc->msg_flags = 0; 2112 2113 if (address & (PAGE_SIZE - 1) || address != zc->address) 2114 return -EINVAL; 2115 2116 if (sk->sk_state == TCP_LISTEN) 2117 return -ENOTCONN; 2118 2119 sock_rps_record_flow(sk); 2120 2121 if (inq && inq <= copybuf_len) 2122 return receive_fallback_to_copy(sk, zc, inq, tss); 2123 2124 if (inq < PAGE_SIZE) { 2125 zc->length = 0; 2126 zc->recv_skip_hint = inq; 2127 if (!inq && sock_flag(sk, SOCK_DONE)) 2128 return -EIO; 2129 return 0; 2130 } 2131 2132 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2133 if (!vma) 2134 return -EINVAL; 2135 2136 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2137 avail_len = min_t(u32, vma_len, inq); 2138 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2139 if (total_bytes_to_map) { 2140 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2141 zap_page_range_single(vma, address, total_bytes_to_map, 2142 NULL); 2143 zc->length = total_bytes_to_map; 2144 zc->recv_skip_hint = 0; 2145 } else { 2146 zc->length = avail_len; 2147 zc->recv_skip_hint = avail_len; 2148 } 2149 ret = 0; 2150 while (length + PAGE_SIZE <= zc->length) { 2151 int mappable_offset; 2152 struct page *page; 2153 2154 if (zc->recv_skip_hint < PAGE_SIZE) { 2155 u32 offset_frag; 2156 2157 if (skb) { 2158 if (zc->recv_skip_hint > 0) 2159 break; 2160 skb = skb->next; 2161 offset = seq - TCP_SKB_CB(skb)->seq; 2162 } else { 2163 skb = tcp_recv_skb(sk, seq, &offset); 2164 } 2165 2166 if (!skb_frags_readable(skb)) 2167 break; 2168 2169 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2170 tcp_update_recv_tstamps(skb, tss); 2171 zc->msg_flags |= TCP_CMSG_TS; 2172 } 2173 zc->recv_skip_hint = skb->len - offset; 2174 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2175 if (!frags || offset_frag) 2176 break; 2177 } 2178 2179 mappable_offset = find_next_mappable_frag(frags, 2180 zc->recv_skip_hint); 2181 if (mappable_offset) { 2182 zc->recv_skip_hint = mappable_offset; 2183 break; 2184 } 2185 page = skb_frag_page(frags); 2186 if (WARN_ON_ONCE(!page)) 2187 break; 2188 2189 prefetchw(page); 2190 pages[pages_to_map++] = page; 2191 length += PAGE_SIZE; 2192 zc->recv_skip_hint -= PAGE_SIZE; 2193 frags++; 2194 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2195 zc->recv_skip_hint < PAGE_SIZE) { 2196 /* Either full batch, or we're about to go to next skb 2197 * (and we cannot unroll failed ops across skbs). 2198 */ 2199 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2200 pages_to_map, 2201 &address, &length, 2202 &seq, zc, 2203 total_bytes_to_map); 2204 if (ret) 2205 goto out; 2206 pages_to_map = 0; 2207 } 2208 } 2209 if (pages_to_map) { 2210 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2211 &address, &length, &seq, 2212 zc, total_bytes_to_map); 2213 } 2214 out: 2215 if (mmap_locked) 2216 mmap_read_unlock(current->mm); 2217 else 2218 vma_end_read(vma); 2219 /* Try to copy straggler data. */ 2220 if (!ret) 2221 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2222 2223 if (length + copylen) { 2224 WRITE_ONCE(tp->copied_seq, seq); 2225 tcp_rcv_space_adjust(sk); 2226 2227 /* Clean up data we have read: This will do ACK frames. */ 2228 tcp_recv_skb(sk, seq, &offset); 2229 tcp_cleanup_rbuf(sk, length + copylen); 2230 ret = 0; 2231 if (length == zc->length) 2232 zc->recv_skip_hint = 0; 2233 } else { 2234 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2235 ret = -EIO; 2236 } 2237 zc->length = length; 2238 return ret; 2239 } 2240 #endif 2241 2242 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2243 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2244 struct scm_timestamping_internal *tss) 2245 { 2246 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2247 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2248 bool has_timestamping = false; 2249 2250 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2251 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2252 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2253 if (new_tstamp) { 2254 struct __kernel_timespec kts = { 2255 .tv_sec = tss->ts[0].tv_sec, 2256 .tv_nsec = tss->ts[0].tv_nsec, 2257 }; 2258 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2259 sizeof(kts), &kts); 2260 } else { 2261 struct __kernel_old_timespec ts_old = { 2262 .tv_sec = tss->ts[0].tv_sec, 2263 .tv_nsec = tss->ts[0].tv_nsec, 2264 }; 2265 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2266 sizeof(ts_old), &ts_old); 2267 } 2268 } else { 2269 if (new_tstamp) { 2270 struct __kernel_sock_timeval stv = { 2271 .tv_sec = tss->ts[0].tv_sec, 2272 .tv_usec = tss->ts[0].tv_nsec / 1000, 2273 }; 2274 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2275 sizeof(stv), &stv); 2276 } else { 2277 struct __kernel_old_timeval tv = { 2278 .tv_sec = tss->ts[0].tv_sec, 2279 .tv_usec = tss->ts[0].tv_nsec / 1000, 2280 }; 2281 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2282 sizeof(tv), &tv); 2283 } 2284 } 2285 } 2286 2287 if (tsflags & SOF_TIMESTAMPING_SOFTWARE && 2288 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 2289 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2290 has_timestamping = true; 2291 else 2292 tss->ts[0] = (struct timespec64) {0}; 2293 } 2294 2295 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2296 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 2297 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 2298 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2299 has_timestamping = true; 2300 else 2301 tss->ts[2] = (struct timespec64) {0}; 2302 } 2303 2304 if (has_timestamping) { 2305 tss->ts[1] = (struct timespec64) {0}; 2306 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2307 put_cmsg_scm_timestamping64(msg, tss); 2308 else 2309 put_cmsg_scm_timestamping(msg, tss); 2310 } 2311 } 2312 2313 static int tcp_inq_hint(struct sock *sk) 2314 { 2315 const struct tcp_sock *tp = tcp_sk(sk); 2316 u32 copied_seq = READ_ONCE(tp->copied_seq); 2317 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2318 int inq; 2319 2320 inq = rcv_nxt - copied_seq; 2321 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2322 lock_sock(sk); 2323 inq = tp->rcv_nxt - tp->copied_seq; 2324 release_sock(sk); 2325 } 2326 /* After receiving a FIN, tell the user-space to continue reading 2327 * by returning a non-zero inq. 2328 */ 2329 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2330 inq = 1; 2331 return inq; 2332 } 2333 2334 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ 2335 struct tcp_xa_pool { 2336 u8 max; /* max <= MAX_SKB_FRAGS */ 2337 u8 idx; /* idx <= max */ 2338 __u32 tokens[MAX_SKB_FRAGS]; 2339 netmem_ref netmems[MAX_SKB_FRAGS]; 2340 }; 2341 2342 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) 2343 { 2344 int i; 2345 2346 /* Commit part that has been copied to user space. */ 2347 for (i = 0; i < p->idx; i++) 2348 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, 2349 (__force void *)p->netmems[i], GFP_KERNEL); 2350 /* Rollback what has been pre-allocated and is no longer needed. */ 2351 for (; i < p->max; i++) 2352 __xa_erase(&sk->sk_user_frags, p->tokens[i]); 2353 2354 p->max = 0; 2355 p->idx = 0; 2356 } 2357 2358 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) 2359 { 2360 if (!p->max) 2361 return; 2362 2363 xa_lock_bh(&sk->sk_user_frags); 2364 2365 tcp_xa_pool_commit_locked(sk, p); 2366 2367 xa_unlock_bh(&sk->sk_user_frags); 2368 } 2369 2370 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, 2371 unsigned int max_frags) 2372 { 2373 int err, k; 2374 2375 if (p->idx < p->max) 2376 return 0; 2377 2378 xa_lock_bh(&sk->sk_user_frags); 2379 2380 tcp_xa_pool_commit_locked(sk, p); 2381 2382 for (k = 0; k < max_frags; k++) { 2383 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], 2384 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); 2385 if (err) 2386 break; 2387 } 2388 2389 xa_unlock_bh(&sk->sk_user_frags); 2390 2391 p->max = k; 2392 p->idx = 0; 2393 return k ? 0 : err; 2394 } 2395 2396 /* On error, returns the -errno. On success, returns number of bytes sent to the 2397 * user. May not consume all of @remaining_len. 2398 */ 2399 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, 2400 unsigned int offset, struct msghdr *msg, 2401 int remaining_len) 2402 { 2403 struct dmabuf_cmsg dmabuf_cmsg = { 0 }; 2404 struct tcp_xa_pool tcp_xa_pool; 2405 unsigned int start; 2406 int i, copy, n; 2407 int sent = 0; 2408 int err = 0; 2409 2410 tcp_xa_pool.max = 0; 2411 tcp_xa_pool.idx = 0; 2412 do { 2413 start = skb_headlen(skb); 2414 2415 if (skb_frags_readable(skb)) { 2416 err = -ENODEV; 2417 goto out; 2418 } 2419 2420 /* Copy header. */ 2421 copy = start - offset; 2422 if (copy > 0) { 2423 copy = min(copy, remaining_len); 2424 2425 n = copy_to_iter(skb->data + offset, copy, 2426 &msg->msg_iter); 2427 if (n != copy) { 2428 err = -EFAULT; 2429 goto out; 2430 } 2431 2432 offset += copy; 2433 remaining_len -= copy; 2434 2435 /* First a dmabuf_cmsg for # bytes copied to user 2436 * buffer. 2437 */ 2438 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); 2439 dmabuf_cmsg.frag_size = copy; 2440 err = put_cmsg(msg, SOL_SOCKET, SO_DEVMEM_LINEAR, 2441 sizeof(dmabuf_cmsg), &dmabuf_cmsg); 2442 if (err || msg->msg_flags & MSG_CTRUNC) { 2443 msg->msg_flags &= ~MSG_CTRUNC; 2444 if (!err) 2445 err = -ETOOSMALL; 2446 goto out; 2447 } 2448 2449 sent += copy; 2450 2451 if (remaining_len == 0) 2452 goto out; 2453 } 2454 2455 /* after that, send information of dmabuf pages through a 2456 * sequence of cmsg 2457 */ 2458 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2459 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2460 struct net_iov *niov; 2461 u64 frag_offset; 2462 int end; 2463 2464 /* !skb_frags_readable() should indicate that ALL the 2465 * frags in this skb are dmabuf net_iovs. We're checking 2466 * for that flag above, but also check individual frags 2467 * here. If the tcp stack is not setting 2468 * skb_frags_readable() correctly, we still don't want 2469 * to crash here. 2470 */ 2471 if (!skb_frag_net_iov(frag)) { 2472 net_err_ratelimited("Found non-dmabuf skb with net_iov"); 2473 err = -ENODEV; 2474 goto out; 2475 } 2476 2477 niov = skb_frag_net_iov(frag); 2478 end = start + skb_frag_size(frag); 2479 copy = end - offset; 2480 2481 if (copy > 0) { 2482 copy = min(copy, remaining_len); 2483 2484 frag_offset = net_iov_virtual_addr(niov) + 2485 skb_frag_off(frag) + offset - 2486 start; 2487 dmabuf_cmsg.frag_offset = frag_offset; 2488 dmabuf_cmsg.frag_size = copy; 2489 err = tcp_xa_pool_refill(sk, &tcp_xa_pool, 2490 skb_shinfo(skb)->nr_frags - i); 2491 if (err) 2492 goto out; 2493 2494 /* Will perform the exchange later */ 2495 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; 2496 dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov); 2497 2498 offset += copy; 2499 remaining_len -= copy; 2500 2501 err = put_cmsg(msg, SOL_SOCKET, 2502 SO_DEVMEM_DMABUF, 2503 sizeof(dmabuf_cmsg), 2504 &dmabuf_cmsg); 2505 if (err || msg->msg_flags & MSG_CTRUNC) { 2506 msg->msg_flags &= ~MSG_CTRUNC; 2507 if (!err) 2508 err = -ETOOSMALL; 2509 goto out; 2510 } 2511 2512 atomic_long_inc(&niov->pp_ref_count); 2513 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); 2514 2515 sent += copy; 2516 2517 if (remaining_len == 0) 2518 goto out; 2519 } 2520 start = end; 2521 } 2522 2523 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2524 if (!remaining_len) 2525 goto out; 2526 2527 /* if remaining_len is not satisfied yet, we need to go to the 2528 * next frag in the frag_list to satisfy remaining_len. 2529 */ 2530 skb = skb_shinfo(skb)->frag_list ?: skb->next; 2531 2532 offset = offset - start; 2533 } while (skb); 2534 2535 if (remaining_len) { 2536 err = -EFAULT; 2537 goto out; 2538 } 2539 2540 out: 2541 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2542 if (!sent) 2543 sent = err; 2544 2545 return sent; 2546 } 2547 2548 /* 2549 * This routine copies from a sock struct into the user buffer. 2550 * 2551 * Technical note: in 2.3 we work on _locked_ socket, so that 2552 * tricks with *seq access order and skb->users are not required. 2553 * Probably, code can be easily improved even more. 2554 */ 2555 2556 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2557 int flags, struct scm_timestamping_internal *tss, 2558 int *cmsg_flags) 2559 { 2560 struct tcp_sock *tp = tcp_sk(sk); 2561 int last_copied_dmabuf = -1; /* uninitialized */ 2562 int copied = 0; 2563 u32 peek_seq; 2564 u32 *seq; 2565 unsigned long used; 2566 int err; 2567 int target; /* Read at least this many bytes */ 2568 long timeo; 2569 struct sk_buff *skb, *last; 2570 u32 peek_offset = 0; 2571 u32 urg_hole = 0; 2572 2573 err = -ENOTCONN; 2574 if (sk->sk_state == TCP_LISTEN) 2575 goto out; 2576 2577 if (tp->recvmsg_inq) { 2578 *cmsg_flags = TCP_CMSG_INQ; 2579 msg->msg_get_inq = 1; 2580 } 2581 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2582 2583 /* Urgent data needs to be handled specially. */ 2584 if (flags & MSG_OOB) 2585 goto recv_urg; 2586 2587 if (unlikely(tp->repair)) { 2588 err = -EPERM; 2589 if (!(flags & MSG_PEEK)) 2590 goto out; 2591 2592 if (tp->repair_queue == TCP_SEND_QUEUE) 2593 goto recv_sndq; 2594 2595 err = -EINVAL; 2596 if (tp->repair_queue == TCP_NO_QUEUE) 2597 goto out; 2598 2599 /* 'common' recv queue MSG_PEEK-ing */ 2600 } 2601 2602 seq = &tp->copied_seq; 2603 if (flags & MSG_PEEK) { 2604 peek_offset = max(sk_peek_offset(sk, flags), 0); 2605 peek_seq = tp->copied_seq + peek_offset; 2606 seq = &peek_seq; 2607 } 2608 2609 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2610 2611 do { 2612 u32 offset; 2613 2614 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2615 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2616 if (copied) 2617 break; 2618 if (signal_pending(current)) { 2619 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2620 break; 2621 } 2622 } 2623 2624 /* Next get a buffer. */ 2625 2626 last = skb_peek_tail(&sk->sk_receive_queue); 2627 skb_queue_walk(&sk->sk_receive_queue, skb) { 2628 last = skb; 2629 /* Now that we have two receive queues this 2630 * shouldn't happen. 2631 */ 2632 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2633 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2634 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2635 flags)) 2636 break; 2637 2638 offset = *seq - TCP_SKB_CB(skb)->seq; 2639 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2640 pr_err_once("%s: found a SYN, please report !\n", __func__); 2641 offset--; 2642 } 2643 if (offset < skb->len) 2644 goto found_ok_skb; 2645 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2646 goto found_fin_ok; 2647 WARN(!(flags & MSG_PEEK), 2648 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2649 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2650 } 2651 2652 /* Well, if we have backlog, try to process it now yet. */ 2653 2654 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2655 break; 2656 2657 if (copied) { 2658 if (!timeo || 2659 sk->sk_err || 2660 sk->sk_state == TCP_CLOSE || 2661 (sk->sk_shutdown & RCV_SHUTDOWN) || 2662 signal_pending(current)) 2663 break; 2664 } else { 2665 if (sock_flag(sk, SOCK_DONE)) 2666 break; 2667 2668 if (sk->sk_err) { 2669 copied = sock_error(sk); 2670 break; 2671 } 2672 2673 if (sk->sk_shutdown & RCV_SHUTDOWN) 2674 break; 2675 2676 if (sk->sk_state == TCP_CLOSE) { 2677 /* This occurs when user tries to read 2678 * from never connected socket. 2679 */ 2680 copied = -ENOTCONN; 2681 break; 2682 } 2683 2684 if (!timeo) { 2685 copied = -EAGAIN; 2686 break; 2687 } 2688 2689 if (signal_pending(current)) { 2690 copied = sock_intr_errno(timeo); 2691 break; 2692 } 2693 } 2694 2695 if (copied >= target) { 2696 /* Do not sleep, just process backlog. */ 2697 __sk_flush_backlog(sk); 2698 } else { 2699 tcp_cleanup_rbuf(sk, copied); 2700 err = sk_wait_data(sk, &timeo, last); 2701 if (err < 0) { 2702 err = copied ? : err; 2703 goto out; 2704 } 2705 } 2706 2707 if ((flags & MSG_PEEK) && 2708 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2709 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2710 current->comm, 2711 task_pid_nr(current)); 2712 peek_seq = tp->copied_seq + peek_offset; 2713 } 2714 continue; 2715 2716 found_ok_skb: 2717 /* Ok so how much can we use? */ 2718 used = skb->len - offset; 2719 if (len < used) 2720 used = len; 2721 2722 /* Do we have urgent data here? */ 2723 if (unlikely(tp->urg_data)) { 2724 u32 urg_offset = tp->urg_seq - *seq; 2725 if (urg_offset < used) { 2726 if (!urg_offset) { 2727 if (!sock_flag(sk, SOCK_URGINLINE)) { 2728 WRITE_ONCE(*seq, *seq + 1); 2729 urg_hole++; 2730 offset++; 2731 used--; 2732 if (!used) 2733 goto skip_copy; 2734 } 2735 } else 2736 used = urg_offset; 2737 } 2738 } 2739 2740 if (!(flags & MSG_TRUNC)) { 2741 if (last_copied_dmabuf != -1 && 2742 last_copied_dmabuf != !skb_frags_readable(skb)) 2743 break; 2744 2745 if (skb_frags_readable(skb)) { 2746 err = skb_copy_datagram_msg(skb, offset, msg, 2747 used); 2748 if (err) { 2749 /* Exception. Bailout! */ 2750 if (!copied) 2751 copied = -EFAULT; 2752 break; 2753 } 2754 } else { 2755 if (!(flags & MSG_SOCK_DEVMEM)) { 2756 /* dmabuf skbs can only be received 2757 * with the MSG_SOCK_DEVMEM flag. 2758 */ 2759 if (!copied) 2760 copied = -EFAULT; 2761 2762 break; 2763 } 2764 2765 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, 2766 used); 2767 if (err <= 0) { 2768 if (!copied) 2769 copied = -EFAULT; 2770 2771 break; 2772 } 2773 used = err; 2774 } 2775 } 2776 2777 last_copied_dmabuf = !skb_frags_readable(skb); 2778 2779 WRITE_ONCE(*seq, *seq + used); 2780 copied += used; 2781 len -= used; 2782 if (flags & MSG_PEEK) 2783 sk_peek_offset_fwd(sk, used); 2784 else 2785 sk_peek_offset_bwd(sk, used); 2786 tcp_rcv_space_adjust(sk); 2787 2788 skip_copy: 2789 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2790 WRITE_ONCE(tp->urg_data, 0); 2791 tcp_fast_path_check(sk); 2792 } 2793 2794 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2795 tcp_update_recv_tstamps(skb, tss); 2796 *cmsg_flags |= TCP_CMSG_TS; 2797 } 2798 2799 if (used + offset < skb->len) 2800 continue; 2801 2802 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2803 goto found_fin_ok; 2804 if (!(flags & MSG_PEEK)) 2805 tcp_eat_recv_skb(sk, skb); 2806 continue; 2807 2808 found_fin_ok: 2809 /* Process the FIN. */ 2810 WRITE_ONCE(*seq, *seq + 1); 2811 if (!(flags & MSG_PEEK)) 2812 tcp_eat_recv_skb(sk, skb); 2813 break; 2814 } while (len > 0); 2815 2816 /* According to UNIX98, msg_name/msg_namelen are ignored 2817 * on connected socket. I was just happy when found this 8) --ANK 2818 */ 2819 2820 /* Clean up data we have read: This will do ACK frames. */ 2821 tcp_cleanup_rbuf(sk, copied); 2822 return copied; 2823 2824 out: 2825 return err; 2826 2827 recv_urg: 2828 err = tcp_recv_urg(sk, msg, len, flags); 2829 goto out; 2830 2831 recv_sndq: 2832 err = tcp_peek_sndq(sk, msg, len); 2833 goto out; 2834 } 2835 2836 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2837 int *addr_len) 2838 { 2839 int cmsg_flags = 0, ret; 2840 struct scm_timestamping_internal tss; 2841 2842 if (unlikely(flags & MSG_ERRQUEUE)) 2843 return inet_recv_error(sk, msg, len, addr_len); 2844 2845 if (sk_can_busy_loop(sk) && 2846 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2847 sk->sk_state == TCP_ESTABLISHED) 2848 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2849 2850 lock_sock(sk); 2851 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2852 release_sock(sk); 2853 2854 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2855 if (cmsg_flags & TCP_CMSG_TS) 2856 tcp_recv_timestamp(msg, sk, &tss); 2857 if (msg->msg_get_inq) { 2858 msg->msg_inq = tcp_inq_hint(sk); 2859 if (cmsg_flags & TCP_CMSG_INQ) 2860 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2861 sizeof(msg->msg_inq), &msg->msg_inq); 2862 } 2863 } 2864 return ret; 2865 } 2866 EXPORT_SYMBOL(tcp_recvmsg); 2867 2868 void tcp_set_state(struct sock *sk, int state) 2869 { 2870 int oldstate = sk->sk_state; 2871 2872 /* We defined a new enum for TCP states that are exported in BPF 2873 * so as not force the internal TCP states to be frozen. The 2874 * following checks will detect if an internal state value ever 2875 * differs from the BPF value. If this ever happens, then we will 2876 * need to remap the internal value to the BPF value before calling 2877 * tcp_call_bpf_2arg. 2878 */ 2879 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2880 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2881 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2882 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2883 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2884 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2885 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2886 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2887 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2888 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2889 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2890 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2891 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2892 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2893 2894 /* bpf uapi header bpf.h defines an anonymous enum with values 2895 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2896 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2897 * But clang built vmlinux does not have this enum in DWARF 2898 * since clang removes the above code before generating IR/debuginfo. 2899 * Let us explicitly emit the type debuginfo to ensure the 2900 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2901 * regardless of which compiler is used. 2902 */ 2903 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2904 2905 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2906 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2907 2908 switch (state) { 2909 case TCP_ESTABLISHED: 2910 if (oldstate != TCP_ESTABLISHED) 2911 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2912 break; 2913 case TCP_CLOSE_WAIT: 2914 if (oldstate == TCP_SYN_RECV) 2915 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2916 break; 2917 2918 case TCP_CLOSE: 2919 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2920 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2921 2922 sk->sk_prot->unhash(sk); 2923 if (inet_csk(sk)->icsk_bind_hash && 2924 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2925 inet_put_port(sk); 2926 fallthrough; 2927 default: 2928 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2929 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2930 } 2931 2932 /* Change state AFTER socket is unhashed to avoid closed 2933 * socket sitting in hash tables. 2934 */ 2935 inet_sk_state_store(sk, state); 2936 } 2937 EXPORT_SYMBOL_GPL(tcp_set_state); 2938 2939 /* 2940 * State processing on a close. This implements the state shift for 2941 * sending our FIN frame. Note that we only send a FIN for some 2942 * states. A shutdown() may have already sent the FIN, or we may be 2943 * closed. 2944 */ 2945 2946 static const unsigned char new_state[16] = { 2947 /* current state: new state: action: */ 2948 [0 /* (Invalid) */] = TCP_CLOSE, 2949 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2950 [TCP_SYN_SENT] = TCP_CLOSE, 2951 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2952 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2953 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2954 [TCP_TIME_WAIT] = TCP_CLOSE, 2955 [TCP_CLOSE] = TCP_CLOSE, 2956 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2957 [TCP_LAST_ACK] = TCP_LAST_ACK, 2958 [TCP_LISTEN] = TCP_CLOSE, 2959 [TCP_CLOSING] = TCP_CLOSING, 2960 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2961 }; 2962 2963 static int tcp_close_state(struct sock *sk) 2964 { 2965 int next = (int)new_state[sk->sk_state]; 2966 int ns = next & TCP_STATE_MASK; 2967 2968 tcp_set_state(sk, ns); 2969 2970 return next & TCP_ACTION_FIN; 2971 } 2972 2973 /* 2974 * Shutdown the sending side of a connection. Much like close except 2975 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2976 */ 2977 2978 void tcp_shutdown(struct sock *sk, int how) 2979 { 2980 /* We need to grab some memory, and put together a FIN, 2981 * and then put it into the queue to be sent. 2982 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2983 */ 2984 if (!(how & SEND_SHUTDOWN)) 2985 return; 2986 2987 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2988 if ((1 << sk->sk_state) & 2989 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2990 TCPF_CLOSE_WAIT)) { 2991 /* Clear out any half completed packets. FIN if needed. */ 2992 if (tcp_close_state(sk)) 2993 tcp_send_fin(sk); 2994 } 2995 } 2996 EXPORT_SYMBOL(tcp_shutdown); 2997 2998 int tcp_orphan_count_sum(void) 2999 { 3000 int i, total = 0; 3001 3002 for_each_possible_cpu(i) 3003 total += per_cpu(tcp_orphan_count, i); 3004 3005 return max(total, 0); 3006 } 3007 3008 static int tcp_orphan_cache; 3009 static struct timer_list tcp_orphan_timer; 3010 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 3011 3012 static void tcp_orphan_update(struct timer_list *unused) 3013 { 3014 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 3015 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 3016 } 3017 3018 static bool tcp_too_many_orphans(int shift) 3019 { 3020 return READ_ONCE(tcp_orphan_cache) << shift > 3021 READ_ONCE(sysctl_tcp_max_orphans); 3022 } 3023 3024 static bool tcp_out_of_memory(const struct sock *sk) 3025 { 3026 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 3027 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 3028 return true; 3029 return false; 3030 } 3031 3032 bool tcp_check_oom(const struct sock *sk, int shift) 3033 { 3034 bool too_many_orphans, out_of_socket_memory; 3035 3036 too_many_orphans = tcp_too_many_orphans(shift); 3037 out_of_socket_memory = tcp_out_of_memory(sk); 3038 3039 if (too_many_orphans) 3040 net_info_ratelimited("too many orphaned sockets\n"); 3041 if (out_of_socket_memory) 3042 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 3043 return too_many_orphans || out_of_socket_memory; 3044 } 3045 3046 void __tcp_close(struct sock *sk, long timeout) 3047 { 3048 struct sk_buff *skb; 3049 int data_was_unread = 0; 3050 int state; 3051 3052 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3053 3054 if (sk->sk_state == TCP_LISTEN) { 3055 tcp_set_state(sk, TCP_CLOSE); 3056 3057 /* Special case. */ 3058 inet_csk_listen_stop(sk); 3059 3060 goto adjudge_to_death; 3061 } 3062 3063 /* We need to flush the recv. buffs. We do this only on the 3064 * descriptor close, not protocol-sourced closes, because the 3065 * reader process may not have drained the data yet! 3066 */ 3067 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 3068 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 3069 3070 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 3071 len--; 3072 data_was_unread += len; 3073 __kfree_skb(skb); 3074 } 3075 3076 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 3077 if (sk->sk_state == TCP_CLOSE) 3078 goto adjudge_to_death; 3079 3080 /* As outlined in RFC 2525, section 2.17, we send a RST here because 3081 * data was lost. To witness the awful effects of the old behavior of 3082 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 3083 * GET in an FTP client, suspend the process, wait for the client to 3084 * advertise a zero window, then kill -9 the FTP client, wheee... 3085 * Note: timeout is always zero in such a case. 3086 */ 3087 if (unlikely(tcp_sk(sk)->repair)) { 3088 sk->sk_prot->disconnect(sk, 0); 3089 } else if (data_was_unread) { 3090 /* Unread data was tossed, zap the connection. */ 3091 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 3092 tcp_set_state(sk, TCP_CLOSE); 3093 tcp_send_active_reset(sk, sk->sk_allocation, 3094 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 3095 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 3096 /* Check zero linger _after_ checking for unread data. */ 3097 sk->sk_prot->disconnect(sk, 0); 3098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 3099 } else if (tcp_close_state(sk)) { 3100 /* We FIN if the application ate all the data before 3101 * zapping the connection. 3102 */ 3103 3104 /* RED-PEN. Formally speaking, we have broken TCP state 3105 * machine. State transitions: 3106 * 3107 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 3108 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 3109 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 3110 * 3111 * are legal only when FIN has been sent (i.e. in window), 3112 * rather than queued out of window. Purists blame. 3113 * 3114 * F.e. "RFC state" is ESTABLISHED, 3115 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 3116 * 3117 * The visible declinations are that sometimes 3118 * we enter time-wait state, when it is not required really 3119 * (harmless), do not send active resets, when they are 3120 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 3121 * they look as CLOSING or LAST_ACK for Linux) 3122 * Probably, I missed some more holelets. 3123 * --ANK 3124 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 3125 * in a single packet! (May consider it later but will 3126 * probably need API support or TCP_CORK SYN-ACK until 3127 * data is written and socket is closed.) 3128 */ 3129 tcp_send_fin(sk); 3130 } 3131 3132 sk_stream_wait_close(sk, timeout); 3133 3134 adjudge_to_death: 3135 state = sk->sk_state; 3136 sock_hold(sk); 3137 sock_orphan(sk); 3138 3139 local_bh_disable(); 3140 bh_lock_sock(sk); 3141 /* remove backlog if any, without releasing ownership. */ 3142 __release_sock(sk); 3143 3144 this_cpu_inc(tcp_orphan_count); 3145 3146 /* Have we already been destroyed by a softirq or backlog? */ 3147 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 3148 goto out; 3149 3150 /* This is a (useful) BSD violating of the RFC. There is a 3151 * problem with TCP as specified in that the other end could 3152 * keep a socket open forever with no application left this end. 3153 * We use a 1 minute timeout (about the same as BSD) then kill 3154 * our end. If they send after that then tough - BUT: long enough 3155 * that we won't make the old 4*rto = almost no time - whoops 3156 * reset mistake. 3157 * 3158 * Nope, it was not mistake. It is really desired behaviour 3159 * f.e. on http servers, when such sockets are useless, but 3160 * consume significant resources. Let's do it with special 3161 * linger2 option. --ANK 3162 */ 3163 3164 if (sk->sk_state == TCP_FIN_WAIT2) { 3165 struct tcp_sock *tp = tcp_sk(sk); 3166 if (READ_ONCE(tp->linger2) < 0) { 3167 tcp_set_state(sk, TCP_CLOSE); 3168 tcp_send_active_reset(sk, GFP_ATOMIC, 3169 SK_RST_REASON_TCP_ABORT_ON_LINGER); 3170 __NET_INC_STATS(sock_net(sk), 3171 LINUX_MIB_TCPABORTONLINGER); 3172 } else { 3173 const int tmo = tcp_fin_time(sk); 3174 3175 if (tmo > TCP_TIMEWAIT_LEN) { 3176 inet_csk_reset_keepalive_timer(sk, 3177 tmo - TCP_TIMEWAIT_LEN); 3178 } else { 3179 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 3180 goto out; 3181 } 3182 } 3183 } 3184 if (sk->sk_state != TCP_CLOSE) { 3185 if (tcp_check_oom(sk, 0)) { 3186 tcp_set_state(sk, TCP_CLOSE); 3187 tcp_send_active_reset(sk, GFP_ATOMIC, 3188 SK_RST_REASON_TCP_ABORT_ON_MEMORY); 3189 __NET_INC_STATS(sock_net(sk), 3190 LINUX_MIB_TCPABORTONMEMORY); 3191 } else if (!check_net(sock_net(sk))) { 3192 /* Not possible to send reset; just close */ 3193 tcp_set_state(sk, TCP_CLOSE); 3194 } 3195 } 3196 3197 if (sk->sk_state == TCP_CLOSE) { 3198 struct request_sock *req; 3199 3200 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3201 lockdep_sock_is_held(sk)); 3202 /* We could get here with a non-NULL req if the socket is 3203 * aborted (e.g., closed with unread data) before 3WHS 3204 * finishes. 3205 */ 3206 if (req) 3207 reqsk_fastopen_remove(sk, req, false); 3208 inet_csk_destroy_sock(sk); 3209 } 3210 /* Otherwise, socket is reprieved until protocol close. */ 3211 3212 out: 3213 bh_unlock_sock(sk); 3214 local_bh_enable(); 3215 } 3216 3217 void tcp_close(struct sock *sk, long timeout) 3218 { 3219 lock_sock(sk); 3220 __tcp_close(sk, timeout); 3221 release_sock(sk); 3222 if (!sk->sk_net_refcnt) 3223 inet_csk_clear_xmit_timers_sync(sk); 3224 sock_put(sk); 3225 } 3226 EXPORT_SYMBOL(tcp_close); 3227 3228 /* These states need RST on ABORT according to RFC793 */ 3229 3230 static inline bool tcp_need_reset(int state) 3231 { 3232 return (1 << state) & 3233 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3234 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3235 } 3236 3237 static void tcp_rtx_queue_purge(struct sock *sk) 3238 { 3239 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3240 3241 tcp_sk(sk)->highest_sack = NULL; 3242 while (p) { 3243 struct sk_buff *skb = rb_to_skb(p); 3244 3245 p = rb_next(p); 3246 /* Since we are deleting whole queue, no need to 3247 * list_del(&skb->tcp_tsorted_anchor) 3248 */ 3249 tcp_rtx_queue_unlink(skb, sk); 3250 tcp_wmem_free_skb(sk, skb); 3251 } 3252 } 3253 3254 void tcp_write_queue_purge(struct sock *sk) 3255 { 3256 struct sk_buff *skb; 3257 3258 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3259 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3260 tcp_skb_tsorted_anchor_cleanup(skb); 3261 tcp_wmem_free_skb(sk, skb); 3262 } 3263 tcp_rtx_queue_purge(sk); 3264 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3265 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3266 tcp_sk(sk)->packets_out = 0; 3267 inet_csk(sk)->icsk_backoff = 0; 3268 } 3269 3270 int tcp_disconnect(struct sock *sk, int flags) 3271 { 3272 struct inet_sock *inet = inet_sk(sk); 3273 struct inet_connection_sock *icsk = inet_csk(sk); 3274 struct tcp_sock *tp = tcp_sk(sk); 3275 int old_state = sk->sk_state; 3276 u32 seq; 3277 3278 if (old_state != TCP_CLOSE) 3279 tcp_set_state(sk, TCP_CLOSE); 3280 3281 /* ABORT function of RFC793 */ 3282 if (old_state == TCP_LISTEN) { 3283 inet_csk_listen_stop(sk); 3284 } else if (unlikely(tp->repair)) { 3285 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3286 } else if (tcp_need_reset(old_state)) { 3287 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); 3288 WRITE_ONCE(sk->sk_err, ECONNRESET); 3289 } else if (tp->snd_nxt != tp->write_seq && 3290 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 3291 /* The last check adjusts for discrepancy of Linux wrt. RFC 3292 * states 3293 */ 3294 tcp_send_active_reset(sk, gfp_any(), 3295 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); 3296 WRITE_ONCE(sk->sk_err, ECONNRESET); 3297 } else if (old_state == TCP_SYN_SENT) 3298 WRITE_ONCE(sk->sk_err, ECONNRESET); 3299 3300 tcp_clear_xmit_timers(sk); 3301 __skb_queue_purge(&sk->sk_receive_queue); 3302 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3303 WRITE_ONCE(tp->urg_data, 0); 3304 sk_set_peek_off(sk, -1); 3305 tcp_write_queue_purge(sk); 3306 tcp_fastopen_active_disable_ofo_check(sk); 3307 skb_rbtree_purge(&tp->out_of_order_queue); 3308 3309 inet->inet_dport = 0; 3310 3311 inet_bhash2_reset_saddr(sk); 3312 3313 WRITE_ONCE(sk->sk_shutdown, 0); 3314 sock_reset_flag(sk, SOCK_DONE); 3315 tp->srtt_us = 0; 3316 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3317 tp->rcv_rtt_last_tsecr = 0; 3318 3319 seq = tp->write_seq + tp->max_window + 2; 3320 if (!seq) 3321 seq = 1; 3322 WRITE_ONCE(tp->write_seq, seq); 3323 3324 icsk->icsk_backoff = 0; 3325 icsk->icsk_probes_out = 0; 3326 icsk->icsk_probes_tstamp = 0; 3327 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3328 icsk->icsk_rto_min = TCP_RTO_MIN; 3329 icsk->icsk_delack_max = TCP_DELACK_MAX; 3330 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3331 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3332 tp->snd_cwnd_cnt = 0; 3333 tp->is_cwnd_limited = 0; 3334 tp->max_packets_out = 0; 3335 tp->window_clamp = 0; 3336 tp->delivered = 0; 3337 tp->delivered_ce = 0; 3338 if (icsk->icsk_ca_ops->release) 3339 icsk->icsk_ca_ops->release(sk); 3340 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3341 icsk->icsk_ca_initialized = 0; 3342 tcp_set_ca_state(sk, TCP_CA_Open); 3343 tp->is_sack_reneg = 0; 3344 tcp_clear_retrans(tp); 3345 tp->total_retrans = 0; 3346 inet_csk_delack_init(sk); 3347 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3348 * issue in __tcp_select_window() 3349 */ 3350 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3351 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3352 __sk_dst_reset(sk); 3353 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3354 tcp_saved_syn_free(tp); 3355 tp->compressed_ack = 0; 3356 tp->segs_in = 0; 3357 tp->segs_out = 0; 3358 tp->bytes_sent = 0; 3359 tp->bytes_acked = 0; 3360 tp->bytes_received = 0; 3361 tp->bytes_retrans = 0; 3362 tp->data_segs_in = 0; 3363 tp->data_segs_out = 0; 3364 tp->duplicate_sack[0].start_seq = 0; 3365 tp->duplicate_sack[0].end_seq = 0; 3366 tp->dsack_dups = 0; 3367 tp->reord_seen = 0; 3368 tp->retrans_out = 0; 3369 tp->sacked_out = 0; 3370 tp->tlp_high_seq = 0; 3371 tp->last_oow_ack_time = 0; 3372 tp->plb_rehash = 0; 3373 /* There's a bubble in the pipe until at least the first ACK. */ 3374 tp->app_limited = ~0U; 3375 tp->rate_app_limited = 1; 3376 tp->rack.mstamp = 0; 3377 tp->rack.advanced = 0; 3378 tp->rack.reo_wnd_steps = 1; 3379 tp->rack.last_delivered = 0; 3380 tp->rack.reo_wnd_persist = 0; 3381 tp->rack.dsack_seen = 0; 3382 tp->syn_data_acked = 0; 3383 tp->rx_opt.saw_tstamp = 0; 3384 tp->rx_opt.dsack = 0; 3385 tp->rx_opt.num_sacks = 0; 3386 tp->rcv_ooopack = 0; 3387 3388 3389 /* Clean up fastopen related fields */ 3390 tcp_free_fastopen_req(tp); 3391 inet_clear_bit(DEFER_CONNECT, sk); 3392 tp->fastopen_client_fail = 0; 3393 3394 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3395 3396 if (sk->sk_frag.page) { 3397 put_page(sk->sk_frag.page); 3398 sk->sk_frag.page = NULL; 3399 sk->sk_frag.offset = 0; 3400 } 3401 sk_error_report(sk); 3402 return 0; 3403 } 3404 EXPORT_SYMBOL(tcp_disconnect); 3405 3406 static inline bool tcp_can_repair_sock(const struct sock *sk) 3407 { 3408 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3409 (sk->sk_state != TCP_LISTEN); 3410 } 3411 3412 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3413 { 3414 struct tcp_repair_window opt; 3415 3416 if (!tp->repair) 3417 return -EPERM; 3418 3419 if (len != sizeof(opt)) 3420 return -EINVAL; 3421 3422 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3423 return -EFAULT; 3424 3425 if (opt.max_window < opt.snd_wnd) 3426 return -EINVAL; 3427 3428 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3429 return -EINVAL; 3430 3431 if (after(opt.rcv_wup, tp->rcv_nxt)) 3432 return -EINVAL; 3433 3434 tp->snd_wl1 = opt.snd_wl1; 3435 tp->snd_wnd = opt.snd_wnd; 3436 tp->max_window = opt.max_window; 3437 3438 tp->rcv_wnd = opt.rcv_wnd; 3439 tp->rcv_wup = opt.rcv_wup; 3440 3441 return 0; 3442 } 3443 3444 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3445 unsigned int len) 3446 { 3447 struct tcp_sock *tp = tcp_sk(sk); 3448 struct tcp_repair_opt opt; 3449 size_t offset = 0; 3450 3451 while (len >= sizeof(opt)) { 3452 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3453 return -EFAULT; 3454 3455 offset += sizeof(opt); 3456 len -= sizeof(opt); 3457 3458 switch (opt.opt_code) { 3459 case TCPOPT_MSS: 3460 tp->rx_opt.mss_clamp = opt.opt_val; 3461 tcp_mtup_init(sk); 3462 break; 3463 case TCPOPT_WINDOW: 3464 { 3465 u16 snd_wscale = opt.opt_val & 0xFFFF; 3466 u16 rcv_wscale = opt.opt_val >> 16; 3467 3468 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3469 return -EFBIG; 3470 3471 tp->rx_opt.snd_wscale = snd_wscale; 3472 tp->rx_opt.rcv_wscale = rcv_wscale; 3473 tp->rx_opt.wscale_ok = 1; 3474 } 3475 break; 3476 case TCPOPT_SACK_PERM: 3477 if (opt.opt_val != 0) 3478 return -EINVAL; 3479 3480 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3481 break; 3482 case TCPOPT_TIMESTAMP: 3483 if (opt.opt_val != 0) 3484 return -EINVAL; 3485 3486 tp->rx_opt.tstamp_ok = 1; 3487 break; 3488 } 3489 } 3490 3491 return 0; 3492 } 3493 3494 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3495 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3496 3497 static void tcp_enable_tx_delay(void) 3498 { 3499 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3500 static int __tcp_tx_delay_enabled = 0; 3501 3502 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3503 static_branch_enable(&tcp_tx_delay_enabled); 3504 pr_info("TCP_TX_DELAY enabled\n"); 3505 } 3506 } 3507 } 3508 3509 /* When set indicates to always queue non-full frames. Later the user clears 3510 * this option and we transmit any pending partial frames in the queue. This is 3511 * meant to be used alongside sendfile() to get properly filled frames when the 3512 * user (for example) must write out headers with a write() call first and then 3513 * use sendfile to send out the data parts. 3514 * 3515 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3516 * TCP_NODELAY. 3517 */ 3518 void __tcp_sock_set_cork(struct sock *sk, bool on) 3519 { 3520 struct tcp_sock *tp = tcp_sk(sk); 3521 3522 if (on) { 3523 tp->nonagle |= TCP_NAGLE_CORK; 3524 } else { 3525 tp->nonagle &= ~TCP_NAGLE_CORK; 3526 if (tp->nonagle & TCP_NAGLE_OFF) 3527 tp->nonagle |= TCP_NAGLE_PUSH; 3528 tcp_push_pending_frames(sk); 3529 } 3530 } 3531 3532 void tcp_sock_set_cork(struct sock *sk, bool on) 3533 { 3534 lock_sock(sk); 3535 __tcp_sock_set_cork(sk, on); 3536 release_sock(sk); 3537 } 3538 EXPORT_SYMBOL(tcp_sock_set_cork); 3539 3540 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3541 * remembered, but it is not activated until cork is cleared. 3542 * 3543 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3544 * even TCP_CORK for currently queued segments. 3545 */ 3546 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3547 { 3548 if (on) { 3549 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3550 tcp_push_pending_frames(sk); 3551 } else { 3552 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3553 } 3554 } 3555 3556 void tcp_sock_set_nodelay(struct sock *sk) 3557 { 3558 lock_sock(sk); 3559 __tcp_sock_set_nodelay(sk, true); 3560 release_sock(sk); 3561 } 3562 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3563 3564 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3565 { 3566 if (!val) { 3567 inet_csk_enter_pingpong_mode(sk); 3568 return; 3569 } 3570 3571 inet_csk_exit_pingpong_mode(sk); 3572 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3573 inet_csk_ack_scheduled(sk)) { 3574 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3575 tcp_cleanup_rbuf(sk, 1); 3576 if (!(val & 1)) 3577 inet_csk_enter_pingpong_mode(sk); 3578 } 3579 } 3580 3581 void tcp_sock_set_quickack(struct sock *sk, int val) 3582 { 3583 lock_sock(sk); 3584 __tcp_sock_set_quickack(sk, val); 3585 release_sock(sk); 3586 } 3587 EXPORT_SYMBOL(tcp_sock_set_quickack); 3588 3589 int tcp_sock_set_syncnt(struct sock *sk, int val) 3590 { 3591 if (val < 1 || val > MAX_TCP_SYNCNT) 3592 return -EINVAL; 3593 3594 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3595 return 0; 3596 } 3597 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3598 3599 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3600 { 3601 /* Cap the max time in ms TCP will retry or probe the window 3602 * before giving up and aborting (ETIMEDOUT) a connection. 3603 */ 3604 if (val < 0) 3605 return -EINVAL; 3606 3607 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3608 return 0; 3609 } 3610 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3611 3612 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3613 { 3614 struct tcp_sock *tp = tcp_sk(sk); 3615 3616 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3617 return -EINVAL; 3618 3619 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3620 WRITE_ONCE(tp->keepalive_time, val * HZ); 3621 if (sock_flag(sk, SOCK_KEEPOPEN) && 3622 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3623 u32 elapsed = keepalive_time_elapsed(tp); 3624 3625 if (tp->keepalive_time > elapsed) 3626 elapsed = tp->keepalive_time - elapsed; 3627 else 3628 elapsed = 0; 3629 inet_csk_reset_keepalive_timer(sk, elapsed); 3630 } 3631 3632 return 0; 3633 } 3634 3635 int tcp_sock_set_keepidle(struct sock *sk, int val) 3636 { 3637 int err; 3638 3639 lock_sock(sk); 3640 err = tcp_sock_set_keepidle_locked(sk, val); 3641 release_sock(sk); 3642 return err; 3643 } 3644 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3645 3646 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3647 { 3648 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3649 return -EINVAL; 3650 3651 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3652 return 0; 3653 } 3654 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3655 3656 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3657 { 3658 if (val < 1 || val > MAX_TCP_KEEPCNT) 3659 return -EINVAL; 3660 3661 /* Paired with READ_ONCE() in keepalive_probes() */ 3662 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3663 return 0; 3664 } 3665 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3666 3667 int tcp_set_window_clamp(struct sock *sk, int val) 3668 { 3669 struct tcp_sock *tp = tcp_sk(sk); 3670 3671 if (!val) { 3672 if (sk->sk_state != TCP_CLOSE) 3673 return -EINVAL; 3674 WRITE_ONCE(tp->window_clamp, 0); 3675 } else { 3676 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3677 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3678 SOCK_MIN_RCVBUF / 2 : val; 3679 3680 if (new_window_clamp == old_window_clamp) 3681 return 0; 3682 3683 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3684 if (new_window_clamp < old_window_clamp) { 3685 /* need to apply the reserved mem provisioning only 3686 * when shrinking the window clamp 3687 */ 3688 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3689 3690 } else { 3691 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3692 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3693 tp->rcv_ssthresh); 3694 } 3695 } 3696 return 0; 3697 } 3698 3699 /* 3700 * Socket option code for TCP. 3701 */ 3702 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3703 sockptr_t optval, unsigned int optlen) 3704 { 3705 struct tcp_sock *tp = tcp_sk(sk); 3706 struct inet_connection_sock *icsk = inet_csk(sk); 3707 struct net *net = sock_net(sk); 3708 int val; 3709 int err = 0; 3710 3711 /* These are data/string values, all the others are ints */ 3712 switch (optname) { 3713 case TCP_CONGESTION: { 3714 char name[TCP_CA_NAME_MAX]; 3715 3716 if (optlen < 1) 3717 return -EINVAL; 3718 3719 val = strncpy_from_sockptr(name, optval, 3720 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3721 if (val < 0) 3722 return -EFAULT; 3723 name[val] = 0; 3724 3725 sockopt_lock_sock(sk); 3726 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3727 sockopt_ns_capable(sock_net(sk)->user_ns, 3728 CAP_NET_ADMIN)); 3729 sockopt_release_sock(sk); 3730 return err; 3731 } 3732 case TCP_ULP: { 3733 char name[TCP_ULP_NAME_MAX]; 3734 3735 if (optlen < 1) 3736 return -EINVAL; 3737 3738 val = strncpy_from_sockptr(name, optval, 3739 min_t(long, TCP_ULP_NAME_MAX - 1, 3740 optlen)); 3741 if (val < 0) 3742 return -EFAULT; 3743 name[val] = 0; 3744 3745 sockopt_lock_sock(sk); 3746 err = tcp_set_ulp(sk, name); 3747 sockopt_release_sock(sk); 3748 return err; 3749 } 3750 case TCP_FASTOPEN_KEY: { 3751 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3752 __u8 *backup_key = NULL; 3753 3754 /* Allow a backup key as well to facilitate key rotation 3755 * First key is the active one. 3756 */ 3757 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3758 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3759 return -EINVAL; 3760 3761 if (copy_from_sockptr(key, optval, optlen)) 3762 return -EFAULT; 3763 3764 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3765 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3766 3767 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3768 } 3769 default: 3770 /* fallthru */ 3771 break; 3772 } 3773 3774 if (optlen < sizeof(int)) 3775 return -EINVAL; 3776 3777 if (copy_from_sockptr(&val, optval, sizeof(val))) 3778 return -EFAULT; 3779 3780 /* Handle options that can be set without locking the socket. */ 3781 switch (optname) { 3782 case TCP_SYNCNT: 3783 return tcp_sock_set_syncnt(sk, val); 3784 case TCP_USER_TIMEOUT: 3785 return tcp_sock_set_user_timeout(sk, val); 3786 case TCP_KEEPINTVL: 3787 return tcp_sock_set_keepintvl(sk, val); 3788 case TCP_KEEPCNT: 3789 return tcp_sock_set_keepcnt(sk, val); 3790 case TCP_LINGER2: 3791 if (val < 0) 3792 WRITE_ONCE(tp->linger2, -1); 3793 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3794 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3795 else 3796 WRITE_ONCE(tp->linger2, val * HZ); 3797 return 0; 3798 case TCP_DEFER_ACCEPT: 3799 /* Translate value in seconds to number of retransmits */ 3800 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3801 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3802 TCP_RTO_MAX / HZ)); 3803 return 0; 3804 } 3805 3806 sockopt_lock_sock(sk); 3807 3808 switch (optname) { 3809 case TCP_MAXSEG: 3810 /* Values greater than interface MTU won't take effect. However 3811 * at the point when this call is done we typically don't yet 3812 * know which interface is going to be used 3813 */ 3814 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3815 err = -EINVAL; 3816 break; 3817 } 3818 tp->rx_opt.user_mss = val; 3819 break; 3820 3821 case TCP_NODELAY: 3822 __tcp_sock_set_nodelay(sk, val); 3823 break; 3824 3825 case TCP_THIN_LINEAR_TIMEOUTS: 3826 if (val < 0 || val > 1) 3827 err = -EINVAL; 3828 else 3829 tp->thin_lto = val; 3830 break; 3831 3832 case TCP_THIN_DUPACK: 3833 if (val < 0 || val > 1) 3834 err = -EINVAL; 3835 break; 3836 3837 case TCP_REPAIR: 3838 if (!tcp_can_repair_sock(sk)) 3839 err = -EPERM; 3840 else if (val == TCP_REPAIR_ON) { 3841 tp->repair = 1; 3842 sk->sk_reuse = SK_FORCE_REUSE; 3843 tp->repair_queue = TCP_NO_QUEUE; 3844 } else if (val == TCP_REPAIR_OFF) { 3845 tp->repair = 0; 3846 sk->sk_reuse = SK_NO_REUSE; 3847 tcp_send_window_probe(sk); 3848 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3849 tp->repair = 0; 3850 sk->sk_reuse = SK_NO_REUSE; 3851 } else 3852 err = -EINVAL; 3853 3854 break; 3855 3856 case TCP_REPAIR_QUEUE: 3857 if (!tp->repair) 3858 err = -EPERM; 3859 else if ((unsigned int)val < TCP_QUEUES_NR) 3860 tp->repair_queue = val; 3861 else 3862 err = -EINVAL; 3863 break; 3864 3865 case TCP_QUEUE_SEQ: 3866 if (sk->sk_state != TCP_CLOSE) { 3867 err = -EPERM; 3868 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3869 if (!tcp_rtx_queue_empty(sk)) 3870 err = -EPERM; 3871 else 3872 WRITE_ONCE(tp->write_seq, val); 3873 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3874 if (tp->rcv_nxt != tp->copied_seq) { 3875 err = -EPERM; 3876 } else { 3877 WRITE_ONCE(tp->rcv_nxt, val); 3878 WRITE_ONCE(tp->copied_seq, val); 3879 } 3880 } else { 3881 err = -EINVAL; 3882 } 3883 break; 3884 3885 case TCP_REPAIR_OPTIONS: 3886 if (!tp->repair) 3887 err = -EINVAL; 3888 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3889 err = tcp_repair_options_est(sk, optval, optlen); 3890 else 3891 err = -EPERM; 3892 break; 3893 3894 case TCP_CORK: 3895 __tcp_sock_set_cork(sk, val); 3896 break; 3897 3898 case TCP_KEEPIDLE: 3899 err = tcp_sock_set_keepidle_locked(sk, val); 3900 break; 3901 case TCP_SAVE_SYN: 3902 /* 0: disable, 1: enable, 2: start from ether_header */ 3903 if (val < 0 || val > 2) 3904 err = -EINVAL; 3905 else 3906 tp->save_syn = val; 3907 break; 3908 3909 case TCP_WINDOW_CLAMP: 3910 err = tcp_set_window_clamp(sk, val); 3911 break; 3912 3913 case TCP_QUICKACK: 3914 __tcp_sock_set_quickack(sk, val); 3915 break; 3916 3917 case TCP_AO_REPAIR: 3918 if (!tcp_can_repair_sock(sk)) { 3919 err = -EPERM; 3920 break; 3921 } 3922 err = tcp_ao_set_repair(sk, optval, optlen); 3923 break; 3924 #ifdef CONFIG_TCP_AO 3925 case TCP_AO_ADD_KEY: 3926 case TCP_AO_DEL_KEY: 3927 case TCP_AO_INFO: { 3928 /* If this is the first TCP-AO setsockopt() on the socket, 3929 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3930 * in any state. 3931 */ 3932 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3933 goto ao_parse; 3934 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3935 lockdep_sock_is_held(sk))) 3936 goto ao_parse; 3937 if (tp->repair) 3938 goto ao_parse; 3939 err = -EISCONN; 3940 break; 3941 ao_parse: 3942 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3943 break; 3944 } 3945 #endif 3946 #ifdef CONFIG_TCP_MD5SIG 3947 case TCP_MD5SIG: 3948 case TCP_MD5SIG_EXT: 3949 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3950 break; 3951 #endif 3952 case TCP_FASTOPEN: 3953 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3954 TCPF_LISTEN))) { 3955 tcp_fastopen_init_key_once(net); 3956 3957 fastopen_queue_tune(sk, val); 3958 } else { 3959 err = -EINVAL; 3960 } 3961 break; 3962 case TCP_FASTOPEN_CONNECT: 3963 if (val > 1 || val < 0) { 3964 err = -EINVAL; 3965 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3966 TFO_CLIENT_ENABLE) { 3967 if (sk->sk_state == TCP_CLOSE) 3968 tp->fastopen_connect = val; 3969 else 3970 err = -EINVAL; 3971 } else { 3972 err = -EOPNOTSUPP; 3973 } 3974 break; 3975 case TCP_FASTOPEN_NO_COOKIE: 3976 if (val > 1 || val < 0) 3977 err = -EINVAL; 3978 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3979 err = -EINVAL; 3980 else 3981 tp->fastopen_no_cookie = val; 3982 break; 3983 case TCP_TIMESTAMP: 3984 if (!tp->repair) { 3985 err = -EPERM; 3986 break; 3987 } 3988 /* val is an opaque field, 3989 * and low order bit contains usec_ts enable bit. 3990 * Its a best effort, and we do not care if user makes an error. 3991 */ 3992 tp->tcp_usec_ts = val & 1; 3993 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 3994 break; 3995 case TCP_REPAIR_WINDOW: 3996 err = tcp_repair_set_window(tp, optval, optlen); 3997 break; 3998 case TCP_NOTSENT_LOWAT: 3999 WRITE_ONCE(tp->notsent_lowat, val); 4000 sk->sk_write_space(sk); 4001 break; 4002 case TCP_INQ: 4003 if (val > 1 || val < 0) 4004 err = -EINVAL; 4005 else 4006 tp->recvmsg_inq = val; 4007 break; 4008 case TCP_TX_DELAY: 4009 if (val) 4010 tcp_enable_tx_delay(); 4011 WRITE_ONCE(tp->tcp_tx_delay, val); 4012 break; 4013 default: 4014 err = -ENOPROTOOPT; 4015 break; 4016 } 4017 4018 sockopt_release_sock(sk); 4019 return err; 4020 } 4021 4022 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 4023 unsigned int optlen) 4024 { 4025 const struct inet_connection_sock *icsk = inet_csk(sk); 4026 4027 if (level != SOL_TCP) 4028 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4029 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 4030 optval, optlen); 4031 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 4032 } 4033 EXPORT_SYMBOL(tcp_setsockopt); 4034 4035 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 4036 struct tcp_info *info) 4037 { 4038 u64 stats[__TCP_CHRONO_MAX], total = 0; 4039 enum tcp_chrono i; 4040 4041 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 4042 stats[i] = tp->chrono_stat[i - 1]; 4043 if (i == tp->chrono_type) 4044 stats[i] += tcp_jiffies32 - tp->chrono_start; 4045 stats[i] *= USEC_PER_SEC / HZ; 4046 total += stats[i]; 4047 } 4048 4049 info->tcpi_busy_time = total; 4050 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 4051 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 4052 } 4053 4054 /* Return information about state of tcp endpoint in API format. */ 4055 void tcp_get_info(struct sock *sk, struct tcp_info *info) 4056 { 4057 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 4058 const struct inet_connection_sock *icsk = inet_csk(sk); 4059 unsigned long rate; 4060 u32 now; 4061 u64 rate64; 4062 bool slow; 4063 4064 memset(info, 0, sizeof(*info)); 4065 if (sk->sk_type != SOCK_STREAM) 4066 return; 4067 4068 info->tcpi_state = inet_sk_state_load(sk); 4069 4070 /* Report meaningful fields for all TCP states, including listeners */ 4071 rate = READ_ONCE(sk->sk_pacing_rate); 4072 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4073 info->tcpi_pacing_rate = rate64; 4074 4075 rate = READ_ONCE(sk->sk_max_pacing_rate); 4076 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4077 info->tcpi_max_pacing_rate = rate64; 4078 4079 info->tcpi_reordering = tp->reordering; 4080 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 4081 4082 if (info->tcpi_state == TCP_LISTEN) { 4083 /* listeners aliased fields : 4084 * tcpi_unacked -> Number of children ready for accept() 4085 * tcpi_sacked -> max backlog 4086 */ 4087 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 4088 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 4089 return; 4090 } 4091 4092 slow = lock_sock_fast(sk); 4093 4094 info->tcpi_ca_state = icsk->icsk_ca_state; 4095 info->tcpi_retransmits = icsk->icsk_retransmits; 4096 info->tcpi_probes = icsk->icsk_probes_out; 4097 info->tcpi_backoff = icsk->icsk_backoff; 4098 4099 if (tp->rx_opt.tstamp_ok) 4100 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 4101 if (tcp_is_sack(tp)) 4102 info->tcpi_options |= TCPI_OPT_SACK; 4103 if (tp->rx_opt.wscale_ok) { 4104 info->tcpi_options |= TCPI_OPT_WSCALE; 4105 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 4106 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 4107 } 4108 4109 if (tp->ecn_flags & TCP_ECN_OK) 4110 info->tcpi_options |= TCPI_OPT_ECN; 4111 if (tp->ecn_flags & TCP_ECN_SEEN) 4112 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 4113 if (tp->syn_data_acked) 4114 info->tcpi_options |= TCPI_OPT_SYN_DATA; 4115 if (tp->tcp_usec_ts) 4116 info->tcpi_options |= TCPI_OPT_USEC_TS; 4117 4118 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 4119 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 4120 tcp_delack_max(sk))); 4121 info->tcpi_snd_mss = tp->mss_cache; 4122 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 4123 4124 info->tcpi_unacked = tp->packets_out; 4125 info->tcpi_sacked = tp->sacked_out; 4126 4127 info->tcpi_lost = tp->lost_out; 4128 info->tcpi_retrans = tp->retrans_out; 4129 4130 now = tcp_jiffies32; 4131 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 4132 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 4133 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 4134 4135 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 4136 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 4137 info->tcpi_rtt = tp->srtt_us >> 3; 4138 info->tcpi_rttvar = tp->mdev_us >> 2; 4139 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 4140 info->tcpi_advmss = tp->advmss; 4141 4142 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 4143 info->tcpi_rcv_space = tp->rcvq_space.space; 4144 4145 info->tcpi_total_retrans = tp->total_retrans; 4146 4147 info->tcpi_bytes_acked = tp->bytes_acked; 4148 info->tcpi_bytes_received = tp->bytes_received; 4149 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 4150 tcp_get_info_chrono_stats(tp, info); 4151 4152 info->tcpi_segs_out = tp->segs_out; 4153 4154 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 4155 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 4156 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 4157 4158 info->tcpi_min_rtt = tcp_min_rtt(tp); 4159 info->tcpi_data_segs_out = tp->data_segs_out; 4160 4161 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 4162 rate64 = tcp_compute_delivery_rate(tp); 4163 if (rate64) 4164 info->tcpi_delivery_rate = rate64; 4165 info->tcpi_delivered = tp->delivered; 4166 info->tcpi_delivered_ce = tp->delivered_ce; 4167 info->tcpi_bytes_sent = tp->bytes_sent; 4168 info->tcpi_bytes_retrans = tp->bytes_retrans; 4169 info->tcpi_dsack_dups = tp->dsack_dups; 4170 info->tcpi_reord_seen = tp->reord_seen; 4171 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 4172 info->tcpi_snd_wnd = tp->snd_wnd; 4173 info->tcpi_rcv_wnd = tp->rcv_wnd; 4174 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 4175 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 4176 4177 info->tcpi_total_rto = tp->total_rto; 4178 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 4179 info->tcpi_total_rto_time = tp->total_rto_time; 4180 if (tp->rto_stamp) 4181 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 4182 4183 unlock_sock_fast(sk, slow); 4184 } 4185 EXPORT_SYMBOL_GPL(tcp_get_info); 4186 4187 static size_t tcp_opt_stats_get_size(void) 4188 { 4189 return 4190 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 4191 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 4192 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 4193 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 4194 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 4195 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 4196 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 4197 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 4198 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 4199 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 4200 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 4201 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 4202 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 4203 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 4204 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 4205 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 4206 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 4207 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 4208 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 4209 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 4210 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 4211 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 4212 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 4213 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 4214 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 4215 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 4216 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 4217 0; 4218 } 4219 4220 /* Returns TTL or hop limit of an incoming packet from skb. */ 4221 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 4222 { 4223 if (skb->protocol == htons(ETH_P_IP)) 4224 return ip_hdr(skb)->ttl; 4225 else if (skb->protocol == htons(ETH_P_IPV6)) 4226 return ipv6_hdr(skb)->hop_limit; 4227 else 4228 return 0; 4229 } 4230 4231 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 4232 const struct sk_buff *orig_skb, 4233 const struct sk_buff *ack_skb) 4234 { 4235 const struct tcp_sock *tp = tcp_sk(sk); 4236 struct sk_buff *stats; 4237 struct tcp_info info; 4238 unsigned long rate; 4239 u64 rate64; 4240 4241 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4242 if (!stats) 4243 return NULL; 4244 4245 tcp_get_info_chrono_stats(tp, &info); 4246 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4247 info.tcpi_busy_time, TCP_NLA_PAD); 4248 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4249 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4250 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4251 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4252 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4253 tp->data_segs_out, TCP_NLA_PAD); 4254 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4255 tp->total_retrans, TCP_NLA_PAD); 4256 4257 rate = READ_ONCE(sk->sk_pacing_rate); 4258 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4259 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4260 4261 rate64 = tcp_compute_delivery_rate(tp); 4262 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4263 4264 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4265 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4266 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4267 4268 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4269 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4270 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4271 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4272 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4273 4274 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4275 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4276 4277 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4278 TCP_NLA_PAD); 4279 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4280 TCP_NLA_PAD); 4281 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4282 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4283 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4284 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4285 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4286 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4287 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4288 TCP_NLA_PAD); 4289 if (ack_skb) 4290 nla_put_u8(stats, TCP_NLA_TTL, 4291 tcp_skb_ttl_or_hop_limit(ack_skb)); 4292 4293 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4294 return stats; 4295 } 4296 4297 int do_tcp_getsockopt(struct sock *sk, int level, 4298 int optname, sockptr_t optval, sockptr_t optlen) 4299 { 4300 struct inet_connection_sock *icsk = inet_csk(sk); 4301 struct tcp_sock *tp = tcp_sk(sk); 4302 struct net *net = sock_net(sk); 4303 int val, len; 4304 4305 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4306 return -EFAULT; 4307 4308 if (len < 0) 4309 return -EINVAL; 4310 4311 len = min_t(unsigned int, len, sizeof(int)); 4312 4313 switch (optname) { 4314 case TCP_MAXSEG: 4315 val = tp->mss_cache; 4316 if (tp->rx_opt.user_mss && 4317 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4318 val = tp->rx_opt.user_mss; 4319 if (tp->repair) 4320 val = tp->rx_opt.mss_clamp; 4321 break; 4322 case TCP_NODELAY: 4323 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4324 break; 4325 case TCP_CORK: 4326 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4327 break; 4328 case TCP_KEEPIDLE: 4329 val = keepalive_time_when(tp) / HZ; 4330 break; 4331 case TCP_KEEPINTVL: 4332 val = keepalive_intvl_when(tp) / HZ; 4333 break; 4334 case TCP_KEEPCNT: 4335 val = keepalive_probes(tp); 4336 break; 4337 case TCP_SYNCNT: 4338 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4339 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4340 break; 4341 case TCP_LINGER2: 4342 val = READ_ONCE(tp->linger2); 4343 if (val >= 0) 4344 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4345 break; 4346 case TCP_DEFER_ACCEPT: 4347 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4348 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4349 TCP_RTO_MAX / HZ); 4350 break; 4351 case TCP_WINDOW_CLAMP: 4352 val = READ_ONCE(tp->window_clamp); 4353 break; 4354 case TCP_INFO: { 4355 struct tcp_info info; 4356 4357 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4358 return -EFAULT; 4359 4360 tcp_get_info(sk, &info); 4361 4362 len = min_t(unsigned int, len, sizeof(info)); 4363 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4364 return -EFAULT; 4365 if (copy_to_sockptr(optval, &info, len)) 4366 return -EFAULT; 4367 return 0; 4368 } 4369 case TCP_CC_INFO: { 4370 const struct tcp_congestion_ops *ca_ops; 4371 union tcp_cc_info info; 4372 size_t sz = 0; 4373 int attr; 4374 4375 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4376 return -EFAULT; 4377 4378 ca_ops = icsk->icsk_ca_ops; 4379 if (ca_ops && ca_ops->get_info) 4380 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4381 4382 len = min_t(unsigned int, len, sz); 4383 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4384 return -EFAULT; 4385 if (copy_to_sockptr(optval, &info, len)) 4386 return -EFAULT; 4387 return 0; 4388 } 4389 case TCP_QUICKACK: 4390 val = !inet_csk_in_pingpong_mode(sk); 4391 break; 4392 4393 case TCP_CONGESTION: 4394 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4395 return -EFAULT; 4396 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4397 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4398 return -EFAULT; 4399 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4400 return -EFAULT; 4401 return 0; 4402 4403 case TCP_ULP: 4404 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4405 return -EFAULT; 4406 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4407 if (!icsk->icsk_ulp_ops) { 4408 len = 0; 4409 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4410 return -EFAULT; 4411 return 0; 4412 } 4413 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4414 return -EFAULT; 4415 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4416 return -EFAULT; 4417 return 0; 4418 4419 case TCP_FASTOPEN_KEY: { 4420 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4421 unsigned int key_len; 4422 4423 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4424 return -EFAULT; 4425 4426 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4427 TCP_FASTOPEN_KEY_LENGTH; 4428 len = min_t(unsigned int, len, key_len); 4429 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4430 return -EFAULT; 4431 if (copy_to_sockptr(optval, key, len)) 4432 return -EFAULT; 4433 return 0; 4434 } 4435 case TCP_THIN_LINEAR_TIMEOUTS: 4436 val = tp->thin_lto; 4437 break; 4438 4439 case TCP_THIN_DUPACK: 4440 val = 0; 4441 break; 4442 4443 case TCP_REPAIR: 4444 val = tp->repair; 4445 break; 4446 4447 case TCP_REPAIR_QUEUE: 4448 if (tp->repair) 4449 val = tp->repair_queue; 4450 else 4451 return -EINVAL; 4452 break; 4453 4454 case TCP_REPAIR_WINDOW: { 4455 struct tcp_repair_window opt; 4456 4457 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4458 return -EFAULT; 4459 4460 if (len != sizeof(opt)) 4461 return -EINVAL; 4462 4463 if (!tp->repair) 4464 return -EPERM; 4465 4466 opt.snd_wl1 = tp->snd_wl1; 4467 opt.snd_wnd = tp->snd_wnd; 4468 opt.max_window = tp->max_window; 4469 opt.rcv_wnd = tp->rcv_wnd; 4470 opt.rcv_wup = tp->rcv_wup; 4471 4472 if (copy_to_sockptr(optval, &opt, len)) 4473 return -EFAULT; 4474 return 0; 4475 } 4476 case TCP_QUEUE_SEQ: 4477 if (tp->repair_queue == TCP_SEND_QUEUE) 4478 val = tp->write_seq; 4479 else if (tp->repair_queue == TCP_RECV_QUEUE) 4480 val = tp->rcv_nxt; 4481 else 4482 return -EINVAL; 4483 break; 4484 4485 case TCP_USER_TIMEOUT: 4486 val = READ_ONCE(icsk->icsk_user_timeout); 4487 break; 4488 4489 case TCP_FASTOPEN: 4490 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4491 break; 4492 4493 case TCP_FASTOPEN_CONNECT: 4494 val = tp->fastopen_connect; 4495 break; 4496 4497 case TCP_FASTOPEN_NO_COOKIE: 4498 val = tp->fastopen_no_cookie; 4499 break; 4500 4501 case TCP_TX_DELAY: 4502 val = READ_ONCE(tp->tcp_tx_delay); 4503 break; 4504 4505 case TCP_TIMESTAMP: 4506 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4507 if (tp->tcp_usec_ts) 4508 val |= 1; 4509 else 4510 val &= ~1; 4511 break; 4512 case TCP_NOTSENT_LOWAT: 4513 val = READ_ONCE(tp->notsent_lowat); 4514 break; 4515 case TCP_INQ: 4516 val = tp->recvmsg_inq; 4517 break; 4518 case TCP_SAVE_SYN: 4519 val = tp->save_syn; 4520 break; 4521 case TCP_SAVED_SYN: { 4522 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4523 return -EFAULT; 4524 4525 sockopt_lock_sock(sk); 4526 if (tp->saved_syn) { 4527 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4528 len = tcp_saved_syn_len(tp->saved_syn); 4529 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4530 sockopt_release_sock(sk); 4531 return -EFAULT; 4532 } 4533 sockopt_release_sock(sk); 4534 return -EINVAL; 4535 } 4536 len = tcp_saved_syn_len(tp->saved_syn); 4537 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4538 sockopt_release_sock(sk); 4539 return -EFAULT; 4540 } 4541 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4542 sockopt_release_sock(sk); 4543 return -EFAULT; 4544 } 4545 tcp_saved_syn_free(tp); 4546 sockopt_release_sock(sk); 4547 } else { 4548 sockopt_release_sock(sk); 4549 len = 0; 4550 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4551 return -EFAULT; 4552 } 4553 return 0; 4554 } 4555 #ifdef CONFIG_MMU 4556 case TCP_ZEROCOPY_RECEIVE: { 4557 struct scm_timestamping_internal tss; 4558 struct tcp_zerocopy_receive zc = {}; 4559 int err; 4560 4561 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4562 return -EFAULT; 4563 if (len < 0 || 4564 len < offsetofend(struct tcp_zerocopy_receive, length)) 4565 return -EINVAL; 4566 if (unlikely(len > sizeof(zc))) { 4567 err = check_zeroed_sockptr(optval, sizeof(zc), 4568 len - sizeof(zc)); 4569 if (err < 1) 4570 return err == 0 ? -EINVAL : err; 4571 len = sizeof(zc); 4572 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4573 return -EFAULT; 4574 } 4575 if (copy_from_sockptr(&zc, optval, len)) 4576 return -EFAULT; 4577 if (zc.reserved) 4578 return -EINVAL; 4579 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4580 return -EINVAL; 4581 sockopt_lock_sock(sk); 4582 err = tcp_zerocopy_receive(sk, &zc, &tss); 4583 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4584 &zc, &len, err); 4585 sockopt_release_sock(sk); 4586 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4587 goto zerocopy_rcv_cmsg; 4588 switch (len) { 4589 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4590 goto zerocopy_rcv_cmsg; 4591 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4592 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4593 case offsetofend(struct tcp_zerocopy_receive, flags): 4594 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4595 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4596 case offsetofend(struct tcp_zerocopy_receive, err): 4597 goto zerocopy_rcv_sk_err; 4598 case offsetofend(struct tcp_zerocopy_receive, inq): 4599 goto zerocopy_rcv_inq; 4600 case offsetofend(struct tcp_zerocopy_receive, length): 4601 default: 4602 goto zerocopy_rcv_out; 4603 } 4604 zerocopy_rcv_cmsg: 4605 if (zc.msg_flags & TCP_CMSG_TS) 4606 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4607 else 4608 zc.msg_flags = 0; 4609 zerocopy_rcv_sk_err: 4610 if (!err) 4611 zc.err = sock_error(sk); 4612 zerocopy_rcv_inq: 4613 zc.inq = tcp_inq_hint(sk); 4614 zerocopy_rcv_out: 4615 if (!err && copy_to_sockptr(optval, &zc, len)) 4616 err = -EFAULT; 4617 return err; 4618 } 4619 #endif 4620 case TCP_AO_REPAIR: 4621 if (!tcp_can_repair_sock(sk)) 4622 return -EPERM; 4623 return tcp_ao_get_repair(sk, optval, optlen); 4624 case TCP_AO_GET_KEYS: 4625 case TCP_AO_INFO: { 4626 int err; 4627 4628 sockopt_lock_sock(sk); 4629 if (optname == TCP_AO_GET_KEYS) 4630 err = tcp_ao_get_mkts(sk, optval, optlen); 4631 else 4632 err = tcp_ao_get_sock_info(sk, optval, optlen); 4633 sockopt_release_sock(sk); 4634 4635 return err; 4636 } 4637 case TCP_IS_MPTCP: 4638 val = 0; 4639 break; 4640 default: 4641 return -ENOPROTOOPT; 4642 } 4643 4644 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4645 return -EFAULT; 4646 if (copy_to_sockptr(optval, &val, len)) 4647 return -EFAULT; 4648 return 0; 4649 } 4650 4651 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4652 { 4653 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4654 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4655 */ 4656 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4657 return true; 4658 4659 return false; 4660 } 4661 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4662 4663 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4664 int __user *optlen) 4665 { 4666 struct inet_connection_sock *icsk = inet_csk(sk); 4667 4668 if (level != SOL_TCP) 4669 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4670 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4671 optval, optlen); 4672 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4673 USER_SOCKPTR(optlen)); 4674 } 4675 EXPORT_SYMBOL(tcp_getsockopt); 4676 4677 #ifdef CONFIG_TCP_MD5SIG 4678 int tcp_md5_sigpool_id = -1; 4679 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4680 4681 int tcp_md5_alloc_sigpool(void) 4682 { 4683 size_t scratch_size; 4684 int ret; 4685 4686 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4687 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4688 if (ret >= 0) { 4689 /* As long as any md5 sigpool was allocated, the return 4690 * id would stay the same. Re-write the id only for the case 4691 * when previously all MD5 keys were deleted and this call 4692 * allocates the first MD5 key, which may return a different 4693 * sigpool id than was used previously. 4694 */ 4695 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4696 return 0; 4697 } 4698 return ret; 4699 } 4700 4701 void tcp_md5_release_sigpool(void) 4702 { 4703 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4704 } 4705 4706 void tcp_md5_add_sigpool(void) 4707 { 4708 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4709 } 4710 4711 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4712 const struct tcp_md5sig_key *key) 4713 { 4714 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4715 struct scatterlist sg; 4716 4717 sg_init_one(&sg, key->key, keylen); 4718 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4719 4720 /* We use data_race() because tcp_md5_do_add() might change 4721 * key->key under us 4722 */ 4723 return data_race(crypto_ahash_update(hp->req)); 4724 } 4725 EXPORT_SYMBOL(tcp_md5_hash_key); 4726 4727 /* Called with rcu_read_lock() */ 4728 static enum skb_drop_reason 4729 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4730 const void *saddr, const void *daddr, 4731 int family, int l3index, const __u8 *hash_location) 4732 { 4733 /* This gets called for each TCP segment that has TCP-MD5 option. 4734 * We have 3 drop cases: 4735 * o No MD5 hash and one expected. 4736 * o MD5 hash and we're not expecting one. 4737 * o MD5 hash and its wrong. 4738 */ 4739 const struct tcp_sock *tp = tcp_sk(sk); 4740 struct tcp_md5sig_key *key; 4741 u8 newhash[16]; 4742 int genhash; 4743 4744 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4745 4746 if (!key && hash_location) { 4747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4748 trace_tcp_hash_md5_unexpected(sk, skb); 4749 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4750 } 4751 4752 /* Check the signature. 4753 * To support dual stack listeners, we need to handle 4754 * IPv4-mapped case. 4755 */ 4756 if (family == AF_INET) 4757 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4758 else 4759 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4760 NULL, skb); 4761 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4762 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4763 trace_tcp_hash_md5_mismatch(sk, skb); 4764 return SKB_DROP_REASON_TCP_MD5FAILURE; 4765 } 4766 return SKB_NOT_DROPPED_YET; 4767 } 4768 #else 4769 static inline enum skb_drop_reason 4770 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4771 const void *saddr, const void *daddr, 4772 int family, int l3index, const __u8 *hash_location) 4773 { 4774 return SKB_NOT_DROPPED_YET; 4775 } 4776 4777 #endif 4778 4779 /* Called with rcu_read_lock() */ 4780 enum skb_drop_reason 4781 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4782 const struct sk_buff *skb, 4783 const void *saddr, const void *daddr, 4784 int family, int dif, int sdif) 4785 { 4786 const struct tcphdr *th = tcp_hdr(skb); 4787 const struct tcp_ao_hdr *aoh; 4788 const __u8 *md5_location; 4789 int l3index; 4790 4791 /* Invalid option or two times meet any of auth options */ 4792 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 4793 trace_tcp_hash_bad_header(sk, skb); 4794 return SKB_DROP_REASON_TCP_AUTH_HDR; 4795 } 4796 4797 if (req) { 4798 if (tcp_rsk_used_ao(req) != !!aoh) { 4799 u8 keyid, rnext, maclen; 4800 4801 if (aoh) { 4802 keyid = aoh->keyid; 4803 rnext = aoh->rnext_keyid; 4804 maclen = tcp_ao_hdr_maclen(aoh); 4805 } else { 4806 keyid = rnext = maclen = 0; 4807 } 4808 4809 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 4810 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 4811 return SKB_DROP_REASON_TCP_AOFAILURE; 4812 } 4813 } 4814 4815 /* sdif set, means packet ingressed via a device 4816 * in an L3 domain and dif is set to the l3mdev 4817 */ 4818 l3index = sdif ? dif : 0; 4819 4820 /* Fast path: unsigned segments */ 4821 if (likely(!md5_location && !aoh)) { 4822 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 4823 * for the remote peer. On TCP-AO established connection 4824 * the last key is impossible to remove, so there's 4825 * always at least one current_key. 4826 */ 4827 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 4828 trace_tcp_hash_ao_required(sk, skb); 4829 return SKB_DROP_REASON_TCP_AONOTFOUND; 4830 } 4831 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 4832 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4833 trace_tcp_hash_md5_required(sk, skb); 4834 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4835 } 4836 return SKB_NOT_DROPPED_YET; 4837 } 4838 4839 if (aoh) 4840 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 4841 4842 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 4843 l3index, md5_location); 4844 } 4845 EXPORT_SYMBOL_GPL(tcp_inbound_hash); 4846 4847 void tcp_done(struct sock *sk) 4848 { 4849 struct request_sock *req; 4850 4851 /* We might be called with a new socket, after 4852 * inet_csk_prepare_forced_close() has been called 4853 * so we can not use lockdep_sock_is_held(sk) 4854 */ 4855 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4856 4857 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4858 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4859 4860 tcp_set_state(sk, TCP_CLOSE); 4861 tcp_clear_xmit_timers(sk); 4862 if (req) 4863 reqsk_fastopen_remove(sk, req, false); 4864 4865 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4866 4867 if (!sock_flag(sk, SOCK_DEAD)) 4868 sk->sk_state_change(sk); 4869 else 4870 inet_csk_destroy_sock(sk); 4871 } 4872 EXPORT_SYMBOL_GPL(tcp_done); 4873 4874 int tcp_abort(struct sock *sk, int err) 4875 { 4876 int state = inet_sk_state_load(sk); 4877 4878 if (state == TCP_NEW_SYN_RECV) { 4879 struct request_sock *req = inet_reqsk(sk); 4880 4881 local_bh_disable(); 4882 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4883 local_bh_enable(); 4884 return 0; 4885 } 4886 if (state == TCP_TIME_WAIT) { 4887 struct inet_timewait_sock *tw = inet_twsk(sk); 4888 4889 refcount_inc(&tw->tw_refcnt); 4890 local_bh_disable(); 4891 inet_twsk_deschedule_put(tw); 4892 local_bh_enable(); 4893 return 0; 4894 } 4895 4896 /* BPF context ensures sock locking. */ 4897 if (!has_current_bpf_ctx()) 4898 /* Don't race with userspace socket closes such as tcp_close. */ 4899 lock_sock(sk); 4900 4901 /* Avoid closing the same socket twice. */ 4902 if (sk->sk_state == TCP_CLOSE) { 4903 if (!has_current_bpf_ctx()) 4904 release_sock(sk); 4905 return -ENOENT; 4906 } 4907 4908 if (sk->sk_state == TCP_LISTEN) { 4909 tcp_set_state(sk, TCP_CLOSE); 4910 inet_csk_listen_stop(sk); 4911 } 4912 4913 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4914 local_bh_disable(); 4915 bh_lock_sock(sk); 4916 4917 if (tcp_need_reset(sk->sk_state)) 4918 tcp_send_active_reset(sk, GFP_ATOMIC, 4919 SK_RST_REASON_TCP_STATE); 4920 tcp_done_with_error(sk, err); 4921 4922 bh_unlock_sock(sk); 4923 local_bh_enable(); 4924 if (!has_current_bpf_ctx()) 4925 release_sock(sk); 4926 return 0; 4927 } 4928 EXPORT_SYMBOL_GPL(tcp_abort); 4929 4930 extern struct tcp_congestion_ops tcp_reno; 4931 4932 static __initdata unsigned long thash_entries; 4933 static int __init set_thash_entries(char *str) 4934 { 4935 ssize_t ret; 4936 4937 if (!str) 4938 return 0; 4939 4940 ret = kstrtoul(str, 0, &thash_entries); 4941 if (ret) 4942 return 0; 4943 4944 return 1; 4945 } 4946 __setup("thash_entries=", set_thash_entries); 4947 4948 static void __init tcp_init_mem(void) 4949 { 4950 unsigned long limit = nr_free_buffer_pages() / 16; 4951 4952 limit = max(limit, 128UL); 4953 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4954 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4955 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4956 } 4957 4958 static void __init tcp_struct_check(void) 4959 { 4960 /* TX read-mostly hotpath cache lines */ 4961 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4962 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4963 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4964 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4965 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4966 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4967 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4968 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4969 4970 /* TXRX read-mostly hotpath cache lines */ 4971 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4972 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4973 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4974 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4975 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4976 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4977 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4978 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 4979 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 4980 4981 /* RX read-mostly hotpath cache lines */ 4982 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 4983 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 4984 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 4985 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 4986 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 4987 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 4988 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 4989 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 4990 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 4991 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 4992 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 4993 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 4994 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 4995 4996 /* TX read-write hotpath cache lines */ 4997 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 4998 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 4999 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 5000 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 5001 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 5002 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 5003 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 5004 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 5005 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 5006 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 5007 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 5008 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 5009 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 5010 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 5011 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 5012 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 5013 5014 /* TXRX read-write hotpath cache lines */ 5015 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 5016 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 5017 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 5018 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 5019 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 5020 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 5021 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 5022 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 5023 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 5024 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 5025 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 5026 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 5027 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 5028 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 5029 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 5030 5031 /* 32bit arches with 8byte alignment on u64 fields might need padding 5032 * before tcp_clock_cache. 5033 */ 5034 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 5035 5036 /* RX read-write hotpath cache lines */ 5037 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 5038 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 5039 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 5040 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 5041 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 5042 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 5043 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 5044 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 5045 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 5046 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 5047 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 5048 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 5049 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 5050 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 5051 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 5052 } 5053 5054 void __init tcp_init(void) 5055 { 5056 int max_rshare, max_wshare, cnt; 5057 unsigned long limit; 5058 unsigned int i; 5059 5060 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 5061 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 5062 sizeof_field(struct sk_buff, cb)); 5063 5064 tcp_struct_check(); 5065 5066 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 5067 5068 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 5069 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 5070 5071 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 5072 thash_entries, 21, /* one slot per 2 MB*/ 5073 0, 64 * 1024); 5074 tcp_hashinfo.bind_bucket_cachep = 5075 kmem_cache_create("tcp_bind_bucket", 5076 sizeof(struct inet_bind_bucket), 0, 5077 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5078 SLAB_ACCOUNT, 5079 NULL); 5080 tcp_hashinfo.bind2_bucket_cachep = 5081 kmem_cache_create("tcp_bind2_bucket", 5082 sizeof(struct inet_bind2_bucket), 0, 5083 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5084 SLAB_ACCOUNT, 5085 NULL); 5086 5087 /* Size and allocate the main established and bind bucket 5088 * hash tables. 5089 * 5090 * The methodology is similar to that of the buffer cache. 5091 */ 5092 tcp_hashinfo.ehash = 5093 alloc_large_system_hash("TCP established", 5094 sizeof(struct inet_ehash_bucket), 5095 thash_entries, 5096 17, /* one slot per 128 KB of memory */ 5097 0, 5098 NULL, 5099 &tcp_hashinfo.ehash_mask, 5100 0, 5101 thash_entries ? 0 : 512 * 1024); 5102 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 5103 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 5104 5105 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 5106 panic("TCP: failed to alloc ehash_locks"); 5107 tcp_hashinfo.bhash = 5108 alloc_large_system_hash("TCP bind", 5109 2 * sizeof(struct inet_bind_hashbucket), 5110 tcp_hashinfo.ehash_mask + 1, 5111 17, /* one slot per 128 KB of memory */ 5112 0, 5113 &tcp_hashinfo.bhash_size, 5114 NULL, 5115 0, 5116 64 * 1024); 5117 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 5118 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 5119 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 5120 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 5121 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 5122 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 5123 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 5124 } 5125 5126 tcp_hashinfo.pernet = false; 5127 5128 cnt = tcp_hashinfo.ehash_mask + 1; 5129 sysctl_tcp_max_orphans = cnt / 2; 5130 5131 tcp_init_mem(); 5132 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 5133 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 5134 max_wshare = min(4UL*1024*1024, limit); 5135 max_rshare = min(6UL*1024*1024, limit); 5136 5137 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 5138 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 5139 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 5140 5141 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 5142 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 5143 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 5144 5145 pr_info("Hash tables configured (established %u bind %u)\n", 5146 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 5147 5148 tcp_v4_init(); 5149 tcp_metrics_init(); 5150 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 5151 tcp_tasklet_init(); 5152 mptcp_init(); 5153 } 5154