1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 #include <trace/events/tcp.h> 287 288 struct percpu_counter tcp_orphan_count; 289 EXPORT_SYMBOL_GPL(tcp_orphan_count); 290 291 long sysctl_tcp_mem[3] __read_mostly; 292 int sysctl_tcp_wmem[3] __read_mostly; 293 int sysctl_tcp_rmem[3] __read_mostly; 294 295 EXPORT_SYMBOL(sysctl_tcp_mem); 296 EXPORT_SYMBOL(sysctl_tcp_rmem); 297 EXPORT_SYMBOL(sysctl_tcp_wmem); 298 299 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 300 EXPORT_SYMBOL(tcp_memory_allocated); 301 302 #if IS_ENABLED(CONFIG_SMC) 303 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 304 EXPORT_SYMBOL(tcp_have_smc); 305 #endif 306 307 /* 308 * Current number of TCP sockets. 309 */ 310 struct percpu_counter tcp_sockets_allocated; 311 EXPORT_SYMBOL(tcp_sockets_allocated); 312 313 /* 314 * TCP splice context 315 */ 316 struct tcp_splice_state { 317 struct pipe_inode_info *pipe; 318 size_t len; 319 unsigned int flags; 320 }; 321 322 /* 323 * Pressure flag: try to collapse. 324 * Technical note: it is used by multiple contexts non atomically. 325 * All the __sk_mem_schedule() is of this nature: accounting 326 * is strict, actions are advisory and have some latency. 327 */ 328 unsigned long tcp_memory_pressure __read_mostly; 329 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 330 331 void tcp_enter_memory_pressure(struct sock *sk) 332 { 333 unsigned long val; 334 335 if (tcp_memory_pressure) 336 return; 337 val = jiffies; 338 339 if (!val) 340 val--; 341 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 342 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 343 } 344 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 345 346 void tcp_leave_memory_pressure(struct sock *sk) 347 { 348 unsigned long val; 349 350 if (!tcp_memory_pressure) 351 return; 352 val = xchg(&tcp_memory_pressure, 0); 353 if (val) 354 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 355 jiffies_to_msecs(jiffies - val)); 356 } 357 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 358 359 /* Convert seconds to retransmits based on initial and max timeout */ 360 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 361 { 362 u8 res = 0; 363 364 if (seconds > 0) { 365 int period = timeout; 366 367 res = 1; 368 while (seconds > period && res < 255) { 369 res++; 370 timeout <<= 1; 371 if (timeout > rto_max) 372 timeout = rto_max; 373 period += timeout; 374 } 375 } 376 return res; 377 } 378 379 /* Convert retransmits to seconds based on initial and max timeout */ 380 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 381 { 382 int period = 0; 383 384 if (retrans > 0) { 385 period = timeout; 386 while (--retrans) { 387 timeout <<= 1; 388 if (timeout > rto_max) 389 timeout = rto_max; 390 period += timeout; 391 } 392 } 393 return period; 394 } 395 396 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 397 { 398 u32 rate = READ_ONCE(tp->rate_delivered); 399 u32 intv = READ_ONCE(tp->rate_interval_us); 400 u64 rate64 = 0; 401 402 if (rate && intv) { 403 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 404 do_div(rate64, intv); 405 } 406 return rate64; 407 } 408 409 /* Address-family independent initialization for a tcp_sock. 410 * 411 * NOTE: A lot of things set to zero explicitly by call to 412 * sk_alloc() so need not be done here. 413 */ 414 void tcp_init_sock(struct sock *sk) 415 { 416 struct inet_connection_sock *icsk = inet_csk(sk); 417 struct tcp_sock *tp = tcp_sk(sk); 418 419 tp->out_of_order_queue = RB_ROOT; 420 sk->tcp_rtx_queue = RB_ROOT; 421 tcp_init_xmit_timers(sk); 422 INIT_LIST_HEAD(&tp->tsq_node); 423 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 424 425 icsk->icsk_rto = TCP_TIMEOUT_INIT; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tp->snd_cwnd = TCP_INIT_CWND; 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 tp->rack.reo_wnd_steps = 1; 451 452 sk->sk_state = TCP_CLOSE; 453 454 sk->sk_write_space = sk_stream_write_space; 455 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 456 457 icsk->icsk_sync_mss = tcp_sync_mss; 458 459 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 460 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 461 462 sk_sockets_allocated_inc(sk); 463 } 464 EXPORT_SYMBOL(tcp_init_sock); 465 466 void tcp_init_transfer(struct sock *sk, int bpf_op) 467 { 468 struct inet_connection_sock *icsk = inet_csk(sk); 469 470 tcp_mtup_init(sk); 471 icsk->icsk_af_ops->rebuild_header(sk); 472 tcp_init_metrics(sk); 473 tcp_call_bpf(sk, bpf_op); 474 tcp_init_congestion_control(sk); 475 tcp_init_buffer_space(sk); 476 } 477 478 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 479 { 480 struct sk_buff *skb = tcp_write_queue_tail(sk); 481 482 if (tsflags && skb) { 483 struct skb_shared_info *shinfo = skb_shinfo(skb); 484 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 485 486 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 487 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 488 tcb->txstamp_ack = 1; 489 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 490 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 491 } 492 } 493 494 /* 495 * Wait for a TCP event. 496 * 497 * Note that we don't need to lock the socket, as the upper poll layers 498 * take care of normal races (between the test and the event) and we don't 499 * go look at any of the socket buffers directly. 500 */ 501 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 502 { 503 unsigned int mask; 504 struct sock *sk = sock->sk; 505 const struct tcp_sock *tp = tcp_sk(sk); 506 int state; 507 508 sock_rps_record_flow(sk); 509 510 sock_poll_wait(file, sk_sleep(sk), wait); 511 512 state = sk_state_load(sk); 513 if (state == TCP_LISTEN) 514 return inet_csk_listen_poll(sk); 515 516 /* Socket is not locked. We are protected from async events 517 * by poll logic and correct handling of state changes 518 * made by other threads is impossible in any case. 519 */ 520 521 mask = 0; 522 523 /* 524 * POLLHUP is certainly not done right. But poll() doesn't 525 * have a notion of HUP in just one direction, and for a 526 * socket the read side is more interesting. 527 * 528 * Some poll() documentation says that POLLHUP is incompatible 529 * with the POLLOUT/POLLWR flags, so somebody should check this 530 * all. But careful, it tends to be safer to return too many 531 * bits than too few, and you can easily break real applications 532 * if you don't tell them that something has hung up! 533 * 534 * Check-me. 535 * 536 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 537 * our fs/select.c). It means that after we received EOF, 538 * poll always returns immediately, making impossible poll() on write() 539 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 540 * if and only if shutdown has been made in both directions. 541 * Actually, it is interesting to look how Solaris and DUX 542 * solve this dilemma. I would prefer, if POLLHUP were maskable, 543 * then we could set it on SND_SHUTDOWN. BTW examples given 544 * in Stevens' books assume exactly this behaviour, it explains 545 * why POLLHUP is incompatible with POLLOUT. --ANK 546 * 547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 548 * blocking on fresh not-connected or disconnected socket. --ANK 549 */ 550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 551 mask |= POLLHUP; 552 if (sk->sk_shutdown & RCV_SHUTDOWN) 553 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 554 555 /* Connected or passive Fast Open socket? */ 556 if (state != TCP_SYN_SENT && 557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 558 int target = sock_rcvlowat(sk, 0, INT_MAX); 559 560 if (tp->urg_seq == tp->copied_seq && 561 !sock_flag(sk, SOCK_URGINLINE) && 562 tp->urg_data) 563 target++; 564 565 if (tp->rcv_nxt - tp->copied_seq >= target) 566 mask |= POLLIN | POLLRDNORM; 567 568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 569 if (sk_stream_is_writeable(sk)) { 570 mask |= POLLOUT | POLLWRNORM; 571 } else { /* send SIGIO later */ 572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 574 575 /* Race breaker. If space is freed after 576 * wspace test but before the flags are set, 577 * IO signal will be lost. Memory barrier 578 * pairs with the input side. 579 */ 580 smp_mb__after_atomic(); 581 if (sk_stream_is_writeable(sk)) 582 mask |= POLLOUT | POLLWRNORM; 583 } 584 } else 585 mask |= POLLOUT | POLLWRNORM; 586 587 if (tp->urg_data & TCP_URG_VALID) 588 mask |= POLLPRI; 589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 590 /* Active TCP fastopen socket with defer_connect 591 * Return POLLOUT so application can call write() 592 * in order for kernel to generate SYN+data 593 */ 594 mask |= POLLOUT | POLLWRNORM; 595 } 596 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 597 smp_rmb(); 598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 599 mask |= POLLERR; 600 601 return mask; 602 } 603 EXPORT_SYMBOL(tcp_poll); 604 605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 int answ; 609 bool slow; 610 611 switch (cmd) { 612 case SIOCINQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 slow = lock_sock_fast(sk); 617 answ = tcp_inq(sk); 618 unlock_sock_fast(sk, slow); 619 break; 620 case SIOCATMARK: 621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = tp->write_seq - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = tp->write_seq - tp->snd_nxt; 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 return put_user(answ, (int __user *)arg); 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 static void skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 skb->csum = 0; 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 tcb->sacked = 0; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk->sk_wmem_queued += skb->truesize; 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 700 skb != tcp_write_queue_head(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 702 } 703 704 static void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 if (!sock_flag(sk, SOCK_DONE)) 821 ret = -ENOTCONN; 822 break; 823 } 824 if (!timeo) { 825 ret = -EAGAIN; 826 break; 827 } 828 /* if __tcp_splice_read() got nothing while we have 829 * an skb in receive queue, we do not want to loop. 830 * This might happen with URG data. 831 */ 832 if (!skb_queue_empty(&sk->sk_receive_queue)) 833 break; 834 sk_wait_data(sk, &timeo, NULL); 835 if (signal_pending(current)) { 836 ret = sock_intr_errno(timeo); 837 break; 838 } 839 continue; 840 } 841 tss.len -= ret; 842 spliced += ret; 843 844 if (!timeo) 845 break; 846 release_sock(sk); 847 lock_sock(sk); 848 849 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 850 (sk->sk_shutdown & RCV_SHUTDOWN) || 851 signal_pending(current)) 852 break; 853 } 854 855 release_sock(sk); 856 857 if (spliced) 858 return spliced; 859 860 return ret; 861 } 862 EXPORT_SYMBOL(tcp_splice_read); 863 864 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 865 bool force_schedule) 866 { 867 struct sk_buff *skb; 868 869 /* The TCP header must be at least 32-bit aligned. */ 870 size = ALIGN(size, 4); 871 872 if (unlikely(tcp_under_memory_pressure(sk))) 873 sk_mem_reclaim_partial(sk); 874 875 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 876 if (likely(skb)) { 877 bool mem_scheduled; 878 879 if (force_schedule) { 880 mem_scheduled = true; 881 sk_forced_mem_schedule(sk, skb->truesize); 882 } else { 883 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 884 } 885 if (likely(mem_scheduled)) { 886 skb_reserve(skb, sk->sk_prot->max_header); 887 /* 888 * Make sure that we have exactly size bytes 889 * available to the caller, no more, no less. 890 */ 891 skb->reserved_tailroom = skb->end - skb->tail - size; 892 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 893 return skb; 894 } 895 __kfree_skb(skb); 896 } else { 897 sk->sk_prot->enter_memory_pressure(sk); 898 sk_stream_moderate_sndbuf(sk); 899 } 900 return NULL; 901 } 902 903 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 904 int large_allowed) 905 { 906 struct tcp_sock *tp = tcp_sk(sk); 907 u32 new_size_goal, size_goal; 908 909 if (!large_allowed || !sk_can_gso(sk)) 910 return mss_now; 911 912 /* Note : tcp_tso_autosize() will eventually split this later */ 913 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 914 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 915 916 /* We try hard to avoid divides here */ 917 size_goal = tp->gso_segs * mss_now; 918 if (unlikely(new_size_goal < size_goal || 919 new_size_goal >= size_goal + mss_now)) { 920 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 921 sk->sk_gso_max_segs); 922 size_goal = tp->gso_segs * mss_now; 923 } 924 925 return max(size_goal, mss_now); 926 } 927 928 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 929 { 930 int mss_now; 931 932 mss_now = tcp_current_mss(sk); 933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 934 935 return mss_now; 936 } 937 938 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 939 size_t size, int flags) 940 { 941 struct tcp_sock *tp = tcp_sk(sk); 942 int mss_now, size_goal; 943 int err; 944 ssize_t copied; 945 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 946 947 /* Wait for a connection to finish. One exception is TCP Fast Open 948 * (passive side) where data is allowed to be sent before a connection 949 * is fully established. 950 */ 951 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 952 !tcp_passive_fastopen(sk)) { 953 err = sk_stream_wait_connect(sk, &timeo); 954 if (err != 0) 955 goto out_err; 956 } 957 958 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 959 960 mss_now = tcp_send_mss(sk, &size_goal, flags); 961 copied = 0; 962 963 err = -EPIPE; 964 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 965 goto out_err; 966 967 while (size > 0) { 968 struct sk_buff *skb = tcp_write_queue_tail(sk); 969 int copy, i; 970 bool can_coalesce; 971 972 if (!skb || (copy = size_goal - skb->len) <= 0 || 973 !tcp_skb_can_collapse_to(skb)) { 974 new_segment: 975 if (!sk_stream_memory_free(sk)) 976 goto wait_for_sndbuf; 977 978 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 979 tcp_rtx_and_write_queues_empty(sk)); 980 if (!skb) 981 goto wait_for_memory; 982 983 skb_entail(sk, skb); 984 copy = size_goal; 985 } 986 987 if (copy > size) 988 copy = size; 989 990 i = skb_shinfo(skb)->nr_frags; 991 can_coalesce = skb_can_coalesce(skb, i, page, offset); 992 if (!can_coalesce && i >= sysctl_max_skb_frags) { 993 tcp_mark_push(tp, skb); 994 goto new_segment; 995 } 996 if (!sk_wmem_schedule(sk, copy)) 997 goto wait_for_memory; 998 999 if (can_coalesce) { 1000 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1001 } else { 1002 get_page(page); 1003 skb_fill_page_desc(skb, i, page, offset, copy); 1004 } 1005 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1006 1007 skb->len += copy; 1008 skb->data_len += copy; 1009 skb->truesize += copy; 1010 sk->sk_wmem_queued += copy; 1011 sk_mem_charge(sk, copy); 1012 skb->ip_summed = CHECKSUM_PARTIAL; 1013 tp->write_seq += copy; 1014 TCP_SKB_CB(skb)->end_seq += copy; 1015 tcp_skb_pcount_set(skb, 0); 1016 1017 if (!copied) 1018 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1019 1020 copied += copy; 1021 offset += copy; 1022 size -= copy; 1023 if (!size) 1024 goto out; 1025 1026 if (skb->len < size_goal || (flags & MSG_OOB)) 1027 continue; 1028 1029 if (forced_push(tp)) { 1030 tcp_mark_push(tp, skb); 1031 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1032 } else if (skb == tcp_send_head(sk)) 1033 tcp_push_one(sk, mss_now); 1034 continue; 1035 1036 wait_for_sndbuf: 1037 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1038 wait_for_memory: 1039 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1040 TCP_NAGLE_PUSH, size_goal); 1041 1042 err = sk_stream_wait_memory(sk, &timeo); 1043 if (err != 0) 1044 goto do_error; 1045 1046 mss_now = tcp_send_mss(sk, &size_goal, flags); 1047 } 1048 1049 out: 1050 if (copied) { 1051 tcp_tx_timestamp(sk, sk->sk_tsflags); 1052 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1053 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1054 } 1055 return copied; 1056 1057 do_error: 1058 if (copied) 1059 goto out; 1060 out_err: 1061 /* make sure we wake any epoll edge trigger waiter */ 1062 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1063 err == -EAGAIN)) { 1064 sk->sk_write_space(sk); 1065 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1066 } 1067 return sk_stream_error(sk, flags, err); 1068 } 1069 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1070 1071 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1072 size_t size, int flags) 1073 { 1074 if (!(sk->sk_route_caps & NETIF_F_SG) || 1075 !sk_check_csum_caps(sk)) 1076 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1077 1078 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1079 1080 return do_tcp_sendpages(sk, page, offset, size, flags); 1081 } 1082 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1083 1084 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1085 size_t size, int flags) 1086 { 1087 int ret; 1088 1089 lock_sock(sk); 1090 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1091 release_sock(sk); 1092 1093 return ret; 1094 } 1095 EXPORT_SYMBOL(tcp_sendpage); 1096 1097 /* Do not bother using a page frag for very small frames. 1098 * But use this heuristic only for the first skb in write queue. 1099 * 1100 * Having no payload in skb->head allows better SACK shifting 1101 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1102 * write queue has less skbs. 1103 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1104 * This also speeds up tso_fragment(), since it wont fallback 1105 * to tcp_fragment(). 1106 */ 1107 static int linear_payload_sz(bool first_skb) 1108 { 1109 if (first_skb) 1110 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1111 return 0; 1112 } 1113 1114 static int select_size(const struct sock *sk, bool sg, bool first_skb) 1115 { 1116 const struct tcp_sock *tp = tcp_sk(sk); 1117 int tmp = tp->mss_cache; 1118 1119 if (sg) { 1120 if (sk_can_gso(sk)) { 1121 tmp = linear_payload_sz(first_skb); 1122 } else { 1123 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1124 1125 if (tmp >= pgbreak && 1126 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1127 tmp = pgbreak; 1128 } 1129 } 1130 1131 return tmp; 1132 } 1133 1134 void tcp_free_fastopen_req(struct tcp_sock *tp) 1135 { 1136 if (tp->fastopen_req) { 1137 kfree(tp->fastopen_req); 1138 tp->fastopen_req = NULL; 1139 } 1140 } 1141 1142 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1143 int *copied, size_t size) 1144 { 1145 struct tcp_sock *tp = tcp_sk(sk); 1146 struct inet_sock *inet = inet_sk(sk); 1147 struct sockaddr *uaddr = msg->msg_name; 1148 int err, flags; 1149 1150 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1151 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1152 uaddr->sa_family == AF_UNSPEC)) 1153 return -EOPNOTSUPP; 1154 if (tp->fastopen_req) 1155 return -EALREADY; /* Another Fast Open is in progress */ 1156 1157 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1158 sk->sk_allocation); 1159 if (unlikely(!tp->fastopen_req)) 1160 return -ENOBUFS; 1161 tp->fastopen_req->data = msg; 1162 tp->fastopen_req->size = size; 1163 1164 if (inet->defer_connect) { 1165 err = tcp_connect(sk); 1166 /* Same failure procedure as in tcp_v4/6_connect */ 1167 if (err) { 1168 tcp_set_state(sk, TCP_CLOSE); 1169 inet->inet_dport = 0; 1170 sk->sk_route_caps = 0; 1171 } 1172 } 1173 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1174 err = __inet_stream_connect(sk->sk_socket, uaddr, 1175 msg->msg_namelen, flags, 1); 1176 /* fastopen_req could already be freed in __inet_stream_connect 1177 * if the connection times out or gets rst 1178 */ 1179 if (tp->fastopen_req) { 1180 *copied = tp->fastopen_req->copied; 1181 tcp_free_fastopen_req(tp); 1182 inet->defer_connect = 0; 1183 } 1184 return err; 1185 } 1186 1187 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1188 { 1189 struct tcp_sock *tp = tcp_sk(sk); 1190 struct ubuf_info *uarg = NULL; 1191 struct sk_buff *skb; 1192 struct sockcm_cookie sockc; 1193 int flags, err, copied = 0; 1194 int mss_now = 0, size_goal, copied_syn = 0; 1195 bool process_backlog = false; 1196 bool sg; 1197 long timeo; 1198 1199 flags = msg->msg_flags; 1200 1201 if (flags & MSG_ZEROCOPY && size) { 1202 if (sk->sk_state != TCP_ESTABLISHED) { 1203 err = -EINVAL; 1204 goto out_err; 1205 } 1206 1207 skb = tcp_write_queue_tail(sk); 1208 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1209 if (!uarg) { 1210 err = -ENOBUFS; 1211 goto out_err; 1212 } 1213 1214 if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG)) 1215 uarg->zerocopy = 0; 1216 } 1217 1218 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) { 1219 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1220 if (err == -EINPROGRESS && copied_syn > 0) 1221 goto out; 1222 else if (err) 1223 goto out_err; 1224 } 1225 1226 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1227 1228 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1229 1230 /* Wait for a connection to finish. One exception is TCP Fast Open 1231 * (passive side) where data is allowed to be sent before a connection 1232 * is fully established. 1233 */ 1234 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1235 !tcp_passive_fastopen(sk)) { 1236 err = sk_stream_wait_connect(sk, &timeo); 1237 if (err != 0) 1238 goto do_error; 1239 } 1240 1241 if (unlikely(tp->repair)) { 1242 if (tp->repair_queue == TCP_RECV_QUEUE) { 1243 copied = tcp_send_rcvq(sk, msg, size); 1244 goto out_nopush; 1245 } 1246 1247 err = -EINVAL; 1248 if (tp->repair_queue == TCP_NO_QUEUE) 1249 goto out_err; 1250 1251 /* 'common' sending to sendq */ 1252 } 1253 1254 sockc.tsflags = sk->sk_tsflags; 1255 if (msg->msg_controllen) { 1256 err = sock_cmsg_send(sk, msg, &sockc); 1257 if (unlikely(err)) { 1258 err = -EINVAL; 1259 goto out_err; 1260 } 1261 } 1262 1263 /* This should be in poll */ 1264 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1265 1266 /* Ok commence sending. */ 1267 copied = 0; 1268 1269 restart: 1270 mss_now = tcp_send_mss(sk, &size_goal, flags); 1271 1272 err = -EPIPE; 1273 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1274 goto do_error; 1275 1276 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1277 1278 while (msg_data_left(msg)) { 1279 int copy = 0; 1280 int max = size_goal; 1281 1282 skb = tcp_write_queue_tail(sk); 1283 if (skb) { 1284 if (skb->ip_summed == CHECKSUM_NONE) 1285 max = mss_now; 1286 copy = max - skb->len; 1287 } 1288 1289 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1290 bool first_skb; 1291 1292 new_segment: 1293 /* Allocate new segment. If the interface is SG, 1294 * allocate skb fitting to single page. 1295 */ 1296 if (!sk_stream_memory_free(sk)) 1297 goto wait_for_sndbuf; 1298 1299 if (process_backlog && sk_flush_backlog(sk)) { 1300 process_backlog = false; 1301 goto restart; 1302 } 1303 first_skb = tcp_rtx_and_write_queues_empty(sk); 1304 skb = sk_stream_alloc_skb(sk, 1305 select_size(sk, sg, first_skb), 1306 sk->sk_allocation, 1307 first_skb); 1308 if (!skb) 1309 goto wait_for_memory; 1310 1311 process_backlog = true; 1312 /* 1313 * Check whether we can use HW checksum. 1314 */ 1315 if (sk_check_csum_caps(sk)) 1316 skb->ip_summed = CHECKSUM_PARTIAL; 1317 1318 skb_entail(sk, skb); 1319 copy = size_goal; 1320 max = size_goal; 1321 1322 /* All packets are restored as if they have 1323 * already been sent. skb_mstamp isn't set to 1324 * avoid wrong rtt estimation. 1325 */ 1326 if (tp->repair) 1327 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1328 } 1329 1330 /* Try to append data to the end of skb. */ 1331 if (copy > msg_data_left(msg)) 1332 copy = msg_data_left(msg); 1333 1334 /* Where to copy to? */ 1335 if (skb_availroom(skb) > 0) { 1336 /* We have some space in skb head. Superb! */ 1337 copy = min_t(int, copy, skb_availroom(skb)); 1338 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1339 if (err) 1340 goto do_fault; 1341 } else if (!uarg || !uarg->zerocopy) { 1342 bool merge = true; 1343 int i = skb_shinfo(skb)->nr_frags; 1344 struct page_frag *pfrag = sk_page_frag(sk); 1345 1346 if (!sk_page_frag_refill(sk, pfrag)) 1347 goto wait_for_memory; 1348 1349 if (!skb_can_coalesce(skb, i, pfrag->page, 1350 pfrag->offset)) { 1351 if (i >= sysctl_max_skb_frags || !sg) { 1352 tcp_mark_push(tp, skb); 1353 goto new_segment; 1354 } 1355 merge = false; 1356 } 1357 1358 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1359 1360 if (!sk_wmem_schedule(sk, copy)) 1361 goto wait_for_memory; 1362 1363 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1364 pfrag->page, 1365 pfrag->offset, 1366 copy); 1367 if (err) 1368 goto do_error; 1369 1370 /* Update the skb. */ 1371 if (merge) { 1372 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1373 } else { 1374 skb_fill_page_desc(skb, i, pfrag->page, 1375 pfrag->offset, copy); 1376 page_ref_inc(pfrag->page); 1377 } 1378 pfrag->offset += copy; 1379 } else { 1380 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1381 if (err == -EMSGSIZE || err == -EEXIST) 1382 goto new_segment; 1383 if (err < 0) 1384 goto do_error; 1385 copy = err; 1386 } 1387 1388 if (!copied) 1389 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1390 1391 tp->write_seq += copy; 1392 TCP_SKB_CB(skb)->end_seq += copy; 1393 tcp_skb_pcount_set(skb, 0); 1394 1395 copied += copy; 1396 if (!msg_data_left(msg)) { 1397 if (unlikely(flags & MSG_EOR)) 1398 TCP_SKB_CB(skb)->eor = 1; 1399 goto out; 1400 } 1401 1402 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1403 continue; 1404 1405 if (forced_push(tp)) { 1406 tcp_mark_push(tp, skb); 1407 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1408 } else if (skb == tcp_send_head(sk)) 1409 tcp_push_one(sk, mss_now); 1410 continue; 1411 1412 wait_for_sndbuf: 1413 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1414 wait_for_memory: 1415 if (copied) 1416 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1417 TCP_NAGLE_PUSH, size_goal); 1418 1419 err = sk_stream_wait_memory(sk, &timeo); 1420 if (err != 0) 1421 goto do_error; 1422 1423 mss_now = tcp_send_mss(sk, &size_goal, flags); 1424 } 1425 1426 out: 1427 if (copied) { 1428 tcp_tx_timestamp(sk, sockc.tsflags); 1429 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1430 } 1431 out_nopush: 1432 sock_zerocopy_put(uarg); 1433 return copied + copied_syn; 1434 1435 do_fault: 1436 if (!skb->len) { 1437 tcp_unlink_write_queue(skb, sk); 1438 /* It is the one place in all of TCP, except connection 1439 * reset, where we can be unlinking the send_head. 1440 */ 1441 tcp_check_send_head(sk, skb); 1442 sk_wmem_free_skb(sk, skb); 1443 } 1444 1445 do_error: 1446 if (copied + copied_syn) 1447 goto out; 1448 out_err: 1449 sock_zerocopy_put_abort(uarg); 1450 err = sk_stream_error(sk, flags, err); 1451 /* make sure we wake any epoll edge trigger waiter */ 1452 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1453 err == -EAGAIN)) { 1454 sk->sk_write_space(sk); 1455 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1456 } 1457 return err; 1458 } 1459 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1460 1461 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1462 { 1463 int ret; 1464 1465 lock_sock(sk); 1466 ret = tcp_sendmsg_locked(sk, msg, size); 1467 release_sock(sk); 1468 1469 return ret; 1470 } 1471 EXPORT_SYMBOL(tcp_sendmsg); 1472 1473 /* 1474 * Handle reading urgent data. BSD has very simple semantics for 1475 * this, no blocking and very strange errors 8) 1476 */ 1477 1478 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1479 { 1480 struct tcp_sock *tp = tcp_sk(sk); 1481 1482 /* No URG data to read. */ 1483 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1484 tp->urg_data == TCP_URG_READ) 1485 return -EINVAL; /* Yes this is right ! */ 1486 1487 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1488 return -ENOTCONN; 1489 1490 if (tp->urg_data & TCP_URG_VALID) { 1491 int err = 0; 1492 char c = tp->urg_data; 1493 1494 if (!(flags & MSG_PEEK)) 1495 tp->urg_data = TCP_URG_READ; 1496 1497 /* Read urgent data. */ 1498 msg->msg_flags |= MSG_OOB; 1499 1500 if (len > 0) { 1501 if (!(flags & MSG_TRUNC)) 1502 err = memcpy_to_msg(msg, &c, 1); 1503 len = 1; 1504 } else 1505 msg->msg_flags |= MSG_TRUNC; 1506 1507 return err ? -EFAULT : len; 1508 } 1509 1510 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1511 return 0; 1512 1513 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1514 * the available implementations agree in this case: 1515 * this call should never block, independent of the 1516 * blocking state of the socket. 1517 * Mike <pall@rz.uni-karlsruhe.de> 1518 */ 1519 return -EAGAIN; 1520 } 1521 1522 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1523 { 1524 struct sk_buff *skb; 1525 int copied = 0, err = 0; 1526 1527 /* XXX -- need to support SO_PEEK_OFF */ 1528 1529 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1530 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1531 if (err) 1532 return err; 1533 copied += skb->len; 1534 } 1535 1536 skb_queue_walk(&sk->sk_write_queue, skb) { 1537 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1538 if (err) 1539 break; 1540 1541 copied += skb->len; 1542 } 1543 1544 return err ?: copied; 1545 } 1546 1547 /* Clean up the receive buffer for full frames taken by the user, 1548 * then send an ACK if necessary. COPIED is the number of bytes 1549 * tcp_recvmsg has given to the user so far, it speeds up the 1550 * calculation of whether or not we must ACK for the sake of 1551 * a window update. 1552 */ 1553 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1554 { 1555 struct tcp_sock *tp = tcp_sk(sk); 1556 bool time_to_ack = false; 1557 1558 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1559 1560 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1561 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1562 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1563 1564 if (inet_csk_ack_scheduled(sk)) { 1565 const struct inet_connection_sock *icsk = inet_csk(sk); 1566 /* Delayed ACKs frequently hit locked sockets during bulk 1567 * receive. */ 1568 if (icsk->icsk_ack.blocked || 1569 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1570 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1571 /* 1572 * If this read emptied read buffer, we send ACK, if 1573 * connection is not bidirectional, user drained 1574 * receive buffer and there was a small segment 1575 * in queue. 1576 */ 1577 (copied > 0 && 1578 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1579 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1580 !icsk->icsk_ack.pingpong)) && 1581 !atomic_read(&sk->sk_rmem_alloc))) 1582 time_to_ack = true; 1583 } 1584 1585 /* We send an ACK if we can now advertise a non-zero window 1586 * which has been raised "significantly". 1587 * 1588 * Even if window raised up to infinity, do not send window open ACK 1589 * in states, where we will not receive more. It is useless. 1590 */ 1591 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1592 __u32 rcv_window_now = tcp_receive_window(tp); 1593 1594 /* Optimize, __tcp_select_window() is not cheap. */ 1595 if (2*rcv_window_now <= tp->window_clamp) { 1596 __u32 new_window = __tcp_select_window(sk); 1597 1598 /* Send ACK now, if this read freed lots of space 1599 * in our buffer. Certainly, new_window is new window. 1600 * We can advertise it now, if it is not less than current one. 1601 * "Lots" means "at least twice" here. 1602 */ 1603 if (new_window && new_window >= 2 * rcv_window_now) 1604 time_to_ack = true; 1605 } 1606 } 1607 if (time_to_ack) 1608 tcp_send_ack(sk); 1609 } 1610 1611 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1612 { 1613 struct sk_buff *skb; 1614 u32 offset; 1615 1616 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1617 offset = seq - TCP_SKB_CB(skb)->seq; 1618 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1619 pr_err_once("%s: found a SYN, please report !\n", __func__); 1620 offset--; 1621 } 1622 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1623 *off = offset; 1624 return skb; 1625 } 1626 /* This looks weird, but this can happen if TCP collapsing 1627 * splitted a fat GRO packet, while we released socket lock 1628 * in skb_splice_bits() 1629 */ 1630 sk_eat_skb(sk, skb); 1631 } 1632 return NULL; 1633 } 1634 1635 /* 1636 * This routine provides an alternative to tcp_recvmsg() for routines 1637 * that would like to handle copying from skbuffs directly in 'sendfile' 1638 * fashion. 1639 * Note: 1640 * - It is assumed that the socket was locked by the caller. 1641 * - The routine does not block. 1642 * - At present, there is no support for reading OOB data 1643 * or for 'peeking' the socket using this routine 1644 * (although both would be easy to implement). 1645 */ 1646 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1647 sk_read_actor_t recv_actor) 1648 { 1649 struct sk_buff *skb; 1650 struct tcp_sock *tp = tcp_sk(sk); 1651 u32 seq = tp->copied_seq; 1652 u32 offset; 1653 int copied = 0; 1654 1655 if (sk->sk_state == TCP_LISTEN) 1656 return -ENOTCONN; 1657 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1658 if (offset < skb->len) { 1659 int used; 1660 size_t len; 1661 1662 len = skb->len - offset; 1663 /* Stop reading if we hit a patch of urgent data */ 1664 if (tp->urg_data) { 1665 u32 urg_offset = tp->urg_seq - seq; 1666 if (urg_offset < len) 1667 len = urg_offset; 1668 if (!len) 1669 break; 1670 } 1671 used = recv_actor(desc, skb, offset, len); 1672 if (used <= 0) { 1673 if (!copied) 1674 copied = used; 1675 break; 1676 } else if (used <= len) { 1677 seq += used; 1678 copied += used; 1679 offset += used; 1680 } 1681 /* If recv_actor drops the lock (e.g. TCP splice 1682 * receive) the skb pointer might be invalid when 1683 * getting here: tcp_collapse might have deleted it 1684 * while aggregating skbs from the socket queue. 1685 */ 1686 skb = tcp_recv_skb(sk, seq - 1, &offset); 1687 if (!skb) 1688 break; 1689 /* TCP coalescing might have appended data to the skb. 1690 * Try to splice more frags 1691 */ 1692 if (offset + 1 != skb->len) 1693 continue; 1694 } 1695 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1696 sk_eat_skb(sk, skb); 1697 ++seq; 1698 break; 1699 } 1700 sk_eat_skb(sk, skb); 1701 if (!desc->count) 1702 break; 1703 tp->copied_seq = seq; 1704 } 1705 tp->copied_seq = seq; 1706 1707 tcp_rcv_space_adjust(sk); 1708 1709 /* Clean up data we have read: This will do ACK frames. */ 1710 if (copied > 0) { 1711 tcp_recv_skb(sk, seq, &offset); 1712 tcp_cleanup_rbuf(sk, copied); 1713 } 1714 return copied; 1715 } 1716 EXPORT_SYMBOL(tcp_read_sock); 1717 1718 int tcp_peek_len(struct socket *sock) 1719 { 1720 return tcp_inq(sock->sk); 1721 } 1722 EXPORT_SYMBOL(tcp_peek_len); 1723 1724 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1725 struct scm_timestamping *tss) 1726 { 1727 if (skb->tstamp) 1728 tss->ts[0] = ktime_to_timespec(skb->tstamp); 1729 else 1730 tss->ts[0] = (struct timespec) {0}; 1731 1732 if (skb_hwtstamps(skb)->hwtstamp) 1733 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp); 1734 else 1735 tss->ts[2] = (struct timespec) {0}; 1736 } 1737 1738 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1739 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1740 struct scm_timestamping *tss) 1741 { 1742 struct timeval tv; 1743 bool has_timestamping = false; 1744 1745 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1746 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1747 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1748 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 1749 sizeof(tss->ts[0]), &tss->ts[0]); 1750 } else { 1751 tv.tv_sec = tss->ts[0].tv_sec; 1752 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1753 1754 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 1755 sizeof(tv), &tv); 1756 } 1757 } 1758 1759 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1760 has_timestamping = true; 1761 else 1762 tss->ts[0] = (struct timespec) {0}; 1763 } 1764 1765 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1766 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1767 has_timestamping = true; 1768 else 1769 tss->ts[2] = (struct timespec) {0}; 1770 } 1771 1772 if (has_timestamping) { 1773 tss->ts[1] = (struct timespec) {0}; 1774 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, 1775 sizeof(*tss), tss); 1776 } 1777 } 1778 1779 /* 1780 * This routine copies from a sock struct into the user buffer. 1781 * 1782 * Technical note: in 2.3 we work on _locked_ socket, so that 1783 * tricks with *seq access order and skb->users are not required. 1784 * Probably, code can be easily improved even more. 1785 */ 1786 1787 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1788 int flags, int *addr_len) 1789 { 1790 struct tcp_sock *tp = tcp_sk(sk); 1791 int copied = 0; 1792 u32 peek_seq; 1793 u32 *seq; 1794 unsigned long used; 1795 int err; 1796 int target; /* Read at least this many bytes */ 1797 long timeo; 1798 struct sk_buff *skb, *last; 1799 u32 urg_hole = 0; 1800 struct scm_timestamping tss; 1801 bool has_tss = false; 1802 1803 if (unlikely(flags & MSG_ERRQUEUE)) 1804 return inet_recv_error(sk, msg, len, addr_len); 1805 1806 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1807 (sk->sk_state == TCP_ESTABLISHED)) 1808 sk_busy_loop(sk, nonblock); 1809 1810 lock_sock(sk); 1811 1812 err = -ENOTCONN; 1813 if (sk->sk_state == TCP_LISTEN) 1814 goto out; 1815 1816 timeo = sock_rcvtimeo(sk, nonblock); 1817 1818 /* Urgent data needs to be handled specially. */ 1819 if (flags & MSG_OOB) 1820 goto recv_urg; 1821 1822 if (unlikely(tp->repair)) { 1823 err = -EPERM; 1824 if (!(flags & MSG_PEEK)) 1825 goto out; 1826 1827 if (tp->repair_queue == TCP_SEND_QUEUE) 1828 goto recv_sndq; 1829 1830 err = -EINVAL; 1831 if (tp->repair_queue == TCP_NO_QUEUE) 1832 goto out; 1833 1834 /* 'common' recv queue MSG_PEEK-ing */ 1835 } 1836 1837 seq = &tp->copied_seq; 1838 if (flags & MSG_PEEK) { 1839 peek_seq = tp->copied_seq; 1840 seq = &peek_seq; 1841 } 1842 1843 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1844 1845 do { 1846 u32 offset; 1847 1848 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1849 if (tp->urg_data && tp->urg_seq == *seq) { 1850 if (copied) 1851 break; 1852 if (signal_pending(current)) { 1853 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1854 break; 1855 } 1856 } 1857 1858 /* Next get a buffer. */ 1859 1860 last = skb_peek_tail(&sk->sk_receive_queue); 1861 skb_queue_walk(&sk->sk_receive_queue, skb) { 1862 last = skb; 1863 /* Now that we have two receive queues this 1864 * shouldn't happen. 1865 */ 1866 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1867 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1868 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1869 flags)) 1870 break; 1871 1872 offset = *seq - TCP_SKB_CB(skb)->seq; 1873 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1874 pr_err_once("%s: found a SYN, please report !\n", __func__); 1875 offset--; 1876 } 1877 if (offset < skb->len) 1878 goto found_ok_skb; 1879 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1880 goto found_fin_ok; 1881 WARN(!(flags & MSG_PEEK), 1882 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1883 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1884 } 1885 1886 /* Well, if we have backlog, try to process it now yet. */ 1887 1888 if (copied >= target && !sk->sk_backlog.tail) 1889 break; 1890 1891 if (copied) { 1892 if (sk->sk_err || 1893 sk->sk_state == TCP_CLOSE || 1894 (sk->sk_shutdown & RCV_SHUTDOWN) || 1895 !timeo || 1896 signal_pending(current)) 1897 break; 1898 } else { 1899 if (sock_flag(sk, SOCK_DONE)) 1900 break; 1901 1902 if (sk->sk_err) { 1903 copied = sock_error(sk); 1904 break; 1905 } 1906 1907 if (sk->sk_shutdown & RCV_SHUTDOWN) 1908 break; 1909 1910 if (sk->sk_state == TCP_CLOSE) { 1911 if (!sock_flag(sk, SOCK_DONE)) { 1912 /* This occurs when user tries to read 1913 * from never connected socket. 1914 */ 1915 copied = -ENOTCONN; 1916 break; 1917 } 1918 break; 1919 } 1920 1921 if (!timeo) { 1922 copied = -EAGAIN; 1923 break; 1924 } 1925 1926 if (signal_pending(current)) { 1927 copied = sock_intr_errno(timeo); 1928 break; 1929 } 1930 } 1931 1932 tcp_cleanup_rbuf(sk, copied); 1933 1934 if (copied >= target) { 1935 /* Do not sleep, just process backlog. */ 1936 release_sock(sk); 1937 lock_sock(sk); 1938 } else { 1939 sk_wait_data(sk, &timeo, last); 1940 } 1941 1942 if ((flags & MSG_PEEK) && 1943 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1944 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1945 current->comm, 1946 task_pid_nr(current)); 1947 peek_seq = tp->copied_seq; 1948 } 1949 continue; 1950 1951 found_ok_skb: 1952 /* Ok so how much can we use? */ 1953 used = skb->len - offset; 1954 if (len < used) 1955 used = len; 1956 1957 /* Do we have urgent data here? */ 1958 if (tp->urg_data) { 1959 u32 urg_offset = tp->urg_seq - *seq; 1960 if (urg_offset < used) { 1961 if (!urg_offset) { 1962 if (!sock_flag(sk, SOCK_URGINLINE)) { 1963 ++*seq; 1964 urg_hole++; 1965 offset++; 1966 used--; 1967 if (!used) 1968 goto skip_copy; 1969 } 1970 } else 1971 used = urg_offset; 1972 } 1973 } 1974 1975 if (!(flags & MSG_TRUNC)) { 1976 err = skb_copy_datagram_msg(skb, offset, msg, used); 1977 if (err) { 1978 /* Exception. Bailout! */ 1979 if (!copied) 1980 copied = -EFAULT; 1981 break; 1982 } 1983 } 1984 1985 *seq += used; 1986 copied += used; 1987 len -= used; 1988 1989 tcp_rcv_space_adjust(sk); 1990 1991 skip_copy: 1992 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1993 tp->urg_data = 0; 1994 tcp_fast_path_check(sk); 1995 } 1996 if (used + offset < skb->len) 1997 continue; 1998 1999 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2000 tcp_update_recv_tstamps(skb, &tss); 2001 has_tss = true; 2002 } 2003 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2004 goto found_fin_ok; 2005 if (!(flags & MSG_PEEK)) 2006 sk_eat_skb(sk, skb); 2007 continue; 2008 2009 found_fin_ok: 2010 /* Process the FIN. */ 2011 ++*seq; 2012 if (!(flags & MSG_PEEK)) 2013 sk_eat_skb(sk, skb); 2014 break; 2015 } while (len > 0); 2016 2017 /* According to UNIX98, msg_name/msg_namelen are ignored 2018 * on connected socket. I was just happy when found this 8) --ANK 2019 */ 2020 2021 if (has_tss) 2022 tcp_recv_timestamp(msg, sk, &tss); 2023 2024 /* Clean up data we have read: This will do ACK frames. */ 2025 tcp_cleanup_rbuf(sk, copied); 2026 2027 release_sock(sk); 2028 return copied; 2029 2030 out: 2031 release_sock(sk); 2032 return err; 2033 2034 recv_urg: 2035 err = tcp_recv_urg(sk, msg, len, flags); 2036 goto out; 2037 2038 recv_sndq: 2039 err = tcp_peek_sndq(sk, msg, len); 2040 goto out; 2041 } 2042 EXPORT_SYMBOL(tcp_recvmsg); 2043 2044 void tcp_set_state(struct sock *sk, int state) 2045 { 2046 int oldstate = sk->sk_state; 2047 2048 trace_tcp_set_state(sk, oldstate, state); 2049 2050 switch (state) { 2051 case TCP_ESTABLISHED: 2052 if (oldstate != TCP_ESTABLISHED) 2053 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2054 break; 2055 2056 case TCP_CLOSE: 2057 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2058 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2059 2060 sk->sk_prot->unhash(sk); 2061 if (inet_csk(sk)->icsk_bind_hash && 2062 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2063 inet_put_port(sk); 2064 /* fall through */ 2065 default: 2066 if (oldstate == TCP_ESTABLISHED) 2067 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2068 } 2069 2070 /* Change state AFTER socket is unhashed to avoid closed 2071 * socket sitting in hash tables. 2072 */ 2073 sk_state_store(sk, state); 2074 2075 #ifdef STATE_TRACE 2076 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2077 #endif 2078 } 2079 EXPORT_SYMBOL_GPL(tcp_set_state); 2080 2081 /* 2082 * State processing on a close. This implements the state shift for 2083 * sending our FIN frame. Note that we only send a FIN for some 2084 * states. A shutdown() may have already sent the FIN, or we may be 2085 * closed. 2086 */ 2087 2088 static const unsigned char new_state[16] = { 2089 /* current state: new state: action: */ 2090 [0 /* (Invalid) */] = TCP_CLOSE, 2091 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2092 [TCP_SYN_SENT] = TCP_CLOSE, 2093 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2094 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2095 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2096 [TCP_TIME_WAIT] = TCP_CLOSE, 2097 [TCP_CLOSE] = TCP_CLOSE, 2098 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2099 [TCP_LAST_ACK] = TCP_LAST_ACK, 2100 [TCP_LISTEN] = TCP_CLOSE, 2101 [TCP_CLOSING] = TCP_CLOSING, 2102 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2103 }; 2104 2105 static int tcp_close_state(struct sock *sk) 2106 { 2107 int next = (int)new_state[sk->sk_state]; 2108 int ns = next & TCP_STATE_MASK; 2109 2110 tcp_set_state(sk, ns); 2111 2112 return next & TCP_ACTION_FIN; 2113 } 2114 2115 /* 2116 * Shutdown the sending side of a connection. Much like close except 2117 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2118 */ 2119 2120 void tcp_shutdown(struct sock *sk, int how) 2121 { 2122 /* We need to grab some memory, and put together a FIN, 2123 * and then put it into the queue to be sent. 2124 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2125 */ 2126 if (!(how & SEND_SHUTDOWN)) 2127 return; 2128 2129 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2130 if ((1 << sk->sk_state) & 2131 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2132 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2133 /* Clear out any half completed packets. FIN if needed. */ 2134 if (tcp_close_state(sk)) 2135 tcp_send_fin(sk); 2136 } 2137 } 2138 EXPORT_SYMBOL(tcp_shutdown); 2139 2140 bool tcp_check_oom(struct sock *sk, int shift) 2141 { 2142 bool too_many_orphans, out_of_socket_memory; 2143 2144 too_many_orphans = tcp_too_many_orphans(sk, shift); 2145 out_of_socket_memory = tcp_out_of_memory(sk); 2146 2147 if (too_many_orphans) 2148 net_info_ratelimited("too many orphaned sockets\n"); 2149 if (out_of_socket_memory) 2150 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2151 return too_many_orphans || out_of_socket_memory; 2152 } 2153 2154 void tcp_close(struct sock *sk, long timeout) 2155 { 2156 struct sk_buff *skb; 2157 int data_was_unread = 0; 2158 int state; 2159 2160 lock_sock(sk); 2161 sk->sk_shutdown = SHUTDOWN_MASK; 2162 2163 if (sk->sk_state == TCP_LISTEN) { 2164 tcp_set_state(sk, TCP_CLOSE); 2165 2166 /* Special case. */ 2167 inet_csk_listen_stop(sk); 2168 2169 goto adjudge_to_death; 2170 } 2171 2172 /* We need to flush the recv. buffs. We do this only on the 2173 * descriptor close, not protocol-sourced closes, because the 2174 * reader process may not have drained the data yet! 2175 */ 2176 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2177 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2178 2179 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2180 len--; 2181 data_was_unread += len; 2182 __kfree_skb(skb); 2183 } 2184 2185 sk_mem_reclaim(sk); 2186 2187 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2188 if (sk->sk_state == TCP_CLOSE) 2189 goto adjudge_to_death; 2190 2191 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2192 * data was lost. To witness the awful effects of the old behavior of 2193 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2194 * GET in an FTP client, suspend the process, wait for the client to 2195 * advertise a zero window, then kill -9 the FTP client, wheee... 2196 * Note: timeout is always zero in such a case. 2197 */ 2198 if (unlikely(tcp_sk(sk)->repair)) { 2199 sk->sk_prot->disconnect(sk, 0); 2200 } else if (data_was_unread) { 2201 /* Unread data was tossed, zap the connection. */ 2202 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2203 tcp_set_state(sk, TCP_CLOSE); 2204 tcp_send_active_reset(sk, sk->sk_allocation); 2205 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2206 /* Check zero linger _after_ checking for unread data. */ 2207 sk->sk_prot->disconnect(sk, 0); 2208 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2209 } else if (tcp_close_state(sk)) { 2210 /* We FIN if the application ate all the data before 2211 * zapping the connection. 2212 */ 2213 2214 /* RED-PEN. Formally speaking, we have broken TCP state 2215 * machine. State transitions: 2216 * 2217 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2218 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2219 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2220 * 2221 * are legal only when FIN has been sent (i.e. in window), 2222 * rather than queued out of window. Purists blame. 2223 * 2224 * F.e. "RFC state" is ESTABLISHED, 2225 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2226 * 2227 * The visible declinations are that sometimes 2228 * we enter time-wait state, when it is not required really 2229 * (harmless), do not send active resets, when they are 2230 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2231 * they look as CLOSING or LAST_ACK for Linux) 2232 * Probably, I missed some more holelets. 2233 * --ANK 2234 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2235 * in a single packet! (May consider it later but will 2236 * probably need API support or TCP_CORK SYN-ACK until 2237 * data is written and socket is closed.) 2238 */ 2239 tcp_send_fin(sk); 2240 } 2241 2242 sk_stream_wait_close(sk, timeout); 2243 2244 adjudge_to_death: 2245 state = sk->sk_state; 2246 sock_hold(sk); 2247 sock_orphan(sk); 2248 2249 /* It is the last release_sock in its life. It will remove backlog. */ 2250 release_sock(sk); 2251 2252 2253 /* Now socket is owned by kernel and we acquire BH lock 2254 * to finish close. No need to check for user refs. 2255 */ 2256 local_bh_disable(); 2257 bh_lock_sock(sk); 2258 WARN_ON(sock_owned_by_user(sk)); 2259 2260 percpu_counter_inc(sk->sk_prot->orphan_count); 2261 2262 /* Have we already been destroyed by a softirq or backlog? */ 2263 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2264 goto out; 2265 2266 /* This is a (useful) BSD violating of the RFC. There is a 2267 * problem with TCP as specified in that the other end could 2268 * keep a socket open forever with no application left this end. 2269 * We use a 1 minute timeout (about the same as BSD) then kill 2270 * our end. If they send after that then tough - BUT: long enough 2271 * that we won't make the old 4*rto = almost no time - whoops 2272 * reset mistake. 2273 * 2274 * Nope, it was not mistake. It is really desired behaviour 2275 * f.e. on http servers, when such sockets are useless, but 2276 * consume significant resources. Let's do it with special 2277 * linger2 option. --ANK 2278 */ 2279 2280 if (sk->sk_state == TCP_FIN_WAIT2) { 2281 struct tcp_sock *tp = tcp_sk(sk); 2282 if (tp->linger2 < 0) { 2283 tcp_set_state(sk, TCP_CLOSE); 2284 tcp_send_active_reset(sk, GFP_ATOMIC); 2285 __NET_INC_STATS(sock_net(sk), 2286 LINUX_MIB_TCPABORTONLINGER); 2287 } else { 2288 const int tmo = tcp_fin_time(sk); 2289 2290 if (tmo > TCP_TIMEWAIT_LEN) { 2291 inet_csk_reset_keepalive_timer(sk, 2292 tmo - TCP_TIMEWAIT_LEN); 2293 } else { 2294 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2295 goto out; 2296 } 2297 } 2298 } 2299 if (sk->sk_state != TCP_CLOSE) { 2300 sk_mem_reclaim(sk); 2301 if (tcp_check_oom(sk, 0)) { 2302 tcp_set_state(sk, TCP_CLOSE); 2303 tcp_send_active_reset(sk, GFP_ATOMIC); 2304 __NET_INC_STATS(sock_net(sk), 2305 LINUX_MIB_TCPABORTONMEMORY); 2306 } 2307 } 2308 2309 if (sk->sk_state == TCP_CLOSE) { 2310 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2311 /* We could get here with a non-NULL req if the socket is 2312 * aborted (e.g., closed with unread data) before 3WHS 2313 * finishes. 2314 */ 2315 if (req) 2316 reqsk_fastopen_remove(sk, req, false); 2317 inet_csk_destroy_sock(sk); 2318 } 2319 /* Otherwise, socket is reprieved until protocol close. */ 2320 2321 out: 2322 bh_unlock_sock(sk); 2323 local_bh_enable(); 2324 sock_put(sk); 2325 } 2326 EXPORT_SYMBOL(tcp_close); 2327 2328 /* These states need RST on ABORT according to RFC793 */ 2329 2330 static inline bool tcp_need_reset(int state) 2331 { 2332 return (1 << state) & 2333 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2334 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2335 } 2336 2337 static void tcp_rtx_queue_purge(struct sock *sk) 2338 { 2339 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2340 2341 while (p) { 2342 struct sk_buff *skb = rb_to_skb(p); 2343 2344 p = rb_next(p); 2345 /* Since we are deleting whole queue, no need to 2346 * list_del(&skb->tcp_tsorted_anchor) 2347 */ 2348 tcp_rtx_queue_unlink(skb, sk); 2349 sk_wmem_free_skb(sk, skb); 2350 } 2351 } 2352 2353 void tcp_write_queue_purge(struct sock *sk) 2354 { 2355 struct sk_buff *skb; 2356 2357 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2358 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2359 tcp_skb_tsorted_anchor_cleanup(skb); 2360 sk_wmem_free_skb(sk, skb); 2361 } 2362 tcp_rtx_queue_purge(sk); 2363 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2364 sk_mem_reclaim(sk); 2365 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2366 } 2367 2368 int tcp_disconnect(struct sock *sk, int flags) 2369 { 2370 struct inet_sock *inet = inet_sk(sk); 2371 struct inet_connection_sock *icsk = inet_csk(sk); 2372 struct tcp_sock *tp = tcp_sk(sk); 2373 int err = 0; 2374 int old_state = sk->sk_state; 2375 2376 if (old_state != TCP_CLOSE) 2377 tcp_set_state(sk, TCP_CLOSE); 2378 2379 /* ABORT function of RFC793 */ 2380 if (old_state == TCP_LISTEN) { 2381 inet_csk_listen_stop(sk); 2382 } else if (unlikely(tp->repair)) { 2383 sk->sk_err = ECONNABORTED; 2384 } else if (tcp_need_reset(old_state) || 2385 (tp->snd_nxt != tp->write_seq && 2386 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2387 /* The last check adjusts for discrepancy of Linux wrt. RFC 2388 * states 2389 */ 2390 tcp_send_active_reset(sk, gfp_any()); 2391 sk->sk_err = ECONNRESET; 2392 } else if (old_state == TCP_SYN_SENT) 2393 sk->sk_err = ECONNRESET; 2394 2395 tcp_clear_xmit_timers(sk); 2396 __skb_queue_purge(&sk->sk_receive_queue); 2397 tcp_write_queue_purge(sk); 2398 tcp_fastopen_active_disable_ofo_check(sk); 2399 skb_rbtree_purge(&tp->out_of_order_queue); 2400 2401 inet->inet_dport = 0; 2402 2403 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2404 inet_reset_saddr(sk); 2405 2406 sk->sk_shutdown = 0; 2407 sock_reset_flag(sk, SOCK_DONE); 2408 tp->srtt_us = 0; 2409 tp->write_seq += tp->max_window + 2; 2410 if (tp->write_seq == 0) 2411 tp->write_seq = 1; 2412 icsk->icsk_backoff = 0; 2413 tp->snd_cwnd = 2; 2414 icsk->icsk_probes_out = 0; 2415 tp->packets_out = 0; 2416 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2417 tp->snd_cwnd_cnt = 0; 2418 tp->window_clamp = 0; 2419 tcp_set_ca_state(sk, TCP_CA_Open); 2420 tcp_clear_retrans(tp); 2421 inet_csk_delack_init(sk); 2422 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2423 * issue in __tcp_select_window() 2424 */ 2425 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2426 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2427 __sk_dst_reset(sk); 2428 dst_release(sk->sk_rx_dst); 2429 sk->sk_rx_dst = NULL; 2430 tcp_saved_syn_free(tp); 2431 2432 /* Clean up fastopen related fields */ 2433 tcp_free_fastopen_req(tp); 2434 inet->defer_connect = 0; 2435 2436 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2437 2438 sk->sk_error_report(sk); 2439 return err; 2440 } 2441 EXPORT_SYMBOL(tcp_disconnect); 2442 2443 static inline bool tcp_can_repair_sock(const struct sock *sk) 2444 { 2445 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2446 (sk->sk_state != TCP_LISTEN); 2447 } 2448 2449 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2450 { 2451 struct tcp_repair_window opt; 2452 2453 if (!tp->repair) 2454 return -EPERM; 2455 2456 if (len != sizeof(opt)) 2457 return -EINVAL; 2458 2459 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2460 return -EFAULT; 2461 2462 if (opt.max_window < opt.snd_wnd) 2463 return -EINVAL; 2464 2465 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2466 return -EINVAL; 2467 2468 if (after(opt.rcv_wup, tp->rcv_nxt)) 2469 return -EINVAL; 2470 2471 tp->snd_wl1 = opt.snd_wl1; 2472 tp->snd_wnd = opt.snd_wnd; 2473 tp->max_window = opt.max_window; 2474 2475 tp->rcv_wnd = opt.rcv_wnd; 2476 tp->rcv_wup = opt.rcv_wup; 2477 2478 return 0; 2479 } 2480 2481 static int tcp_repair_options_est(struct sock *sk, 2482 struct tcp_repair_opt __user *optbuf, unsigned int len) 2483 { 2484 struct tcp_sock *tp = tcp_sk(sk); 2485 struct tcp_repair_opt opt; 2486 2487 while (len >= sizeof(opt)) { 2488 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2489 return -EFAULT; 2490 2491 optbuf++; 2492 len -= sizeof(opt); 2493 2494 switch (opt.opt_code) { 2495 case TCPOPT_MSS: 2496 tp->rx_opt.mss_clamp = opt.opt_val; 2497 tcp_mtup_init(sk); 2498 break; 2499 case TCPOPT_WINDOW: 2500 { 2501 u16 snd_wscale = opt.opt_val & 0xFFFF; 2502 u16 rcv_wscale = opt.opt_val >> 16; 2503 2504 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2505 return -EFBIG; 2506 2507 tp->rx_opt.snd_wscale = snd_wscale; 2508 tp->rx_opt.rcv_wscale = rcv_wscale; 2509 tp->rx_opt.wscale_ok = 1; 2510 } 2511 break; 2512 case TCPOPT_SACK_PERM: 2513 if (opt.opt_val != 0) 2514 return -EINVAL; 2515 2516 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2517 if (sock_net(sk)->ipv4.sysctl_tcp_fack) 2518 tcp_enable_fack(tp); 2519 break; 2520 case TCPOPT_TIMESTAMP: 2521 if (opt.opt_val != 0) 2522 return -EINVAL; 2523 2524 tp->rx_opt.tstamp_ok = 1; 2525 break; 2526 } 2527 } 2528 2529 return 0; 2530 } 2531 2532 /* 2533 * Socket option code for TCP. 2534 */ 2535 static int do_tcp_setsockopt(struct sock *sk, int level, 2536 int optname, char __user *optval, unsigned int optlen) 2537 { 2538 struct tcp_sock *tp = tcp_sk(sk); 2539 struct inet_connection_sock *icsk = inet_csk(sk); 2540 struct net *net = sock_net(sk); 2541 int val; 2542 int err = 0; 2543 2544 /* These are data/string values, all the others are ints */ 2545 switch (optname) { 2546 case TCP_CONGESTION: { 2547 char name[TCP_CA_NAME_MAX]; 2548 2549 if (optlen < 1) 2550 return -EINVAL; 2551 2552 val = strncpy_from_user(name, optval, 2553 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2554 if (val < 0) 2555 return -EFAULT; 2556 name[val] = 0; 2557 2558 lock_sock(sk); 2559 err = tcp_set_congestion_control(sk, name, true, true); 2560 release_sock(sk); 2561 return err; 2562 } 2563 case TCP_ULP: { 2564 char name[TCP_ULP_NAME_MAX]; 2565 2566 if (optlen < 1) 2567 return -EINVAL; 2568 2569 val = strncpy_from_user(name, optval, 2570 min_t(long, TCP_ULP_NAME_MAX - 1, 2571 optlen)); 2572 if (val < 0) 2573 return -EFAULT; 2574 name[val] = 0; 2575 2576 lock_sock(sk); 2577 err = tcp_set_ulp(sk, name); 2578 release_sock(sk); 2579 return err; 2580 } 2581 case TCP_FASTOPEN_KEY: { 2582 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2583 2584 if (optlen != sizeof(key)) 2585 return -EINVAL; 2586 2587 if (copy_from_user(key, optval, optlen)) 2588 return -EFAULT; 2589 2590 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2591 } 2592 default: 2593 /* fallthru */ 2594 break; 2595 } 2596 2597 if (optlen < sizeof(int)) 2598 return -EINVAL; 2599 2600 if (get_user(val, (int __user *)optval)) 2601 return -EFAULT; 2602 2603 lock_sock(sk); 2604 2605 switch (optname) { 2606 case TCP_MAXSEG: 2607 /* Values greater than interface MTU won't take effect. However 2608 * at the point when this call is done we typically don't yet 2609 * know which interface is going to be used 2610 */ 2611 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2612 err = -EINVAL; 2613 break; 2614 } 2615 tp->rx_opt.user_mss = val; 2616 break; 2617 2618 case TCP_NODELAY: 2619 if (val) { 2620 /* TCP_NODELAY is weaker than TCP_CORK, so that 2621 * this option on corked socket is remembered, but 2622 * it is not activated until cork is cleared. 2623 * 2624 * However, when TCP_NODELAY is set we make 2625 * an explicit push, which overrides even TCP_CORK 2626 * for currently queued segments. 2627 */ 2628 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2629 tcp_push_pending_frames(sk); 2630 } else { 2631 tp->nonagle &= ~TCP_NAGLE_OFF; 2632 } 2633 break; 2634 2635 case TCP_THIN_LINEAR_TIMEOUTS: 2636 if (val < 0 || val > 1) 2637 err = -EINVAL; 2638 else 2639 tp->thin_lto = val; 2640 break; 2641 2642 case TCP_THIN_DUPACK: 2643 if (val < 0 || val > 1) 2644 err = -EINVAL; 2645 break; 2646 2647 case TCP_REPAIR: 2648 if (!tcp_can_repair_sock(sk)) 2649 err = -EPERM; 2650 else if (val == 1) { 2651 tp->repair = 1; 2652 sk->sk_reuse = SK_FORCE_REUSE; 2653 tp->repair_queue = TCP_NO_QUEUE; 2654 } else if (val == 0) { 2655 tp->repair = 0; 2656 sk->sk_reuse = SK_NO_REUSE; 2657 tcp_send_window_probe(sk); 2658 } else 2659 err = -EINVAL; 2660 2661 break; 2662 2663 case TCP_REPAIR_QUEUE: 2664 if (!tp->repair) 2665 err = -EPERM; 2666 else if (val < TCP_QUEUES_NR) 2667 tp->repair_queue = val; 2668 else 2669 err = -EINVAL; 2670 break; 2671 2672 case TCP_QUEUE_SEQ: 2673 if (sk->sk_state != TCP_CLOSE) 2674 err = -EPERM; 2675 else if (tp->repair_queue == TCP_SEND_QUEUE) 2676 tp->write_seq = val; 2677 else if (tp->repair_queue == TCP_RECV_QUEUE) 2678 tp->rcv_nxt = val; 2679 else 2680 err = -EINVAL; 2681 break; 2682 2683 case TCP_REPAIR_OPTIONS: 2684 if (!tp->repair) 2685 err = -EINVAL; 2686 else if (sk->sk_state == TCP_ESTABLISHED) 2687 err = tcp_repair_options_est(sk, 2688 (struct tcp_repair_opt __user *)optval, 2689 optlen); 2690 else 2691 err = -EPERM; 2692 break; 2693 2694 case TCP_CORK: 2695 /* When set indicates to always queue non-full frames. 2696 * Later the user clears this option and we transmit 2697 * any pending partial frames in the queue. This is 2698 * meant to be used alongside sendfile() to get properly 2699 * filled frames when the user (for example) must write 2700 * out headers with a write() call first and then use 2701 * sendfile to send out the data parts. 2702 * 2703 * TCP_CORK can be set together with TCP_NODELAY and it is 2704 * stronger than TCP_NODELAY. 2705 */ 2706 if (val) { 2707 tp->nonagle |= TCP_NAGLE_CORK; 2708 } else { 2709 tp->nonagle &= ~TCP_NAGLE_CORK; 2710 if (tp->nonagle&TCP_NAGLE_OFF) 2711 tp->nonagle |= TCP_NAGLE_PUSH; 2712 tcp_push_pending_frames(sk); 2713 } 2714 break; 2715 2716 case TCP_KEEPIDLE: 2717 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2718 err = -EINVAL; 2719 else { 2720 tp->keepalive_time = val * HZ; 2721 if (sock_flag(sk, SOCK_KEEPOPEN) && 2722 !((1 << sk->sk_state) & 2723 (TCPF_CLOSE | TCPF_LISTEN))) { 2724 u32 elapsed = keepalive_time_elapsed(tp); 2725 if (tp->keepalive_time > elapsed) 2726 elapsed = tp->keepalive_time - elapsed; 2727 else 2728 elapsed = 0; 2729 inet_csk_reset_keepalive_timer(sk, elapsed); 2730 } 2731 } 2732 break; 2733 case TCP_KEEPINTVL: 2734 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2735 err = -EINVAL; 2736 else 2737 tp->keepalive_intvl = val * HZ; 2738 break; 2739 case TCP_KEEPCNT: 2740 if (val < 1 || val > MAX_TCP_KEEPCNT) 2741 err = -EINVAL; 2742 else 2743 tp->keepalive_probes = val; 2744 break; 2745 case TCP_SYNCNT: 2746 if (val < 1 || val > MAX_TCP_SYNCNT) 2747 err = -EINVAL; 2748 else 2749 icsk->icsk_syn_retries = val; 2750 break; 2751 2752 case TCP_SAVE_SYN: 2753 if (val < 0 || val > 1) 2754 err = -EINVAL; 2755 else 2756 tp->save_syn = val; 2757 break; 2758 2759 case TCP_LINGER2: 2760 if (val < 0) 2761 tp->linger2 = -1; 2762 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2763 tp->linger2 = 0; 2764 else 2765 tp->linger2 = val * HZ; 2766 break; 2767 2768 case TCP_DEFER_ACCEPT: 2769 /* Translate value in seconds to number of retransmits */ 2770 icsk->icsk_accept_queue.rskq_defer_accept = 2771 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2772 TCP_RTO_MAX / HZ); 2773 break; 2774 2775 case TCP_WINDOW_CLAMP: 2776 if (!val) { 2777 if (sk->sk_state != TCP_CLOSE) { 2778 err = -EINVAL; 2779 break; 2780 } 2781 tp->window_clamp = 0; 2782 } else 2783 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2784 SOCK_MIN_RCVBUF / 2 : val; 2785 break; 2786 2787 case TCP_QUICKACK: 2788 if (!val) { 2789 icsk->icsk_ack.pingpong = 1; 2790 } else { 2791 icsk->icsk_ack.pingpong = 0; 2792 if ((1 << sk->sk_state) & 2793 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2794 inet_csk_ack_scheduled(sk)) { 2795 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2796 tcp_cleanup_rbuf(sk, 1); 2797 if (!(val & 1)) 2798 icsk->icsk_ack.pingpong = 1; 2799 } 2800 } 2801 break; 2802 2803 #ifdef CONFIG_TCP_MD5SIG 2804 case TCP_MD5SIG: 2805 case TCP_MD5SIG_EXT: 2806 /* Read the IP->Key mappings from userspace */ 2807 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 2808 break; 2809 #endif 2810 case TCP_USER_TIMEOUT: 2811 /* Cap the max time in ms TCP will retry or probe the window 2812 * before giving up and aborting (ETIMEDOUT) a connection. 2813 */ 2814 if (val < 0) 2815 err = -EINVAL; 2816 else 2817 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2818 break; 2819 2820 case TCP_FASTOPEN: 2821 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2822 TCPF_LISTEN))) { 2823 tcp_fastopen_init_key_once(net); 2824 2825 fastopen_queue_tune(sk, val); 2826 } else { 2827 err = -EINVAL; 2828 } 2829 break; 2830 case TCP_FASTOPEN_CONNECT: 2831 if (val > 1 || val < 0) { 2832 err = -EINVAL; 2833 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 2834 if (sk->sk_state == TCP_CLOSE) 2835 tp->fastopen_connect = val; 2836 else 2837 err = -EINVAL; 2838 } else { 2839 err = -EOPNOTSUPP; 2840 } 2841 break; 2842 case TCP_FASTOPEN_NO_COOKIE: 2843 if (val > 1 || val < 0) 2844 err = -EINVAL; 2845 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2846 err = -EINVAL; 2847 else 2848 tp->fastopen_no_cookie = val; 2849 break; 2850 case TCP_TIMESTAMP: 2851 if (!tp->repair) 2852 err = -EPERM; 2853 else 2854 tp->tsoffset = val - tcp_time_stamp_raw(); 2855 break; 2856 case TCP_REPAIR_WINDOW: 2857 err = tcp_repair_set_window(tp, optval, optlen); 2858 break; 2859 case TCP_NOTSENT_LOWAT: 2860 tp->notsent_lowat = val; 2861 sk->sk_write_space(sk); 2862 break; 2863 default: 2864 err = -ENOPROTOOPT; 2865 break; 2866 } 2867 2868 release_sock(sk); 2869 return err; 2870 } 2871 2872 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2873 unsigned int optlen) 2874 { 2875 const struct inet_connection_sock *icsk = inet_csk(sk); 2876 2877 if (level != SOL_TCP) 2878 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2879 optval, optlen); 2880 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2881 } 2882 EXPORT_SYMBOL(tcp_setsockopt); 2883 2884 #ifdef CONFIG_COMPAT 2885 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2886 char __user *optval, unsigned int optlen) 2887 { 2888 if (level != SOL_TCP) 2889 return inet_csk_compat_setsockopt(sk, level, optname, 2890 optval, optlen); 2891 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2892 } 2893 EXPORT_SYMBOL(compat_tcp_setsockopt); 2894 #endif 2895 2896 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 2897 struct tcp_info *info) 2898 { 2899 u64 stats[__TCP_CHRONO_MAX], total = 0; 2900 enum tcp_chrono i; 2901 2902 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 2903 stats[i] = tp->chrono_stat[i - 1]; 2904 if (i == tp->chrono_type) 2905 stats[i] += tcp_jiffies32 - tp->chrono_start; 2906 stats[i] *= USEC_PER_SEC / HZ; 2907 total += stats[i]; 2908 } 2909 2910 info->tcpi_busy_time = total; 2911 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 2912 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 2913 } 2914 2915 /* Return information about state of tcp endpoint in API format. */ 2916 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2917 { 2918 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2919 const struct inet_connection_sock *icsk = inet_csk(sk); 2920 u32 now; 2921 u64 rate64; 2922 bool slow; 2923 u32 rate; 2924 2925 memset(info, 0, sizeof(*info)); 2926 if (sk->sk_type != SOCK_STREAM) 2927 return; 2928 2929 info->tcpi_state = sk_state_load(sk); 2930 2931 /* Report meaningful fields for all TCP states, including listeners */ 2932 rate = READ_ONCE(sk->sk_pacing_rate); 2933 rate64 = rate != ~0U ? rate : ~0ULL; 2934 info->tcpi_pacing_rate = rate64; 2935 2936 rate = READ_ONCE(sk->sk_max_pacing_rate); 2937 rate64 = rate != ~0U ? rate : ~0ULL; 2938 info->tcpi_max_pacing_rate = rate64; 2939 2940 info->tcpi_reordering = tp->reordering; 2941 info->tcpi_snd_cwnd = tp->snd_cwnd; 2942 2943 if (info->tcpi_state == TCP_LISTEN) { 2944 /* listeners aliased fields : 2945 * tcpi_unacked -> Number of children ready for accept() 2946 * tcpi_sacked -> max backlog 2947 */ 2948 info->tcpi_unacked = sk->sk_ack_backlog; 2949 info->tcpi_sacked = sk->sk_max_ack_backlog; 2950 return; 2951 } 2952 2953 slow = lock_sock_fast(sk); 2954 2955 info->tcpi_ca_state = icsk->icsk_ca_state; 2956 info->tcpi_retransmits = icsk->icsk_retransmits; 2957 info->tcpi_probes = icsk->icsk_probes_out; 2958 info->tcpi_backoff = icsk->icsk_backoff; 2959 2960 if (tp->rx_opt.tstamp_ok) 2961 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2962 if (tcp_is_sack(tp)) 2963 info->tcpi_options |= TCPI_OPT_SACK; 2964 if (tp->rx_opt.wscale_ok) { 2965 info->tcpi_options |= TCPI_OPT_WSCALE; 2966 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2967 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2968 } 2969 2970 if (tp->ecn_flags & TCP_ECN_OK) 2971 info->tcpi_options |= TCPI_OPT_ECN; 2972 if (tp->ecn_flags & TCP_ECN_SEEN) 2973 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2974 if (tp->syn_data_acked) 2975 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2976 2977 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2978 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2979 info->tcpi_snd_mss = tp->mss_cache; 2980 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2981 2982 info->tcpi_unacked = tp->packets_out; 2983 info->tcpi_sacked = tp->sacked_out; 2984 2985 info->tcpi_lost = tp->lost_out; 2986 info->tcpi_retrans = tp->retrans_out; 2987 info->tcpi_fackets = tp->fackets_out; 2988 2989 now = tcp_jiffies32; 2990 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2991 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2992 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2993 2994 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2995 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2996 info->tcpi_rtt = tp->srtt_us >> 3; 2997 info->tcpi_rttvar = tp->mdev_us >> 2; 2998 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2999 info->tcpi_advmss = tp->advmss; 3000 3001 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3002 info->tcpi_rcv_space = tp->rcvq_space.space; 3003 3004 info->tcpi_total_retrans = tp->total_retrans; 3005 3006 info->tcpi_bytes_acked = tp->bytes_acked; 3007 info->tcpi_bytes_received = tp->bytes_received; 3008 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3009 tcp_get_info_chrono_stats(tp, info); 3010 3011 info->tcpi_segs_out = tp->segs_out; 3012 info->tcpi_segs_in = tp->segs_in; 3013 3014 info->tcpi_min_rtt = tcp_min_rtt(tp); 3015 info->tcpi_data_segs_in = tp->data_segs_in; 3016 info->tcpi_data_segs_out = tp->data_segs_out; 3017 3018 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3019 rate64 = tcp_compute_delivery_rate(tp); 3020 if (rate64) 3021 info->tcpi_delivery_rate = rate64; 3022 unlock_sock_fast(sk, slow); 3023 } 3024 EXPORT_SYMBOL_GPL(tcp_get_info); 3025 3026 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3027 { 3028 const struct tcp_sock *tp = tcp_sk(sk); 3029 struct sk_buff *stats; 3030 struct tcp_info info; 3031 u64 rate64; 3032 u32 rate; 3033 3034 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) + 3035 3 * nla_total_size(sizeof(u32)) + 3036 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC); 3037 if (!stats) 3038 return NULL; 3039 3040 tcp_get_info_chrono_stats(tp, &info); 3041 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3042 info.tcpi_busy_time, TCP_NLA_PAD); 3043 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3044 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3045 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3046 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3047 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3048 tp->data_segs_out, TCP_NLA_PAD); 3049 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3050 tp->total_retrans, TCP_NLA_PAD); 3051 3052 rate = READ_ONCE(sk->sk_pacing_rate); 3053 rate64 = rate != ~0U ? rate : ~0ULL; 3054 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3055 3056 rate64 = tcp_compute_delivery_rate(tp); 3057 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3058 3059 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3060 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3061 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3062 3063 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3064 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3065 return stats; 3066 } 3067 3068 static int do_tcp_getsockopt(struct sock *sk, int level, 3069 int optname, char __user *optval, int __user *optlen) 3070 { 3071 struct inet_connection_sock *icsk = inet_csk(sk); 3072 struct tcp_sock *tp = tcp_sk(sk); 3073 struct net *net = sock_net(sk); 3074 int val, len; 3075 3076 if (get_user(len, optlen)) 3077 return -EFAULT; 3078 3079 len = min_t(unsigned int, len, sizeof(int)); 3080 3081 if (len < 0) 3082 return -EINVAL; 3083 3084 switch (optname) { 3085 case TCP_MAXSEG: 3086 val = tp->mss_cache; 3087 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3088 val = tp->rx_opt.user_mss; 3089 if (tp->repair) 3090 val = tp->rx_opt.mss_clamp; 3091 break; 3092 case TCP_NODELAY: 3093 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3094 break; 3095 case TCP_CORK: 3096 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3097 break; 3098 case TCP_KEEPIDLE: 3099 val = keepalive_time_when(tp) / HZ; 3100 break; 3101 case TCP_KEEPINTVL: 3102 val = keepalive_intvl_when(tp) / HZ; 3103 break; 3104 case TCP_KEEPCNT: 3105 val = keepalive_probes(tp); 3106 break; 3107 case TCP_SYNCNT: 3108 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3109 break; 3110 case TCP_LINGER2: 3111 val = tp->linger2; 3112 if (val >= 0) 3113 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3114 break; 3115 case TCP_DEFER_ACCEPT: 3116 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3117 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3118 break; 3119 case TCP_WINDOW_CLAMP: 3120 val = tp->window_clamp; 3121 break; 3122 case TCP_INFO: { 3123 struct tcp_info info; 3124 3125 if (get_user(len, optlen)) 3126 return -EFAULT; 3127 3128 tcp_get_info(sk, &info); 3129 3130 len = min_t(unsigned int, len, sizeof(info)); 3131 if (put_user(len, optlen)) 3132 return -EFAULT; 3133 if (copy_to_user(optval, &info, len)) 3134 return -EFAULT; 3135 return 0; 3136 } 3137 case TCP_CC_INFO: { 3138 const struct tcp_congestion_ops *ca_ops; 3139 union tcp_cc_info info; 3140 size_t sz = 0; 3141 int attr; 3142 3143 if (get_user(len, optlen)) 3144 return -EFAULT; 3145 3146 ca_ops = icsk->icsk_ca_ops; 3147 if (ca_ops && ca_ops->get_info) 3148 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3149 3150 len = min_t(unsigned int, len, sz); 3151 if (put_user(len, optlen)) 3152 return -EFAULT; 3153 if (copy_to_user(optval, &info, len)) 3154 return -EFAULT; 3155 return 0; 3156 } 3157 case TCP_QUICKACK: 3158 val = !icsk->icsk_ack.pingpong; 3159 break; 3160 3161 case TCP_CONGESTION: 3162 if (get_user(len, optlen)) 3163 return -EFAULT; 3164 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3165 if (put_user(len, optlen)) 3166 return -EFAULT; 3167 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3168 return -EFAULT; 3169 return 0; 3170 3171 case TCP_ULP: 3172 if (get_user(len, optlen)) 3173 return -EFAULT; 3174 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3175 if (!icsk->icsk_ulp_ops) { 3176 if (put_user(0, optlen)) 3177 return -EFAULT; 3178 return 0; 3179 } 3180 if (put_user(len, optlen)) 3181 return -EFAULT; 3182 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3183 return -EFAULT; 3184 return 0; 3185 3186 case TCP_FASTOPEN_KEY: { 3187 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3188 struct tcp_fastopen_context *ctx; 3189 3190 if (get_user(len, optlen)) 3191 return -EFAULT; 3192 3193 rcu_read_lock(); 3194 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3195 if (ctx) 3196 memcpy(key, ctx->key, sizeof(key)); 3197 else 3198 len = 0; 3199 rcu_read_unlock(); 3200 3201 len = min_t(unsigned int, len, sizeof(key)); 3202 if (put_user(len, optlen)) 3203 return -EFAULT; 3204 if (copy_to_user(optval, key, len)) 3205 return -EFAULT; 3206 return 0; 3207 } 3208 case TCP_THIN_LINEAR_TIMEOUTS: 3209 val = tp->thin_lto; 3210 break; 3211 3212 case TCP_THIN_DUPACK: 3213 val = 0; 3214 break; 3215 3216 case TCP_REPAIR: 3217 val = tp->repair; 3218 break; 3219 3220 case TCP_REPAIR_QUEUE: 3221 if (tp->repair) 3222 val = tp->repair_queue; 3223 else 3224 return -EINVAL; 3225 break; 3226 3227 case TCP_REPAIR_WINDOW: { 3228 struct tcp_repair_window opt; 3229 3230 if (get_user(len, optlen)) 3231 return -EFAULT; 3232 3233 if (len != sizeof(opt)) 3234 return -EINVAL; 3235 3236 if (!tp->repair) 3237 return -EPERM; 3238 3239 opt.snd_wl1 = tp->snd_wl1; 3240 opt.snd_wnd = tp->snd_wnd; 3241 opt.max_window = tp->max_window; 3242 opt.rcv_wnd = tp->rcv_wnd; 3243 opt.rcv_wup = tp->rcv_wup; 3244 3245 if (copy_to_user(optval, &opt, len)) 3246 return -EFAULT; 3247 return 0; 3248 } 3249 case TCP_QUEUE_SEQ: 3250 if (tp->repair_queue == TCP_SEND_QUEUE) 3251 val = tp->write_seq; 3252 else if (tp->repair_queue == TCP_RECV_QUEUE) 3253 val = tp->rcv_nxt; 3254 else 3255 return -EINVAL; 3256 break; 3257 3258 case TCP_USER_TIMEOUT: 3259 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3260 break; 3261 3262 case TCP_FASTOPEN: 3263 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3264 break; 3265 3266 case TCP_FASTOPEN_CONNECT: 3267 val = tp->fastopen_connect; 3268 break; 3269 3270 case TCP_FASTOPEN_NO_COOKIE: 3271 val = tp->fastopen_no_cookie; 3272 break; 3273 3274 case TCP_TIMESTAMP: 3275 val = tcp_time_stamp_raw() + tp->tsoffset; 3276 break; 3277 case TCP_NOTSENT_LOWAT: 3278 val = tp->notsent_lowat; 3279 break; 3280 case TCP_SAVE_SYN: 3281 val = tp->save_syn; 3282 break; 3283 case TCP_SAVED_SYN: { 3284 if (get_user(len, optlen)) 3285 return -EFAULT; 3286 3287 lock_sock(sk); 3288 if (tp->saved_syn) { 3289 if (len < tp->saved_syn[0]) { 3290 if (put_user(tp->saved_syn[0], optlen)) { 3291 release_sock(sk); 3292 return -EFAULT; 3293 } 3294 release_sock(sk); 3295 return -EINVAL; 3296 } 3297 len = tp->saved_syn[0]; 3298 if (put_user(len, optlen)) { 3299 release_sock(sk); 3300 return -EFAULT; 3301 } 3302 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3303 release_sock(sk); 3304 return -EFAULT; 3305 } 3306 tcp_saved_syn_free(tp); 3307 release_sock(sk); 3308 } else { 3309 release_sock(sk); 3310 len = 0; 3311 if (put_user(len, optlen)) 3312 return -EFAULT; 3313 } 3314 return 0; 3315 } 3316 default: 3317 return -ENOPROTOOPT; 3318 } 3319 3320 if (put_user(len, optlen)) 3321 return -EFAULT; 3322 if (copy_to_user(optval, &val, len)) 3323 return -EFAULT; 3324 return 0; 3325 } 3326 3327 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3328 int __user *optlen) 3329 { 3330 struct inet_connection_sock *icsk = inet_csk(sk); 3331 3332 if (level != SOL_TCP) 3333 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3334 optval, optlen); 3335 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3336 } 3337 EXPORT_SYMBOL(tcp_getsockopt); 3338 3339 #ifdef CONFIG_COMPAT 3340 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3341 char __user *optval, int __user *optlen) 3342 { 3343 if (level != SOL_TCP) 3344 return inet_csk_compat_getsockopt(sk, level, optname, 3345 optval, optlen); 3346 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3347 } 3348 EXPORT_SYMBOL(compat_tcp_getsockopt); 3349 #endif 3350 3351 #ifdef CONFIG_TCP_MD5SIG 3352 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3353 static DEFINE_MUTEX(tcp_md5sig_mutex); 3354 static bool tcp_md5sig_pool_populated = false; 3355 3356 static void __tcp_alloc_md5sig_pool(void) 3357 { 3358 struct crypto_ahash *hash; 3359 int cpu; 3360 3361 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3362 if (IS_ERR(hash)) 3363 return; 3364 3365 for_each_possible_cpu(cpu) { 3366 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3367 struct ahash_request *req; 3368 3369 if (!scratch) { 3370 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3371 sizeof(struct tcphdr), 3372 GFP_KERNEL, 3373 cpu_to_node(cpu)); 3374 if (!scratch) 3375 return; 3376 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3377 } 3378 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3379 continue; 3380 3381 req = ahash_request_alloc(hash, GFP_KERNEL); 3382 if (!req) 3383 return; 3384 3385 ahash_request_set_callback(req, 0, NULL, NULL); 3386 3387 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3388 } 3389 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3390 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3391 */ 3392 smp_wmb(); 3393 tcp_md5sig_pool_populated = true; 3394 } 3395 3396 bool tcp_alloc_md5sig_pool(void) 3397 { 3398 if (unlikely(!tcp_md5sig_pool_populated)) { 3399 mutex_lock(&tcp_md5sig_mutex); 3400 3401 if (!tcp_md5sig_pool_populated) 3402 __tcp_alloc_md5sig_pool(); 3403 3404 mutex_unlock(&tcp_md5sig_mutex); 3405 } 3406 return tcp_md5sig_pool_populated; 3407 } 3408 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3409 3410 3411 /** 3412 * tcp_get_md5sig_pool - get md5sig_pool for this user 3413 * 3414 * We use percpu structure, so if we succeed, we exit with preemption 3415 * and BH disabled, to make sure another thread or softirq handling 3416 * wont try to get same context. 3417 */ 3418 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3419 { 3420 local_bh_disable(); 3421 3422 if (tcp_md5sig_pool_populated) { 3423 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3424 smp_rmb(); 3425 return this_cpu_ptr(&tcp_md5sig_pool); 3426 } 3427 local_bh_enable(); 3428 return NULL; 3429 } 3430 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3431 3432 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3433 const struct sk_buff *skb, unsigned int header_len) 3434 { 3435 struct scatterlist sg; 3436 const struct tcphdr *tp = tcp_hdr(skb); 3437 struct ahash_request *req = hp->md5_req; 3438 unsigned int i; 3439 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3440 skb_headlen(skb) - header_len : 0; 3441 const struct skb_shared_info *shi = skb_shinfo(skb); 3442 struct sk_buff *frag_iter; 3443 3444 sg_init_table(&sg, 1); 3445 3446 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3447 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3448 if (crypto_ahash_update(req)) 3449 return 1; 3450 3451 for (i = 0; i < shi->nr_frags; ++i) { 3452 const struct skb_frag_struct *f = &shi->frags[i]; 3453 unsigned int offset = f->page_offset; 3454 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3455 3456 sg_set_page(&sg, page, skb_frag_size(f), 3457 offset_in_page(offset)); 3458 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3459 if (crypto_ahash_update(req)) 3460 return 1; 3461 } 3462 3463 skb_walk_frags(skb, frag_iter) 3464 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3465 return 1; 3466 3467 return 0; 3468 } 3469 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3470 3471 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3472 { 3473 struct scatterlist sg; 3474 3475 sg_init_one(&sg, key->key, key->keylen); 3476 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3477 return crypto_ahash_update(hp->md5_req); 3478 } 3479 EXPORT_SYMBOL(tcp_md5_hash_key); 3480 3481 #endif 3482 3483 void tcp_done(struct sock *sk) 3484 { 3485 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3486 3487 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3488 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3489 3490 tcp_set_state(sk, TCP_CLOSE); 3491 tcp_clear_xmit_timers(sk); 3492 if (req) 3493 reqsk_fastopen_remove(sk, req, false); 3494 3495 sk->sk_shutdown = SHUTDOWN_MASK; 3496 3497 if (!sock_flag(sk, SOCK_DEAD)) 3498 sk->sk_state_change(sk); 3499 else 3500 inet_csk_destroy_sock(sk); 3501 } 3502 EXPORT_SYMBOL_GPL(tcp_done); 3503 3504 int tcp_abort(struct sock *sk, int err) 3505 { 3506 if (!sk_fullsock(sk)) { 3507 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3508 struct request_sock *req = inet_reqsk(sk); 3509 3510 local_bh_disable(); 3511 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3512 req); 3513 local_bh_enable(); 3514 return 0; 3515 } 3516 return -EOPNOTSUPP; 3517 } 3518 3519 /* Don't race with userspace socket closes such as tcp_close. */ 3520 lock_sock(sk); 3521 3522 if (sk->sk_state == TCP_LISTEN) { 3523 tcp_set_state(sk, TCP_CLOSE); 3524 inet_csk_listen_stop(sk); 3525 } 3526 3527 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3528 local_bh_disable(); 3529 bh_lock_sock(sk); 3530 3531 if (!sock_flag(sk, SOCK_DEAD)) { 3532 sk->sk_err = err; 3533 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3534 smp_wmb(); 3535 sk->sk_error_report(sk); 3536 if (tcp_need_reset(sk->sk_state)) 3537 tcp_send_active_reset(sk, GFP_ATOMIC); 3538 tcp_done(sk); 3539 } 3540 3541 bh_unlock_sock(sk); 3542 local_bh_enable(); 3543 release_sock(sk); 3544 return 0; 3545 } 3546 EXPORT_SYMBOL_GPL(tcp_abort); 3547 3548 extern struct tcp_congestion_ops tcp_reno; 3549 3550 static __initdata unsigned long thash_entries; 3551 static int __init set_thash_entries(char *str) 3552 { 3553 ssize_t ret; 3554 3555 if (!str) 3556 return 0; 3557 3558 ret = kstrtoul(str, 0, &thash_entries); 3559 if (ret) 3560 return 0; 3561 3562 return 1; 3563 } 3564 __setup("thash_entries=", set_thash_entries); 3565 3566 static void __init tcp_init_mem(void) 3567 { 3568 unsigned long limit = nr_free_buffer_pages() / 16; 3569 3570 limit = max(limit, 128UL); 3571 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3572 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3573 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3574 } 3575 3576 void __init tcp_init(void) 3577 { 3578 int max_rshare, max_wshare, cnt; 3579 unsigned long limit; 3580 unsigned int i; 3581 3582 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3583 FIELD_SIZEOF(struct sk_buff, cb)); 3584 3585 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3586 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3587 inet_hashinfo_init(&tcp_hashinfo); 3588 tcp_hashinfo.bind_bucket_cachep = 3589 kmem_cache_create("tcp_bind_bucket", 3590 sizeof(struct inet_bind_bucket), 0, 3591 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3592 3593 /* Size and allocate the main established and bind bucket 3594 * hash tables. 3595 * 3596 * The methodology is similar to that of the buffer cache. 3597 */ 3598 tcp_hashinfo.ehash = 3599 alloc_large_system_hash("TCP established", 3600 sizeof(struct inet_ehash_bucket), 3601 thash_entries, 3602 17, /* one slot per 128 KB of memory */ 3603 0, 3604 NULL, 3605 &tcp_hashinfo.ehash_mask, 3606 0, 3607 thash_entries ? 0 : 512 * 1024); 3608 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3609 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3610 3611 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3612 panic("TCP: failed to alloc ehash_locks"); 3613 tcp_hashinfo.bhash = 3614 alloc_large_system_hash("TCP bind", 3615 sizeof(struct inet_bind_hashbucket), 3616 tcp_hashinfo.ehash_mask + 1, 3617 17, /* one slot per 128 KB of memory */ 3618 0, 3619 &tcp_hashinfo.bhash_size, 3620 NULL, 3621 0, 3622 64 * 1024); 3623 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3624 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3625 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3626 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3627 } 3628 3629 3630 cnt = tcp_hashinfo.ehash_mask + 1; 3631 sysctl_tcp_max_orphans = cnt / 2; 3632 3633 tcp_init_mem(); 3634 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3635 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3636 max_wshare = min(4UL*1024*1024, limit); 3637 max_rshare = min(6UL*1024*1024, limit); 3638 3639 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3640 sysctl_tcp_wmem[1] = 16*1024; 3641 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3642 3643 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3644 sysctl_tcp_rmem[1] = 87380; 3645 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3646 3647 pr_info("Hash tables configured (established %u bind %u)\n", 3648 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3649 3650 tcp_v4_init(); 3651 tcp_metrics_init(); 3652 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3653 tcp_tasklet_init(); 3654 } 3655