1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #include <linux/kernel.h> 249 #include <linux/module.h> 250 #include <linux/types.h> 251 #include <linux/fcntl.h> 252 #include <linux/poll.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/bootmem.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/crypto.h> 267 #include <linux/time.h> 268 #include <linux/slab.h> 269 270 #include <net/icmp.h> 271 #include <net/tcp.h> 272 #include <net/xfrm.h> 273 #include <net/ip.h> 274 #include <net/netdma.h> 275 #include <net/sock.h> 276 277 #include <asm/uaccess.h> 278 #include <asm/ioctls.h> 279 280 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 281 282 struct percpu_counter tcp_orphan_count; 283 EXPORT_SYMBOL_GPL(tcp_orphan_count); 284 285 int sysctl_tcp_wmem[3] __read_mostly; 286 int sysctl_tcp_rmem[3] __read_mostly; 287 288 EXPORT_SYMBOL(sysctl_tcp_rmem); 289 EXPORT_SYMBOL(sysctl_tcp_wmem); 290 291 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 292 EXPORT_SYMBOL(tcp_memory_allocated); 293 294 /* 295 * Current number of TCP sockets. 296 */ 297 struct percpu_counter tcp_sockets_allocated; 298 EXPORT_SYMBOL(tcp_sockets_allocated); 299 300 /* 301 * TCP splice context 302 */ 303 struct tcp_splice_state { 304 struct pipe_inode_info *pipe; 305 size_t len; 306 unsigned int flags; 307 }; 308 309 /* 310 * Pressure flag: try to collapse. 311 * Technical note: it is used by multiple contexts non atomically. 312 * All the __sk_mem_schedule() is of this nature: accounting 313 * is strict, actions are advisory and have some latency. 314 */ 315 int tcp_memory_pressure __read_mostly; 316 EXPORT_SYMBOL(tcp_memory_pressure); 317 318 void tcp_enter_memory_pressure(struct sock *sk) 319 { 320 if (!tcp_memory_pressure) { 321 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 322 tcp_memory_pressure = 1; 323 } 324 } 325 EXPORT_SYMBOL(tcp_enter_memory_pressure); 326 327 /* Convert seconds to retransmits based on initial and max timeout */ 328 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 329 { 330 u8 res = 0; 331 332 if (seconds > 0) { 333 int period = timeout; 334 335 res = 1; 336 while (seconds > period && res < 255) { 337 res++; 338 timeout <<= 1; 339 if (timeout > rto_max) 340 timeout = rto_max; 341 period += timeout; 342 } 343 } 344 return res; 345 } 346 347 /* Convert retransmits to seconds based on initial and max timeout */ 348 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 349 { 350 int period = 0; 351 352 if (retrans > 0) { 353 period = timeout; 354 while (--retrans) { 355 timeout <<= 1; 356 if (timeout > rto_max) 357 timeout = rto_max; 358 period += timeout; 359 } 360 } 361 return period; 362 } 363 364 /* 365 * Wait for a TCP event. 366 * 367 * Note that we don't need to lock the socket, as the upper poll layers 368 * take care of normal races (between the test and the event) and we don't 369 * go look at any of the socket buffers directly. 370 */ 371 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 372 { 373 unsigned int mask; 374 struct sock *sk = sock->sk; 375 const struct tcp_sock *tp = tcp_sk(sk); 376 377 sock_poll_wait(file, sk_sleep(sk), wait); 378 if (sk->sk_state == TCP_LISTEN) 379 return inet_csk_listen_poll(sk); 380 381 /* Socket is not locked. We are protected from async events 382 * by poll logic and correct handling of state changes 383 * made by other threads is impossible in any case. 384 */ 385 386 mask = 0; 387 388 /* 389 * POLLHUP is certainly not done right. But poll() doesn't 390 * have a notion of HUP in just one direction, and for a 391 * socket the read side is more interesting. 392 * 393 * Some poll() documentation says that POLLHUP is incompatible 394 * with the POLLOUT/POLLWR flags, so somebody should check this 395 * all. But careful, it tends to be safer to return too many 396 * bits than too few, and you can easily break real applications 397 * if you don't tell them that something has hung up! 398 * 399 * Check-me. 400 * 401 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 402 * our fs/select.c). It means that after we received EOF, 403 * poll always returns immediately, making impossible poll() on write() 404 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 405 * if and only if shutdown has been made in both directions. 406 * Actually, it is interesting to look how Solaris and DUX 407 * solve this dilemma. I would prefer, if POLLHUP were maskable, 408 * then we could set it on SND_SHUTDOWN. BTW examples given 409 * in Stevens' books assume exactly this behaviour, it explains 410 * why POLLHUP is incompatible with POLLOUT. --ANK 411 * 412 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 413 * blocking on fresh not-connected or disconnected socket. --ANK 414 */ 415 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 416 mask |= POLLHUP; 417 if (sk->sk_shutdown & RCV_SHUTDOWN) 418 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 419 420 /* Connected? */ 421 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 422 int target = sock_rcvlowat(sk, 0, INT_MAX); 423 424 if (tp->urg_seq == tp->copied_seq && 425 !sock_flag(sk, SOCK_URGINLINE) && 426 tp->urg_data) 427 target++; 428 429 /* Potential race condition. If read of tp below will 430 * escape above sk->sk_state, we can be illegally awaken 431 * in SYN_* states. */ 432 if (tp->rcv_nxt - tp->copied_seq >= target) 433 mask |= POLLIN | POLLRDNORM; 434 435 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 436 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 437 mask |= POLLOUT | POLLWRNORM; 438 } else { /* send SIGIO later */ 439 set_bit(SOCK_ASYNC_NOSPACE, 440 &sk->sk_socket->flags); 441 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 442 443 /* Race breaker. If space is freed after 444 * wspace test but before the flags are set, 445 * IO signal will be lost. 446 */ 447 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 448 mask |= POLLOUT | POLLWRNORM; 449 } 450 } else 451 mask |= POLLOUT | POLLWRNORM; 452 453 if (tp->urg_data & TCP_URG_VALID) 454 mask |= POLLPRI; 455 } 456 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 457 smp_rmb(); 458 if (sk->sk_err) 459 mask |= POLLERR; 460 461 return mask; 462 } 463 EXPORT_SYMBOL(tcp_poll); 464 465 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 466 { 467 struct tcp_sock *tp = tcp_sk(sk); 468 int answ; 469 470 switch (cmd) { 471 case SIOCINQ: 472 if (sk->sk_state == TCP_LISTEN) 473 return -EINVAL; 474 475 lock_sock(sk); 476 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 477 answ = 0; 478 else if (sock_flag(sk, SOCK_URGINLINE) || 479 !tp->urg_data || 480 before(tp->urg_seq, tp->copied_seq) || 481 !before(tp->urg_seq, tp->rcv_nxt)) { 482 struct sk_buff *skb; 483 484 answ = tp->rcv_nxt - tp->copied_seq; 485 486 /* Subtract 1, if FIN is in queue. */ 487 skb = skb_peek_tail(&sk->sk_receive_queue); 488 if (answ && skb) 489 answ -= tcp_hdr(skb)->fin; 490 } else 491 answ = tp->urg_seq - tp->copied_seq; 492 release_sock(sk); 493 break; 494 case SIOCATMARK: 495 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 496 break; 497 case SIOCOUTQ: 498 if (sk->sk_state == TCP_LISTEN) 499 return -EINVAL; 500 501 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 502 answ = 0; 503 else 504 answ = tp->write_seq - tp->snd_una; 505 break; 506 case SIOCOUTQNSD: 507 if (sk->sk_state == TCP_LISTEN) 508 return -EINVAL; 509 510 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 511 answ = 0; 512 else 513 answ = tp->write_seq - tp->snd_nxt; 514 break; 515 default: 516 return -ENOIOCTLCMD; 517 } 518 519 return put_user(answ, (int __user *)arg); 520 } 521 EXPORT_SYMBOL(tcp_ioctl); 522 523 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 524 { 525 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 526 tp->pushed_seq = tp->write_seq; 527 } 528 529 static inline int forced_push(const struct tcp_sock *tp) 530 { 531 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 532 } 533 534 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 535 { 536 struct tcp_sock *tp = tcp_sk(sk); 537 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 538 539 skb->csum = 0; 540 tcb->seq = tcb->end_seq = tp->write_seq; 541 tcb->tcp_flags = TCPHDR_ACK; 542 tcb->sacked = 0; 543 skb_header_release(skb); 544 tcp_add_write_queue_tail(sk, skb); 545 sk->sk_wmem_queued += skb->truesize; 546 sk_mem_charge(sk, skb->truesize); 547 if (tp->nonagle & TCP_NAGLE_PUSH) 548 tp->nonagle &= ~TCP_NAGLE_PUSH; 549 } 550 551 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 552 { 553 if (flags & MSG_OOB) 554 tp->snd_up = tp->write_seq; 555 } 556 557 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 558 int nonagle) 559 { 560 if (tcp_send_head(sk)) { 561 struct tcp_sock *tp = tcp_sk(sk); 562 563 if (!(flags & MSG_MORE) || forced_push(tp)) 564 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 565 566 tcp_mark_urg(tp, flags); 567 __tcp_push_pending_frames(sk, mss_now, 568 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 569 } 570 } 571 572 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 573 unsigned int offset, size_t len) 574 { 575 struct tcp_splice_state *tss = rd_desc->arg.data; 576 int ret; 577 578 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 579 tss->flags); 580 if (ret > 0) 581 rd_desc->count -= ret; 582 return ret; 583 } 584 585 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 586 { 587 /* Store TCP splice context information in read_descriptor_t. */ 588 read_descriptor_t rd_desc = { 589 .arg.data = tss, 590 .count = tss->len, 591 }; 592 593 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 594 } 595 596 /** 597 * tcp_splice_read - splice data from TCP socket to a pipe 598 * @sock: socket to splice from 599 * @ppos: position (not valid) 600 * @pipe: pipe to splice to 601 * @len: number of bytes to splice 602 * @flags: splice modifier flags 603 * 604 * Description: 605 * Will read pages from given socket and fill them into a pipe. 606 * 607 **/ 608 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 609 struct pipe_inode_info *pipe, size_t len, 610 unsigned int flags) 611 { 612 struct sock *sk = sock->sk; 613 struct tcp_splice_state tss = { 614 .pipe = pipe, 615 .len = len, 616 .flags = flags, 617 }; 618 long timeo; 619 ssize_t spliced; 620 int ret; 621 622 sock_rps_record_flow(sk); 623 /* 624 * We can't seek on a socket input 625 */ 626 if (unlikely(*ppos)) 627 return -ESPIPE; 628 629 ret = spliced = 0; 630 631 lock_sock(sk); 632 633 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 634 while (tss.len) { 635 ret = __tcp_splice_read(sk, &tss); 636 if (ret < 0) 637 break; 638 else if (!ret) { 639 if (spliced) 640 break; 641 if (sock_flag(sk, SOCK_DONE)) 642 break; 643 if (sk->sk_err) { 644 ret = sock_error(sk); 645 break; 646 } 647 if (sk->sk_shutdown & RCV_SHUTDOWN) 648 break; 649 if (sk->sk_state == TCP_CLOSE) { 650 /* 651 * This occurs when user tries to read 652 * from never connected socket. 653 */ 654 if (!sock_flag(sk, SOCK_DONE)) 655 ret = -ENOTCONN; 656 break; 657 } 658 if (!timeo) { 659 ret = -EAGAIN; 660 break; 661 } 662 sk_wait_data(sk, &timeo); 663 if (signal_pending(current)) { 664 ret = sock_intr_errno(timeo); 665 break; 666 } 667 continue; 668 } 669 tss.len -= ret; 670 spliced += ret; 671 672 if (!timeo) 673 break; 674 release_sock(sk); 675 lock_sock(sk); 676 677 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 678 (sk->sk_shutdown & RCV_SHUTDOWN) || 679 signal_pending(current)) 680 break; 681 } 682 683 release_sock(sk); 684 685 if (spliced) 686 return spliced; 687 688 return ret; 689 } 690 EXPORT_SYMBOL(tcp_splice_read); 691 692 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 693 { 694 struct sk_buff *skb; 695 696 /* The TCP header must be at least 32-bit aligned. */ 697 size = ALIGN(size, 4); 698 699 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 700 if (skb) { 701 if (sk_wmem_schedule(sk, skb->truesize)) { 702 /* 703 * Make sure that we have exactly size bytes 704 * available to the caller, no more, no less. 705 */ 706 skb_reserve(skb, skb_tailroom(skb) - size); 707 return skb; 708 } 709 __kfree_skb(skb); 710 } else { 711 sk->sk_prot->enter_memory_pressure(sk); 712 sk_stream_moderate_sndbuf(sk); 713 } 714 return NULL; 715 } 716 717 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 718 int large_allowed) 719 { 720 struct tcp_sock *tp = tcp_sk(sk); 721 u32 xmit_size_goal, old_size_goal; 722 723 xmit_size_goal = mss_now; 724 725 if (large_allowed && sk_can_gso(sk)) { 726 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 727 inet_csk(sk)->icsk_af_ops->net_header_len - 728 inet_csk(sk)->icsk_ext_hdr_len - 729 tp->tcp_header_len); 730 731 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 732 733 /* We try hard to avoid divides here */ 734 old_size_goal = tp->xmit_size_goal_segs * mss_now; 735 736 if (likely(old_size_goal <= xmit_size_goal && 737 old_size_goal + mss_now > xmit_size_goal)) { 738 xmit_size_goal = old_size_goal; 739 } else { 740 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 741 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 742 } 743 } 744 745 return max(xmit_size_goal, mss_now); 746 } 747 748 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 749 { 750 int mss_now; 751 752 mss_now = tcp_current_mss(sk); 753 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 754 755 return mss_now; 756 } 757 758 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 759 size_t psize, int flags) 760 { 761 struct tcp_sock *tp = tcp_sk(sk); 762 int mss_now, size_goal; 763 int err; 764 ssize_t copied; 765 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 766 767 /* Wait for a connection to finish. */ 768 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 769 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 770 goto out_err; 771 772 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 773 774 mss_now = tcp_send_mss(sk, &size_goal, flags); 775 copied = 0; 776 777 err = -EPIPE; 778 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 779 goto out_err; 780 781 while (psize > 0) { 782 struct sk_buff *skb = tcp_write_queue_tail(sk); 783 struct page *page = pages[poffset / PAGE_SIZE]; 784 int copy, i, can_coalesce; 785 int offset = poffset % PAGE_SIZE; 786 int size = min_t(size_t, psize, PAGE_SIZE - offset); 787 788 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 789 new_segment: 790 if (!sk_stream_memory_free(sk)) 791 goto wait_for_sndbuf; 792 793 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 794 if (!skb) 795 goto wait_for_memory; 796 797 skb_entail(sk, skb); 798 copy = size_goal; 799 } 800 801 if (copy > size) 802 copy = size; 803 804 i = skb_shinfo(skb)->nr_frags; 805 can_coalesce = skb_can_coalesce(skb, i, page, offset); 806 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 807 tcp_mark_push(tp, skb); 808 goto new_segment; 809 } 810 if (!sk_wmem_schedule(sk, copy)) 811 goto wait_for_memory; 812 813 if (can_coalesce) { 814 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 815 } else { 816 get_page(page); 817 skb_fill_page_desc(skb, i, page, offset, copy); 818 } 819 820 skb->len += copy; 821 skb->data_len += copy; 822 skb->truesize += copy; 823 sk->sk_wmem_queued += copy; 824 sk_mem_charge(sk, copy); 825 skb->ip_summed = CHECKSUM_PARTIAL; 826 tp->write_seq += copy; 827 TCP_SKB_CB(skb)->end_seq += copy; 828 skb_shinfo(skb)->gso_segs = 0; 829 830 if (!copied) 831 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 832 833 copied += copy; 834 poffset += copy; 835 if (!(psize -= copy)) 836 goto out; 837 838 if (skb->len < size_goal || (flags & MSG_OOB)) 839 continue; 840 841 if (forced_push(tp)) { 842 tcp_mark_push(tp, skb); 843 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 844 } else if (skb == tcp_send_head(sk)) 845 tcp_push_one(sk, mss_now); 846 continue; 847 848 wait_for_sndbuf: 849 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 850 wait_for_memory: 851 if (copied) 852 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 853 854 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 855 goto do_error; 856 857 mss_now = tcp_send_mss(sk, &size_goal, flags); 858 } 859 860 out: 861 if (copied) 862 tcp_push(sk, flags, mss_now, tp->nonagle); 863 return copied; 864 865 do_error: 866 if (copied) 867 goto out; 868 out_err: 869 return sk_stream_error(sk, flags, err); 870 } 871 872 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 873 size_t size, int flags) 874 { 875 ssize_t res; 876 877 if (!(sk->sk_route_caps & NETIF_F_SG) || 878 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 879 return sock_no_sendpage(sk->sk_socket, page, offset, size, 880 flags); 881 882 lock_sock(sk); 883 res = do_tcp_sendpages(sk, &page, offset, size, flags); 884 release_sock(sk); 885 return res; 886 } 887 EXPORT_SYMBOL(tcp_sendpage); 888 889 static inline int select_size(const struct sock *sk, bool sg) 890 { 891 const struct tcp_sock *tp = tcp_sk(sk); 892 int tmp = tp->mss_cache; 893 894 if (sg) { 895 if (sk_can_gso(sk)) { 896 /* Small frames wont use a full page: 897 * Payload will immediately follow tcp header. 898 */ 899 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 900 } else { 901 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 902 903 if (tmp >= pgbreak && 904 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 905 tmp = pgbreak; 906 } 907 } 908 909 return tmp; 910 } 911 912 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 913 size_t size) 914 { 915 struct iovec *iov; 916 struct tcp_sock *tp = tcp_sk(sk); 917 struct sk_buff *skb; 918 int iovlen, flags, err, copied; 919 int mss_now, size_goal; 920 bool sg; 921 long timeo; 922 923 lock_sock(sk); 924 925 flags = msg->msg_flags; 926 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 927 928 /* Wait for a connection to finish. */ 929 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 930 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 931 goto out_err; 932 933 /* This should be in poll */ 934 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 935 936 mss_now = tcp_send_mss(sk, &size_goal, flags); 937 938 /* Ok commence sending. */ 939 iovlen = msg->msg_iovlen; 940 iov = msg->msg_iov; 941 copied = 0; 942 943 err = -EPIPE; 944 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 945 goto out_err; 946 947 sg = !!(sk->sk_route_caps & NETIF_F_SG); 948 949 while (--iovlen >= 0) { 950 size_t seglen = iov->iov_len; 951 unsigned char __user *from = iov->iov_base; 952 953 iov++; 954 955 while (seglen > 0) { 956 int copy = 0; 957 int max = size_goal; 958 959 skb = tcp_write_queue_tail(sk); 960 if (tcp_send_head(sk)) { 961 if (skb->ip_summed == CHECKSUM_NONE) 962 max = mss_now; 963 copy = max - skb->len; 964 } 965 966 if (copy <= 0) { 967 new_segment: 968 /* Allocate new segment. If the interface is SG, 969 * allocate skb fitting to single page. 970 */ 971 if (!sk_stream_memory_free(sk)) 972 goto wait_for_sndbuf; 973 974 skb = sk_stream_alloc_skb(sk, 975 select_size(sk, sg), 976 sk->sk_allocation); 977 if (!skb) 978 goto wait_for_memory; 979 980 /* 981 * Check whether we can use HW checksum. 982 */ 983 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 984 skb->ip_summed = CHECKSUM_PARTIAL; 985 986 skb_entail(sk, skb); 987 copy = size_goal; 988 max = size_goal; 989 } 990 991 /* Try to append data to the end of skb. */ 992 if (copy > seglen) 993 copy = seglen; 994 995 /* Where to copy to? */ 996 if (skb_tailroom(skb) > 0) { 997 /* We have some space in skb head. Superb! */ 998 if (copy > skb_tailroom(skb)) 999 copy = skb_tailroom(skb); 1000 err = skb_add_data_nocache(sk, skb, from, copy); 1001 if (err) 1002 goto do_fault; 1003 } else { 1004 int merge = 0; 1005 int i = skb_shinfo(skb)->nr_frags; 1006 struct page *page = sk->sk_sndmsg_page; 1007 int off; 1008 1009 if (page && page_count(page) == 1) 1010 sk->sk_sndmsg_off = 0; 1011 1012 off = sk->sk_sndmsg_off; 1013 1014 if (skb_can_coalesce(skb, i, page, off) && 1015 off != PAGE_SIZE) { 1016 /* We can extend the last page 1017 * fragment. */ 1018 merge = 1; 1019 } else if (i == MAX_SKB_FRAGS || !sg) { 1020 /* Need to add new fragment and cannot 1021 * do this because interface is non-SG, 1022 * or because all the page slots are 1023 * busy. */ 1024 tcp_mark_push(tp, skb); 1025 goto new_segment; 1026 } else if (page) { 1027 if (off == PAGE_SIZE) { 1028 put_page(page); 1029 sk->sk_sndmsg_page = page = NULL; 1030 off = 0; 1031 } 1032 } else 1033 off = 0; 1034 1035 if (copy > PAGE_SIZE - off) 1036 copy = PAGE_SIZE - off; 1037 1038 if (!sk_wmem_schedule(sk, copy)) 1039 goto wait_for_memory; 1040 1041 if (!page) { 1042 /* Allocate new cache page. */ 1043 if (!(page = sk_stream_alloc_page(sk))) 1044 goto wait_for_memory; 1045 } 1046 1047 /* Time to copy data. We are close to 1048 * the end! */ 1049 err = skb_copy_to_page_nocache(sk, from, skb, 1050 page, off, copy); 1051 if (err) { 1052 /* If this page was new, give it to the 1053 * socket so it does not get leaked. 1054 */ 1055 if (!sk->sk_sndmsg_page) { 1056 sk->sk_sndmsg_page = page; 1057 sk->sk_sndmsg_off = 0; 1058 } 1059 goto do_error; 1060 } 1061 1062 /* Update the skb. */ 1063 if (merge) { 1064 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1065 } else { 1066 skb_fill_page_desc(skb, i, page, off, copy); 1067 if (sk->sk_sndmsg_page) { 1068 get_page(page); 1069 } else if (off + copy < PAGE_SIZE) { 1070 get_page(page); 1071 sk->sk_sndmsg_page = page; 1072 } 1073 } 1074 1075 sk->sk_sndmsg_off = off + copy; 1076 } 1077 1078 if (!copied) 1079 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1080 1081 tp->write_seq += copy; 1082 TCP_SKB_CB(skb)->end_seq += copy; 1083 skb_shinfo(skb)->gso_segs = 0; 1084 1085 from += copy; 1086 copied += copy; 1087 if ((seglen -= copy) == 0 && iovlen == 0) 1088 goto out; 1089 1090 if (skb->len < max || (flags & MSG_OOB)) 1091 continue; 1092 1093 if (forced_push(tp)) { 1094 tcp_mark_push(tp, skb); 1095 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1096 } else if (skb == tcp_send_head(sk)) 1097 tcp_push_one(sk, mss_now); 1098 continue; 1099 1100 wait_for_sndbuf: 1101 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1102 wait_for_memory: 1103 if (copied) 1104 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1105 1106 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1107 goto do_error; 1108 1109 mss_now = tcp_send_mss(sk, &size_goal, flags); 1110 } 1111 } 1112 1113 out: 1114 if (copied) 1115 tcp_push(sk, flags, mss_now, tp->nonagle); 1116 release_sock(sk); 1117 return copied; 1118 1119 do_fault: 1120 if (!skb->len) { 1121 tcp_unlink_write_queue(skb, sk); 1122 /* It is the one place in all of TCP, except connection 1123 * reset, where we can be unlinking the send_head. 1124 */ 1125 tcp_check_send_head(sk, skb); 1126 sk_wmem_free_skb(sk, skb); 1127 } 1128 1129 do_error: 1130 if (copied) 1131 goto out; 1132 out_err: 1133 err = sk_stream_error(sk, flags, err); 1134 release_sock(sk); 1135 return err; 1136 } 1137 EXPORT_SYMBOL(tcp_sendmsg); 1138 1139 /* 1140 * Handle reading urgent data. BSD has very simple semantics for 1141 * this, no blocking and very strange errors 8) 1142 */ 1143 1144 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1145 { 1146 struct tcp_sock *tp = tcp_sk(sk); 1147 1148 /* No URG data to read. */ 1149 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1150 tp->urg_data == TCP_URG_READ) 1151 return -EINVAL; /* Yes this is right ! */ 1152 1153 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1154 return -ENOTCONN; 1155 1156 if (tp->urg_data & TCP_URG_VALID) { 1157 int err = 0; 1158 char c = tp->urg_data; 1159 1160 if (!(flags & MSG_PEEK)) 1161 tp->urg_data = TCP_URG_READ; 1162 1163 /* Read urgent data. */ 1164 msg->msg_flags |= MSG_OOB; 1165 1166 if (len > 0) { 1167 if (!(flags & MSG_TRUNC)) 1168 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1169 len = 1; 1170 } else 1171 msg->msg_flags |= MSG_TRUNC; 1172 1173 return err ? -EFAULT : len; 1174 } 1175 1176 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1177 return 0; 1178 1179 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1180 * the available implementations agree in this case: 1181 * this call should never block, independent of the 1182 * blocking state of the socket. 1183 * Mike <pall@rz.uni-karlsruhe.de> 1184 */ 1185 return -EAGAIN; 1186 } 1187 1188 /* Clean up the receive buffer for full frames taken by the user, 1189 * then send an ACK if necessary. COPIED is the number of bytes 1190 * tcp_recvmsg has given to the user so far, it speeds up the 1191 * calculation of whether or not we must ACK for the sake of 1192 * a window update. 1193 */ 1194 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1195 { 1196 struct tcp_sock *tp = tcp_sk(sk); 1197 int time_to_ack = 0; 1198 1199 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1200 1201 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1202 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1203 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1204 1205 if (inet_csk_ack_scheduled(sk)) { 1206 const struct inet_connection_sock *icsk = inet_csk(sk); 1207 /* Delayed ACKs frequently hit locked sockets during bulk 1208 * receive. */ 1209 if (icsk->icsk_ack.blocked || 1210 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1211 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1212 /* 1213 * If this read emptied read buffer, we send ACK, if 1214 * connection is not bidirectional, user drained 1215 * receive buffer and there was a small segment 1216 * in queue. 1217 */ 1218 (copied > 0 && 1219 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1220 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1221 !icsk->icsk_ack.pingpong)) && 1222 !atomic_read(&sk->sk_rmem_alloc))) 1223 time_to_ack = 1; 1224 } 1225 1226 /* We send an ACK if we can now advertise a non-zero window 1227 * which has been raised "significantly". 1228 * 1229 * Even if window raised up to infinity, do not send window open ACK 1230 * in states, where we will not receive more. It is useless. 1231 */ 1232 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1233 __u32 rcv_window_now = tcp_receive_window(tp); 1234 1235 /* Optimize, __tcp_select_window() is not cheap. */ 1236 if (2*rcv_window_now <= tp->window_clamp) { 1237 __u32 new_window = __tcp_select_window(sk); 1238 1239 /* Send ACK now, if this read freed lots of space 1240 * in our buffer. Certainly, new_window is new window. 1241 * We can advertise it now, if it is not less than current one. 1242 * "Lots" means "at least twice" here. 1243 */ 1244 if (new_window && new_window >= 2 * rcv_window_now) 1245 time_to_ack = 1; 1246 } 1247 } 1248 if (time_to_ack) 1249 tcp_send_ack(sk); 1250 } 1251 1252 static void tcp_prequeue_process(struct sock *sk) 1253 { 1254 struct sk_buff *skb; 1255 struct tcp_sock *tp = tcp_sk(sk); 1256 1257 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1258 1259 /* RX process wants to run with disabled BHs, though it is not 1260 * necessary */ 1261 local_bh_disable(); 1262 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1263 sk_backlog_rcv(sk, skb); 1264 local_bh_enable(); 1265 1266 /* Clear memory counter. */ 1267 tp->ucopy.memory = 0; 1268 } 1269 1270 #ifdef CONFIG_NET_DMA 1271 static void tcp_service_net_dma(struct sock *sk, bool wait) 1272 { 1273 dma_cookie_t done, used; 1274 dma_cookie_t last_issued; 1275 struct tcp_sock *tp = tcp_sk(sk); 1276 1277 if (!tp->ucopy.dma_chan) 1278 return; 1279 1280 last_issued = tp->ucopy.dma_cookie; 1281 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1282 1283 do { 1284 if (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1285 last_issued, &done, 1286 &used) == DMA_SUCCESS) { 1287 /* Safe to free early-copied skbs now */ 1288 __skb_queue_purge(&sk->sk_async_wait_queue); 1289 break; 1290 } else { 1291 struct sk_buff *skb; 1292 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1293 (dma_async_is_complete(skb->dma_cookie, done, 1294 used) == DMA_SUCCESS)) { 1295 __skb_dequeue(&sk->sk_async_wait_queue); 1296 kfree_skb(skb); 1297 } 1298 } 1299 } while (wait); 1300 } 1301 #endif 1302 1303 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1304 { 1305 struct sk_buff *skb; 1306 u32 offset; 1307 1308 skb_queue_walk(&sk->sk_receive_queue, skb) { 1309 offset = seq - TCP_SKB_CB(skb)->seq; 1310 if (tcp_hdr(skb)->syn) 1311 offset--; 1312 if (offset < skb->len || tcp_hdr(skb)->fin) { 1313 *off = offset; 1314 return skb; 1315 } 1316 } 1317 return NULL; 1318 } 1319 1320 /* 1321 * This routine provides an alternative to tcp_recvmsg() for routines 1322 * that would like to handle copying from skbuffs directly in 'sendfile' 1323 * fashion. 1324 * Note: 1325 * - It is assumed that the socket was locked by the caller. 1326 * - The routine does not block. 1327 * - At present, there is no support for reading OOB data 1328 * or for 'peeking' the socket using this routine 1329 * (although both would be easy to implement). 1330 */ 1331 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1332 sk_read_actor_t recv_actor) 1333 { 1334 struct sk_buff *skb; 1335 struct tcp_sock *tp = tcp_sk(sk); 1336 u32 seq = tp->copied_seq; 1337 u32 offset; 1338 int copied = 0; 1339 1340 if (sk->sk_state == TCP_LISTEN) 1341 return -ENOTCONN; 1342 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1343 if (offset < skb->len) { 1344 int used; 1345 size_t len; 1346 1347 len = skb->len - offset; 1348 /* Stop reading if we hit a patch of urgent data */ 1349 if (tp->urg_data) { 1350 u32 urg_offset = tp->urg_seq - seq; 1351 if (urg_offset < len) 1352 len = urg_offset; 1353 if (!len) 1354 break; 1355 } 1356 used = recv_actor(desc, skb, offset, len); 1357 if (used < 0) { 1358 if (!copied) 1359 copied = used; 1360 break; 1361 } else if (used <= len) { 1362 seq += used; 1363 copied += used; 1364 offset += used; 1365 } 1366 /* 1367 * If recv_actor drops the lock (e.g. TCP splice 1368 * receive) the skb pointer might be invalid when 1369 * getting here: tcp_collapse might have deleted it 1370 * while aggregating skbs from the socket queue. 1371 */ 1372 skb = tcp_recv_skb(sk, seq-1, &offset); 1373 if (!skb || (offset+1 != skb->len)) 1374 break; 1375 } 1376 if (tcp_hdr(skb)->fin) { 1377 sk_eat_skb(sk, skb, 0); 1378 ++seq; 1379 break; 1380 } 1381 sk_eat_skb(sk, skb, 0); 1382 if (!desc->count) 1383 break; 1384 tp->copied_seq = seq; 1385 } 1386 tp->copied_seq = seq; 1387 1388 tcp_rcv_space_adjust(sk); 1389 1390 /* Clean up data we have read: This will do ACK frames. */ 1391 if (copied > 0) 1392 tcp_cleanup_rbuf(sk, copied); 1393 return copied; 1394 } 1395 EXPORT_SYMBOL(tcp_read_sock); 1396 1397 /* 1398 * This routine copies from a sock struct into the user buffer. 1399 * 1400 * Technical note: in 2.3 we work on _locked_ socket, so that 1401 * tricks with *seq access order and skb->users are not required. 1402 * Probably, code can be easily improved even more. 1403 */ 1404 1405 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1406 size_t len, int nonblock, int flags, int *addr_len) 1407 { 1408 struct tcp_sock *tp = tcp_sk(sk); 1409 int copied = 0; 1410 u32 peek_seq; 1411 u32 *seq; 1412 unsigned long used; 1413 int err; 1414 int target; /* Read at least this many bytes */ 1415 long timeo; 1416 struct task_struct *user_recv = NULL; 1417 int copied_early = 0; 1418 struct sk_buff *skb; 1419 u32 urg_hole = 0; 1420 1421 lock_sock(sk); 1422 1423 err = -ENOTCONN; 1424 if (sk->sk_state == TCP_LISTEN) 1425 goto out; 1426 1427 timeo = sock_rcvtimeo(sk, nonblock); 1428 1429 /* Urgent data needs to be handled specially. */ 1430 if (flags & MSG_OOB) 1431 goto recv_urg; 1432 1433 seq = &tp->copied_seq; 1434 if (flags & MSG_PEEK) { 1435 peek_seq = tp->copied_seq; 1436 seq = &peek_seq; 1437 } 1438 1439 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1440 1441 #ifdef CONFIG_NET_DMA 1442 tp->ucopy.dma_chan = NULL; 1443 preempt_disable(); 1444 skb = skb_peek_tail(&sk->sk_receive_queue); 1445 { 1446 int available = 0; 1447 1448 if (skb) 1449 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1450 if ((available < target) && 1451 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1452 !sysctl_tcp_low_latency && 1453 dma_find_channel(DMA_MEMCPY)) { 1454 preempt_enable_no_resched(); 1455 tp->ucopy.pinned_list = 1456 dma_pin_iovec_pages(msg->msg_iov, len); 1457 } else { 1458 preempt_enable_no_resched(); 1459 } 1460 } 1461 #endif 1462 1463 do { 1464 u32 offset; 1465 1466 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1467 if (tp->urg_data && tp->urg_seq == *seq) { 1468 if (copied) 1469 break; 1470 if (signal_pending(current)) { 1471 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1472 break; 1473 } 1474 } 1475 1476 /* Next get a buffer. */ 1477 1478 skb_queue_walk(&sk->sk_receive_queue, skb) { 1479 /* Now that we have two receive queues this 1480 * shouldn't happen. 1481 */ 1482 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1483 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1484 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1485 flags)) 1486 break; 1487 1488 offset = *seq - TCP_SKB_CB(skb)->seq; 1489 if (tcp_hdr(skb)->syn) 1490 offset--; 1491 if (offset < skb->len) 1492 goto found_ok_skb; 1493 if (tcp_hdr(skb)->fin) 1494 goto found_fin_ok; 1495 WARN(!(flags & MSG_PEEK), 1496 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1497 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1498 } 1499 1500 /* Well, if we have backlog, try to process it now yet. */ 1501 1502 if (copied >= target && !sk->sk_backlog.tail) 1503 break; 1504 1505 if (copied) { 1506 if (sk->sk_err || 1507 sk->sk_state == TCP_CLOSE || 1508 (sk->sk_shutdown & RCV_SHUTDOWN) || 1509 !timeo || 1510 signal_pending(current)) 1511 break; 1512 } else { 1513 if (sock_flag(sk, SOCK_DONE)) 1514 break; 1515 1516 if (sk->sk_err) { 1517 copied = sock_error(sk); 1518 break; 1519 } 1520 1521 if (sk->sk_shutdown & RCV_SHUTDOWN) 1522 break; 1523 1524 if (sk->sk_state == TCP_CLOSE) { 1525 if (!sock_flag(sk, SOCK_DONE)) { 1526 /* This occurs when user tries to read 1527 * from never connected socket. 1528 */ 1529 copied = -ENOTCONN; 1530 break; 1531 } 1532 break; 1533 } 1534 1535 if (!timeo) { 1536 copied = -EAGAIN; 1537 break; 1538 } 1539 1540 if (signal_pending(current)) { 1541 copied = sock_intr_errno(timeo); 1542 break; 1543 } 1544 } 1545 1546 tcp_cleanup_rbuf(sk, copied); 1547 1548 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1549 /* Install new reader */ 1550 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1551 user_recv = current; 1552 tp->ucopy.task = user_recv; 1553 tp->ucopy.iov = msg->msg_iov; 1554 } 1555 1556 tp->ucopy.len = len; 1557 1558 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1559 !(flags & (MSG_PEEK | MSG_TRUNC))); 1560 1561 /* Ugly... If prequeue is not empty, we have to 1562 * process it before releasing socket, otherwise 1563 * order will be broken at second iteration. 1564 * More elegant solution is required!!! 1565 * 1566 * Look: we have the following (pseudo)queues: 1567 * 1568 * 1. packets in flight 1569 * 2. backlog 1570 * 3. prequeue 1571 * 4. receive_queue 1572 * 1573 * Each queue can be processed only if the next ones 1574 * are empty. At this point we have empty receive_queue. 1575 * But prequeue _can_ be not empty after 2nd iteration, 1576 * when we jumped to start of loop because backlog 1577 * processing added something to receive_queue. 1578 * We cannot release_sock(), because backlog contains 1579 * packets arrived _after_ prequeued ones. 1580 * 1581 * Shortly, algorithm is clear --- to process all 1582 * the queues in order. We could make it more directly, 1583 * requeueing packets from backlog to prequeue, if 1584 * is not empty. It is more elegant, but eats cycles, 1585 * unfortunately. 1586 */ 1587 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1588 goto do_prequeue; 1589 1590 /* __ Set realtime policy in scheduler __ */ 1591 } 1592 1593 #ifdef CONFIG_NET_DMA 1594 if (tp->ucopy.dma_chan) 1595 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1596 #endif 1597 if (copied >= target) { 1598 /* Do not sleep, just process backlog. */ 1599 release_sock(sk); 1600 lock_sock(sk); 1601 } else 1602 sk_wait_data(sk, &timeo); 1603 1604 #ifdef CONFIG_NET_DMA 1605 tcp_service_net_dma(sk, false); /* Don't block */ 1606 tp->ucopy.wakeup = 0; 1607 #endif 1608 1609 if (user_recv) { 1610 int chunk; 1611 1612 /* __ Restore normal policy in scheduler __ */ 1613 1614 if ((chunk = len - tp->ucopy.len) != 0) { 1615 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1616 len -= chunk; 1617 copied += chunk; 1618 } 1619 1620 if (tp->rcv_nxt == tp->copied_seq && 1621 !skb_queue_empty(&tp->ucopy.prequeue)) { 1622 do_prequeue: 1623 tcp_prequeue_process(sk); 1624 1625 if ((chunk = len - tp->ucopy.len) != 0) { 1626 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1627 len -= chunk; 1628 copied += chunk; 1629 } 1630 } 1631 } 1632 if ((flags & MSG_PEEK) && 1633 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1634 if (net_ratelimit()) 1635 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", 1636 current->comm, task_pid_nr(current)); 1637 peek_seq = tp->copied_seq; 1638 } 1639 continue; 1640 1641 found_ok_skb: 1642 /* Ok so how much can we use? */ 1643 used = skb->len - offset; 1644 if (len < used) 1645 used = len; 1646 1647 /* Do we have urgent data here? */ 1648 if (tp->urg_data) { 1649 u32 urg_offset = tp->urg_seq - *seq; 1650 if (urg_offset < used) { 1651 if (!urg_offset) { 1652 if (!sock_flag(sk, SOCK_URGINLINE)) { 1653 ++*seq; 1654 urg_hole++; 1655 offset++; 1656 used--; 1657 if (!used) 1658 goto skip_copy; 1659 } 1660 } else 1661 used = urg_offset; 1662 } 1663 } 1664 1665 if (!(flags & MSG_TRUNC)) { 1666 #ifdef CONFIG_NET_DMA 1667 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1668 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 1669 1670 if (tp->ucopy.dma_chan) { 1671 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1672 tp->ucopy.dma_chan, skb, offset, 1673 msg->msg_iov, used, 1674 tp->ucopy.pinned_list); 1675 1676 if (tp->ucopy.dma_cookie < 0) { 1677 1678 printk(KERN_ALERT "dma_cookie < 0\n"); 1679 1680 /* Exception. Bailout! */ 1681 if (!copied) 1682 copied = -EFAULT; 1683 break; 1684 } 1685 1686 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1687 1688 if ((offset + used) == skb->len) 1689 copied_early = 1; 1690 1691 } else 1692 #endif 1693 { 1694 err = skb_copy_datagram_iovec(skb, offset, 1695 msg->msg_iov, used); 1696 if (err) { 1697 /* Exception. Bailout! */ 1698 if (!copied) 1699 copied = -EFAULT; 1700 break; 1701 } 1702 } 1703 } 1704 1705 *seq += used; 1706 copied += used; 1707 len -= used; 1708 1709 tcp_rcv_space_adjust(sk); 1710 1711 skip_copy: 1712 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1713 tp->urg_data = 0; 1714 tcp_fast_path_check(sk); 1715 } 1716 if (used + offset < skb->len) 1717 continue; 1718 1719 if (tcp_hdr(skb)->fin) 1720 goto found_fin_ok; 1721 if (!(flags & MSG_PEEK)) { 1722 sk_eat_skb(sk, skb, copied_early); 1723 copied_early = 0; 1724 } 1725 continue; 1726 1727 found_fin_ok: 1728 /* Process the FIN. */ 1729 ++*seq; 1730 if (!(flags & MSG_PEEK)) { 1731 sk_eat_skb(sk, skb, copied_early); 1732 copied_early = 0; 1733 } 1734 break; 1735 } while (len > 0); 1736 1737 if (user_recv) { 1738 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1739 int chunk; 1740 1741 tp->ucopy.len = copied > 0 ? len : 0; 1742 1743 tcp_prequeue_process(sk); 1744 1745 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1746 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1747 len -= chunk; 1748 copied += chunk; 1749 } 1750 } 1751 1752 tp->ucopy.task = NULL; 1753 tp->ucopy.len = 0; 1754 } 1755 1756 #ifdef CONFIG_NET_DMA 1757 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1758 tp->ucopy.dma_chan = NULL; 1759 1760 if (tp->ucopy.pinned_list) { 1761 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1762 tp->ucopy.pinned_list = NULL; 1763 } 1764 #endif 1765 1766 /* According to UNIX98, msg_name/msg_namelen are ignored 1767 * on connected socket. I was just happy when found this 8) --ANK 1768 */ 1769 1770 /* Clean up data we have read: This will do ACK frames. */ 1771 tcp_cleanup_rbuf(sk, copied); 1772 1773 release_sock(sk); 1774 return copied; 1775 1776 out: 1777 release_sock(sk); 1778 return err; 1779 1780 recv_urg: 1781 err = tcp_recv_urg(sk, msg, len, flags); 1782 goto out; 1783 } 1784 EXPORT_SYMBOL(tcp_recvmsg); 1785 1786 void tcp_set_state(struct sock *sk, int state) 1787 { 1788 int oldstate = sk->sk_state; 1789 1790 switch (state) { 1791 case TCP_ESTABLISHED: 1792 if (oldstate != TCP_ESTABLISHED) 1793 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1794 break; 1795 1796 case TCP_CLOSE: 1797 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1798 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1799 1800 sk->sk_prot->unhash(sk); 1801 if (inet_csk(sk)->icsk_bind_hash && 1802 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1803 inet_put_port(sk); 1804 /* fall through */ 1805 default: 1806 if (oldstate == TCP_ESTABLISHED) 1807 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1808 } 1809 1810 /* Change state AFTER socket is unhashed to avoid closed 1811 * socket sitting in hash tables. 1812 */ 1813 sk->sk_state = state; 1814 1815 #ifdef STATE_TRACE 1816 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1817 #endif 1818 } 1819 EXPORT_SYMBOL_GPL(tcp_set_state); 1820 1821 /* 1822 * State processing on a close. This implements the state shift for 1823 * sending our FIN frame. Note that we only send a FIN for some 1824 * states. A shutdown() may have already sent the FIN, or we may be 1825 * closed. 1826 */ 1827 1828 static const unsigned char new_state[16] = { 1829 /* current state: new state: action: */ 1830 /* (Invalid) */ TCP_CLOSE, 1831 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1832 /* TCP_SYN_SENT */ TCP_CLOSE, 1833 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1834 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1835 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1836 /* TCP_TIME_WAIT */ TCP_CLOSE, 1837 /* TCP_CLOSE */ TCP_CLOSE, 1838 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1839 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1840 /* TCP_LISTEN */ TCP_CLOSE, 1841 /* TCP_CLOSING */ TCP_CLOSING, 1842 }; 1843 1844 static int tcp_close_state(struct sock *sk) 1845 { 1846 int next = (int)new_state[sk->sk_state]; 1847 int ns = next & TCP_STATE_MASK; 1848 1849 tcp_set_state(sk, ns); 1850 1851 return next & TCP_ACTION_FIN; 1852 } 1853 1854 /* 1855 * Shutdown the sending side of a connection. Much like close except 1856 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1857 */ 1858 1859 void tcp_shutdown(struct sock *sk, int how) 1860 { 1861 /* We need to grab some memory, and put together a FIN, 1862 * and then put it into the queue to be sent. 1863 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1864 */ 1865 if (!(how & SEND_SHUTDOWN)) 1866 return; 1867 1868 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1869 if ((1 << sk->sk_state) & 1870 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1871 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1872 /* Clear out any half completed packets. FIN if needed. */ 1873 if (tcp_close_state(sk)) 1874 tcp_send_fin(sk); 1875 } 1876 } 1877 EXPORT_SYMBOL(tcp_shutdown); 1878 1879 void tcp_close(struct sock *sk, long timeout) 1880 { 1881 struct sk_buff *skb; 1882 int data_was_unread = 0; 1883 int state; 1884 1885 lock_sock(sk); 1886 sk->sk_shutdown = SHUTDOWN_MASK; 1887 1888 if (sk->sk_state == TCP_LISTEN) { 1889 tcp_set_state(sk, TCP_CLOSE); 1890 1891 /* Special case. */ 1892 inet_csk_listen_stop(sk); 1893 1894 goto adjudge_to_death; 1895 } 1896 1897 /* We need to flush the recv. buffs. We do this only on the 1898 * descriptor close, not protocol-sourced closes, because the 1899 * reader process may not have drained the data yet! 1900 */ 1901 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 1902 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 1903 tcp_hdr(skb)->fin; 1904 data_was_unread += len; 1905 __kfree_skb(skb); 1906 } 1907 1908 sk_mem_reclaim(sk); 1909 1910 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 1911 if (sk->sk_state == TCP_CLOSE) 1912 goto adjudge_to_death; 1913 1914 /* As outlined in RFC 2525, section 2.17, we send a RST here because 1915 * data was lost. To witness the awful effects of the old behavior of 1916 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 1917 * GET in an FTP client, suspend the process, wait for the client to 1918 * advertise a zero window, then kill -9 the FTP client, wheee... 1919 * Note: timeout is always zero in such a case. 1920 */ 1921 if (data_was_unread) { 1922 /* Unread data was tossed, zap the connection. */ 1923 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 1924 tcp_set_state(sk, TCP_CLOSE); 1925 tcp_send_active_reset(sk, sk->sk_allocation); 1926 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1927 /* Check zero linger _after_ checking for unread data. */ 1928 sk->sk_prot->disconnect(sk, 0); 1929 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 1930 } else if (tcp_close_state(sk)) { 1931 /* We FIN if the application ate all the data before 1932 * zapping the connection. 1933 */ 1934 1935 /* RED-PEN. Formally speaking, we have broken TCP state 1936 * machine. State transitions: 1937 * 1938 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 1939 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 1940 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 1941 * 1942 * are legal only when FIN has been sent (i.e. in window), 1943 * rather than queued out of window. Purists blame. 1944 * 1945 * F.e. "RFC state" is ESTABLISHED, 1946 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 1947 * 1948 * The visible declinations are that sometimes 1949 * we enter time-wait state, when it is not required really 1950 * (harmless), do not send active resets, when they are 1951 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 1952 * they look as CLOSING or LAST_ACK for Linux) 1953 * Probably, I missed some more holelets. 1954 * --ANK 1955 */ 1956 tcp_send_fin(sk); 1957 } 1958 1959 sk_stream_wait_close(sk, timeout); 1960 1961 adjudge_to_death: 1962 state = sk->sk_state; 1963 sock_hold(sk); 1964 sock_orphan(sk); 1965 1966 /* It is the last release_sock in its life. It will remove backlog. */ 1967 release_sock(sk); 1968 1969 1970 /* Now socket is owned by kernel and we acquire BH lock 1971 to finish close. No need to check for user refs. 1972 */ 1973 local_bh_disable(); 1974 bh_lock_sock(sk); 1975 WARN_ON(sock_owned_by_user(sk)); 1976 1977 percpu_counter_inc(sk->sk_prot->orphan_count); 1978 1979 /* Have we already been destroyed by a softirq or backlog? */ 1980 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 1981 goto out; 1982 1983 /* This is a (useful) BSD violating of the RFC. There is a 1984 * problem with TCP as specified in that the other end could 1985 * keep a socket open forever with no application left this end. 1986 * We use a 3 minute timeout (about the same as BSD) then kill 1987 * our end. If they send after that then tough - BUT: long enough 1988 * that we won't make the old 4*rto = almost no time - whoops 1989 * reset mistake. 1990 * 1991 * Nope, it was not mistake. It is really desired behaviour 1992 * f.e. on http servers, when such sockets are useless, but 1993 * consume significant resources. Let's do it with special 1994 * linger2 option. --ANK 1995 */ 1996 1997 if (sk->sk_state == TCP_FIN_WAIT2) { 1998 struct tcp_sock *tp = tcp_sk(sk); 1999 if (tp->linger2 < 0) { 2000 tcp_set_state(sk, TCP_CLOSE); 2001 tcp_send_active_reset(sk, GFP_ATOMIC); 2002 NET_INC_STATS_BH(sock_net(sk), 2003 LINUX_MIB_TCPABORTONLINGER); 2004 } else { 2005 const int tmo = tcp_fin_time(sk); 2006 2007 if (tmo > TCP_TIMEWAIT_LEN) { 2008 inet_csk_reset_keepalive_timer(sk, 2009 tmo - TCP_TIMEWAIT_LEN); 2010 } else { 2011 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2012 goto out; 2013 } 2014 } 2015 } 2016 if (sk->sk_state != TCP_CLOSE) { 2017 sk_mem_reclaim(sk); 2018 if (tcp_too_many_orphans(sk, 0)) { 2019 if (net_ratelimit()) 2020 printk(KERN_INFO "TCP: too many of orphaned " 2021 "sockets\n"); 2022 tcp_set_state(sk, TCP_CLOSE); 2023 tcp_send_active_reset(sk, GFP_ATOMIC); 2024 NET_INC_STATS_BH(sock_net(sk), 2025 LINUX_MIB_TCPABORTONMEMORY); 2026 } 2027 } 2028 2029 if (sk->sk_state == TCP_CLOSE) 2030 inet_csk_destroy_sock(sk); 2031 /* Otherwise, socket is reprieved until protocol close. */ 2032 2033 out: 2034 bh_unlock_sock(sk); 2035 local_bh_enable(); 2036 sock_put(sk); 2037 } 2038 EXPORT_SYMBOL(tcp_close); 2039 2040 /* These states need RST on ABORT according to RFC793 */ 2041 2042 static inline int tcp_need_reset(int state) 2043 { 2044 return (1 << state) & 2045 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2046 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2047 } 2048 2049 int tcp_disconnect(struct sock *sk, int flags) 2050 { 2051 struct inet_sock *inet = inet_sk(sk); 2052 struct inet_connection_sock *icsk = inet_csk(sk); 2053 struct tcp_sock *tp = tcp_sk(sk); 2054 int err = 0; 2055 int old_state = sk->sk_state; 2056 2057 if (old_state != TCP_CLOSE) 2058 tcp_set_state(sk, TCP_CLOSE); 2059 2060 /* ABORT function of RFC793 */ 2061 if (old_state == TCP_LISTEN) { 2062 inet_csk_listen_stop(sk); 2063 } else if (tcp_need_reset(old_state) || 2064 (tp->snd_nxt != tp->write_seq && 2065 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2066 /* The last check adjusts for discrepancy of Linux wrt. RFC 2067 * states 2068 */ 2069 tcp_send_active_reset(sk, gfp_any()); 2070 sk->sk_err = ECONNRESET; 2071 } else if (old_state == TCP_SYN_SENT) 2072 sk->sk_err = ECONNRESET; 2073 2074 tcp_clear_xmit_timers(sk); 2075 __skb_queue_purge(&sk->sk_receive_queue); 2076 tcp_write_queue_purge(sk); 2077 __skb_queue_purge(&tp->out_of_order_queue); 2078 #ifdef CONFIG_NET_DMA 2079 __skb_queue_purge(&sk->sk_async_wait_queue); 2080 #endif 2081 2082 inet->inet_dport = 0; 2083 2084 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2085 inet_reset_saddr(sk); 2086 2087 sk->sk_shutdown = 0; 2088 sock_reset_flag(sk, SOCK_DONE); 2089 tp->srtt = 0; 2090 if ((tp->write_seq += tp->max_window + 2) == 0) 2091 tp->write_seq = 1; 2092 icsk->icsk_backoff = 0; 2093 tp->snd_cwnd = 2; 2094 icsk->icsk_probes_out = 0; 2095 tp->packets_out = 0; 2096 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2097 tp->snd_cwnd_cnt = 0; 2098 tp->bytes_acked = 0; 2099 tp->window_clamp = 0; 2100 tcp_set_ca_state(sk, TCP_CA_Open); 2101 tcp_clear_retrans(tp); 2102 inet_csk_delack_init(sk); 2103 tcp_init_send_head(sk); 2104 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2105 __sk_dst_reset(sk); 2106 2107 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2108 2109 sk->sk_error_report(sk); 2110 return err; 2111 } 2112 EXPORT_SYMBOL(tcp_disconnect); 2113 2114 /* 2115 * Socket option code for TCP. 2116 */ 2117 static int do_tcp_setsockopt(struct sock *sk, int level, 2118 int optname, char __user *optval, unsigned int optlen) 2119 { 2120 struct tcp_sock *tp = tcp_sk(sk); 2121 struct inet_connection_sock *icsk = inet_csk(sk); 2122 int val; 2123 int err = 0; 2124 2125 /* These are data/string values, all the others are ints */ 2126 switch (optname) { 2127 case TCP_CONGESTION: { 2128 char name[TCP_CA_NAME_MAX]; 2129 2130 if (optlen < 1) 2131 return -EINVAL; 2132 2133 val = strncpy_from_user(name, optval, 2134 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2135 if (val < 0) 2136 return -EFAULT; 2137 name[val] = 0; 2138 2139 lock_sock(sk); 2140 err = tcp_set_congestion_control(sk, name); 2141 release_sock(sk); 2142 return err; 2143 } 2144 case TCP_COOKIE_TRANSACTIONS: { 2145 struct tcp_cookie_transactions ctd; 2146 struct tcp_cookie_values *cvp = NULL; 2147 2148 if (sizeof(ctd) > optlen) 2149 return -EINVAL; 2150 if (copy_from_user(&ctd, optval, sizeof(ctd))) 2151 return -EFAULT; 2152 2153 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) || 2154 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED) 2155 return -EINVAL; 2156 2157 if (ctd.tcpct_cookie_desired == 0) { 2158 /* default to global value */ 2159 } else if ((0x1 & ctd.tcpct_cookie_desired) || 2160 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX || 2161 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) { 2162 return -EINVAL; 2163 } 2164 2165 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) { 2166 /* Supercedes all other values */ 2167 lock_sock(sk); 2168 if (tp->cookie_values != NULL) { 2169 kref_put(&tp->cookie_values->kref, 2170 tcp_cookie_values_release); 2171 tp->cookie_values = NULL; 2172 } 2173 tp->rx_opt.cookie_in_always = 0; /* false */ 2174 tp->rx_opt.cookie_out_never = 1; /* true */ 2175 release_sock(sk); 2176 return err; 2177 } 2178 2179 /* Allocate ancillary memory before locking. 2180 */ 2181 if (ctd.tcpct_used > 0 || 2182 (tp->cookie_values == NULL && 2183 (sysctl_tcp_cookie_size > 0 || 2184 ctd.tcpct_cookie_desired > 0 || 2185 ctd.tcpct_s_data_desired > 0))) { 2186 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used, 2187 GFP_KERNEL); 2188 if (cvp == NULL) 2189 return -ENOMEM; 2190 2191 kref_init(&cvp->kref); 2192 } 2193 lock_sock(sk); 2194 tp->rx_opt.cookie_in_always = 2195 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags); 2196 tp->rx_opt.cookie_out_never = 0; /* false */ 2197 2198 if (tp->cookie_values != NULL) { 2199 if (cvp != NULL) { 2200 /* Changed values are recorded by a changed 2201 * pointer, ensuring the cookie will differ, 2202 * without separately hashing each value later. 2203 */ 2204 kref_put(&tp->cookie_values->kref, 2205 tcp_cookie_values_release); 2206 } else { 2207 cvp = tp->cookie_values; 2208 } 2209 } 2210 2211 if (cvp != NULL) { 2212 cvp->cookie_desired = ctd.tcpct_cookie_desired; 2213 2214 if (ctd.tcpct_used > 0) { 2215 memcpy(cvp->s_data_payload, ctd.tcpct_value, 2216 ctd.tcpct_used); 2217 cvp->s_data_desired = ctd.tcpct_used; 2218 cvp->s_data_constant = 1; /* true */ 2219 } else { 2220 /* No constant payload data. */ 2221 cvp->s_data_desired = ctd.tcpct_s_data_desired; 2222 cvp->s_data_constant = 0; /* false */ 2223 } 2224 2225 tp->cookie_values = cvp; 2226 } 2227 release_sock(sk); 2228 return err; 2229 } 2230 default: 2231 /* fallthru */ 2232 break; 2233 } 2234 2235 if (optlen < sizeof(int)) 2236 return -EINVAL; 2237 2238 if (get_user(val, (int __user *)optval)) 2239 return -EFAULT; 2240 2241 lock_sock(sk); 2242 2243 switch (optname) { 2244 case TCP_MAXSEG: 2245 /* Values greater than interface MTU won't take effect. However 2246 * at the point when this call is done we typically don't yet 2247 * know which interface is going to be used */ 2248 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2249 err = -EINVAL; 2250 break; 2251 } 2252 tp->rx_opt.user_mss = val; 2253 break; 2254 2255 case TCP_NODELAY: 2256 if (val) { 2257 /* TCP_NODELAY is weaker than TCP_CORK, so that 2258 * this option on corked socket is remembered, but 2259 * it is not activated until cork is cleared. 2260 * 2261 * However, when TCP_NODELAY is set we make 2262 * an explicit push, which overrides even TCP_CORK 2263 * for currently queued segments. 2264 */ 2265 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2266 tcp_push_pending_frames(sk); 2267 } else { 2268 tp->nonagle &= ~TCP_NAGLE_OFF; 2269 } 2270 break; 2271 2272 case TCP_THIN_LINEAR_TIMEOUTS: 2273 if (val < 0 || val > 1) 2274 err = -EINVAL; 2275 else 2276 tp->thin_lto = val; 2277 break; 2278 2279 case TCP_THIN_DUPACK: 2280 if (val < 0 || val > 1) 2281 err = -EINVAL; 2282 else 2283 tp->thin_dupack = val; 2284 break; 2285 2286 case TCP_CORK: 2287 /* When set indicates to always queue non-full frames. 2288 * Later the user clears this option and we transmit 2289 * any pending partial frames in the queue. This is 2290 * meant to be used alongside sendfile() to get properly 2291 * filled frames when the user (for example) must write 2292 * out headers with a write() call first and then use 2293 * sendfile to send out the data parts. 2294 * 2295 * TCP_CORK can be set together with TCP_NODELAY and it is 2296 * stronger than TCP_NODELAY. 2297 */ 2298 if (val) { 2299 tp->nonagle |= TCP_NAGLE_CORK; 2300 } else { 2301 tp->nonagle &= ~TCP_NAGLE_CORK; 2302 if (tp->nonagle&TCP_NAGLE_OFF) 2303 tp->nonagle |= TCP_NAGLE_PUSH; 2304 tcp_push_pending_frames(sk); 2305 } 2306 break; 2307 2308 case TCP_KEEPIDLE: 2309 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2310 err = -EINVAL; 2311 else { 2312 tp->keepalive_time = val * HZ; 2313 if (sock_flag(sk, SOCK_KEEPOPEN) && 2314 !((1 << sk->sk_state) & 2315 (TCPF_CLOSE | TCPF_LISTEN))) { 2316 u32 elapsed = keepalive_time_elapsed(tp); 2317 if (tp->keepalive_time > elapsed) 2318 elapsed = tp->keepalive_time - elapsed; 2319 else 2320 elapsed = 0; 2321 inet_csk_reset_keepalive_timer(sk, elapsed); 2322 } 2323 } 2324 break; 2325 case TCP_KEEPINTVL: 2326 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2327 err = -EINVAL; 2328 else 2329 tp->keepalive_intvl = val * HZ; 2330 break; 2331 case TCP_KEEPCNT: 2332 if (val < 1 || val > MAX_TCP_KEEPCNT) 2333 err = -EINVAL; 2334 else 2335 tp->keepalive_probes = val; 2336 break; 2337 case TCP_SYNCNT: 2338 if (val < 1 || val > MAX_TCP_SYNCNT) 2339 err = -EINVAL; 2340 else 2341 icsk->icsk_syn_retries = val; 2342 break; 2343 2344 case TCP_LINGER2: 2345 if (val < 0) 2346 tp->linger2 = -1; 2347 else if (val > sysctl_tcp_fin_timeout / HZ) 2348 tp->linger2 = 0; 2349 else 2350 tp->linger2 = val * HZ; 2351 break; 2352 2353 case TCP_DEFER_ACCEPT: 2354 /* Translate value in seconds to number of retransmits */ 2355 icsk->icsk_accept_queue.rskq_defer_accept = 2356 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2357 TCP_RTO_MAX / HZ); 2358 break; 2359 2360 case TCP_WINDOW_CLAMP: 2361 if (!val) { 2362 if (sk->sk_state != TCP_CLOSE) { 2363 err = -EINVAL; 2364 break; 2365 } 2366 tp->window_clamp = 0; 2367 } else 2368 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2369 SOCK_MIN_RCVBUF / 2 : val; 2370 break; 2371 2372 case TCP_QUICKACK: 2373 if (!val) { 2374 icsk->icsk_ack.pingpong = 1; 2375 } else { 2376 icsk->icsk_ack.pingpong = 0; 2377 if ((1 << sk->sk_state) & 2378 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2379 inet_csk_ack_scheduled(sk)) { 2380 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2381 tcp_cleanup_rbuf(sk, 1); 2382 if (!(val & 1)) 2383 icsk->icsk_ack.pingpong = 1; 2384 } 2385 } 2386 break; 2387 2388 #ifdef CONFIG_TCP_MD5SIG 2389 case TCP_MD5SIG: 2390 /* Read the IP->Key mappings from userspace */ 2391 err = tp->af_specific->md5_parse(sk, optval, optlen); 2392 break; 2393 #endif 2394 case TCP_USER_TIMEOUT: 2395 /* Cap the max timeout in ms TCP will retry/retrans 2396 * before giving up and aborting (ETIMEDOUT) a connection. 2397 */ 2398 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2399 break; 2400 default: 2401 err = -ENOPROTOOPT; 2402 break; 2403 } 2404 2405 release_sock(sk); 2406 return err; 2407 } 2408 2409 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2410 unsigned int optlen) 2411 { 2412 const struct inet_connection_sock *icsk = inet_csk(sk); 2413 2414 if (level != SOL_TCP) 2415 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2416 optval, optlen); 2417 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2418 } 2419 EXPORT_SYMBOL(tcp_setsockopt); 2420 2421 #ifdef CONFIG_COMPAT 2422 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2423 char __user *optval, unsigned int optlen) 2424 { 2425 if (level != SOL_TCP) 2426 return inet_csk_compat_setsockopt(sk, level, optname, 2427 optval, optlen); 2428 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2429 } 2430 EXPORT_SYMBOL(compat_tcp_setsockopt); 2431 #endif 2432 2433 /* Return information about state of tcp endpoint in API format. */ 2434 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2435 { 2436 const struct tcp_sock *tp = tcp_sk(sk); 2437 const struct inet_connection_sock *icsk = inet_csk(sk); 2438 u32 now = tcp_time_stamp; 2439 2440 memset(info, 0, sizeof(*info)); 2441 2442 info->tcpi_state = sk->sk_state; 2443 info->tcpi_ca_state = icsk->icsk_ca_state; 2444 info->tcpi_retransmits = icsk->icsk_retransmits; 2445 info->tcpi_probes = icsk->icsk_probes_out; 2446 info->tcpi_backoff = icsk->icsk_backoff; 2447 2448 if (tp->rx_opt.tstamp_ok) 2449 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2450 if (tcp_is_sack(tp)) 2451 info->tcpi_options |= TCPI_OPT_SACK; 2452 if (tp->rx_opt.wscale_ok) { 2453 info->tcpi_options |= TCPI_OPT_WSCALE; 2454 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2455 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2456 } 2457 2458 if (tp->ecn_flags & TCP_ECN_OK) 2459 info->tcpi_options |= TCPI_OPT_ECN; 2460 if (tp->ecn_flags & TCP_ECN_SEEN) 2461 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2462 2463 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2464 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2465 info->tcpi_snd_mss = tp->mss_cache; 2466 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2467 2468 if (sk->sk_state == TCP_LISTEN) { 2469 info->tcpi_unacked = sk->sk_ack_backlog; 2470 info->tcpi_sacked = sk->sk_max_ack_backlog; 2471 } else { 2472 info->tcpi_unacked = tp->packets_out; 2473 info->tcpi_sacked = tp->sacked_out; 2474 } 2475 info->tcpi_lost = tp->lost_out; 2476 info->tcpi_retrans = tp->retrans_out; 2477 info->tcpi_fackets = tp->fackets_out; 2478 2479 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2480 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2481 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2482 2483 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2484 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2485 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2486 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2487 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2488 info->tcpi_snd_cwnd = tp->snd_cwnd; 2489 info->tcpi_advmss = tp->advmss; 2490 info->tcpi_reordering = tp->reordering; 2491 2492 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2493 info->tcpi_rcv_space = tp->rcvq_space.space; 2494 2495 info->tcpi_total_retrans = tp->total_retrans; 2496 } 2497 EXPORT_SYMBOL_GPL(tcp_get_info); 2498 2499 static int do_tcp_getsockopt(struct sock *sk, int level, 2500 int optname, char __user *optval, int __user *optlen) 2501 { 2502 struct inet_connection_sock *icsk = inet_csk(sk); 2503 struct tcp_sock *tp = tcp_sk(sk); 2504 int val, len; 2505 2506 if (get_user(len, optlen)) 2507 return -EFAULT; 2508 2509 len = min_t(unsigned int, len, sizeof(int)); 2510 2511 if (len < 0) 2512 return -EINVAL; 2513 2514 switch (optname) { 2515 case TCP_MAXSEG: 2516 val = tp->mss_cache; 2517 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2518 val = tp->rx_opt.user_mss; 2519 break; 2520 case TCP_NODELAY: 2521 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2522 break; 2523 case TCP_CORK: 2524 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2525 break; 2526 case TCP_KEEPIDLE: 2527 val = keepalive_time_when(tp) / HZ; 2528 break; 2529 case TCP_KEEPINTVL: 2530 val = keepalive_intvl_when(tp) / HZ; 2531 break; 2532 case TCP_KEEPCNT: 2533 val = keepalive_probes(tp); 2534 break; 2535 case TCP_SYNCNT: 2536 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2537 break; 2538 case TCP_LINGER2: 2539 val = tp->linger2; 2540 if (val >= 0) 2541 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2542 break; 2543 case TCP_DEFER_ACCEPT: 2544 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2545 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2546 break; 2547 case TCP_WINDOW_CLAMP: 2548 val = tp->window_clamp; 2549 break; 2550 case TCP_INFO: { 2551 struct tcp_info info; 2552 2553 if (get_user(len, optlen)) 2554 return -EFAULT; 2555 2556 tcp_get_info(sk, &info); 2557 2558 len = min_t(unsigned int, len, sizeof(info)); 2559 if (put_user(len, optlen)) 2560 return -EFAULT; 2561 if (copy_to_user(optval, &info, len)) 2562 return -EFAULT; 2563 return 0; 2564 } 2565 case TCP_QUICKACK: 2566 val = !icsk->icsk_ack.pingpong; 2567 break; 2568 2569 case TCP_CONGESTION: 2570 if (get_user(len, optlen)) 2571 return -EFAULT; 2572 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2573 if (put_user(len, optlen)) 2574 return -EFAULT; 2575 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2576 return -EFAULT; 2577 return 0; 2578 2579 case TCP_COOKIE_TRANSACTIONS: { 2580 struct tcp_cookie_transactions ctd; 2581 struct tcp_cookie_values *cvp = tp->cookie_values; 2582 2583 if (get_user(len, optlen)) 2584 return -EFAULT; 2585 if (len < sizeof(ctd)) 2586 return -EINVAL; 2587 2588 memset(&ctd, 0, sizeof(ctd)); 2589 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ? 2590 TCP_COOKIE_IN_ALWAYS : 0) 2591 | (tp->rx_opt.cookie_out_never ? 2592 TCP_COOKIE_OUT_NEVER : 0); 2593 2594 if (cvp != NULL) { 2595 ctd.tcpct_flags |= (cvp->s_data_in ? 2596 TCP_S_DATA_IN : 0) 2597 | (cvp->s_data_out ? 2598 TCP_S_DATA_OUT : 0); 2599 2600 ctd.tcpct_cookie_desired = cvp->cookie_desired; 2601 ctd.tcpct_s_data_desired = cvp->s_data_desired; 2602 2603 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0], 2604 cvp->cookie_pair_size); 2605 ctd.tcpct_used = cvp->cookie_pair_size; 2606 } 2607 2608 if (put_user(sizeof(ctd), optlen)) 2609 return -EFAULT; 2610 if (copy_to_user(optval, &ctd, sizeof(ctd))) 2611 return -EFAULT; 2612 return 0; 2613 } 2614 case TCP_THIN_LINEAR_TIMEOUTS: 2615 val = tp->thin_lto; 2616 break; 2617 case TCP_THIN_DUPACK: 2618 val = tp->thin_dupack; 2619 break; 2620 2621 case TCP_USER_TIMEOUT: 2622 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2623 break; 2624 default: 2625 return -ENOPROTOOPT; 2626 } 2627 2628 if (put_user(len, optlen)) 2629 return -EFAULT; 2630 if (copy_to_user(optval, &val, len)) 2631 return -EFAULT; 2632 return 0; 2633 } 2634 2635 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2636 int __user *optlen) 2637 { 2638 struct inet_connection_sock *icsk = inet_csk(sk); 2639 2640 if (level != SOL_TCP) 2641 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2642 optval, optlen); 2643 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2644 } 2645 EXPORT_SYMBOL(tcp_getsockopt); 2646 2647 #ifdef CONFIG_COMPAT 2648 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2649 char __user *optval, int __user *optlen) 2650 { 2651 if (level != SOL_TCP) 2652 return inet_csk_compat_getsockopt(sk, level, optname, 2653 optval, optlen); 2654 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2655 } 2656 EXPORT_SYMBOL(compat_tcp_getsockopt); 2657 #endif 2658 2659 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, 2660 netdev_features_t features) 2661 { 2662 struct sk_buff *segs = ERR_PTR(-EINVAL); 2663 struct tcphdr *th; 2664 unsigned thlen; 2665 unsigned int seq; 2666 __be32 delta; 2667 unsigned int oldlen; 2668 unsigned int mss; 2669 2670 if (!pskb_may_pull(skb, sizeof(*th))) 2671 goto out; 2672 2673 th = tcp_hdr(skb); 2674 thlen = th->doff * 4; 2675 if (thlen < sizeof(*th)) 2676 goto out; 2677 2678 if (!pskb_may_pull(skb, thlen)) 2679 goto out; 2680 2681 oldlen = (u16)~skb->len; 2682 __skb_pull(skb, thlen); 2683 2684 mss = skb_shinfo(skb)->gso_size; 2685 if (unlikely(skb->len <= mss)) 2686 goto out; 2687 2688 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2689 /* Packet is from an untrusted source, reset gso_segs. */ 2690 int type = skb_shinfo(skb)->gso_type; 2691 2692 if (unlikely(type & 2693 ~(SKB_GSO_TCPV4 | 2694 SKB_GSO_DODGY | 2695 SKB_GSO_TCP_ECN | 2696 SKB_GSO_TCPV6 | 2697 0) || 2698 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2699 goto out; 2700 2701 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2702 2703 segs = NULL; 2704 goto out; 2705 } 2706 2707 segs = skb_segment(skb, features); 2708 if (IS_ERR(segs)) 2709 goto out; 2710 2711 delta = htonl(oldlen + (thlen + mss)); 2712 2713 skb = segs; 2714 th = tcp_hdr(skb); 2715 seq = ntohl(th->seq); 2716 2717 do { 2718 th->fin = th->psh = 0; 2719 2720 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2721 (__force u32)delta)); 2722 if (skb->ip_summed != CHECKSUM_PARTIAL) 2723 th->check = 2724 csum_fold(csum_partial(skb_transport_header(skb), 2725 thlen, skb->csum)); 2726 2727 seq += mss; 2728 skb = skb->next; 2729 th = tcp_hdr(skb); 2730 2731 th->seq = htonl(seq); 2732 th->cwr = 0; 2733 } while (skb->next); 2734 2735 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2736 skb->data_len); 2737 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2738 (__force u32)delta)); 2739 if (skb->ip_summed != CHECKSUM_PARTIAL) 2740 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2741 thlen, skb->csum)); 2742 2743 out: 2744 return segs; 2745 } 2746 EXPORT_SYMBOL(tcp_tso_segment); 2747 2748 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2749 { 2750 struct sk_buff **pp = NULL; 2751 struct sk_buff *p; 2752 struct tcphdr *th; 2753 struct tcphdr *th2; 2754 unsigned int len; 2755 unsigned int thlen; 2756 __be32 flags; 2757 unsigned int mss = 1; 2758 unsigned int hlen; 2759 unsigned int off; 2760 int flush = 1; 2761 int i; 2762 2763 off = skb_gro_offset(skb); 2764 hlen = off + sizeof(*th); 2765 th = skb_gro_header_fast(skb, off); 2766 if (skb_gro_header_hard(skb, hlen)) { 2767 th = skb_gro_header_slow(skb, hlen, off); 2768 if (unlikely(!th)) 2769 goto out; 2770 } 2771 2772 thlen = th->doff * 4; 2773 if (thlen < sizeof(*th)) 2774 goto out; 2775 2776 hlen = off + thlen; 2777 if (skb_gro_header_hard(skb, hlen)) { 2778 th = skb_gro_header_slow(skb, hlen, off); 2779 if (unlikely(!th)) 2780 goto out; 2781 } 2782 2783 skb_gro_pull(skb, thlen); 2784 2785 len = skb_gro_len(skb); 2786 flags = tcp_flag_word(th); 2787 2788 for (; (p = *head); head = &p->next) { 2789 if (!NAPI_GRO_CB(p)->same_flow) 2790 continue; 2791 2792 th2 = tcp_hdr(p); 2793 2794 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 2795 NAPI_GRO_CB(p)->same_flow = 0; 2796 continue; 2797 } 2798 2799 goto found; 2800 } 2801 2802 goto out_check_final; 2803 2804 found: 2805 flush = NAPI_GRO_CB(p)->flush; 2806 flush |= (__force int)(flags & TCP_FLAG_CWR); 2807 flush |= (__force int)((flags ^ tcp_flag_word(th2)) & 2808 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH)); 2809 flush |= (__force int)(th->ack_seq ^ th2->ack_seq); 2810 for (i = sizeof(*th); i < thlen; i += 4) 2811 flush |= *(u32 *)((u8 *)th + i) ^ 2812 *(u32 *)((u8 *)th2 + i); 2813 2814 mss = skb_shinfo(p)->gso_size; 2815 2816 flush |= (len - 1) >= mss; 2817 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 2818 2819 if (flush || skb_gro_receive(head, skb)) { 2820 mss = 1; 2821 goto out_check_final; 2822 } 2823 2824 p = *head; 2825 th2 = tcp_hdr(p); 2826 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 2827 2828 out_check_final: 2829 flush = len < mss; 2830 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH | 2831 TCP_FLAG_RST | TCP_FLAG_SYN | 2832 TCP_FLAG_FIN)); 2833 2834 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 2835 pp = head; 2836 2837 out: 2838 NAPI_GRO_CB(skb)->flush |= flush; 2839 2840 return pp; 2841 } 2842 EXPORT_SYMBOL(tcp_gro_receive); 2843 2844 int tcp_gro_complete(struct sk_buff *skb) 2845 { 2846 struct tcphdr *th = tcp_hdr(skb); 2847 2848 skb->csum_start = skb_transport_header(skb) - skb->head; 2849 skb->csum_offset = offsetof(struct tcphdr, check); 2850 skb->ip_summed = CHECKSUM_PARTIAL; 2851 2852 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 2853 2854 if (th->cwr) 2855 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 2856 2857 return 0; 2858 } 2859 EXPORT_SYMBOL(tcp_gro_complete); 2860 2861 #ifdef CONFIG_TCP_MD5SIG 2862 static unsigned long tcp_md5sig_users; 2863 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool; 2864 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 2865 2866 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 2867 { 2868 int cpu; 2869 2870 for_each_possible_cpu(cpu) { 2871 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 2872 2873 if (p->md5_desc.tfm) 2874 crypto_free_hash(p->md5_desc.tfm); 2875 } 2876 free_percpu(pool); 2877 } 2878 2879 void tcp_free_md5sig_pool(void) 2880 { 2881 struct tcp_md5sig_pool __percpu *pool = NULL; 2882 2883 spin_lock_bh(&tcp_md5sig_pool_lock); 2884 if (--tcp_md5sig_users == 0) { 2885 pool = tcp_md5sig_pool; 2886 tcp_md5sig_pool = NULL; 2887 } 2888 spin_unlock_bh(&tcp_md5sig_pool_lock); 2889 if (pool) 2890 __tcp_free_md5sig_pool(pool); 2891 } 2892 EXPORT_SYMBOL(tcp_free_md5sig_pool); 2893 2894 static struct tcp_md5sig_pool __percpu * 2895 __tcp_alloc_md5sig_pool(struct sock *sk) 2896 { 2897 int cpu; 2898 struct tcp_md5sig_pool __percpu *pool; 2899 2900 pool = alloc_percpu(struct tcp_md5sig_pool); 2901 if (!pool) 2902 return NULL; 2903 2904 for_each_possible_cpu(cpu) { 2905 struct crypto_hash *hash; 2906 2907 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2908 if (!hash || IS_ERR(hash)) 2909 goto out_free; 2910 2911 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 2912 } 2913 return pool; 2914 out_free: 2915 __tcp_free_md5sig_pool(pool); 2916 return NULL; 2917 } 2918 2919 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk) 2920 { 2921 struct tcp_md5sig_pool __percpu *pool; 2922 int alloc = 0; 2923 2924 retry: 2925 spin_lock_bh(&tcp_md5sig_pool_lock); 2926 pool = tcp_md5sig_pool; 2927 if (tcp_md5sig_users++ == 0) { 2928 alloc = 1; 2929 spin_unlock_bh(&tcp_md5sig_pool_lock); 2930 } else if (!pool) { 2931 tcp_md5sig_users--; 2932 spin_unlock_bh(&tcp_md5sig_pool_lock); 2933 cpu_relax(); 2934 goto retry; 2935 } else 2936 spin_unlock_bh(&tcp_md5sig_pool_lock); 2937 2938 if (alloc) { 2939 /* we cannot hold spinlock here because this may sleep. */ 2940 struct tcp_md5sig_pool __percpu *p; 2941 2942 p = __tcp_alloc_md5sig_pool(sk); 2943 spin_lock_bh(&tcp_md5sig_pool_lock); 2944 if (!p) { 2945 tcp_md5sig_users--; 2946 spin_unlock_bh(&tcp_md5sig_pool_lock); 2947 return NULL; 2948 } 2949 pool = tcp_md5sig_pool; 2950 if (pool) { 2951 /* oops, it has already been assigned. */ 2952 spin_unlock_bh(&tcp_md5sig_pool_lock); 2953 __tcp_free_md5sig_pool(p); 2954 } else { 2955 tcp_md5sig_pool = pool = p; 2956 spin_unlock_bh(&tcp_md5sig_pool_lock); 2957 } 2958 } 2959 return pool; 2960 } 2961 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2962 2963 2964 /** 2965 * tcp_get_md5sig_pool - get md5sig_pool for this user 2966 * 2967 * We use percpu structure, so if we succeed, we exit with preemption 2968 * and BH disabled, to make sure another thread or softirq handling 2969 * wont try to get same context. 2970 */ 2971 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2972 { 2973 struct tcp_md5sig_pool __percpu *p; 2974 2975 local_bh_disable(); 2976 2977 spin_lock(&tcp_md5sig_pool_lock); 2978 p = tcp_md5sig_pool; 2979 if (p) 2980 tcp_md5sig_users++; 2981 spin_unlock(&tcp_md5sig_pool_lock); 2982 2983 if (p) 2984 return this_cpu_ptr(p); 2985 2986 local_bh_enable(); 2987 return NULL; 2988 } 2989 EXPORT_SYMBOL(tcp_get_md5sig_pool); 2990 2991 void tcp_put_md5sig_pool(void) 2992 { 2993 local_bh_enable(); 2994 tcp_free_md5sig_pool(); 2995 } 2996 EXPORT_SYMBOL(tcp_put_md5sig_pool); 2997 2998 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2999 const struct tcphdr *th) 3000 { 3001 struct scatterlist sg; 3002 struct tcphdr hdr; 3003 int err; 3004 3005 /* We are not allowed to change tcphdr, make a local copy */ 3006 memcpy(&hdr, th, sizeof(hdr)); 3007 hdr.check = 0; 3008 3009 /* options aren't included in the hash */ 3010 sg_init_one(&sg, &hdr, sizeof(hdr)); 3011 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3012 return err; 3013 } 3014 EXPORT_SYMBOL(tcp_md5_hash_header); 3015 3016 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3017 const struct sk_buff *skb, unsigned int header_len) 3018 { 3019 struct scatterlist sg; 3020 const struct tcphdr *tp = tcp_hdr(skb); 3021 struct hash_desc *desc = &hp->md5_desc; 3022 unsigned i; 3023 const unsigned head_data_len = skb_headlen(skb) > header_len ? 3024 skb_headlen(skb) - header_len : 0; 3025 const struct skb_shared_info *shi = skb_shinfo(skb); 3026 struct sk_buff *frag_iter; 3027 3028 sg_init_table(&sg, 1); 3029 3030 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3031 if (crypto_hash_update(desc, &sg, head_data_len)) 3032 return 1; 3033 3034 for (i = 0; i < shi->nr_frags; ++i) { 3035 const struct skb_frag_struct *f = &shi->frags[i]; 3036 struct page *page = skb_frag_page(f); 3037 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset); 3038 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3039 return 1; 3040 } 3041 3042 skb_walk_frags(skb, frag_iter) 3043 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3044 return 1; 3045 3046 return 0; 3047 } 3048 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3049 3050 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3051 { 3052 struct scatterlist sg; 3053 3054 sg_init_one(&sg, key->key, key->keylen); 3055 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3056 } 3057 EXPORT_SYMBOL(tcp_md5_hash_key); 3058 3059 #endif 3060 3061 /** 3062 * Each Responder maintains up to two secret values concurrently for 3063 * efficient secret rollover. Each secret value has 4 states: 3064 * 3065 * Generating. (tcp_secret_generating != tcp_secret_primary) 3066 * Generates new Responder-Cookies, but not yet used for primary 3067 * verification. This is a short-term state, typically lasting only 3068 * one round trip time (RTT). 3069 * 3070 * Primary. (tcp_secret_generating == tcp_secret_primary) 3071 * Used both for generation and primary verification. 3072 * 3073 * Retiring. (tcp_secret_retiring != tcp_secret_secondary) 3074 * Used for verification, until the first failure that can be 3075 * verified by the newer Generating secret. At that time, this 3076 * cookie's state is changed to Secondary, and the Generating 3077 * cookie's state is changed to Primary. This is a short-term state, 3078 * typically lasting only one round trip time (RTT). 3079 * 3080 * Secondary. (tcp_secret_retiring == tcp_secret_secondary) 3081 * Used for secondary verification, after primary verification 3082 * failures. This state lasts no more than twice the Maximum Segment 3083 * Lifetime (2MSL). Then, the secret is discarded. 3084 */ 3085 struct tcp_cookie_secret { 3086 /* The secret is divided into two parts. The digest part is the 3087 * equivalent of previously hashing a secret and saving the state, 3088 * and serves as an initialization vector (IV). The message part 3089 * serves as the trailing secret. 3090 */ 3091 u32 secrets[COOKIE_WORKSPACE_WORDS]; 3092 unsigned long expires; 3093 }; 3094 3095 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL) 3096 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2) 3097 #define TCP_SECRET_LIFE (HZ * 600) 3098 3099 static struct tcp_cookie_secret tcp_secret_one; 3100 static struct tcp_cookie_secret tcp_secret_two; 3101 3102 /* Essentially a circular list, without dynamic allocation. */ 3103 static struct tcp_cookie_secret *tcp_secret_generating; 3104 static struct tcp_cookie_secret *tcp_secret_primary; 3105 static struct tcp_cookie_secret *tcp_secret_retiring; 3106 static struct tcp_cookie_secret *tcp_secret_secondary; 3107 3108 static DEFINE_SPINLOCK(tcp_secret_locker); 3109 3110 /* Select a pseudo-random word in the cookie workspace. 3111 */ 3112 static inline u32 tcp_cookie_work(const u32 *ws, const int n) 3113 { 3114 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])]; 3115 } 3116 3117 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed. 3118 * Called in softirq context. 3119 * Returns: 0 for success. 3120 */ 3121 int tcp_cookie_generator(u32 *bakery) 3122 { 3123 unsigned long jiffy = jiffies; 3124 3125 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) { 3126 spin_lock_bh(&tcp_secret_locker); 3127 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) { 3128 /* refreshed by another */ 3129 memcpy(bakery, 3130 &tcp_secret_generating->secrets[0], 3131 COOKIE_WORKSPACE_WORDS); 3132 } else { 3133 /* still needs refreshing */ 3134 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS); 3135 3136 /* The first time, paranoia assumes that the 3137 * randomization function isn't as strong. But, 3138 * this secret initialization is delayed until 3139 * the last possible moment (packet arrival). 3140 * Although that time is observable, it is 3141 * unpredictably variable. Mash in the most 3142 * volatile clock bits available, and expire the 3143 * secret extra quickly. 3144 */ 3145 if (unlikely(tcp_secret_primary->expires == 3146 tcp_secret_secondary->expires)) { 3147 struct timespec tv; 3148 3149 getnstimeofday(&tv); 3150 bakery[COOKIE_DIGEST_WORDS+0] ^= 3151 (u32)tv.tv_nsec; 3152 3153 tcp_secret_secondary->expires = jiffy 3154 + TCP_SECRET_1MSL 3155 + (0x0f & tcp_cookie_work(bakery, 0)); 3156 } else { 3157 tcp_secret_secondary->expires = jiffy 3158 + TCP_SECRET_LIFE 3159 + (0xff & tcp_cookie_work(bakery, 1)); 3160 tcp_secret_primary->expires = jiffy 3161 + TCP_SECRET_2MSL 3162 + (0x1f & tcp_cookie_work(bakery, 2)); 3163 } 3164 memcpy(&tcp_secret_secondary->secrets[0], 3165 bakery, COOKIE_WORKSPACE_WORDS); 3166 3167 rcu_assign_pointer(tcp_secret_generating, 3168 tcp_secret_secondary); 3169 rcu_assign_pointer(tcp_secret_retiring, 3170 tcp_secret_primary); 3171 /* 3172 * Neither call_rcu() nor synchronize_rcu() needed. 3173 * Retiring data is not freed. It is replaced after 3174 * further (locked) pointer updates, and a quiet time 3175 * (minimum 1MSL, maximum LIFE - 2MSL). 3176 */ 3177 } 3178 spin_unlock_bh(&tcp_secret_locker); 3179 } else { 3180 rcu_read_lock_bh(); 3181 memcpy(bakery, 3182 &rcu_dereference(tcp_secret_generating)->secrets[0], 3183 COOKIE_WORKSPACE_WORDS); 3184 rcu_read_unlock_bh(); 3185 } 3186 return 0; 3187 } 3188 EXPORT_SYMBOL(tcp_cookie_generator); 3189 3190 void tcp_done(struct sock *sk) 3191 { 3192 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3193 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3194 3195 tcp_set_state(sk, TCP_CLOSE); 3196 tcp_clear_xmit_timers(sk); 3197 3198 sk->sk_shutdown = SHUTDOWN_MASK; 3199 3200 if (!sock_flag(sk, SOCK_DEAD)) 3201 sk->sk_state_change(sk); 3202 else 3203 inet_csk_destroy_sock(sk); 3204 } 3205 EXPORT_SYMBOL_GPL(tcp_done); 3206 3207 extern struct tcp_congestion_ops tcp_reno; 3208 3209 static __initdata unsigned long thash_entries; 3210 static int __init set_thash_entries(char *str) 3211 { 3212 if (!str) 3213 return 0; 3214 thash_entries = simple_strtoul(str, &str, 0); 3215 return 1; 3216 } 3217 __setup("thash_entries=", set_thash_entries); 3218 3219 void __init tcp_init(void) 3220 { 3221 struct sk_buff *skb = NULL; 3222 unsigned long limit; 3223 int i, max_share, cnt; 3224 unsigned long jiffy = jiffies; 3225 3226 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3227 3228 percpu_counter_init(&tcp_sockets_allocated, 0); 3229 percpu_counter_init(&tcp_orphan_count, 0); 3230 tcp_hashinfo.bind_bucket_cachep = 3231 kmem_cache_create("tcp_bind_bucket", 3232 sizeof(struct inet_bind_bucket), 0, 3233 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3234 3235 /* Size and allocate the main established and bind bucket 3236 * hash tables. 3237 * 3238 * The methodology is similar to that of the buffer cache. 3239 */ 3240 tcp_hashinfo.ehash = 3241 alloc_large_system_hash("TCP established", 3242 sizeof(struct inet_ehash_bucket), 3243 thash_entries, 3244 (totalram_pages >= 128 * 1024) ? 3245 13 : 15, 3246 0, 3247 NULL, 3248 &tcp_hashinfo.ehash_mask, 3249 thash_entries ? 0 : 512 * 1024); 3250 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3251 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3252 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3253 } 3254 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3255 panic("TCP: failed to alloc ehash_locks"); 3256 tcp_hashinfo.bhash = 3257 alloc_large_system_hash("TCP bind", 3258 sizeof(struct inet_bind_hashbucket), 3259 tcp_hashinfo.ehash_mask + 1, 3260 (totalram_pages >= 128 * 1024) ? 3261 13 : 15, 3262 0, 3263 &tcp_hashinfo.bhash_size, 3264 NULL, 3265 64 * 1024); 3266 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size; 3267 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3268 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3269 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3270 } 3271 3272 3273 cnt = tcp_hashinfo.ehash_mask + 1; 3274 3275 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3276 sysctl_tcp_max_orphans = cnt / 2; 3277 sysctl_max_syn_backlog = max(128, cnt / 256); 3278 3279 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3280 limit = ((unsigned long)init_net.ipv4.sysctl_tcp_mem[1]) 3281 << (PAGE_SHIFT - 7); 3282 max_share = min(4UL*1024*1024, limit); 3283 3284 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3285 sysctl_tcp_wmem[1] = 16*1024; 3286 sysctl_tcp_wmem[2] = max(64*1024, max_share); 3287 3288 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3289 sysctl_tcp_rmem[1] = 87380; 3290 sysctl_tcp_rmem[2] = max(87380, max_share); 3291 3292 printk(KERN_INFO "TCP: Hash tables configured " 3293 "(established %u bind %u)\n", 3294 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3295 3296 tcp_register_congestion_control(&tcp_reno); 3297 3298 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets)); 3299 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets)); 3300 tcp_secret_one.expires = jiffy; /* past due */ 3301 tcp_secret_two.expires = jiffy; /* past due */ 3302 tcp_secret_generating = &tcp_secret_one; 3303 tcp_secret_primary = &tcp_secret_one; 3304 tcp_secret_retiring = &tcp_secret_two; 3305 tcp_secret_secondary = &tcp_secret_two; 3306 } 3307